WorldWideScience

Sample records for motion correction methods

  1. A rigid motion correction method for helical computed tomography (CT)

    International Nuclear Information System (INIS)

    Kim, J-H; Kyme, A; Fulton, R; Nuyts, J; Kuncic, Z

    2015-01-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data. (paper)

  2. Error analysis of motion correction method for laser scanning of moving objects

    Science.gov (United States)

    Goel, S.; Lohani, B.

    2014-05-01

    The limitation of conventional laser scanning methods is that the objects being scanned should be static. The need of scanning moving objects has resulted in the development of new methods capable of generating correct 3D geometry of moving objects. Limited literature is available showing development of very few methods capable of catering to the problem of object motion during scanning. All the existing methods utilize their own models or sensors. Any studies on error modelling or analysis of any of the motion correction methods are found to be lacking in literature. In this paper, we develop the error budget and present the analysis of one such `motion correction' method. This method assumes availability of position and orientation information of the moving object which in general can be obtained by installing a POS system on board or by use of some tracking devices. It then uses this information along with laser scanner data to apply correction to laser data, thus resulting in correct geometry despite the object being mobile during scanning. The major application of this method lie in the shipping industry to scan ships either moving or parked in the sea and to scan other objects like hot air balloons or aerostats. It is to be noted that the other methods of "motion correction" explained in literature can not be applied to scan the objects mentioned here making the chosen method quite unique. This paper presents some interesting insights in to the functioning of "motion correction" method as well as a detailed account of the behavior and variation of the error due to different sensor components alone and in combination with each other. The analysis can be used to obtain insights in to optimal utilization of available components for achieving the best results.

  3. Evaluation of a direct motion estimation/correction method in respiratory-gated PET/MRI with motion-adjusted attenuation.

    Science.gov (United States)

    Bousse, Alexandre; Manber, Richard; Holman, Beverley F; Atkinson, David; Arridge, Simon; Ourselin, Sébastien; Hutton, Brian F; Thielemans, Kris

    2017-06-01

    Respiratory motion compensation in PET/CT and PET/MRI is essential as motion is a source of image degradation (motion blur, attenuation artifacts). In previous work, we developed a direct method for joint image reconstruction/motion estimation (JRM) for attenuation-corrected (AC) respiratory-gated PET, which uses a single attenuation-map (μ-map). This approach was successfully implemented for respiratory-gated PET/CT, but since it relied on an accurate μ-map for motion estimation, the question of its applicability in PET/MRI is open. The purpose of this work is to investigate the feasibility of JRM in PET/MRI and to assess the robustness of the motion estimation when a degraded μ-map is used. We performed a series of JRM reconstructions from simulated PET data using a range of simulated Dixon MRI sequence derived μ-maps with wrong attenuation values in the lungs, from -100% (no attenuation) to +100% (double attenuation), as well as truncated arms. We compared the estimated motions with the one obtained from JRM in ideal conditions (no noise, true μ-map as an input). We also applied JRM on 4 patient datasets of the chest, 3 of them containing hot lesions. Patient list-mode data were gated using a principal component analysis method. We compared SUV max values of the JRM reconstructed activity images and non motion-corrected images. We also assessed the estimated motion fields by comparing the deformed JRM-reconstructed activity with individually non-AC reconstructed gates. Experiments on simulated data showed that JRM-motion estimation is robust to μ-map degradation in the sense that it produces motion fields similar to the ones obtained when using the true μ-map, regardless of the attenuation errors in the lungs (PET/MRI clinical datasets. It provides a potential alternative to existing methods where the motion fields are pre-estimated from separate MRI measurements. © 2017 University College London (UCL). Medical Physics published by Wiley Periodicals, Inc

  4. Blind retrospective motion correction of MR images.

    Science.gov (United States)

    Loktyushin, Alexander; Nickisch, Hannes; Pohmann, Rolf; Schölkopf, Bernhard

    2013-12-01

    Subject motion can severely degrade MR images. A retrospective motion correction algorithm, Gradient-based motion correction, which significantly reduces ghosting and blurring artifacts due to subject motion was proposed. The technique uses the raw data of standard imaging sequences; no sequence modifications or additional equipment such as tracking devices are required. Rigid motion is assumed. The approach iteratively searches for the motion trajectory yielding the sharpest image as measured by the entropy of spatial gradients. The vast space of motion parameters is efficiently explored by gradient-based optimization with a convergence guarantee. The method has been evaluated on both synthetic and real data in two and three dimensions using standard imaging techniques. MR images are consistently improved over different kinds of motion trajectories. Using a graphics processing unit implementation, computation times are in the order of a few minutes for a full three-dimensional volume. The presented technique can be an alternative or a complement to prospective motion correction methods and is able to improve images with strong motion artifacts from standard imaging sequences without requiring additional data. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  5. Real Time MRI Motion Correction with Markerless Tracking

    DEFF Research Database (Denmark)

    Benjaminsen, Claus; Jensen, Rasmus Ramsbøl; Wighton, Paul

    Prospective motion correction for MRI neuroimaging has been demonstrated using MR navigators and external tracking systems using markers. The drawbacks of these two motion estimation methods include prolonged scan time plus lack of compatibility with all image acquisitions, and difficulties...... validating marker attachment resulting in uncertain estimation of the brain motion respectively. We have developed a markerless tracking system, and in this work we demonstrate the use of our system for prospective motion correction, and show that despite being computationally demanding, markerless tracking...... can be implemented for real time motion correction....

  6. Methods for Motion Correction Evaluation Using 18F-FDG Human Brain Scans on a High-Resolution PET Scanner

    DEFF Research Database (Denmark)

    Keller, Sune H.; Sibomana, Merence; Olesen, Oline Vinter

    2012-01-01

    Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias in the reconstr......Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias...... in the reconstructed emission images. The purpose of this work was the development of quality control (QC) methods for MC procedures based on external motion tracking (EMT) for human scanning using an optical motion tracking system. Methods: Two scans with minor motion and 5 with major motion (as reported...... (automated image registration) software. The following 3 QC methods were used to evaluate the EMT and AIR MC: a method using the ratio between 2 regions of interest with gray matter voxels (GM) and white matter voxels (WM), called GM/WM; mutual information; and cross correlation. Results: The results...

  7. MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI

    Science.gov (United States)

    Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges

    2014-01-01

    Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection

  8. Motion correction options in PET/MRI.

    Science.gov (United States)

    Catana, Ciprian

    2015-05-01

    Subject motion is unavoidable in clinical and research imaging studies. Breathing is the most important source of motion in whole-body PET and MRI studies, affecting not only thoracic organs but also those in the upper and even lower abdomen. The motion related to the pumping action of the heart is obviously relevant in high-resolution cardiac studies. These two sources of motion are periodic and predictable, at least to a first approximation, which means certain techniques can be used to control the motion (eg, by acquiring the data when the organ of interest is relatively at rest). Additionally, nonperiodic and unpredictable motion can also occur during the scan. One obvious limitation of methods relying on external devices (eg, respiratory bellows or the electrocardiogram signal to monitor the respiratory or cardiac cycle, respectively) to trigger or gate the data acquisition is that the complex motion of internal organs cannot be fully characterized. However, detailed information can be obtained using either the PET or MRI data (or both) allowing the more complete characterization of the motion field so that a motion model can be built. Such a model and the information derived from simple external devices can be used to minimize the effects of motion on the collected data. In the ideal case, all the events recorded during the PET scan would be used to generate a motion-free or corrected PET image. The detailed motion field can be used for this purpose by applying it to the PET data before, during, or after the image reconstruction. Integrating all these methods for motion control, characterization, and correction into a workflow that can be used for routine clinical studies is challenging but could potentially be extremely valuable given the improvement in image quality and reduction of motion-related image artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. PET motion correction using PRESTO with ITK motion estimation

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Melissa [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Caldeira, Liliana; Scheins, Juergen [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany); Matela, Nuno [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Kops, Elena Rota; Shah, N Jon [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany)

    2014-07-29

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  10. PET motion correction using PRESTO with ITK motion estimation

    International Nuclear Information System (INIS)

    Botelho, Melissa; Caldeira, Liliana; Scheins, Juergen; Matela, Nuno; Kops, Elena Rota; Shah, N Jon

    2014-01-01

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  11. Iterative CT reconstruction with correction for known rigid motion

    Energy Technology Data Exchange (ETDEWEB)

    Nuyts, Johan [Katholieke Univ. Leuven (Belgium). Dept. of Nuclear Medicine; Kim, Jung-Ha; Fulton, Roger [Sydney Univ., NSW (Australia). School of Physics; Westmead Hospital, Sydney (Australia). Medical Physics

    2011-07-01

    In PET/CT brain imaging, correction for motion may be needed, in particular for children and psychiatric patients. Motion is more likely to occur in the lengthy PET measurement, but also during the short CT acquisition patient motion is possible. Rigid motion of the head can be measured independently from the PET/CT system with optical devices. In this paper, we propose a method and some preliminary simulation results for iterative CT reconstruction with correction for known rigid motion. We implemented an iterative algorithm for fully 3D reconstruction from helical CT scans. The motion of the head is incorporated in the system matrix as a view-dependent motion of the CT-system. The first simulation results indicate that some motion patterns may produce loss of essential data. This loss precludes exact reconstruction and results in artifacts in the reconstruction, even when motion is taken into account. However, by reducing the pitch during acquisition, the same motion pattern no longer caused artifacts in the motion corrected image. (orig.)

  12. Respiratory and cardiac motion correction in dual gated PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fayad, Hadi; Monnier, Florian [LaTIM, INSERM, UMR 1101, Brest (France); Odille, Freedy; Felblinger, Jacques [INSERM U947, University of Nancy, Nancy (France); Lamare, Frederic [INCIA, UMR5287, CNRS, CHU Bordeaux, Bordeaux (France); Visvikis, Dimitris [LaTIM, INSERM, UMR 1101, Brest (France)

    2015-05-18

    Respiratory and cardiac motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies involve the use of double gated acquisitions which lead to low signal-to-noise ratio (SNR) and to issues concerning the combination of cardiac and respiratory frames. The objective of this work is to use a generalized reconstruction by inversion of coupled systems (GRICS) approach, previously used for PET/MR respiratory motion correction, combined with a cardiac phase signal and a reconstruction incorporated PET motion correction approach in order to reconstruct motion free images from dual gated PET acquisitions. The GRICS method consists of formulating parallel MRI in the presence of patient motion as a coupled inverse problem. Its resolution, using a fixed-point method, allows the reconstructed image to be improved using a motion model constructed from the raw MR data and two respiratory belts. GRICS obtained respiratory displacements are interpolated using the cardiac phase derived from an ECG to model simultaneous cardiac and respiratory motion. Three different volunteer datasets (4DMR acquisitions) were used for evaluation. GATE was used to simulate 4DPET datasets corresponding to the acquired 4DMR images. Simulated data were subsequently binned using 16 cardiac phases (M1) vs diastole only (M2), in combination with 8 respiratory amplitude gates. Respiratory and cardiac motion corrected PET images using either M1 or M2 were compared to respiratory only corrected images and evaluated in terms of SNR and contrast improvement. Significant visual improvements were obtained when correcting simultaneously for respiratory and cardiac motion (using 16 cardiac phase or diastole only) compared to respiratory motion only compensation. Results were confirmed by an associated increased SNR and contrast. Results indicate that using GRICS is an efficient tool for respiratory and cardiac motion correction in dual gated PET/MR imaging.

  13. Correction of Motion Artifacts for Real-Time Structured Light

    DEFF Research Database (Denmark)

    Wilm, Jakob; Olesen, Oline Vinter; Paulsen, Rasmus Reinhold

    2015-01-01

    While the problem of motion is often mentioned in conjunction with structured light imaging, few solutions have thus far been proposed. A method is demonstrated to correct for object or camera motion during structured light 3D scene acquisition. The method is based on the combination of a suitabl...

  14. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data

    Science.gov (United States)

    Brigadoi, Sabrina; Ceccherini, Lisa; Cutini, Simone; Scarpa, Fabio; Scatturin, Pietro; Selb, Juliette; Gagnon, Louis; Boas, David A.; Cooper, Robert J.

    2013-01-01

    Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) experiments. Despite this, there is no well-established method for their removal. Instead, functional trials of fNIRS data containing a motion artifact are often rejected completely. However, in most experimental circumstances the number of trials is limited, and multiple motion artifacts are common, particularly in challenging populations. Many methods have been proposed recently to correct for motion artifacts, including principle component analysis, spline interpolation, Kalman filtering, wavelet filtering and correlation-based signal improvement. The performance of different techniques has been often compared in simulations, but only rarely has it been assessed on real functional data. Here, we compare the performance of these motion correction techniques on real functional data acquired during a cognitive task, which required the participant to speak aloud, leading to a low-frequency, low-amplitude motion artifact that is correlated with the hemodynamic response. To compare the efficacy of these methods, objective metrics related to the physiology of the hemodynamic response have been derived. Our results show that it is always better to correct for motion artifacts than reject trials, and that wavelet filtering is the most effective approach to correcting this type of artifact, reducing the area under the curve where the artifact is present in 93% of the cases. Our results therefore support previous studies that have shown wavelet filtering to be the most promising and powerful technique for the correction of motion artifacts in fNIRS data. The analyses performed here can serve as a guide for others to objectively test the impact of different motion correction algorithms and therefore select the most appropriate for the analysis of their own fNIRS experiment. PMID:23639260

  15. Data-driven motion correction in brain SPECT

    International Nuclear Information System (INIS)

    Kyme, A.Z.; Hutton, B.F.; Hatton, R.L.; Skerrett, D.W.

    2002-01-01

    Patient motion can cause image artifacts in SPECT despite restraining measures. Data-driven detection and correction of motion can be achieved by comparison of acquired data with the forward-projections. By optimising the orientation of the reconstruction, parameters can be obtained for each misaligned projection and applied to update this volume using a 3D reconstruction algorithm. Digital and physical phantom validation was performed to investigate this approach. Noisy projection data simulating at least one fully 3D patient head movement during acquisition were constructed by projecting the digital Huffman brain phantom at various orientations. Motion correction was applied to the reconstructed studies. The importance of including attenuation effects in the estimation of motion and the need for implementing an iterated correction were assessed in the process. Correction success was assessed visually for artifact reduction, and quantitatively using a mean square difference (MSD) measure. Physical Huffman phantom studies with deliberate movements introduced during the acquisition were also acquired and motion corrected. Effective artifact reduction in the simulated corrupt studies was achieved by motion correction. Typically the MSD ratio between the corrected and reference studies compared to the corrupted and reference studies was > 2. Motion correction could be achieved without inclusion of attenuation effects in the motion estimation stage, providing simpler implementation and greater efficiency. Moreover the additional improvement with multiple iterations of the approach was small. Improvement was also observed in the physical phantom data, though the technique appeared limited here by an object symmetry. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  16. Respiratory lung motion analysis using a nonlinear motion correction technique for respiratory-gated lung perfusion SPECT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Haneishi, Hideaki; Iwanaga, Hideyuki; Suga, Kazuyoshi

    2007-01-01

    This study evaluated the respiratory motion of lungs using a nonlinear motion correction technique for respiratory-gated single photon emission computed tomography (SPECT) images. The motion correction technique corrects the respiratory motion of the lungs nonlinearly between two-phase images obtained by respiratory-gated SPECT. The displacement vectors resulting from respiration can be computed at every location of the lungs. Respiratory lung motion analysis is carried out by calculating the mean value of the body axis component of the displacement vector in each of the 12 small regions into which the lungs were divided. In order to enable inter-patient comparison, the 12 mean values were normalized by the length of the lung region along the direction of the body axis. This method was applied to 25 Technetium (Tc)-99m-macroaggregated albumin (MAA) perfusion SPECT images, and motion analysis results were compared with the diagnostic results. It was confirmed that the respiratory lung motion reflects the ventilation function. A statistically significant difference in the amount of the respiratory lung motion was observed between the obstructive pulmonary diseases and other conditions, based on an unpaired Student's t test (P<0.0001). A difference in the motion between normal lungs and lungs with a ventilation obstruction was detected by the proposed method. This method is effective for evaluating obstructive pulmonary diseases such as pulmonary emphysema and diffuse panbronchiolitis. (author)

  17. Motion detection and correction for dynamic 15O-water myocardial perfusion PET studies

    International Nuclear Information System (INIS)

    Naum, Alexandru; Laaksonen, Marko S.; Oikonen, Vesa; Teraes, Mika; Jaervisalo, Mikko J.; Knuuti, Juhani; Tuunanen, Helena; Nuutila, Pirjo; Kemppainen, Jukka

    2005-01-01

    Patient motion during dynamic PET studies is a well-documented source of errors. The purpose of this study was to investigate the incidence of frame-to-frame motion in dynamic 15 O-water myocardial perfusion PET studies, to test the efficacy of motion correction methods and to study whether implementation of motion correction would have an impact on the perfusion results. We developed a motion detection procedure using external radioactive skin markers and frame-to-frame alignment. To evaluate motion, marker coordinates inside the field of view were determined in each frame for each study. The highest number of frames with identical spatial coordinates during the study were defined as ''non-moved''. Movement was considered present if even one marker changed position, by one pixel/frame compared with reference, in one axis, and such frames were defined as ''moved''. We tested manual, in-house-developed motion correction software and an automatic motion correction using a rigid body point model implemented in MIPAV (Medical Image Processing, Analysis and Visualisation) software. After motion correction, remaining motion was re-analysed. Myocardial blood flow (MBF) values were calculated for both non-corrected and motion-corrected datasets. At rest, patient motion was found in 18% of the frames, but during pharmacological stress the fraction increased to 45% and during physical exercise it rose to 80%. Both motion correction algorithms significantly decreased (p<0.006) the number of moved frames and the amplitude of motion (p<0.04). Motion correction significantly increased MBF results during bicycle exercise (p<0.02). At rest or during adenosine infusion, the motion correction had no significant effects on MBF values. Significant motion is a common phenomenon in dynamic cardiac studies during adenosine infusion but especially during exercise. Applying motion correction for the data acquired during exercise clearly changed the MBF results, indicating that motion

  18. General rigid motion correction for computed tomography imaging based on locally linear embedding

    Science.gov (United States)

    Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge

    2018-02-01

    The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.

  19. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  20. Motion correction improves image quality of dGEMRIC in finger joints

    International Nuclear Information System (INIS)

    Miese, Falk; Kröpil, Patric; Ostendorf, Benedikt; Scherer, Axel; Buchbender, Christian; Quentin, Michael; Lanzman, Rotem S.; Blondin, Dirk; Schneider, Matthias; Bittersohl, Bernd; Zilkens, Christoph; Jellus, Vladimir; Mamisch, Tallal Ch.; Wittsack, Hans-Jörg

    2011-01-01

    Purpose: To assess motion artifacts in dGEMRIC of finger joints and to evaluate the effectiveness of motion correction. Materials and methods: In 40 subjects (26 patients with finger arthritis and 14 healthy volunteers) dGEMRIC of metacarpophalangeal joint II was performed. Imaging used a dual flip angle approach (TE 3.72 ms, TR 15 ms, flip angles 5° and 26°). Two sets of T1 maps were calculated for dGEMRIC analysis from the imaging data for each subject: one with and one without motion correction. To compare image quality, visual grading analysis and precision of dGEMRIC measurement of both dGEMRIC maps for each case were evaluated. Results: Motion artifacts were present in 82% (33/40) of uncorrected dGEMRIC maps. Motion artifacts were graded as severe or as rendering evaluation impossible in 43% (17/40) of uncorrected dGEMRIC maps. Motion corrected maps showed significantly less motion artifacts (P < 0.001) and were graded as evaluable in 97% (39/40) of cases. Precision was significantly higher in motion corrected images (coefficient of variation (CV = .176 ± .077), compared to uncorrected images (CV .445 ± .347) (P < .001). Motion corrected dGERMIC was different in volunteers and patients (P = .044), whereas uncorrected dGEMRIC was not (P = .234). Conclusion: Motion correction improves image quality, dGEMRIC measurement precision and diagnostic performance in dGEMRIC of finger joints.

  1. The design and implementation of a motion correction scheme for neurological PET

    International Nuclear Information System (INIS)

    Bloomfield, Peter M; Spinks, Terry J; Reed, Johnny; Schnorr, Leonard; Westrip, Anthony M; Livieratos, Lefteris; Fulton, Roger; Jones, Terry

    2003-01-01

    A method is described to monitor the motion of the head during neurological positron emission tomography (PET) acquisitions and to correct the data post acquisition for the recorded motion prior to image reconstruction. The technique uses an optical tracking system, Polaris TM , to accurately monitor the position of the head during the PET acquisition. The PET data are acquired in list mode where the events are written directly to disk during acquisition. The motion tracking information is aligned to the PET data using a sequence of pseudo-random numbers, which are inserted into the time tags in the list mode event stream through the gating input interface on the tomograph. The position of the head is monitored during the transmission acquisition, and it is assumed that there is minimal head motion during this measurement. Each event, prompt and delayed, in the list mode event stream is corrected for motion and transformed into the transmission space. For a given line of response, normalization, including corrections for detector efficiency, geometry and crystal interference and dead time are applied prior to motion correction and rebinning in the sinogram. A series of phantom experiments were performed to confirm the accuracy of the method: (a) a point source located in three discrete axial positions in the tomograph field of view, 0 mm, 10 mm and 20 mm from a reference point, (b) a multi-line source phantom rotated in both discrete and gradual rotations through ±5 deg. and ±15 deg, including a vertical and horizontal movement in the plane. For both phantom experiments images were reconstructed for both the fixed and motion corrected data. Measurements for resolution, full width at half maximum (FWHM) and full width at tenth maximum (FWTM), were calculated from these images and a comparison made between the fixed and motion corrected datasets. From the point source measurements, the FWHM at each axial position was 7.1 mm in the horizontal direction, and

  2. Event-based motion correction for PET transmission measurements with a rotating point source

    International Nuclear Information System (INIS)

    Zhou, Victor W; Kyme, Andre Z; Meikle, Steven R; Fulton, Roger

    2011-01-01

    Accurate attenuation correction is important for quantitative positron emission tomography (PET) studies. When performing transmission measurements using an external rotating radioactive source, object motion during the transmission scan can distort the attenuation correction factors computed as the ratio of the blank to transmission counts, and cause errors and artefacts in reconstructed PET images. In this paper we report a compensation method for rigid body motion during PET transmission measurements, in which list mode transmission data are motion corrected event-by-event, based on known motion, to ensure that all events which traverse the same path through the object are recorded on a common line of response (LOR). As a result, the motion-corrected transmission LOR may record a combination of events originally detected on different LORs. To ensure that the corresponding blank LOR records events from the same combination of contributing LORs, the list mode blank data are spatially transformed event-by-event based on the same motion information. The number of counts recorded on the resulting blank LOR is then equivalent to the number of counts that would have been recorded on the corresponding motion-corrected transmission LOR in the absence of any attenuating object. The proposed method has been verified in phantom studies with both stepwise movements and continuous motion. We found that attenuation maps derived from motion-corrected transmission and blank data agree well with those of the stationary phantom and are significantly better than uncorrected attenuation data.

  3. Correction of patient motion in cone-beam CT using 3D-2D registration

    Science.gov (United States)

    Ouadah, S.; Jacobson, M.; Stayman, J. W.; Ehtiati, T.; Weiss, C.; Siewerdsen, J. H.

    2017-12-01

    Cone-beam CT (CBCT) is increasingly common in guidance of interventional procedures, but can be subject to artifacts arising from patient motion during fairly long (~5-60 s) scan times. We present a fiducial-free method to mitigate motion artifacts using 3D-2D image registration that simultaneously corrects residual errors in the intrinsic and extrinsic parameters of geometric calibration. The 3D-2D registration process registers each projection to a prior 3D image by maximizing gradient orientation using the covariance matrix adaptation-evolution strategy optimizer. The resulting rigid transforms are applied to the system projection matrices, and a 3D image is reconstructed via model-based iterative reconstruction. Phantom experiments were conducted using a Zeego robotic C-arm to image a head phantom undergoing 5-15 cm translations and 5-15° rotations. To further test the algorithm, clinical images were acquired with a CBCT head scanner in which long scan times were susceptible to significant patient motion. CBCT images were reconstructed using a penalized likelihood objective function. For phantom studies the structural similarity (SSIM) between motion-free and motion-corrected images was  >0.995, with significant improvement (p  values of uncorrected images. Additionally, motion-corrected images exhibited a point-spread function with full-width at half maximum comparable to that of the motion-free reference image. Qualitative comparison of the motion-corrupted and motion-corrected clinical images demonstrated a significant improvement in image quality after motion correction. This indicates that the 3D-2D registration method could provide a useful approach to motion artifact correction under assumptions of local rigidity, as in the head, pelvis, and extremities. The method is highly parallelizable, and the automatic correction of residual geometric calibration errors provides added benefit that could be valuable in routine use.

  4. Event-by-Event Continuous Respiratory Motion Correction for Dynamic PET Imaging.

    Science.gov (United States)

    Yu, Yunhan; Chan, Chung; Ma, Tianyu; Liu, Yaqiang; Gallezot, Jean-Dominique; Naganawa, Mika; Kelada, Olivia J; Germino, Mary; Sinusas, Albert J; Carson, Richard E; Liu, Chi

    2016-07-01

    Existing respiratory motion-correction methods are applied only to static PET imaging. We have previously developed an event-by-event respiratory motion-correction method with correlations between internal organ motion and external respiratory signals (INTEX). This method is uniquely appropriate for dynamic imaging because it corrects motion for each time point. In this study, we applied INTEX to human dynamic PET studies with various tracers and investigated the impact on kinetic parameter estimation. The use of 3 tracers-a myocardial perfusion tracer, (82)Rb (n = 7); a pancreatic β-cell tracer, (18)F-FP(+)DTBZ (n = 4); and a tumor hypoxia tracer, (18)F-fluoromisonidazole ((18)F-FMISO) (n = 1)-was investigated in a study of 12 human subjects. Both rest and stress studies were performed for (82)Rb. The Anzai belt system was used to record respiratory motion. Three-dimensional internal organ motion in high temporal resolution was calculated by INTEX to guide event-by-event respiratory motion correction of target organs in each dynamic frame. Time-activity curves of regions of interest drawn based on end-expiration PET images were obtained. For (82)Rb studies, K1 was obtained with a 1-tissue model using a left-ventricle input function. Rest-stress myocardial blood flow (MBF) and coronary flow reserve (CFR) were determined. For (18)F-FP(+)DTBZ studies, the total volume of distribution was estimated with arterial input functions using the multilinear analysis 1 method. For the (18)F-FMISO study, the net uptake rate Ki was obtained with a 2-tissue irreversible model using a left-ventricle input function. All parameters were compared with the values derived without motion correction. With INTEX, K1 and MBF increased by 10% ± 12% and 15% ± 19%, respectively, for (82)Rb stress studies. CFR increased by 19% ± 21%. For studies with motion amplitudes greater than 8 mm (n = 3), K1, MBF, and CFR increased by 20% ± 12%, 30% ± 20%, and 34% ± 23%, respectively. For (82)Rb

  5. Automated fetal brain segmentation from 2D MRI slices for motion correction.

    Science.gov (United States)

    Keraudren, K; Kuklisova-Murgasova, M; Kyriakopoulou, V; Malamateniou, C; Rutherford, M A; Kainz, B; Hajnal, J V; Rueckert, D

    2014-11-01

    Motion correction is a key element for imaging the fetal brain in-utero using Magnetic Resonance Imaging (MRI). Maternal breathing can introduce motion, but a larger effect is frequently due to fetal movement within the womb. Consequently, imaging is frequently performed slice-by-slice using single shot techniques, which are then combined into volumetric images using slice-to-volume reconstruction methods (SVR). For successful SVR, a key preprocessing step is to isolate fetal brain tissues from maternal anatomy before correcting for the motion of the fetal head. This has hitherto been a manual or semi-automatic procedure. We propose an automatic method to localize and segment the brain of the fetus when the image data is acquired as stacks of 2D slices with anatomy misaligned due to fetal motion. We combine this segmentation process with a robust motion correction method, enabling the segmentation to be refined as the reconstruction proceeds. The fetal brain localization process uses Maximally Stable Extremal Regions (MSER), which are classified using a Bag-of-Words model with Scale-Invariant Feature Transform (SIFT) features. The segmentation process is a patch-based propagation of the MSER regions selected during detection, combined with a Conditional Random Field (CRF). The gestational age (GA) is used to incorporate prior knowledge about the size and volume of the fetal brain into the detection and segmentation process. The method was tested in a ten-fold cross-validation experiment on 66 datasets of healthy fetuses whose GA ranged from 22 to 39 weeks. In 85% of the tested cases, our proposed method produced a motion corrected volume of a relevant quality for clinical diagnosis, thus removing the need for manually delineating the contours of the brain before motion correction. Our method automatically generated as a side-product a segmentation of the reconstructed fetal brain with a mean Dice score of 93%, which can be used for further processing. Copyright

  6. Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in EPI

    Science.gov (United States)

    Yeo, Desmond T. B.; Fessler, Jeffrey A.; Kim, Boklye

    2014-01-01

    The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts and associated field map changes that induce different geometric distortion at different time points. Conventionally, geometric distortion is “corrected” with a static field map independently of image registration. That approach ignores all field map changes induced by head motion. This work evaluates the improved motion correction capability of mapping slice to volume (MSV) registration with concurrent iterative field corrected reconstruction using updated field maps derived from an initial static field map that has been spatially transformed and resampled. It accounts for motion-induced field map changes for translational and in-plane rotation motion. The results from simulated EPI time series data, in which motion, image intensity and activation ground truths are available, show improved accuracy in image registration, field corrected image reconstruction and activation detection. PMID:18280077

  7. An attenuation correction method for PET/CT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Yamazaki, Tomohiro; Haneishi, Hideaki

    2006-01-01

    In PET/CT systems, accurate attenuation correction can be achieved by creating an attenuation map from an X-ray CT image. On the other hand, respiratory-gated PET acquisition is an effective method for avoiding motion blurring of the thoracic and abdominal organs caused by respiratory motion. In PET/CT systems employing respiratory-gated PET, using an X-ray CT image acquired during breath-holding for attenuation correction may have a large effect on the voxel values, especially in regions with substantial respiratory motion. In this report, we propose an attenuation correction method in which, as the first step, a set of respiratory-gated PET images is reconstructed without attenuation correction, as the second step, the motion of each phase PET image from the PET image in the same phase as the CT acquisition timing is estimated by the previously proposed method, as the third step, the CT image corresponding to each respiratory phase is generated from the original CT image by deformation according to the motion vector maps, and as the final step, attenuation correction using these CT images and reconstruction are performed. The effectiveness of the proposed method was evaluated using 4D-NCAT phantoms, and good stability of the voxel values near the diaphragm was observed. (author)

  8. Correction of computed tomography motion artifacts using pixel-specific back-projection

    International Nuclear Information System (INIS)

    Ritchie, C.J.; Crawford, C.R.; Godwin, J.D.; Kim, Y. King, K.F.

    1996-01-01

    Cardiac and respiratory motion can cause artifacts in computed tomography scans of the chest. The authors describe a new method for reducing these artifacts called pixel-specific back-projection (PSBP). PSBP reduces artifacts caused by in-plane motion by reconstructing each pixel in a frame of reference that moves with the in-plane motion in the volume being scanned. The motion of the frame of reference is specified by constructing maps that describe the motion of each pixel in the image at the time each projection was measured; these maps are based on measurements of the in-plane motion. PSBP has been tested in computer simulations and with volunteer data. In computer simulations, PSBP removed the structured artifacts caused by motion. In scans of two volunteers, PSBP reduced doubling and streaking in chest scans to a level that made the images clinically useful. PSBP corrections of liver scans were less satisfactory because the motion of the liver is predominantly superior-inferior (S-I). PSBP uses a unique set of motion parameters to describe the motion at each point in the chest as opposed to requiring that the motion be described by a single set of parameters. Therefore, PSBP may be more useful in correcting clinical scans than are other correction techniques previously described

  9. Motion correction in thoracic positron emission tomography

    CERN Document Server

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  10. Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in echo-planar imaging.

    Science.gov (United States)

    Yeo, Desmond T B; Fessler, Jeffrey A; Kim, Boklye

    2008-06-01

    The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts and associated field map changes that induce different geometric distortion at different time points. Conventionally, geometric distortion is "corrected" with a static field map independently of image registration. That approach ignores all field map changes induced by head motion. This work evaluates the improved motion correction capability of mapping slice to volume with concurrent iterative field corrected reconstruction using updated field maps derived from an initial static field map that has been spatially transformed and resampled. It accounts for motion-induced field map changes for translational and in-plane rotation motion. The results from simulated EPI time series data, in which motion, image intensity and activation ground truths are available, show improved accuracy in image registration, field corrected image reconstruction and activation detection.

  11. Inter-slice motion correction using spatiotemporal interpolation for functional magnetic resonance imaging of the moving fetus

    OpenAIRE

    Limperopoulos, Catherine; You, Wonsang

    2017-01-01

    Fetal motion continues to be one of the major artifacts in in-utero functional MRI; interestingly few methods have been developed to address fetal motion correction. In this study, we propose a robust method for motion correction in fetal fMRI by which both inter-slice and inter-volume motion artifacts are jointly corrected. To accomplish this, an original volume is temporally split into odd and even slices, and then voxel intensities are spatially and temporally interpolated in the process o...

  12. A scheme for PET data normalization in event-based motion correction

    International Nuclear Information System (INIS)

    Zhou, Victor W; Kyme, Andre Z; Fulton, Roger; Meikle, Steven R

    2009-01-01

    Line of response (LOR) rebinning is an event-based motion-correction technique for positron emission tomography (PET) imaging that has been shown to compensate effectively for rigid motion. It involves the spatial transformation of LORs to compensate for motion during the scan, as measured by a motion tracking system. Each motion-corrected event is then recorded in the sinogram bin corresponding to the transformed LOR. It has been shown previously that the corrected event must be normalized using a normalization factor derived from the original LOR, that is, based on the pair of detectors involved in the original coincidence event. In general, due to data compression strategies (mashing), sinogram bins record events detected on multiple LORs. The number of LORs associated with a sinogram bin determines the relative contribution of each LOR. This paper provides a thorough treatment of event-based normalization during motion correction of PET data using LOR rebinning. We demonstrate theoretically and experimentally that normalization of the corrected event during LOR rebinning should account for the number of LORs contributing to the sinogram bin into which the motion-corrected event is binned. Failure to account for this factor may cause artifactual slice-to-slice count variations in the transverse slices and visible horizontal stripe artifacts in the coronal and sagittal slices of the reconstructed images. The theory and implementation of normalization in conjunction with the LOR rebinning technique is described in detail, and experimental verification of the proposed normalization method in phantom studies is presented.

  13. The relation between respiratory motion artifact correction and lung standardized uptake value

    International Nuclear Information System (INIS)

    Yin Lijie; Liu Xiaojian; Liu Jie; Xu Rui; Yan Jue

    2014-01-01

    PET/CT is playing an important role in disease diagnosis and therapeutic evaluation. But the respiratory motion artifact may bring trouble in diagnosis and therapy. There are many methods to correct the respiratory motion artifact. Respiratory gated PET/CT is applied most extensively of them. Using respiratory gated PET/CT to correct respiratory motion artifact can increase the maximum standardized uptake value of lung lesion obviously, thereby improving the quality of image and accuracy of diagnosis. (authors)

  14. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections.

    Science.gov (United States)

    Gillman, Ashley; Smith, Jye; Thomas, Paul; Rose, Stephen; Dowson, Nicholas

    2017-12-01

    Patient motion is an important consideration in modern PET image reconstruction. Advances in PET technology mean motion has an increasingly important influence on resulting image quality. Motion-induced artifacts can have adverse effects on clinical outcomes, including missed diagnoses and oversized radiotherapy treatment volumes. This review aims to summarize the wide variety of motion correction techniques available in PET and combined PET/CT and PET/MR, with a focus on the latter. A general framework for the motion correction of PET images is presented, consisting of acquisition, modeling, and correction stages. Methods for measuring, modeling, and correcting motion and associated artifacts, both in literature and commercially available, are presented, and their relative merits are contrasted. Identified limitations of current methods include modeling of aperiodic and/or unpredictable motion, attaining adequate temporal resolution for motion correction in dynamic kinetic modeling acquisitions, and maintaining availability of the MR in PET/MR scans for diagnostic acquisitions. Finally, avenues for future investigation are discussed, with a focus on improvements that could improve PET image quality, and that are practical in the clinical environment. © 2017 American Association of Physicists in Medicine.

  15. An embedded optical tracking system for motion-corrected magnetic resonance imaging at 7T.

    Science.gov (United States)

    Schulz, Jessica; Siegert, Thomas; Reimer, Enrico; Labadie, Christian; Maclaren, Julian; Herbst, Michael; Zaitsev, Maxim; Turner, Robert

    2012-12-01

    Prospective motion correction using data from optical tracking systems has been previously shown to reduce motion artifacts in MR imaging of the head. We evaluate a novel optical embedded tracking system. The home-built optical embedded tracking system performs image processing within a 7 T scanner bore, enabling high speed tracking. Corrected and uncorrected in vivo MR volumes are acquired interleaved using a modified 3D FLASH sequence, and their image quality is assessed and compared. The latency between motion and correction of the slice position was measured to be (19 ± 5) ms, and the tracking noise has a standard deviation no greater than 10 μm/0.005° during conventional MR scanning. Prospective motion correction improved the edge strength by 16 % on average, even though the volunteers were asked to remain motionless during the acquisitions. Using a novel method for validating the effectiveness of in vivo prospective motion correction, we have demonstrated that prospective motion correction using motion data from the embedded tracking system considerably improved image quality.

  16. Retrospective Reconstruction of High Temporal Resolution Cine Images from Real-Time MRI using Iterative Motion Correction

    DEFF Research Database (Denmark)

    Hansen, Michael Schacht; Sørensen, Thomas Sangild; Arai, Andrew

    2012-01-01

    acquisitions in 10 (N = 10) subjects. Acceptable image quality was obtained in all motion-corrected reconstructions, and the resulting mean image quality score was (a) Cartesian real-time: 2.48, (b) Golden Angle real-time: 1.90 (1.00–2.50), (c) Cartesian motion correction: 3.92, (d) Radial motion correction: 4...... and motion correction based on nonrigid registration and can be applied to arbitrary k-space trajectories. The method is demonstrated with real-time Cartesian imaging and Golden Angle radial acquisitions, and the motion-corrected acquisitions are compared with raw real-time images and breath-hold cine...

  17. PROMO – Real-time Prospective Motion Correction in MRI using Image-based Tracking

    Science.gov (United States)

    White, Nathan; Roddey, Cooper; Shankaranarayanan, Ajit; Han, Eric; Rettmann, Dan; Santos, Juan; Kuperman, Josh; Dale, Anders

    2010-01-01

    Artifacts caused by patient motion during scanning remain a serious problem in most MRI applications. The prospective motion correction technique attempts to address this problem at its source by keeping the measurement coordinate system fixed with respect to the patient throughout the entire scan process. In this study, a new image-based approach for prospective motion correction is described, which utilizes three orthogonal 2D spiral navigator acquisitions (SP-Navs) along with a flexible image-based tracking method based on the Extended Kalman Filter (EKF) algorithm for online motion measurement. The SP-Nav/EKF framework offers the advantages of image-domain tracking within patient-specific regions-of-interest and reduced sensitivity to off-resonance-induced corruption of rigid-body motion estimates. The performance of the method was tested using offline computer simulations and online in vivo head motion experiments. In vivo validation results covering a broad range of staged head motions indicate a steady-state error of the SP-Nav/EKF motion estimates of less than 10 % of the motion magnitude, even for large compound motions that included rotations over 15 degrees. A preliminary in vivo application in 3D inversion recovery spoiled gradient echo (IR-SPGR) and 3D fast spin echo (FSE) sequences demonstrates the effectiveness of the SP-Nav/EKF framework for correcting 3D rigid-body head motion artifacts prospectively in high-resolution 3D MRI scans. PMID:20027635

  18. Motion correction in neurological fan beam SPECT using motion tracking and fully 3D reconstruction

    International Nuclear Information System (INIS)

    Fulton, R.R.; Hutton, B.; Eberl, S.; Meikle, S.; Braun, M.; Westmead Hospital, Westmead, NSW; University of Technology, Sydney, NSW

    1998-01-01

    Full text: We have previously proposed the use of fully three-dimensional (3D) reconstruction and continuous monitoring of head position to correct for motion artifacts in neurological SPECT and PET. Knowledge of the motion during acquisition provided by a head tracking system can be used to reposition the projection data in space in such a way as to negate motion effects during reconstruction. The reconstruction algorithm must deal with variations in the projection geometry resulting from differences in the timing and nature of motion between patients. Rotational movements about any axis other than the camera's axis of rotation give rise to projection geometries which necessitate the use of a fully 3D reconstruction algorithm. Our previous work with computer simulations assuming parallel hole collimation demonstrated the feasibility of correcting for motion. We have now refined our iterative 3D reconstruction algorithm to support fan beam data and attenuation correction, and developed a practical head tracking system for use on a Trionix Triad SPECT system. The correction technique has been tested in fan beam SPECT studies of the 3D Hoffman brain phantom. Arbitrary movements were applied to the phantom during acquisition and recorded by the head tracker which monitored the position and orientation of the phantom throughout the study. 3D reconstruction was then performed using the motion data provided by the tracker. The accuracy of correction was assessed by comparing the corrected images with a motion free study acquired immediately beforehand, visually and by calculating mean squared error (MSE). Motion correction reduced distortion perceptibly and, depending on the motions applied, improved MSE by up to an order of magnitude. 3D reconstruction of the 128x128x128 data set took 20 minutes on a SUN Ultra 1 workstation. The results of these phantom experiments suggest that the technique can effectively compensate for head motion under clinical SPECT imaging

  19. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET

    International Nuclear Information System (INIS)

    Heß, Mirco; Büther, Florian; Dawood, Mohammad; Schäfers, Klaus P.; Gigengack, Fabian

    2015-01-01

    Purpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness—including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches. Methods: The data of two Kinects are used to calculate 3D representations of a patient’s torso surface with high spatial coverage. Motion signals can be obtained for any position by tracking the mean distance to a virtual camera with a view perpendicular to the surrounding surface. The authors have conducted validation experiments including volunteers and a moving high-precision platform to verify the method’s suitability for providing meaningful data. In addition, the authors employed it during clinical 18 F-FDG-PET scans and exemplarily analyzed the acquired data of ten cancer patients. External signals of abdominal and thoracic regions as well as data-driven signals were used for gating and compared with respect to detected displacement of present lesions. Additionally, the authors quantified signal similarities and time shifts by analyzing cross-correlation sequences. Results: The authors’ results suggest a Kinect depth resolution of approximately 1 mm at 75 cm distance. Accordingly, valid signals could be obtained for surface movements with small amplitudes in the range of only few millimeters. In this small sample of ten patients, the abdominal signals were better suited for gating the PET data than the thoracic signals and the correlation of data-driven signals was found

  20. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET

    Energy Technology Data Exchange (ETDEWEB)

    Heß, Mirco, E-mail: mirco.hess@uni-muenster.de; Büther, Florian; Dawood, Mohammad; Schäfers, Klaus P. [European Institute for Molecular Imaging, University of Münster, Münster 48149 (Germany); Gigengack, Fabian [European Institute for Molecular Imaging, University of Münster, Münster 48149, Germany and Department of Mathematics and Computer Science, University of Münster, Münster 48149 (Germany)

    2015-05-15

    Purpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness—including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches. Methods: The data of two Kinects are used to calculate 3D representations of a patient’s torso surface with high spatial coverage. Motion signals can be obtained for any position by tracking the mean distance to a virtual camera with a view perpendicular to the surrounding surface. The authors have conducted validation experiments including volunteers and a moving high-precision platform to verify the method’s suitability for providing meaningful data. In addition, the authors employed it during clinical {sup 18}F-FDG-PET scans and exemplarily analyzed the acquired data of ten cancer patients. External signals of abdominal and thoracic regions as well as data-driven signals were used for gating and compared with respect to detected displacement of present lesions. Additionally, the authors quantified signal similarities and time shifts by analyzing cross-correlation sequences. Results: The authors’ results suggest a Kinect depth resolution of approximately 1 mm at 75 cm distance. Accordingly, valid signals could be obtained for surface movements with small amplitudes in the range of only few millimeters. In this small sample of ten patients, the abdominal signals were better suited for gating the PET data than the thoracic signals and the correlation of data-driven signals was

  1. Impact of subject head motion on quantitative brain 15O PET and its correction by image-based registration algorithm

    International Nuclear Information System (INIS)

    Matsubara, Keisuke; Ibaraki, Masanobu; Nakamura, Kazuhiro; Yamaguchi, Hiroshi; Umetsu, Atsushi; Kinoshita, Fumiko; Kinoshita, Toshibumi

    2013-01-01

    Subject head motion during sequential 15 O positron emission tomography (PET) scans can result in artifacts in cerebral blood flow (CBF) and oxygen metabolism maps. However, to our knowledge, there are no systematic studies examining this issue. Herein, we investigated the effect of head motion on quantification of CBF and oxygen metabolism, and proposed an image-based motion correction method dedicated to 15 O PET study, correcting for transmission-emission mismatch and inter-scan mismatch of emission scans. We analyzed 15 O PET data for patients with major arterial steno-occlusive disease (n=130) to determine the occurrence frequency of head motion during 15 O PET examination. Image-based motion correction without and with realignment between transmission and emission scans, termed simple and 2-step method, respectively, was applied to the cases that showed severe inter-scan motion. Severe inter-scan motion (>3 mm translation or >5deg rotation) was observed in 27 of 520 adjacent scan pairs (5.2%). In these cases, unrealistic values of oxygen extraction fraction (OEF) or cerebrovascular reactivity (CVR) were observed without motion correction. Motion correction eliminated these artifacts. The volume-of-interest (VOI) analysis demonstrated that the motion correction changed the OEF on the middle cerebral artery territory by 17.3% at maximum. The inter-scan motion also affected cerebral blood volume (CBV), cerebral metabolism rate of oxygen (CMRO 2 ) and CBF, which were improved by the motion correction. A difference of VOI values between the simple and 2-step method was also observed. These data suggest that image-based motion correction is useful for accurate measurement of CBF and oxygen metabolism by 15 O PET. (author)

  2. Correction of head motion artifacts in SPECT with fully 3-D OS-EM reconstruction

    International Nuclear Information System (INIS)

    Fulton, R.R.

    1998-01-01

    Full text: A method which relies on continuous monitoring of head position has been developed to correct for head motion in SPECT studies of the brain. Head position and orientation are monitored during data acquisition by an inexpensive head tracking system (ADL-1, Shooting Star Technology, Rosedale, British Colombia). Motion correction involves changing the projection geometry to compensate for motion (using data from the head tracker), and reconstructing with a fully 3-D OS-EM algorithm. The reconstruction algorithm can accommodate any number of movements and any projection geometry. A single iteration of 3-D OS-EM using all available projections provides a satisfactory 3-D reconstruction, essentially free of motion artifacts. The method has been validated in studies of the 3-D Hoffman brain phantom. Multiple 36- degree acquisitions, each with the phantom in a different position, were performed on a Trionix triple head camera. Movements were simulated by combining projections from the different acquisitions. Accuracy was assessed by comparison with a motion-free reconstruction, visually and by calculating mean squared error (MSE). Motion correction reduced distortion perceptibly and, depending on the motions applied, improved MSE by up to an order of magnitude. Three-dimensional reconstruction of the 128 x 128 x 128 data set took 2- minutes on a SUN Ultra 1 workstation. This motion correction technique can be retro-fitted to existing SPECT systems and could be incorporated in future SPECT camera designs. It appears to be applicable in PET as well as SPECT, to be able to correct for any head movements, and to have the potential to improve the accuracy of tomographic brain studies under clinical imaging conditions

  3. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).

    Science.gov (United States)

    Wong, Chung-Ki; Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Luo, Qingfei; Bodurka, Jerzy

    2016-04-01

    Head motions during functional magnetic resonance imaging (fMRI) impair fMRI data quality and introduce systematic artifacts that can affect interpretation of fMRI results. Electroencephalography (EEG) recordings performed simultaneously with fMRI provide high-temporal-resolution information about ongoing brain activity as well as head movements. Recently, an EEG-assisted retrospective motion correction (E-REMCOR) method was introduced. E-REMCOR utilizes EEG motion artifacts to correct the effects of head movements in simultaneously acquired fMRI data on a slice-by-slice basis. While E-REMCOR is an efficient motion correction approach, it involves an independent component analysis (ICA) of the EEG data and identification of motion-related ICs. Here we report an automated implementation of E-REMCOR, referred to as aE-REMCOR, which we developed to facilitate the application of E-REMCOR in large-scale EEG-fMRI studies. The aE-REMCOR algorithm, implemented in MATLAB, enables an automated preprocessing of the EEG data, an ICA decomposition, and, importantly, an automatic identification of motion-related ICs. aE-REMCOR has been used to perform retrospective motion correction for 305 fMRI datasets from 16 subjects, who participated in EEG-fMRI experiments conducted on a 3T MRI scanner. Performance of aE-REMCOR has been evaluated based on improvement in temporal signal-to-noise ratio (TSNR) of the fMRI data, as well as correction efficiency defined in terms of spike reduction in fMRI motion parameters. The results show that aE-REMCOR is capable of substantially reducing head motion artifacts in fMRI data. In particular, when there are significant rapid head movements during the scan, a large TSNR improvement and high correction efficiency can be achieved. Depending on a subject's motion, an average TSNR improvement over the brain upon the application of aE-REMCOR can be as high as 27%, with top ten percent of the TSNR improvement values exceeding 55%. The average

  4. Whole-heart coronary MRA with 3D affine motion correction using 3D image-based navigation.

    Science.gov (United States)

    Henningsson, Markus; Prieto, Claudia; Chiribiri, Amedeo; Vaillant, Ghislain; Razavi, Reza; Botnar, René M

    2014-01-01

    Robust motion correction is necessary to minimize respiratory motion artefacts in coronary MR angiography (CMRA). The state-of-the-art method uses a 1D feet-head translational motion correction approach, and data acquisition is limited to a small window in the respiratory cycle, which prolongs the scan by a factor of 2-3. The purpose of this work was to implement 3D affine motion correction for Cartesian whole-heart CMRA using a 3D navigator (3D-NAV) to allow for data acquisition throughout the whole respiratory cycle. 3D affine transformations for different respiratory states (bins) were estimated by using 3D-NAV image acquisitions which were acquired during the startup profiles of a steady-state free precession sequence. The calculated 3D affine transformations were applied to the corresponding high-resolution Cartesian image acquisition which had been similarly binned, to correct for respiratory motion between bins. Quantitative and qualitative comparisons showed no statistical difference between images acquired with the proposed method and the reference method using a diaphragmatic navigator with a narrow gating window. We demonstrate that 3D-NAV and 3D affine correction can be used to acquire Cartesian whole-heart 3D coronary artery images with 100% scan efficiency with similar image quality as with the state-of-the-art gated and corrected method with approximately 50% scan efficiency. Copyright © 2013 Wiley Periodicals, Inc.

  5. Motion correction of PET brain images through deconvolution: II. Practical implementation and algorithm optimization

    Science.gov (United States)

    Raghunath, N.; Faber, T. L.; Suryanarayanan, S.; Votaw, J. R.

    2009-02-01

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. When patient motion is known, deconvolution methods can be used to correct the reconstructed image and reduce motion blur. This paper describes the implementation and optimization of an iterative deconvolution method that uses an ordered subset approach to make it practical and clinically viable. We performed ten separate FDG PET scans using the Hoffman brain phantom and simultaneously measured its motion using the Polaris Vicra tracking system (Northern Digital Inc., Ontario, Canada). The feasibility and effectiveness of the technique was studied by performing scans with different motion and deconvolution parameters. Deconvolution resulted in visually better images and significant improvement as quantified by the Universal Quality Index (UQI) and contrast measures. Finally, the technique was applied to human studies to demonstrate marked improvement. Thus, the deconvolution technique presented here appears promising as a valid alternative to existing motion correction methods for PET. It has the potential for deblurring an image from any modality if the causative motion is known and its effect can be represented in a system matrix.

  6. Motion correction of PET brain images through deconvolution: II. Practical implementation and algorithm optimization

    International Nuclear Information System (INIS)

    Raghunath, N; Faber, T L; Suryanarayanan, S; Votaw, J R

    2009-01-01

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. When patient motion is known, deconvolution methods can be used to correct the reconstructed image and reduce motion blur. This paper describes the implementation and optimization of an iterative deconvolution method that uses an ordered subset approach to make it practical and clinically viable. We performed ten separate FDG PET scans using the Hoffman brain phantom and simultaneously measured its motion using the Polaris Vicra tracking system (Northern Digital Inc., Ontario, Canada). The feasibility and effectiveness of the technique was studied by performing scans with different motion and deconvolution parameters. Deconvolution resulted in visually better images and significant improvement as quantified by the Universal Quality Index (UQI) and contrast measures. Finally, the technique was applied to human studies to demonstrate marked improvement. Thus, the deconvolution technique presented here appears promising as a valid alternative to existing motion correction methods for PET. It has the potential for deblurring an image from any modality if the causative motion is known and its effect can be represented in a system matrix.

  7. Motion correction of PET brain images through deconvolution: II. Practical implementation and algorithm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, N; Faber, T L; Suryanarayanan, S; Votaw, J R [Department of Radiology, Emory University Hospital, 1364 Clifton Road, N.E. Atlanta, GA 30322 (United States)], E-mail: John.Votaw@Emory.edu

    2009-02-07

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. When patient motion is known, deconvolution methods can be used to correct the reconstructed image and reduce motion blur. This paper describes the implementation and optimization of an iterative deconvolution method that uses an ordered subset approach to make it practical and clinically viable. We performed ten separate FDG PET scans using the Hoffman brain phantom and simultaneously measured its motion using the Polaris Vicra tracking system (Northern Digital Inc., Ontario, Canada). The feasibility and effectiveness of the technique was studied by performing scans with different motion and deconvolution parameters. Deconvolution resulted in visually better images and significant improvement as quantified by the Universal Quality Index (UQI) and contrast measures. Finally, the technique was applied to human studies to demonstrate marked improvement. Thus, the deconvolution technique presented here appears promising as a valid alternative to existing motion correction methods for PET. It has the potential for deblurring an image from any modality if the causative motion is known and its effect can be represented in a system matrix.

  8. TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY

    Science.gov (United States)

    YÜCEL, MERYEM A.; SELB, JULIETTE; COOPER, ROBERT J.; BOAS, DAVID A.

    2014-01-01

    As near-infrared spectroscopy (NIRS) broadens its application area to different age and disease groups, motion artifacts in the NIRS signal due to subject movement is becoming an important challenge. Motion artifacts generally produce signal fluctuations that are larger than physiological NIRS signals, thus it is crucial to correct for them before obtaining an estimate of stimulus evoked hemodynamic responses. There are various methods for correction such as principle component analysis (PCA), wavelet-based filtering and spline interpolation. Here, we introduce a new approach to motion artifact correction, targeted principle component analysis (tPCA), which incorporates a PCA filter only on the segments of data identified as motion artifacts. It is expected that this will overcome the issues of filtering desired signals that plagues standard PCA filtering of entire data sets. We compared the new approach with the most effective motion artifact correction algorithms on a set of data acquired simultaneously with a collodion-fixed probe (low motion artifact content) and a standard Velcro probe (high motion artifact content). Our results show that tPCA gives statistically better results in recovering hemodynamic response function (HRF) as compared to wavelet-based filtering and spline interpolation for the Velcro probe. It results in a significant reduction in mean-squared error (MSE) and significant enhancement in Pearson’s correlation coefficient to the true HRF. The collodion-fixed fiber probe with no motion correction performed better than the Velcro probe corrected for motion artifacts in terms of MSE and Pearson’s correlation coefficient. Thus, if the experimental study permits, the use of a collodion-fixed fiber probe may be desirable. If the use of a collodion-fixed probe is not feasible, then we suggest the use of tPCA in the processing of motion artifact contaminated data. PMID:25360181

  9. TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY.

    Science.gov (United States)

    Yücel, Meryem A; Selb, Juliette; Cooper, Robert J; Boas, David A

    2014-03-01

    As near-infrared spectroscopy (NIRS) broadens its application area to different age and disease groups, motion artifacts in the NIRS signal due to subject movement is becoming an important challenge. Motion artifacts generally produce signal fluctuations that are larger than physiological NIRS signals, thus it is crucial to correct for them before obtaining an estimate of stimulus evoked hemodynamic responses. There are various methods for correction such as principle component analysis (PCA), wavelet-based filtering and spline interpolation. Here, we introduce a new approach to motion artifact correction, targeted principle component analysis (tPCA), which incorporates a PCA filter only on the segments of data identified as motion artifacts. It is expected that this will overcome the issues of filtering desired signals that plagues standard PCA filtering of entire data sets. We compared the new approach with the most effective motion artifact correction algorithms on a set of data acquired simultaneously with a collodion-fixed probe (low motion artifact content) and a standard Velcro probe (high motion artifact content). Our results show that tPCA gives statistically better results in recovering hemodynamic response function (HRF) as compared to wavelet-based filtering and spline interpolation for the Velcro probe. It results in a significant reduction in mean-squared error (MSE) and significant enhancement in Pearson's correlation coefficient to the true HRF. The collodion-fixed fiber probe with no motion correction performed better than the Velcro probe corrected for motion artifacts in terms of MSE and Pearson's correlation coefficient. Thus, if the experimental study permits, the use of a collodion-fixed fiber probe may be desirable. If the use of a collodion-fixed probe is not feasible, then we suggest the use of tPCA in the processing of motion artifact contaminated data.

  10. Local respiratory motion correction for PET/CT imaging: Application to lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lamare, F., E-mail: frederic.lamare@chu-bordeaux.fr; Fernandez, P. [INCIA, UMR 5287, University of Bordeaux, Talence F-33400, France and Nuclear Medicine Department, University Hospital, Bordeaux 33000 (France); Fayad, H.; Visvikis, D. [INSERM, UMR1101, LaTIM, Université de Bretagne Occidentale, Brest 29609 (France)

    2015-10-15

    Purpose: Despite multiple methodologies already proposed to correct respiratory motion in the whole PET imaging field of view (FOV), such approaches have not found wide acceptance in clinical routine. An alternative can be the local respiratory motion correction (LRMC) of data corresponding to a given volume of interest (VOI: organ or tumor). Advantages of LRMC include the use of a simple motion model, faster execution times, and organ specific motion correction. The purpose of this study was to evaluate the performance of LMRC using various motion models for oncology (lung lesion) applications. Methods: Both simulated (NURBS based 4D cardiac-torso phantom) and clinical studies (six patients) were used in the evaluation of the proposed LRMC approach. PET data were acquired in list-mode and synchronized with respiration. The implemented approach consists first in defining a VOI on the reconstructed motion average image. Gated PET images of the VOI are subsequently reconstructed using only lines of response passing through the selected VOI and are used in combination with a center of gravity or an affine/elastic registration algorithm to derive the transformation maps corresponding to the respiration effects. Those are finally integrated in the reconstruction process to produce a motion free image over the lesion regions. Results: Although the center of gravity or affine algorithm achieved similar performance for individual lesion motion correction, the elastic model, applied either locally or to the whole FOV, led to an overall superior performance. The spatial tumor location was altered by 89% and 81% for the elastic model applied locally or to the whole FOV, respectively (compared to 44% and 39% for the center of gravity and affine models, respectively). This resulted in similar associated overall tumor volume changes of 84% and 80%, respectively (compared to 75% and 71% for the center of gravity and affine models, respectively). The application of the nonrigid

  11. Initial evaluation of a practical PET respiratory motion correction method in clinical simultaneous PET/MRI

    International Nuclear Information System (INIS)

    Manber, Richard; Thielemans, Kris; Hutton, Brian; Barnes, Anna; Ourselin, Sebastien; Arridge, Simon; O’Meara, Celia; Atkinson, David

    2014-01-01

    Respiratory motion during PET acquisitions can cause image artefacts, with sharpness and tracer quantification adversely affected due to count ‘smearing’. Motion correction by registration of PET gates becomes increasingly difficult with shorter scan times and less counts. The advent of simultaneous PET/MRI scanners allows the use of high spatial resolution MRI to capture motion states during respiration [1, 2]. In this work, we use a respiratory signal derived from the PET list-mode data [3, ], with no requirement for an external device or MR sequence modifications.

  12. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: Prospective study in lung

    Energy Technology Data Exchange (ETDEWEB)

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S., E-mail: magerasg@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States); Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States)

    2014-10-15

    Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image

  13. Respiratory motion correction for PET oncology applications using affine transformation of list mode data

    International Nuclear Information System (INIS)

    Lamare, F; Cresson, T; Savean, J; Rest, C Cheze Le; Reader, A J; Visvikis, D

    2007-01-01

    Respiratory motion is a source of artefacts and reduced image quality in PET. Proposed methodology for correction of respiratory effects involves the use of gated frames, which are however of low signal-to-noise ratio. Therefore a method accounting for respiratory motion effects without affecting the statistical quality of the reconstructed images is necessary. We have implemented an affine transformation of list mode data for the correction of respiratory motion over the thorax. The study was performed using datasets of the NCAT phantom at different points throughout the respiratory cycle. List mode data based PET simulated frames were produced by combining the NCAT datasets with a Monte Carlo simulation. Transformation parameters accounting for respiratory motion were estimated according to an affine registration and were subsequently applied on the original list mode data. The corrected and uncorrected list mode datasets were subsequently reconstructed using the one-pass list mode EM (OPL-EM) algorithm. Comparison of corrected and uncorrected respiratory motion average frames suggests that an affine transformation in the list mode data prior to reconstruction can produce significant improvements in accounting for respiratory motion artefacts in the lungs and heart. However, the application of a common set of transformation parameters across the imaging field of view does not significantly correct the respiratory effects on organs such as the stomach, liver or spleen

  14. Nonrandom Intrafraction Target Motions and General Strategy for Correction of Spine Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Ma Lijun; Sahgal, Arjun; Hossain, Sabbir; Chuang, Cynthia; Descovich, Martina; Huang, Kim; Gottschalk, Alex; Larson, David A.

    2009-01-01

    Purpose: To characterize nonrandom intrafraction target motions for spine stereotactic body radiotherapy and to develop a method of correction via image guidance. The dependence of target motions, as well as the effectiveness of the correction strategy for lesions of different locations within the spine, was analyzed. Methods and Materials: Intrafraction target motions for 64 targets in 64 patients treated with a total of 233 fractions were analyzed. Based on the target location, the cases were divided into three groups, i.e., cervical (n = 20 patients), thoracic (n = 20 patients), or lumbar-sacrum (n = 24 patients) lesions. For each case, time-lag autocorrelation analysis was performed for each degree of freedom of motion that included both translations (x, y, and z shifts) and rotations (roll, yaw, and pitch). A general correction strategy based on periodic interventions was derived to determine the time interval required between two adjacent interventions, to overcome the patient-specific target motions. Results: Nonrandom target motions were detected for 100% of cases regardless of target locations. Cervical spine targets were found to possess the highest incidence of nonrandom target motion compared with thoracic and lumbar-sacral lesions (p < 0.001). The average time needed to maintain the target motion to within 1 mm of translation or 1 deg. of rotational deviation was 5.5 min, 5.9 min, and 7.1 min for cervical, thoracic, and lumbar-sacrum locations, respectively (at 95% confidence level). Conclusions: A high incidence of nonrandom intrafraction target motions was found for spine stereotactic body radiotherapy treatments. Periodic interventions at approximately every 5 minutes or less were needed to overcome such motions.

  15. Concurrent Respiratory Motion Correction of Abdominal PET and DCE-MRI using a Compressed Sensing Approach.

    Science.gov (United States)

    Fuin, Niccolo; Catalano, Onofrio Antonio; Scipioni, Michele; Canjels, Lisanne P W; Izquierdo, David; Pedemonte, Stefano; Catana, Ciprian

    2018-01-25

    Purpose: We present an approach for concurrent reconstruction of respiratory motion compensated abdominal DCE-MRI and PET data in an integrated PET/MR scanner. The MR and PET reconstructions share the same motion vector fields (MVFs) derived from radial MR data; the approach is robust to changes in respiratory pattern and do not increase the total acquisition time. Methods: PET and DCE-MRI data of 12 oncological patients were simultaneously acquired for 6 minutes on an integrated PET/MR system after administration of 18 F-FDG and gadoterate meglumine. Golden-angle radial MR data were continuously acquired simultaneously with PET data and sorted into multiple motion phases based on a respiratory signal derived directly from the radial MR data. The resulting multidimensional dataset was reconstructed using a compressed sensing approach that exploits sparsity among respiratory phases. MVFs obtained using the full 6-minute (MC_6-min) and only the last 1 minute (MC_1-min) of data were incorporated into the PET reconstruction to obtain motion-corrected PET images and in an MR iterative reconstruction algorithm to produce a series of motion-corrected DCE-MRI images (moco_GRASP). The motion-correction methods (MC_6-min and MC_1-min) were evaluated by qualitative analysis of the MR images and quantitative analysis of maximum and mean standardized uptake values (SUV max , SUVmean), contrast, signal-to-noise ratio (SNR) and lesion volume in the PET images. Results: Motion corrected MC_6-min PET images demonstrated 30%, 23%, 34% and 18% increases in average SUV max , SUVmean, contrast and SNR, and an average 40% reduction in lesion volume with respect to the non-motion-corrected PET images. The changes in these figures of merit were smaller but still substantial for the MC_1-min protocol: 19%, 10%, 15% and 9% increases in average SUV max , SUVmean, contrast and SNR; and a 28% reduction in lesion volume. Moco_GRASP images were deemed of acceptable or better diagnostic image

  16. Rigid-body motion correction of the liver in image reconstruction for golden-angle stack-of-stars DCE MRI.

    Science.gov (United States)

    Johansson, Adam; Balter, James; Cao, Yue

    2018-03-01

    Respiratory motion can affect pharmacokinetic perfusion parameters quantified from liver dynamic contrast-enhanced MRI. Image registration can be used to align dynamic images after reconstruction. However, intra-image motion blur remains after alignment and can alter the shape of contrast-agent uptake curves. We introduce a method to correct for inter- and intra-image motion during image reconstruction. Sixteen liver dynamic contrast-enhanced MRI examinations of nine subjects were performed using a golden-angle stack-of-stars sequence. For each examination, an image time series with high temporal resolution but severe streak artifacts was reconstructed. Images were aligned using region-limited rigid image registration within a region of interest covering the liver. The transformations resulting from alignment were used to correct raw data for motion by modulating and rotating acquired lines in k-space. The corrected data were then reconstructed using view sharing. Portal-venous input functions extracted from motion-corrected images had significantly greater peak signal enhancements (mean increase: 16%, t-test, P <  0.001) than those from images aligned using image registration after reconstruction. In addition, portal-venous perfusion maps estimated from motion-corrected images showed fewer artifacts close to the edge of the liver. Motion-corrected image reconstruction restores uptake curves distorted by motion. Motion correction also reduces motion artifacts in estimated perfusion parameter maps. Magn Reson Med 79:1345-1353, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Motion correction of PET brain images through deconvolution: I. Theoretical development and analysis in software simulations

    Science.gov (United States)

    Faber, T. L.; Raghunath, N.; Tudorascu, D.; Votaw, J. R.

    2009-02-01

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. Existing correction methods that use known patient motion obtained from tracking devices either require multi-frame acquisitions, detailed knowledge of the scanner, or specialized reconstruction algorithms. A deconvolution algorithm has been developed that alleviates these drawbacks by using the reconstructed image to estimate the original non-blurred image using maximum likelihood estimation maximization (MLEM) techniques. A high-resolution digital phantom was created by shape-based interpolation of the digital Hoffman brain phantom. Three different sets of 20 movements were applied to the phantom. For each frame of the motion, sinograms with attenuation and three levels of noise were simulated and then reconstructed using filtered backprojection. The average of the 20 frames was considered the motion blurred image, which was restored with the deconvolution algorithm. After correction, contrast increased from a mean of 2.0, 1.8 and 1.4 in the motion blurred images, for the three increasing amounts of movement, to a mean of 2.5, 2.4 and 2.2. Mean error was reduced by an average of 55% with motion correction. In conclusion, deconvolution can be used for correction of motion blur when subject motion is known.

  18. Motion correction of PET brain images through deconvolution: I. Theoretical development and analysis in software simulations

    Energy Technology Data Exchange (ETDEWEB)

    Faber, T L; Raghunath, N; Tudorascu, D; Votaw, J R [Department of Radiology, Emory University Hospital, 1364 Clifton Road, N.E. Atlanta, GA 30322 (United States)], E-mail: tfaber@emory.edu

    2009-02-07

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. Existing correction methods that use known patient motion obtained from tracking devices either require multi-frame acquisitions, detailed knowledge of the scanner, or specialized reconstruction algorithms. A deconvolution algorithm has been developed that alleviates these drawbacks by using the reconstructed image to estimate the original non-blurred image using maximum likelihood estimation maximization (MLEM) techniques. A high-resolution digital phantom was created by shape-based interpolation of the digital Hoffman brain phantom. Three different sets of 20 movements were applied to the phantom. For each frame of the motion, sinograms with attenuation and three levels of noise were simulated and then reconstructed using filtered backprojection. The average of the 20 frames was considered the motion blurred image, which was restored with the deconvolution algorithm. After correction, contrast increased from a mean of 2.0, 1.8 and 1.4 in the motion blurred images, for the three increasing amounts of movement, to a mean of 2.5, 2.4 and 2.2. Mean error was reduced by an average of 55% with motion correction. In conclusion, deconvolution can be used for correction of motion blur when subject motion is known.

  19. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: prospective study in lung.

    Science.gov (United States)

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Rimner, Andreas; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S

    2014-10-01

    Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image registration, each CBCT was

  20. Semi-automatic detection and correction of body organ motion, particularly cardiac motion in SPECT studies

    International Nuclear Information System (INIS)

    Quintana, J.C.; Caceres, F.; Vargas, P.

    2002-01-01

    patient and artificially imposed). The method is fast (<20s) and robust as compared with manual or other semi-automatic detection of body organ motions in nuclear medicine studies. Conclusion: A fast and robust semi-automatic patient motion detection and correction for SPECT studies has been developed

  1. Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.

    Science.gov (United States)

    Rakvongthai, Yothin; El Fakhri, Georges

    2017-07-01

    Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Robust motion correction and outlier rejection of in vivo functional MR images of the fetal brain and placenta during maternal hyperoxia

    OpenAIRE

    You, Wonsang; Serag, Ahmed; Evangelou, Iordanis E.; Andescavage, Nickie; Limperopoulos, Catherine

    2017-01-01

    Subject motion is a major challenge in functional magnetic resonance imaging studies (fMRI) of the fetal brain and placenta during maternal hyperoxia. We propose a motion correction and volume outlier rejection method for the correction of severe motion artifacts in both fetal brain and placenta. The method is optimized to the experimental design by processing different phases of acquisition separately. It also automatically excludes high-motion volumes and all the missing data are regressed ...

  3. Robust motion correction and outlier rejection of in vivo functional MR images of the fetal brain and placenta during maternal hyperoxia

    OpenAIRE

    You, Wonsang; Serag, Ahmed; Evangelou, Iordanis E.; Andescavage, Nickie; Limperopoulos, Catherine

    2015-01-01

    Subject motion is a major challenge in functional magnetic resonance imaging studies (fMRI) of the fetal brain and placenta during maternal hyperoxia. We propose a motion correction and volume outlier rejection method for the correction of severe motion artifacts in both fetal brain and placenta. The method is optimized to the experimental design by processing different phases of acquisition separately. It also automatically excludes high-motion volumes and all the missing data are regressed ...

  4. MR-guided data framing for PET motion correction in simultaneous MR–PET: A preliminary evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ullisch, M.G., E-mail: m.ullisch@fz-juelich.de [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany); Scheins, J.; Weirich, C.; Rota Kops, E.; Celik, A.; Tellmann, L.; Stöcker, T.; Herzog, H.; Shah, N.J. [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany)

    2013-02-21

    Head motion can significantly degrade image quality of static and dynamic Positron Emission Tomography (PET) of the human brain. One method to regain acceptable image quality in the presence of motion is to include the correction for motion in the reconstruction process. When applying motion correction, the PET data can be segmented into discrete parts of similar head position, referred to as frames. This framing of the data can reduce the computational overhead necessary for motion correction during the reconstruction process by reducing the number of discrete head positions which have to be accounted for. Here a framing algorithm is presented which minimises residual motion in the framed data, while taking full advantage of the additional information provided by Magnetic Resonance Imaging (MRI) in a simultaneous MR–PET acquisition. In the work presented here information on motion is derived from EPI sequences acquired simultaneously with the PET data. A comparison to images reconstructed with regular framing show a more clearly delineated cortex due to increased contrast between grey matter and white matter. This improvement in image quality is achieved as well as a reduction in the number of frames, thereby reducing the reconstruction time. Preliminary data indicates an efficient reduction of residual intra-frame motion compared to regular framing.

  5. MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects.

    Science.gov (United States)

    Chen, Kevin T; Salcedo, Stephanie; Chonde, Daniel B; Izquierdo-Garcia, David; Levine, Michael A; Price, Julie C; Dickerson, Bradford C; Catana, Ciprian

    2018-03-08

    Subject motion in positron emission tomography (PET) studies leads to image blurring and artifacts; simultaneously acquired magnetic resonance imaging (MRI) data provides a means for motion correction (MC) in integrated PET/MRI scanners. To assess the effect of realistic head motion and MR-based MC on static [ 18 F]-fluorodeoxyglucose (FDG) PET images in dementia patients. Observational study. Thirty dementia subjects were recruited. 3T hybrid PET/MR scanner where EPI-based and T 1 -weighted sequences were acquired simultaneously with the PET data. Head motion parameters estimated from high temporal resolution MR volumes were used for PET MC. The MR-based MC method was compared to PET frame-based MC methods in which motion parameters were estimated by coregistering 5-minute frames before and after accounting for the attenuation-emission mismatch. The relative changes in standardized uptake value ratios (SUVRs) between the PET volumes processed with the various MC methods, without MC, and the PET volumes with simulated motion were compared in relevant brain regions. The absolute value of the regional SUVR relative change was assessed with pairwise paired t-tests testing at the P = 0.05 level, comparing the values obtained through different MR-based MC processing methods as well as across different motion groups. The intraregion voxelwise variability of regional SUVRs obtained through different MR-based MC processing methods was also assessed with pairwise paired t-tests testing at the P = 0.05 level. MC had a greater impact on PET data quantification in subjects with larger amplitude motion (higher than 18% in the medial orbitofrontal cortex) and greater changes were generally observed for the MR-based MC method compared to the frame-based methods. Furthermore, a mean relative change of ∼4% was observed after MC even at the group level, suggesting the importance of routinely applying this correction. The intraregion voxelwise variability of regional SUVRs

  6. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

    International Nuclear Information System (INIS)

    Huang, Chuan; Petibon, Yoann; Ouyang, Jinsong; El Fakhri, Georges; Reese, Timothy G.; Ahlman, Mark A.; Bluemke, David A.

    2015-01-01

    Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PET using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still provide

  7. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chuan, E-mail: chuan.huang@stonybrookmedicine.edu [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Departments of Radiology, Psychiatry, Stony Brook Medicine, Stony Brook, New York 11794 (United States); Petibon, Yoann [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Ouyang, Jinsong; El Fakhri, Georges [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Reese, Timothy G. [Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 and Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129 (United States); Ahlman, Mark A.; Bluemke, David A. [Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Maryland 20892 (United States)

    2015-02-15

    Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PET using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still provide

  8. Markerless 3D Head Tracking for Motion Correction in High Resolution PET Brain Imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter

    relying on markers. Data-driven motion correction is problematic due to the physiological dynamics. Marker-based tracking is potentially unreliable, and it is extremely hard to validate when the tracking information is correct. The motion estimation is essential for proper motion correction of the PET......This thesis concerns application specific 3D head tracking. The purpose is to improve motion correction in position emission tomography (PET) brain imaging through development of markerless tracking. Currently, motion correction strategies are based on either the PET data itself or tracking devices...... images. Incorrect motion correction can in the worst cases result in wrong diagnosis or treatment. The evolution of a markerless custom-made structured light 3D surface tracking system is presented. The system is targeted at state-of-the-art high resolution dedicated brain PET scanners with a resolution...

  9. Combined prospective and retrospective correction to reduce motion-induced image misalignment and geometric distortions in EPI.

    Science.gov (United States)

    Ooi, Melvyn B; Muraskin, Jordan; Zou, Xiaowei; Thomas, William J; Krueger, Sascha; Aksoy, Murat; Bammer, Roland; Brown, Truman R

    2013-03-01

    Despite rigid-body realignment to compensate for head motion during an echo-planar imaging time-series scan, nonrigid image deformations remain due to changes in the effective shim within the brain as the head moves through the B(0) field. The current work presents a combined prospective/retrospective solution to reduce both rigid and nonrigid components of this motion-related image misalignment. Prospective rigid-body correction, where the scan-plane orientation is dynamically updated to track with the subject's head, is performed using an active marker setup. Retrospective distortion correction is then applied to unwarp the remaining nonrigid image deformations caused by motion-induced field changes. Distortion correction relative to a reference time-frame does not require any additional field mapping scans or models, but rather uses the phase information from the echo-planar imaging time-series itself. This combined method is applied to compensate echo-planar imaging scans of volunteers performing in-plane and through-plane head motions, resulting in increased image stability beyond what either prospective or retrospective rigid-body correction alone can achieve. The combined method is also assessed in a blood oxygen level dependent functional MRI task, resulting in improved Z-score statistics. Copyright © 2012 Wiley Periodicals, Inc.

  10. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    International Nuclear Information System (INIS)

    Könik, Arda; Johnson, Karen L; Dasari, Paul; Pretorius, P H; Dey, Joyoni; King, Michael A; Connolly, Caitlin M; Segars, Paul W; Lindsay, Clifford

    2014-01-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  11. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    Science.gov (United States)

    Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.

    2014-07-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  12. Real-Time Correction By Optical Tracking with Integrated Geometric Distortion Correction for Reducing Motion Artifacts in fMRI

    Science.gov (United States)

    Rotenberg, David J.

    Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.

  13. Efficient orbit integration by manifold correction methods.

    Science.gov (United States)

    Fukushima, Toshio

    2005-12-01

    Triggered by a desire to investigate, numerically, the planetary precession through a long-term numerical integration of the solar system, we developed a new formulation of numerical integration of orbital motion named manifold correct on methods. The main trick is to rigorously retain the consistency of physical relations, such as the orbital energy, the orbital angular momentum, or the Laplace integral, of a binary subsystem. This maintenance is done by applying a correction to the integrated variables at each integration step. Typical methods of correction are certain geometric transformations, such as spatial scaling and spatial rotation, which are commonly used in the comparison of reference frames, or mathematically reasonable operations, such as modularization of angle variables into the standard domain [-pi, pi). The form of the manifold correction methods finally evolved are the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an indefinitely long period. In perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset of which depends on the type and magnitude of the perturbations. This feature is also realized for highly eccentric orbits by applying the same idea as used in KS-regularization. In particular, the introduction of time elements greatly enhances the performance of numerical integration of KS-regularized orbits, whether the scaling is applied or not.

  14. Corrections to the Hipparcos proper motions in declination for 807 stars

    Directory of Open Access Journals (Sweden)

    Damljanović G.

    2008-01-01

    Full Text Available We used the data on latitude variations obtained from observations with 10 classical photographic zenith tubes (PZT in order to improve the Hipparcos proper motions in declinations µδ for 807 stars. Part of observing programmes, carried out during the last century for the purpose of studying the Earth's rotation, were realized by using PZT instruments. These observations were performed within in the intervals (tens of years much longer than that of the Hipparcos mission (less than 4 years. In addition, the annual number of observations for every PZT programme star is several hundreds on the average. Though the accuracy of the star coordinates in the Hipparcos Catalogue is by two orders of magnitude better than that of the star coordinates from the PZT observations, the large number of observations performed a much longer time interval makes it possible to correct the Hipparcos proper motions and to improve their accuracy with respect to the accuracy given in the Hipparcos Catalogue. Long term examinations of latitude and time variations were used to form the Earth Orientation Catalogue (EOC-2, aimed at a more accurate determination of positions and proper motions for the stars included. Our method of calculating the corrections of the proper motions in declination from the latitude variations is different from the method used in obtaining the EOC-2 Catalogue. Comparing the results we have established a good agreement between our µδ and the EOC-2 ones for the star sample used in the present paper.

  15. Corrections to the Hipparcos Proper Motions in Declination for 807 Stars

    Directory of Open Access Journals (Sweden)

    Damljanović, G.

    2008-12-01

    Full Text Available We used the data on latitude variations obtained from observations with 10 classical photographic zenith tubes (PZT in order to improve the Hipparcos proper motions in declinations $mu_{delta} $ for 807 stars. Part of observing programmes, carried out during the last century for the purpose of studying the Earth's rotation, were realized by using PZT instruments. These observations were performed within in the intervals (tens of years much longer than that of the Hipparcos mission (less than 4 years. In addition, the annual number of observations for every PZT-programme star is several hundreds on the average. Though the accuracy of the star coordinates in the Hipparcos Catalogue is by two orders of magnitude better than that of the star coordinates from the PZT observations, the large number of observations performed a much longer time interval makes it possible to correct the Hipparcos proper motions and to improve their accuracy with respect to the accuracy given in the Hipparcos Catalogue. Long term examinations of latitude and time variations were used to form the Earth Orientation Catalogue (EOC-2, aimed at a more accurate determination of positions and proper motions for the stars included. Our method of calculating the corrections of the proper motions in declination from the latitude variations is different from the method used in obtaining the EOC-2 Catalogue. Comparing the results we have established a good agreement between our $mu_ {delta} $ and the EOC-2 ones for the star sample used in the present paper.

  16. Practical aspects of data-driven motion correction approach for brain SPECT

    International Nuclear Information System (INIS)

    Kyme, A.Z.; Hutton, B.F.; Hatton, R.L.; Skerrett, D.; Barnden, L.

    2002-01-01

    Full text: Patient motion can cause image artifacts in SPECT despite restraining measures. Data-driven detection and correction of motion can be achieved by comparison of acquired data with the forward-projections. By optimising the orientation of a partial reconstruction, parameters can be obtained for each misaligned projection and applied to update this volume using a 3D reconstruction algorithm. Phantom validation was performed to explore practical aspects of this approach. Noisy projection datasets simulating a patient undergoing at least one fully 3D movement during acquisition were compiled from various projections of the digital Hoffman brain phantom. Motion correction was then applied to the reconstructed studies. Correction success was assessed visually and quantitatively. Resilience with respect to subset order and missing data in the reconstruction and updating stages, detector geometry considerations, and the need for implementing an iterated correction were assessed in the process. Effective correction of the corrupted studies was achieved. Visually, artifactual regions in the reconstructed slices were suppressed and/or removed. Typically the ratio of mean square difference between the corrected and reference studies compared to that between the corrupted and reference studies was > 2. Although components of the motions are missed using a single-head implementation, improvement was still evident in the correction. The need for multiple iterations in the approach was small due to the bulk of misalignment errors being corrected in the first pass. Dispersion of subsets for reconstructing and updating the partial reconstruction appears to give optimal correction. Further validation is underway using triple-head physical phantom data. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  17. MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner

    Science.gov (United States)

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC

  18. MR-guided PET motion correction in LOR space using generic projection data for image reconstruction with PRESTO

    International Nuclear Information System (INIS)

    Scheins, J.; Ullisch, M.; Tellmann, L.; Weirich, C.; Rota Kops, E.; Herzog, H.; Shah, N.J.

    2013-01-01

    The BrainPET scanner from Siemens, designed as hybrid MR/PET system for simultaneous acquisition of both modalities, provides high-resolution PET images with an optimum resolution of 3 mm. However, significant head motion often compromises the achievable image quality, e.g. in neuroreceptor studies of human brain. This limitation can be omitted when tracking the head motion and accurately correcting measured Lines-of-Response (LORs). For this purpose, we present a novel method, which advantageously combines MR-guided motion tracking with the capabilities of the reconstruction software PRESTO (PET Reconstruction Software Toolkit) to convert motion-corrected LORs into highly accurate generic projection data. In this way, the high-resolution PET images achievable with PRESTO can also be obtained in presence of severe head motion

  19. Assessment of the breath motion correction on the detectability of lesions in PET oncology

    International Nuclear Information System (INIS)

    Marache-Francisco, S.

    2012-02-01

    Positron emission tomography (PET) is a nuclear medicine imaging technique that produces a three-dimensional image of functional processes in the body. The system detects pairs of gamma rays emitted by a tracer, which is introduced into the body. Three-dimensional images of tracer concentration within the body are then constructed by computer analysis. Respiratory motion in emission tomography leads to image blurring especially in the lower thorax and the upper abdomen, influencing this way the quantitative accuracy of PET measurements as well as leading to a loss of sensitivity in lesion detection. Although PET exams are getting shorter thanks to the improvement of scanner sensitivity, the current 2-3 minutes acquisitions per bed position are not yet compatible with patient breath-holding. Performing accurate respiratory motion correction without impairing the standard clinical protocol, i.e. without increasing the acquisition time, thus remains challenging. Different types of respiratory motion correction approaches have been proposed, mostly based on the use of non-rigid deformation fields either applied to the gated PET images or integrated during an iterative reconstruction algorithm. Evaluation of theses methods has been mainly focusing on the quantification and localization accuracy of small lesions, but their impact on the clinician detection performance during the diagnostic task has not been fully investigated yet. The purpose of this study is to address this question based on a computer assisted detection study. We evaluate the influence of two motion correction methods on the detection of small lesions in human oncology FDG PET images. This study is based on a series of realistic simulated whole-body FDG images based on the XCAT model. Detection performance is evaluated with a computer-aided detection system that we are developing for whole-body PET/CT images. Detection performances achieved with these two correction methods are compared with those

  20. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    Energy Technology Data Exchange (ETDEWEB)

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl [Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Flohr, Thomas [Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Institute of Diagnostic Radiology, Eberhard Karls University, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)

    2013-03-15

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phase (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum

  1. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    International Nuclear Information System (INIS)

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl; Flohr, Thomas

    2013-01-01

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phase (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum

  2. Robotic real-time translational and rotational head motion correction during frameless stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinmin; Belcher, Andrew H.; Grelewicz, Zachary; Wiersma, Rodney D., E-mail: rwiersma@uchicago.edu [Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-06-15

    Purpose: To develop a control system to correct both translational and rotational head motion deviations in real-time during frameless stereotactic radiosurgery (SRS). Methods: A novel feedback control with a feed-forward algorithm was utilized to correct for the coupling of translation and rotation present in serial kinematic robotic systems. Input parameters for the algorithm include the real-time 6DOF target position, the frame pitch pivot point to target distance constant, and the translational and angular Linac beam off (gating) tolerance constants for patient safety. Testing of the algorithm was done using a 4D (XY Z + pitch) robotic stage, an infrared head position sensing unit and a control computer. The measured head position signal was processed and a resulting command was sent to the interface of a four-axis motor controller, through which four stepper motors were driven to perform motion compensation. Results: The control of the translation of a brain target was decoupled with the control of the rotation. For a phantom study, the corrected position was within a translational displacement of 0.35 mm and a pitch displacement of 0.15° 100% of the time. For a volunteer study, the corrected position was within displacements of 0.4 mm and 0.2° over 98.5% of the time, while it was 10.7% without correction. Conclusions: The authors report a control design approach for both translational and rotational head motion correction. The experiments demonstrated that control performance of the 4D robotic stage meets the submillimeter and subdegree accuracy required by SRS.

  3. Robotic real-time translational and rotational head motion correction during frameless stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Liu, Xinmin; Belcher, Andrew H.; Grelewicz, Zachary; Wiersma, Rodney D.

    2015-01-01

    Purpose: To develop a control system to correct both translational and rotational head motion deviations in real-time during frameless stereotactic radiosurgery (SRS). Methods: A novel feedback control with a feed-forward algorithm was utilized to correct for the coupling of translation and rotation present in serial kinematic robotic systems. Input parameters for the algorithm include the real-time 6DOF target position, the frame pitch pivot point to target distance constant, and the translational and angular Linac beam off (gating) tolerance constants for patient safety. Testing of the algorithm was done using a 4D (XY Z + pitch) robotic stage, an infrared head position sensing unit and a control computer. The measured head position signal was processed and a resulting command was sent to the interface of a four-axis motor controller, through which four stepper motors were driven to perform motion compensation. Results: The control of the translation of a brain target was decoupled with the control of the rotation. For a phantom study, the corrected position was within a translational displacement of 0.35 mm and a pitch displacement of 0.15° 100% of the time. For a volunteer study, the corrected position was within displacements of 0.4 mm and 0.2° over 98.5% of the time, while it was 10.7% without correction. Conclusions: The authors report a control design approach for both translational and rotational head motion correction. The experiments demonstrated that control performance of the 4D robotic stage meets the submillimeter and subdegree accuracy required by SRS

  4. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy.

    Science.gov (United States)

    Cooper, Robert J; Selb, Juliette; Gagnon, Louis; Phillip, Dorte; Schytz, Henrik W; Iversen, Helle K; Ashina, Messoud; Boas, David A

    2012-01-01

    Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS datasets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis, and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function (HRF). Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error (MSE) and significant increase in the contrast-to-noise ratio (CNR) of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in MSE (55%) while wavelet analysis produces the highest average increase in CNR (39%). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data.

  5. Dynamic PET image reconstruction integrating temporal regularization associated with respiratory motion correction for applications in oncology

    Science.gov (United States)

    Merlin, Thibaut; Visvikis, Dimitris; Fernandez, Philippe; Lamare, Frédéric

    2018-02-01

    Respiratory motion reduces both the qualitative and quantitative accuracy of PET images in oncology. This impact is more significant for quantitative applications based on kinetic modeling, where dynamic acquisitions are associated with limited statistics due to the necessity of enhanced temporal resolution. The aim of this study is to address these drawbacks, by combining a respiratory motion correction approach with temporal regularization in a unique reconstruction algorithm for dynamic PET imaging. Elastic transformation parameters for the motion correction are estimated from the non-attenuation-corrected PET images. The derived displacement matrices are subsequently used in a list-mode based OSEM reconstruction algorithm integrating a temporal regularization between the 3D dynamic PET frames, based on temporal basis functions. These functions are simultaneously estimated at each iteration, along with their relative coefficients for each image voxel. Quantitative evaluation has been performed using dynamic FDG PET/CT acquisitions of lung cancer patients acquired on a GE DRX system. The performance of the proposed method is compared with that of a standard multi-frame OSEM reconstruction algorithm. The proposed method achieved substantial improvements in terms of noise reduction while accounting for loss of contrast due to respiratory motion. Results on simulated data showed that the proposed 4D algorithms led to bias reduction values up to 40% in both tumor and blood regions for similar standard deviation levels, in comparison with a standard 3D reconstruction. Patlak parameter estimations on reconstructed images with the proposed reconstruction methods resulted in 30% and 40% bias reduction in the tumor and lung region respectively for the Patlak slope, and a 30% bias reduction for the intercept in the tumor region (a similar Patlak intercept was achieved in the lung area). Incorporation of the respiratory motion correction using an elastic model along with a

  6. Software-controlled, highly automated intrafraction prostate motion correction with intrafraction stereographic targeting: System description and clinical results

    International Nuclear Information System (INIS)

    Mutanga, Theodore F.; Boer, Hans C. J. de; Rajan, Vinayakrishnan; Dirkx, Maarten L. P.; Os, Marjolein J. H. van; Incrocci, Luca; Heijmen, Ben J. M.

    2012-01-01

    Purpose: A new system for software-controlled, highly automated correction of intrafraction prostate motion,'' intrafraction stereographic targeting'' (iSGT), is described and evaluated. Methods: At our institute, daily prostate positioning is routinely performed at the start of treatment beam using stereographic targeting (SGT). iSGT was implemented by extension of the SGT software to facilitate fast and accurate intrafraction motion corrections with minimal user interaction. iSGT entails megavoltage (MV) image acquisitions with the first segment of selected IMRT beams, automatic registration of implanted markers, followed by remote couch repositioning to correct for intrafraction motion above a predefined threshold, prior to delivery of the remaining segments. For a group of 120 patients, iSGT with corrections for two nearly lateral beams was evaluated in terms of workload and impact on effective intrafraction displacements in the sagittal plane. Results: SDs of systematic (Σ) and random (σ) displacements relative to the planning CT measured directly after initial SGT setup correction were eff eff eff eff eff eff < 0.7 mm, requiring corrections in 82.4% of the fractions. Because iSGT is highly automated, the extra time added by iSGT is <30 s if a correction is required. Conclusions: Without increasing imaging dose, iSGT successfully reduces intrafraction prostate motion with minimal workload and increase in fraction time. An action level of 2 mm is recommended.

  7. Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data.

    Science.gov (United States)

    Jiao, Jieqing; Bousse, Alexandre; Thielemans, Kris; Burgos, Ninon; Weston, Philip S J; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Markiewicz, Pawel; Ourselin, Sebastien

    2017-01-01

    Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.

  8. A New Class of Scaling Correction Methods

    International Nuclear Information System (INIS)

    Mei Li-Jie; Wu Xin; Liu Fu-Yao

    2012-01-01

    When conventional integrators like Runge—Kutta-type algorithms are used, numerical errors can make an orbit deviate from a hypersurface determined by many constraints, which leads to unreliable numerical solutions. Scaling correction methods are a powerful tool to avoid this. We focus on their applications, and also develop a family of new velocity multiple scaling correction methods where scale factors only act on the related components of the integrated momenta. They can preserve exactly some first integrals of motion in discrete or continuous dynamical systems, so that rapid growth of roundoff or truncation errors is suppressed significantly. (general)

  9. Use of 3D reconstruction to correct for patient motion in SPECT

    International Nuclear Information System (INIS)

    Fulton, R.R.; Hutton, B.F.; Braun, M.; Ardekani, B.; Larkin, R.

    1994-01-01

    Patient motion occurring during data acquisition in single photon emission computed tomography (SPECT) can cause serious reconstruction artefacts. We have developed a new approach to correct for head motion in brain SPECT. Prior to motion, projections are assigned to conventional projections. When head motion occurs, it is measured by a motion monitoring system, and subsequent projection data are mapped 'virtual' projections. The appropriate position of each virtual projection is determined by applying the converse of the patient's accumulated motion to the actual camera projection. Conventional and virtual projections, taken together, form a consistent set that can be reconstructed using a three-dimensional (3D) algorithm. The technique has been tested on a range of simulated rotational movements, both within and out of the transaxial plane. For all simulated movements, the motion corrected images exhibited better agreement with a motion free reconstruction than did the uncorrected images. (Author)

  10. Bias field inconsistency correction of motion-scattered multislice MRI for improved 3D image reconstruction.

    Science.gov (United States)

    Kim, Kio; Habas, Piotr A; Rajagopalan, Vidya; Scott, Julia A; Corbett-Detig, James M; Rousseau, Francois; Barkovich, A James; Glenn, Orit A; Studholme, Colin

    2011-09-01

    A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multislice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types.

  11. Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET

    International Nuclear Information System (INIS)

    Tsoumpas, C.; Mackewn, J.E.; Halsted, P.; King, A.P.; Buerger, C.; Totman, J.J.; Schaeffter, T.; Marsden, P.K.

    2010-01-01

    Positron emission tomography (PET) provides an accurate measurement of radiotracer concentration in vivo, but performance can be limited by subject motion which degrades spatial resolution and quantitative accuracy. This effect may become a limiting factor for PET studies in the body as PET scanner technology improves. In this work, we propose a new approach to address this problem by employing motion information from images measured simultaneously using a magnetic resonance (MR) scanner. The approach is demonstrated using an MR-compatible PET scanner and PET-MR acquisition with a purpose-designed phantom capable of non-rigid deformations. Measured, simultaneously acquired MR data were used to correct for motion in PET, and results were compared with those obtained using motion information from PET images alone. Motion artefacts were significantly reduced and the PET image quality and quantification was significantly improved by the use of MR motion fields, whilst the use of PET-only motion information was less successful. Combined PET-MR acquisitions potentially allow PET motion compensation in whole-body acquisitions without prolonging PET acquisition time or increasing radiation dose. This, to the best of our knowledge, is the first study to demonstrate that simultaneously acquired MR data can be used to estimate and correct for the effects of non-rigid motion in PET. (author)

  12. DETECTING AND CORRECTING MOTION BLUR FROM IMAGES SHOT WITH CHANNEL-DEPENDENT EXPOSURE TIME

    Directory of Open Access Journals (Sweden)

    L. Lelégard

    2012-07-01

    Full Text Available This article describes a pipeline developed to automatically detect and correct motion blur due to the airplane motion in aerial images provided by a digital camera system with channel-dependent exposure times. Blurred images show anisotropy in their Fourier Transform coefficients that can be detected and estimated to recover the characteristics of the motion blur. To disambiguate the anisotropy produced by a motion blur from the possible spectral anisotropy produced by some periodic patterns present in a sharp image, we consider the phase difference of the Fourier Transform of two channel shot with different exposure times (i.e. with different blur extensions. This is possible because of the deep correlation between the three visible channels ensures phase coherence of the Fourier Transform coefficients in sharp images. In this context, considering the phase difference constitutes both a good detector and estimator of the motion blur parameters. In order to improve on this estimation, the phase difference is performed on local windows in the image where the channels are more correlated. The main lobe of the phase difference, where the phase difference between two channels is close to zero actually imitates an ellipse which axis ratio discriminates blur and which orientation and minor axis give respectively the orientation and the blur kernel extension of the long exposure-time channels. However, this approach is not robust to the presence in the phase difference of minor lobes due to phase sign inversions in the Fourier transform of the motion blur. They are removed by considering the polar representation of the phase difference. Based on the blur detection step, blur correction is eventually performed using two different approaches depending on the blur extension size: using either a simple frequency-based fusion for small blur or a semi blind iterative method for larger blur. The higher computing costs of the latter method make it only

  13. Material motion corrections for implicit Monte Carlo radiation transport

    International Nuclear Information System (INIS)

    Gentile, N.A.; Morel, Jim E.

    2011-01-01

    We describe changes to the Implicit Monte Carlo (IMC) algorithm to include the effects of material motion. These changes assume that the problem can be embedded in a global Lorentz frame. We also assume that the material in each zone can be characterized by a single velocity. With this approximation, we show how to make IMC Lorentz invariant, so that the material motion corrections are correct to all orders of v/c. We develop thermal emission and face sources in moving material and discuss the coupling of IMC to the non- relativistic hydrodynamics equations via operator splitting. We discuss the effect of this coupling on the value of the 'Fleck factor' in IMC. (author)

  14. Refinement of motion correction strategies for lower-cost CT for under-resourced regions of the world

    Science.gov (United States)

    Wells, Jered R.; Segars, W. Paul; Kigongo, Christopher J. N.; Dobbins, James T., III

    2011-03-01

    This paper describes a recently developed post-acquisition motion correction strategy for application to lower-cost computed tomography (LCCT) for under-resourced regions of the world. Increased awareness regarding global health and its challenges has encouraged the development of more affordable healthcare options for underserved people worldwide. In regions such as sub-Saharan Africa, intermediate level medical facilities may serve millions with inadequate or antiquated equipment due to financial limitations. In response, the authors have proposed a LCCT design which utilizes a standard chest x-ray examination room with a digital flat panel detector (FPD). The patient rotates on a motorized stage between the fixed cone-beam source and FPD, and images are reconstructed using a Feldkamp algorithm for cone-beam scanning. One of the most important proofs-of-concept in determining the feasibility of this system is the successful correction of undesirable motion. A 3D motion correction algorithm was developed in order to correct for potential patient motion, stage instabilities and detector misalignments which can all lead to motion artifacts in reconstructed images. Motion will be monitored by the radiographic position of fiducial markers to correct for rigid body motion in three dimensions. Based on simulation studies, projection images corrupted by motion were re-registered with average errors of 0.080 mm, 0.32 mm and 0.050 mm in the horizontal, vertical and depth dimensions, respectively. The overall absence of motion artifacts in motion-corrected reconstructions indicates that reasonable amounts of motion may be corrected using this novel technique without significant loss of image quality.

  15. Direct reconstruction of parametric images for brain PET with event-by-event motion correction: evaluation in two tracers across count levels

    Science.gov (United States)

    Germino, Mary; Gallezot, Jean-Dominque; Yan, Jianhua; Carson, Richard E.

    2017-07-01

    Parametric images for dynamic positron emission tomography (PET) are typically generated by an indirect method, i.e. reconstructing a time series of emission images, then fitting a kinetic model to each voxel time activity curve. Alternatively, ‘direct reconstruction’, incorporates the kinetic model into the reconstruction algorithm itself, directly producing parametric images from projection data. Direct reconstruction has been shown to achieve parametric images with lower standard error than the indirect method. Here, we present direct reconstruction for brain PET using event-by-event motion correction of list-mode data, applied to two tracers. Event-by-event motion correction was implemented for direct reconstruction in the Parametric Motion-compensation OSEM List-mode Algorithm for Resolution-recovery reconstruction. The direct implementation was tested on simulated and human datasets with tracers [11C]AFM (serotonin transporter) and [11C]UCB-J (synaptic density), which follow the 1-tissue compartment model. Rigid head motion was tracked with the Vicra system. Parametric images of K 1 and distribution volume (V T  =  K 1/k 2) were compared to those generated by the indirect method by regional coefficient of variation (CoV). Performance across count levels was assessed using sub-sampled datasets. For simulated and real datasets at high counts, the two methods estimated K 1 and V T with comparable accuracy. At lower count levels, the direct method was substantially more robust to outliers than the indirect method. Compared to the indirect method, direct reconstruction reduced regional K 1 CoV by 35-48% (simulated dataset), 39-43% ([11C]AFM dataset) and 30-36% ([11C]UCB-J dataset) across count levels (averaged over regions at matched iteration); V T CoV was reduced by 51-58%, 54-60% and 30-46%, respectively. Motion correction played an important role in the dataset with larger motion: correction increased regional V T by 51% on average in the [11C

  16. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. II. Experiment

    International Nuclear Information System (INIS)

    Choi, Jang-Hwan; Maier, Andreas; Keil, Andreas; McWalter, Emily J.; Gold, Garry E.; Fahrig, Rebecca; Pal, Saikat; Beaupré, Gary S.

    2014-01-01

    Purpose: A C-arm CT system has been shown to be capable of scanning a single cadaver leg under loaded conditions by virtue of its highly flexible acquisition trajectories. In Part I of this study, using the 4D XCAT-based numerical simulation, the authors predicted that the involuntary motion in the lower body of subjects in weight-bearing positions would seriously degrade image quality and the authors suggested three motion compensation methods by which the reconstructions could be corrected to provide diagnostic image quality. Here, the authors demonstrate that a flat-panel angiography system is appropriate for scanning both legs of subjectsin vivo under weight-bearing conditions and further evaluate the three motion-correction algorithms using in vivo data. Methods: The geometry of a C-arm CT system for a horizontal scan trajectory was calibrated using the PDS-2 phantom. The authors acquired images of two healthy volunteers while lying supine on a table, standing, and squatting at several knee flexion angles. In order to identify the involuntary motion of the lower body, nine 1-mm-diameter tantalum fiducial markers were attached around the knee. The static mean marker position in 3D, a reference for motion compensation, was estimated by back-projecting detected markers in multiple projections using calibrated projection matrices and identifying the intersection points in 3D of the back-projected rays. Motion was corrected using three different methods (described in detail previously): (1) 2D projection shifting, (2) 2D deformable projection warping, and (3) 3D rigid body warping. For quantitative image quality analysis, SSIM indices for the three methods were compared using the supine data as a ground truth. Results: A 2D Euclidean distance-based metric of subjects’ motion ranged from 0.85 mm (±0.49 mm) to 3.82 mm (±2.91 mm) (corresponding to 2.76 to 12.41 pixels) resulting in severe motion artifacts in 3D reconstructions. Shifting in 2D, 2D warping, and 3D

  17. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Cooper, Robert J; Selb, Juliette; Gagnon, Louis

    2012-01-01

    a significant reduction in the mean-squared error (MSE) and significant increase in the contrast-to-noise ratio (CNR) of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in MSE (55....... Principle component analysis, spline interpolation, wavelet analysis, and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function (HRF). Each of the four motion correction techniques we tested yields......%) while wavelet analysis produces the highest average increase in CNR (39%). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data....

  18. A graphics processing unit accelerated motion correction algorithm and modular system for real-time fMRI.

    Science.gov (United States)

    Scheinost, Dustin; Hampson, Michelle; Qiu, Maolin; Bhawnani, Jitendra; Constable, R Todd; Papademetris, Xenophon

    2013-07-01

    Real-time functional magnetic resonance imaging (rt-fMRI) has recently gained interest as a possible means to facilitate the learning of certain behaviors. However, rt-fMRI is limited by processing speed and available software, and continued development is needed for rt-fMRI to progress further and become feasible for clinical use. In this work, we present an open-source rt-fMRI system for biofeedback powered by a novel Graphics Processing Unit (GPU) accelerated motion correction strategy as part of the BioImage Suite project ( www.bioimagesuite.org ). Our system contributes to the development of rt-fMRI by presenting a motion correction algorithm that provides an estimate of motion with essentially no processing delay as well as a modular rt-fMRI system design. Using empirical data from rt-fMRI scans, we assessed the quality of motion correction in this new system. The present algorithm performed comparably to standard (non real-time) offline methods and outperformed other real-time methods based on zero order interpolation of motion parameters. The modular approach to the rt-fMRI system allows the system to be flexible to the experiment and feedback design, a valuable feature for many applications. We illustrate the flexibility of the system by describing several of our ongoing studies. Our hope is that continuing development of open-source rt-fMRI algorithms and software will make this new technology more accessible and adaptable, and will thereby accelerate its application in the clinical and cognitive neurosciences.

  19. Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion.

    Science.gov (United States)

    Tisdall, M Dylan; Reuter, Martin; Qureshi, Abid; Buckner, Randy L; Fischl, Bruce; van der Kouwe, André J W

    2016-02-15

    Recent work has demonstrated that subject motion produces systematic biases in the metrics computed by widely used morphometry software packages, even when the motion is too small to produce noticeable image artifacts. In the common situation where the control population exhibits different behaviors in the scanner when compared to the experimental population, these systematic measurement biases may produce significant confounds for between-group analyses, leading to erroneous conclusions about group differences. While previous work has shown that prospective motion correction can improve perceived image quality, here we demonstrate that, in healthy subjects performing a variety of directed motions, the use of the volumetric navigator (vNav) prospective motion correction system significantly reduces the motion-induced bias and variance in morphometry. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lamare, F., E-mail: frederic.lamare@chu-bordeaux.fr; Fernandez, P. [Univ. Bordeaux, INCIA, UMR 5287, F-33400 Talence (France); CNRS, INCIA, UMR 5287, F-33400 Talence (France); Service de Médecine Nucléaire, Hôpital Pellegrin, CHU de Bordeaux, 33076 Bordeaux (France); Le Maitre, A.; Visvikis, D. [INSERM, UMR1101, LaTIM, Université de Bretagne Occidentale, 29609 Brest (France); Dawood, M.; Schäfers, K. P. [European Institute for Molecular Imaging, University of Münster, Mendelstr. 11, 48149 Münster (Germany); Rimoldi, O. E. [Vita-Salute University and Scientific Institute San Raffaele, Milan, Italy and CNR Istituto di Bioimmagini e Fisiologia Molecolare, Milan (Italy)

    2014-07-15

    Purpose: Cardiac imaging suffers from both respiratory and cardiac motion. One of the proposed solutions involves double gated acquisitions. Although such an approach may lead to both respiratory and cardiac motion compensation there are issues associated with (a) the combination of data from cardiac and respiratory motion bins, and (b) poor statistical quality images as a result of using only part of the acquired data. The main objective of this work was to evaluate different schemes of combining binned data in order to identify the best strategy to reconstruct motion free cardiac images from dual gated positron emission tomography (PET) acquisitions. Methods: A digital phantom study as well as seven human studies were used in this evaluation. PET data were acquired in list mode (LM). A real-time position management system and an electrocardiogram device were used to provide the respiratory and cardiac motion triggers registered within the LM file. Acquired data were subsequently binned considering four and six cardiac gates, or the diastole only in combination with eight respiratory amplitude gates. PET images were corrected for attenuation, but no randoms nor scatter corrections were included. Reconstructed images from each of the bins considered above were subsequently used in combination with an affine or an elastic registration algorithm to derive transformation parameters allowing the combination of all acquired data in a particular position in the cardiac and respiratory cycles. Images were assessed in terms of signal-to-noise ratio (SNR), contrast, image profile, coefficient-of-variation (COV), and relative difference of the recovered activity concentration. Results: Regardless of the considered motion compensation strategy, the nonrigid motion model performed better than the affine model, leading to higher SNR and contrast combined with a lower COV. Nevertheless, when compensating for respiration only, no statistically significant differences were

  1. Patient motion correction for single photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Geckle, W.J.; Becker, L.C.; Links, J.M.; Frank, T.

    1986-01-01

    An investigation has been conducted to develop and validate techniques for the correction of projection images in SPECT studies of the myocardium subject to misalignment due to voluntary patient motion. The problem is frequently encountered due to the uncomfortable position the patient must assume during the 30 minutes required to obtain a 180 degree set of projection images. The reconstruction of misaligned projections can lead to troublesome artifacts in reconstructed images and degrade the diagnostic potential of the procedure. Significant improvement in the quality of heart reconstructions has been realized with the implementation of an algorithm to provide detection of and correction for patient motion. Normal, involuntary motion is not corrected for, however, since such movement is below the spatial resolution of the thallium imaging system under study. The algorithm is based on a comparison of the positions of an object in a set of projection images to the known, sinusoidal trajectory of an off-axis fixed point in space. Projection alignment, therefore, is achieved by shifting the position of a point or set of points in a projection image to the sinusoid of a fixed position in space

  2. Evaluation of scatter limitation correction: a new method of correcting photopenic artifacts caused by patient motion during whole-body PET/CT imaging.

    Science.gov (United States)

    Miwa, Kenta; Umeda, Takuro; Murata, Taisuke; Wagatsuma, Kei; Miyaji, Noriaki; Terauchi, Takashi; Koizumi, Mitsuru; Sasaki, Masayuki

    2016-02-01

    Overcorrection of scatter caused by patient motion during whole-body PET/computed tomography (CT) imaging can induce the appearance of photopenic artifacts in the PET images. The present study aimed to quantify the accuracy of scatter limitation correction (SLC) for eliminating photopenic artifacts. This study analyzed photopenic artifacts in (18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT images acquired from 12 patients and from a National Electrical Manufacturers Association phantom with two peripheral plastic bottles that simulated the human body and arms, respectively. The phantom comprised a sphere (diameter, 10 or 37 mm) containing fluorine-18 solutions with target-to-background ratios of 2, 4, and 8. The plastic bottles were moved 10 cm posteriorly between CT and PET acquisitions. All PET data were reconstructed using model-based scatter correction (SC), no scatter correction (NSC), and SLC, and the presence or absence of artifacts on the PET images was visually evaluated. The SC and SLC images were also semiquantitatively evaluated using standardized uptake values (SUVs). Photopenic artifacts were not recognizable in any NSC and SLC image from all 12 patients in the clinical study. The SUVmax of mismatched SLC PET/CT images were almost equal to those of matched SC and SLC PET/CT images. Applying NSC and SLC substantially eliminated the photopenic artifacts on SC PET images in the phantom study. SLC improved the activity concentration of the sphere for all target-to-background ratios. The highest %errors of the 10 and 37-mm spheres were 93.3 and 58.3%, respectively, for mismatched SC, and 73.2 and 22.0%, respectively, for mismatched SLC. Photopenic artifacts caused by SC error induced by CT and PET image misalignment were corrected using SLC, indicating that this method is useful and practical for clinical qualitative and quantitative PET/CT assessment.

  3. 3D Super-Resolution Motion-Corrected MRI: Validation of Fetal Posterior Fossa Measurements.

    Science.gov (United States)

    Pier, Danielle B; Gholipour, Ali; Afacan, Onur; Velasco-Annis, Clemente; Clancy, Sean; Kapur, Kush; Estroff, Judy A; Warfield, Simon K

    2016-09-01

    Current diagnosis of fetal posterior fossa anomalies by sonography and conventional MRI is limited by fetal position, motion, and by two-dimensional (2D), rather than three-dimensional (3D), representation. In this study, we aimed to validate the use of a novel magnetic resonance imaging (MRI) technique, 3D super-resolution motion-corrected MRI, to image the fetal posterior fossa. From a database of pregnant women who received fetal MRIs at our institution, images of 49 normal fetal brains were reconstructed. Six measurements of the cerebellum, vermis, and pons were obtained for all cases on 2D conventional and 3D reconstructed MRI, and the agreement between the two methods was determined using concordance correlation coefficients. Concordance of axial and coronal measurements of the transcerebellar diameter was also assessed within each method. Between the two methods, the concordance of measurements was high for all six structures (P fetal motion and orthogonal slice acquisition. This technique will facilitate further study of fetal abnormalities of the posterior fossa. Copyright © 2016 by the American Society of Neuroimaging.

  4. Application of a net-based baseline correction scheme to strong-motion records of the 2011 Mw 9.0 Tohoku earthquake

    Science.gov (United States)

    Tu, Rui; Wang, Rongjiang; Zhang, Yong; Walter, Thomas R.

    2014-06-01

    The description of static displacements associated with earthquakes is traditionally achieved using GPS, EDM or InSAR data. In addition, displacement histories can be derived from strong-motion records, allowing an improvement of geodetic networks at a high sampling rate and a better physical understanding of earthquake processes. Strong-motion records require a correction procedure appropriate for baseline shifts that may be caused by rotational motion, tilting and other instrumental effects. Common methods use an empirical bilinear correction on the velocity seismograms integrated from the strong-motion records. In this study, we overcome the weaknesses of an empirically based bilinear baseline correction scheme by using a net-based criterion to select the timing parameters. This idea is based on the physical principle that low-frequency seismic waveforms at neighbouring stations are coherent if the interstation distance is much smaller than the distance to the seismic source. For a dense strong-motion network, it is plausible to select the timing parameters so that the correlation coefficient between the velocity seismograms of two neighbouring stations is maximized after the baseline correction. We applied this new concept to the KiK-Net and K-Net strong-motion data available for the 2011 Mw 9.0 Tohoku earthquake. We compared the derived coseismic static displacement with high-quality GPS data, and with the results obtained using empirical methods. The results show that the proposed net-based approach is feasible and more robust than the individual empirical approaches. The outliers caused by unknown problems in the measurement system can be easily detected and quantified.

  5. PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI.

    Science.gov (United States)

    Alansary, Amir; Rajchl, Martin; McDonagh, Steven G; Murgasova, Maria; Damodaram, Mellisa; Lloyd, David F A; Davidson, Alice; Rutherford, Mary; Hajnal, Joseph V; Rueckert, Daniel; Kainz, Bernhard

    2017-10-01

    In this paper, we present a novel method for the correction of motion artifacts that are present in fetal magnetic resonance imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patchwise optimization, super-resolution, and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units, enabling its use in the clinical practice. We evaluate PVR's computational overhead compared with standard methods and observe improved reconstruction accuracy in the presence of affine motion artifacts compared with conventional SVR in synthetic experiments. Furthermore, we have evaluated our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio, structural similarity index, and cross correlation with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. We further evaluate the distance error for selected anatomical landmarks in the fetal head, as well as calculating the mean and maximum displacements resulting from automatic non-rigid registration to a motion-free ground truth image. These experiments demonstrate a successful application of PVR motion compensation to the whole fetal body, uterus, and placenta.

  6. Respiratory Motion Correction for Compressively Sampled Free Breathing Cardiac MRI Using Smooth l1-Norm Approximation

    Directory of Open Access Journals (Sweden)

    Muhammad Bilal

    2018-01-01

    Full Text Available Transformed domain sparsity of Magnetic Resonance Imaging (MRI has recently been used to reduce the acquisition time in conjunction with compressed sensing (CS theory. Respiratory motion during MR scan results in strong blurring and ghosting artifacts in recovered MR images. To improve the quality of the recovered images, motion needs to be estimated and corrected. In this article, a two-step approach is proposed for the recovery of cardiac MR images in the presence of free breathing motion. In the first step, compressively sampled MR images are recovered by solving an optimization problem using gradient descent algorithm. The L1-norm based regularizer, used in optimization problem, is approximated by a hyperbolic tangent function. In the second step, a block matching algorithm, known as Adaptive Rood Pattern Search (ARPS, is exploited to estimate and correct respiratory motion among the recovered images. The framework is tested for free breathing simulated and in vivo 2D cardiac cine MRI data. Simulation results show improved structural similarity index (SSIM, peak signal-to-noise ratio (PSNR, and mean square error (MSE with different acceleration factors for the proposed method. Experimental results also provide a comparison between k-t FOCUSS with MEMC and the proposed method.

  7. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    Science.gov (United States)

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI

  8. Motion correction in simultaneous PET/MR brain imaging using sparsely sampled MR navigators

    DEFF Research Database (Denmark)

    Keller, Sune H; Hansen, Casper; Hansen, Christian

    2015-01-01

    BACKGROUND: We present a study performing motion correction (MC) of PET using MR navigators sampled between other protocolled MR sequences during simultaneous PET/MR brain scanning with the purpose of evaluating its clinical feasibility and the potential improvement of image quality. FINDINGS......: Twenty-nine human subjects had a 30-min [(11)C]-PiB PET scan with simultaneous MR including 3D navigators sampled at six time points, which were used to correct the PET image for rigid head motion. Five subjects with motion greater than 4 mm were reconstructed into six frames (one for each navigator...

  9. Strategies for Online Organ Motion Correction for Intensity-Modulated Radiotherapy of Prostate Cancer: Prostate, Rectum, and Bladder Dose Effects

    International Nuclear Information System (INIS)

    Rijkhorst, Erik-Jan; Lakeman, Annemarie; Nijkamp, Jasper; Bois, Josien de; Herk, Marcel van; Lebesque, Joos V.; Sonke, Jan-Jakob

    2009-01-01

    Purpose: To quantify and evaluate the accumulated prostate, rectum, and bladder dose for several strategies including rotational organ motion correction for intensity-modulated radiotherapy (IMRT) of prostate cancer using realistic organ motion data. Methods and Materials: Repeat computed tomography (CT) scans of 19 prostate patients were used. Per patient, two IMRT plans with different uniform margins were created. To quantify prostate and seminal vesicle motion, repeat CT clinical target volumes (CTVs) were matched onto the planning CTV using deformable registration. Four different strategies, from online setup to full motion correction, were simulated. Rotations were corrected for using gantry and collimator angle adjustments. Prostate, rectum, and bladder doses were accumulated for each patient, plan, and strategy. Minimum CTV dose (D min ), rectum equivalent uniform dose (EUD, n = 0.13), and bladder surface receiving ≥78 Gy (S78), were calculated. Results: With online CTV translation correction, a 7-mm margin was sufficient (i.e., D min ≥ 95% of the prescribed dose for all patients). A 4-mm margin required additional rotational correction. Margin reduction lowered the rectum EUD(n = 0.13) by ∼2.6 Gy, and the bladder S78 by ∼1.9%. Conclusions: With online correction of both translations and rotations, a 4-mm margin was sufficient for 15 of 19 patients, whereas the remaining four patients had an underdosed CTV volume <1%. Margin reduction combined with online corrections resulted in a similar or lower dose to the rectum and bladder. The more advanced the correction strategy, the better the planned and accumulated dose agreed.

  10. Impact of extraneous mispositioned events on motion-corrected brain SPECT images of freely moving animals

    International Nuclear Information System (INIS)

    Angelis, Georgios I.; Ryder, William J.; Bashar, Rezaul; Meikle, Steven R.; Fulton, Roger R.

    2014-01-01

    Purpose: Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to the torso on the accuracy of motion corrected brain images of freely moving mice. Methods: Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. Results: The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more

  11. Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai-Mei; Nguyen, Truong

    2009-04-01

    In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.

  12. Motion as perturbation. II. Development of the method for dosimetric analysis of motion effects with fixed-gantry IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Opp, Daniel; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir, E-mail: vladimir.feygelman@moffitt.org [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States)

    2014-06-15

    Purpose: In this work, the feasibility of implementing a motion-perturbation approach to accurately estimate volumetric dose in the presence of organ motion—previously demonstrated for VMAT-–is studied for static gantry IMRT. The method's accuracy is improved for the voxels that have very low planned dose but acquire appreciable dose due to motion. The study describes the modified algorithm and its experimental validation and provides an example of a clinical application. Methods: A contoured region-of-interest is propagated according to the predefined motion kernel throughout time-resolved 4D phantom dose grids. This timed series of 3D dose grids is produced by the measurement-guided dose reconstruction algorithm, based on an irradiation of a staticARCCHECK (AC) helical dosimeter array (Sun Nuclear Corp., Melbourne, FL). Each moving voxel collects dose over the dynamic simulation. The difference in dose-to-moving voxel vs dose-to-static voxel in-phantom forms the basis of a motion perturbation correction that is applied to the corresponding voxel in the patient dataset. A new method to synchronize the accelerator and dosimeter clocks, applicable to fixed-gantry IMRT, was developed. Refinements to the algorithm account for the excursion of low dose voxels into high dose regions, causing appreciable dose increase due to motion (LDVE correction). For experimental validation, four plans using TG-119 structure sets and objectives were produced using segmented IMRT direct machine parameters optimization in Pinnacle treatment planning system (v. 9.6, Philips Radiation Oncology Systems, Fitchburg, WI). All beams were delivered with the gantry angle of 0°. Each beam was delivered three times: (1) to the static AC centered on the room lasers; (2) to a static phantom containing a MAPCHECK2 (MC2) planar diode array dosimeter (Sun Nuclear); and (3) to the moving MC2 phantom. The motion trajectory was an ellipse in the IEC XY plane, with 3 and 1.5 cm axes. The period

  13. Real-time axial motion detection and correction for single photon emission computed tomography using a linear prediction filter

    International Nuclear Information System (INIS)

    Saba, V.; Setayeshi, S.; Ghannadi-Maragheh, M.

    2011-01-01

    We have developed an algorithm for real-time detection and complete correction of the patient motion effects during single photon emission computed tomography. The algorithm is based on a linear prediction filter (LPC). The new prediction of projection data algorithm (PPDA) detects most motions-such as those of the head, legs, and hands-using comparison of the predicted and measured frame data. When the data acquisition for a specific frame is completed, the accuracy of the acquired data is evaluated by the PPDA. If patient motion is detected, the scanning procedure is stopped. After the patient rests in his or her true position, data acquisition is repeated only for the corrupted frame and the scanning procedure is continued. Various experimental data were used to validate the motion detection algorithm; on the whole, the proposed method was tested with approximately 100 test cases. The PPDA shows promising results. Using the PPDA enables us to prevent the scanner from collecting disturbed data during the scan and replaces them with motion-free data by real-time rescanning for the corrupted frames. As a result, the effects of patient motion is corrected in real time. (author)

  14. Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging.

    Science.gov (United States)

    Zhou, Ruixi; Huang, Wei; Yang, Yang; Chen, Xiao; Weller, Daniel S; Kramer, Christopher M; Kozerke, Sebastian; Salerno, Michael

    2018-02-01

    Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging. A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists. In the phantom experiments, images reconstructed with the MC strategy had higher

  15. List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations

    International Nuclear Information System (INIS)

    Lamare, F; Carbayo, M J Ledesma; Cresson, T; Kontaxakis, G; Santos, A; Rest, C Cheze Le; Reader, A J; Visvikis, D

    2007-01-01

    Respiratory motion in emission tomography leads to reduced image quality. Developed correction methodology has been concentrating on the use of respiratory synchronized acquisitions leading to gated frames. Such frames, however, are of low signal-to-noise ratio as a result of containing reduced statistics. In this work, we describe the implementation of an elastic transformation within a list-mode-based reconstruction for the correction of respiratory motion over the thorax, allowing the use of all data available throughout a respiratory motion average acquisition. The developed algorithm was evaluated using datasets of the NCAT phantom generated at different points throughout the respiratory cycle. List-mode-data-based PET-simulated frames were subsequently produced by combining the NCAT datasets with Monte Carlo simulation. A non-rigid registration algorithm based on B-spline basis functions was employed to derive transformation parameters accounting for the respiratory motion using the NCAT dynamic CT images. The displacement matrices derived were subsequently applied during the image reconstruction of the original emission list mode data. Two different implementations for the incorporation of the elastic transformations within the one-pass list mode EM (OPL-EM) algorithm were developed and evaluated. The corrected images were compared with those produced using an affine transformation of list mode data prior to reconstruction, as well as with uncorrected respiratory motion average images. Results demonstrate that although both correction techniques considered lead to significant improvements in accounting for respiratory motion artefacts in the lung fields, the elastic-transformation-based correction leads to a more uniform improvement across the lungs for different lesion sizes and locations

  16. Impact of PET - CT motion correction in minimising the gross tumour volume in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Michael Masoomi

    2013-10-01

    Full Text Available AbstractObjective: To investigate the impact of respiratory motion on localization, and quantification lung lesions for the Gross Tumour Volume utilizing an in-house developed Auto3Dreg programme and dynamic NURBS-based cardiac-torso digitised phantom (NCAT. Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumour lesions. The motion correction technique adopted in this study was an image-based motion correction approach using, an in-house developed voxel-intensity-based and a multi-resolution multi-optimisation (MRMO algorithm. All the generated frames were co-registered to a reference frame using a time efficient scheme. The NCAT phantom was used to generate CT attenuation maps and activity distribution volumes for the lung regions. Quantitative assessment including Region of Interest (ROI, image fidelity and image correlation techniques, as well as semi-quantitative line profile analysis and qualitatively overlaying non-motion and motion corrected image frames were performed. Results: the largest transformation was observed in the Z-direction. The greatest translation was for the frame 3, end inspiration, and the smallest for the frame 5 which was closet frame to the reference frame at 67% expiration. Visual assessment of the lesion sizes, 20-60mm at 3 different locations, apex, mid and base of lung showed noticeable improvement for all the foci and their locations. The maximum improvements for the image fidelity were from 0.395 to 0.930 within the lesion volume of interest. The greatest improvement in activity concentration underestimation, post motion correction, was 7% below the true activity for the 20 mm lesion. The discrepancies in activity underestimation were reduced with increasing the lesion sizes. Overlay activity distribution on the attenuation map showed improved localization of the PET metabolic information to the anatomical CT images. Conclusion: The respiratory

  17. Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation.

    Science.gov (United States)

    Kim, Kio; Habas, Piotr A; Rousseau, Francois; Glenn, Orit A; Barkovich, Anthony J; Studholme, Colin

    2010-01-01

    In recent years, postprocessing of fast multislice magnetic resonance imaging (MRI) to correct fetal motion has provided the first true 3-D MR images of the developing human brain in utero. Early approaches have used reconstruction based algorithms, employing a two-step iterative process, where slices from the acquired data are realigned to an approximate 3-D reconstruction of the fetal brain, which is then refined further using the improved slice alignment. This two step slice-to-volume process, although powerful, is computationally expensive in needing a 3-D reconstruction, and is limited in its ability to recover subvoxel alignment. Here, we describe an alternative approach which we term slice intersection motion correction (SIMC), that seeks to directly co-align multiple slice stacks by considering the matching structure along all intersecting slice pairs in all orthogonally planned slices that are acquired in clinical imaging studies. A collective update scheme for all slices is then derived, to simultaneously drive slices into a consistent match along their lines of intersection. We then describe a 3-D reconstruction algorithm that, using the final motion corrected slice locations, suppresses through-plane partial volume effects to provide a single high isotropic resolution 3-D image. The method is tested on simulated data with known motions and is applied to retrospectively reconstruct 3-D images from a range of clinically acquired imaging studies. The quantitative evaluation of the registration accuracy for the simulated data sets demonstrated a significant improvement over previous approaches. An initial application of the technique to studying clinical pathology is included, where the proposed method recovered up to 15 mm of translation and 30 degrees of rotation for individual slices, and produced full 3-D reconstructions containing clinically useful additional information not visible in the original 2-D slices.

  18. Motion-Corrected Real-Time Cine Magnetic Resonance Imaging of the Heart: Initial Clinical Experience.

    Science.gov (United States)

    Rahsepar, Amir Ali; Saybasili, Haris; Ghasemiesfe, Ahmadreza; Dolan, Ryan S; Shehata, Monda L; Botelho, Marcos P; Markl, Michael; Spottiswoode, Bruce; Collins, Jeremy D; Carr, James C

    2018-01-01

    Free-breathing real-time (RT) imaging can be used in patients with difficulty in breath-holding; however, RT cine imaging typically experiences poor image quality compared with segmented cine imaging because of low resolution. Here, we validate a novel unsupervised motion-corrected (MOCO) reconstruction technique for free-breathing RT cardiac images, called MOCO-RT. Motion-corrected RT uses elastic image registration to generate a single heartbeat of high-quality data from a free-breathing RT acquisition. Segmented balanced steady-state free precession (bSSFP) cine images and free-breathing RT images (Cartesian, TGRAPPA factor 4) were acquired with the same spatial/temporal resolution in 40 patients using clinical 1.5 T magnetic resonance scanners. The respiratory cycle was estimated using the reconstructed RT images, and nonrigid unsupervised motion correction was applied to eliminate breathing motion. Conventional segmented RT and MOCO-RT single-heartbeat cine images were analyzed to evaluate left ventricular (LV) function and volume measurements. Two radiologists scored images for overall image quality, artifact, noise, and wall motion abnormalities. Intraclass correlation coefficient was used to assess the reliability of MOCO-RT measurement. Intraclass correlation coefficient showed excellent reliability (intraclass correlation coefficient ≥ 0.95) of MOCO-RT with segmented cine in measuring LV function, mass, and volume. Comparison of the qualitative ratings indicated comparable image quality for MOCO-RT (4.80 ± 0.35) with segmented cine (4.45 ± 0.88, P = 0.215) and significantly higher than conventional RT techniques (3.51 ± 0.41, P cine (1.51 ± 0.90, P = 0.088 and 1.23 ± 0.45, P = 0.182) were not different. Wall motion abnormality ratings were comparable among different techniques (P = 0.96). The MOCO-RT technique can be used to process conventional free-breathing RT cine images and provides comparable quantitative assessment of LV function and volume

  19. Advanced Demonstration of Motion Correction for Ship-to-Ship Passive Inspections

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boehnen, Chris Bensing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ernst, Joseph [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-09-30

    Passive radiation detection is a key tool for detecting illicit nuclear materials. In maritime applications it is most effective against small vessels where attenuation is of less concern. Passive imaging provides: discrimination between localized (threat) and distributed (non-threat) sources, removal of background fluctuations due to nearby shorelines and structures, source localization to an individual craft in crowded waters, and background subtracted spectra. Unfortunately, imaging methods cannot be easily applied in ship-to-ship inspections because relative motion of the vessels blurs the results over many pixels, significantly reducing sensitivity. This is particularly true for the smaller water craft where passive inspections are most valuable. In this project we performed tests and improved the performance of an instrument (developed earlier under, “Motion Correction for Ship-to-Ship Passive Inspections”) that uses automated tracking of a target vessel in visible-light images to generate a 3D radiation map of the target vessel from data obtained using a gamma-ray imager.

  20. Intersection Based Motion Correction of Multi-Slice MRI for 3D in utero Fetal Brain Image Formation

    Science.gov (United States)

    Kim, Kio; Habas, Piotr A.; Rousseau, Francois; Glenn, Orit A.; Barkovich, Anthony J.; Studholme, Colin

    2012-01-01

    In recent years post-processing of fast multi-slice MR imaging to correct fetal motion has provided the first true 3D MR images of the developing human brain in utero. Early approaches have used reconstruction based algorithms, employing a two step iterative process, where slices from the acquired data are re-aligned to an approximate 3D reconstruction of the fetal brain, which is then refined further using the improved slice alignment. This two step slice-to-volume process, although powerful, is computationally expensive in needing a 3D reconstruction, and is limited in its ability to recover sub-voxel alignment. Here, we describe an alternative approach which we term slice intersection motion correction (SIMC), that seeks to directly co-align multiple slice stacks by considering the matching structure along all intersecting slice pairs in all orthogonally planned slices that are acquired in clinical imaging studies. A collective update scheme for all slices is then derived, to simultaneously drive slices into a consistent match along their lines of intersection. We then describe a 3D reconstruction algorithm that, using the final motion corrected slice locations, suppresses through-plane partial volume effects to provide a single high isotropic resolution 3D image. The method is tested on simulated data with known motions and is applied to retrospectively reconstruct 3D images from a range of clinically acquired imaging studies. The quantitative evaluation of the registration accuracy for the simulated data sets demonstrated a significant improvement over previous approaches. An initial application of the technique to studying clinical pathology is included, where the proposed method recovered up to 15 mm of translation and 30 degrees of rotation for individual slices, and produced full 3D reconstructions containing clinically useful additional information not visible in the original 2D slices. PMID:19744911

  1. An analysis of motion correction for 99Tcm DMSA renal imaging in paediatrics

    International Nuclear Information System (INIS)

    Meadows, A.; Hogg, P.

    2007-01-01

    Movement artefact during paediatric 99 Tc m DMSA renal imaging can reduce image quality and therefore render images non-diagnostic. This research assessed software used for the correction of movement artefact in children. The software comprised a count rate dependent dynamic acquisition with a 256 x 256 pixel frame-shift motion correction algorithm. A Williams' phantom was used to generate data during dynamic (experimental) and static (control) image acquisitions. During image acquisition, the Williams' phantom was moved to simulate seven typical paediatric patient movements; acquisitions also considered no movement (Gold Standard). Seven image data sets with motion artefact were corrected using the frame-shift software. The corrected, uncorrected, and static images were rated for quality by suitably qualified and experienced nuclear medicine professionals. The images were scored using an image quality assessment instrument, based on a Likert rating scale. Inferential statistics were applied to these data. The image quality ratings demonstrated a statistically significant (P 99 Tc m DMSA renal scans

  2. A practical head tracking system for motion correction in neurological SPECT and PET

    International Nuclear Information System (INIS)

    Fulton, R.R.; Eberl, S.; Meikle, S.; Hutton, B.F.; Braun, M.

    1998-01-01

    Full text: Patient motion during data acquisition can degrade the quality of SPECT and PET images. Techniques for motion correction in neurological studies in both modalities based on continuous monitoring of head position have been proposed. However difficulties in developing suitable head tracking systems have so far impeded clinical implementations. We have developed a head tracking system based on the mechanical ADL-1 tracker (Shooting Star Technology, Rosedale, Canada) on a Trionix triple-head SPECT camera A software driver running on a SUN Sparc host computer communicates with the tracker over a serial line providing up to 300 updates per second with angular and positional resolutions of 0.05 degrees and 0.2 mm respectively. The SUN Sparc workstation which acquires the SPECT study also communicates with the tracker, eliminating synchronisation problems. For motion correction, the motion parameters provided by the tracker within its own coordinate system must be converted to the camera's coordinate system. The conversion requires knowledge of the rotational relationships between the two coordinate systems and the displacement of their origins, both of which are determined from a calibration procedure. The tracker has been tested under clinical SPECT imaging conditions with a 3D Hoffman brain phantom. Multiple SPECT acquisitions were performed. After each acquisition the phantom was moved to a new position and orientation. Motion parameters reported by the tracker for each applied movement were compared with those obtained by applying an automated image registration program to the sequential reconstructed studies. Maximum differences were < 0.5 degrees and < 2mm, within the expected errors of the registration procedure. We conclude that this tracking system will be suitable for clinical evaluation of motion correction in SPECT and PET

  3. A novel method to correct for pitch and yaw patient setup errors in helical tomotherapy

    International Nuclear Information System (INIS)

    Boswell, Sarah A.; Jeraj, Robert; Ruchala, Kenneth J.; Olivera, Gustavo H.; Jaradat, Hazim A.; James, Joshua A.; Gutierrez, Alonso; Pearson, Dave; Frank, Gary; Mackie, T. Rock

    2005-01-01

    An accurate means of determining and correcting for daily patient setup errors is important to the cancer outcome in radiotherapy. While many tools have been developed to detect setup errors, difficulty may arise in accurately adjusting the patient to account for the rotational error components. A novel, automated method to correct for rotational patient setup errors in helical tomotherapy is proposed for a treatment couch that is restricted to motion along translational axes. In tomotherapy, only a narrow superior/inferior section of the target receives a dose at any instant, thus rotations in the sagittal and coronal planes may be approximately corrected for by very slow continuous couch motion in a direction perpendicular to the scanning direction. Results from proof-of-principle tests indicate that the method improves the accuracy of treatment delivery, especially for long and narrow targets. Rotational corrections about an axis perpendicular to the transverse plane continue to be implemented easily in tomotherapy by adjustment of the initial gantry angle

  4. A Movable Phantom Design for Quantitative Evaluation of Motion Correction Studies on High Resolution PET Scanners

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Svarer, C.; Sibomana, M.

    2010-01-01

    maximization algorithm with modeling of the point spread function (3DOSEM-PSF), and they were corrected for motions based on external tracking information using the Polaris Vicra real-time stereo motion-tracking system. The new automatic, movable phantom has a robust design and is a potential quality......Head movements during brain imaging using high resolution positron emission tomography (PET) impair the image quality which, along with the improvement of the spatial resolution of PET scanners, in general, raises the importance of motion correction. Here, we present a new design for an automatic...

  5. WE-AB-BRA-08: Correction of Patient Motion in C-Arm Cone-Beam CT Using 3D-2D Registration

    Energy Technology Data Exchange (ETDEWEB)

    Ouadah, S; Jacobson, M; Stayman, JW; Siewerdsen, JH [Johns Hopkins University, Baltimore, MD (United States); Ehtiati, T [Siemens Medical Solutions USA, Inc., Hoffman Estates, IL (United States)

    2016-06-15

    Purpose: Intraoperative C-arm cone-beam CT (CBCT) is subject to artifacts arising from patient motion during the fairly long (∼5–20 s) scan times. We present a fiducial free method to mitigate motion artifacts using 3D-2D image registration that simultaneously corrects residual errors in geometric calibration. Methods: A 3D-2D registration process was used to register each projection to DRRs computed from the 3D image by maximizing gradient orientation (GO) using the CMA-ES optimizer. The resulting rigid 6 DOF transforms were applied to the system projection matrices, and a 3D image was reconstructed via model-based image reconstruction (MBIR, which accommodates the resulting noncircular orbit). Experiments were conducted using a Zeego robotic C-arm (20 s, 200°, 496 projections) to image a head phantom undergoing various types of motion: 1) 5° lateral motion; 2) 15° lateral motion; and 3) 5° lateral motion with 10 mm periodic inferior-superior motion. Images were reconstructed using a penalized likelihood (PL) objective function, and structural similarity (SSIM) was measured for axial slices of the reconstructed images. A motion-free image was acquired using the same protocol for comparison. Results: There was significant improvement (p < 0.001) in the SSIM of the motion-corrected (MC) images compared to uncorrected images. The SSIM in MC-PL images was >0.99, indicating near identity to the motion-free reference. The point spread function (PSF) measured from a wire in the phantom was restored to that of the reference in each case. Conclusion: The 3D-2D registration method provides a robust framework for mitigation of motion artifacts and is expected to hold for applications in the head, pelvis, and extremities with reasonably constrained operative setup. Further improvement can be achieved by incorporating multiple rigid components and non-rigid deformation within the framework. The method is highly parallelizable and could in principle be run with every

  6. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. Part I. Numerical model-based optimization.

    Science.gov (United States)

    Choi, Jang-Hwan; Fahrig, Rebecca; Keil, Andreas; Besier, Thor F; Pal, Saikat; McWalter, Emily J; Beaupré, Gary S; Maier, Andreas

    2013-09-01

    Human subjects in standing positions are apt to show much more involuntary motion than in supine positions. The authors aimed to simulate a complicated realistic lower body movement using the four-dimensional (4D) digital extended cardiac-torso (XCAT) phantom. The authors also investigated fiducial marker-based motion compensation methods in two-dimensional (2D) and three-dimensional (3D) space. The level of involuntary movement-induced artifacts and image quality improvement were investigated after applying each method. An optical tracking system with eight cameras and seven retroreflective markers enabled us to track involuntary motion of the lower body of nine healthy subjects holding a squat position at 60° of flexion. The XCAT-based knee model was developed using the 4D XCAT phantom and the optical tracking data acquired at 120 Hz. The authors divided the lower body in the XCAT into six parts and applied unique affine transforms to each so that the motion (6 degrees of freedom) could be synchronized with the optical markers' location at each time frame. The control points of the XCAT were tessellated into triangles and 248 projection images were created based on intersections of each ray and monochromatic absorption. The tracking data sets with the largest motion (Subject 2) and the smallest motion (Subject 5) among the nine data sets were used to animate the XCAT knee model. The authors defined eight skin control points well distributed around the knees as pseudo-fiducial markers which functioned as a reference in motion correction. Motion compensation was done in the following ways: (1) simple projection shifting in 2D, (2) deformable projection warping in 2D, and (3) rigid body warping in 3D. Graphics hardware accelerated filtered backprojection was implemented and combined with the three correction methods in order to speed up the simulation process. Correction fidelity was evaluated as a function of number of markers used (4-12) and marker distribution

  7. Non-model-based correction of respiratory motion using beat-to-beat 3D spiral fat-selective imaging.

    Science.gov (United States)

    Keegan, Jennifer; Gatehouse, Peter D; Yang, Guang-Zhong; Firmin, David N

    2007-09-01

    To demonstrate the feasibility of retrospective beat-to-beat correction of respiratory motion, without the need for a respiratory motion model. A high-resolution three-dimensional (3D) spiral black-blood scan of the right coronary artery (RCA) of six healthy volunteers was acquired over 160 cardiac cycles without respiratory gating. One spiral interleaf was acquired per cardiac cycle, prior to each of which a complete low-resolution fat-selective 3D spiral dataset was acquired. The respiratory motion (3D translation) on each cardiac cycle was determined by cross-correlating a region of interest (ROI) in the fat around the artery in the low-resolution datasets with that on a reference end-expiratory dataset. The measured translations were used to correct the raw data of the high-resolution spiral interleaves. Beat-to-beat correction provided consistently good results, with the image quality being better than that obtained with a fixed superior-inferior tracking factor of 0.6 and better than (N = 5) or equal to (N = 1) that achieved using a subject-specific retrospective 3D translation motion model. Non-model-based correction of respiratory motion using 3D spiral fat-selective imaging is feasible, and in this small group of volunteers produced better-quality images than a subject-specific retrospective 3D translation motion model. (c) 2007 Wiley-Liss, Inc.

  8. Effects of head motion correction on the evaluation of endogenous dopamine release in striatum

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun

    2004-01-01

    Neuroreceptor PET studies require 60-90 minutes to complete. Head motion of the subject increases the uncertainty in measured activity. In this study, the effects of the data-driven head motion correction on the evaluation of endogenous dopamine (DA) release in the striatum were investigated. [ 11 C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (rest: 30-50 min, game: 70-90 min) were realigned to the first frame at resting condition. Intra-condition registration between the frames during both the rest and game condition were performed, and average image for each condition was created and registered with each other again (inter-condition registration). Resting PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the other one. Volumes of interest (VOl) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DA release was calculated as the percent change of BP after the video game. Changes in position and orientation of the striatum during the PET scan were observed before the head motion correction. BP values at resting condition were not changed significantly after the intra-condition registration. However, the BP values during the video game and DA release (PU: 29.2→3.9%, CA: 57.4→14.1%, ST: 17.7→0.6%) were significantly changed after the correction. The results suggest that overestimation of the DA release caused by the head motion during PET scan and misalignment of MRI-based VOl and the striatum in PET image was remedied by the data-driven head motion correction

  9. Effects of head motion correction on the evaluation of endogenous dopamine release in striatum

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Neuroreceptor PET studies require 60-90 minutes to complete. Head motion of the subject increases the uncertainty in measured activity. In this study, the effects of the data-driven head motion correction on the evaluation of endogenous dopamine (DA) release in the striatum were investigated. [{sup 11}C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (rest: 30-50 min, game: 70-90 min) were realigned to the first frame at resting condition. Intra-condition registration between the frames during both the rest and game condition were performed, and average image for each condition was created and registered with each other again (inter-condition registration). Resting PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the other one. Volumes of interest (VOl) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DA release was calculated as the percent change of BP after the video game. Changes in position and orientation of the striatum during the PET scan were observed before the head motion correction. BP values at resting condition were not changed significantly after the intra-condition registration. However, the BP values during the video game and DA release (PU: 29.2{yields}3.9%, CA: 57.4{yields}14.1%, ST: 17.7{yields}0.6%) were significantly changed after the correction. The results suggest that overestimation of the DA release caused by the head motion during PET scan and misalignment of MRI-based VOl and the striatum in PET image was remedied by the data-driven head motion correction.

  10. Non rigid respiratory motion correction in whole body PET/MR imaging

    International Nuclear Information System (INIS)

    Fayad, Hadi; Schmidt, Holger; Wuerslin, Christian; Visvikis, Dimitris

    2014-01-01

    Respiratory motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies include the use of respiratory synchronized gated frames which lead to low signal to noise ratio (SNR) given that each frame contains only part of the count available throughout an average PET acquisition. In this work, 4D MRI extracted elastic transformations were applied to list-mode data either inside the image reconstruction or to the reconstructed respiratory synchronized images to obtain respiration corrected PET images.

  11. Correction of harmonic motion and Kepler orbit based on the minimal momentum uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Won Sang, E-mail: mimip4444@hanmail.net [Department of Physics and Research Institute of Natural Science, College of Natural Science, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Hassanabadi, Hassan, E-mail: h.hasanabadi@shahroodut.ac.ir [Physics Department, Shahrood University of Technology, Shahrood (Iran, Islamic Republic of)

    2017-03-18

    In this paper we consider the deformed Heisenberg uncertainty principle with the minimal uncertainty in momentum which is called a minimal momentum uncertainty principle (MMUP). We consider MMUP in D-dimension and its classical analogue. Using these we investigate the MMUP effect for the harmonic motion and Kepler orbit. - Highlights: • We discussed minimal momentum uncertainty relation. • We considered MMUR in D-dimension and used the deformed Poisson bracket to find the classical mechanics based on the MMUR. • Using these we investigate the MMUR effect for the harmonic motion and Kepler orbit. • Especially, we computed the corrected precession angle for each case. • We found that the corrected precession angle is always positive.

  12. Measurement of Myocardial T1ρ with a Motion Corrected, Parametric Mapping Sequence in Humans.

    Directory of Open Access Journals (Sweden)

    Sebastian Berisha

    Full Text Available To develop a robust T1ρ magnetic resonance imaging (MRI sequence for assessment of myocardial disease in humans.We developed a breath-held T1ρ mapping method using a single-shot, T1ρ-prepared balanced steady-state free-precession (bSSFP sequence. The magnetization trajectory was simulated to identify sources of T1ρ error. To limit motion artifacts, an optical flow-based image registration method was used to align T1ρ images. The reproducibility and accuracy of these methods was assessed in phantoms and 10 healthy subjects. Results are shown in 1 patient with pre-ventricular contractions (PVCs, 1 patient with chronic myocardial infarction (MI and 2 patients with hypertrophic cardiomyopathy (HCM.In phantoms, the mean bias was 1.0 ± 2.7 msec (100 msec phantom and 0.9 ± 0.9 msec (60 msec phantom at 60 bpm and 2.2 ± 3.2 msec (100 msec and 1.4 ± 0.9 msec (60 msec at 80 bpm. The coefficient of variation (COV was 2.2 (100 msec and 1.3 (60 msec at 60 bpm and 2.6 (100 msec and 1.4 (60 msec at 80 bpm. Motion correction improved the alignment of T1ρ images in subjects, as determined by the increase in Dice Score Coefficient (DSC from 0.76 to 0.88. T1ρ reproducibility was high (COV < 0.05, intra-class correlation coefficient (ICC = 0.85-0.97. Mean myocardial T1ρ value in healthy subjects was 63.5 ± 4.6 msec. There was good correspondence between late-gadolinium enhanced (LGE MRI and increased T1ρ relaxation times in patients.Single-shot, motion corrected, spin echo, spin lock MRI permits 2D T1ρ mapping in a breath-hold with good accuracy and precision.

  13. Lattice Boltzmann method used to simulate particle motion in a conduit

    Directory of Open Access Journals (Sweden)

    Dolanský Jindřich

    2017-06-01

    Full Text Available A three-dimensional numerical simulation of particle motion in a pipe with a rough bed is presented. The simulation based on the Lattice Boltzmann Method (LBM employs the hybrid diffuse bounce-back approach to model moving boundaries. The bed of the pipe is formed by stationary spherical particles of the same size as the moving particles. Particle movements are induced by gravitational and hydrodynamic forces. To evaluate the hydrodynamic forces, the Momentum Exchange Algorithm is used. The LBM unified computational frame makes it possible to simulate both the particle motion and the fluid flow and to study mutual interactions of the carrier liquid flow and particles and the particle–bed and particle–particle collisions. The trajectories of simulated and experimental particles are compared. The Particle Tracking method is used to track particle motion. The correctness of the applied approach is assessed.

  14. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data

    Science.gov (United States)

    Polycarpou, Irene; Tsoumpas, Charalampos; King, Andrew P.; Marsden, Paul K.

    2014-02-01

    The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future

  15. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data

    International Nuclear Information System (INIS)

    Polycarpou, Irene; Tsoumpas, Charalampos; King, Andrew P; Marsden, Paul K

    2014-01-01

    The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future

  16. Motion-compensated PET image reconstruction with respiratory-matched attenuation correction using two low-dose inhale and exhale CT images

    International Nuclear Information System (INIS)

    Nam, Woo Hyun; Ahn, Il Jun; Ra, Jong Beom; Kim, Kyeong Min; Kim, Byung Il

    2013-01-01

    Positron emission tomography (PET) is widely used for diagnosis and follow up assessment of radiotherapy. However, thoracic and abdominal PET suffers from false staging and incorrect quantification of the radioactive uptake of lesion(s) due to respiratory motion. Furthermore, respiratory motion-induced mismatch between a computed tomography (CT) attenuation map and PET data often leads to significant artifacts in the reconstructed PET image. To solve these problems, we propose a unified framework for respiratory-matched attenuation correction and motion compensation of respiratory-gated PET. For the attenuation correction, the proposed algorithm manipulates a 4D CT image virtually generated from two low-dose inhale and exhale CT images, rather than a real 4D CT image which significantly increases the radiation burden on a patient. It also utilizes CT-driven motion fields for motion compensation. To realize the proposed algorithm, we propose an improved region-based approach for non-rigid registration between body CT images, and we suggest a selection scheme of 3D CT images that are respiratory-matched to each respiratory-gated sinogram. In this work, the proposed algorithm was evaluated qualitatively and quantitatively by using patient datasets including lung and/or liver lesion(s). Experimental results show that the method can provide much clearer organ boundaries and more accurate lesion information than existing algorithms by utilizing two low-dose CT images. (paper)

  17. Method through motion

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2016-01-01

    Contemporary scenography often consists of video-projected motion graphics. The field is lacking in academic methods and rigour: descriptions and models relevant for the creation as well as in the analysis of existing works. In order to understand the phenomenon of motion graphics in a scenographic...... construction as a support to working systematically practice-led research project. The design model is being developed through design laboratories and workshops with students and professionals who provide feedback that lead to incremental improvements. Working with this model construction-as-method reveals...... context, I have been conducting a practice-led research project. Central to the project is construction of a design model describing sets of procedures, concepts and terminology relevant for design and studies of motion graphics in spatial contexts. The focus of this paper is the role of model...

  18. Resting State fMRI in the moving fetus: a robust framework for motion, bias field and spin history correction.

    Science.gov (United States)

    Ferrazzi, Giulio; Kuklisova Murgasova, Maria; Arichi, Tomoki; Malamateniou, Christina; Fox, Matthew J; Makropoulos, Antonios; Allsop, Joanna; Rutherford, Mary; Malik, Shaihan; Aljabar, Paul; Hajnal, Joseph V

    2014-11-01

    There is growing interest in exploring fetal functional brain development, particularly with Resting State fMRI. However, during a typical fMRI acquisition, the womb moves due to maternal respiration and the fetus may perform large-scale and unpredictable movements. Conventional fMRI processing pipelines, which assume that brain movements are infrequent or at least small, are not suitable. Previous published studies have tackled this problem by adopting conventional methods and discarding as much as 40% or more of the acquired data. In this work, we developed and tested a processing framework for fetal Resting State fMRI, capable of correcting gross motion. The method comprises bias field and spin history corrections in the scanner frame of reference, combined with slice to volume registration and scattered data interpolation to place all data into a consistent anatomical space. The aim is to recover an ordered set of samples suitable for further analysis using standard tools such as Group Independent Component Analysis (Group ICA). We have tested the approach using simulations and in vivo data acquired at 1.5 T. After full motion correction, Group ICA performed on a population of 8 fetuses extracted 20 networks, 6 of which were identified as matching those previously observed in preterm babies. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Six-dimensional correction of intra-fractional prostate motion with CyberKnife stereotactic body radiation therapy

    Directory of Open Access Journals (Sweden)

    Sean eCollins

    2011-12-01

    Full Text Available AbstractLarge fraction radiation therapy offers a shorter course of treatment and radiobiological advantages for prostate cancer treatment. The CyberKnife is an attractive technology for delivering large fraction doses based on the ability to deliver highly conformal radiation therapy to moving targets. In addition to intra-fractional translational motion (left-right, superior-inferior and anterior-posterior, prostate rotation (pitch, roll and yaw can increase geographical miss risk. We describe our experience with six-dimensional (6D intrafraction prostate motion correction using CyberKnife stereotactic body radiation therapy (SBRT. Eighty-eight patients were treated by SBRT alone or with supplemental external radiation therapy. Trans-perineal placement of four gold fiducials within the prostate accommodated X-ray guided prostate localization and beam adjustment. Fiducial separation and non-overlapping positioning permitted the orthogonal imaging required for 6D tracking. Fiducial placement accuracy was assessed using the CyberKnife fiducial extraction algorithm. Acute toxicities were assessed using Common Toxicity Criteria (CTC v3. There were no Grade 3, or higher, complications and acute morbidity was minimal. Ninety-eight percent of patients completed treatment employing 6D prostate motion tracking with intrafractional beam correction. Suboptimal fiducial placement limited treatment to 3D tracking in 2 patients. Our experience may guide others in performing 6D correction of prostate motion with CyberKnife SBRT.

  20. Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data

    DEFF Research Database (Denmark)

    Selb, Juliette; Yücel, Meryem A; Phillip, Dorte

    2015-01-01

    Functional near-infrared spectroscopy is prone to contamination by motion artifacts (MAs). Motion correction algorithms have previously been proposed and their respective performance compared for evoked rain activation studies. We study instead the effect of MAs on "oscillation" data which...... in the frequency band around 0.1 and 0.04 Hz, suggesting a physiological origin for the difference. We emphasize the importance of considering MAs as a confounding factor in oscillation-based functional near-infrared spectroscopy studies....

  1. Markerless PET motion correction: tracking in narrow gantries through optical fibers

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Olesen, Oline Vinter; Benjaminsen, Claus

    2015-01-01

    be accurate while only adding minimal complexity to the workflow. We present: Tracoline 2.0, a surface scanner prototype, which allows for markerless tracking in the clinic. The system uses structured light through optical fibre bundles, which easily fit in narrow gantries. The optical fibres also makes...... the system compatible with magnetic resonance (MR) imaging since all the electronics are moved away from the scanner. We demonstrate the system in a positron emission tomography (PET) study using the Siemens high resolution research tomography (HRRT). With two Ge/Ga-68 line sources fitted in a mannequin head...... for rotations up to ±25º. Based on the tracking results the PET frames were also successfully corrected for motion by aligning 10 s frames without motion for the stepwise experiment and aligning 1 s frames for the experiment with continuous motion. We have demonstrated and evaluated a system for markerless...

  2. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Directory of Open Access Journals (Sweden)

    Gyungho Khim

    2015-01-01

    Full Text Available We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement.

  3. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Science.gov (United States)

    Khim, Gyungho; Park, Chun Hong; Oh, Jeong Seok

    2015-01-01

    We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement. PMID:25705715

  4. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction.

    Science.gov (United States)

    Watanabe, Yuuki; Takahashi, Yuhei; Numazawa, Hiroshi

    2014-02-01

    We demonstrate intensity-based optical coherence tomography (OCT) angiography using the squared difference of two sequential frames with bulk-tissue-motion (BTM) correction. This motion correction was performed by minimization of the sum of the pixel values using axial- and lateral-pixel-shifted structural OCT images. We extract the BTM-corrected image from a total of 25 calculated OCT angiographic images. Image processing was accelerated by a graphics processing unit (GPU) with many stream processors to optimize the parallel processing procedure. The GPU processing rate was faster than that of a line scan camera (46.9 kHz). Our OCT system provides the means of displaying structural OCT images and BTM-corrected OCT angiographic images in real time.

  5. A multistage motion vector processing method for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai- Mei; Nguyen, Truong Q

    2008-05-01

    In this paper, a novel, low-complexity motion vector processing algorithm at the decoder is proposed for motion-compensated frame interpolation or frame rate up-conversion. We address the problems of having broken edges and deformed structures in an interpolated frame by hierarchically refining motion vectors on different block sizes. Our method explicitly considers the reliability of each received motion vector and has the capability of preserving the structure information. This is achieved by analyzing the distribution of residual energies and effectively merging blocks that have unreliable motion vectors. The motion vector reliability information is also used as a prior knowledge in motion vector refinement using a constrained vector median filter to avoid choosing identical unreliable one. We also propose using chrominance information in our method. Experimental results show that the proposed scheme has better visual quality and is also robust, even in video sequences with complex scenes and fast motion.

  6. Physiologic noise regression, motion regression, and TOAST dynamic field correction in complex-valued fMRI time series.

    Science.gov (United States)

    Hahn, Andrew D; Rowe, Daniel B

    2012-02-01

    As more evidence is presented suggesting that the phase, as well as the magnitude, of functional MRI (fMRI) time series may contain important information and that there are theoretical drawbacks to modeling functional response in the magnitude alone, removing noise in the phase is becoming more important. Previous studies have shown that retrospective correction of noise from physiologic sources can remove significant phase variance and that dynamic main magnetic field correction and regression of estimated motion parameters also remove significant phase fluctuations. In this work, we investigate the performance of physiologic noise regression in a framework along with correction for dynamic main field fluctuations and motion regression. Our findings suggest that including physiologic regressors provides some benefit in terms of reduction in phase noise power, but it is small compared to the benefit of dynamic field corrections and use of estimated motion parameters as nuisance regressors. Additionally, we show that the use of all three techniques reduces phase variance substantially, removes undesirable spatial phase correlations and improves detection of the functional response in magnitude and phase. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection.

    Science.gov (United States)

    van Amerom, Joshua F P; Lloyd, David F A; Price, Anthony N; Kuklisova Murgasova, Maria; Aljabar, Paul; Malik, Shaihan J; Lohezic, Maelene; Rutherford, Mary A; Pushparajah, Kuberan; Razavi, Reza; Hajnal, Joseph V

    2018-01-01

    Development of a MRI acquisition and reconstruction strategy to depict fetal cardiac anatomy in the presence of maternal and fetal motion. The proposed strategy involves i) acquisition and reconstruction of highly accelerated dynamic MRI, followed by image-based ii) cardiac synchronization, iii) motion correction, iv) outlier rejection, and finally v) cardiac cine reconstruction. Postprocessing entirely was automated, aside from a user-defined region of interest delineating the fetal heart. The method was evaluated in 30 mid- to late gestational age singleton pregnancies scanned without maternal breath-hold. The combination of complementary acquisition/reconstruction and correction/rejection steps in the pipeline served to improve the quality of the reconstructed 2D cine images, resulting in increased visibility of small, dynamic anatomical features. Artifact-free cine images successfully were produced in 36 of 39 acquired data sets; prolonged general fetal movements precluded processing of the remaining three data sets. The proposed method shows promise as a motion-tolerant framework to enable further detail in MRI studies of the fetal heart and great vessels. Processing data in image-space allowed for spatial and temporal operations to be applied to the fetal heart in isolation, separate from extraneous changes elsewhere in the field of view. Magn Reson Med 79:327-338, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  8. Separating complex compound patient motion tracking data using independent component analysis

    Science.gov (United States)

    Lindsay, C.; Johnson, K.; King, M. A.

    2014-03-01

    In SPECT imaging, motion from respiration and body motion can reduce image quality by introducing motion-related artifacts. A minimally-invasive way to track patient motion is to attach external markers to the patient's body and record their location throughout the imaging study. If a patient exhibits multiple movements simultaneously, such as respiration and body-movement, each marker location data will contain a mixture of these motions. Decomposing this complex compound motion into separate simplified motions can have the benefit of applying a more robust motion correction to the specific type of motion. Most motion tracking and correction techniques target a single type of motion and either ignore compound motion or treat it as noise. Few methods account for compound motion exist, but they fail to disambiguate super-position in the compound motion (i.e. inspiration in addition to body movement in the positive anterior/posterior direction). We propose a new method for decomposing the complex compound patient motion using an unsupervised learning technique called Independent Component Analysis (ICA). Our method can automatically detect and separate different motions while preserving nuanced features of the motion without the drawbacks of previous methods. Our main contributions are the development of a method for addressing multiple compound motions, the novel use of ICA in detecting and separating mixed independent motions, and generating motion transform with 12 DOFs to account for twisting and shearing. We show that our method works with clinical datasets and can be employed to improve motion correction in single photon emission computed tomography (SPECT) images.

  9. Motion-corrected whole-heart PET-MR for the simultaneous visualisation of coronary artery integrity and myocardial viability: an initial clinical validation.

    Science.gov (United States)

    Munoz, Camila; Kunze, Karl P; Neji, Radhouene; Vitadello, Teresa; Rischpler, Christoph; Botnar, René M; Nekolla, Stephan G; Prieto, Claudia

    2018-05-12

    Cardiac PET-MR has shown potential for the comprehensive assessment of coronary heart disease. However, image degradation due to physiological motion remains a challenge that could hinder the adoption of this technology in clinical practice. The purpose of this study was to validate a recently proposed respiratory motion-corrected PET-MR framework for the simultaneous visualisation of myocardial viability ( 18 F-FDG PET) and coronary artery anatomy (coronary MR angiography, CMRA) in patients with chronic total occlusion (CTO). A cohort of 14 patients was scanned with the proposed PET-CMRA framework. PET and CMRA images were reconstructed with and without the proposed motion correction approach for comparison purposes. Metrics of image quality including visible vessel length and sharpness were obtained for CMRA for both the right and left anterior descending coronary arteries (RCA, LAD), and relative increase in 18 F-FDG PET signal after motion correction for standard 17-segment polar maps was computed. Resulting coronary anatomy by CMRA and myocardial integrity by PET were visually compared against X-ray angiography and conventional Late Gadolinium Enhancement (LGE) MRI, respectively. Motion correction increased CMRA visible vessel length by 49.9% and 32.6% (RCA, LAD) and vessel sharpness by 12.3% and 18.9% (RCA, LAD) on average compared to uncorrected images. Coronary lumen delineation on motion-corrected CMRA images was in good agreement with X-ray angiography findings. For PET, motion correction resulted in an average 8% increase in 18 F-FDG signal in the inferior and inferolateral segments of the myocardial wall. An improved delineation of myocardial viability defects and reduced noise in the 18 F-FDG PET images was observed, improving correspondence to subendocardial LGE-MRI findings compared to uncorrected images. The feasibility of the PET-CMRA framework for simultaneous cardiac PET-MR imaging in a short and predictable scan time (~11 min) has been

  10. A Novel Motion Compensation Method for Random Stepped Frequency Radar with M-sequence

    Science.gov (United States)

    Liao, Zhikun; Hu, Jiemin; Lu, Dawei; Zhang, Jun

    2018-01-01

    The random stepped frequency radar is a new kind of synthetic wideband radar. In the research, it has been found that it possesses a thumbtack-like ambiguity function which is considered to be the ideal one. This also means that only a precise motion compensation could result in the correct high resolution range profile. In this paper, we will introduce the random stepped frequency radar coded by M-sequence firstly and briefly analyse the effect of relative motion between target and radar on the distance imaging, which is called defocusing problem. Then, a novel motion compensation method, named complementary code cancellation, will be put forward to solve this problem. Finally, the simulated experiments will demonstrate its validity and the computational analysis will show up its efficiency.

  11. Head motion evaluation and correction for PET scans with 18F-FDG in the Japanese Alzheimer's disease neuroimaging initiative (J-ADNI) multi-center study.

    Science.gov (United States)

    Ikari, Yasuhiko; Nishio, Tomoyuki; Makishi, Yoko; Miya, Yukari; Ito, Kengo; Koeppe, Robert A; Senda, Michio

    2012-08-01

    Head motion during 30-min (six 5-min frames) brain PET scans starting 30 min post-injection of FDG was evaluated together with the effect of post hoc motion correction between frames in J-ADNI multicenter study carried out in 24 PET centers on a total of 172 subjects consisting of 81 normal subjects, 55 mild cognitive impairment (MCI) and 36 mild Alzheimer's disease (AD) patients. Based on the magnitude of the between-frame co-registration parameters, the scans were classified into six levels (A-F) of motion degree. The effect of motion and its correction was evaluated using between-frame variation of the regional FDG uptake values on ROIs placed over cerebral cortical areas. Although AD patients tended to present larger motion (motion level E or F in 22 % of the subjects) than MCI (3 %) and normal (4 %) subjects, unignorable motion was observed in a small number of subjects in the latter groups as well. The between-frame coefficient of variation (SD/mean) was 0.5 % in the frontal, 0.6 % in the parietal and 1.8 % in the posterior cingulate ROI for the scans of motion level 1. The respective values were 1.5, 1.4, and 3.6 % for the scans of motion level F, but reduced by the motion correction to 0.5, 0.4 and 0.8 %, respectively. The motion correction changed the ROI value for the posterior cingulate cortex by 11.6 % in the case of severest motion. Substantial head motion occurs in a fraction of subjects in a multicenter setup which includes PET centers lacking sufficient experience in imaging demented patients. A simple frame-by-frame co-registration technique that can be applied to any PET camera model is effective in correcting for motion and improving quantitative capability.

  12. WE-AB-BRA-08: Correction of Patient Motion in C-Arm Cone-Beam CT Using 3D-2D Registration

    International Nuclear Information System (INIS)

    Ouadah, S; Jacobson, M; Stayman, JW; Siewerdsen, JH; Ehtiati, T

    2016-01-01

    Purpose: Intraoperative C-arm cone-beam CT (CBCT) is subject to artifacts arising from patient motion during the fairly long (∼5–20 s) scan times. We present a fiducial free method to mitigate motion artifacts using 3D-2D image registration that simultaneously corrects residual errors in geometric calibration. Methods: A 3D-2D registration process was used to register each projection to DRRs computed from the 3D image by maximizing gradient orientation (GO) using the CMA-ES optimizer. The resulting rigid 6 DOF transforms were applied to the system projection matrices, and a 3D image was reconstructed via model-based image reconstruction (MBIR, which accommodates the resulting noncircular orbit). Experiments were conducted using a Zeego robotic C-arm (20 s, 200°, 496 projections) to image a head phantom undergoing various types of motion: 1) 5° lateral motion; 2) 15° lateral motion; and 3) 5° lateral motion with 10 mm periodic inferior-superior motion. Images were reconstructed using a penalized likelihood (PL) objective function, and structural similarity (SSIM) was measured for axial slices of the reconstructed images. A motion-free image was acquired using the same protocol for comparison. Results: There was significant improvement (p 0.99, indicating near identity to the motion-free reference. The point spread function (PSF) measured from a wire in the phantom was restored to that of the reference in each case. Conclusion: The 3D-2D registration method provides a robust framework for mitigation of motion artifacts and is expected to hold for applications in the head, pelvis, and extremities with reasonably constrained operative setup. Further improvement can be achieved by incorporating multiple rigid components and non-rigid deformation within the framework. The method is highly parallelizable and could in principle be run with every acquisition. Research supported by National Institutes of Health Grant No. R01-EB-017226 and academic

  13. Beam-induced motion correction for sub-megadalton cryo-EM particles.

    Science.gov (United States)

    Scheres, Sjors Hw

    2014-08-13

    In electron cryo-microscopy (cryo-EM), the electron beam that is used for imaging also causes the sample to move. This motion blurs the images and limits the resolution attainable by single-particle analysis. In a previous Research article (Bai et al., 2013) we showed that correcting for this motion by processing movies from fast direct-electron detectors allowed structure determination to near-atomic resolution from 35,000 ribosome particles. In this Research advance article, we show that an improved movie processing algorithm is applicable to a much wider range of specimens. The new algorithm estimates straight movement tracks by considering multiple particles that are close to each other in the field of view, and models the fall-off of high-resolution information content by radiation damage in a dose-dependent manner. Application of the new algorithm to four data sets illustrates its potential for significantly improving cryo-EM structures, even for particles that are smaller than 200 kDa. Copyright © 2014, Scheres.

  14. Qualitative and quantitative evaluation of rigid and deformable motion correction algorithms using dual-energy CT images in view of application to CT perfusion measurements in abdominal organs affected by breathing motion.

    Science.gov (United States)

    Skornitzke, S; Fritz, F; Klauss, M; Pahn, G; Hansen, J; Hirsch, J; Grenacher, L; Kauczor, H-U; Stiller, W

    2015-02-01

    To compare six different scenarios for correcting for breathing motion in abdominal dual-energy CT (DECT) perfusion measurements. Rigid [RRComm(80 kVp)] and non-rigid [NRComm(80 kVp)] registration of commercially available CT perfusion software, custom non-rigid registration [NRCustom(80 kVp], demons algorithm) and a control group [CG(80 kVp)] without motion correction were evaluated using 80 kVp images. Additionally, NRCustom was applied to dual-energy (DE)-blended [NRCustom(DE)] and virtual non-contrast [NRCustom(VNC)] images, yielding six evaluated scenarios. After motion correction, perfusion maps were calculated using a combined maximum slope/Patlak model. For qualitative evaluation, three blinded radiologists independently rated motion correction quality and resulting perfusion maps on a four-point scale (4 = best, 1 = worst). For quantitative evaluation, relative changes in metric values, R(2) and residuals of perfusion model fits were calculated. For motion-corrected images, mean ratings differed significantly [NRCustom(80 kVp) and NRCustom(DE), 3.3; NRComm(80 kVp), 3.1; NRCustom(VNC), 2.9; RRComm(80 kVp), 2.7; CG(80 kVp), 2.7; all p VNC), 22.8%; RRComm(80 kVp), 0.6%; CG(80 kVp), 0%]. Regarding perfusion maps, NRCustom(80 kVp) and NRCustom(DE) were rated highest [NRCustom(80 kVp), 3.1; NRCustom(DE), 3.0; NRComm(80 kVp), 2.8; NRCustom(VNC), 2.6; CG(80 kVp), 2.5; RRComm(80 kVp), 2.4] and had significantly higher R(2) and lower residuals. Correlation between qualitative and quantitative evaluation was low to moderate. Non-rigid motion correction improves spatial alignment of the target region and fit of CT perfusion models. Using DE-blended and DE-VNC images for deformable registration offers no significant improvement. Non-rigid algorithms improve the quality of abdominal CT perfusion measurements but do not benefit from DECT post processing.

  15. Dual respiratory and cardiac motion estimation in PET imaging: Methods design and quantitative evaluation.

    Science.gov (United States)

    Feng, Tao; Wang, Jizhe; Tsui, Benjamin M W

    2018-04-01

    The goal of this study was to develop and evaluate four post-reconstruction respiratory and cardiac (R&C) motion vector field (MVF) estimation methods for cardiac 4D PET data. In Method 1, the dual R&C motions were estimated directly from the dual R&C gated images. In Method 2, respiratory motion (RM) and cardiac motion (CM) were separately estimated from the respiratory gated only and cardiac gated only images. The effects of RM on CM estimation were modeled in Method 3 by applying an image-based RM correction on the cardiac gated images before CM estimation, the effects of CM on RM estimation were neglected. Method 4 iteratively models the mutual effects of RM and CM during dual R&C motion estimations. Realistic simulation data were generated for quantitative evaluation of four methods. Almost noise-free PET projection data were generated from the 4D XCAT phantom with realistic R&C MVF using Monte Carlo simulation. Poisson noise was added to the scaled projection data to generate additional datasets of two more different noise levels. All the projection data were reconstructed using a 4D image reconstruction method to obtain dual R&C gated images. The four dual R&C MVF estimation methods were applied to the dual R&C gated images and the accuracy of motion estimation was quantitatively evaluated using the root mean square error (RMSE) of the estimated MVFs. Results show that among the four estimation methods, Methods 2 performed the worst for noise-free case while Method 1 performed the worst for noisy cases in terms of quantitative accuracy of the estimated MVF. Methods 4 and 3 showed comparable results and achieved RMSE lower by up to 35% than that in Method 1 for noisy cases. In conclusion, we have developed and evaluated 4 different post-reconstruction R&C MVF estimation methods for use in 4D PET imaging. Comparison of the performance of four methods on simulated data indicates separate R&C estimation with modeling of RM before CM estimation (Method 3) to be

  16. Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data: a study in healthy subjects and stroke patients.

    Science.gov (United States)

    Selb, Juliette; Yücel, Meryem A; Phillip, Dorte; Schytz, Henrik W; Iversen, Helle K; Vangel, Mark; Ashina, Messoud; Boas, David A

    2015-05-01

    Functional near-infrared spectroscopy is prone to contamination by motion artifacts (MAs). Motion correction algorithms have previously been proposed and their respective performance compared for evoked rain activation studies. We study instead the effect of MAs on "oscillation" data which is at the basis of functional connectivity and autoregulation studies. We use as our metric of interest the interhemispheric correlation (IHC), the correlation coefficient between symmetrical time series of oxyhemoglobin oscillations. We show that increased motion content results in a decreased IHC. Using a set of motion-free data on which we add real MAs, we find that the best motion correction approach consists of discarding the segments of MAs following a careful approach to minimize the contamination due to band-pass filtering of data from "bad" segments spreading into adjacent "good" segments. Finally, we compare the IHC in a stroke group and in a healthy group that we artificially contaminated with the MA content of the stroke group, in order to avoid the confounding effect of increased motion incidence in the stroke patients. After motion correction, the IHC remains lower in the stroke group in the frequency band around 0.1 and 0.04 Hz, suggesting a physiological origin for the difference. We emphasize the importance of considering MAs as a confounding factor in oscillation-based functional near-infrared spectroscopy studies.

  17. Free-breathing motion-corrected late-gadolinium-enhancement imaging improves image quality in children

    International Nuclear Information System (INIS)

    Olivieri, Laura; O'Brien, Kendall J.; Cross, Russell; Xue, Hui; Kellman, Peter; Hansen, Michael S.

    2016-01-01

    The value of late-gadolinium-enhancement (LGE) imaging in the diagnosis and management of pediatric and congenital heart disease is clear; however current acquisition techniques are susceptible to error and artifacts when performed in children because of children's higher heart rates, higher prevalence of sinus arrhythmia, and inability to breath-hold. Commonly used techniques in pediatric LGE imaging include breath-held segmented FLASH (segFLASH) and steady-state free precession-based (segSSFP) imaging. More recently, single-shot SSFP techniques with respiratory motion-corrected averaging have emerged. This study tested and compared single-shot free-breathing LGE techniques with standard segmented breath-held techniques in children undergoing LGE imaging. Thirty-two consecutive children underwent clinically indicated late-enhancement imaging using intravenous gadobutrol 0.15 mmol/kg. Breath-held segSSFP, breath-held segFLASH, and free-breathing single-shot SSFP LGE sequences were performed in consecutive series in each child. Two blinded reviewers evaluated the quality of the images and rated them on a scale of 1-5 (1 = poor, 5 = superior) based on blood pool-myocardial definition, presence of cardiac motion, presence of respiratory motion artifacts, and image acquisition artifact. We used analysis of variance (ANOVA) to compare groups. Patients ranged in age from 9 months to 18 years, with a mean +/- standard deviation (SD) of 13.3 +/- 4.8 years. R-R interval at the time of acquisition ranged 366-1,265 milliseconds (ms) (47-164 beats per minute [bpm]), mean +/- SD of 843+/-231 ms (72+/-21 bpm). Mean +/- SD quality ratings for long-axis imaging for segFLASH, segSSFP and single-shot SSFP were 3.1+/-0.9, 3.4+/-0.9 and 4.0+/-0.9, respectively (P < 0.01 by ANOVA). Mean +/- SD quality ratings for short-axis imaging for segFLASH, segSSFP and single-shot SSFP were 3.4+/-1, 3.8+/-0.9 and 4.3+/-0.7, respectively (P < 0.01 by ANOVA). Single-shot late

  18. Free-breathing motion-corrected late-gadolinium-enhancement imaging improves image quality in children

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, Laura; O' Brien, Kendall J. [Children' s National Health System, Division of Cardiology, Washington, DC (United States); National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Cross, Russell [Children' s National Health System, Division of Cardiology, Washington, DC (United States); Xue, Hui; Kellman, Peter; Hansen, Michael S. [National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (United States)

    2016-06-15

    The value of late-gadolinium-enhancement (LGE) imaging in the diagnosis and management of pediatric and congenital heart disease is clear; however current acquisition techniques are susceptible to error and artifacts when performed in children because of children's higher heart rates, higher prevalence of sinus arrhythmia, and inability to breath-hold. Commonly used techniques in pediatric LGE imaging include breath-held segmented FLASH (segFLASH) and steady-state free precession-based (segSSFP) imaging. More recently, single-shot SSFP techniques with respiratory motion-corrected averaging have emerged. This study tested and compared single-shot free-breathing LGE techniques with standard segmented breath-held techniques in children undergoing LGE imaging. Thirty-two consecutive children underwent clinically indicated late-enhancement imaging using intravenous gadobutrol 0.15 mmol/kg. Breath-held segSSFP, breath-held segFLASH, and free-breathing single-shot SSFP LGE sequences were performed in consecutive series in each child. Two blinded reviewers evaluated the quality of the images and rated them on a scale of 1-5 (1 = poor, 5 = superior) based on blood pool-myocardial definition, presence of cardiac motion, presence of respiratory motion artifacts, and image acquisition artifact. We used analysis of variance (ANOVA) to compare groups. Patients ranged in age from 9 months to 18 years, with a mean +/- standard deviation (SD) of 13.3 +/- 4.8 years. R-R interval at the time of acquisition ranged 366-1,265 milliseconds (ms) (47-164 beats per minute [bpm]), mean +/- SD of 843+/-231 ms (72+/-21 bpm). Mean +/- SD quality ratings for long-axis imaging for segFLASH, segSSFP and single-shot SSFP were 3.1+/-0.9, 3.4+/-0.9 and 4.0+/-0.9, respectively (P < 0.01 by ANOVA). Mean +/- SD quality ratings for short-axis imaging for segFLASH, segSSFP and single-shot SSFP were 3.4+/-1, 3.8+/-0.9 and 4.3+/-0.7, respectively (P < 0.01 by ANOVA). Single-shot late

  19. Effects of motion correction for dynamic [11C]Raclopride brain PET data on the evaluation of endogenous dopamine release in striatum

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Kim, Yu Kyeong; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun; Choe, Yearn Seong; Kang, Eun Joo

    2005-01-01

    Neuroreceptor PET studies require 60-120 minutes to complete and head motion of the subject during the PET scan increases the uncertainty in measured activity. In this study, we investigated the effects of the data-driven head motion correction on the evaluation of endogenous dopamine release (DAR) in the striatum during the motor task which might have caused significant head motion artifact. [ 11 C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a momentary reward for 40 min. Dynamic frames acquired during the equilibrium condition (pre-task: 30-50 min, task: 70-90 min, post-task:110-120 min) were realigned to the first frame in pre-task condition. Intra-condition registrations between the frames were performed, and average image for each condition was created and registered to the pre-task image (inter-condition registration). Pre-task PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the others. Volumes of interest (VOI) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DAR was calculated as the percent change of BP during and after the task. SPM analyses on the BP parametric images were also performed to explore the regional difference in the effects of head motion on BP and DAR estimation. Changes in position and orientation of the striatum during the PET scans were observed before the head motion correction. BP values at pre-task condition were not changed significantly after the intra-condition registration. However, the BP values during and after the task and DAR were significantly changed after the correction. SPM analysis also showed that the extent and significance of the BP differences were significantly changed by the head motion correction

  20. Knee Motion Generation Method for Transfemoral Prosthesis Based on Kinematic Synergy and Inertial Motion.

    Science.gov (United States)

    Sano, Hiroshi; Wada, Takahiro

    2017-12-01

    Previous research has shown that the effective use of inertial motion (i.e., less or no torque input at the knee joint) plays an important role in achieving a smooth gait of transfemoral prostheses in the swing phase. In our previous research, a method for generating a timed knee trajectory close to able-bodied individuals, which leads to sufficient clearance between the foot and the floor and the knee extension, was proposed using the inertial motion. Limb motions are known to correlate with each other during walking. This phenomenon is called kinematic synergy. In this paper, we measure gaits in level walking of able-bodied individuals with a wide range of walking velocities. We show that this kinematic synergy also exists between the motions of the intact limbs and those of the knee as determined by the inertial motion technique. We then propose a new method for generating the motion of the knee joint using its inertial motion close to the able-bodied individuals in mid-swing based on its kinematic synergy, such that the method can adapt to the changes in the motion velocity. The numerical simulation results show that the proposed method achieves prosthetic walking similar to that of able-bodied individuals with a wide range of constant walking velocities and termination of walking from steady-state walking. Further investigations have found that a kinematic synergy also exists at the start of walking. Overall, our method successfully achieves knee motion generation from the initiation of walking through steady-state walking with different velocities until termination of walking.

  1. Model Correction Factor Method

    DEFF Research Database (Denmark)

    Christensen, Claus; Randrup-Thomsen, Søren; Morsing Johannesen, Johannes

    1997-01-01

    The model correction factor method is proposed as an alternative to traditional polynomial based response surface techniques in structural reliability considering a computationally time consuming limit state procedure as a 'black box'. The class of polynomial functions is replaced by a limit...... of the model correction factor method, is that in simpler form not using gradient information on the original limit state function or only using this information once, a drastic reduction of the number of limit state evaluation is obtained together with good approximations on the reliability. Methods...

  2. Integration Method of Emphatic Motions and Adverbial Expressions with Scalar Parameters for Robotic Motion Coaching System

    Science.gov (United States)

    Okuno, Keisuke; Inamura, Tetsunari

    A robotic coaching system can improve humans' learning performance of motions by intelligent usage of emphatic motions and adverbial expressions according to user reactions. In robotics, however, method to control both the motions and the expressions and how to bind them had not been adequately discussed from an engineering point of view. In this paper, we propose a method for controlling and binding emphatic motions and adverbial expressions by using two scalar parameters in a phase space. In the phase space, variety of motion patterns and verbal expressions are connected and can be expressed as static points. We show the feasibility of the proposing method through experiments of actual sport coaching tasks for beginners. From the results of participants' improvements in motion learning, we confirmed the feasibility of the methods to control and bind emphatic motions and adverbial expressions, as well as confirmed contribution of the emphatic motions and positive correlation of adverbial expressions for participants' improvements in motion learning. Based on the results, we introduce a hypothesis that individually optimized method for binding adverbial expression is required.

  3. Refraction-compensated motion tracking of unrestrained small animals in positron emission tomography.

    Science.gov (United States)

    Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger

    2012-08-01

    Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  4. Fast, accurate, and robust automatic marker detection for motion correction based on oblique kV or MV projection image pairs

    International Nuclear Information System (INIS)

    Slagmolen, Pieter; Hermans, Jeroen; Maes, Frederik; Budiharto, Tom; Haustermans, Karin; Heuvel, Frank van den

    2010-01-01

    Purpose: A robust and accurate method that allows the automatic detection of fiducial markers in MV and kV projection image pairs is proposed. The method allows to automatically correct for inter or intrafraction motion. Methods: Intratreatment MV projection images are acquired during each of five treatment beams of prostate cancer patients with four implanted fiducial markers. The projection images are first preprocessed using a series of marker enhancing filters. 2D candidate marker locations are generated for each of the filtered projection images and 3D candidate marker locations are reconstructed by pairing candidates in subsequent projection images. The correct marker positions are retrieved in 3D by the minimization of a cost function that combines 2D image intensity and 3D geometric or shape information for the entire marker configuration simultaneously. This optimization problem is solved using dynamic programming such that the globally optimal configuration for all markers is always found. Translational interfraction and intrafraction prostate motion and the required patient repositioning is assessed from the position of the centroid of the detected markers in different MV image pairs. The method was validated on a phantom using CT as ground-truth and on clinical data sets of 16 patients using manual marker annotations as ground-truth. Results: The entire setup was confirmed to be accurate to around 1 mm by the phantom measurements. The reproducibility of the manual marker selection was less than 3.5 pixels in the MV images. In patient images, markers were correctly identified in at least 99% of the cases for anterior projection images and 96% of the cases for oblique projection images. The average marker detection accuracy was 1.4±1.8 pixels in the projection images. The centroid of all four reconstructed marker positions in 3D was positioned within 2 mm of the ground-truth position in 99.73% of all cases. Detecting four markers in a pair of MV images

  5. A practical procedure to improve the accuracy of radiochromic film dosimetry. A integration with a correction method of uniformity correction and a red/blue correction method

    International Nuclear Information System (INIS)

    Uehara, Ryuzo; Tachibana, Hidenobu; Ito, Yasushi; Yoshino, Shinichi; Matsubayashi, Fumiyasu; Sato, Tomoharu

    2013-01-01

    It has been reported that the light scattering could worsen the accuracy of dose distribution measurement using a radiochromic film. The purpose of this study was to investigate the accuracy of two different films, EDR2 and EBT2, as film dosimetry tools. The effectiveness of a correction method for the non-uniformity caused from EBT2 film and the light scattering was also evaluated. In addition the efficacy of this correction method integrated with the red/blue correction method was assessed. EDR2 and EBT2 films were read using a flatbed charge-coupled device scanner (EPSON 10000 G). Dose differences on the axis perpendicular to the scanner lamp movement axis were within 1% with EDR2, but exceeded 3% (Maximum: +8%) with EBT2. The non-uniformity correction method, after a single film exposure, was applied to the readout of the films. A corrected dose distribution data was subsequently created. The correction method showed more than 10%-better pass ratios in dose difference evaluation than when the correction method was not applied. The red/blue correction method resulted in 5%-improvement compared with the standard procedure that employed red color only. The correction method with EBT2 proved to be able to rapidly correct non-uniformity, and has potential for routine clinical intensity modulated radiation therapy (IMRT) dose verification if the accuracy of EBT2 is required to be similar to that of EDR2. The use of red/blue correction method may improve the accuracy, but we recommend we should use the red/blue correction method carefully and understand the characteristics of EBT2 for red color only and the red/blue correction method. (author)

  6. [A practical procedure to improve the accuracy of radiochromic film dosimetry: a integration with a correction method of uniformity correction and a red/blue correction method].

    Science.gov (United States)

    Uehara, Ryuzo; Tachibana, Hidenobu; Ito, Yasushi; Yoshino, Shinichi; Matsubayashi, Fumiyasu; Sato, Tomoharu

    2013-06-01

    It has been reported that the light scattering could worsen the accuracy of dose distribution measurement using a radiochromic film. The purpose of this study was to investigate the accuracy of two different films, EDR2 and EBT2, as film dosimetry tools. The effectiveness of a correction method for the non-uniformity caused from EBT2 film and the light scattering was also evaluated. In addition the efficacy of this correction method integrated with the red/blue correction method was assessed. EDR2 and EBT2 films were read using a flatbed charge-coupled device scanner (EPSON 10000G). Dose differences on the axis perpendicular to the scanner lamp movement axis were within 1% with EDR2, but exceeded 3% (Maximum: +8%) with EBT2. The non-uniformity correction method, after a single film exposure, was applied to the readout of the films. A corrected dose distribution data was subsequently created. The correction method showed more than 10%-better pass ratios in dose difference evaluation than when the correction method was not applied. The red/blue correction method resulted in 5%-improvement compared with the standard procedure that employed red color only. The correction method with EBT2 proved to be able to rapidly correct non-uniformity, and has potential for routine clinical IMRT dose verification if the accuracy of EBT2 is required to be similar to that of EDR2. The use of red/blue correction method may improve the accuracy, but we recommend we should use the red/blue correction method carefully and understand the characteristics of EBT2 for red color only and the red/blue correction method.

  7. A gamma camera count rate saturation correction method for whole-body planar imaging

    Science.gov (United States)

    Hobbs, Robert F.; Baechler, Sébastien; Senthamizhchelvan, Srinivasan; Prideaux, Andrew R.; Esaias, Caroline E.; Reinhardt, Melvin; Frey, Eric C.; Loeb, David M.; Sgouros, George

    2010-02-01

    Whole-body (WB) planar imaging has long been one of the staple methods of dosimetry, and its quantification has been formalized by the MIRD Committee in pamphlet no 16. One of the issues not specifically addressed in the formalism occurs when the count rates reaching the detector are sufficiently high to result in camera count saturation. Camera dead-time effects have been extensively studied, but all of the developed correction methods assume static acquisitions. However, during WB planar (sweep) imaging, a variable amount of imaged activity exists in the detector's field of view as a function of time and therefore the camera saturation is time dependent. A new time-dependent algorithm was developed to correct for dead-time effects during WB planar acquisitions that accounts for relative motion between detector heads and imaged object. Static camera dead-time parameters were acquired by imaging decaying activity in a phantom and obtaining a saturation curve. Using these parameters, an iterative algorithm akin to Newton's method was developed, which takes into account the variable count rate seen by the detector as a function of time. The algorithm was tested on simulated data as well as on a whole-body scan of high activity Samarium-153 in an ellipsoid phantom. A complete set of parameters from unsaturated phantom data necessary for count rate to activity conversion was also obtained, including build-up and attenuation coefficients, in order to convert corrected count rate values to activity. The algorithm proved successful in accounting for motion- and time-dependent saturation effects in both the simulated and measured data and converged to any desired degree of precision. The clearance half-life calculated from the ellipsoid phantom data was calculated to be 45.1 h after dead-time correction and 51.4 h with no correction; the physical decay half-life of Samarium-153 is 46.3 h. Accurate WB planar dosimetry of high activities relies on successfully compensating

  8. Motion Correction of Single-Voxel Spectroscopy by Independent Component Analysis Applied to Spectra From Nonanesthetized Pediatric Subjects

    DEFF Research Database (Denmark)

    de Nijs, Robin; Miranda, Maria J.; Hansen, Lars Kai

    2009-01-01

    For single-voxel spectroscopy, the acquisition of the spectrum is typically repeated n times and then combined with a factor in order to improve the signal-to-noise ratio. In practice, the acquisitions are not only affected by random noise but also by physiologic motion and subject movements. Since...... the influence of physiologic motion such as cardiac and respiratory motion on the data is limited, it can be compensated for without data loss. Individual acquisitions hampered by subject movements, on the other hand, need to be rejected if no correction or compensation is possible. If the individual...

  9. An Matching Method for Vehicle-borne Panoramic Image Sequence Based on Adaptive Structure from Motion Feature

    Directory of Open Access Journals (Sweden)

    ZHANG Zhengpeng

    2015-10-01

    Full Text Available Panoramic image matching method with the constraint condition of local structure from motion similarity feature is an important method, the process requires multivariable kernel density estimations for the structure from motion feature used nonparametric mean shift. Proper selection of the kernel bandwidth is a critical step for convergence speed and accuracy of matching method. Variable bandwidth with adaptive structure from motion feature for panoramic image matching method has been proposed in this work. First the bandwidth matrix is defined using the locally adaptive spatial structure of the sampling point in spatial domain and optical flow domain. The relaxation diffusion process of structure from motion similarity feature is described by distance weighting method of local optical flow feature vector. Then the expression form of adaptive multivariate kernel density function is given out, and discusses the solution of the mean shift vector, termination conditions, and the seed point selection method. The final fusions of multi-scale SIFT the features and structure features to establish a unified panoramic image matching framework. The sphere panoramic images from vehicle-borne mobile measurement system are chosen such that a comparison analysis between fixed bandwidth and adaptive bandwidth is carried out in detail. The results show that adaptive bandwidth is good for case with the inlier ratio changes and the object space scale changes. The proposed method can realize the adaptive similarity measure of structure from motion feature, improves the correct matching points and matching rate, experimental results have shown our method to be robust.

  10. Automated correction of spin-history related motion artefacts in fMRI : Simulated and phantom data

    NARCIS (Netherlands)

    Muresan, L; Renken, R.; Roerdink, J.B.T.M.; Duifhuis, H.

    This paper concerns the problem of correcting spin-history artefacts in fMRI data. We focus on the influence of through-plane motion on the history of magnetization. A change in object position will disrupt the tissue’s steady-state magnetization. The disruption will propagate to the next few

  11. Estimating non-circular motions in barred galaxies using numerical N-body simulations

    Science.gov (United States)

    Randriamampandry, T. H.; Combes, F.; Carignan, C.; Deg, N.

    2015-12-01

    The observed velocities of the gas in barred galaxies are a combination of the azimuthally averaged circular velocity and non-circular motions, primarily caused by gas streaming along the bar. These non-circular flows must be accounted for before the observed velocities can be used in mass modelling. In this work, we examine the performance of the tilted-ring method and the DISKFIT algorithm for transforming velocity maps of barred spiral galaxies into rotation curves (RCs) using simulated data. We find that the tilted-ring method, which does not account for streaming motions, under-/overestimates the circular motions when the bar is parallel/perpendicular to the projected major axis. DISKFIT, which does include streaming motions, is limited to orientations where the bar is not aligned with either the major or minor axis of the image. Therefore, we propose a method of correcting RCs based on numerical simulations of galaxies. We correct the RC derived from the tilted-ring method based on a numerical simulation of a galaxy with similar properties and projections as the observed galaxy. Using observations of NGC 3319, which has a bar aligned with the major axis, as a test case, we show that the inferred mass models from the uncorrected and corrected RCs are significantly different. These results show the importance of correcting for the non-circular motions and demonstrate that new methods of accounting for these motions are necessary as current methods fail for specific bar alignments.

  12. Application of data assimilation methods for analysis and integration of observed and modeled Arctic Sea ice motions

    Science.gov (United States)

    Meier, Walter Neil

    This thesis demonstrates the applicability of data assimilation methods to improve observed and modeled ice motion fields and to demonstrate the effects of assimilated motion on Arctic processes important to the global climate and of practical concern to human activities. Ice motions derived from 85 GHz and 37 GHz SSM/I imagery and estimated from two-dimensional dynamic-thermodynamic sea ice models are compared to buoy observations. Mean error, error standard deviation, and correlation with buoys are computed for the model domain. SSM/I motions generally have a lower bias, but higher error standard deviations and lower correlation with buoys than model motions. There are notable variations in the statistics depending on the region of the Arctic, season, and ice characteristics. Assimilation methods are investigated and blending and optimal interpolation strategies are implemented. Blending assimilation improves error statistics slightly, but the effect of the assimilation is reduced due to noise in the SSM/I motions and is thus not an effective method to improve ice motion estimates. However, optimal interpolation assimilation reduces motion errors by 25--30% over modeled motions and 40--45% over SSM/I motions. Optimal interpolation assimilation is beneficial in all regions, seasons and ice conditions, and is particularly effective in regimes where modeled and SSM/I errors are high. Assimilation alters annual average motion fields. Modeled ice products of ice thickness, ice divergence, Fram Strait ice volume export, transport across the Arctic and interannual basin averages are also influenced by assimilated motions. Assimilation improves estimates of pollutant transport and corrects synoptic-scale errors in the motion fields caused by incorrect forcings or errors in model physics. The portability of the optimal interpolation assimilation method is demonstrated by implementing the strategy in an ice thickness distribution (ITD) model. This research presents an

  13. Effects of motion correction for dynamic [{sup 11}C]Raclopride brain PET data on the evaluation of endogenous dopamine release in striatum

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Kim, Yu Kyeong; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of); Choe, Yearn Seong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kang, Eun Joo [Kangwon University, Chunchon (Korea, Republic of)

    2005-10-15

    Neuroreceptor PET studies require 60-120 minutes to complete and head motion of the subject during the PET scan increases the uncertainty in measured activity. In this study, we investigated the effects of the data-driven head motion correction on the evaluation of endogenous dopamine release (DAR) in the striatum during the motor task which might have caused significant head motion artifact. [{sup 11}C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a momentary reward for 40 min. Dynamic frames acquired during the equilibrium condition (pre-task: 30-50 min, task: 70-90 min, post-task:110-120 min) were realigned to the first frame in pre-task condition. Intra-condition registrations between the frames were performed, and average image for each condition was created and registered to the pre-task image (inter-condition registration). Pre-task PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the others. Volumes of interest (VOI) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DAR was calculated as the percent change of BP during and after the task. SPM analyses on the BP parametric images were also performed to explore the regional difference in the effects of head motion on BP and DAR estimation. Changes in position and orientation of the striatum during the PET scans were observed before the head motion correction. BP values at pre-task condition were not changed significantly after the intra-condition registration. However, the BP values during and after the task and DAR were significantly changed after the correction. SPM analysis also showed that the extent and significance of the BP differences were significantly changed by the head motion

  14. Utility of real-time prospective motion correction (PROMO) for segmentation of cerebral cortex on 3D T1-weighted imaging: Voxel-based morphometry analysis for uncooperative patients

    International Nuclear Information System (INIS)

    Igata, Natsuki; Kakeda, Shingo; Watanabe, Keita; Narimatsu, Hidekuni; Ide, Satoru; Korogi, Yukunori; Nozaki, Atsushi; Rettmann, Dan; Abe, Osamu

    2017-01-01

    To assess the utility of the motion correction method with prospective motion correction (PROMO) in a voxel-based morphometry (VBM) analysis for 'uncooperative' patient populations. High-resolution 3D T1-weighted imaging both with and without PROMO were performed in 33 uncooperative patients with Parkinson's disease (n = 11) or dementia (n = 22). We compared the grey matter (GM) volumes and cortical thickness between the scans with and without PROMO. For the mean total GM volume with the VBM analysis, the scan without PROMO showed a significantly smaller volume than that with PROMO (p < 0.05), which was caused by segmentation problems due to motion during acquisition. The whole-brain VBM analysis showed significant GM volume reductions in some regions in the scans without PROMO (familywise error corrected p < 0.05). In the cortical thickness analysis, the scans without PROMO also showed decreased cortical thickness compared to the scan with PROMO (p < 0.05). Our results with the uncooperative patients indicate that the use of PROMO can reduce misclassification during segmentation of the VBM analyses, although it may not prevent GM volume reduction. (orig.)

  15. Utility of real-time prospective motion correction (PROMO) for segmentation of cerebral cortex on 3D T1-weighted imaging: Voxel-based morphometry analysis for uncooperative patients

    Energy Technology Data Exchange (ETDEWEB)

    Igata, Natsuki; Kakeda, Shingo; Watanabe, Keita; Narimatsu, Hidekuni; Ide, Satoru; Korogi, Yukunori [University of Occupational and Environmental Health School of Medicine, Department of Radiology, Kitakyushu (Japan); Nozaki, Atsushi [MR Applications and Workflow Asia Pacific GE Healthcare Japan, Tokyo (Japan); Rettmann, Dan [MR Applications and Workflow GE Healthcare, Rochester, MN (United States); Abe, Osamu [University of Tokyo, Department of Radiology, Graduate School of Medicine, Tokyo (Japan)

    2017-08-15

    To assess the utility of the motion correction method with prospective motion correction (PROMO) in a voxel-based morphometry (VBM) analysis for 'uncooperative' patient populations. High-resolution 3D T1-weighted imaging both with and without PROMO were performed in 33 uncooperative patients with Parkinson's disease (n = 11) or dementia (n = 22). We compared the grey matter (GM) volumes and cortical thickness between the scans with and without PROMO. For the mean total GM volume with the VBM analysis, the scan without PROMO showed a significantly smaller volume than that with PROMO (p < 0.05), which was caused by segmentation problems due to motion during acquisition. The whole-brain VBM analysis showed significant GM volume reductions in some regions in the scans without PROMO (familywise error corrected p < 0.05). In the cortical thickness analysis, the scans without PROMO also showed decreased cortical thickness compared to the scan with PROMO (p < 0.05). Our results with the uncooperative patients indicate that the use of PROMO can reduce misclassification during segmentation of the VBM analyses, although it may not prevent GM volume reduction. (orig.)

  16. Curves from Motion, Motion from Curves

    Science.gov (United States)

    2000-01-01

    De linearum curvarum cum lineis rectis comparatione dissertatio geometrica - an appendix to a treatise by de Lalouv~re (this was the only publication... correct solution to the problem of motion in the gravity of a permeable rotating Earth, considered by Torricelli (see §3). If the Earth is a homogeneous...in 1686, which contains the correct solution as part of a remarkably comprehensive theory of orbital motions under centripetal forces. It is a

  17. Correction of head movements in positron emission tomography using point source tracking system: a simulation study.

    Science.gov (United States)

    Nazarparvar, Babak; Shamsaei, Mojtaba; Rajabi, Hossein

    2012-01-01

    The motion of the head during brain positron emission tomography (PET) acquisitions has been identified as a source of artifact in the reconstructed image. In this study, a method is described to develop an image-based motion correction technique for correcting the post-acquisition data without using external optical motion-tracking system such as POLARIS. In this technique, GATE has been used to simulate PET brain scan using point sources mounted around the head to accurately monitor the position of the head during the time frames. The measurement of head motion in each frame showed a transformation in the image frame matrix, resulting in a fully corrected data set. Using different kinds of phantoms and motions, the accuracy of the correction method is tested and its applicability to experimental studies is demonstrated as well.

  18. A combined method to calculate co-seismic displacements through strong motion acceleration baseline correction

    Science.gov (United States)

    Zhan, W.; Sun, Y.

    2015-12-01

    High frequency strong motion data, especially near field acceleration data, have been recorded widely through different observation station systems among the world. Due to tilting and a lot other reasons, recordings from these seismometers usually have baseline drift problems when big earthquake happens. It is hard to obtain a reasonable and precision co-seismic displacement through simply double integration. Here presents a combined method using wavelet transform and several simple liner procedures. Owning to the lack of dense high rate GNSS data in most of region of the world, we did not contain GNSS data in this method first but consider it as an evaluating mark of our results. This semi-automatic method unpacks a raw signal into two portions, a summation of high ranks and a low ranks summation using a cubic B-spline wavelet decomposition procedure. Independent liner treatments are processed against these two summations, which are then composed together to recover useable and reasonable result. We use data of 2008 Wenchuan earthquake and choose stations with a near GPS recording to validate this method. Nearly all of them have compatible co-seismic displacements when compared with GPS stations or field survey. Since seismometer stations and GNSS stations from observation systems in China are sometimes quite far from each other, we also test this method with some other earthquakes (1999 Chi-Chi earthquake and 2011 Tohoku earthquake). And for 2011 Tohoku earthquake, we will introduce GPS recordings to this combined method since the existence of a dense GNSS systems in Japan.

  19. Improved frame-based estimation of head motion in PET brain imaging

    International Nuclear Information System (INIS)

    Mukherjee, J. M.; Lindsay, C.; King, M. A.; Licho, R.; Mukherjee, A.; Olivier, P.; Shao, L.

    2016-01-01

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  20. Improved frame-based estimation of head motion in PET brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.; Licho, R. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Mukherjee, A. [Aware, Inc., Bedford, Massachusetts 01730 (United States); Olivier, P. [Philips Medical Systems, Cleveland, Ohio 44143 (United States); Shao, L. [ViewRay, Oakwood Village, Ohio 44146 (United States)

    2016-05-15

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  1. A numerical method for determining the radial wave motion correction in plane wave couplers

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni

    2016-01-01

    Microphones are used for realising the unit of sound pressure level, the pascal (Pa). Electro-acoustic reciprocity is the preferred method for the absolute determination of the sensitivity. This method can be applied in different sound fields: uniform pressure, free field or diffuse field. Pressure...... solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model...... of the microphone-coupler system in a Boundary Element formulation. In order to obtain a realistic representation of the sound field, viscous losses must be introduced in the model. This paper presents such a model, and the results of the simulations for different combinations of microphones and couplers...

  2. Learning Motion Features for Example-Based Finger Motion Estimation for Virtual Characters

    Science.gov (United States)

    Mousas, Christos; Anagnostopoulos, Christos-Nikolaos

    2017-09-01

    This paper presents a methodology for estimating the motion of a character's fingers based on the use of motion features provided by a virtual character's hand. In the presented methodology, firstly, the motion data is segmented into discrete phases. Then, a number of motion features are computed for each motion segment of a character's hand. The motion features are pre-processed using restricted Boltzmann machines, and by using the different variations of semantically similar finger gestures in a support vector machine learning mechanism, the optimal weights for each feature assigned to a metric are computed. The advantages of the presented methodology in comparison to previous solutions are the following: First, we automate the computation of optimal weights that are assigned to each motion feature counted in our metric. Second, the presented methodology achieves an increase (about 17%) in correctly estimated finger gestures in comparison to a previous method.

  3. The image evaluation of iterative motion correction reconstruction algorithm PROPELLER T2-weighted imaging compared with MultiVane T2-weighted imaging

    Science.gov (United States)

    Lee, Suk-Jun; Yu, Seung-Man

    2017-08-01

    The purpose of this study was to evaluate the usefulness and clinical applications of MultiVaneXD which was applying iterative motion correction reconstruction algorithm T2-weighted images compared with MultiVane images taken with a 3T MRI. A total of 20 patients with suspected pathologies of the liver and pancreatic-biliary system based on clinical and laboratory findings underwent upper abdominal MRI, acquired using the MultiVane and MultiVaneXD techniques. Two reviewers analyzed the MultiVane and MultiVaneXD T2-weighted images qualitatively and quantitatively. Each reviewer evaluated vessel conspicuity by observing motion artifacts and the sharpness of the portal vein, hepatic vein, and upper organs. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated by one reviewer for quantitative analysis. The interclass correlation coefficient was evaluated to measure inter-observer reliability. There were significant differences between MultiVane and MultiVaneXD in motion artifact evaluation. Furthermore, MultiVane was given a better score than MultiVaneXD in abdominal organ sharpness and vessel conspicuity, but the difference was insignificant. The reliability coefficient values were over 0.8 in every evaluation. MultiVaneXD (2.12) showed a higher value than did MultiVane (1.98), but the difference was insignificant ( p = 0.135). MultiVaneXD is a motion correction method that is more advanced than MultiVane, and it produced an increased SNR, resulting in a greater ability to detect focal abdominal lesions.

  4. The usefulness and the problems of attenuation correction using simultaneous transmission and emission data acquisition method. Studies on normal volunteers and phantom

    International Nuclear Information System (INIS)

    Kijima, Tetsuji; Kumita, Shin-ichiro; Mizumura, Sunao; Cho, Keiichi; Ishihara, Makiko; Toba, Masahiro; Kumazaki, Tatsuo; Takahashi, Munehiro.

    1997-01-01

    Attenuation correction using simultaneous transmission data (TCT) and emission data (ECT) acquisition method was applied to 201 Tl myocardial SPECT with ten normal adults and the phantom in order to validate the efficacy of attenuation correction using this method. Normal adults study demonstrated improved 201 Tl accumulation to the septal wall and the posterior wall of the left ventricle and relative decreased activities in the lateral wall with attenuation correction (p 201 Tl uptake organs such as the liver and the stomach pushed up the activities in the septal wall and the posterior wall. Cardiac dynamic phantom studies showed partial volume effect due to cardiac motion contributed to under-correction of the apex, which might be overcome using gated SPECT. Although simultaneous TCT and ECT acquisition was conceived of the advantageous method for attenuation correction, miss-correction of the special myocardial segments should be taken into account in assessment of attenuation correction compensated images. (author)

  5. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series

    Science.gov (United States)

    Patel, Ameera X.; Kundu, Prantik; Rubinov, Mikail; Jones, P. Simon; Vértes, Petra E.; Ersche, Karen D.; Suckling, John; Bullmore, Edward T.

    2014-01-01

    The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N = 22) and a new dataset on adults with stimulant drug dependence (N = 40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www

  6. Off-Angle Iris Correction Methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Thompson, Joseph T [ORNL; Karakaya, Mahmut [ORNL; Boehnen, Chris Bensing [ORNL

    2016-01-01

    In many real world iris recognition systems obtaining consistent frontal images is problematic do to inexperienced or uncooperative users, untrained operators, or distracting environments. As a result many collected images are unusable by modern iris matchers. In this chapter we present four methods for correcting off-angle iris images to appear frontal which makes them compatible with existing iris matchers. The methods include an affine correction, a retraced model of the human eye, measured displacements, and a genetic algorithm optimized correction. The affine correction represents a simple way to create an iris image that appears frontal but it does not account for refractive distortions of the cornea. The other method account for refraction. The retraced model simulates the optical properties of the cornea. The other two methods are data driven. The first uses optical flow to measure the displacements of the iris texture when compared to frontal images of the same subject. The second uses a genetic algorithm to learn a mapping that optimizes the Hamming Distance scores between off-angle and frontal images. In this paper we hypothesize that the biological model presented in our earlier work does not adequately account for all variations in eye anatomy and therefore the two data-driven approaches should yield better performance. Results are presented using the commercial VeriEye matcher that show that the genetic algorithm method clearly improves over prior work and makes iris recognition possible up to 50 degrees off-angle.

  7. Comparison of the effects of streptokinase and tissue plasminogen activator on regional wall motion after first myocardial infarction: analysis by the centerline method with correction for area at risk.

    Science.gov (United States)

    Cross, D B; Ashton, N G; Norris, R M; White, H D

    1991-04-01

    In a trial of streptokinase versus recombinant tissue-type plasminogen activator (rt-PA) for a first myocardial infarction, 270 patients were randomized. Regional left ventricular function was assessed in 214 patients at 3 weeks. The infarct-related artery was the left anterior descending artery in 78 patients, the right coronary artery in 122 and a dominant left circumflex artery in 14. Analysis was by the centerline method with a novel correction for the area of myocardium at risk, whereby the search region was determined by the anatomic distribution of the infarct-related artery. Infarct-artery patency at 3 weeks was 73% in the streptokinase group and 71% in the rt-PA group. Global left ventricular function did not differ between the two groups. Mean chord motion (+/- SD) in the most hypokinetic half of the defined search region was similar in the streptokinase and rt-PA groups (-2.4 +/- 1.5 versus -2.3 +/- 1.3, p = 0.63). There were no differences in hyperkinesia of the noninfarct zone. Compared with conventional centerline analysis, regional wall motion in the defined area at risk was significantly more abnormal. The two methods correlated strongly, however (r = 0.99, p less than 0.0001), and both methods produced similar overall results. Patients with a patent infarct-related artery and those with an occluded artery at the time of catheterization had similar levels of global function (ejection fraction 58 +/- 12% versus 57 +/- 12%, p = 0.58).(ABSTRACT TRUNCATED AT 250 WORDS)

  8. List-mode PET image reconstruction for motion correction using the Intel XEON PHI co-processor

    Science.gov (United States)

    Ryder, W. J.; Angelis, G. I.; Bashar, R.; Gillam, J. E.; Fulton, R.; Meikle, S.

    2014-03-01

    List-mode image reconstruction with motion correction is computationally expensive, as it requires projection of hundreds of millions of rays through a 3D array. To decrease reconstruction time it is possible to use symmetric multiprocessing computers or graphics processing units. The former can have high financial costs, while the latter can require refactoring of algorithms. The Xeon Phi is a new co-processor card with a Many Integrated Core architecture that can run 4 multiple-instruction, multiple data threads per core with each thread having a 512-bit single instruction, multiple data vector register. Thus, it is possible to run in the region of 220 threads simultaneously. The aim of this study was to investigate whether the Xeon Phi co-processor card is a viable alternative to an x86 Linux server for accelerating List-mode PET image reconstruction for motion correction. An existing list-mode image reconstruction algorithm with motion correction was ported to run on the Xeon Phi coprocessor with the multi-threading implemented using pthreads. There were no differences between images reconstructed using the Phi co-processor card and images reconstructed using the same algorithm run on a Linux server. However, it was found that the reconstruction runtimes were 3 times greater for the Phi than the server. A new version of the image reconstruction algorithm was developed in C++ using OpenMP for mutli-threading and the Phi runtimes decreased to 1.67 times that of the host Linux server. Data transfer from the host to co-processor card was found to be a rate-limiting step; this needs to be carefully considered in order to maximize runtime speeds. When considering the purchase price of a Linux workstation with Xeon Phi co-processor card and top of the range Linux server, the former is a cost-effective computation resource for list-mode image reconstruction. A multi-Phi workstation could be a viable alternative to cluster computers at a lower cost for medical imaging

  9. Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration

    Science.gov (United States)

    Wei, David Wei; Deegan, Anthony J.; Wang, Ruikang K.

    2017-06-01

    When using optical coherence tomography angiography (OCTA), the development of artifacts due to involuntary movements can severely compromise the visualization and subsequent quantitation of tissue microvasculatures. To correct such an occurrence, we propose a motion compensation method to eliminate artifacts from human skin OCTA by means of step-by-step rigid affine registration, rigid subpixel registration, and nonrigid B-spline registration. To accommodate this remedial process, OCTA is conducted using two matching all-depth volume scans. Affine transformation is first performed on the large vessels of the deep reticular dermis, and then the resulting affine parameters are applied to all-depth vasculatures with a further subpixel registration to refine the alignment between superficial smaller vessels. Finally, the coregistration of both volumes is carried out to result in the final artifact-free composite image via an algorithm based upon cubic B-spline free-form deformation. We demonstrate that the proposed method can provide a considerable improvement to the final en face OCTA images with substantial artifact removal. In addition, the correlation coefficients and peak signal-to-noise ratios of the corrected images are evaluated and compared with those of the original images, further validating the effectiveness of the proposed method. We expect that the proposed method can be useful in improving qualitative and quantitative assessment of the OCTA images of scanned tissue beds.

  10. Path durations for use in the stochastic‐method simulation of ground motions

    Science.gov (United States)

    Boore, David M.; Thompson, Eric M.

    2014-01-01

    The stochastic method of ground‐motion simulation assumes that the energy in a target spectrum is spread over a duration DT. DT is generally decomposed into the duration due to source effects (DS) and to path effects (DP). For the most commonly used source, seismological theory directly relates DS to the source corner frequency, accounting for the magnitude scaling of DT. In contrast, DP is related to propagation effects that are more difficult to represent by analytic equations based on the physics of the process. We are primarily motivated to revisit DT because the function currently employed by many implementations of the stochastic method for active tectonic regions underpredicts observed durations, leading to an overprediction of ground motions for a given target spectrum. Further, there is some inconsistency in the literature regarding which empirical duration corresponds to DT. Thus, we begin by clarifying the relationship between empirical durations and DT as used in the first author’s implementation of the stochastic method, and then we develop a new DP relationship. The new DP function gives significantly longer durations than in the previous DP function, but the relative contribution of DP to DT still diminishes with increasing magnitude. Thus, this correction is more important for small events or subfaults of larger events modeled with the stochastic finite‐fault method.

  11. Coordinated joint motion control system with position error correction

    Science.gov (United States)

    Danko, George L.

    2016-04-05

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  12. Evaluation of image guided motion management methods in lung cancer radiotherapy

    International Nuclear Information System (INIS)

    Zhuang, Ling; Yan, Di; Liang, Jian; Ionascu, Dan; Mangona, Victor; Yang, Kai; Zhou, Jun

    2014-01-01

    Purpose: To evaluate the accuracy and reliability of three target localization methods for image guided motion management in lung cancer radiotherapy. Methods: Three online image localization methods, including (1) 2D method based on 2D cone beam (CB) projection images, (2) 3D method using 3D cone beam CT (CBCT) imaging, and (3) 4D method using 4D CBCT imaging, have been evaluated using a moving phantom controlled by (a) 1D theoretical breathing motion curves and (b) 3D target motion patterns obtained from daily treatment of 3 lung cancer patients. While all methods are able to provide target mean position (MP), the 2D and 4D methods can also provide target motion standard deviation (SD) and excursion (EX). For each method, the detected MP/SD/EX values are compared to the analytically calculated actual values to calculate the errors. The MP errors are compared among three methods and the SD/EX errors are compared between the 2D and 4D methods. In the theoretical motion study (a), the dependency of MP/SD/EX error on EX is investigated with EX varying from 2.0 cm to 3.0 cm with an increment step of 0.2 cm. In the patient motion study (b), the dependency of MP error on target sizes (2.0 cm and 3.0 cm), motion patterns (four motions per patient) and EX variations is investigated using multivariant linear regression analysis. Results: In the theoretical motion study (a), the MP detection errors are −0.2 ± 0.2, −1.5 ± 1.1, and −0.2 ± 0.2 mm for 2D, 3D, and 4D methods, respectively. Both the 2D and 4D methods could accurately detect motion pattern EX (error < 1.2 mm) and SD (error < 1.0 mm). In the patient motion study (b), MP detection error vector (mm) with the 2D method (0.7 ± 0.4) is found to be significantly less than with the 3D method (1.7 ± 0.8,p < 0.001) and the 4D method (1.4 ± 1.0, p < 0.001) using paired t-test. However, no significant difference is found between the 4D method and the 3D method. Based on multivariant linear regression analysis, the

  13. Evaluation of image guided motion management methods in lung cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Ling [Department of Radiation Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, Michigan 48201 (United States); Yan, Di; Liang, Jian; Ionascu, Dan; Mangona, Victor; Yang, Kai; Zhou, Jun, E-mail: jun.zhou@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, 3601 West Thirteen Mile Road, Royal Oak, Michigan 48073 (United States)

    2014-03-15

    Purpose: To evaluate the accuracy and reliability of three target localization methods for image guided motion management in lung cancer radiotherapy. Methods: Three online image localization methods, including (1) 2D method based on 2D cone beam (CB) projection images, (2) 3D method using 3D cone beam CT (CBCT) imaging, and (3) 4D method using 4D CBCT imaging, have been evaluated using a moving phantom controlled by (a) 1D theoretical breathing motion curves and (b) 3D target motion patterns obtained from daily treatment of 3 lung cancer patients. While all methods are able to provide target mean position (MP), the 2D and 4D methods can also provide target motion standard deviation (SD) and excursion (EX). For each method, the detected MP/SD/EX values are compared to the analytically calculated actual values to calculate the errors. The MP errors are compared among three methods and the SD/EX errors are compared between the 2D and 4D methods. In the theoretical motion study (a), the dependency of MP/SD/EX error on EX is investigated with EX varying from 2.0 cm to 3.0 cm with an increment step of 0.2 cm. In the patient motion study (b), the dependency of MP error on target sizes (2.0 cm and 3.0 cm), motion patterns (four motions per patient) and EX variations is investigated using multivariant linear regression analysis. Results: In the theoretical motion study (a), the MP detection errors are −0.2 ± 0.2, −1.5 ± 1.1, and −0.2 ± 0.2 mm for 2D, 3D, and 4D methods, respectively. Both the 2D and 4D methods could accurately detect motion pattern EX (error < 1.2 mm) and SD (error < 1.0 mm). In the patient motion study (b), MP detection error vector (mm) with the 2D method (0.7 ± 0.4) is found to be significantly less than with the 3D method (1.7 ± 0.8,p < 0.001) and the 4D method (1.4 ± 1.0, p < 0.001) using paired t-test. However, no significant difference is found between the 4D method and the 3D method. Based on multivariant linear regression analysis, the

  14. List-Mode PET Motion Correction Using Markerless Head Tracking: Proof-of-Concept With Scans of Human Subject

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sullivan, Jenna M.; Mulnix, Tim

    2013-01-01

    A custom designed markerless tracking system was demonstrated to be applicable for positron emission tomography (PET) brain imaging. Precise head motion registration is crucial for accurate motion correction (MC) in PET imaging. State-of-the-art tracking systems applied with PET brain imaging rely...... on markers attached to the patient's head. The marker attachment is the main weakness of these systems. A healthy volunteer participating in a cigarette smoking study to image dopamine release was scanned twice for 2 h with $^{11}{\\rm C}$-racolopride on the high resolution research tomograph (HRRT) PET...... in contrast recovery of small structures....

  15. Attenuation correction method for single photon emission CT

    Energy Technology Data Exchange (ETDEWEB)

    Morozumi, Tatsuru; Nakajima, Masato [Keio Univ., Yokohama (Japan). Faculty of Science and Technology; Ogawa, Koichi; Yuta, Shinichi

    1983-10-01

    A correction method (Modified Correction Matrix method) is proposed to implement iterative correction by exactly measuring attenuation constant distribution in a test body, calculating a correction factor for every picture element, then multiply the image by these factors. Computer simulation for the comparison of the results showed that the proposed method was specifically more effective to an application to the test body, in which the rate of attenuation constant change is large, than the conventional correction matrix method. Since the actual measurement data always contain quantum noise, the noise was taken into account in the simulation. However, the correction effect was large even under the noise. For verifying its clinical effectiveness, the experiment using an acrylic phantom was also carried out. As the result, the recovery of image quality in the parts with small attenuation constant was remarkable as compared with the conventional method.

  16. Quantifying motion for pancreatic radiotherapy margin calculation

    International Nuclear Information System (INIS)

    Whitfield, Gillian; Jain, Pooja; Green, Melanie; Watkins, Gillian; Henry, Ann; Stratford, Julie; Amer, Ali; Marchant, Thomas; Moore, Christopher; Price, Patricia

    2012-01-01

    Background and purpose: Pancreatic radiotherapy (RT) is limited by uncertain target motion. We quantified 3D patient/organ motion during pancreatic RT and calculated required treatment margins. Materials and methods: Cone-beam computed tomography (CBCT) and orthogonal fluoroscopy images were acquired post-RT delivery from 13 patients with locally advanced pancreatic cancer. Bony setup errors were calculated from CBCT. Inter- and intra-fraction fiducial (clip/seed/stent) motion was determined from CBCT projections and orthogonal fluoroscopy. Results: Using an off-line CBCT correction protocol, systematic (random) setup errors were 2.4 (3.2), 2.0 (1.7) and 3.2 (3.6) mm laterally (left–right), vertically (anterior–posterior) and longitudinally (cranio-caudal), respectively. Fiducial motion varied substantially. Random inter-fractional changes in mean fiducial position were 2.0, 1.6 and 2.6 mm; 95% of intra-fractional peak-to-peak fiducial motion was up to 6.7, 10.1 and 20.6 mm, respectively. Calculated clinical to planning target volume (CTV–PTV) margins were 1.4 cm laterally, 1.4 cm vertically and 3.0 cm longitudinally for 3D conformal RT, reduced to 0.9, 1.0 and 1.8 cm, respectively, if using 4D planning and online setup correction. Conclusions: Commonly used CTV–PTV margins may inadequately account for target motion during pancreatic RT. Our results indicate better immobilisation, individualised allowance for respiratory motion, online setup error correction and 4D planning would improve targeting.

  17. Iteration of ultrasound aberration correction methods

    Science.gov (United States)

    Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond

    2004-05-01

    Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.

  18. A method to correct coordinate distortion in EBSD maps

    International Nuclear Information System (INIS)

    Zhang, Y.B.; Elbrønd, A.; Lin, F.X.

    2014-01-01

    Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct different local distortions in the electron backscatter diffraction maps. - Highlights: • A new method is suggested to correct nonlinear spatial distortion in EBSD maps. • The method corrects EBSD maps more precisely than presently available methods. • Errors less than 1–2 pixels are typically obtained. • Direct quantitative analysis of dynamic data are available after this correction

  19. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series.

    Science.gov (United States)

    Patel, Ameera X; Kundu, Prantik; Rubinov, Mikail; Jones, P Simon; Vértes, Petra E; Ersche, Karen D; Suckling, John; Bullmore, Edward T

    2014-07-15

    The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N=22) and a new dataset on adults with stimulant drug dependence (N=40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www

  20. Measured attenuation correction methods

    International Nuclear Information System (INIS)

    Ostertag, H.; Kuebler, W.K.; Doll, J.; Lorenz, W.J.

    1989-01-01

    Accurate attenuation correction is a prerequisite for the determination of exact local radioactivity concentrations in positron emission tomography. Attenuation correction factors range from 4-5 in brain studies to 50-100 in whole body measurements. This report gives an overview of the different methods of determining the attenuation correction factors by transmission measurements using an external positron emitting source. The long-lived generator nuclide 68 Ge/ 68 Ga is commonly used for this purpose. The additional patient dose from the transmission source is usually a small fraction of the dose due to the subsequent emission measurement. Ring-shaped transmission sources as well as rotating point or line sources are employed in modern positron tomographs. By masking a rotating line or point source, random and scattered events in the transmission scans can be effectively suppressed. The problems of measured attenuation correction are discussed: Transmission/emission mismatch, random and scattered event contamination, counting statistics, transmission/emission scatter compensation, transmission scan after administration of activity to the patient. By using a double masking technique simultaneous emission and transmission scans become feasible. (orig.)

  1. A Method for Mechanism Analysis of Frog Swimming Based on Motion Observation Experiments

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-05-01

    Full Text Available For understanding the mechanism of frog swimming under water and designing a frog-inspired swimming robot, kinematics of the frog body and trajectories of joints should be obtained. In this paper, an aquatic frog, Xenopus laevis, was chosen for analysis of swimming motions which were recorded by a high speed camera, and kinematic data were processed in a swimming data extraction platform. According to the shape features of the frog, we propose a method that the frog eyes are set as the natural data extraction markers for body motion, and kinematic data of joint trajectories are calculated by the contour points on the limbs. For the data processing, a pinhole camera model was built to transform the pixel coordinate system to world coordinate system, and the errors caused by the water refraction were analyzed and corrected. Finally, from the developed data extraction platform, the kinematic data for the analysis of swimming mechanism and design of frog-inspired robot were obtained.

  2. Mixed-Precision Spectral Deferred Correction: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Grout, Ray W. S.

    2015-09-02

    Convergence of spectral deferred correction (SDC), where low-order time integration methods are used to construct higher-order methods through iterative refinement, can be accelerated in terms of computational effort by using mixed-precision methods. Using ideas from multi-level SDC (in turn based on FAS multigrid ideas), some of the SDC correction sweeps can use function values computed in reduced precision without adversely impacting the accuracy of the final solution. This is particularly beneficial for the performance of combustion solvers such as S3D [6] which require double precision accuracy but are performance limited by the cost of data motion.

  3. Motion compensated cine CMR of the fetal heart using radial undersampling and compressed sensing

    OpenAIRE

    Roy, Christopher W.; Seed, Mike; Kingdom, John C.; Macgowan, Christopher K.

    2017-01-01

    Background To develop and evaluate a reconstruction framework for high resolution time-resolved CMR of the fetal heart in the presence of motion. Methods Data were acquired using a golden angle radial trajectory in seven fetal subjects and reconstructed as real-time images to detect fetal movement. Data acquired during through-plane motion were discarded whereas in-plane motion was corrected. A fetal cardiac gating signal was extracted to sort the corrected data by cardiac phase, allowing rec...

  4. Estimation of organ motion for gated PET imaging in small animal using artificial tumor

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Keun; Yu, Jung Woo; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    The image quality is lowered by reducing of contrast and signal due to breathing and heart motion when acquire Positron Emission Tomography (PET) image of small animal tumor. Therefore motion correction is required for betterment of quantitative estimation of tumor. The gated PET using external monitoring device is commonly used for motion correction. But that method has limitation by reason of detection from the outside. Therefore, we had devised the in-vivo motion assessment. In-vivo motion has been demonstrated in lung, liver and abdomen region of rats by coated molecular sieve. In PET image analysis, count and SNR were drawn in the target region. The motion compensation PET image for optimal gate number was confirmed by FWHM. Artificial motion evaluation of tumor using molecular sieve suggests possibility of motion correction modeling without external monitoring devices because it estimates real internal motion of lung, liver, and abdomen. The purpose of this study was to assess the optimal gates number for each region and to improve quantitative estimation of tumor

  5. Impact of CT attenuation correction method on quantitative respiratory-correlated (4D) PET/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nyflot, Matthew J., E-mail: nyflot@uw.edu [Department of Radiation Oncology, University of Washington, Seattle, Washington 98195-6043 (United States); Lee, Tzu-Cheng [Department of Bioengineering, University of Washington, Seattle, Washington 98195-6043 (United States); Alessio, Adam M.; Kinahan, Paul E. [Department of Radiology, University of Washington, Seattle, Washington 98195-6043 (United States); Wollenweber, Scott D.; Stearns, Charles W. [GE Healthcare, Waukesha, Wisconsin 53188 (United States); Bowen, Stephen R. [Department of Radiation Oncology, University of Washington, Seattle, Washington 98195-6043 and Department of Radiology, University of Washington, Seattle, Washington 98195-6043 (United States)

    2015-01-15

    Purpose: Respiratory-correlated positron emission tomography (PET/CT) 4D PET/CT is used to mitigate errors from respiratory motion; however, the optimal CT attenuation correction (CTAC) method for 4D PET/CT is unknown. The authors performed a phantom study to evaluate the quantitative performance of CTAC methods for 4D PET/CT in the ground truth setting. Methods: A programmable respiratory motion phantom with a custom movable insert designed to emulate a lung lesion and lung tissue was used for this study. The insert was driven by one of five waveforms: two sinusoidal waveforms or three patient-specific respiratory waveforms. 3DPET and 4DPET images of the phantom under motion were acquired and reconstructed with six CTAC methods: helical breath-hold (3DHEL), helical free-breathing (3DMOT), 4D phase-averaged (4DAVG), 4D maximum intensity projection (4DMIP), 4D phase-matched (4DMATCH), and 4D end-exhale (4DEXH) CTAC. Recovery of SUV{sub max}, SUV{sub mean}, SUV{sub peak}, and segmented tumor volume was evaluated as RC{sub max}, RC{sub mean}, RC{sub peak}, and RC{sub vol}, representing percent difference relative to the static ground truth case. Paired Wilcoxon tests and Kruskal–Wallis ANOVA were used to test for significant differences. Results: For 4DPET imaging, the maximum intensity projection CTAC produced significantly more accurate recovery coefficients than all other CTAC methods (p < 0.0001 over all metrics). Over all motion waveforms, ratios of 4DMIP CTAC recovery were 0.2 ± 5.4, −1.8 ± 6.5, −3.2 ± 5.0, and 3.0 ± 5.9 for RC{sub max}, RC{sub peak}, RC{sub mean}, and RC{sub vol}. In comparison, recovery coefficients for phase-matched CTAC were −8.4 ± 5.3, −10.5 ± 6.2, −7.6 ± 5.0, and −13.0 ± 7.7 for RC{sub max}, RC{sub peak}, RC{sub mean}, and RC{sub vol}. When testing differences between phases over all CTAC methods and waveforms, end-exhale phases were significantly more accurate (p = 0.005). However, these differences were driven by

  6. A motion correction algorithm for an image realignment programme useful for sequential radionuclide renography

    International Nuclear Information System (INIS)

    De Agostini, A.; Moretti, R.; Belletti, S.; Maira, G.; Magri, G.C.; Bestagno, M.

    1992-01-01

    The correction of organ movements in sequential radionuclide renography was done using an iterative algorithm that, by means of a set of rectangular regions of interest (ROIs), did not require any anatomical marker or manual elaboration of frames. The realignment programme here proposed is quite independent of the spatial and temporal distribution of activity and analyses the rotational movement in a simplified but reliable way. The position of the object inside a frame is evaluated by choosing the best ROI in a set of ROIs shifted 1 pixel around the central one. Statistical tests have to be fulfilled by the algorithm in order to activate the realignment procedure. Validation of the algorithm was done for different acquisition set-ups and organ movements. Results, summarized in Table 1, show that in about 90% of the stimulated experiments the algorithm is able to correct the movements of the object with a maximum error less of equal to 1 pixel limit. The usefulness of the realignment programme was demonstrated with sequential radionuclide renography as a typical clinical application. The algorithm-corrected curves of a 1-year-old patient were completely different from those obtained without a motion correction procedure. The algorithm may be applicable also to other types of scintigraphic examinations, besides functional imaging in which the realignment of frames of the dynamic sequence was an intrinsic demand. (orig.)

  7. Non-linear methods for the quantification of cyclic motion

    OpenAIRE

    Quintana Duque, Juan Carlos

    2016-01-01

    Traditional methods of human motion analysis assume that fluctuations in cycles (e.g. gait motion) and repetitions (e.g. tennis shots) arise solely from noise. However, the fluctuations may have enough information to describe the properties of motion. Recently, the fluctuations in motion have been analysed based on the concepts of variability and stability, but they are not used uniformly. On the one hand, these concepts are often mixed in the existing literature, while on the other hand, the...

  8. Non-iterative relative bias correction for 3D reconstruction of in utero fetal brain MR imaging.

    Science.gov (United States)

    Kim, Kio; Habas, Piotr; Rajagopalan, Vidya; Scott, Julia; Corbett-Detig, James; Rousseau, Francois; Glenn, Orit; Barkovich, James; Studholme, Colin

    2010-01-01

    The slice intersection motion correction (SIMC) method is a powerful tool to compensate for motion that occurs during in utero acquisition of the multislice magnetic resonance (MR) images of the human fetal brain. The SIMC method makes use of the slice intersection intensity profiles of orthogonally planned slice pairs to simultaneously correct for the relative motion occurring between all the acquired slices. This approach is based on the assumption that the bias field is consistent between slices. However, for some clinical studies where there is a strong bias field combined with significant fetal motion relative to the coils, this assumption is broken and the resulting motion estimate and the reconstruction to a 3D volume can both contain errors. In this work, we propose a method to correct for the relative differences in bias field between all slice pairs. For this, we define the energy function as the mean square difference of the intersection profiles, that is then minimized with respect to the bias field parameters of the slices. A non iterative method which considers the relative bias between each slice simultaneously is used to efficiently remove inconsistencies. The method, when tested on synthetic simulations and actual clinical imaging studies where bias was an issue, brought a significant improvement to the final reconstructed image.

  9. 2001 Bhuj, India, earthquake engineering seismoscope recordings and Eastern North America ground-motion attenuation relations

    Science.gov (United States)

    Cramer, C.H.; Kumar, A.

    2003-01-01

    Engineering seismoscope data collected at distances less than 300 km for the M 7.7 Bhuj, India, mainshock are compatible with ground-motion attenuation in eastern North America (ENA). The mainshock ground-motion data have been corrected to a common geological site condition using the factors of Joyner and Boore (2000) and a classification scheme of Quaternary or Tertiary sediments or rock. We then compare these data to ENA ground-motion attenuation relations. Despite uncertainties in recording method, geological site corrections, common tectonic setting, and the amount of regional seismic attenuation, the corrected Bhuj dataset agrees with the collective predictions by ENA ground-motion attenuation relations within a factor of 2. This level of agreement is within the dataset uncertainties and the normal variance for recorded earthquake ground motions.

  10. Development of motion image prediction method using principal component analysis

    International Nuclear Information System (INIS)

    Chhatkuli, Ritu Bhusal; Demachi, Kazuyuki; Kawai, Masaki; Sakakibara, Hiroshi; Kamiaka, Kazuma

    2012-01-01

    Respiratory motion can induce the limit in the accuracy of area irradiated during lung cancer radiation therapy. Many methods have been introduced to minimize the impact of healthy tissue irradiation due to the lung tumor motion. The purpose of this research is to develop an algorithm for the improvement of image guided radiation therapy by the prediction of motion images. We predict the motion images by using principal component analysis (PCA) and multi-channel singular spectral analysis (MSSA) method. The images/movies were successfully predicted and verified using the developed algorithm. With the proposed prediction method it is possible to forecast the tumor images over the next breathing period. The implementation of this method in real time is believed to be significant for higher level of tumor tracking including the detection of sudden abdominal changes during radiation therapy. (author)

  11. New decoding methods of interleaved burst error-correcting codes

    Science.gov (United States)

    Nakano, Y.; Kasahara, M.; Namekawa, T.

    1983-04-01

    A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.

  12. The effects of breathing motion on DCE-MRI images: Phantom studies simulating respiratory motion to compare CAIPARINHA-VIBE, radial VIBE, and conventional VIBE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Kyung; Seo, Nieun; Kim, Bohyun; Huh, Jimi; Kim, Jeong Kon; Lee, Seung Soo; KIm, Kyung Won [Dept. of Radiology, and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, In Seong [Siemens Healthcare Korea, Seoul (Korea, Republic of); Nickel, Dominik [MR Application Predevelopment, Siemens Healthcare, Erlangen (Germany)

    2017-04-15

    To compare the breathing effects on dynamic contrast-enhanced (DCE)-MRI between controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), radial VIBE with k-space-weighted image contrast view-sharing (radial-VIBE), and conventional VIBE (c-VIBE) sequences using a dedicated phantom experiment. We developed a moving platform to simulate breathing motion. We conducted dynamic scanning on a 3T machine (MAGNETOM Skyra, Siemens Healthcare) using CAIPIRINHA-VIBE, radial-VIBE, and c-VIBE for six minutes per sequence. We acquired MRI images of the phantom in both static and moving modes, and we also obtained motion-corrected images for the motion mode. We compared the signal stability and signal-to-noise ratio (SNR) of each sequence according to motion state and used the coefficients of variation (CoV) to determine the degree of signal stability. With motion, CAIPIRINHA-VIBE showed the best image quality, and the motion correction aligned the images very well. The CoV (%) of CAIPIRINHA-VIBE in the moving mode (18.65) decreased significantly after the motion correction (2.56) (p < 0.001). In contrast, c-VIBE showed severe breathing motion artifacts that did not improve after motion correction. For radial-VIBE, the position of the phantom in the images did not change during motion, but streak artifacts significantly degraded image quality, also after motion correction. In addition, SNR increased in both CAIPIRINHA-VIBE (from 3.37 to 9.41, p < 0.001) and radial-VIBE (from 4.3 to 4.96, p < 0.001) after motion correction. CAIPIRINHA-VIBE performed best for free-breathing DCE-MRI after motion correction, with excellent image quality.

  13. Biological inspiration used for robots motion synthesis.

    Science.gov (United States)

    Zielińska, Teresa

    2009-01-01

    This work presents a biologically inspired method of gait generation. Bipedal gait pattern (for hip and knee joints) was taken into account giving the reference trajectories in a learning task. The four coupled oscillators were taught to generate the outputs similar to those in a human gait. After applying the correction functions the obtained generation method was validated using ZMP criterion. The formula suitable for real-time motion generation taking into account the positioning errors was also formulated. The small real robot prototype was tested to be able walk successfully following the elaborated motion pattern.

  14. A method to correct coordinate distortion in EBSD maps

    DEFF Research Database (Denmark)

    Zhang, Yubin; Elbrønd, Andreas Benjamin; Lin, Fengxiang

    2014-01-01

    Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after...... the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct...

  15. Image-based motion compensation for high-resolution extremities cone-beam CT

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  16. Local defect correction for boundary integral equation methods

    NARCIS (Netherlands)

    Kakuba, G.; Anthonissen, M.J.H.

    2014-01-01

    The aim in this paper is to develop a new local defect correction approach to gridding for problems with localised regions of high activity in the boundary element method. The technique of local defect correction has been studied for other methods as finite difference methods and finite volume

  17. Evaluation of prospective motion correction of high-resolution 3D-T2-FLAIR acquisitions in epilepsy patients.

    Science.gov (United States)

    Vos, Sjoerd B; Micallef, Caroline; Barkhof, Frederik; Hill, Andrea; Winston, Gavin P; Ourselin, Sebastien; Duncan, John S

    2018-03-02

    T2-FLAIR is the single most sensitive MRI contrast to detect lesions underlying focal epilepsies but 3D sequences used to obtain isotropic high-resolution images are susceptible to motion artefacts. Prospective motion correction (PMC) - demonstrated to improve 3D-T1 image quality in a pediatric population - was applied to high-resolution 3D-T2-FLAIR scans in adult epilepsy patients to evaluate its clinical benefit. Coronal 3D-T2-FLAIR scans were acquired with a 1mm isotropic resolution on a 3T MRI scanner. Two expert neuroradiologists reviewed 40 scans without PMC and 40 with navigator-based PMC. Visual assessment addressed six criteria of image quality (resolution, SNR, WM-GM contrast, intensity homogeneity, lesion conspicuity, diagnostic confidence) on a seven-point Likert scale (from non-diagnostic to outstanding). SNR was also objectively quantified within the white matter. PMC scans had near-identical scores on the criteria of image quality to non-PMC scans, with the notable exception that intensity homogeneity was generally worse. Using PMC, the percentage of scans with bad image quality was substantially lower than without PMC (3.25% vs. 12.5%) on the other five criteria. Quantitative SNR estimates revealed that PMC and non-PMC had no significant difference in SNR (P=0.07). Application of prospective motion correction to 3D-T2-FLAIR sequences decreased the percentage of low-quality scans, reducing the number of scans that need to be repeated to obtain clinically useful data. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  18. Corrections in clinical Magnetic Resonance Spectroscopy and SPECT

    DEFF Research Database (Denmark)

    de Nijs, Robin

    infants. In Iodine-123 SPECT the problem of downscatter was addressed. This thesis is based on two papers. Paper I deals with the problem of motion in Single Voxel Spectroscopy. Two novel methods for the identification of outliers in the set of repeated measurements were implemented and compared...... a detrimental effect of the extra-uterine environment on brain development. Paper II describes a method to correct for downscatter in low count Iodine-123 SPECT with a broad energy window above the normal imaging window. Both spatial dependency and weight factors were measured. As expected, the implicitly...... be performed by the subtraction of an energy window, a method was developed to perform scatter and downscatter correction simultaneously. A phantom study has been performed, where the in paper II described downscatter correction was extended with scatter correction. This new combined correction was compared...

  19. Method through motion:structuring theory and practice for motion graphics in spatial contexts

    OpenAIRE

    Steijn, Arthur

    2016-01-01

    Contemporary scenography often consists of video-projected motion graphics. The field is lacking in academic methods and rigour: descriptions and models relevant for the creation as well as in the analysis of existing works. In order to understand the phenomenon of motion graphics in a scenographic context, I have been conducting a practice-led research project. Central to the project is construction of a design model describing sets of procedures, concepts and terminology relevant for design...

  20. Hybrid ECG-gated versus non-gated 512-slice CT angiography of the aorta and coronary artery: image quality and effect of a motion correction algorithm.

    Science.gov (United States)

    Lee, Ji Won; Kim, Chang Won; Lee, Geewon; Lee, Han Cheol; Kim, Sang-Pil; Choi, Bum Sung; Jeong, Yeon Joo

    2018-02-01

    Background Using the hybrid electrocardiogram (ECG)-gated computed tomography (CT) technique, assessment of entire aorta, coronary arteries, and aortic valve can be possible using single-bolus contrast administration within a single acquisition. Purpose To compare the image quality of hybrid ECG-gated and non-gated CT angiography of the aorta and evaluate the effect of a motion correction algorithm (MCA) on coronary artery image quality in a hybrid ECG-gated aorta CT group. Material and Methods In total, 104 patients (76 men; mean age = 65.8 years) prospectively randomized into two groups (Group 1 = hybrid ECG-gated CT; Group 2 = non-gated CT) underwent wide-detector array aorta CT. Image quality, assessed using a four-point scale, was compared between the groups. Coronary artery image quality was compared between the conventional reconstruction and motion correction reconstruction subgroups in Group 1. Results Group 1 showed significant advantages over Group 2 in aortic wall, cardiac chamber, aortic valve, coronary ostia, and main coronary arteries image quality (all P ECG-gated CT significantly improved the heart and aortic wall image quality and the MCA can further improve the image quality and interpretability of coronary arteries.

  1. Development of rapid methods for relaxation time mapping and motion estimation using magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gilani, Syed Irtiza Ali

    2008-09-15

    correlation matrix is employed. This method is beneficial because it offers sub-pixel displacement estimation without interpolation, increased robustness to noise and limited computational complexity. Owing to all these advantages, the proposed technique is very suitable for the real-time implementation to solve the motion correction problem. (orig.)

  2. Development of rapid methods for relaxation time mapping and motion estimation using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gilani, Syed Irtiza Ali

    2008-09-01

    correlation matrix is employed. This method is beneficial because it offers sub-pixel displacement estimation without interpolation, increased robustness to noise and limited computational complexity. Owing to all these advantages, the proposed technique is very suitable for the real-time implementation to solve the motion correction problem. (orig.)

  3. Designing a compact MRI motion phantom

    Directory of Open Access Journals (Sweden)

    Schmiedel Max

    2016-09-01

    Full Text Available Even today, dealing with motion artifacts in magnetic resonance imaging (MRI is a challenging task. Image corruption due to spontaneous body motion complicates diagnosis. In this work, an MRI phantom for rigid motion is presented. It is used to generate motion-corrupted data, which can serve for evaluation of blind motion compensation algorithms. In contrast to commercially available MRI motion phantoms, the presented setup works on small animal MRI systems. Furthermore, retrospective gating is performed on the data, which can be used as a reference for novel motion compensation approaches. The motion of the signal source can be reconstructed using motor trigger signals and be utilized as the ground truth for motion estimation. The proposed setup results in motion corrected images. Moreover, the importance of preprocessing the MRI raw data, e.g. phase-drift correction, is demonstrated. The gained knowledge can be used to design an MRI phantom for elastic motion.

  4. A spectrum correction method for fuel assembly rehomogenization

    International Nuclear Information System (INIS)

    Lee, Kyung Taek; Cho, Nam Zin

    2004-01-01

    To overcome the limitation of existing homogenization methods based on the single assembly calculation with zero current boundary condition, we propose a new rehomogenization method, named spectrum correction method (SCM), consisting of the multigroup energy spectrum approximation by spectrum correction and the condensed two-group heterogeneous single assembly calculations with non-zero current boundary condition. In SCM, the spectrum shifting phenomena caused by current across assembly interfaces are considered by the spectrum correction at group condensation stage at first. Then, heterogeneous single assembly calculations with two-group cross sections condensed by using corrected multigroup energy spectrum are performed to obtain rehomogenized nodal diffusion parameters, i.e., assembly-wise homogenized cross sections and discontinuity factors. To evaluate the performance of SCM, it was applied to the analytic function expansion nodal (AFEN) method and several test problems were solved. The results show that SCM can reduce the errors significantly both in multiplication factors and assembly averaged power distributions

  5. Study on State Transition Method Applied to Motion Planning for a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Xuyang Wang

    2008-11-01

    Full Text Available This paper presents an approach of motion planning for a humanoid robot using a state transition method. In this method, motion planning is simplified by introducing a state-space to describe the whole motion series. And each state in the state-space corresponds to a contact state specified during the motion. The continuous motion is represented by a sequence of discrete states. The concept of the transition between two neighboring states, that is the state transition, can be realized by using some traditional path planning methods. Considering the dynamical stability of the robot, a state transition method based on search strategy is proposed. Different sets of trajectories are generated by using a variable 5th-order polynomial interpolation method. After quantifying the stabilities of these trajectories, the trajectories with the largest stability margin are selected as the final state transition trajectories. Rising motion process is exemplified to validate the method and the simulation results show the proposed method to be feasible and effective.

  6. A hybrid numerical method for orbit correction

    International Nuclear Information System (INIS)

    White, G.; Himel, T.; Shoaee, H.

    1997-09-01

    The authors describe a simple hybrid numerical method for beam orbit correction in particle accelerators. The method overcomes both degeneracy in the linear system being solved and respects boundaries on the solution. It uses the Singular Value Decomposition (SVD) to find and remove the null-space in the system, followed by a bounded Linear Least Squares analysis of the remaining recast problem. It was developed for correcting orbit and dispersion in the B-factory rings

  7. Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images.

    Science.gov (United States)

    Serag, Ahmed; Macnaught, Gillian; Denison, Fiona C; Reynolds, Rebecca M; Semple, Scott I; Boardman, James P

    2017-01-01

    Fetal brain magnetic resonance imaging (MRI) is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal motion. First, the Histogram of Oriented Gradients (HOG) feature descriptor is extended from 2D to 3D images. Then, a sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain, and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy, we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We carried out comparisons against template matching and random forest based regression methods and the proposed method showed superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain development.

  8. Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Ahmed Serag

    2017-01-01

    Full Text Available Fetal brain magnetic resonance imaging (MRI is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal motion. First, the Histogram of Oriented Gradients (HOG feature descriptor is extended from 2D to 3D images. Then, a sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain, and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy, we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We carried out comparisons against template matching and random forest based regression methods and the proposed method showed superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain development.

  9. A new robotic needle insertion method to minimise attendant prostate motion

    International Nuclear Information System (INIS)

    Lagerburg, Vera; Moerland, Marinus A.; Vulpen, Marco van; Lagendijk, Jan J.W.

    2006-01-01

    Background and purpose: The purpose of this study is to investigate the efficacy of a new needle insertion method (tapping instead of pushing) in reducing attendant tissue motion. This can be useful in applications where tissue motion due to needle insertion is problematic such as e.g. MRI-guided prostate brachytherapy and breast biopsies. In this study we will focus on prostate motion due to needle insertion. Material and methods: Prostate motion due to needle insertion was measured in 30 patients, who were transperineally implanted with fiducial gold markers for position verification in prostate intensity modulated radiotherapy. In total 32 needles were manually pushed into the prostate and 29 were tapped with a prototype robotic system. The prostate motion in the cranio-caudal direction was measured on the video record of the ultrasound images. Differences in prostate motion between the two needle insertion methods were analysed making use of SPSS. Results: The mean prostate motion was 5.6 mm (range 0.3-21.6) when the needle was pushed and 0.9 mm (range 0-2.0) when the needle was tapped into the prostate (p < 0.001). Conclusion: Prostate motion was significantly less when the needle was tapped into the prostate compared to when the needle was pushed. This result is important for the development of a tapping, MRI-guided, prostate implant robotic system

  10. Integrated fMRI Preprocessing Framework Using Extended Kalman Filter for Estimation of Slice-Wise Motion

    OpenAIRE

    Basile Pinsard; Basile Pinsard; Basile Pinsard; Arnaud Boutin; Arnaud Boutin; Julien Doyon; Julien Doyon; Habib Benali; Habib Benali; Habib Benali

    2018-01-01

    Functional MRI acquisition is sensitive to subjects' motion that cannot be fully constrained. Therefore, signal corrections have to be applied a posteriori in order to mitigate the complex interactions between changing tissue localization and magnetic fields, gradients and readouts. To circumvent current preprocessing strategies limitations, we developed an integrated method that correct motion and spatial low-frequency intensity fluctuations at the level of each slice in order to better fit ...

  11. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    International Nuclear Information System (INIS)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom

    2015-01-01

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  12. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr [Department of Electrical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-05-15

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  13. State Generation Method for Humanoid Motion Planning Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xuyang Wang

    2012-05-01

    Full Text Available A new approach to generate the original motion data for humanoid motion planning is presented in this paper. And a state generator is developed based on the genetic algorithm, which enables users to generate various motion states without using any reference motion data. By specifying various types of constraints such as configuration constraints and contact constraints, the state generator can generate stable states that satisfy the constraint conditions for humanoid robots. To deal with the multiple constraints and inverse kinematics, the state generation is finally simplified as a problem of optimizing and searching. In our method, we introduce a convenient mathematic representation for the constraints involved in the state generator, and solve the optimization problem with the genetic algorithm to acquire a desired state. To demonstrate the effectiveness and advantage of the method, a number of motion states are generated according to the requirements of the motion.

  14. State Generation Method for Humanoid Motion Planning Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xuyang Wang

    2008-11-01

    Full Text Available A new approach to generate the original motion data for humanoid motion planning is presented in this paper. And a state generator is developed based on the genetic algorithm, which enables users to generate various motion states without using any reference motion data. By specifying various types of constraints such as configuration constraints and contact constraints, the state generator can generate stable states that satisfy the constraint conditions for humanoid robots.To deal with the multiple constraints and inverse kinematics, the state generation is finally simplified as a problem of optimizing and searching. In our method, we introduce a convenient mathematic representation for the constraints involved in the state generator, and solve the optimization problem with the genetic algorithm to acquire a desired state. To demonstrate the effectiveness and advantage of the method, a number of motion states are generated according to the requirements of the motion.

  15. Fourth-order constants of motion for time independent classical and quantum systems in three dimensions

    International Nuclear Information System (INIS)

    Chand, F.

    2010-01-01

    Exact fourth-order constants of motion are investigated for three-dimensional classical and quantum Hamiltonian systems. The rationalization method is utilized to obtain constants of motion for classical systems. Constants of motion for quantum systems are obtained by adding quantum correction terms, computed using Moyal's bracket, to the corresponding classical counterparts. (author)

  16. Adaptive identification of vessel's added moments of inertia with program motion

    Science.gov (United States)

    Alyshev, A. S.; Melnikov, V. G.

    2018-05-01

    In this paper, we propose a new experimental method for determining the moments of inertia of the ship model. The paper gives a brief review of existing methods, a description of the proposed method and experimental stand, test procedures and calculation formulas and experimental results. The proposed method is based on the energy approach with special program motions. The ship model is fixed in a special rack consisting of a torsion element and a set of additional servo drives with flywheels (reactive wheels), which correct the motion. The servo drives with an adaptive controller provide the symmetry of the motion, which is necessary for the proposed identification procedure. The effectiveness of the proposed approach is confirmed by experimental results.

  17. Delayless acceleration measurement method for motion control applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaeliviita, S.; Ovaska, S.J. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics

    1997-12-31

    Delayless and accurate sensing of angular acceleration can improve the performance of motion control in motor drives. Acceleration control is, however, seldom implemented in practical drive systems due to prohibitively high costs or unsatisfactory results of most acceleration measurement methods. In this paper we propose an efficient and accurate acceleration measurement method based on direct differentiation of the corresponding velocity signal. Polynomial predictive filtering is used to smooth the resulting noisy signal without delay. This type of prediction is justified by noticing that a low-degree polynomial can usually be fitted into the primary acceleration curve. No additional hardware is required to implement the procedure if the velocity signal is already available. The performance of the acceleration measurement method is evaluated by applying it to a demanding motion control application. (orig.) 12 refs.

  18. Fully automated motion correction in first-pass myocardial perfusion MR image sequences.

    Science.gov (United States)

    Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2008-11-01

    This paper presents a novel method for registration of cardiac perfusion magnetic resonance imaging (MRI). The presented method is capable of automatically registering perfusion data, using independent component analysis (ICA) to extract physiologically relevant features together with their time-intensity behavior. A time-varying reference image mimicking intensity changes in the data of interest is computed based on the results of that ICA. This reference image is used in a two-pass registration framework. Qualitative and quantitative validation of the method is carried out using 46 clinical quality, short-axis, perfusion MR datasets comprising 100 images each. Despite varying image quality and motion patterns in the evaluation set, validation of the method showed a reduction of the average right ventricle (LV) motion from 1.26+/-0.87 to 0.64+/-0.46 pixels. Time-intensity curves are also improved after registration with an average error reduced from 2.65+/-7.89% to 0.87+/-3.88% between registered data and manual gold standard. Comparison of clinically relevant parameters computed using registered data and the manual gold standard show a good agreement. Additional tests with a simulated free-breathing protocol showed robustness against considerable deviations from a standard breathing protocol. We conclude that this fully automatic ICA-based method shows an accuracy, a robustness and a computation speed adequate for use in a clinical environment.

  19. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Chad R. R. N.; Kemp, Robert A. de, E-mail: RAdeKemp@ottawaheart.ca [Physics Department, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada and Cardiac Imaging, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7 (Canada); Klein, Ran [Department of Nuclear Medicine, Ottawa Hospital, Civic Campus, 1053 Carling Avenue, Ottawa, Ontario K1Y 4E9 (Canada); Beanlands, Rob S. [Cardiac Imaging, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7 (Canada)

    2016-04-15

    Purpose: Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET–CT misalignment. Methods: A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. Results: In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations

  20. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging

    International Nuclear Information System (INIS)

    Hunter, Chad R. R. N.; Kemp, Robert A. de; Klein, Ran; Beanlands, Rob S.

    2016-01-01

    Purpose: Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET–CT misalignment. Methods: A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. Results: In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations

  1. A vibration correction method for free-fall absolute gravimeters

    Science.gov (United States)

    Qian, J.; Wang, G.; Wu, K.; Wang, L. J.

    2018-02-01

    An accurate determination of gravitational acceleration, usually approximated as 9.8 m s-2, has been playing an important role in the areas of metrology, geophysics, and geodetics. Absolute gravimetry has been experiencing rapid developments in recent years. Most absolute gravimeters today employ a free-fall method to measure gravitational acceleration. Noise from ground vibration has become one of the most serious factors limiting measurement precision. Compared to vibration isolators, the vibration correction method is a simple and feasible way to reduce the influence of ground vibrations. A modified vibration correction method is proposed and demonstrated. A two-dimensional golden section search algorithm is used to search for the best parameters of the hypothetical transfer function. Experiments using a T-1 absolute gravimeter are performed. It is verified that for an identical group of drop data, the modified method proposed in this paper can achieve better correction effects with much less computation than previous methods. Compared to vibration isolators, the correction method applies to more hostile environments and even dynamic platforms, and is expected to be used in a wider range of applications.

  2. Method for Measurement of Multi-Degrees-of-Freedom Motion Parameters Based on Polydimethylsiloxane Cross-Coupling Diffraction Gratings

    Science.gov (United States)

    Duan, Junping; Zhu, Qiang; Qian, Kun; Guo, Hao; Zhang, Binzhen

    2017-08-01

    This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 μm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.

  3. Distortion Correction in Fetal EPI Using Non-Rigid Registration With a Laplacian Constraint.

    Science.gov (United States)

    Kuklisova-Murgasova, Maria; Lockwood Estrin, Georgia; Nunes, Rita G; Malik, Shaihan J; Rutherford, Mary A; Rueckert, Daniel; Hajnal, Joseph V

    2018-01-01

    Geometric distortion induced by the main B0 field disrupts the consistency of fetal echo planar imaging (EPI) data, on which diffusion and functional magnetic resonance imaging is based. In this paper, we present a novel data-driven method for simultaneous motion and distortion correction of fetal EPI. A motion-corrected and reconstructed T2 weighted single shot fast spin echo (ssFSE) volume is used as a model of undistorted fetal brain anatomy. Our algorithm interleaves two registration steps: estimation of fetal motion parameters by aligning EPI slices to the model; and deformable registration of EPI slices to slices simulated from the undistorted model to estimate the distortion field. The deformable registration is regularized by a physically inspired Laplacian constraint, to model distortion induced by a source-free background B0 field. Our experiments show that distortion correction significantly improves consistency of reconstructed EPI volumes with ssFSE volumes. In addition, the estimated distortion fields are consistent with fields calculated from acquired field maps, and the Laplacian constraint is essential for estimation of plausible distortion fields. The EPI volumes reconstructed from different scans of the same subject were more consistent when the proposed method was used in comparison with EPI volumes reconstructed from data distortion corrected using a separately acquired B0 field map.

  4. New method for imaging epicardial motion with scattered radiation

    International Nuclear Information System (INIS)

    Tilley, D.G.

    1976-01-01

    A new method for monitoring cardiac motion is described which employs the secondary radiation emerging from the thorax during fluoroscopic x-ray examination of the heart. The motion of selected points on the heart's epicardial surface can be investigated by detecting the intensity variations of radiation scattered in the local vicinity of the heart-lung border. Also discussed are the radiation detectors and signal processing electronics used to produce a voltage analog depicting the periodic displacements of the heart surface. Digital data processing methods are described which are used to accomplish a transformation from a time scale for representing surface motion, to a frequency scale that is better suited for the quantitative analysis of the heart's myocardial dynamics. The dynamic radiographic technique is compared to other methods such as electrocardiography, phonocardiography, radarkymography, and echocardiography; which are also used to sense the dynamic state of the heart. A three-dimensional Monte Carlo computer code is used to investigate the transport of x-radiation in the canine thorax. The Monte Carlo computer studies are used to explore the capabilities and limitations of the dynamic radiograph as it is used to sense motions of the canine heart. Animal studies were conducted with the dynamic radiograph to determine the reproducibility of the examination procedure. Canine case studies are reported showing the effects of increased myocardial contractility resulting from intervention with these inotropic agents

  5. Metric-based method of software requirements correctness improvement

    Directory of Open Access Journals (Sweden)

    Yaremchuk Svitlana

    2017-01-01

    Full Text Available The work highlights the most important principles of software reliability management (SRM. The SRM concept construes a basis for developing a method of requirements correctness improvement. The method assumes that complicated requirements contain more actual and potential design faults/defects. The method applies a newer metric to evaluate the requirements complexity and double sorting technique evaluating the priority and complexity of a particular requirement. The method enables to improve requirements correctness due to identification of a higher number of defects with restricted resources. Practical application of the proposed method in the course of demands review assured a sensible technical and economic effect.

  6. Automated general temperature correction method for dielectric soil moisture sensors

    Science.gov (United States)

    Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao

    2017-08-01

    An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a

  7. An algorithm developed in Matlab for the automatic selection of cut-off frequencies, in the correction of strong motion data

    Science.gov (United States)

    Sakkas, Georgios; Sakellariou, Nikolaos

    2018-05-01

    Strong motion recordings are the key in many earthquake engineering applications and are also fundamental for seismic design. The present study focuses on the automated correction of accelerograms, analog and digital. The main feature of the proposed algorithm is the automatic selection for the cut-off frequencies based on a minimum spectral value in a predefined frequency bandwidth, instead of the typical signal-to-noise approach. The algorithm follows the basic steps of the correction procedure (instrument correction, baseline correction and appropriate filtering). Besides the corrected time histories, Peak Ground Acceleration, Peak Ground Velocity, Peak Ground Displacement values and the corrected Fourier Spectra are also calculated as well as the response spectra. The algorithm is written in Matlab environment, is fast enough and can be used for batch processing or in real-time applications. In addition, the possibility to also perform a signal-to-noise ratio is added as well as to perform causal or acausal filtering. The algorithm has been tested in six significant earthquakes (Kozani-Grevena 1995, Aigio 1995, Athens 1999, Lefkada 2003 and Kefalonia 2014) of the Greek territory with analog and digital accelerograms.

  8. A method of meta-mechanism combination and replacement based on motion study

    Directory of Open Access Journals (Sweden)

    Yadong Fang

    2015-01-01

    Full Text Available Lacking the effective methods to reduce labor and cost, many small- and medium-sized assembly companies are facing with the problem of high cost for a long time. In order to reduce costs of manual operations, the method of meta-mechanism combination and replacement is studied. In this paper, we mainly discuss assembling motion analysis, workpieces position information acquisition, motion library construction, assembling motion analysis by Maynard’s operation sequence technique, meta-mechanism database establishment, and match of motion and mechanism. At the same time, the principle, process, and system realization framework of mechanism replacement are introduced. Lastly, problems for low-cost automation of the production line are basically resolved by operator motion analysis and meta-mechanism combination and match.

  9. Apparatus and method for motion tracking in brain imaging

    DEFF Research Database (Denmark)

    2013-01-01

    Disclosed is apparatus and method for motion tracking of a subject in medical brain imaging. The method comprises providing a light projector and a first camera; projecting a first pattern sequence (S1) onto a surface region of the subject with the light projector, wherein the subject is positioned......2,1) based on the detected first pattern sequence (S1'); projecting the second pattern sequence (S2) onto a surface region of the subject with the light projector; detecting the projected second pattern sequence (S2') with the first camera; and determining motion tracking parameters based...

  10. [Study on phase correction method of spatial heterodyne spectrometer].

    Science.gov (United States)

    Wang, Xin-Qiang; Ye, Song; Zhang, Li-Juan; Xiong, Wei

    2013-05-01

    Phase distortion exists in collected interferogram because of a variety of measure reasons when spatial heterodyne spectrometers are used in practice. So an improved phase correction method is presented. The phase curve of interferogram was obtained through Fourier inverse transform to extract single side transform spectrum, based on which, the phase distortions were attained by fitting phase slope, so were the phase correction functions, and the convolution was processed between transform spectrum and phase correction function to implement spectrum phase correction. The method was applied to phase correction of actually measured monochromatic spectrum and emulational water vapor spectrum. Experimental results show that the low-frequency false signals in monochromatic spectrum fringe would be eliminated effectively to increase the periodicity and the symmetry of interferogram, in addition when the continuous spectrum imposed phase error was corrected, the standard deviation between it and the original spectrum would be reduced form 0.47 to 0.20, and thus the accuracy of spectrum could be improved.

  11. An Automated Baseline Correction Method Based on Iterative Morphological Operations.

    Science.gov (United States)

    Chen, Yunliang; Dai, Liankui

    2018-05-01

    Raman spectra usually suffer from baseline drift caused by fluorescence or other reasons. Therefore, baseline correction is a necessary and crucial step that must be performed before subsequent processing and analysis of Raman spectra. An automated baseline correction method based on iterative morphological operations is proposed in this work. The method can adaptively determine the structuring element first and then gradually remove the spectral peaks during iteration to get an estimated baseline. Experiments on simulated data and real-world Raman data show that the proposed method is accurate, fast, and flexible for handling different kinds of baselines in various practical situations. The comparison of the proposed method with some state-of-the-art baseline correction methods demonstrates its advantages over the existing methods in terms of accuracy, adaptability, and flexibility. Although only Raman spectra are investigated in this paper, the proposed method is hopefully to be used for the baseline correction of other analytical instrumental signals, such as IR spectra and chromatograms.

  12. Method for decoupling error correction from privacy amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Hoi-Kwong [Department of Electrical and Computer Engineering and Department of Physics, University of Toronto, 10 King' s College Road, Toronto, Ontario, Canada, M5S 3G4 (Canada)

    2003-04-01

    In a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error-correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof.

  13. Method for decoupling error correction from privacy amplification

    International Nuclear Information System (INIS)

    Lo, Hoi-Kwong

    2003-01-01

    In a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error-correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof

  14. Simulating water hammer with corrective smoothed particle method

    NARCIS (Netherlands)

    Hou, Q.; Kruisbrink, A.C.H.; Tijsseling, A.S.; Keramat, A.

    2012-01-01

    The corrective smoothed particle method (CSPM) is used to simulate water hammer. The spatial derivatives in the water-hammer equations are approximated by a corrective kernel estimate. For the temporal derivatives, the Euler-forward time integration algorithm is employed. The CSPM results are in

  15. Autogenic feedback training experiment: A preventative method for space motion sickness

    Science.gov (United States)

    Cowings, Patricia S.

    1993-01-01

    Space motion sickness is a disorder which produces symptoms similar to those of motion sickness on Earth. This syndrome has affected approximately 50 percent of all astronauts and cosmonauts exposed to microgravity in space, but it differs from what is commonly known as motion sickness in a number of critical ways. There is currently no ground-based method for predicting susceptibility to motion sickness in space. Antimotion sickness drugs have had limited success in preventing or counteracting symptoms in space, and frequently caused debilitating side effects. The objectives were: (1) to evaluate the effectiveness of Autogenic-Feedback Training as a countermeasure for space motion sickness; (2) to compare physiological data and in-flight symptom reports to ground-based motion sickness data; and (3) to predict susceptibility to space motion sickness based on pre-flight data of each treatment group crew member.

  16. A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization

    Directory of Open Access Journals (Sweden)

    Hu Ke-bin

    2015-02-01

    Full Text Available Owing to the platform instability and precision limitations of motion sensors, motion errors negatively affect the quality of synthetic aperture radar (SAR images. The autofocus Back Projection (BP algorithm based on the optimization of image sharpness compensates for motion errors through phase error estimation. This method can attain relatively good performance, while assuming the same phase error for all pixels, i.e., it ignores the spatial variance of motion errors. To overcome this drawback, a high-precision motion error compensation method is presented in this study. In the proposed method, the Antenna Phase Centers (APC are estimated via optimization using the criterion of maximum image intensity. Then, the estimated APCs are applied for BP imaging. Because the APC estimation equals the range history estimation for each pixel, high-precision phase compensation for every pixel can be achieved. Point-target simulations and processing of experimental data validate the effectiveness of the proposed method.

  17. Dynamic Time Warping Distance Method for Similarity Test of Multipoint Ground Motion Field

    Directory of Open Access Journals (Sweden)

    Yingmin Li

    2010-01-01

    Full Text Available The reasonability of artificial multi-point ground motions and the identification of abnormal records in seismic array observations, are two important issues in application and analysis of multi-point ground motion fields. Based on the dynamic time warping (DTW distance method, this paper discusses the application of similarity measurement in the similarity analysis of simulated multi-point ground motions and the actual seismic array records. Analysis results show that the DTW distance method not only can quantitatively reflect the similarity of simulated ground motion field, but also offers advantages in clustering analysis and singularity recognition of actual multi-point ground motion field.

  18. Non-uniformity Correction of Infrared Images by Midway Equalization

    Directory of Open Access Journals (Sweden)

    Yohann Tendero

    2012-07-01

    Full Text Available The non-uniformity is a time-dependent noise caused by the lack of sensor equalization. We present here the detailed algorithm and on line demo of the non-uniformity correction method by midway infrared equalization. This method was designed to suit infrared images. Nevertheless, it can be applied to images produced for example by scanners, or by push-broom satellites. The obtained single image method works on static images, is fully automatic, having no user parameter, and requires no registration. It needs no camera motion compensation, no closed aperture sensor equalization and is able to correct for a fully non-linear non-uniformity.

  19. Real-time prediction of respiratory motion based on local regression methods

    International Nuclear Information System (INIS)

    Ruan, D; Fessler, J A; Balter, J M

    2007-01-01

    Recent developments in modulation techniques enable conformal delivery of radiation doses to small, localized target volumes. One of the challenges in using these techniques is real-time tracking and predicting target motion, which is necessary to accommodate system latencies. For image-guided-radiotherapy systems, it is also desirable to minimize sampling rates to reduce imaging dose. This study focuses on predicting respiratory motion, which can significantly affect lung tumours. Predicting respiratory motion in real-time is challenging, due to the complexity of breathing patterns and the many sources of variability. We propose a prediction method based on local regression. There are three major ingredients of this approach: (1) forming an augmented state space to capture system dynamics, (2) local regression in the augmented space to train the predictor from previous observation data using semi-periodicity of respiratory motion, (3) local weighting adjustment to incorporate fading temporal correlations. To evaluate prediction accuracy, we computed the root mean square error between predicted tumor motion and its observed location for ten patients. For comparison, we also investigated commonly used predictive methods, namely linear prediction, neural networks and Kalman filtering to the same data. The proposed method reduced the prediction error for all imaging rates and latency lengths, particularly for long prediction lengths

  20. Simulation of bubble motion under gravity by lattice Boltzmann method

    International Nuclear Information System (INIS)

    Takada, Naoki; Misawa, Masaki; Tomiyama, Akio; Hosokawa, Shigeo

    2001-01-01

    We describe the numerical simulation results of bubble motion under gravity by the lattice Boltzmann method (LBM), which assumes that a fluid consists of mesoscopic fluid particles repeating collision and translation and a multiphase interface is reproduced in a self-organizing way by repulsive interaction between different kinds of particles. The purposes in this study are to examine the applicability of LBM to the numerical analysis of bubble motions, and to develop a three-dimensional version of the binary fluid model that introduces a free energy function. We included the buoyancy terms due to the density difference in the lattice Boltzmann equations, and simulated single-and two-bubble motions, setting flow conditions according to the Eoetvoes and Morton numbers. The two-dimensional results by LBM agree with those by the Volume of Fluid method based on the Navier-Stokes equations. The three-dimensional model possesses the surface tension satisfying the Laplace's law, and reproduces the motion of single bubble and the two-bubble interaction of their approach and coalescence in circular tube. There results prove that the buoyancy terms and the 3D model proposed here are suitable, and that LBM is useful for the numerical analysis of bubble motion under gravity. (author)

  1. Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina.

    Science.gov (United States)

    Braaf, Boy; Donner, Sabine; Nam, Ahhyun S; Bouma, Brett E; Vakoc, Benjamin J

    2018-02-01

    Complex differential variance (CDV) provides phase-sensitive angiographic imaging for optical coherence tomography (OCT) with immunity to phase-instabilities of the imaging system and small-scale axial bulk motion. However, like all angiographic methods, measurement noise can result in erroneous indications of blood flow that confuse the interpretation of angiographic images. In this paper, a modified CDV algorithm that corrects for this noise-bias is presented. This is achieved by normalizing the CDV signal by analytically derived upper and lower limits. The noise-bias corrected CDV algorithm was implemented into an experimental 1 μm wavelength OCT system for retinal imaging that used an eye tracking scanner laser ophthalmoscope at 815 nm for compensation of lateral eye motions. The noise-bias correction improved the CDV imaging of the blood flow in tissue layers with a low signal-to-noise ratio and suppressed false indications of blood flow outside the tissue. In addition, the CDV signal normalization suppressed noise induced by galvanometer scanning errors and small-scale lateral motion. High quality cross-section and motion-corrected en face angiograms of the retina and choroid are presented.

  2. Phase correction of MR perfusion/diffusion images

    International Nuclear Information System (INIS)

    Chenevert, T.L.; Pipe, J.G.; Brunberg, J.A.; Yeung, H.N.

    1989-01-01

    Apparent diffusion coefficient (ADC) and perfusion MR sequences are exceptionally sensitive to minute motion and, therefore, are prone to bulk motions that hamper ADC/perfusion quantification. The authors have developed a phase correction algorithm to substantially reduce this error. The algorithm uses a diffusion-insensitive data set to correct data that are diffusion sensitive but phase corrupt. An assumption of the algorithm is that bulk motion phase shifts are uniform in one dimension, although they may be arbitrarily large and variable from acquisition to acquisition. This is facilitated by orthogonal section selection. The correction is applied after one Fourier transform of a two-dimensional Fourier transform reconstruction. Imaging experiments on rat and human brain demonstrate significant artifact reduction in ADC and perfusion measurements

  3. Nowcasting Surface Meteorological Parameters Using Successive Correction Method

    National Research Council Canada - National Science Library

    Henmi, Teizi

    2002-01-01

    The successive correction method was examined and evaluated statistically as a nowcasting method for surface meteorological parameters including temperature, dew point temperature, and horizontal wind vector components...

  4. Hybrid method for consistent model of the Pacific absolute plate motion and a test for inter-hotspot motion since 70Ma

    Science.gov (United States)

    Harada, Y.; Wessel, P.; Sterling, A.; Kroenke, L.

    2002-12-01

    Inter-hotspot motion within the Pacific plate is one of the most controversial issues in recent geophysical studies. However, it is a fact that many geophysical and geological data including ages and positions of seamount chains in the Pacific plate can largely be explained by a simple model of absolute motion derived from assumptions of rigid plates and fixed hotspots. Therefore we take the stand that if a model of plate motion can explain the ages and positions of Pacific hotspot tracks, inter-hotspot motion would not be justified. On the other hand, if any discrepancies between the model and observations are found, the inter-hotspot motion may then be estimated from these discrepancies. To make an accurate model of the absolute motion of the Pacific plate, we combined two different approaches: the polygonal finite rotation method (PFRM) by Harada and Hamano (2000) and the hot-spotting technique developed by Wessel and Kroenke (1997). The PFRM can determine accurate positions of finite rotation poles for the Pacific plate if the present positions of hotspots are known. On the other hand, the hot-spotting technique can predict present positions of hotspots if the absolute plate motion is given. Therefore we can undertake iterative calculations using the two methods. This hybrid method enables us to determine accurate finite rotation poles for the Pacific plate solely from geometry of Hawaii, Louisville and Easter(Crough)-Line hotspot tracks from around 70 Ma to present. Information of ages can be independently assigned to the model after the poles and rotation angles are determined. We did not detect any inter-hotspot motion from the geometry of these Pacific hotspot tracks using this method. The Ar-Ar ages of Pacific seamounts including new age data of ODP Leg 197 are used to test the newly determined model of the Pacific plate motion. The ages of Hawaii, Louisville, Easter(Crough)-Line, and Cobb hotspot tracks are quite consistent with each other from 70 Ma to

  5. The instantaneous linear motion information measurement method based on inertial sensors for ships

    Science.gov (United States)

    Yang, Xu; Huang, Jing; Gao, Chen; Quan, Wei; Li, Ming; Zhang, Yanshun

    2018-05-01

    Ship instantaneous line motion information is the important foundation for ship control, which needs to be measured accurately. For this purpose, an instantaneous line motion measurement method based on inertial sensors is put forward for ships. By introducing a half-fixed coordinate system to realize the separation between instantaneous line motion and ship master movement, the instantaneous line motion acceleration of ships can be obtained with higher accuracy. Then, the digital high-pass filter is applied to suppress the velocity error caused by the low frequency signal such as schuler period. Finally, the instantaneous linear motion displacement of ships can be measured accurately. Simulation experimental results show that the method is reliable and effective, and can realize the precise measurement of velocity and displacement of instantaneous line motion for ships.

  6. Motion Correction using Coil Arrays (MOCCA) for Free-Breathing Cardiac Cine MRI

    Science.gov (United States)

    Hu, Peng; Hong, Susie; Moghari, Mehdi H.; Goddu, Beth; Goepfert, Lois; Kissinger, Kraig V.; Hauser, Thomas H.; Manning, Warren J; Nezafat, Reza

    2014-01-01

    In this study, we present a motion compensation technique based on coil arrays (MOCCA) and evaluate its application in free-breathing respiratory self-gated cine MRI. MOCCA takes advantages of the fact that motion-induced changes in k-space signal are modulated by individual coil sensitivity profiles. In the proposed implementation of MOCCA self-gating for free-breathing cine MRI, the k-space center line is acquired at the beginning of each k-space segment for each cardiac cycle with 4 repetitions. For each k-space segment, the k-space center line acquired immediately before was used to select one of the 4 acquired repetitions to be included in the final self-gated cine image by calculating the cross-correlation between the k-space center line with a reference line. The proposed method was tested on a cohort of healthy adult subjects for subjective image quality and objective blood-myocardium border sharpness. The method was also tested on a cohort of patients to compare the left and right ventricular volumes and ejection fraction measurements with that of standard breath-hold cine MRI. Our data indicate that the proposed MOCCA method provides significantly improved image quality and sharpness compared to free-breathing cine without respiratory self-gating, and provides similar volume measurements compared with breath-hold cine MRI. PMID:21773986

  7. A motion-based integer ambiguity resolution method for attitude determination using the global positioning system (GPS)

    International Nuclear Information System (INIS)

    Wang, Bo; Deng, Zhihong; Wang, Shunting; Fu, Mengyin

    2010-01-01

    Loss of the satellite signal and noise disturbance will cause cycle slips to occur in the carrier phase observation of the attitude determination system using the global positioning system (GPS), especially in the dynamic situation. Therefore, in order to reject the error by cycle slips, the integer ambiguity should be re-computed. A motion model-based Kalman predictor is used for the ambiguity re-computation in dynamic applications. This method utilizes the correct observation of the last step to predict the current ambiguities. With the baseline length as a constraint to reject invalid values, we can solve the current integer ambiguity and the attitude angles, by substituting the obtained ambiguities into the constrained LAMBDA method. Experimental results demonstrate that the proposed method is more efficient in the dynamic situation, which takes less time to obtain new fixed ambiguities with a higher mean success rate

  8. Another method of dead time correction

    International Nuclear Information System (INIS)

    Sabol, J.

    1988-01-01

    A new method of the correction of counting losses caused by a non-extended dead time of pulse detection systems is presented. The approach is based on the distribution of time intervals between pulses at the output of the system. The method was verified both experimentally and by using the Monte Carlo simulations. The results show that the suggested technique is more reliable and accurate than other methods based on a separate measurement of the dead time. (author) 5 refs

  9. Frequency domain method for the stack of seismic and radar data

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H; Sato, M [Tohoku University, Sendai (Japan); Xu, S

    1997-10-22

    With relation to the stacking method of elastic wave and radar wave, the frequency domain stacking method using the Fourier conversion was proposed as a method for automatically removing errors in time correction leaving advantages of the conventional horizontal stacking method. Concerning an example of wave motion with the same wave form and time difference, as a result of the analysis conducted by this method, it was found that not only effects are kept of suppressing random noise and regular noise in the conventional horizontal stacking method, but the resolution in the original wave motion data is kept. In the example, amplitude of the noise was a half of the wave motion signal, but if it is more than 0.85 times of the wave motion signal, favorable result cannot be obtained in this method. In the analysis in the area where time correction is very difficult and the correction cannot be made completely, it is useful also for the time domain stacking method to acquire data on high resolution of elastic wave and radar wave. 4 refs., 2 figs.

  10. Assessment of CF lung disease using motion corrected PROPELLER MRI: a comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Ciet, Pierluigi [General Hospital Ca' Foncello, Radiology Department, Treviso (Italy); Sophia Children' s Hospital, Pediatric Pulmonology Erasmus MC, Rotterdam (Netherlands); Erasmus MC, Radiology, Rotterdam (Netherlands); Serra, Goffredo; Catalano, Carlo [University of Rome ' ' Sapienza' ' , Radiology, Rome (Italy); Bertolo, Silvia; Morana, Giovanni [General Hospital Ca' Foncello, Radiology Department, Treviso (Italy); Spronk, Sandra [Erasmus MC, Radiology, Rotterdam (Netherlands); Erasmus MC, Epidemiology, Rotterdam (Netherlands); Ros, Mirco [Ca' Foncello Hospital, Pediatrics, Treviso (Italy); Fraioli, Francesco [University College London (UCL), Institute of Nuclear Medicine, London (United Kingdom); Quattrucci, Serena [University of Rome Sapienza, Pediatrics, Rome (Italy); Assael, M.B. [Azienda Ospedaliera di Verona, Verona CF Center, Verona (Italy); Pomerri, Fabio [University of Padova, Department of Medicine-DIMED, Padova (Italy); Tiddens, Harm A.W.M. [Sophia Children' s Hospital, Pediatric Pulmonology Erasmus MC, Rotterdam (Netherlands); Erasmus MC, Radiology, Rotterdam (Netherlands)

    2016-03-15

    To date, PROPELLER MRI, a breathing-motion-insensitive technique, has not been assessed for cystic fibrosis (CF) lung disease. We compared this technique to CT for assessing CF lung disease in children and adults. Thirty-eight stable CF patients (median 21 years, range 6-51 years, 22 female) underwent MRI and CT on the same day. Study protocol included respiratory-triggered PROPELLER MRI and volumetric CT end-inspiratory and -expiratory acquisitions. Two observers scored the images using the CF-MRI and CF-CT systems. Scores were compared with intra-class correlation coefficient (ICC) and Bland-Altman plots. The sensitivity and specificity of MRI versus CT were calculated. MRI sensitivity for detecting severe CF bronchiectasis was 0.33 (CI 0.09-0.57), while specificity was 100 % (CI 0.88-1). ICCs for bronchiectasis and trapped air were as follows: MRI-bronchiectasis (0.79); CT-bronchiectasis (0.85); MRI-trapped air (0.51); CT-trapped air (0.87). Bland-Altman plots showed an MRI tendency to overestimate the severity of bronchiectasis in mild CF disease and underestimate bronchiectasis in severe disease. Motion correction in PROPELLER MRI does not improve assessment of CF lung disease compared to CT. However, the good inter- and intra-observer agreement and the high specificity suggest that MRI might play a role in the short-term follow-up of CF lung disease (i.e. pulmonary exacerbations). (orig.)

  11. Assessment of CF lung disease using motion corrected PROPELLER MRI: a comparison with CT

    International Nuclear Information System (INIS)

    Ciet, Pierluigi; Serra, Goffredo; Catalano, Carlo; Bertolo, Silvia; Morana, Giovanni; Spronk, Sandra; Ros, Mirco; Fraioli, Francesco; Quattrucci, Serena; Assael, M.B.; Pomerri, Fabio; Tiddens, Harm A.W.M.

    2016-01-01

    To date, PROPELLER MRI, a breathing-motion-insensitive technique, has not been assessed for cystic fibrosis (CF) lung disease. We compared this technique to CT for assessing CF lung disease in children and adults. Thirty-eight stable CF patients (median 21 years, range 6-51 years, 22 female) underwent MRI and CT on the same day. Study protocol included respiratory-triggered PROPELLER MRI and volumetric CT end-inspiratory and -expiratory acquisitions. Two observers scored the images using the CF-MRI and CF-CT systems. Scores were compared with intra-class correlation coefficient (ICC) and Bland-Altman plots. The sensitivity and specificity of MRI versus CT were calculated. MRI sensitivity for detecting severe CF bronchiectasis was 0.33 (CI 0.09-0.57), while specificity was 100 % (CI 0.88-1). ICCs for bronchiectasis and trapped air were as follows: MRI-bronchiectasis (0.79); CT-bronchiectasis (0.85); MRI-trapped air (0.51); CT-trapped air (0.87). Bland-Altman plots showed an MRI tendency to overestimate the severity of bronchiectasis in mild CF disease and underestimate bronchiectasis in severe disease. Motion correction in PROPELLER MRI does not improve assessment of CF lung disease compared to CT. However, the good inter- and intra-observer agreement and the high specificity suggest that MRI might play a role in the short-term follow-up of CF lung disease (i.e. pulmonary exacerbations). (orig.)

  12. An evaluation method on seat comfort based on optical motion capture

    Directory of Open Access Journals (Sweden)

    Qing TAO

    2015-10-01

    Full Text Available To research the sitting posture comfort evaluation method, through the example of comfort evaluation of the ergonomic seat and standard office seat, a methodology is introduced to evaluate the sitting posture comfort combining ergonomics theory. The proposed method is based on optical motion capture system, pressure sensor and JACK software, and TRC file is acquired by using EVART real-time capture software for identifying the spatial motion trail of human body. Then MATLAB software is used to analyze the human body motion data, and the sitting posture angle difference data for human body in different seats is acquired. TRC file is loaded into JACK software, and with the TAT REPORTER of JACK software, muscle force, moment of force and fatigue data, etc. are output, which are compared with the actual measured data from experiments, and ergonomics method is used for the evaluation. The result shows that the method of considering joint angles combining JACK software for data output is effective for evaluating sitting comfort.

  13. Towards Motion-Insensitive Magnetic Resonance Imaging Using Dynamic Field Measurements

    DEFF Research Database (Denmark)

    Andersen, Mads

    motion during scanning and update the MRI scanner in real-time such that the imaging volume follows the head motion (prospective motion correction). In this thesis, prospective motion correction is presented where head motion is determined from signals measured with an electroencephalography (EEG) cap......Magnetic resonance imaging (MRI) of the brain is frequently used for both clinical diagnosis and brain research. This is due to the great versatility of the technique and the excellent ability to distinguish different types of soft tissue. The image quality is, however, heavily degraded when...

  14. Prediction of broadband ground-motion time histories: Hybrid low/high-frequency method with correlated random source parameters

    Science.gov (United States)

    Liu, P.; Archuleta, R.J.; Hartzell, S.H.

    2006-01-01

    We present a new method for calculating broadband time histories of ground motion based on a hybrid low-frequency/high-frequency approach with correlated source parameters. Using a finite-difference method we calculate low- frequency synthetics (structure. We also compute broadband synthetics in a 1D velocity model using a frequency-wavenumber method. The low frequencies from the 3D calculation are combined with the high frequencies from the 1D calculation by using matched filtering at a crossover frequency of 1 Hz. The source description, common to both the 1D and 3D synthetics, is based on correlated random distributions for the slip amplitude, rupture velocity, and rise time on the fault. This source description allows for the specification of source parameters independent of any a priori inversion results. In our broadband modeling we include correlation between slip amplitude, rupture velocity, and rise time, as suggested by dynamic fault modeling. The method of using correlated random source parameters is flexible and can be easily modified to adjust to our changing understanding of earthquake ruptures. A realistic attenuation model is common to both the 3D and 1D calculations that form the low- and high-frequency components of the broadband synthetics. The value of Q is a function of the local shear-wave velocity. To produce more accurate high-frequency amplitudes and durations, the 1D synthetics are corrected with a randomized, frequency-dependent radiation pattern. The 1D synthetics are further corrected for local site and nonlinear soil effects by using a 1D nonlinear propagation code and generic velocity structure appropriate for the site’s National Earthquake Hazards Reduction Program (NEHRP) site classification. The entire procedure is validated by comparison with the 1994 Northridge, California, strong ground motion data set. The bias and error found here for response spectral acceleration are similar to the best results that have been published by

  15. Motion estimation using point cluster method and Kalman filter.

    Science.gov (United States)

    Senesh, M; Wolf, A

    2009-05-01

    The most frequently used method in a three dimensional human gait analysis involves placing markers on the skin of the analyzed segment. This introduces a significant artifact, which strongly influences the bone position and orientation and joint kinematic estimates. In this study, we tested and evaluated the effect of adding a Kalman filter procedure to the previously reported point cluster technique (PCT) in the estimation of a rigid body motion. We demonstrated the procedures by motion analysis of a compound planar pendulum from indirect opto-electronic measurements of markers attached to an elastic appendage that is restrained to slide along the rigid body long axis. The elastic frequency is close to the pendulum frequency, as in the biomechanical problem, where the soft tissue frequency content is similar to the actual movement of the bones. Comparison of the real pendulum angle to that obtained by several estimation procedures--PCT, Kalman filter followed by PCT, and low pass filter followed by PCT--enables evaluation of the accuracy of the procedures. When comparing the maximal amplitude, no effect was noted by adding the Kalman filter; however, a closer look at the signal revealed that the estimated angle based only on the PCT method was very noisy with fluctuation, while the estimated angle based on the Kalman filter followed by the PCT was a smooth signal. It was also noted that the instantaneous frequencies obtained from the estimated angle based on the PCT method is more dispersed than those obtained from the estimated angle based on Kalman filter followed by the PCT method. Addition of a Kalman filter to the PCT method in the estimation procedure of rigid body motion results in a smoother signal that better represents the real motion, with less signal distortion than when using a digital low pass filter. Furthermore, it can be concluded that adding a Kalman filter to the PCT procedure substantially reduces the dispersion of the maximal and minimal

  16. Portable bench tester for piezo weigh-in-motion equipment : executive summary report.

    Science.gov (United States)

    2006-06-01

    The Ohio Department of Transportation's (ODOT) piezo weigh-in-motion (WIM) equipment must be tested for initial working operation and to insure continued correct operation. Currently, the only available method to verify the vehicle classification par...

  17. Evaluation of bias-correction methods for ensemble streamflow volume forecasts

    Directory of Open Access Journals (Sweden)

    T. Hashino

    2007-01-01

    Full Text Available Ensemble prediction systems are used operationally to make probabilistic streamflow forecasts for seasonal time scales. However, hydrological models used for ensemble streamflow prediction often have simulation biases that degrade forecast quality and limit the operational usefulness of the forecasts. This study evaluates three bias-correction methods for ensemble streamflow volume forecasts. All three adjust the ensemble traces using a transformation derived with simulated and observed flows from a historical simulation. The quality of probabilistic forecasts issued when using the three bias-correction methods is evaluated using a distributions-oriented verification approach. Comparisons are made of retrospective forecasts of monthly flow volumes for a north-central United States basin (Des Moines River, Iowa, issued sequentially for each month over a 48-year record. The results show that all three bias-correction methods significantly improve forecast quality by eliminating unconditional biases and enhancing the potential skill. Still, subtle differences in the attributes of the bias-corrected forecasts have important implications for their use in operational decision-making. Diagnostic verification distinguishes these attributes in a context meaningful for decision-making, providing criteria to choose among bias-correction methods with comparable skill.

  18. Improved motion contrast and processing efficiency in OCT angiography using complex-correlation algorithm

    International Nuclear Information System (INIS)

    Guo, Li; Li, Pei; Pan, Cong; Cheng, Yuxuan; Ding, Zhihua; Li, Peng; Liao, Rujia; Hu, Weiwei; Chen, Zhong

    2016-01-01

    The complex-based OCT angiography (Angio-OCT) offers high motion contrast by combining both the intensity and phase information. However, due to involuntary bulk tissue motions, complex-valued OCT raw data are processed sequentially with different algorithms for correcting bulk image shifts (BISs), compensating global phase fluctuations (GPFs) and extracting flow signals. Such a complicated procedure results in massive computational load. To mitigate such a problem, in this work, we present an inter-frame complex-correlation (CC) algorithm. The CC algorithm is suitable for parallel processing of both flow signal extraction and BIS correction, and it does not need GPF compensation. This method provides high processing efficiency and shows superiority in motion contrast. The feasibility and performance of the proposed CC algorithm is demonstrated using both flow phantom and live animal experiments. (paper)

  19. Impact of motion compensation and partial volume correction for 18F-NaF PET/CT imaging of coronary plaque

    Science.gov (United States)

    Cal-González, J.; Tsoumpas, C.; Lassen, M. L.; Rasul, S.; Koller, L.; Hacker, M.; Schäfers, K.; Beyer, T.

    2018-01-01

    Recent studies have suggested that 18F-NaF-PET enables visualization and quantification of plaque micro-calcification in the coronary tree. However, PET imaging of plaque calcification in the coronary arteries is challenging because of the respiratory and cardiac motion as well as partial volume effects. The objective of this work is to implement an image reconstruction framework, which incorporates compensation for respiratory as well as cardiac motion (MoCo) and partial volume correction (PVC), for cardiac 18F-NaF PET imaging in PET/CT. We evaluated the effect of MoCo and PVC on the quantification of vulnerable plaques in the coronary arteries. Realistic simulations (Biograph TPTV, Biograph mCT) and phantom acquisitions (Biograph mCT) were used for these evaluations. Different uptake values in the calcified plaques were evaluated in the simulations, while three ‘plaque-type’ lesions of 36, 31 and 18 mm3 were included in the phantom experiments. After validation, the MoCo and PVC methods were applied in four pilot NaF-PET patient studies. In all cases, the MoCo-based image reconstruction was performed using the STIR software. The PVC was obtained from a local projection (LP) method, previously evaluated in preclinical and clinical PET. The results obtained show a significant increase of the measured lesion-to-background ratios (LBR) in the MoCo  +  PVC images. These ratios were further enhanced when using directly the tissue-activities from the LP method, making this approach more suitable for the quantitative evaluation of coronary plaques. When using the LP method on the MoCo images, LBR increased between 200% and 1119% in the simulated data, between 212% and 614% in the phantom experiments and between 46% and 373% in the plaques with positive uptake observed in the pilot patients. In conclusion, we have built and validated a STIR framework incorporating MoCo and PVC for 18F-NaF PET imaging of coronary plaques. First results indicate an improved

  20. Motion compensation in digital subtraction angiography using graphics hardware.

    Science.gov (United States)

    Deuerling-Zheng, Yu; Lell, Michael; Galant, Adam; Hornegger, Joachim

    2006-07-01

    An inherent disadvantage of digital subtraction angiography (DSA) is its sensitivity to patient motion which causes artifacts in the subtraction images. These artifacts could often reduce the diagnostic value of this technique. Automated, fast and accurate motion compensation is therefore required. To cope with this requirement, we first examine a method explicitly designed to detect local motions in DSA. Then, we implement a motion compensation algorithm by means of block matching on modern graphics hardware. Both methods search for maximal local similarity by evaluating a histogram-based measure. In this context, we are the first who have mapped an optimizing search strategy on graphics hardware while paralleling block matching. Moreover, we provide an innovative method for creating histograms on graphics hardware with vertex texturing and frame buffer blending. It turns out that both methods can effectively correct the artifacts in most case, as the hardware implementation of block matching performs much faster: the displacements of two 1024 x 1024 images can be calculated at 3 frames/s with integer precision or 2 frames/s with sub-pixel precision. Preliminary clinical evaluation indicates that the computation with integer precision could already be sufficient.

  1. Enhancing ejection fraction measurement through 4D respiratory motion compensation in cardiac PET imaging

    Science.gov (United States)

    Tang, Jing; Wang, Xinhui; Gao, Xiangzhen; Segars, W. Paul; Lodge, Martin A.; Rahmim, Arman

    2017-06-01

    ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac-gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the EF measurement. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimating the above functional parameters from list mode patient data. Respiratory motion correction has been shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.

  2. TH-EF-BRA-03: Assessment of Data-Driven Respiratory Motion-Compensation Methods for 4D-CBCT Image Registration and Reconstruction Using Clinical Datasets

    Energy Technology Data Exchange (ETDEWEB)

    Riblett, MJ; Weiss, E; Hugo, GD [Virginia Commonwealth University, Richmond, VA (United States); Christensen, GE [University of Iowa, Iowa City, IA (United States)

    2016-06-15

    Purpose: To evaluate the performance of a 4D-CBCT registration and reconstruction method that corrects for respiratory motion and enhances image quality under clinically relevant conditions. Methods: Building on previous work, which tested feasibility of a motion-compensation workflow using image datasets superior to clinical acquisitions, this study assesses workflow performance under clinical conditions in terms of image quality improvement. Evaluated workflows utilized a combination of groupwise deformable image registration (DIR) and image reconstruction. Four-dimensional cone beam CT (4D-CBCT) FDK reconstructions were registered to either mean or respiratory phase reference frame images to model respiratory motion. The resulting 4D transformation was used to deform projection data during the FDK backprojection operation to create a motion-compensated reconstruction. To simulate clinically realistic conditions, superior quality projection datasets were sampled using a phase-binned striding method. Tissue interface sharpness (TIS) was defined as the slope of a sigmoid curve fit to the lung-diaphragm boundary or to the carina tissue-airway boundary when no diaphragm was discernable. Image quality improvement was assessed in 19 clinical cases by evaluating mitigation of view-aliasing artifacts, tissue interface sharpness recovery, and noise reduction. Results: For clinical datasets, evaluated average TIS recovery relative to base 4D-CBCT reconstructions was observed to be 87% using fixed-frame registration alone; 87% using fixed-frame with motion-compensated reconstruction; 92% using mean-frame registration alone; and 90% using mean-frame with motion-compensated reconstruction. Soft tissue noise was reduced on average by 43% and 44% for the fixed-frame registration and registration with motion-compensation methods, respectively, and by 40% and 42% for the corresponding mean-frame methods. Considerable reductions in view aliasing artifacts were observed for each

  3. TH-EF-BRA-03: Assessment of Data-Driven Respiratory Motion-Compensation Methods for 4D-CBCT Image Registration and Reconstruction Using Clinical Datasets

    International Nuclear Information System (INIS)

    Riblett, MJ; Weiss, E; Hugo, GD; Christensen, GE

    2016-01-01

    Purpose: To evaluate the performance of a 4D-CBCT registration and reconstruction method that corrects for respiratory motion and enhances image quality under clinically relevant conditions. Methods: Building on previous work, which tested feasibility of a motion-compensation workflow using image datasets superior to clinical acquisitions, this study assesses workflow performance under clinical conditions in terms of image quality improvement. Evaluated workflows utilized a combination of groupwise deformable image registration (DIR) and image reconstruction. Four-dimensional cone beam CT (4D-CBCT) FDK reconstructions were registered to either mean or respiratory phase reference frame images to model respiratory motion. The resulting 4D transformation was used to deform projection data during the FDK backprojection operation to create a motion-compensated reconstruction. To simulate clinically realistic conditions, superior quality projection datasets were sampled using a phase-binned striding method. Tissue interface sharpness (TIS) was defined as the slope of a sigmoid curve fit to the lung-diaphragm boundary or to the carina tissue-airway boundary when no diaphragm was discernable. Image quality improvement was assessed in 19 clinical cases by evaluating mitigation of view-aliasing artifacts, tissue interface sharpness recovery, and noise reduction. Results: For clinical datasets, evaluated average TIS recovery relative to base 4D-CBCT reconstructions was observed to be 87% using fixed-frame registration alone; 87% using fixed-frame with motion-compensated reconstruction; 92% using mean-frame registration alone; and 90% using mean-frame with motion-compensated reconstruction. Soft tissue noise was reduced on average by 43% and 44% for the fixed-frame registration and registration with motion-compensation methods, respectively, and by 40% and 42% for the corresponding mean-frame methods. Considerable reductions in view aliasing artifacts were observed for each

  4. SU-F-J-124: Reduction in Dosimetric Impact of Motion Using VMAT Compared to IMRT in Hypofractionated Prostate Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, B; Xiong, J; Happersett, L; Mageras, G; Zhang, P; Hunt, M [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: To quantify and compare the dosimetric impact of motion management correction strategies during VMAT and IMRT for hypofractionated prostate treatment. Methods: Two arc VMAT and 9 field IMRT plans were generated for two prostate cancer patients undergoing hypofractionated radiotherapy (7.5Gy × 5 and 8Gy × 5). 212 motion traces were retrospectively extracted from treatment records of prostate cancer patients with implanted Calypso beacons. Dose to the CTV and normal tissues was reconstructed for each trace and plan taking into account the actual treatment delivery time. Following motion correction scenarios were simulated: (1) VMAT plan – (a) No correction, (b) correction between arcs, (c) correction every 20 degrees of gantry rotation and (2) IMRT plan - (a) No correction,(b) correction between fields. Two mm action threshold for position correction was assumed. The 5–95% confidence interval (CI) range was extracted from the family of DVHs for each correction scenario. Results: Treatment duration for 8Gy plan (VMAT vs IMRT) was 3 vs 12 mins and for 7.5Gy plan was 3 vs 9 mins. In the absence of correction, the VMAT 5–−95% CI dose spread was, on average, less than the IMRT dose spread by 2% for CTVD95, 9% for rectalwall (RW) D1cc and 9% for bladderwall (BW) D53. Further, VMAT b/w arcs correction strategy reduced the spread about the planned value compared to IMRT b/w fields correction by: 1% for CTVD95, 2.6% for RW1cc and 2% for BWD53. VMAT 20 degree strategy led to greater reduction in dose spread compared to IMRT by: 2% for CTVD95, 4.5% for RW1cc and 6.7% for BWD53. Conclusion: In the absence of a correction strategy, the limited motion during VMAT’s shorter delivery times translates into less motion-induced dosimetric degradation than IMRT. Performing limited periodic motion correction during VMAT can yield excellent conformity to planned values that is superior to IMRT. This work was partially supported by Varian Medical Systems.

  5. Critical comparison between equation of motion-Green's function methods and configuration interaction methods: analysis of methods and applications

    International Nuclear Information System (INIS)

    Freed, K.F.; Herman, M.F.; Yeager, D.L.

    1980-01-01

    A description is provided of the common conceptual origins of many-body equations of motion and Green's function methods in Liouville operator formulations of the quantum mechanics of atomic and molecular electronic structure. Numerical evidence is provided to show the inadequacies of the traditional strictly perturbative approaches to these methods. Nonperturbative methods are introduced by analogy with techniques developed for handling large configuration interaction calculations and by evaluating individual matrix elements to higher accuracy. The important role of higher excitations is exhibited by the numerical calculations, and explicit comparisons are made between converged equations of motion and configuration interaction calculations for systems where a fundamental theorem requires the equality of the energy differences produced by these different approaches. (Auth.)

  6. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method

    International Nuclear Information System (INIS)

    Shidahara, Miho; Kato, Takashi; Kawatsu, Shoji; Yoshimura, Kumiko; Ito, Kengo; Watabe, Hiroshi; Kim, Kyeong Min; Iida, Hidehiro; Kato, Rikio

    2005-01-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99m Tc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I AC μb with Chang's attenuation correction factor. The scatter component image is estimated by convolving I AC μb with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99m Tc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine. (orig.)

  7. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method.

    Science.gov (United States)

    Shidahara, Miho; Watabe, Hiroshi; Kim, Kyeong Min; Kato, Takashi; Kawatsu, Shoji; Kato, Rikio; Yoshimura, Kumiko; Iida, Hidehiro; Ito, Kengo

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99mTc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I(mub)AC with Chang's attenuation correction factor. The scatter component image is estimated by convolving I(mub)AC with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99mTc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine.

  8. Local defect correction for boundary integral equation methods

    NARCIS (Netherlands)

    Kakuba, G.; Anthonissen, M.J.H.

    2013-01-01

    This paper presents a new approach to gridding for problems with localised regions of high activity. The technique of local defect correction has been studied for other methods as ¿nite difference methods and ¿nite volume methods. In this paper we develop the technique for the boundary element

  9. Ultra-low dose CT attenuation correction for PET/CT

    Science.gov (United States)

    Xia, Ting; Alessio, Adam M.; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren; Kinahan, Paul E.

    2012-01-01

    A challenge for PET/CT quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently-available, lowest dose CT techniques, extended duration CINE CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. Methods We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. Results CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. Conclusion When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging. PMID:22156174

  10. Correcting for motion artifact in handheld laser speckle images

    Science.gov (United States)

    Lertsakdadet, Ben; Yang, Bruce Y.; Dunn, Cody E.; Ponticorvo, Adrien; Crouzet, Christian; Bernal, Nicole; Durkin, Anthony J.; Choi, Bernard

    2018-03-01

    Laser speckle imaging (LSI) is a wide-field optical technique that enables superficial blood flow quantification. LSI is normally performed in a mounted configuration to decrease the likelihood of motion artifact. However, mounted LSI systems are cumbersome and difficult to transport quickly in a clinical setting for which portability is essential in providing bedside patient care. To address this issue, we created a handheld LSI device using scientific grade components. To account for motion artifact of the LSI device used in a handheld setup, we incorporated a fiducial marker (FM) into our imaging protocol and determined the difference between highest and lowest speckle contrast values for the FM within each data set (Kbest and Kworst). The difference between Kbest and Kworst in mounted and handheld setups was 8% and 52%, respectively, thereby reinforcing the need for motion artifact quantification. When using a threshold FM speckle contrast value (KFM) to identify a subset of images with an acceptable level of motion artifact, mounted and handheld LSI measurements of speckle contrast of a flow region (KFLOW) in in vitro flow phantom experiments differed by 8%. Without the use of the FM, mounted and handheld KFLOW values differed by 20%. To further validate our handheld LSI device, we compared mounted and handheld data from an in vivo porcine burn model of superficial and full thickness burns. The speckle contrast within the burn region (KBURN) of the mounted and handheld LSI data differed by burns. Collectively, our results suggest the potential of handheld LSI with an FM as a suitable alternative to mounted LSI, especially in challenging clinical settings with space limitations such as the intensive care unit.

  11. Portable bench tester for piezo weigh-in-motion equipment : final report, June 2006.

    Science.gov (United States)

    2006-06-01

    The Ohio Department of Transportation's (ODOT) piezo weigh-in-motion (WIM) equipment must be tested for initial working operation and to insure continued correct operation. Currently, the only available method to verify the vehicle classification par...

  12. A New Online Calibration Method Based on Lord's Bias-Correction.

    Science.gov (United States)

    He, Yinhong; Chen, Ping; Li, Yong; Zhang, Shumei

    2017-09-01

    Online calibration technique has been widely employed to calibrate new items due to its advantages. Method A is the simplest online calibration method and has attracted many attentions from researchers recently. However, a key assumption of Method A is that it treats person-parameter estimates θ ^ s (obtained by maximum likelihood estimation [MLE]) as their true values θ s , thus the deviation of the estimated θ ^ s from their true values might yield inaccurate item calibration when the deviation is nonignorable. To improve the performance of Method A, a new method, MLE-LBCI-Method A, is proposed. This new method combines a modified Lord's bias-correction method (named as maximum likelihood estimation-Lord's bias-correction with iteration [MLE-LBCI]) with the original Method A in an effort to correct the deviation of θ ^ s which may adversely affect the item calibration precision. Two simulation studies were carried out to explore the performance of both MLE-LBCI and MLE-LBCI-Method A under several scenarios. Simulation results showed that MLE-LBCI could make a significant improvement over the ML ability estimates, and MLE-LBCI-Method A did outperform Method A in almost all experimental conditions.

  13. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method

    Energy Technology Data Exchange (ETDEWEB)

    Shidahara, Miho; Kato, Takashi; Kawatsu, Shoji; Yoshimura, Kumiko; Ito, Kengo [National Center for Geriatrics and Gerontology Research Institute, Department of Brain Science and Molecular Imaging, Obu, Aichi (Japan); Watabe, Hiroshi; Kim, Kyeong Min; Iida, Hidehiro [National Cardiovascular Center Research Institute, Department of Investigative Radiology, Suita (Japan); Kato, Rikio [National Center for Geriatrics and Gerontology, Department of Radiology, Obu (Japan)

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with {sup 99m}Tc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I{sub AC}{sup {mu}}{sup b} with Chang's attenuation correction factor. The scatter component image is estimated by convolving I{sub AC}{sup {mu}}{sup b} with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and {sup 99m}Tc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine. (orig.)

  14. Different partial volume correction methods lead to different conclusions

    DEFF Research Database (Denmark)

    Greve, Douglas N; Salat, David H; Bowen, Spencer L

    2016-01-01

    A cross-sectional group study of the effects of aging on brain metabolism as measured with (18)F-FDG-PET was performed using several different partial volume correction (PVC) methods: no correction (NoPVC), Meltzer (MZ), Müller-Gärtner (MG), and the symmetric geometric transfer matrix (SGTM) usin...

  15. Beam-Based Error Identification and Correction Methods for Particle Accelerators

    CERN Document Server

    AUTHOR|(SzGeCERN)692826; Tomas, Rogelio; Nilsson, Thomas

    2014-06-10

    Modern particle accelerators have tight tolerances on the acceptable deviation from their desired machine parameters. The control of the parameters is of crucial importance for safe machine operation and performance. This thesis focuses on beam-based methods and algorithms to identify and correct errors in particle accelerators. The optics measurements and corrections of the Large Hadron Collider (LHC), which resulted in an unprecedented low β-beat for a hadron collider is described. The transverse coupling is another parameter which is of importance to control. Improvement in the reconstruction of the coupling from turn-by-turn data has resulted in a significant decrease of the measurement uncertainty. An automatic coupling correction method, which is based on the injected beam oscillations, has been successfully used in normal operation of the LHC. Furthermore, a new method to measure and correct chromatic coupling that was applied to the LHC, is described. It resulted in a decrease of the chromatic coupli...

  16. Based on Short Motion Paths and Artificial Intelligence Method for Chinese Chess Game

    Directory of Open Access Journals (Sweden)

    Chien-Ming Hung

    2017-08-01

    Full Text Available The article develops the decision rules to win each set of the Chinese chess game using evaluation algorithm and artificial intelligence method, and uses the mobile robot to be instead of the chess, and presents the movement scenarios using the shortest motion paths for mobile robots. Player can play the Chinese chess game according to the game rules with the supervised computer. The supervised computer decides the optimal motion path to win the set using artificial intelligence method, and controls mobile robots according to the programmed motion paths of the assigned chesses moving on the platform via wireless RF interface. We uses enhance A* searching algorithm to solve the shortest path problem of the assigned chess, and solve the collision problems of the motion paths for two mobile robots moving on the platform simultaneously. We implement a famous set to be called lwild horses run in farmr using the proposed method. First we use simulation method to display the motion paths of the assigned chesses for the player and the supervised computer. Then the supervised computer implements the simulation results on the chessboard platform using mobile robots. Mobile robots move on the chessboard platform according to the programmed motion paths and is guided to move on the centre line of the corridor, and avoid the obstacles (chesses, and detect the cross point of the platform using three reflective IR modules.

  17. Research on 3-D terrain correction methods of airborne gamma-ray spectrometry survey

    International Nuclear Information System (INIS)

    Liu Yanyang; Liu Qingcheng; Zhang Zhiyong

    2008-01-01

    The general method of height correction is not effectual in complex terrain during the process of explaining airborne gamma-ray spectrometry data, and the 2-D terrain correction method researched in recent years is just available for correction of section measured. A new method of 3-D sector terrain correction is studied. The ground radiator is divided into many small sector radiators by the method, then the irradiation rate is calculated in certain survey distance, and the total value of all small radiate sources is regarded as the irradiation rate of the ground radiator at certain point of aero- survey, and the correction coefficients of every point are calculated which then applied to correct to airborne gamma-ray spectrometry data. The method can achieve the forward calculation, inversion calculation and terrain correction for airborne gamma-ray spectrometry survey in complex topography by dividing the ground radiator into many small sectors. Other factors are considered such as the un- saturated degree of measure scope, uneven-radiator content on ground, and so on. The results of for- ward model and an example analysis show that the 3-D terrain correction method is proper and effectual. (authors)

  18. Validation of a computational method for assessing the impact of intra-fraction motion on helical tomotherapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Meeks, Sanford L; Kupelian, Patrick A; Langen, Katja M [Department of Radiation Oncology, M D Anderson Cancer Center Orlando, 1400 South Orange Avenue, Orlando, FL 32806 (United States); Schnarr, Eric [TomoTherapy, Inc., 1240 Deming Way, Madison, WI 53717 (United States)], E-mail: wilfred.ngwa@orlandohealth.com

    2009-11-07

    In this work, a method for direct incorporation of patient motion into tomotherapy dose calculations is developed and validated. This computational method accounts for all treatment dynamics and can incorporate random as well as cyclical motion data. Hence, interplay effects between treatment dynamics and patient motion are taken into account during dose calculation. This allows for a realistic assessment of intra-fraction motion on the dose distribution. The specific approach entails modifying the position and velocity events in the tomotherapy delivery plan to accommodate any known motion. The computational method is verified through phantom and film measurements. Here, measured prostate motion and simulated respiratory motion tracks were incorporated in the dose calculation. The calculated motion-encoded dose profiles showed excellent agreement with the measurements. Gamma analysis using 3 mm and 3% tolerance criteria showed over 97% and 96% average of points passing for the prostate and breathing motion tracks, respectively. The profile and gamma analysis results validate the accuracy of this method for incorporating intra-fraction motion into the dose calculation engine for assessment of dosimetric effects on helical tomotherapy dose deliveries.

  19. Motion Planning for Omnidirectional Wheeled Mobile Robot by Potential Field Method

    Directory of Open Access Journals (Sweden)

    Weihao Li

    2017-01-01

    Full Text Available In this paper, potential field method has been used to navigate a three omnidirectional wheels’ mobile robot and to avoid obstacles. The potential field method is used to overcome the local minima problem and the goals nonreachable with obstacles nearby (GNRON problem. For further consideration, model predictive control (MPC has been used to incorporate motion constraints and make the velocity more realistic and flexible. The proposed method is employed based on the kinematic model and dynamics model of the mobile robot in this paper. To show the performance of proposed control scheme, simulation studies have been carried to perform the motion process of mobile robot in specific workplace.

  20. Intrafraction Prostate Translations and Rotations During Hypofractionated Robotic Radiation Surgery: Dosimetric Impact of Correction Strategies and Margins

    Energy Technology Data Exchange (ETDEWEB)

    Water, Steven van de, E-mail: s.vandewater@erasmusmc.nl [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands); Valli, Lorella [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands); Alma Mater Studiorum, Department of Physics and Astronomy, Bologna University, Bologna (Italy); Aluwini, Shafak [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands); Lanconelli, Nico [Alma Mater Studiorum, Department of Physics and Astronomy, Bologna University, Bologna (Italy); Heijmen, Ben; Hoogeman, Mischa [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands)

    2014-04-01

    Purpose: To investigate the dosimetric impact of intrafraction prostate motion and the effect of robot correction strategies for hypofractionated CyberKnife treatments with a simultaneously integrated boost. Methods and Materials: A total of 548 real-time prostate motion tracks from 17 patients were available for dosimetric simulations of CyberKnife treatments, in which various correction strategies were included. Fixed time intervals between imaging/correction (15, 60, 180, and 360 seconds) were simulated, as well as adaptive timing (ie, the time interval reduced from 60 to 15 seconds in case prostate motion exceeded 3 mm or 2° in consecutive images). The simulated extent of robot corrections was also varied: no corrections, translational corrections only, and translational corrections combined with rotational corrections up to 5°, 10°, and perfect rotational correction. The correction strategies were evaluated for treatment plans with a 0-mm or 3-mm margin around the clinical target volume (CTV). We recorded CTV coverage (V{sub 100%}) and dose-volume parameters of the peripheral zone (boost), rectum, bladder, and urethra. Results: Planned dose parameters were increasingly preserved with larger extents of robot corrections. A time interval between corrections of 60 to 180 seconds provided optimal preservation of CTV coverage. To achieve 98% CTV coverage in 98% of the treatments, translational and rotational corrections up to 10° were required for the 0-mm margin plans, whereas translational and rotational corrections up to 5° were required for the 3-mm margin plans. Rectum and bladder were spared considerably better in the 0-mm margin plans. Adaptive timing did not improve delivered dose. Conclusions: Intrafraction prostate motion substantially affected the delivered dose but was compensated for effectively by robot corrections using a time interval of 60 to 180 seconds. A 0-mm margin required larger extents of additional rotational corrections than a 3

  1. Intrafraction Prostate Translations and Rotations During Hypofractionated Robotic Radiation Surgery: Dosimetric Impact of Correction Strategies and Margins

    International Nuclear Information System (INIS)

    Water, Steven van de; Valli, Lorella; Aluwini, Shafak; Lanconelli, Nico; Heijmen, Ben; Hoogeman, Mischa

    2014-01-01

    Purpose: To investigate the dosimetric impact of intrafraction prostate motion and the effect of robot correction strategies for hypofractionated CyberKnife treatments with a simultaneously integrated boost. Methods and Materials: A total of 548 real-time prostate motion tracks from 17 patients were available for dosimetric simulations of CyberKnife treatments, in which various correction strategies were included. Fixed time intervals between imaging/correction (15, 60, 180, and 360 seconds) were simulated, as well as adaptive timing (ie, the time interval reduced from 60 to 15 seconds in case prostate motion exceeded 3 mm or 2° in consecutive images). The simulated extent of robot corrections was also varied: no corrections, translational corrections only, and translational corrections combined with rotational corrections up to 5°, 10°, and perfect rotational correction. The correction strategies were evaluated for treatment plans with a 0-mm or 3-mm margin around the clinical target volume (CTV). We recorded CTV coverage (V 100% ) and dose-volume parameters of the peripheral zone (boost), rectum, bladder, and urethra. Results: Planned dose parameters were increasingly preserved with larger extents of robot corrections. A time interval between corrections of 60 to 180 seconds provided optimal preservation of CTV coverage. To achieve 98% CTV coverage in 98% of the treatments, translational and rotational corrections up to 10° were required for the 0-mm margin plans, whereas translational and rotational corrections up to 5° were required for the 3-mm margin plans. Rectum and bladder were spared considerably better in the 0-mm margin plans. Adaptive timing did not improve delivered dose. Conclusions: Intrafraction prostate motion substantially affected the delivered dose but was compensated for effectively by robot corrections using a time interval of 60 to 180 seconds. A 0-mm margin required larger extents of additional rotational corrections than a 3-mm

  2. GPU accelerated manifold correction method for spinning compact binaries

    Science.gov (United States)

    Ran, Chong-xi; Liu, Song; Zhong, Shuang-ying

    2018-04-01

    The graphics processing unit (GPU) acceleration of the manifold correction algorithm based on the compute unified device architecture (CUDA) technology is designed to simulate the dynamic evolution of the Post-Newtonian (PN) Hamiltonian formulation of spinning compact binaries. The feasibility and the efficiency of parallel computation on GPU have been confirmed by various numerical experiments. The numerical comparisons show that the accuracy on GPU execution of manifold corrections method has a good agreement with the execution of codes on merely central processing unit (CPU-based) method. The acceleration ability when the codes are implemented on GPU can increase enormously through the use of shared memory and register optimization techniques without additional hardware costs, implying that the speedup is nearly 13 times as compared with the codes executed on CPU for phase space scan (including 314 × 314 orbits). In addition, GPU-accelerated manifold correction method is used to numerically study how dynamics are affected by the spin-induced quadrupole-monopole interaction for black hole binary system.

  3. A New Dyslexia Reading Method and Visual Correction Position Method.

    Science.gov (United States)

    Manilla, George T; de Braga, Joe

    2017-01-01

    Pediatricians and educators may interact daily with several dyslexic patients or students. One dyslexic author accidently developed a personal, effective, corrective reading method. Its effectiveness was evaluated in 3 schools. One school utilized 8 demonstration special education students. Over 3 months, one student grew one third year, 3 grew 1 year, and 4 grew 2 years. In another school, 6 sixth-, seventh-, and eighth-grade classroom teachers followed 45 treated dyslexic students. They all excelled and progressed beyond their classroom peers in 4 months. Using cyclovergence upper gaze, dyslexic reading problems disappeared at one of the Positional Reading Arc positions of 30°, 60°, 90°, 120°, or 150° for 10 dyslexics. Positional Reading Arc on 112 students of the second through eighth grades showed words read per minute, reading errors, and comprehension improved. Dyslexia was visually corrected by use of a new reading method and Positional Reading Arc positions.

  4. Ultra-low dose CT attenuation correction for PET/CT

    International Nuclear Information System (INIS)

    Xia Ting; Kinahan, Paul E; Alessio, Adam M; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren

    2012-01-01

    A challenge for positron emission tomography/computed tomography (PET/CT) quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently available, lowest dose CT techniques, extended duration cine CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging. (paper)

  5. Detecting chaos in particle accelerators through the frequency map analysis method.

    Science.gov (United States)

    Papaphilippou, Yannis

    2014-06-01

    The motion of beams in particle accelerators is dominated by a plethora of non-linear effects, which can enhance chaotic motion and limit their performance. The application of advanced non-linear dynamics methods for detecting and correcting these effects and thereby increasing the region of beam stability plays an essential role during the accelerator design phase but also their operation. After describing the nature of non-linear effects and their impact on performance parameters of different particle accelerator categories, the theory of non-linear particle motion is outlined. The recent developments on the methods employed for the analysis of chaotic beam motion are detailed. In particular, the ability of the frequency map analysis method to detect chaotic motion and guide the correction of non-linear effects is demonstrated in particle tracking simulations but also experimental data.

  6. Dead time corrections using the backward extrapolation method

    Energy Technology Data Exchange (ETDEWEB)

    Gilad, E., E-mail: gilade@bgu.ac.il [The Unit of Nuclear Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Dubi, C. [Department of Physics, Nuclear Research Center NEGEV (NRCN), Beer-Sheva 84190 (Israel); Geslot, B.; Blaise, P. [DEN/CAD/DER/SPEx/LPE, CEA Cadarache, Saint-Paul-les-Durance 13108 (France); Kolin, A. [Department of Physics, Nuclear Research Center NEGEV (NRCN), Beer-Sheva 84190 (Israel)

    2017-05-11

    Dead time losses in neutron detection, caused by both the detector and the electronics dead time, is a highly nonlinear effect, known to create high biasing in physical experiments as the power grows over a certain threshold, up to total saturation of the detector system. Analytic modeling of the dead time losses is a highly complicated task due to the different nature of the dead time in the different components of the monitoring system (e.g., paralyzing vs. non paralyzing), and the stochastic nature of the fission chains. In the present study, a new technique is introduced for dead time corrections on the sampled Count Per Second (CPS), based on backward extrapolation of the losses, created by increasingly growing artificially imposed dead time on the data, back to zero. The method has been implemented on actual neutron noise measurements carried out in the MINERVE zero power reactor, demonstrating high accuracy (of 1–2%) in restoring the corrected count rate. - Highlights: • A new method for dead time corrections is introduced and experimentally validated. • The method does not depend on any prior calibration nor assumes any specific model. • Different dead times are imposed on the signal and the losses are extrapolated to zero. • The method is implemented and validated using neutron measurements from the MINERVE. • Result show very good correspondence to empirical results.

  7. Techniques for transparent lattice measurement and correction

    Science.gov (United States)

    Cheng, Weixing; Li, Yongjun; Ha, Kiman

    2017-07-01

    A novel method has been successfully demonstrated at NSLS-II to characterize the lattice parameters with gated BPM turn-by-turn (TbT) capability. This method can be used at high current operation. Conventional lattice characterization and tuning are carried out at low current in dedicated machine studies which include beam-based measurement/correction of orbit, tune, dispersion, beta-beat, phase advance, coupling etc. At the NSLS-II storage ring, we observed lattice drifting during beam accumulation in user operation. Coupling and lifetime change while insertion device (ID) gaps are moved. With the new method, dynamical lattice correction is possible to achieve reliable and productive operations. A bunch-by-bunch feedback system excites a small fraction (∼1%) of bunches and gated BPMs are aligned to see those bunch motions. The gated TbT position data are used to characterize the lattice hence correction can be applied. As there are ∼1% of total charges disturbed for a short period of time (several ms), this method is transparent to general user operation. We demonstrated the effectiveness of these tools during high current user operation.

  8. Simplified Methods Applied to Nonlinear Motion of Spar Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Haslum, Herbjoern Alf

    2000-07-01

    Simplified methods for prediction of motion response of spar platforms are presented. The methods are based on first and second order potential theory. Nonlinear drag loads and the effect of the pumping motion in a moon-pool are also considered. Large amplitude pitch motions coupled to extreme amplitude heave motions may arise when spar platforms are exposed to long period swell. The phenomenon is investigated theoretically and explained as a Mathieu instability. It is caused by nonlinear coupling effects between heave, surge, and pitch. It is shown that for a critical wave period, the envelope of the heave motion makes the pitch motion unstable. For the same wave period, a higher order pitch/heave coupling excites resonant heave response. This mutual interaction largely amplifies both the pitch and the heave response. As a result, the pitch/heave instability revealed in this work is more critical than the previously well known Mathieu's instability in pitch which occurs if the wave period (or the natural heave period) is half the natural pitch period. The Mathieu instability is demonstrated both by numerical simulations with a newly developed calculation tool and in model experiments. In order to learn more about the conditions for this instability to occur and also how it may be controlled, different damping configurations (heave damping disks and pitch/surge damping fins) are evaluated both in model experiments and by numerical simulations. With increased drag damping, larger wave amplitudes and more time are needed to trigger the instability. The pitch/heave instability is a low probability of occurrence phenomenon. Extreme wave periods are needed for the instability to be triggered, about 20 seconds for a typical 200m draft spar. However, it may be important to consider the phenomenon in design since the pitch/heave instability is very critical. It is also seen that when classical spar platforms (constant cylindrical cross section and about 200m draft

  9. A Horizontal Tilt Correction Method for Ship License Numbers Recognition

    Science.gov (United States)

    Liu, Baolong; Zhang, Sanyuan; Hong, Zhenjie; Ye, Xiuzi

    2018-02-01

    An automatic ship license numbers (SLNs) recognition system plays a significant role in intelligent waterway transportation systems since it can be used to identify ships by recognizing the characters in SLNs. Tilt occurs frequently in many SLNs because the monitors and the ships usually have great vertical or horizontal angles, which decreases the accuracy and robustness of a SLNs recognition system significantly. In this paper, we present a horizontal tilt correction method for SLNs. For an input tilt SLN image, the proposed method accomplishes the correction task through three main steps. First, a MSER-based characters’ center-points computation algorithm is designed to compute the accurate center-points of the characters contained in the input SLN image. Second, a L 1- L 2 distance-based straight line is fitted to the computed center-points using M-estimator algorithm. The tilt angle is estimated at this stage. Finally, based on the computed tilt angle, an affine transformation rotation is conducted to rotate and to correct the input SLN horizontally. At last, the proposed method is tested on 200 tilt SLN images, the proposed method is proved to be effective with a tilt correction rate of 80.5%.

  10. Texture analysis by the Schulz reflection method: Defocalization corrections for thin films

    International Nuclear Information System (INIS)

    Chateigner, D.; Germi, P.; Pernet, M.

    1992-01-01

    A new method is described for correcting experimental data obtained from the texture analysis of thin films. The analysis employed for correcting the data usually requires the experimental curves of defocalization for a randomly oriented specimen. In view of difficulties in finding non-oriented films, a theoretical method for these corrections is proposed which uses the defocalization evolution for a bulk sample, the film thickness and the penetration depth of the incident beam in the material. This correction method is applied to a film of YBa 2 CU 3 O 7-δ on an SrTiO 3 single-crystal substrate. (orig.)

  11. Markerless motion estimation for motion-compensated clinical brain imaging

    Science.gov (United States)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  12. Visual-vestibular interaction in motion perception

    NARCIS (Netherlands)

    Hosman, Ruud J A W; Cardullo, Frank M.; Bos, Jelte E.

    2011-01-01

    Correct perception of self motion is of vital importance for both the control of our position and posture when moving around in our environment. With the development of human controlled vehicles as bicycles, cars and aircraft motion perception became of interest for the understanding of vehicle

  13. Correcting saturation of detectors for particle/droplet imaging methods

    International Nuclear Information System (INIS)

    Kalt, Peter A M

    2010-01-01

    Laser-based diagnostic methods are being applied to more and more flows of theoretical and practical interest and are revealing interesting new flow features. Imaging particles or droplets in nephelometry and laser sheet dropsizing methods requires a trade-off of maximized signal-to-noise ratio without over-saturating the detector. Droplet and particle imaging results in lognormal distribution of pixel intensities. It is possible to fit a derived lognormal distribution to the histogram of measured pixel intensities. If pixel intensities are clipped at a saturated value, it is possible to estimate a presumed probability density function (pdf) shape without the effects of saturation from the lognormal fit to the unsaturated histogram. Information about presumed shapes of the pixel intensity pdf is used to generate corrections that can be applied to data to account for saturation. The effects of even slight saturation are shown to be a significant source of error on the derived average. The influence of saturation on the derived root mean square (rms) is even more pronounced. It is found that errors on the determined average exceed 5% when the number of saturated samples exceeds 3% of the total. Errors on the rms are 20% for a similar saturation level. This study also attempts to delineate limits, within which the detector saturation can be accurately corrected. It is demonstrated that a simple method for reshaping the clipped part of the pixel intensity histogram makes accurate corrections to account for saturated pixels. These outcomes can be used to correct a saturated signal, quantify the effect of saturation on a derived average and offer a method to correct the derived average in the case of slight to moderate saturation of pixels

  14. RELIC: a novel dye-bias correction method for Illumina Methylation BeadChip.

    Science.gov (United States)

    Xu, Zongli; Langie, Sabine A S; De Boever, Patrick; Taylor, Jack A; Niu, Liang

    2017-01-03

    The Illumina Infinium HumanMethylation450 BeadChip and its successor, Infinium MethylationEPIC BeadChip, have been extensively utilized in epigenome-wide association studies. Both arrays use two fluorescent dyes (Cy3-green/Cy5-red) to measure methylation level at CpG sites. However, performance difference between dyes can result in biased estimates of methylation levels. Here we describe a novel method, called REgression on Logarithm of Internal Control probes (RELIC) to correct for dye bias on whole array by utilizing the intensity values of paired internal control probes that monitor the two color channels. We evaluate the method in several datasets against other widely used dye-bias correction methods. Results on data quality improvement showed that RELIC correction statistically significantly outperforms alternative dye-bias correction methods. We incorporated the method into the R package ENmix, which is freely available from the Bioconductor website ( https://www.bioconductor.org/packages/release/bioc/html/ENmix.html ). RELIC is an efficient and robust method to correct for dye-bias in Illumina Methylation BeadChip data. It outperforms other alternative methods and conveniently implemented in R package ENmix to facilitate DNA methylation studies.

  15. Directional Limits on Motion Transparency Assessed Through Colour-Motion Binding.

    Science.gov (United States)

    Maloney, Ryan T; Clifford, Colin W G; Mareschal, Isabelle

    2018-03-01

    Motion-defined transparency is the perception of two or more distinct moving surfaces at the same retinal location. We explored the limits of motion transparency using superimposed surfaces of randomly positioned dots defined by differences in motion direction and colour. In one experiment, dots were red or green and we varied the proportion of dots of a single colour that moved in a single direction ('colour-motion coherence') and measured the threshold direction difference for discriminating between two directions. When colour-motion coherences were high (e.g., 90% of red dots moving in one direction), a smaller direction difference was required to correctly bind colour with direction than at low coherences. In another experiment, we varied the direction difference between the surfaces and measured the threshold colour-motion coherence required to discriminate between them. Generally, colour-motion coherence thresholds decreased with increasing direction differences, stabilising at direction differences around 45°. Different stimulus durations were compared, and thresholds were higher at the shortest (150 ms) compared with the longest (1,000 ms) duration. These results highlight different yet interrelated aspects of the task and the fundamental limits of the mechanisms involved: the resolution of narrowly separated directions in motion processing and the local sampling of dot colours from each surface.

  16. Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods

    Directory of Open Access Journals (Sweden)

    Huiliang Cao

    2016-01-01

    Full Text Available This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses’ quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC, Quadrature Force Correction (QFC and Coupling Stiffness Correction (CSC methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups’ output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.

  17. Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods.

    Science.gov (United States)

    Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun

    2016-01-07

    This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses' quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups' output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.

  18. Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods

    Science.gov (United States)

    Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun

    2016-01-01

    This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses’ quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups’ output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability. PMID:26751455

  19. A method of detector correction for cosmic ray muon radiography

    International Nuclear Information System (INIS)

    Liu Yuanyuan; Zhao Ziran; Chen Zhiqiang; Zhang Li; Wang Zhentian

    2008-01-01

    Cosmic ray muon radiography which has good penetrability and sensitivity to high-Z materials is an effective way for detecting shielded nuclear materials. The problem of data correction is one of the key points of muon radiography technique. Because of the influence of environmental background, environmental yawp and error of detectors, the raw data can not be used directly. If we used the raw data as the usable data to reconstruct without any corrections, it would turn up terrible artifacts. Based on the characteristics of the muon radiography system, aimed at the error of detectors, this paper proposes a method of detector correction. The simulation experiments demonstrate that this method can effectively correct the error produced by detectors. Therefore, we can say that it does a further step to let the technique of cosmic muon radiography into out real life. (authors)

  20. A Review of Point-Wise Motion Tracking Algorithms for Fetal Magnetic Resonance Imaging.

    Science.gov (United States)

    Chikop, Shivaprasad; Koulagi, Girish; Kumbara, Ankita; Geethanath, Sairam

    2016-01-01

    We review recent feature-based tracking algorithms as applied to fetal magnetic resonance imaging (MRI). Motion in fetal MRI is an active and challenging area of research, but the challenge can be mitigated by strategies related to patient setup, acquisition, reconstruction, and image processing. We focus on fetal motion correction through methods based on tracking algorithms for registration of slices with similar anatomy in multiple volumes. We describe five motion detection algorithms based on corner detection and region-based methods through pseudocodes, illustrating the results of their application to fetal MRI. We compare the performance of these methods on the basis of error in registration and minimum number of feature points required for registration. Harris, a corner detection method, provides similar error when compared to the other methods and has the lowest number of feature points required at that error level. We do not discuss group-wise methods here. Finally, we attempt to communicate the application of available feature extraction methods to fetal MRI.

  1. Precise method for correcting count-rate losses in scintillation cameras

    International Nuclear Information System (INIS)

    Madsen, M.T.; Nickles, R.J.

    1986-01-01

    Quantitative studies performed with scintillation detectors often require corrections for lost data because of the finite resolving time of the detector. Methods that monitor losses by means of a reference source or pulser have unacceptably large statistical fluctuations associated with their correction factors. Analytic methods that model the detector as a paralyzable system require an accurate estimate of the system resolving time. Because the apparent resolving time depends on many variables, including the window setting, source distribution, and the amount of scattering material, significant errors can be introduced by relying on a resolving time obtained from phantom measurements. These problems can be overcome by curve-fitting the data from a reference source to a paralyzable model in which the true total count rate in the selected window is estimated from the observed total rate. The resolving time becomes a free parameter in this method which is optimized to provide the best fit to the observed reference data. The fitted curve has the inherent accuracy of the reference source method with the precision associated with the observed total image count rate. Correction factors can be simply calculated from the ratio of the true reference source rate and the fitted curve. As a result, the statistical uncertainty of the data corrected by this method is not significantly increased

  2. External motion tracking for brain imaging: structured light tracking with invisible light

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Højgaard, Liselotte

    2010-01-01

    The importance of motion correction in 3D medical imaging increases with increasing scanner resolution. It is necessary for scanners with long image acquisition and low contrast images to correct for patient motion in order to optimize image quality. We present a near infrared structured light...... stereo depth map system for head motion estimation inside 3D medical scanners with limited space....

  3. Equation-Method for correcting clipping errors in OFDM signals.

    Science.gov (United States)

    Bibi, Nargis; Kleerekoper, Anthony; Muhammad, Nazeer; Cheetham, Barry

    2016-01-01

    Orthogonal frequency division multiplexing (OFDM) is the digital modulation technique used by 4G and many other wireless communication systems. OFDM signals have significant amplitude fluctuations resulting in high peak to average power ratios which can make an OFDM transmitter susceptible to non-linear distortion produced by its high power amplifiers (HPA). A simple and popular solution to this problem is to clip the peaks before an OFDM signal is applied to the HPA but this causes in-band distortion and introduces bit-errors at the receiver. In this paper we discuss a novel technique, which we call the Equation-Method, for correcting these errors. The Equation-Method uses the Fast Fourier Transform to create a set of simultaneous equations which, when solved, return the amplitudes of the peaks before they were clipped. We show analytically and through simulations that this method can, correct all clipping errors over a wide range of clipping thresholds. We show that numerical instability can be avoided and new techniques are needed to enable the receiver to differentiate between correctly and incorrectly received frequency-domain constellation symbols.

  4. A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo Camera.

    Science.gov (United States)

    Ci, Wenyan; Huang, Yingping

    2016-10-17

    Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot) using image information and is a key component for autonomous vehicles and robotics. This paper proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig with optical flow analysis. An objective function fitted with a set of feature points is created by establishing the mathematical relationship between optical flow, depth and camera ego-motion parameters through the camera's 3-dimensional motion and planar imaging model. Accordingly, the six motion parameters are computed by minimizing the objective function, using the iterative Levenberg-Marquard method. One of key points for visual odometry is that the feature points selected for the computation should contain inliers as much as possible. In this work, the feature points and their optical flows are initially detected by using the Kanade-Lucas-Tomasi (KLT) algorithm. A circle matching is followed to remove the outliers caused by the mismatching of the KLT algorithm. A space position constraint is imposed to filter out the moving points from the point set detected by the KLT algorithm. The Random Sample Consensus (RANSAC) algorithm is employed to further refine the feature point set, i.e., to eliminate the effects of outliers. The remaining points are tracked to estimate the ego-motion parameters in the subsequent frames. The approach presented here is tested on real traffic videos and the results prove the robustness and precision of the method.

  5. Fast and Accurate Rat Head Motion Tracking With Point Sources for Awake Brain PET.

    Science.gov (United States)

    Miranda, Alan; Staelens, Steven; Stroobants, Sigrid; Verhaeghe, Jeroen

    2017-07-01

    To avoid the confounding effects of anesthesia and immobilization stress in rat brain positron emission tomography (PET), motion tracking-based unrestrained awake rat brain imaging is being developed. In this paper, we propose a fast and accurate rat headmotion tracking method based on small PET point sources. PET point sources (3-4) attached to the rat's head are tracked in image space using 15-32-ms time frames. Our point source tracking (PST) method was validated using a manually moved microDerenzo phantom that was simultaneously tracked with an optical tracker (OT) for comparison. The PST method was further validated in three awake [ 18 F]FDG rat brain scans. Compared with the OT, the PST-based correction at the same frame rate (31.2 Hz) reduced the reconstructed FWHM by 0.39-0.66 mm for the different tested rod sizes of the microDerenzo phantom. The FWHM could be further reduced by another 0.07-0.13 mm when increasing the PST frame rate (66.7 Hz). Regional brain [ 18 F]FDG uptake in the motion corrected scan was strongly correlated ( ) with that of the anesthetized reference scan for all three cases ( ). The proposed PST method allowed excellent and reproducible motion correction in awake in vivo experiments. In addition, there is no need of specialized tracking equipment or additional calibrations to be performed, the point sources are practically imperceptible to the rat, and PST is ideally suitable for small bore scanners, where optical tracking might be challenging.

  6. Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle

    Science.gov (United States)

    Lim, Hae Gyun; Ham Kim, Hyung; Yoon, Changhan

    2018-05-01

    We report a method to evaluate the performances of a single-beam acoustic tweezer using a high-frequency ultrasound transducer. The motion of a microparticle trapped by a 45-MHz single-element transducer was captured and analyzed to deduce the magnitude of trapping force. In the proposed method, the motion of a trapped microparticle was analyzed from a series of microscopy images to compute trapping force; thus, no additional equipment such as microfluidics is required. The method could be used to estimate the effective trapping force in an acoustic tweezer experiment to assess cell membrane deformability by attaching a microbead to the surface of a cell and tracking the motion of the trapped bead, which is similar to a bead-based assay that uses optical tweezers. The results showed that the trapping force increased with increasing acoustic intensity and duty factor, but the force eventually reached a plateau at a higher acoustic intensity. They demonstrated that this method could be used as a simple tool to evaluate the performance and to optimize the operating conditions of acoustic tweezers.

  7. A new correction method for determination on carbohydrates in lignocellulosic biomass.

    Science.gov (United States)

    Li, Hong-Qiang; Xu, Jian

    2013-06-01

    The accurate determination on the key components in lignocellulosic biomass is the premise of pretreatment and bioconversion. Currently, the widely used 72% H2SO4 two-step hydrolysis quantitative saccharification (QS) procedure uses loss coefficient of monosaccharide standards to correct monosaccharide loss in the secondary hydrolysis (SH) of QS and may result in excessive correction. By studying the quantitative relationships of glucose and xylose losses during special hydrolysis conditions and the HMF and furfural productions, a simple correction on the monosaccharide loss from both PH and SH was established by using HMF and furfural as the calibrators. This method was used to the component determination on corn stover, Miscanthus and cotton stalk (raw materials and pretreated) and compared to the NREL method. It has been proved that this method can avoid excessive correction on the samples with high-carbohydrate contents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A general method for motion compensation in x-ray computed tomography

    Science.gov (United States)

    Biguri, Ander; Dosanjh, Manjit; Hancock, Steven; Soleimani, Manuchehr

    2017-08-01

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D x-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  9. A General Method for Motion Compensation in X-ray Computed Tomography

    CERN Document Server

    AUTHOR|(CDS)2067162; Dosanjh, Manjit; Soleimani, Manuchehr

    2017-01-01

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D X-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  10. A general method for motion compensation in x-ray computed tomography.

    Science.gov (United States)

    Biguri, Ander; Dosanjh, Manjit; Hancock, Steven; Soleimani, Manuchehr

    2017-07-24

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D x-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  11. 3D Surface Realignment Tracking for Medical Imaging: A Phantom Study with PET Motion Correction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Jensen, Rasmus Ramsbøl

    2011-01-01

    We present a complete system for motion correction in high resolution brain positron emission tomography (PET) imaging. It is based on a compact structured light scanner mounted above the patient tunnel of the Siemens High Resolution Research Tomograph PET brain scanner. The structured light system...... is equipped with a near infrared diode and uses phase-shift interferometry to compute 3D representations of the forehead of the patient. These 3D point clouds are progressively aligned to a reference surface and thereby giving the head pose changes. The estimated pose changes are used to reposition a sequence...... of recon- structed PET frames. To align the structured light system with the PET coordinate system a novel registration algorithm based on the PET trans- mission scan and an initial surface has been developed. The performance of the complete setup has been evaluated using a custom made phantom based...

  12. Scatter correction method with primary modulator for dual energy digital radiography: a preliminary study

    Science.gov (United States)

    Jo, Byung-Du; Lee, Young-Jin; Kim, Dae-Hong; Jeon, Pil-Hyun; Kim, Hee-Joung

    2014-03-01

    In conventional digital radiography (DR) using a dual energy subtraction technique, a significant fraction of the detected photons are scattered within the body, resulting in the scatter component. Scattered radiation can significantly deteriorate image quality in diagnostic X-ray imaging systems. Various methods of scatter correction, including both measurement and non-measurement-based methods have been proposed in the past. Both methods can reduce scatter artifacts in images. However, non-measurement-based methods require a homogeneous object and have insufficient scatter component correction. Therefore, we employed a measurement-based method to correct for the scatter component of inhomogeneous objects from dual energy DR (DEDR) images. We performed a simulation study using a Monte Carlo simulation with a primary modulator, which is a measurement-based method for the DEDR system. The primary modulator, which has a checkerboard pattern, was used to modulate primary radiation. Cylindrical phantoms of variable size were used to quantify imaging performance. For scatter estimation, we used Discrete Fourier Transform filtering. The primary modulation method was evaluated using a cylindrical phantom in the DEDR system. The scatter components were accurately removed using a primary modulator. When the results acquired with scatter correction and without correction were compared, the average contrast-to-noise ratio (CNR) with the correction was 1.35 times higher than that obtained without correction, and the average root mean square error (RMSE) with the correction was 38.00% better than that without correction. In the subtraction study, the average CNR with correction was 2.04 (aluminum subtraction) and 1.38 (polymethyl methacrylate (PMMA) subtraction) times higher than that obtained without the correction. The analysis demonstrated the accuracy of scatter correction and the improvement of image quality using a primary modulator and showed the feasibility of

  13. Letters What causes an ice skater to accelerate? Note on the definitions of weight A-level physics is mathematical enough Correction to 'Confusion over the physics of circular motion'

    Science.gov (United States)

    2011-11-01

    What causes an ice skater to accelerate? Hugh Fricker Note on the definitions of weight Nenad Stojilovic A-level physics is mathematical enough Helen Hare Correction to 'Confusion over the physics of circular motion'

  14. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging.

    Science.gov (United States)

    Hunter, Chad R R N; Klein, Ran; Beanlands, Rob S; deKemp, Robert A

    2016-04-01

    Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET-CT misalignment. A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations also indicated that the

  15. Demons versus level-set motion registration for coronary 18F-sodium fluoride PET

    Science.gov (United States)

    Rubeaux, Mathieu; Joshi, Nikhil; Dweck, Marc R.; Fletcher, Alison; Motwani, Manish; Thomson, Louise E.; Germano, Guido; Dey, Damini; Berman, Daniel S.; Newby, David E.; Slomka, Piotr J.

    2016-03-01

    Ruptured coronary atherosclerotic plaques commonly cause acute myocardial infarction. It has been recently shown that active microcalcification in the coronary arteries, one of the features that characterizes vulnerable plaques at risk of rupture, can be imaged using cardiac gated 18F-sodium fluoride (18F-NaF) PET. We have shown in previous work that a motion correction technique applied to cardiac-gated 18F-NaF PET images can enhance image quality and improve uptake estimates. In this study, we further investigated the applicability of different algorithms for registration of the coronary artery PET images. In particular, we aimed to compare demons vs. level-set nonlinear registration techniques applied for the correction of cardiac motion in coronary 18F-NaF PET. To this end, fifteen patients underwent 18F-NaF PET and prospective coronary CT angiography (CCTA). PET data were reconstructed in 10 ECG gated bins; subsequently these gated bins were registered using demons and level-set methods guided by the extracted coronary arteries from CCTA, to eliminate the effect of cardiac motion on PET images. Noise levels, target-to-background ratios (TBR) and global motion were compared to assess image quality. Compared to the reference standard of using only diastolic PET image (25% of the counts from PET acquisition), cardiac motion registration using either level-set or demons techniques almost halved image noise due to the use of counts from the full PET acquisition and increased TBR difference between 18F-NaF positive and negative lesions. The demons method produces smoother deformation fields, exhibiting no singularities (which reflects how physically plausible the registration deformation is), as compared to the level-set method, which presents between 4 and 8% of singularities, depending on the coronary artery considered. In conclusion, the demons method produces smoother motion fields as compared to the level-set method, with a motion that is physiologically

  16. A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo Camera

    Directory of Open Access Journals (Sweden)

    Wenyan Ci

    2016-10-01

    Full Text Available Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot using image information and is a key component for autonomous vehicles and robotics. This paper proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig with optical flow analysis. An objective function fitted with a set of feature points is created by establishing the mathematical relationship between optical flow, depth and camera ego-motion parameters through the camera’s 3-dimensional motion and planar imaging model. Accordingly, the six motion parameters are computed by minimizing the objective function, using the iterative Levenberg–Marquard method. One of key points for visual odometry is that the feature points selected for the computation should contain inliers as much as possible. In this work, the feature points and their optical flows are initially detected by using the Kanade–Lucas–Tomasi (KLT algorithm. A circle matching is followed to remove the outliers caused by the mismatching of the KLT algorithm. A space position constraint is imposed to filter out the moving points from the point set detected by the KLT algorithm. The Random Sample Consensus (RANSAC algorithm is employed to further refine the feature point set, i.e., to eliminate the effects of outliers. The remaining points are tracked to estimate the ego-motion parameters in the subsequent frames. The approach presented here is tested on real traffic videos and the results prove the robustness and precision of the method.

  17. A scalable method for parallelizing sampling-based motion planning algorithms

    KAUST Repository

    Jacobs, Sam Ade; Manavi, Kasra; Burgos, Juan; Denny, Jory; Thomas, Shawna; Amato, Nancy M.

    2012-01-01

    This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.

  18. A scalable method for parallelizing sampling-based motion planning algorithms

    KAUST Repository

    Jacobs, Sam Ade

    2012-05-01

    This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.

  19. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, Chiara [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133 (Italy); Peroni, Marta [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133, Italy and Paul Scherrer Institut, Zentrum für Protonentherapie, WMSA/C15, CH-5232 Villigen PSI (Italy); Baroni, Guido; Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133, Italy and Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, strada Campeggi 53, Pavia 27100 (Italy)

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT

  20. A comparison between the adiabatic time dependent Hartree-Fock and the generator coordinate methods for the description of nuclear collective motion

    International Nuclear Information System (INIS)

    Villars, F.

    1975-01-01

    The objective of the work is to draw attention to the essential equivalence of the two apparently quite distinct ways of describing nuclear collective dyanmics, the adiabatic time-dependent Hartree-Fock method (ADTHF) on the one hand, and the Generator Coordinate (GC) method on the other hand. To demonstrate this relation, an analysis of the simplest case, in which collective motion is described by a single collective para- meter q(t) is presented. In the ATDHF approach, two self-consistency conditions are obtained; the resultant expressions for the collective potential and kinetic energies represent a special case of the more general results of Baranger and Veneroni. In the G.C. approach to the same system (with the same collective parameter q), the narrow overlap approximation must be made, as the counterpart of the adiabatic approximation in the TDHF method. In its conventional form, the G.C. method leads to a different expression for the collective kinetic energy. It is shown however, that a simple generalization of the G.C.-wave function leads to corrections determined by a variational principle. In leading order, the corrected expression for the collective kinetic energy is identical with the TDHF result In both cases, the collective inertia is determined by a self-consistent cranking formula

  1. The various correction methods to the high precision aeromagnetic data

    International Nuclear Information System (INIS)

    Xu Guocang; Zhu Lin; Ning Yuanli; Meng Xiangbao; Zhang Hongjian

    2014-01-01

    In the airborne geophysical survey, an outstanding achievement first depends on the measurement precision of the instrument, and the choice of measurement conditions, the reliability of data collection, followed by the correct method of measurement data processing, the rationality of the data interpretation. Obviously, geophysical data processing is an important task for the comprehensive interpretation of the measurement results, processing method is correct or not directly related to the quality of the final results. we have developed a set of personal computer software to aeromagnetic and radiometric survey data processing in the process of actual production and scientific research in recent years, and successfully applied to the production. The processing methods and flowcharts to the high precision aromagnetic data were simply introduced in this paper. However, the mathematical techniques of the various correction programes to IGRF and flying height and magnetic diurnal variation were stressily discussed in the paper. Their processing effectness were illustrated by taking an example as well. (authors)

  2. Decay correction methods in dynamic PET studies

    International Nuclear Information System (INIS)

    Chen, K.; Reiman, E.; Lawson, M.

    1995-01-01

    In order to reconstruct positron emission tomography (PET) images in quantitative dynamic studies, the data must be corrected for radioactive decay. One of the two commonly used methods ignores physiological processes including blood flow that occur at the same time as radioactive decay; the other makes incorrect use of time-accumulated PET counts. In simulated dynamic PET studies using 11 C-acetate and 18 F-fluorodeoxyglucose (FDG), these methods are shown to result in biased estimates of the time-activity curve (TAC) and model parameters. New methods described in this article provide significantly improved parameter estimates in dynamic PET studies

  3. Method of absorbance correction in a spectroscopic heating value sensor

    Science.gov (United States)

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  4. An efficient dose-compensation method for proximity effect correction

    International Nuclear Information System (INIS)

    Wang Ying; Han Weihua; Yang Xiang; Zhang Yang; Yang Fuhua; Zhang Renping

    2010-01-01

    A novel simple dose-compensation method is developed for proximity effect correction in electron-beam lithography. The sizes of exposed patterns depend on dose factors while other exposure parameters (including accelerate voltage, resist thickness, exposing step size, substrate material, and so on) remain constant. This method is based on two reasonable assumptions in the evaluation of the compensated dose factor: one is that the relation between dose factors and circle-diameters is linear in the range under consideration; the other is that the compensated dose factor is only affected by the nearest neighbors for simplicity. Four-layer-hexagon photonic crystal structures were fabricated as test patterns to demonstrate this method. Compared to the uncorrected structures, the homogeneity of the corrected hole-size in photonic crystal structures was clearly improved. (semiconductor technology)

  5. Inflationary power spectra with quantum holonomy corrections

    Energy Technology Data Exchange (ETDEWEB)

    Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, Reymonta 4, Cracow, 30-059 Poland (Poland)

    2014-03-01

    In this paper we study slow-roll inflation with holonomy corrections from loop quantum cosmology. It was previously shown that, in the Planck epoch, these corrections lead to such effects as singularity avoidance, metric signature change and a state of silence. Here, we consider holonomy corrections affecting the phase of cosmic inflation, which takes place away from the Planck epoch. Both tensor and scalar power spectra of primordial inflationary perturbations are computed up to the first order in slow-roll parameters and V/ρ{sub c}, where V is a potential of the scalar field and ρ{sub c} is a critical energy density (expected to be of the order of the Planck energy density). Possible normalizations of modes at short scales are discussed. In case the normalization is performed with use of the Wronskian condition applied to adiabatic vacuum, the tensor and scalar spectral indices are not quantum corrected in the leading order. However, by choosing an alternative method of normalization one can obtain quantum corrections in the leading order. Furthermore, we show that the holonomy-corrected equations of motion for tensor and scalar modes can be derived based on effective background metrics. This allows us to show that the classical Wronskian normalization condition is well defined for the cosmological perturbations with holonomy corrections.

  6. A Motion Planning Method for Omnidirectional Mobile Robot Based on the Anisotropic Characteristics

    Directory of Open Access Journals (Sweden)

    Chuntao Leng

    2008-11-01

    Full Text Available A more suitable motion planning method for an omni-directional mobile robot (OMR, an improved APF method (iAPF, is proposed in this paper by introducing the revolving factor into the artificial potential field (APF. Accordingly, the motion direction derived from traditional artificial potential field (tAPF is regulated. The maximum velocity, maximum acceleration and energy consumption of the OMR moving in different directions are analyzed, based on the kinematic and dynamic constraints of an OMR, and the anisotropy of OMR is presented in this paper. Then the novel concept of an Anisotropic-Function is proposed to indicate the quality of motion in different directions, which can make a very favorable trade-off between time-optimality, stability and efficacy-optimality. In order to obtain the optimal motion, the path that the robot can take in order to avoid the obstacle safely and reach the goal in a shorter path is deduced. Finally, simulations and experiments are carried out to demonstrate that the motion resulting from the iAPF is high-speed, highly stable and highly efficient when compared to the tAPF.

  7. A novel 3D absorption correction method for quantitative EDX-STEM tomography

    International Nuclear Information System (INIS)

    Burdet, Pierre; Saghi, Z.; Filippin, A.N.; Borrás, A.; Midgley, P.A.

    2016-01-01

    This paper presents a novel 3D method to correct for absorption in energy dispersive X-ray (EDX) microanalysis of heterogeneous samples of unknown structure and composition. By using STEM-based tomography coupled with EDX, an initial 3D reconstruction is used to extract the location of generated X-rays as well as the X-ray path through the sample to the surface. The absorption correction needed to retrieve the generated X-ray intensity is then calculated voxel-by-voxel estimating the different compositions encountered by the X-ray. The method is applied to a core/shell nanowire containing carbon and oxygen, two elements generating highly absorbed low energy X-rays. Absorption is shown to cause major reconstruction artefacts, in the form of an incomplete recovery of the oxide and an erroneous presence of carbon in the shell. By applying the correction method, these artefacts are greatly reduced. The accuracy of the method is assessed using reference X-ray lines with low absorption. - Highlights: • A novel 3D absorption correction method is proposed for 3D EDX-STEM tomography. • The absorption of X-rays along the path to the surface is calculated voxel-by-voxel. • The method is applied on highly absorbed X-rays emitted from a core/shell nanowire. • Absorption is shown to cause major artefacts in the reconstruction. • Using the absorption correction method, the reconstruction artefacts are greatly reduced.

  8. A novel 3D absorption correction method for quantitative EDX-STEM tomography

    Energy Technology Data Exchange (ETDEWEB)

    Burdet, Pierre, E-mail: pierre.burdet@a3.epfl.ch [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road 27, Cambridge CB3 0FS, Cambridgeshire (United Kingdom); Saghi, Z. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road 27, Cambridge CB3 0FS, Cambridgeshire (United Kingdom); Filippin, A.N.; Borrás, A. [Nanotechnology on Surfaces Laboratory, Materials Science Institute of Seville (ICMS), CSIC-University of Seville, C/ Americo Vespucio 49, 41092 Seville (Spain); Midgley, P.A. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road 27, Cambridge CB3 0FS, Cambridgeshire (United Kingdom)

    2016-01-15

    This paper presents a novel 3D method to correct for absorption in energy dispersive X-ray (EDX) microanalysis of heterogeneous samples of unknown structure and composition. By using STEM-based tomography coupled with EDX, an initial 3D reconstruction is used to extract the location of generated X-rays as well as the X-ray path through the sample to the surface. The absorption correction needed to retrieve the generated X-ray intensity is then calculated voxel-by-voxel estimating the different compositions encountered by the X-ray. The method is applied to a core/shell nanowire containing carbon and oxygen, two elements generating highly absorbed low energy X-rays. Absorption is shown to cause major reconstruction artefacts, in the form of an incomplete recovery of the oxide and an erroneous presence of carbon in the shell. By applying the correction method, these artefacts are greatly reduced. The accuracy of the method is assessed using reference X-ray lines with low absorption. - Highlights: • A novel 3D absorption correction method is proposed for 3D EDX-STEM tomography. • The absorption of X-rays along the path to the surface is calculated voxel-by-voxel. • The method is applied on highly absorbed X-rays emitted from a core/shell nanowire. • Absorption is shown to cause major artefacts in the reconstruction. • Using the absorption correction method, the reconstruction artefacts are greatly reduced.

  9. Calculation of foundation response to spatially varying ground motion by finite element method

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.

    1995-01-01

    This paper presents a general method to compute the response of a rigid foundation of arbitrary shape resting on a homogeneous or multilayered elastic soil when subjected to a spatially varying ground motion. The foundation response is calculated from the free-field ground motion and the contact tractions between the foundation and the soil. The spatial variation of ground motion in this study is introduced by a coherence function and the contact tractions are obtained numerically using the Finite Element Method in the process of calculating the dynamic compliance of the foundation. Applications of this method to a massless rigid disc supported on an elastic half space and to that founded on an elastic medium consisting of a layer of constant thickness supported on an elastic half space are described. The numerical results obtained are in very good agreement with analytical solutions published in the literature. (authors). 5 refs., 8 figs

  10. Method for Collision Avoidance Motion Coordination of Multiple Mobile Robots Using Central Observation

    Energy Technology Data Exchange (ETDEWEB)

    Ko, N.Y.; Seo, D.J. [Chosun University, Kwangju (Korea)

    2003-04-01

    This paper presents a new method driving multiple robots to their goal position without collision. Each robot adjusts its motion based on the information on the goal locations, velocity, and position of the robot and the velocity and position of the other robots. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the following factors: the distance from the robot to the other robots, velocity of the robot and the other robots. To implement the concept in moving robot avoidance, relative distance between the robots is derived. Our method combines the relative distance with an artificial potential field method. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, the usual potential field method sometimes fails preventing collision or causes hasty motion, because it initiates avoidance motion later than the proposed method. The proposed method can be used to move robots in a robot soccer team to their appropriate position without collision as fast as possible. (author). 21 refs., 10 figs., 13 tabs.

  11. Resistivity Correction Factor for the Four-Probe Method: Experiment I

    Science.gov (United States)

    Yamashita, Masato; Yamaguchi, Shoji; Enjoji, Hideo

    1988-05-01

    Experimental verification of the theoretically derived resistivity correction factor (RCF) is presented. Resistivity and sheet resistance measurements by the four-probe method are made on three samples: isotropic graphite, ITO film and Au film. It is indicated that the RCF can correct the apparent variations of experimental data to yield reasonable resistivities and sheet resistances.

  12. Four-dimensional MAP-RBI-EM image reconstruction method with a 4D motion prior for 4D gated myocardial perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek-Soo; Tsui, Benjamin M.W. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Radiology; Gullberg, Grant T. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2011-07-01

    We evaluated and proposed here a 4D maximum a posteriori rescaled-block iterative (MAP-RBI)-EM image reconstruction method with a motion prior to improve the accuracy of 4D gated myocardial perfusion (GMP) SPECT images. We hypothesized that a 4D motion prior which resembles the global motion of the true 4D motion of the heart will improve the accuracy of the reconstructed images with regional myocardial motion defect. Normal heart model in the 4D XCAT (eXtended CArdiac-Torso) phantom is used as the prior in the 4D MAP-RBI-EM algorithm where a Gaussian-shaped distribution is used as the derivative of potential function (DPF) that determines the smoothing strength and range of the prior in the algorithm. The mean and width of the DPF equal to the expected difference between the reconstructed image and the motion prior, and smoothing range, respectively. To evaluate the algorithm, we used simulated projection data from a typical clinical {sup 99m}Tc Sestamibi GMP SPECT study using the 4D XCAT phantom. The noise-free projection data were generated using an analytical projector that included the effects of attenuation, collimator-detector response and scatter (ADS) and Poisson noise was added to generated noisy projection data. The projection datasets were reconstructed using the modified 4D MAP-RBI-EM with various iterations, prior weights, and sigma values as well as with ADS correction. The results showed that the 4D reconstructed image estimates looked more like the motion prior with sharper edges as the weight of prior increased. It also demonstrated that edge preservation of the myocardium in the GMP SPECT images could be controlled by a proper motion prior. The Gaussian-shaped DPF allowed stronger and weaker smoothing force for smaller and larger difference of neighboring voxel values, respectively, depending on its parameter values. We concluded the 4D MAP-RBI-EM algorithm with the general motion prior can be used to provide 4D GMP SPECT images with improved

  13. Efficient color correction method for smartphone camera-based health monitoring application.

    Science.gov (United States)

    Duc Dang; Chae Ho Cho; Daeik Kim; Oh Seok Kwon; Jo Woon Chong

    2017-07-01

    Smartphone health monitoring applications are recently highlighted due to the rapid development of hardware and software performance of smartphones. However, color characteristics of images captured by different smartphone models are dissimilar each other and this difference may give non-identical health monitoring results when the smartphone health monitoring applications monitor physiological information using their embedded smartphone cameras. In this paper, we investigate the differences in color properties of the captured images from different smartphone models and apply a color correction method to adjust dissimilar color values obtained from different smartphone cameras. Experimental results show that the color corrected images using the correction method provide much smaller color intensity errors compared to the images without correction. These results can be applied to enhance the consistency of smartphone camera-based health monitoring applications by reducing color intensity errors among the images obtained from different smartphones.

  14. Generation of Earthquake Ground Motion Considering Local Site Effects and Soil-Structure Interaction Analysis of Ancient Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwan; Lee, J. S.; Yang, T. S.; Cho, J. R.; R, H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    In order to establish a correct correlation between them, mechanical characteristics of the ancient structures need to be investigated. Since sedimentary basins are preferred dwelling sites in ancient times, it is necessary to perform SSI analysis to derive correct correlation between the damage and ground motion intensity. Contents of Project are as follows: (1) Generation of stochastic earthquake ground motion considering source mechanism and site effects. (2) Analysis of seismic response of sedimentary basin. (3) Soil-structure interaction analysis of ancient structures (4) Investigation of dynamic response characteristics of ancient structure considering soil-structure interaction effects. A procedure is presented for generation of stochastic earthquake ground motion considering source mechanism and site effects. The simulation method proposed by Boore is used to generate the outcropping rock motion. The free field motion at the soil site is obtained by a convolution analysis. And for the study of wood structures, a nonlinear SDOF model is developed. The effects of soil-structure interaction on the behavior of the wood structures are found to be very minor. But the response can be significantly affected due to the intensity and frequency contents of the input motion. 13 refs., 6 tabs., 31 figs. (author)

  15. [Development of an automated processing method to detect coronary motion for coronary magnetic resonance angiography].

    Science.gov (United States)

    Asou, Hiroya; Imada, N; Sato, T

    2010-06-20

    On coronary MR angiography (CMRA), cardiac motions worsen the image quality. To improve the image quality, detection of cardiac especially for individual coronary motion is very important. Usually, scan delay and duration were determined manually by the operator. We developed a new evaluation method to calculate static time of individual coronary artery. At first, coronary cine MRI was taken at the level of about 3 cm below the aortic valve (80 images/R-R). Chronological change of the signals were evaluated with Fourier transformation of each pixel of the images were done. Noise reduction with subtraction process and extraction process were done. To extract higher motion such as coronary arteries, morphological filter process and labeling process were added. Using these imaging processes, individual coronary motion was extracted and individual coronary static time was calculated automatically. We compared the images with ordinary manual method and new automated method in 10 healthy volunteers. Coronary static times were calculated with our method. Calculated coronary static time was shorter than that of ordinary manual method. And scan time became about 10% longer than that of ordinary method. Image qualities were improved in our method. Our automated detection method for coronary static time with chronological Fourier transformation has a potential to improve the image quality of CMRA and easy processing.

  16. Wavelet transform and real-time learning method for myoelectric signal in motion discrimination

    International Nuclear Information System (INIS)

    Liu Haihua; Chen Xinhao; Chen Yaguang

    2005-01-01

    This paper discusses the applicability of the Wavelet transform for analyzing an EMG signal and discriminating motion classes. In many previous works, researchers have dealt with steady EMG and have proposed suitable analyzing methods for the EMG, for example FFT and STFT. Therefore, it is difficult for the previous approaches to discriminate motions from the EMG in the different phases of muscle activity, i.e., pre-activity, in activity, postactivity phases, as well as the period of motion transition from one to another. In this paper, we introduce the Wavelet transform using the Coiflet mother wavelet into our real-time EMG prosthetic hand controller for discriminating motions from steady and unsteady EMG. A preliminary experiment to discriminate three hand motions from four channel EMG in the initial pre-activity and in activity phase is carried out to show the effectiveness of the approach. However, future research efforts are necessary to discriminate more motions much precisely

  17. Methods of correcting Anger camera deadtime losses

    International Nuclear Information System (INIS)

    Sorenson, J.A.

    1976-01-01

    Three different methods of correcting for Anger camera deadtime loss were investigated. These included analytic methods (mathematical modeling), the marker-source method, and a new method based on counting ''pileup'' events appearing in a pulseheight analyzer window positioned above the photopeak of interest. The studies were done with /sup 99m/Tc on a Searle Radiographics camera with a measured deadtime of about 6 μsec. Analytic methods were found to be unreliable because of unpredictable changes in deadtime with changes in radiation scattering conditions. Both the marker-source method and the pileup-counting method were found to be accurate to within a few percent for true counting rates of up to about 200 K cps, with the pileup-counting method giving better results. This finding applied to sources at depths ranging up to 10 cm of pressed wood. The relative merits of the two methods are discussed

  18. Correction of Misclassifications Using a Proximity-Based Estimation Method

    Directory of Open Access Journals (Sweden)

    Shmulevich Ilya

    2004-01-01

    Full Text Available An estimation method for correcting misclassifications in signal and image processing is presented. The method is based on the use of context-based (temporal or spatial information in a sliding-window fashion. The classes can be purely nominal, that is, an ordering of the classes is not required. The method employs nonlinear operations based on class proximities defined by a proximity matrix. Two case studies are presented. In the first, the proposed method is applied to one-dimensional signals for processing data that are obtained by a musical key-finding algorithm. In the second, the estimation method is applied to two-dimensional signals for correction of misclassifications in images. In the first case study, the proximity matrix employed by the estimation method follows directly from music perception studies, whereas in the second case study, the optimal proximity matrix is obtained with genetic algorithms as the learning rule in a training-based optimization framework. Simulation results are presented in both case studies and the degree of improvement in classification accuracy that is obtained by the proposed method is assessed statistically using Kappa analysis.

  19. Imaging of optic nerve head pore structure with motion corrected deeply penetrating OCT using tracking SLO

    NARCIS (Netherlands)

    Vienola, Kari V.; Braaf, Boy; Sheehy, Christy K.; Yang, Qiang; Tiruveedhula, Pavan; de Boer, Johannes F.; Roorda, Austin

    2013-01-01

    Purpose To remove the eye motion and stabilize the optical frequency domain imaging (OFDI) system for obtaining high quality images of the optic nerve head (ONH) and the pore structure of the lamina cribrosa. Methods An optical coherence tomography (OCT) instrument was combined with an active eye

  20. Beat-to-beat respiratory motion correction with near 100% efficiency: a quantitative assessment using high-resolution coronary artery imaging☆

    Science.gov (United States)

    Scott, Andrew D.; Keegan, Jennifer; Firmin, David N.

    2011-01-01

    This study quantitatively assesses the effectiveness of retrospective beat-to-beat respiratory motion correction (B2B-RMC) at near 100% efficiency using high-resolution coronary artery imaging. Three-dimensional (3D) spiral images were obtained in a coronary respiratory motion phantom with B2B-RMC and navigator gating. In vivo, targeted 3D coronary imaging was performed in 10 healthy subjects using B2B-RMC spiral and navigator gated balanced steady-state free-precession (nav-bSSFP) techniques. Vessel diameter and sharpness in proximal and mid arteries were used as a measure of respiratory motion compensation effectiveness and compared between techniques. Phantom acquisitions with B2B-RMC were sharper than those acquired with navigator gating (B2B-RMC vs. navigator gating: 1.01±0.02 mm−1 vs. 0.86±0.08 mm−1, PB2B-RMC respiratory efficiency was significantly and substantially higher (99.7%±0.5%) than nav-bSSFP (44.0%±8.9%, PB2B-RMC vs. nav-bSSFP, proximal: 1.00±0.14 mm−1 vs. 1.08±0.11 mm−1, mid: 1.01±0.11 mm−1 vs. 1.05±0.12 mm−1; both P=not significant [ns]). Mid vessel diameters were not significantly different (2.85±0.39 mm vs. 2.80±0.35 mm, P=ns), but proximal B2B-RMC diameters were slightly higher (2.85±0.38 mm vs. 2.70±0.34 mm, PB2B-RMC is less variable and significantly higher than navigator gating. Phantom and in vivo vessel sharpness and diameter values suggest that respiratory motion compensation is equally effective. PMID:21292418

  1. Beat-to-beat respiratory motion correction with near 100% efficiency: a quantitative assessment using high-resolution coronary artery imaging.

    Science.gov (United States)

    Scott, Andrew D; Keegan, Jennifer; Firmin, David N

    2011-05-01

    This study quantitatively assesses the effectiveness of retrospective beat-to-beat respiratory motion correction (B2B-RMC) at near 100% efficiency using high-resolution coronary artery imaging. Three-dimensional (3D) spiral images were obtained in a coronary respiratory motion phantom with B2B-RMC and navigator gating. In vivo, targeted 3D coronary imaging was performed in 10 healthy subjects using B2B-RMC spiral and navigator gated balanced steady-state free-precession (nav-bSSFP) techniques. Vessel diameter and sharpness in proximal and mid arteries were used as a measure of respiratory motion compensation effectiveness and compared between techniques. Phantom acquisitions with B2B-RMC were sharper than those acquired with navigator gating (B2B-RMC vs. navigator gating: 1.01±0.02 mm(-1) vs. 0.86±0.08 mm(-1), PB2B-RMC respiratory efficiency was significantly and substantially higher (99.7%±0.5%) than nav-bSSFP (44.0%±8.9%, PB2B-RMC vs. nav-bSSFP, proximal: 1.00±0.14 mm(-1) vs. 1.08±0.11 mm(-1), mid: 1.01±0.11 mm(-1) vs. 1.05±0.12 mm(-1); both P=not significant [ns]). Mid vessel diameters were not significantly different (2.85±0.39 mm vs. 2.80±0.35 mm, P=ns), but proximal B2B-RMC diameters were slightly higher (2.85±0.38 mm vs. 2.70±0.34 mm, PB2B-RMC is less variable and significantly higher than navigator gating. Phantom and in vivo vessel sharpness and diameter values suggest that respiratory motion compensation is equally effective. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. A new method for synchronization of motion capture and plantar pressure data.

    Science.gov (United States)

    Miller, Adam L

    2010-06-01

    A common plantar pressure analysis technique requires dividing the pressure distribution into regions based on key landmarks of the foot. Typically, this is done using visual inspection of the footprint and is subject to error when there is abnormal foot contact. A novel, robust method of synchronizing motion capture and plantar pressure data was created that allows for motion capture markers to be projected onto the plantar pressure mat for accurate subdivision of the foot. Validation studies showed that spatial synchronization of the plantar pressure and motion capture systems was determined to be accurate within 1 sensel. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Conservative multi-implicit integral deferred correction methods with adaptive mesh refinement

    International Nuclear Information System (INIS)

    Layton, A.T.

    2004-01-01

    In most models of reacting gas dynamics, the characteristic time scales of chemical reactions are much shorter than the hydrodynamic and diffusive time scales, rendering the reaction part of the model equations stiff. Moreover, nonlinear forcings may introduce into the solutions sharp gradients or shocks, the robust behavior and correct propagation of which require the use of specialized spatial discretization procedures. This study presents high-order conservative methods for the temporal integration of model equations of reacting flows. By means of a method of lines discretization on the flux difference form of the equations, these methods compute approximations to the cell-averaged or finite-volume solution. The temporal discretization is based on a multi-implicit generalization of integral deferred correction methods. The advection term is integrated explicitly, and the diffusion and reaction terms are treated implicitly but independently, with the splitting errors present in traditional operator splitting methods reduced via the integral deferred correction procedure. To reduce computational cost, time steps used to integrate processes with widely-differing time scales may differ in size. (author)

  4. Uniformly Processed Strong Motion Database for Himalaya and Northeast Region of India

    Science.gov (United States)

    Gupta, I. D.

    2018-03-01

    This paper presents the first uniformly processed comprehensive database on strong motion acceleration records for the extensive regions of western Himalaya, northeast India, and the alluvial plains juxtaposing the Himalaya. This includes 146 three components of old analog records corrected for the instrument response and baseline distortions and 471 three components of recent digital records corrected for baseline errors. The paper first provides a background of the evolution of strong motion data in India and the seismotectonics of the areas of recording, then describes the details of the recording stations and the contributing earthquakes, which is finally followed by the methodology used to obtain baseline corrected data in a uniform and consistent manner. Two different schemes in common use for baseline correction are based on the application of the Ormsby filter without zero pads (Trifunac 1971) and that on the Butterworth filter with zero pads at the start as well as at the end (Converse and Brady 1992). To integrate the advantages of both the schemes, Ormsby filter with zero pads at the start only is used in the present study. A large number of typical example results are presented to illustrate that the methodology adopted is able to provide realistic velocity and displacement records with much smaller number of zero pads. The present strong motion database of corrected acceleration records will be useful for analyzing the ground motion characteristics of engineering importance, developing prediction equations for various strong motion parameters, and calibrating the seismological source model approach for ground motion simulation for seismically active and risk prone areas of India.

  5. Longitudinal wake field corrections in circular machines

    International Nuclear Information System (INIS)

    Symon, K.R.

    1996-01-01

    In computations of longitudinal particle motions in accelerators and storage rings, the fields produced by the interactions of the beam with the cavity in which it circulates are usually calculated by multiplying Fourier components of the beam current by the appropriate impedances. This procedure neglects the slow variation with time of the Fourier coefficients and of the beam revolution frequency. When there are cavity elements with decay times that are comparable with or larger than the time during which changes in the beam parameters occur, these changes can not be neglected. Corrections for this effect have been worked out in terms of the response functions of elements in the ring. The result is expressed as a correction to the impedance which depends on the way in which the beam parameters are changing. A method is presented for correcting a numerical simulation by keeping track of the steady state and transient terms in the response of a cavity

  6. Corrected entropy of Friedmann-Robertson-Walker universe in tunneling method

    International Nuclear Information System (INIS)

    Zhu, Tao; Ren, Ji-Rong; Li, Ming-Fan

    2009-01-01

    In this paper, we study the thermodynamic quantities of Friedmann-Robertson-Walker (FRW) universe by using the tunneling formalism beyond semiclassical approximation developed by Banerjee and Majhi [25]. For this we first calculate the corrected Hawking-like temperature on apparent horizon by considering both scalar particle and fermion tunneling. With this corrected Hawking-like temperature, the explicit expressions of the corrected entropy of apparent horizon for various gravity theories including Einstein gravity, Gauss-Bonnet gravity, Lovelock gravity, f(R) gravity and scalar-tensor gravity, are computed. Our results show that the corrected entropy formula for different gravity theories can be written into a general expression (4.39) of a same form. It is also shown that this expression is also valid for black holes. This might imply that the expression for the corrected entropy derived from tunneling method is independent of gravity theory, spacetime and dimension of the spacetime. Moreover, it is concluded that the basic thermodynamical property that the corrected entropy on apparent horizon is a state function is satisfied by the FRW universe

  7. The use of anatomical information for molecular image reconstruction algorithms: Attention/Scatter correction, motion compensation, and noise reduction

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Se Young [School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2016-03-15

    PET and SPECT are important tools for providing valuable molecular information about patients to clinicians. Advances in nuclear medicine hardware technologies and statistical image reconstruction algorithms enabled significantly improved image quality. Sequentially or simultaneously acquired anatomical images such as CT and MRI from hybrid scanners are also important ingredients for improving the image quality of PET or SPECT further. High-quality anatomical information has been used and investigated for attenuation and scatter corrections, motion compensation, and noise reduction via post-reconstruction filtering and regularization in inverse problems. In this article, we will review works using anatomical information for molecular image reconstruction algorithms for better image quality by describing mathematical models, discussing sources of anatomical information for different cases, and showing some examples.

  8. A multilevel correction adaptive finite element method for Kohn-Sham equation

    Science.gov (United States)

    Hu, Guanghui; Xie, Hehu; Xu, Fei

    2018-02-01

    In this paper, an adaptive finite element method is proposed for solving Kohn-Sham equation with the multilevel correction technique. In the method, the Kohn-Sham equation is solved on a fixed and appropriately coarse mesh with the finite element method in which the finite element space is kept improving by solving the derived boundary value problems on a series of adaptively and successively refined meshes. A main feature of the method is that solving large scale Kohn-Sham system is avoided effectively, and solving the derived boundary value problems can be handled efficiently by classical methods such as the multigrid method. Hence, the significant acceleration can be obtained on solving Kohn-Sham equation with the proposed multilevel correction technique. The performance of the method is examined by a variety of numerical experiments.

  9. A New High-Precision Correction Method of Temperature Distribution in Model Stellar Atmospheres

    Directory of Open Access Journals (Sweden)

    Sapar A.

    2013-06-01

    Full Text Available The main features of the temperature correction methods, suggested and used in modeling of plane-parallel stellar atmospheres, are discussed. The main features of the new method are described. Derivation of the formulae for a version of the Unsöld-Lucy method, used by us in the SMART (Stellar Model Atmospheres and Radiative Transport software for modeling stellar atmospheres, is presented. The method is based on a correction of the model temperature distribution based on minimizing differences of flux from its accepted constant value and on the requirement of the lack of its gradient, meaning that local source and sink terms of radiation must be equal. The final relative flux constancy obtainable by the method with the SMART code turned out to have the precision of the order of 0.5 %. Some of the rapidly converging iteration steps can be useful before starting the high-precision model correction. The corrections of both the flux value and of its gradient, like in Unsöld-Lucy method, are unavoidably needed to obtain high-precision flux constancy. A new temperature correction method to obtain high-precision flux constancy for plane-parallel LTE model stellar atmospheres is proposed and studied. The non-linear optimization is carried out by the least squares, in which the Levenberg-Marquardt correction method and thereafter additional correction by the Broyden iteration loop were applied. Small finite differences of temperature (δT/T = 10−3 are used in the computations. A single Jacobian step appears to be mostly sufficient to get flux constancy of the order 10−2 %. The dual numbers and their generalization – the dual complex numbers (the duplex numbers – enable automatically to get the derivatives in the nilpotent part of the dual numbers. A version of the SMART software is in the stage of refactorization to dual and duplex numbers, what enables to get rid of the finite differences, as an additional source of lowering precision of the

  10. Comparative analysis of accelerogram processing methods

    International Nuclear Information System (INIS)

    Goula, X.; Mohammadioun, B.

    1986-01-01

    The work described here inafter is a short development of an on-going research project, concerning high-quality processing of strong-motion recordings of earthquakes. Several processing procedures have been tested, applied to synthetic signals simulating ground-motion designed for this purpose. The methods of correction operating in the time domain are seen to be strongly dependent upon the sampling rate. Two methods of low-frequency filtering followed by an integration of accelerations yielded satisfactory results [fr

  11. A Method for Correcting IMRT Optimizer Heterogeneity Dose Calculations

    International Nuclear Information System (INIS)

    Zacarias, Albert S.; Brown, Mellonie F.; Mills, Michael D.

    2010-01-01

    Radiation therapy treatment planning for volumes close to the patient's surface, in lung tissue and in the head and neck region, can be challenging for the planning system optimizer because of the complexity of the treatment and protected volumes, as well as striking heterogeneity corrections. Because it is often the goal of the planner to produce an isodose plan with uniform dose throughout the planning target volume (PTV), there is a need for improved planning optimization procedures for PTVs located in these anatomical regions. To illustrate such an improved procedure, we present a treatment planning case of a patient with a lung lesion located in the posterior right lung. The intensity-modulated radiation therapy (IMRT) plan generated using standard optimization procedures produced substantial dose nonuniformity across the tumor caused by the effect of lung tissue surrounding the tumor. We demonstrate a novel iterative method of dose correction performed on the initial IMRT plan to produce a more uniform dose distribution within the PTV. This optimization method corrected for the dose missing on the periphery of the PTV and reduced the maximum dose on the PTV to 106% from 120% on the representative IMRT plan.

  12. Comment on 'Finding viscosity of liquids from Brownian motion at students' laboratory' and 'Brownian motion using video capture'

    International Nuclear Information System (INIS)

    Greczylo, Tomasz; Debowska, Ewa

    2007-01-01

    The authors make comments and remarks on the papers by Salmon et al (2002 Eur. J. Phys. 23 249-53) and their own (2005 Eur. J. Phys. 26 827-33) concerning Brownian motion in two-dimensional space. New, corrected results of calculations and measurements for students' experiments on finding the viscosity of liquids from Brownian motion are presented. (letters and comments)

  13. Integrated fMRI Preprocessing Framework Using Extended Kalman Filter for Estimation of Slice-Wise Motion

    Directory of Open Access Journals (Sweden)

    Basile Pinsard

    2018-04-01

    Full Text Available Functional MRI acquisition is sensitive to subjects' motion that cannot be fully constrained. Therefore, signal corrections have to be applied a posteriori in order to mitigate the complex interactions between changing tissue localization and magnetic fields, gradients and readouts. To circumvent current preprocessing strategies limitations, we developed an integrated method that correct motion and spatial low-frequency intensity fluctuations at the level of each slice in order to better fit the acquisition processes. The registration of single or multiple simultaneously acquired slices is achieved online by an Iterated Extended Kalman Filter, favoring the robust estimation of continuous motion, while an intensity bias field is non-parametrically fitted. The proposed extraction of gray-matter BOLD activity from the acquisition space to an anatomical group template space, taking into account distortions, better preserves fine-scale patterns of activity. Importantly, the proposed unified framework generalizes to high-resolution multi-slice techniques. When tested on simulated and real data the latter shows a reduction of motion explained variance and signal variability when compared to the conventional preprocessing approach. These improvements provide more stable patterns of activity, facilitating investigation of cerebral information representation in healthy and/or clinical populations where motion is known to impact fine-scale data.

  14. Evaluation Method of Collision Risk by Using True Motion

    Directory of Open Access Journals (Sweden)

    Hayama Imazu

    2017-03-01

    Full Text Available It is necessary to develop a useful application to use big data like as AIS for safety and efficiency of ship operation. AIS is very useful system to collect targets information, but this information is not effective use yet. The evaluation method of collision risk is one of the cause disturb. Usually the collision risk of ship is evaluated by the value of the Closest Point of Approach (CPA which is related to a relative motion. So, it becomes difficult to find out a safety pass in a congested water. Here, Line of Predicted Collision (LOPC and Obstacle Zone by Target (OZT for evaluation of collision risk are introduced, these values are related to a true motion and it became visible of dangerous place, so it will make easy to find out a safety pass in a congested water.

  15. Advanced methods on the evaluation of design earthquake motions for important power constructions

    International Nuclear Information System (INIS)

    Higashi, Sadanori; Shiba, Yoshiaki; Sato, Hiroaki; Sato, Yusuke; Nakajima, Masato; Sakai, Michiya; Sato, Kiyotaka

    2009-01-01

    In this report, we compiled advanced methods on the evaluation of design earthquake motions for important power constructions such as nuclear power, thermal power, and hydroelectric power facilities. For the nuclear and hydroelectric power facilities, we developed an inversion method of broad-band (0.1-5Hz) source process and obtained valid results from applying the method to the 2007 Niigata-ken Chuetsu-oki earthquake (M6.8). We have also improved our modeling techniques of thick sedimentary layered structure such as the S-wave velocity modeling by using microtremor array measurement and the frequency dependent damping factor with a lower limit. For seismic isolation design for nuclear power facilities, we proposed a design pseudo-velocity response spectrum. For the thermal power facilities, we performed three-dimensional numerical simulation of Kanto Basin for a prediction relation of long-period ground motion. We also proposed the introduction of probabilistic approach into the deterministic evaluation flow of design earthquake motions and evaluated the effect of a great earthquake with a short return period on the seismic hazard in Miyagi Prefecture, Japan. (author)

  16. Ratio-based vs. model-based methods to correct for urinary creatinine concentrations.

    Science.gov (United States)

    Jain, Ram B

    2016-08-01

    Creatinine-corrected urinary analyte concentration is usually computed as the ratio of the observed level of analyte concentration divided by the observed level of the urinary creatinine concentration (UCR). This ratio-based method is flawed since it implicitly assumes that hydration is the only factor that affects urinary creatinine concentrations. On the contrary, it has been shown in the literature, that age, gender, race/ethnicity, and other factors also affect UCR. Consequently, an optimal method to correct for UCR should correct for hydration as well as other factors like age, gender, and race/ethnicity that affect UCR. Model-based creatinine correction in which observed UCRs are used as an independent variable in regression models has been proposed. This study was conducted to evaluate the performance of ratio-based and model-based creatinine correction methods when the effects of gender, age, and race/ethnicity are evaluated one factor at a time for selected urinary analytes and metabolites. It was observed that ratio-based method leads to statistically significant pairwise differences, for example, between males and females or between non-Hispanic whites (NHW) and non-Hispanic blacks (NHB), more often than the model-based method. However, depending upon the analyte of interest, the reverse is also possible. The estimated ratios of geometric means (GM), for example, male to female or NHW to NHB, were also compared for the two methods. When estimated UCRs were higher for the group (for example, males) in the numerator of this ratio, these ratios were higher for the model-based method, for example, male to female ratio of GMs. When estimated UCR were lower for the group (for example, NHW) in the numerator of this ratio, these ratios were higher for the ratio-based method, for example, NHW to NHB ratio of GMs. Model-based method is the method of choice if all factors that affect UCR are to be accounted for.

  17. Methods for validating the performance of wearable motion-sensing devices under controlled conditions

    International Nuclear Information System (INIS)

    Bliley, Kara E; Kaufman, Kenton R; Gilbert, Barry K

    2009-01-01

    This paper presents validation methods for assessing the accuracy and precision of motion-sensing device (i.e. accelerometer) measurements. The main goals of this paper were to assess the accuracy and precision of these measurements against a gold standard, to determine if differences in manufacturing and assembly significantly affected device performance and to determine if measurement differences due to manufacturing and assembly could be corrected by applying certain post-processing techniques to the measurement data during analysis. In this paper, the validation of a posture and activity detector (PAD), a device containing a tri-axial accelerometer, is described. Validation of the PAD devices required the design of two test fixtures: a test fixture to position the device in a known orientation, and a test fixture to rotate the device at known velocities and accelerations. Device measurements were compared to these known orientations and accelerations. Several post-processing techniques were utilized in an attempt to reduce variability in the measurement error among the devices. In conclusion, some of the measurement errors due to the inevitable differences in manufacturing and assembly were significantly improved (p < 0.01) by these post-processing techniques

  18. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data

    International Nuclear Information System (INIS)

    Müller, Kerstin; Schwemmer, Chris; Hornegger, Joachim; Zheng Yefeng; Wang Yang; Lauritsch, Günter; Rohkohl, Christopher; Maier, Andreas K.; Schultz, Carl; Fahrig, Rebecca

    2013-01-01

    Purpose: For interventional cardiac procedures, anatomical and functional information about the cardiac chambers is of major interest. With the technology of angiographic C-arm systems it is possible to reconstruct intraprocedural three-dimensional (3D) images from 2D rotational angiographic projection data (C-arm CT). However, 3D reconstruction of a dynamic object is a fundamental problem in C-arm CT reconstruction. The 2D projections are acquired over a scan time of several seconds, thus the projection data show different states of the heart. A standard FDK reconstruction algorithm would use all acquired data for a filtered backprojection and result in a motion-blurred image. In this approach, a motion compensated reconstruction algorithm requiring knowledge of the 3D heart motion is used. The motion is estimated from a previously presented 3D dynamic surface model. This dynamic surface model results in a sparse motion vector field (MVF) defined at control points. In order to perform a motion compensated reconstruction, a dense motion vector field is required. The dense MVF is generated by interpolation of the sparse MVF. Therefore, the influence of different motion interpolation methods on the reconstructed image quality is evaluated. Methods: Four different interpolation methods, thin-plate splines (TPS), Shepard's method, a smoothed weighting function, and a simple averaging, were evaluated. The reconstruction quality was measured on phantom data, a porcine model as well as on in vivo clinical data sets. As a quality index, the 2D overlap of the forward projected motion compensated reconstructed ventricle and the segmented 2D ventricle blood pool was quantitatively measured with the Dice similarity coefficient and the mean deviation between extracted ventricle contours. For the phantom data set, the normalized root mean square error (nRMSE) and the universal quality index (UQI) were also evaluated in 3D image space. Results: The quantitative evaluation of all

  19. Correcting for cryptic relatedness by a regression-based genomic control method

    Directory of Open Access Journals (Sweden)

    Yang Yaning

    2009-12-01

    Full Text Available Abstract Background Genomic control (GC method is a useful tool to correct for the cryptic relatedness in population-based association studies. It was originally proposed for correcting for the variance inflation of Cochran-Armitage's additive trend test by using information from unlinked null markers, and was later generalized to be applicable to other tests with the additional requirement that the null markers are matched with the candidate marker in allele frequencies. However, matching allele frequencies limits the number of available null markers and thus limits the applicability of the GC method. On the other hand, errors in genotype/allele frequencies may cause further bias and variance inflation and thereby aggravate the effect of GC correction. Results In this paper, we propose a regression-based GC method using null markers that are not necessarily matched in allele frequencies with the candidate marker. Variation of allele frequencies of the null markers is adjusted by a regression method. Conclusion The proposed method can be readily applied to the Cochran-Armitage's trend tests other than the additive trend test, the Pearson's chi-square test and other robust efficiency tests. Simulation results show that the proposed method is effective in controlling type I error in the presence of population substructure.

  20. TU-F-17A-03: An Analytical Respiratory Perturbation Model for Lung Motion Prediction

    International Nuclear Information System (INIS)

    Li, G; Yuan, A; Wei, J

    2014-01-01

    Purpose: Breathing irregularity is common, causing unreliable prediction in tumor motion for correlation-based surrogates. Both tidal volume (TV) and breathing pattern (BP=ΔVthorax/TV, where TV=ΔVthorax+ΔVabdomen) affect lung motion in anterior-posterior and superior-inferior directions. We developed a novel respiratory motion perturbation (RMP) model in analytical form to account for changes in TV and BP in motion prediction from simulation to treatment. Methods: The RMP model is an analytical function of patient-specific anatomic and physiologic parameters. It contains a base-motion trajectory d(x,y,z) derived from a 4-dimensional computed tomography (4DCT) at simulation and a perturbation term Δd(ΔTV,ΔBP) accounting for deviation at treatment from simulation. The perturbation is dependent on tumor-specific location and patient-specific anatomy. Eleven patients with simulation and treatment 4DCT images were used to assess the RMP method in motion prediction from 4DCT1 to 4DCT2, and vice versa. For each patient, ten motion trajectories of corresponding points in the lower lobes were measured in both 4DCTs: one served as the base-motion trajectory and the other as the ground truth for comparison. In total, 220 motion trajectory predictions were assessed. The motion discrepancy between two 4DCTs for each patient served as a control. An established 5D motion model was used for comparison. Results: The average absolute error of RMP model prediction in superior-inferior direction is 1.6±1.8 mm, similar to 1.7±1.6 mm from the 5D model (p=0.98). Some uncertainty is associated with limited spatial resolution (2.5mm slice thickness) and temporal resolution (10-phases). Non-corrected motion discrepancy between two 4DCTs is 2.6±2.7mm, with the maximum of ±20mm, and correction is necessary (p=0.01). Conclusion: The analytical motion model predicts lung motion with accuracy similar to the 5D model. The analytical model is based on physical relationships, requires no

  1. Attenuation relation for strong motion in Eastern Java based on appropriate database and method

    Science.gov (United States)

    Mahendra, Rian; Rohadi, Supriyanto; Rudyanto, Ariska

    2017-07-01

    The selection and determination of attenuation relation has become important for seismic hazard assessment in active seismic region. This research initially constructs the appropriate strong motion database, including site condition and type of the earthquake. The data set consisted of large number earthquakes of 5 ≤ Mw ≤ 9 and distance less than 500 km that occurred around Java from 2009 until 2016. The location and depth of earthquake are being relocated using double difference method to improve the quality of database. Strong motion data from twelve BMKG's accelerographs which are located in east Java is used. The site condition is known by using dominant period and Vs30. The type of earthquake is classified into crustal earthquake, interface, and intraslab based on slab geometry analysis. A total of 10 Ground Motion Prediction Equations (GMPEs) are tested using Likelihood (Scherbaum et al., 2004) and Euclidean Distance Ranking method (Kale and Akkar, 2012) with the associated database. The evaluation of these methods lead to a set of GMPEs that can be applied for seismic hazard in East Java where the strong motion data is collected. The result of these methods found that there is still high deviation of GMPEs, so the writer modified some GMPEs using inversion method. Validation was performed by analysing the attenuation curve of the selected GMPE and observation data in period 2015 up to 2016. The results show that the selected GMPE is suitable for estimated PGA value in East Java.

  2. A new digitized reverse correction method for hypoid gears based on a one-dimensional probe

    Science.gov (United States)

    Li, Tianxing; Li, Jubo; Deng, Xiaozhong; Yang, Jianjun; Li, Genggeng; Ma, Wensuo

    2017-12-01

    In order to improve the tooth surface geometric accuracy and transmission quality of hypoid gears, a new digitized reverse correction method is proposed based on the measurement data from a one-dimensional probe. The minimization of tooth surface geometrical deviations is realized from the perspective of mathematical analysis and reverse engineering. Combining the analysis of complex tooth surface generation principles and the measurement mechanism of one-dimensional probes, the mathematical relationship between the theoretical designed tooth surface, the actual machined tooth surface and the deviation tooth surface is established, the mapping relation between machine-tool settings and tooth surface deviations is derived, and the essential connection between the accurate calculation of tooth surface deviations and the reverse correction method of machine-tool settings is revealed. Furthermore, a reverse correction model of machine-tool settings is built, a reverse correction strategy is planned, and the minimization of tooth surface deviations is achieved by means of the method of numerical iterative reverse solution. On this basis, a digitized reverse correction system for hypoid gears is developed by the organic combination of numerical control generation, accurate measurement, computer numerical processing, and digitized correction. Finally, the correctness and practicability of the digitized reverse correction method are proved through a reverse correction experiment. The experimental results show that the tooth surface geometric deviations meet the engineering requirements after two trial cuts and one correction.

  3. New component-based normalization method to correct PET system models

    International Nuclear Information System (INIS)

    Kinouchi, Shoko; Miyoshi, Yuji; Suga, Mikio; Yamaya, Taiga; Yoshida, Eiji; Nishikido, Fumihiko; Tashima, Hideaki

    2011-01-01

    Normalization correction is necessary to obtain high-quality reconstructed images in positron emission tomography (PET). There are two basic types of normalization methods: the direct method and component-based methods. The former method suffers from the problem that a huge count number in the blank scan data is required. Therefore, the latter methods have been proposed to obtain high statistical accuracy normalization coefficients with a small count number in the blank scan data. In iterative image reconstruction methods, on the other hand, the quality of the obtained reconstructed images depends on the system modeling accuracy. Therefore, the normalization weighing approach, in which normalization coefficients are directly applied to the system matrix instead of a sinogram, has been proposed. In this paper, we propose a new component-based normalization method to correct system model accuracy. In the proposed method, two components are defined and are calculated iteratively in such a way as to minimize errors of system modeling. To compare the proposed method and the direct method, we applied both methods to our small OpenPET prototype system. We achieved acceptable statistical accuracy of normalization coefficients while reducing the count number of the blank scan data to one-fortieth that required in the direct method. (author)

  4. Analysis and development of methods of correcting for heterogeneities to cobalt-60: computing application

    International Nuclear Information System (INIS)

    Kappas, K.

    1982-11-01

    The purpose of this work is the analysis of the influence of inhomogeneities of the human body on the determination of the dose in Cobalt-60 radiation therapy. The first part is dedicated to the physical characteristics of inhomogeneities and to the conventional methods of correction. New methods of correction are proposed based on the analysis of the scatter. This analysis allows to take account, with a greater accuracy of their physical characteristics and of the corresponding modifications of the dose: ''the differential TAR method'' and ''the Beam Substraction Method''. The second part is dedicated to the computer implementation of the second method of correction for routine application in hospital [fr

  5. Spectral-ratio radon background correction method in airborne γ-ray spectrometry based on compton scattering deduction

    International Nuclear Information System (INIS)

    Gu Yi; Xiong Shengqing; Zhou Jianxin; Fan Zhengguo; Ge Liangquan

    2014-01-01

    γ-ray released by the radon daughter has severe impact on airborne γ-ray spectrometry. The spectral-ratio method is one of the best mathematical methods for radon background deduction in airborne γ-ray spectrometry. In this paper, an advanced spectral-ratio method was proposed which deducts Compton scattering ray by the fast Fourier transform rather than tripping ratios, the relationship between survey height and correction coefficient of the advanced spectral-ratio radon background correction method was studied, the advanced spectral-ratio radon background correction mathematic model was established, and the ground saturation model calibrating technology for correction coefficient was proposed. As for the advanced spectral-ratio radon background correction method, its applicability and correction efficiency are improved, and the application cost is saved. Furthermore, it can prevent the physical meaning lost and avoid the possible errors caused by matrix computation and mathematical fitting based on spectrum shape which is applied in traditional correction coefficient. (authors)

  6. Repeat CT-scan assessment of lymph node motion in locally advanced cervical cancer patients

    International Nuclear Information System (INIS)

    Bondar, Luiza; Velema, Laura; Mens, Jan Willem; Heijmen, Ben; Hoogeman, Mischa; Zwijnenburg, Ellen

    2014-01-01

    In cervical cancer patients the nodal clinical target volume (CTV, defined using the major pelvic blood vessels and enlarged lymph nodes) is assumed to move synchronously with the bony anatomy. The aim of this study was to verify this assumption by investigating the motion of the major pelvic blood vessels and enlarged lymph nodes visible in CT scans. For 13 patients treated in prone position, four variable bladder-filling CT scans per patient, acquired at planning and after 40 Gy, were selected from an available dataset of 9-10 CT scans. The bladder, rectum, and the nodal-vessels structure containing the iliac vessels and all visible enlarged nodes were delineated in each selected CT scan. Two online patient setup correction protocols were simulated. The first corrected bony anatomy translations and the second corrected translations and rotations. The efficacy of each correction was calculated as the overlap between the nodal-vessels structure in the reference and repeat CT scans. The motion magnitude between delineated structures was quantified using nonrigid registration. Translational corrections resulted in an average overlap of 58 ± 13% and in a range of motion between 9.9 and 27.3 mm. Translational and rotational corrections significantly improved the overlap (64 ± 13%, p value = 0.007) and moderately reduced the range of motion to 7.6-23.8 mm (p value = 0.03). Bladder filling changes significantly correlated with the nodal-vessels motion (p [de

  7. Analysis of slippery droplet on tilted plate by development of optical correction method

    Science.gov (United States)

    Ko, Han Seo; Gim, Yeonghyeon; Choi, Sung Ho; Jang, Dong Kyu; Sohn, Dong Kee

    2017-11-01

    Because of distortion effects on a surface of a sessile droplet, the inner flow field of the droplet is measured by a PIV (particle image velocimetry) method with low reliability. In order to solve this problem, many researchers have studied and developed the optical correction method. However, the method cannot be applied for various cases such as the tilted droplet or other asymmetric shaped droplets since most methods were considered only for the axisymmetric shaped droplets. For the optical correction of the asymmetric shaped droplet, the surface function was calculated by the three-dimensional reconstruction using the ellipse curve fitting method. Also, the optical correction using the surface function was verified by the numerical simulation. Then, the developed method was applied to reconstruct the inner flow field of the droplet on the tilted plate. The colloidal droplet of water on the tilted surface was used, and the distorted effect on the surface of the droplet was calculated. Using the obtained results and the PIV method, the corrected flow field for the inner and interface parts of the droplet was reconstructed. Consequently, the error caused by the distortion effect of the velocity vector located on the apex of the droplet was removed. National Research Foundation (NRF) of Korea, (2016R1A2B4011087).

  8. Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform

    International Nuclear Information System (INIS)

    Wang, H H; Yuan, Z H; Wu, J

    2006-01-01

    At present, gondola platform is one of the stratospheric balloon-borne platforms being in research focus at home and overseas. Comparing to other stratospheric balloon-borne platforms, such as airship platform, gondola platform has advantages of higher stability, rapid in motion regulation and lower energy cost but disadvantages of less supporting capacity and be incapable of fixation. While all platforms have the same goal of keeping them at accurate angle and right pose for the requirements of instruments and objects installed in the platforms, when platforms rotate round the ground level perpendicular. That is accomplishing motion control. But, platform control system has factors of low damper, excessive and uncertain disturbances by the reason of its being hung over balloon in the air, it is hard to achieve the desired control precision because platform is ease to deviate its benchmark motion. Thus, in the controlling procedure in order to get higher precision, it is crucial to perceive the platform's swing synchronously and rapidly, and restrain the influence of disturbances effectively, keep the platform's pose steadily. Furthermore, while the platform in the air regard control center in the ground as reference object, it is ultimate to select a appropriate reference frame and work out the coordinates and implement the adjustment by the PC104 controller. This paper introduces the methods of the motion control based on stratospheric balloon-borne gondola platform. Firstly, this paper compares the characteristic of the flywheel and CMG and specifies the key methods of obtaining two significant states which are 'orientation stability' state and 'orientation tracking' state for platform motion control procedure using CMG as the control actuator. These two states reduce the deviation amplitude of rotation and swing of gondola's motion relative to original motion due to stratospheric intense atmosphere disturbance. We define it as the first procedure. In next

  9. Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform

    Science.gov (United States)

    Wang, H. H.; Yuan, Z. H.; Wu, J.

    2006-10-01

    At present, gondola platform is one of the stratospheric balloon-borne platforms being in research focus at home and overseas. Comparing to other stratospheric balloon-borne platforms, such as airship platform, gondola platform has advantages of higher stability, rapid in motion regulation and lower energy cost but disadvantages of less supporting capacity and be incapable of fixation. While all platforms have the same goal of keeping them at accurate angle and right pose for the requirements of instruments and objects installed in the platforms, when platforms rotate round the ground level perpendicular. That is accomplishing motion control. But, platform control system has factors of low damper, excessive and uncertain disturbances by the reason of its being hung over balloon in the air, it is hard to achieve the desired control precision because platform is ease to deviate its benchmark motion. Thus, in the controlling procedure in order to get higher precision, it is crucial to perceive the platform's swing synchronously and rapidly, and restrain the influence of disturbances effectively, keep the platform's pose steadily. Furthermore, while the platform in the air regard control center in the ground as reference object, it is ultimate to select a appropriate reference frame and work out the coordinates and implement the adjustment by the PC104 controller. This paper introduces the methods of the motion control based on stratospheric balloon-borne gondola platform. Firstly, this paper compares the characteristic of the flywheel and CMG and specifies the key methods of obtaining two significant states which are 'orientation stability' state and 'orientation tracking' state for platform motion control procedure using CMG as the control actuator. These two states reduce the deviation amplitude of rotation and swing of gondola's motion relative to original motion due to stratospheric intense atmosphere disturbance. We define it as the first procedure. In next

  10. Inquiry style interactive virtual experiments: a case on circular motion

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Shaona; Wang Xiaojun; Xiao Hua [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Han Jing; Pelz, Nathaniel; Peng Liangyu; Bao Lei, E-mail: xiaoh@scnu.edu.cn, E-mail: lbao@mps.ohio-state.edu [Department of Physics, Ohio State University, Columbus, OH 43210 (United States)

    2011-11-15

    Interest in computer-based learning, especially in the use of virtual reality simulations is increasing rapidly. While there are good reasons to believe that technologies have the potential to improve teaching and learning, how to utilize the technology effectively in teaching specific content difficulties is challenging. To help students develop robust understandings of correct physics concepts, we have developed interactive virtual experiment simulations that have the unique feature of enabling students to experience force and motion via an analogue joystick, allowing them to feel the applied force and simultaneously see its effects. The simulations provide students learning experiences that integrate both scientific representations and low-level sensory cues such as haptic cues under a single setting. In this paper, we introduce a virtual experiment module on circular motion. A controlled study has been conducted to evaluate the impact of using this virtual experiment on students' learning of force and motion in the context of circular motion. The results show that the interactive virtual experiment method is preferred by students and is more effective in helping students grasp the physics concepts than the traditional education method such as problem-solving practices. Our research suggests that well-developed interactive virtual experiments can be useful tools in teaching difficult concepts in science.

  11. Inquiry style interactive virtual experiments: a case on circular motion

    International Nuclear Information System (INIS)

    Zhou Shaona; Wang Xiaojun; Xiao Hua; Han Jing; Pelz, Nathaniel; Peng Liangyu; Bao Lei

    2011-01-01

    Interest in computer-based learning, especially in the use of virtual reality simulations is increasing rapidly. While there are good reasons to believe that technologies have the potential to improve teaching and learning, how to utilize the technology effectively in teaching specific content difficulties is challenging. To help students develop robust understandings of correct physics concepts, we have developed interactive virtual experiment simulations that have the unique feature of enabling students to experience force and motion via an analogue joystick, allowing them to feel the applied force and simultaneously see its effects. The simulations provide students learning experiences that integrate both scientific representations and low-level sensory cues such as haptic cues under a single setting. In this paper, we introduce a virtual experiment module on circular motion. A controlled study has been conducted to evaluate the impact of using this virtual experiment on students' learning of force and motion in the context of circular motion. The results show that the interactive virtual experiment method is preferred by students and is more effective in helping students grasp the physics concepts than the traditional education method such as problem-solving practices. Our research suggests that well-developed interactive virtual experiments can be useful tools in teaching difficult concepts in science.

  12. A Quantile Mapping Bias Correction Method Based on Hydroclimatic Classification of the Guiana Shield.

    Science.gov (United States)

    Ringard, Justine; Seyler, Frederique; Linguet, Laurent

    2017-06-16

    Satellite precipitation products (SPPs) provide alternative precipitation data for regions with sparse rain gauge measurements. However, SPPs are subject to different types of error that need correction. Most SPP bias correction methods use the statistical properties of the rain gauge data to adjust the corresponding SPP data. The statistical adjustment does not make it possible to correct the pixels of SPP data for which there is no rain gauge data. The solution proposed in this article is to correct the daily SPP data for the Guiana Shield using a novel two set approach, without taking into account the daily gauge data of the pixel to be corrected, but the daily gauge data from surrounding pixels. In this case, a spatial analysis must be involved. The first step defines hydroclimatic areas using a spatial classification that considers precipitation data with the same temporal distributions. The second step uses the Quantile Mapping bias correction method to correct the daily SPP data contained within each hydroclimatic area. We validate the results by comparing the corrected SPP data and daily rain gauge measurements using relative RMSE and relative bias statistical errors. The results show that analysis scale variation reduces rBIAS and rRMSE significantly. The spatial classification avoids mixing rainfall data with different temporal characteristics in each hydroclimatic area, and the defined bias correction parameters are more realistic and appropriate. This study demonstrates that hydroclimatic classification is relevant for implementing bias correction methods at the local scale.

  13. Motion extrapolation in the central fovea.

    Directory of Open Access Journals (Sweden)

    Zhuanghua Shi

    Full Text Available Neural transmission latency would introduce a spatial lag when an object moves across the visual field, if the latency was not compensated. A visual predictive mechanism has been proposed, which overcomes such spatial lag by extrapolating the position of the moving object forward. However, a forward position shift is often absent if the object abruptly stops moving (motion-termination. A recent "correction-for-extrapolation" hypothesis suggests that the absence of forward shifts is caused by sensory signals representing 'failed' predictions. Thus far, this hypothesis has been tested only for extra-foveal retinal locations. We tested this hypothesis using two foveal scotomas: scotoma to dim light and scotoma to blue light. We found that the perceived position of a dim dot is extrapolated into the fovea during motion-termination. Next, we compared the perceived position shifts of a blue versus a green moving dot. As predicted the extrapolation at motion-termination was only found with the blue moving dot. The results provide new evidence for the correction-for-extrapolation hypothesis for the region with highest spatial acuity, the fovea.

  14. Synchronized moving aperture radiation therapy (SMART): superimposing tumor motion on IMRT MLC leaf sequences under realistic delivery conditions

    International Nuclear Information System (INIS)

    Xu Jun; Papanikolaou, Nikos; Shi Chengyu; Jiang, Steve B

    2009-01-01

    Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.

  15. Motion control report

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  16. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Kerstin; Schwemmer, Chris; Hornegger, Joachim [Pattern Recognition Lab, Department of Computer Science, Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen 91058 (Germany); Zheng Yefeng; Wang Yang [Imaging and Computer Vision, Siemens Corporate Research, Princeton, New Jersey 08540 (United States); Lauritsch, Guenter; Rohkohl, Christopher; Maier, Andreas K. [Siemens AG, Healthcare Sector, Forchheim 91301 (Germany); Schultz, Carl [Thoraxcenter, Erasmus MC, Rotterdam 3000 (Netherlands); Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2013-03-15

    Purpose: For interventional cardiac procedures, anatomical and functional information about the cardiac chambers is of major interest. With the technology of angiographic C-arm systems it is possible to reconstruct intraprocedural three-dimensional (3D) images from 2D rotational angiographic projection data (C-arm CT). However, 3D reconstruction of a dynamic object is a fundamental problem in C-arm CT reconstruction. The 2D projections are acquired over a scan time of several seconds, thus the projection data show different states of the heart. A standard FDK reconstruction algorithm would use all acquired data for a filtered backprojection and result in a motion-blurred image. In this approach, a motion compensated reconstruction algorithm requiring knowledge of the 3D heart motion is used. The motion is estimated from a previously presented 3D dynamic surface model. This dynamic surface model results in a sparse motion vector field (MVF) defined at control points. In order to perform a motion compensated reconstruction, a dense motion vector field is required. The dense MVF is generated by interpolation of the sparse MVF. Therefore, the influence of different motion interpolation methods on the reconstructed image quality is evaluated. Methods: Four different interpolation methods, thin-plate splines (TPS), Shepard's method, a smoothed weighting function, and a simple averaging, were evaluated. The reconstruction quality was measured on phantom data, a porcine model as well as on in vivo clinical data sets. As a quality index, the 2D overlap of the forward projected motion compensated reconstructed ventricle and the segmented 2D ventricle blood pool was quantitatively measured with the Dice similarity coefficient and the mean deviation between extracted ventricle contours. For the phantom data set, the normalized root mean square error (nRMSE) and the universal quality index (UQI) were also evaluated in 3D image space. Results: The quantitative evaluation of

  17. Using "Tracker" to Prove the Simple Harmonic Motion Equation

    Science.gov (United States)

    Kinchin, John

    2016-01-01

    Simple harmonic motion (SHM) is a common topic for many students to study. Using the free, though versatile, motion tracking software; "Tracker", we can extend the students experience and show that the general equation for SHM does lead to the correct period of a simple pendulum.

  18. Design and control of three fingers motion for dexterous assembly of ...

    African Journals Online (AJOL)

    In this paper, the authors describe and demonstrate how a three fingered gripper can be designed and simulated to provide both gross motion and fine motion to the fingers. ... This mimicry is required to design the correct motions and tactile forces necessary to handle delicate and non delicate engineering components.

  19. WORKSHOP: Stable particle motion

    International Nuclear Information System (INIS)

    Ruggiero, Alessandro G.

    1993-01-01

    Full text: Particle beam stability is crucial to any accelerator or collider, particularly big ones, such as Brookhaven's RHIC heavy ion collider and the larger SSC and LHC proton collider schemes. A workshop on the Stability of Particle Motion in Storage Rings held at Brookhaven in October dealt with the important issue of determining the short- and long-term stability of single particle motion in hadron storage rings and colliders, and explored new methods for ensuring it. In the quest for realistic environments, the imperfections of superconducting magnets and the effects of field modulation and noise were taken into account. The workshop was divided into three study groups: Short-Term Stability in storage rings, including chromatic and geometric effects and correction strategies; Long-Term Stability, including modulation and random noise effects and slow varying effects; and Methods for determining the stability of particle motion. The first two were run in parallel, but the third was attended by everyone. Each group considered analytical, computational and experimental methods, reviewing work done so far, comparing results and approaches and underlining outstanding issues. By resolving conflicts, it was possible to identify problems of common interest. The workshop reaffirmed the validity of methods proposed several years ago. Major breakthroughs have been in the rapid improvement of computer capacity and speed, in the development of more sophisticated mathematical packages, and in the introduction of more powerful analytic approaches. In a typical storage ring, a particle may be required to circulate for about a billion revolutions. While ten years ago it was only possible to predict accurately stability over about a thousand revolutions, it is now possible to predict over as many as one million turns. If this trend continues, in ten years it could become feasible to predict particle stability over the entire storage period. About ninety participants

  20. Animation and radiobiological analysis of 3D motion in conformal radiotherapy.

    Science.gov (United States)

    MacKay, R I; Graham, P A; Moore, C J; Logue, J P; Sharrock, P J

    1999-07-01

    To allow treatment plans to be evaluated against the range of expected organ motion and set up error anticipated during treatment. Planning tools have been developed to allow concurrent animation and radiobiological analysis of three dimensional (3D) target and organ motion in conformal radiotherapy. Surfaces fitted to structures outlined on CT studies are projected onto pre-treatment images or onto megavoltage images collected during the patient treatment. Visual simulation of tumour and normal tissue movement is then performed by the application of three dimensional affine transformations, to the selected surface. Concurrent registration of the surface motion with the 3D dose distribution allows calculation of the change in dose to the volume. Realistic patterns of motion can be applied to the structure to simulate inter-fraction motion and set-up error. The biologically effective dose for the structure is calculated for each fraction as the surface moves over the course of the treatment and is used to calculate the normal tissue complication probability (NTCP) or tumour control probability (TCP) for the moving structure. The tool has been used to evaluate conformal therapy plans against set up measurements recorded during patient treatments. NTCP and TCP were calculated for a patient whose set up had been corrected after systematic deviations from plan geometry were measured during treatment, the effect of not making the correction were also assessed. TCP for the moving tumour was reduced if inadequate margins were set for the treatment. Modelling suggests that smaller margins could have been set for the set up corrected during the course of the treatment. The NTCP for the rectum was also higher for the uncorrected set up due to a more rectal tissue falling in the high dose region. This approach provides a simple way for clinical users to utilise information incrementally collected throughout the whole of a patient's treatment. In particular it is possible to

  1. Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy.

    Science.gov (United States)

    Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H

    2017-07-01

    Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.

  2. MRI-Based Computed Tomography Metal Artifact Correction Method for Improving Proton Range Calculation Accuracy

    International Nuclear Information System (INIS)

    Park, Peter C.; Schreibmann, Eduard; Roper, Justin; Elder, Eric; Crocker, Ian; Fox, Tim; Zhu, X. Ronald; Dong, Lei; Dhabaan, Anees

    2015-01-01

    Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. Methods and Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR. Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. Results: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. Conclusions: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts

  3. Computer method to detect and correct cycle skipping on sonic logs

    International Nuclear Information System (INIS)

    Muller, D.C.

    1985-01-01

    A simple but effective computer method has been developed to detect cycle skipping on sonic logs and to replace cycle skips with estimates of correct traveltimes. The method can be used to correct observed traveltime pairs from the transmitter to both receivers. The basis of the method is the linearity of a plot of theoretical traveltime from the transmitter to the first receiver versus theoretical traveltime from the transmitter to the second receiver. Theoretical traveltime pairs are calculated assuming that the sonic logging tool is centered in the borehole, that the borehole diameter is constant, that the borehole fluid velocity is constant, and that the formation is homogeneous. The plot is linear for the full range of possible formation-rock velocity. Plots of observed traveltime pairs from a sonic logging tool are also linear but have a large degree of scatter due to borehole rugosity, sharp boundaries exhibiting large velocity contrasts, and system measurement uncertainties. However, this scatter can be reduced to a level that is less than scatter due to cycle skipping, so that cycle skips may be detected and discarded or replaced with estimated values of traveltime. Advantages of the method are that it can be applied in real time, that it can be used with data collected by existing tools, that it only affects data that exhibit cycle skipping and leaves other data unchanged, and that a correction trace can be generated which shows where cycle skipping occurs and the amount of correction applied. The method has been successfully tested on sonic log data taken in two holes drilled at the Nevada Test Site, Nye County, Nevada

  4. Micro-motion Recognition of Spatial Cone Target Based on ISAR Image Sequences

    Directory of Open Access Journals (Sweden)

    Changyong Shu

    2016-04-01

    Full Text Available The accurate micro-motions recognition of spatial cone target is the foundation of the characteristic parameter acquisition. For this reason, a micro-motion recognition method based on the distinguishing characteristics extracted from the Inverse Synthetic Aperture Radar (ISAR sequences is proposed in this paper. The projection trajectory formula of cone node strong scattering source and cone bottom slip-type strong scattering sources, which are located on the spatial cone target, are deduced under three micro-motion types including nutation, precession, and spinning, and the correctness is verified by the electromagnetic simulation. By comparison, differences are found among the projection of the scattering sources with different micro-motions, the coordinate information of the scattering sources in the Inverse Synthetic Aperture Radar sequences is extracted by the CLEAN algorithm, and the spinning is recognized by setting the threshold value of Doppler. The double observation points Interacting Multiple Model Kalman Filter is used to separate the scattering sources projection of the nutation target or precession target, and the cross point number of each scattering source’s projection track is used to classify the nutation or precession. Finally, the electromagnetic simulation data are used to verify the effectiveness of the micro-motion recognition method.

  5. Evaluation and parameterization of ATCOR3 topographic correction method for forest cover mapping in mountain areas

    Science.gov (United States)

    Balthazar, Vincent; Vanacker, Veerle; Lambin, Eric F.

    2012-08-01

    A topographic correction of optical remote sensing data is necessary to improve the quality of quantitative forest cover change analyses in mountainous terrain. The implementation of semi-empirical correction methods requires the calibration of model parameters that are empirically defined. This study develops a method to improve the performance of topographic corrections for forest cover change detection in mountainous terrain through an iterative tuning method of model parameters based on a systematic evaluation of the performance of the correction. The latter was based on: (i) the general matching of reflectances between sunlit and shaded slopes and (ii) the occurrence of abnormal reflectance values, qualified as statistical outliers, in very low illuminated areas. The method was tested on Landsat ETM+ data for rough (Ecuadorian Andes) and very rough mountainous terrain (Bhutan Himalayas). Compared to a reference level (no topographic correction), the ATCOR3 semi-empirical correction method resulted in a considerable reduction of dissimilarities between reflectance values of forested sites in different topographic orientations. Our results indicate that optimal parameter combinations are depending on the site, sun elevation and azimuth and spectral conditions. We demonstrate that the results of relatively simple topographic correction methods can be greatly improved through a feedback loop between parameter tuning and evaluation of the performance of the correction model.

  6. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks for Ground-State Properties.

    Science.gov (United States)

    Dral, Pavlo O; Wu, Xin; Spörkel, Lasse; Koslowski, Axel; Thiel, Walter

    2016-03-08

    The semiempirical orthogonalization-corrected OMx methods (OM1, OM2, and OM3) go beyond the standard MNDO model by including additional interactions in the electronic structure calculation. When augmented with empirical dispersion corrections, the resulting OMx-Dn approaches offer a fast and robust treatment of noncovalent interactions. Here we evaluate the performance of the OMx and OMx-Dn methods for a variety of ground-state properties using a large and diverse collection of benchmark sets from the literature, with a total of 13035 original and derived reference data. Extensive comparisons are made with the results from established semiempirical methods (MNDO, AM1, PM3, PM6, and PM7) that also use the NDDO (neglect of diatomic differential overlap) integral approximation. Statistical evaluations show that the OMx and OMx-Dn methods outperform the other methods for most of the benchmark sets.

  7. Methods to Increase Educational Effectiveness in an Adult Correctional Setting.

    Science.gov (United States)

    Kuster, Byron

    1998-01-01

    A correctional educator reflects on methods that improve instructional effectiveness. These include teacher-student collaboration, clear goals, student accountability, positive classroom atmosphere, high expectations, and mutual respect. (SK)

  8. Anthropomorphic thorax phantom for cardio-respiratory motion simulation in tomographic imaging

    Science.gov (United States)

    Bolwin, Konstantin; Czekalla, Björn; Frohwein, Lynn J.; Büther, Florian; Schäfers, Klaus P.

    2018-02-01

    Patient motion during medical imaging using techniques such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), or single emission computed tomography (SPECT) is well known to degrade images, leading to blurring effects or severe artifacts. Motion correction methods try to overcome these degrading effects. However, they need to be validated under realistic conditions. In this work, a sophisticated anthropomorphic thorax phantom is presented that combines several aspects of a simulator for cardio-respiratory motion. The phantom allows us to simulate various types of cardio-respiratory motions inside a human-like thorax, including features such as inflatable lungs, beating left ventricular myocardium, respiration-induced motion of the left ventricle, moving lung lesions, and moving coronary artery plaques. The phantom is constructed to be MR-compatible. This means that we can not only perform studies in PET, SPECT and CT, but also inside an MRI system. The technical features of the anthropomorphic thorax phantom Wilhelm are presented with regard to simulating motion effects in hybrid emission tomography and radiotherapy. This is supplemented by a study on the detectability of small coronary plaque lesions in PET/CT under the influence of cardio-respiratory motion, and a study on the accuracy of left ventricular blood volumes.

  9. A Class of Prediction-Correction Methods for Time-Varying Convex Optimization

    Science.gov (United States)

    Simonetto, Andrea; Mokhtari, Aryan; Koppel, Alec; Leus, Geert; Ribeiro, Alejandro

    2016-09-01

    This paper considers unconstrained convex optimization problems with time-varying objective functions. We propose algorithms with a discrete time-sampling scheme to find and track the solution trajectory based on prediction and correction steps, while sampling the problem data at a constant rate of $1/h$, where $h$ is the length of the sampling interval. The prediction step is derived by analyzing the iso-residual dynamics of the optimality conditions. The correction step adjusts for the distance between the current prediction and the optimizer at each time step, and consists either of one or multiple gradient steps or Newton steps, which respectively correspond to the gradient trajectory tracking (GTT) or Newton trajectory tracking (NTT) algorithms. Under suitable conditions, we establish that the asymptotic error incurred by both proposed methods behaves as $O(h^2)$, and in some cases as $O(h^4)$, which outperforms the state-of-the-art error bound of $O(h)$ for correction-only methods in the gradient-correction step. Moreover, when the characteristics of the objective function variation are not available, we propose approximate gradient and Newton tracking algorithms (AGT and ANT, respectively) that still attain these asymptotical error bounds. Numerical simulations demonstrate the practical utility of the proposed methods and that they improve upon existing techniques by several orders of magnitude.

  10. Bias-correction of CORDEX-MENA projections using the Distribution Based Scaling method

    Science.gov (United States)

    Bosshard, Thomas; Yang, Wei; Sjökvist, Elin; Arheimer, Berit; Graham, L. Phil

    2014-05-01

    Within the Regional Initiative for the Assessment of the Impact of Climate Change on Water Resources and Socio-Economic Vulnerability in the Arab Region (RICCAR) lead by UN ESCWA, CORDEX RCM projections for the Middle East Northern Africa (MENA) domain are used to drive hydrological impacts models. Bias-correction of newly available CORDEX-MENA projections is a central part of this project. In this study, the distribution based scaling (DBS) method has been applied to 6 regional climate model projections driven by 2 RCP emission scenarios. The DBS method uses a quantile mapping approach and features a conditional temperature correction dependent on the wet/dry state in the climate model data. The CORDEX-MENA domain is particularly challenging for bias-correction as it spans very diverse climates showing pronounced dry and wet seasons. Results show that the regional climate models simulate too low temperatures and often have a displaced rainfall band compared to WATCH ERA-Interim forcing data in the reference period 1979-2008. DBS is able to correct the temperature biases as well as some aspects of the precipitation biases. Special focus is given to the analysis of the influence of the dry-frequency bias (i.e. climate models simulating too few rain days) on the bias-corrected projections and on the modification of the climate change signal by the DBS method.

  11. Characteristic of methods for prevention and correction of moral of alienation of students

    Directory of Open Access Journals (Sweden)

    Z. K. Malieva

    2014-01-01

    Full Text Available A moral alienation is a complex integrative phenomenon characterized by individual’s rejection of universal spiritual and moral values of society. The last opportunity to find a purposeful competent solution of the problem of individual’s moral alienation lies in the space of professional education.The subject of study of this article is to identify methods for prevention and correction of moral alienation of students that can be used by teachers both in the process of extracurricular activities, and in conducting classes in humanitarian disciplines.The purpose of the work is to study methods and techniques that enhance the effectiveness of the prevention and correction of moral alienation of students, identify their characteristics and application in the educational activities of teachers.The paper concretizes a definition of methods to prevent and correct the moral alienation of students who represent a system of interrelated actions of educator and students aimed at: redefining of negative values, rules and norms of behavior; overcoming the negative mental states, negative attitudes, interests and aptitudes of aducatees.The article distinguishes and characterizes the most effective methods for prevention and correction of moral alienation of students: the conviction, the method of "Socrates"; understanding; semiotic analysis; suggestion, method of "explosion." It also presents the rules and necessary conditions for the application of these methods in the educational process.It is ascertained that the choice of effective preventive and corrective methods and techniques is determined by the content of intrapersonal, psychological sources of moral alienation associated with the following: negative attitude due to previous experience; orientation to these or those negative values; inadequate self-esteem, having a negative impact on the development and functioning of the individual’s psyche and behavior; mental states.The conclusions of the

  12. Overview of Akatsuki data products: definition of data levels, method and accuracy of geometric correction

    Science.gov (United States)

    Ogohara, Kazunori; Takagi, Masahiro; Murakami, Shin-ya; Horinouchi, Takeshi; Yamada, Manabu; Kouyama, Toru; Hashimoto, George L.; Imamura, Takeshi; Yamamoto, Yukio; Kashimura, Hiroki; Hirata, Naru; Sato, Naoki; Yamazaki, Atsushi; Satoh, Takehiko; Iwagami, Naomoto; Taguchi, Makoto; Watanabe, Shigeto; Sato, Takao M.; Ohtsuki, Shoko; Fukuhara, Tetsuya; Futaguchi, Masahiko; Sakanoi, Takeshi; Kameda, Shingo; Sugiyama, Ko-ichiro; Ando, Hiroki; Lee, Yeon Joo; Nakamura, Masato; Suzuki, Makoto; Hirose, Chikako; Ishii, Nobuaki; Abe, Takumi

    2017-12-01

    We provide an overview of data products from observations by the Japanese Venus Climate Orbiter, Akatsuki, and describe the definition and content of each data-processing level. Levels 1 and 2 consist of non-calibrated and calibrated radiance (or brightness temperature), respectively, as well as geometry information (e.g., illumination angles). Level 3 data are global-grid data in the regular longitude-latitude coordinate system, produced from the contents of Level 2. Non-negligible errors in navigational data and instrumental alignment can result in serious errors in the geometry calculations. Such errors cause mismapping of the data and lead to inconsistencies between radiances and illumination angles, along with errors in cloud-motion vectors. Thus, we carefully correct the boresight pointing of each camera by fitting an ellipse to the observed Venusian limb to provide improved longitude-latitude maps for Level 3 products, if possible. The accuracy of the pointing correction is also estimated statistically by simulating observed limb distributions. The results show that our algorithm successfully corrects instrumental pointing and will enable a variety of studies on the Venusian atmosphere using Akatsuki data.[Figure not available: see fulltext.

  13. SU-D-207A-06: Pediatric Abdominal Organ Motion Quantified Via a Novel 4D MRI Method

    Energy Technology Data Exchange (ETDEWEB)

    Uh, J; Krasin, MJ; Lucas, JT; Tinkle, C; Merchant, TE; Hua, C [St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2016-06-15

    Purpose: To develop a 4D MRI method for assessing respiration-induced abdominal organ motion in children receiving radiation therapy. Methods: A 4D MRI using internal image-based respiratory surrogate has been developed and implemented on a clinical scanner (1.5T Siemens Avanto). Ten patients (younger group: N=6, 2–5 years, anesthetized; older group: N=4, 11–15 years) with neuroblastoma, Wilm’s tumor rhabdomyosarcoma, or desmoplastic small round cell tumor received free breathing 4D MRI scans for treatment planning. Coronal image slices of the entire abdomen were retrospectively constructed in 10 respiratory phases. A B-spline deformable registration (Metz et al. 2011) was performed on 4D datasets to automatically derive motion trajectories of selected anatomical landmarks, including the dome and the center of the liver, and the superior edges of kidneys and spleen. The extents of the motion in three dimensions (anteroposterior, AP; mediolateral, ML; superoinferior, SI) and the correlations between organ motion trajectories were quantified. Results: The 4D MRI scans were successfully performed in <20 minutes for all patients without the use of any external device. Organ motion extents were larger in adolescents (kidneys: 3–13 mm SI, liver and spleen: 6–18 mm SI) than in younger children (kidneys:<3mm in all directions; liver and spleen: 1–8 mm SI, 1–5 mm ML and AP). The magnitude of respiratory motion in some adolescents may warrant special motion management. Motion trajectories were not synchronized across selected anatomical landmarks, particularly in the ML and AP directions, indicating inter- and intra-organ variations of the respiratory-induced motion. Conclusion: The developed 4D MRI acquisition and motion analysis methods provide a non-ionizing, non-invasive approach to automatically measure the organ motion trajectory in the pediatric abdomen. It is useful for defining ITV and PRV, monitoring changes in target motion patterns during the

  14. Residual motion compensation in ECG-gated interventional cardiac vasculature reconstruction

    Science.gov (United States)

    Schwemmer, C.; Rohkohl, C.; Lauritsch, G.; Müller, K.; Hornegger, J.

    2013-06-01

    Three-dimensional reconstruction of cardiac vasculature from angiographic C-arm CT (rotational angiography) data is a major challenge. Motion artefacts corrupt image quality, reducing usability for diagnosis and guidance. Many state-of-the-art approaches depend on retrospective ECG-gating of projection data for image reconstruction. A trade-off has to be made regarding the size of the ECG-gating window. A large temporal window is desirable to avoid undersampling. However, residual motion will occur in a large window, causing motion artefacts. We present an algorithm to correct for residual motion. Our approach is based on a deformable 2D-2D registration between the forward projection of an initial, ECG-gated reconstruction, and the original projection data. The approach is fully automatic and does not require any complex segmentation of vasculature, or landmarks. The estimated motion is compensated for during the backprojection step of a subsequent reconstruction. We evaluated the method using the publicly available CAVAREV platform and on six human clinical datasets. We found a better visibility of structure, reduced motion artefacts, and increased sharpness of the vessels in the compensated reconstructions compared to the initial reconstructions. At the time of writing, our algorithm outperforms the leading result of the CAVAREV ranking list. For the clinical datasets, we found an average reduction of motion artefacts by 13 ± 6%. Vessel sharpness was improved by 25 ± 12% on average.

  15. MO-B-201-02: Motion Management for Proton Lung SBR

    Energy Technology Data Exchange (ETDEWEB)

    Flampouri, S. [University of Florida Proton Therapy Institute (United States)

    2016-06-15

    The motion management in stereotactic body radiation therapy (SBRT) is a key to success for a SBRT program, and still an on-going challenging task. A major factor is that moving structures behave differently than standing structures when examined by imaging modalities, and thus require special considerations and employments. Understanding the motion effects to these different imaging processes is a prerequisite for a decent motion management program. The commonly used motion control techniques to physically restrict tumor motion, if adopted correctly, effectively increase the conformity and accuracy of hypofractionated treatment. The effective application of such requires one to understand the mechanics of the application and the related physiology especially related to respiration. The image-guided radiation beam control, or tumor tracking, further realized the endeavor for precision-targeting. During tumor tracking, the respiratory motion is often constantly monitored by non-ionizing beam sources using the body surface as its surrogate. This then has to synchronize with the actual internal tumor motion. The latter is often accomplished by stereo X-ray imaging or similar techniques. With these advanced technologies, one may drastically reduce the treated volume and increase the clinicians’ confidence for a high fractional ablative radiation dose. However, the challenges in implementing the motion management may not be trivial and is dependent on each clinic case. This session of presentations is intended to provide an overview of the current techniques used in managing the tumor motion in SBRT, specifically for routine lung SBRT, proton based treatments, and newly-developed MR guided RT. Learning Objectives: Through this presentation, the audience will understand basic roles of commonly used imaging modalities for lung cancer studies; familiarize the major advantages and limitations of each discussed motion control methods; familiarize the major advantages and

  16. MO-B-201-02: Motion Management for Proton Lung SBR

    International Nuclear Information System (INIS)

    Flampouri, S.

    2016-01-01

    The motion management in stereotactic body radiation therapy (SBRT) is a key to success for a SBRT program, and still an on-going challenging task. A major factor is that moving structures behave differently than standing structures when examined by imaging modalities, and thus require special considerations and employments. Understanding the motion effects to these different imaging processes is a prerequisite for a decent motion management program. The commonly used motion control techniques to physically restrict tumor motion, if adopted correctly, effectively increase the conformity and accuracy of hypofractionated treatment. The effective application of such requires one to understand the mechanics of the application and the related physiology especially related to respiration. The image-guided radiation beam control, or tumor tracking, further realized the endeavor for precision-targeting. During tumor tracking, the respiratory motion is often constantly monitored by non-ionizing beam sources using the body surface as its surrogate. This then has to synchronize with the actual internal tumor motion. The latter is often accomplished by stereo X-ray imaging or similar techniques. With these advanced technologies, one may drastically reduce the treated volume and increase the clinicians’ confidence for a high fractional ablative radiation dose. However, the challenges in implementing the motion management may not be trivial and is dependent on each clinic case. This session of presentations is intended to provide an overview of the current techniques used in managing the tumor motion in SBRT, specifically for routine lung SBRT, proton based treatments, and newly-developed MR guided RT. Learning Objectives: Through this presentation, the audience will understand basic roles of commonly used imaging modalities for lung cancer studies; familiarize the major advantages and limitations of each discussed motion control methods; familiarize the major advantages and

  17. Orbit Determination from Tracking Data of Artificial Satellite Using the Method of Differential Correction

    Directory of Open Access Journals (Sweden)

    Byoung-Sun Lee

    1988-06-01

    Full Text Available The differential correction process determining osculating orbital elements as correct as possible at a given instant of time from tracking data of artificial satellite was accomplished. Preliminary orbital elements were used as an initial value of the differential correction procedure and iterated until the residual of real observation(O and computed observation(C was minimized. Tracking satellite was NOAA-9 or TIROS-N series. Two types of tracking data were prediction data precomputed from mean orbital elements of TBUS and real data obtained from tracking 1.707GHz HRPT signal of NOAA-9 using 5 meter auto-track antenna in Radio Research Laboratory. According to tracking data either Gauss method or Herrick-Gibbs method was applied to preliminary orbit determination. In the differential correction stage we used both of the Escobal(1975's analytical method and numerical ones are nearly consistent. And the differentially corrected orbit converged to the same value in spite of the differences between preliminary orbits of each time span.

  18. A Novel Flood Forecasting Method Based on Initial State Variable Correction

    Directory of Open Access Journals (Sweden)

    Kuang Li

    2017-12-01

    Full Text Available The influence of initial state variables on flood forecasting accuracy by using conceptual hydrological models is analyzed in this paper and a novel flood forecasting method based on correction of initial state variables is proposed. The new method is abbreviated as ISVC (Initial State Variable Correction. The ISVC takes the residual between the measured and forecasted flows during the initial period of the flood event as the objective function, and it uses a particle swarm optimization algorithm to correct the initial state variables, which are then used to drive the flood forecasting model. The historical flood events of 11 watersheds in south China are forecasted and verified, and important issues concerning the ISVC application are then discussed. The study results show that the ISVC is effective and applicable in flood forecasting tasks. It can significantly improve the flood forecasting accuracy in most cases.

  19. A Correction Method for UAV Helicopter Airborne Temperature and Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Longqing Fan

    2017-01-01

    Full Text Available This paper presents a correction method for UAV helicopter airborne temperature and humidity including an error correction scheme and a bias-calibration scheme. As rotor downwash flow brings measurement error on helicopter airborne sensors inevitably, the error correction scheme constructs a model between the rotor induced velocity and temperature and humidity by building the heat balance equation for platinum resistor temperature sensor and the pressure correction term for humidity sensor. The induced velocity of a spatial point below the rotor disc plane can be calculated by the sum of the induced velocities excited by center line vortex, rotor disk vortex, and skew cylinder vortex based on the generalized vortex theory. In order to minimize the systematic biases, the bias-calibration scheme adopts a multiple linear regression to achieve a systematically consistent result with the tethered balloon profiles. Two temperature and humidity sensors were mounted on “Z-5” UAV helicopter in the field experiment. Overall, the result of applying the calibration method shows that the temperature and relative humidity obtained by UAV helicopter closely align with tethered balloon profiles in providing measurements of the temperature profiles and humidity profiles within marine atmospheric boundary layers.

  20. Adaptive vehicle motion estimation and prediction

    Science.gov (United States)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  1. An corrective method to correct of the inherent flaw of the asynchronization direct counting circuit

    International Nuclear Information System (INIS)

    Wang Renfei; Liu Congzhan; Jin Yongjie; Zhang Zhi; Li Yanguo

    2003-01-01

    As a inherent flaw of the Asynchronization Direct Counting Circuit, the crosstalk, which is resulted from the randomicity of the time-signal always exists between two adjacent channels. In order to reduce the counting error derived from the crosstalk, the author propose an effective method to correct the flaw after analysing the mechanism of the crosstalk

  2. Investigation of Compton scattering correction methods in cardiac SPECT by Monte Carlo simulations

    International Nuclear Information System (INIS)

    Silva, A.M. Marques da; Furlan, A.M.; Robilotta, C.C.

    2001-01-01

    The goal of this work was the use of Monte Carlo simulations to investigate the effects of two scattering correction methods: dual energy window (DEW) and dual photopeak window (DPW), in quantitative cardiac SPECT reconstruction. MCAT torso-cardiac phantom, with 99m Tc and non-uniform attenuation map was simulated. Two different photopeak windows were evaluated in DEW method: 15% and 20%. Two 10% wide subwindows centered symmetrically within the photopeak were used in DPW method. Iterative ML-EM reconstruction with modified projector-backprojector for attenuation correction was applied. Results indicated that the choice of the scattering and photopeak windows determines the correction accuracy. For the 15% window, fitted scatter fraction gives better results than k = 0.5. For the 20% window, DPW is the best method, but it requires parameters estimation using Monte Carlo simulations. (author)

  3. Correction to the count-rate detection limit and sample/blank time-allocation methods

    International Nuclear Information System (INIS)

    Alvarez, Joseph L.

    2013-01-01

    A common form of count-rate detection limits contains a propagation of uncertainty error. This error originated in methods to minimize uncertainty in the subtraction of the blank counts from the gross sample counts by allocation of blank and sample counting times. Correct uncertainty propagation showed that the time allocation equations have no solution. This publication presents the correct form of count-rate detection limits. -- Highlights: •The paper demonstrated a proper method of propagating uncertainty of count rate differences. •The standard count-rate detection limits were in error. •Count-time allocation methods for minimum uncertainty were in error. •The paper presented the correct form of the count-rate detection limit. •The paper discussed the confusion between count-rate uncertainty and count uncertainty

  4. A 4D dose computation method to investigate motion interplay effects in scanned ion beam prostate therapy

    International Nuclear Information System (INIS)

    Ammazzalorso, F; Jelen, U

    2014-01-01

    In particle therapy, the interplay between beam scanning and target motion during treatment delivery may result in dose deterioration. Interplay effects have been studied for targets exhibiting periodic respiratory motion, however, they are not well understood for irregular motion patterns, such as those exhibited by the prostate. In this note, we propose and validate a 4D dose computation method, which enables estimation of effective dose delivered to the prostate by scanning ion beams in presence of intrafraction motion, as well as facilitates investigation of various motion interplay countermeasures. (note)

  5. Comparison of fluorescence rejection methods of baseline correction and shifted excitation Raman difference spectroscopy

    Science.gov (United States)

    Cai, Zhijian; Zou, Wenlong; Wu, Jianhong

    2017-10-01

    Raman spectroscopy has been extensively used in biochemical tests, explosive detection, food additive and environmental pollutants. However, fluorescence disturbance brings a big trouble to the applications of portable Raman spectrometer. Currently, baseline correction and shifted-excitation Raman difference spectroscopy (SERDS) methods are the most prevailing fluorescence suppressing methods. In this paper, we compared the performances of baseline correction and SERDS methods, experimentally and simulatively. Through the comparison, it demonstrates that the baseline correction can get acceptable fluorescence-removed Raman spectrum if the original Raman signal has good signal-to-noise ratio, but it cannot recover the small Raman signals out of large noise background. By using SERDS method, the Raman signals, even very weak compared to fluorescence intensity and noise level, can be clearly extracted, and the fluorescence background can be completely rejected. The Raman spectrum recovered by SERDS has good signal to noise ratio. It's proved that baseline correction is more suitable for large bench-top Raman system with better quality or signal-to-noise ratio, while the SERDS method is more suitable for noisy devices, especially the portable Raman spectrometers.

  6. Effects of the Earth’ s triaxiality on the polar motion excitations

    Directory of Open Access Journals (Sweden)

    Chen Wei

    2012-05-01

    Full Text Available his study aims to evaluate the significance of the Earth’s triaxiality to the polar motion theory. First of all, we compare the polar motion theories for both the triaxial and rotationally-symmetric Earth models, which is established on the basis of the EGM2008 global gravity model and the MHB2000 Earth model. Then, we use the atmospheric and oceanic data (the NCEP/NCAR reanalyses and the ECCO assimulation products to quantify the triaxiality effect on polar motion excitations. Numerical results imply that triaxiality only cause a small correction (about 0. 1–0.2 mas to the geophysical excitations for the rotationally-symmetric case. The triaxiality correction is much smaller than the errors in the atmospheric and oceanic data, and thus can be neglected for recent studies on polar motion excitations.

  7. Correction method of slit modulation transfer function on digital medical imaging system

    International Nuclear Information System (INIS)

    Kim, Jung Min; Jung, Hoi Woun; Min, Jung Whan; Im, Eon Kyung

    2006-01-01

    By using CR image pixel data, We examined the way how to calculate the MTF and digital characteristic curve. It can be changed to the text-file (Excel) from a pixel data which was printed with a digital x-ray equipment. In this place, We described the way how to figure out and correct the sharpness of a digital images of the MTF from FUJITA. Excel program was utilized to calculate from radiography of slit. Digital characteristic curve, Line Spread Function, Discrete Fourier Transform, Fast Fourier Transform digital specification curve, were indicated in regular sequence. A big advantage of this method, It can be understood easily and you can get results without costly program an without full knowledge of computer language. It shows many different values by using different correction methods. Therefore we need to be handy with appropriate correction method and we should try many experiments to get a precise MTF figures

  8. A robust post-processing workflow for datasets with motion artifacts in diffusion kurtosis imaging.

    Science.gov (United States)

    Li, Xianjun; Yang, Jian; Gao, Jie; Luo, Xue; Zhou, Zhenyu; Hu, Yajie; Wu, Ed X; Wan, Mingxi

    2014-01-01

    The aim of this study was to develop a robust post-processing workflow for motion-corrupted datasets in diffusion kurtosis imaging (DKI). The proposed workflow consisted of brain extraction, rigid registration, distortion correction, artifacts rejection, spatial smoothing and tensor estimation. Rigid registration was utilized to correct misalignments. Motion artifacts were rejected by using local Pearson correlation coefficient (LPCC). The performance of LPCC in characterizing relative differences between artifacts and artifact-free images was compared with that of the conventional correlation coefficient in 10 randomly selected DKI datasets. The influence of rejected artifacts with information of gradient directions and b values for the parameter estimation was investigated by using mean square error (MSE). The variance of noise was used as the criterion for MSEs. The clinical practicality of the proposed workflow was evaluated by the image quality and measurements in regions of interest on 36 DKI datasets, including 18 artifact-free (18 pediatric subjects) and 18 motion-corrupted datasets (15 pediatric subjects and 3 essential tremor patients). The relative difference between artifacts and artifact-free images calculated by LPCC was larger than that of the conventional correlation coefficient (pworkflow improved the image quality and reduced the measurement biases significantly on motion-corrupted datasets (pworkflow was reliable to improve the image quality and the measurement precision of the derived parameters on motion-corrupted DKI datasets. The workflow provided an effective post-processing method for clinical applications of DKI in subjects with involuntary movements.

  9. Regression dilution bias: tools for correction methods and sample size calculation.

    Science.gov (United States)

    Berglund, Lars

    2012-08-01

    Random errors in measurement of a risk factor will introduce downward bias of an estimated association to a disease or a disease marker. This phenomenon is called regression dilution bias. A bias correction may be made with data from a validity study or a reliability study. In this article we give a non-technical description of designs of reliability studies with emphasis on selection of individuals for a repeated measurement, assumptions of measurement error models, and correction methods for the slope in a simple linear regression model where the dependent variable is a continuous variable. Also, we describe situations where correction for regression dilution bias is not appropriate. The methods are illustrated with the association between insulin sensitivity measured with the euglycaemic insulin clamp technique and fasting insulin, where measurement of the latter variable carries noticeable random error. We provide software tools for estimation of a corrected slope in a simple linear regression model assuming data for a continuous dependent variable and a continuous risk factor from a main study and an additional measurement of the risk factor in a reliability study. Also, we supply programs for estimation of the number of individuals needed in the reliability study and for choice of its design. Our conclusion is that correction for regression dilution bias is seldom applied in epidemiological studies. This may cause important effects of risk factors with large measurement errors to be neglected.

  10. Designing an Ergonomically Correct CNC Workstation on a Shoe String Budget.

    Science.gov (United States)

    Lightner, Stan

    2001-01-01

    Describes research to design and construct ergonomically correct work stations for Computer Numerical Control machine tools. By designing ergonomically correct work stations, industrial technology teachers help protect students from repetitive motion injuries. (Contains 12 references.) (JOW)

  11. Scatter correction method for x-ray CT using primary modulation: Phantom studies

    International Nuclear Information System (INIS)

    Gao Hewei; Fahrig, Rebecca; Bennett, N. Robert; Sun Mingshan; Star-Lack, Josh; Zhu Lei

    2010-01-01

    Purpose: Scatter correction is a major challenge in x-ray imaging using large area detectors. Recently, the authors proposed a promising scatter correction method for x-ray computed tomography (CT) using primary modulation. Proof of concept was previously illustrated by Monte Carlo simulations and physical experiments on a small phantom with a simple geometry. In this work, the authors provide a quantitative evaluation of the primary modulation technique and demonstrate its performance in applications where scatter correction is more challenging. Methods: The authors first analyze the potential errors of the estimated scatter in the primary modulation method. On two tabletop CT systems, the method is investigated using three phantoms: A Catphan(c)600 phantom, an anthropomorphic chest phantom, and the Catphan(c)600 phantom with two annuli. Two different primary modulators are also designed to show the impact of the modulator parameters on the scatter correction efficiency. The first is an aluminum modulator with a weak modulation and a low modulation frequency, and the second is a copper modulator with a strong modulation and a high modulation frequency. Results: On the Catphan(c)600 phantom in the first study, the method reduces the error of the CT number in the selected regions of interest (ROIs) from 371.4 to 21.9 Hounsfield units (HU); the contrast to noise ratio also increases from 10.9 to 19.2. On the anthropomorphic chest phantom in the second study, which represents a more difficult case due to the high scatter signals and object heterogeneity, the method reduces the error of the CT number from 327 to 19 HU in the selected ROIs and from 31.4% to 5.7% on the overall average. The third study is to investigate the impact of object size on the efficiency of our method. The scatter-to-primary ratio estimation error on the Catphan(c)600 phantom without any annulus (20 cm in diameter) is at the level of 0.04, it rises to 0.07 and 0.1 on the phantom with an

  12. Local blur analysis and phase error correction method for fringe projection profilometry systems.

    Science.gov (United States)

    Rao, Li; Da, Feipeng

    2018-05-20

    We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.

  13. An Investigation on the Efficiency Correction Method of the Turbocharger at Low Speed

    Directory of Open Access Journals (Sweden)

    Jin Eun Chung

    2018-01-01

    Full Text Available The heat transfer in the turbocharger occurs due to the temperature difference between the exhaust gas and intake air, coolant, and oil. This heat transfer causes the efficiency of the compressor and turbine to be distorted, which is known to be exacerbated during low rotational speeds. Thus, this study proposes a method to mitigate the distortion of the test result data caused by heat transfer in the turbocharger. With this method, the representative compressor temperature is defined and the heat transfer rate of the compressor is calculated by considering the effect of the oil and turbine inlet temperatures at low rotation speeds, when the cold and the hot gas test are simultaneously performed. The correction of compressor efficiency, depending on the turbine inlet temperature, was performed through both hot and cold gas tests and the results showed a maximum of 16% error prior to correction and a maximum of 3% error after the correction. In addition, it shows that it is possible to correct the efficiency distortion of the turbocharger by heat transfer by correcting to the combined turbine efficiency based on the corrected compressor efficiency.

  14. A method to quantitate regional wall motion in left ventriculography using Hildreth algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Mikio [Hyogo Red Cross Blood Center (Japan); Naito, Hiroaki; Sato, Yoshinobu; Tamura, Shinichi; Kurosawa, Tsutomu

    1998-06-01

    Quantitative measurement of ventricular wall motion is indispensable for objective evaluation of cardiac function associated with coronary artery disease. We have modified the Hildreth`s algorithm to estimate excursions of the ventricular wall on left ventricular images yielded by various imaging techniques. Tagging cine-MRI was carried out on 7 healthy volunteers. The original Hildreth method, the modified Hildreth method and the centerline method were applied to the outlines of the images obtained, to estimate excursion of the left ventricular wall and regional shortening and to evaluate the accuracy of these methods when measuring these parameters, compared to the values of these parameters measured actually using the attached tags. The accuracy of the original Hildreth method was comparable to that of the centerline method, while the modified Hildreth method was significantly more accurate than the centerline method (P<0.05). Regional shortening as estimated using the modified Hildreth method differed less from the actually measured regional shortening than did the shortening estimated using the centerline method (P<0.05). The modified Hildreth method allowed reasonable estimation of left ventricular wall excursion in all cases where it was applied. These results indicate that when applied to left ventriculograms for ventricular wall motion analysis, the modified Hildreth method is more useful than the original Hildreth method. (author)

  15. Cervical spine motion in manual versus Jackson table turning methods in a cadaveric global instability model.

    Science.gov (United States)

    DiPaola, Matthew J; DiPaola, Christian P; Conrad, Bryan P; Horodyski, MaryBeth; Del Rossi, Gianluca; Sawers, Andrew; Bloch, David; Rechtine, Glenn R

    2008-06-01

    A study of spine biomechanics in a cadaver model. To quantify motion in multiple axes created by transfer methods from stretcher to operating table in the prone position in a cervical global instability model. Patients with an unstable cervical spine remain at high risk for further secondary injury until their spine is adequately surgically stabilized. Previous studies have revealed that collars have significant, but limited benefit in preventing cervical motion when manually transferring patients. The literature proposes multiple methods of patient transfer, although no one method has been universally adopted. To date, no study has effectively evaluated the relationship between spine motion and various patient transfer methods to an operating room table for prone positioning. A global instability was surgically created at C5-6 in 4 fresh cadavers with no history of spine pathology. All cadavers were tested both with and without a rigid cervical collar in the intact and unstable state. Three headrest permutations were evaluated Mayfield (SM USA Inc), Prone View (Dupaco, Oceanside, CA), and Foam Pillow (OSI, Union City, CA). A trained group of medical staff performed each of 2 transfer methods: the "manual" and the "Jackson table" transfer. The manual technique entailed performing a standard rotation of the supine patient on a stretcher to the prone position on the operating room table with in-line manual cervical stabilization. The "Jackson" technique involved sliding the supine patient to the Jackson table (OSI, Union City, CA) with manual in-line cervical stabilization, securing them to the table, then initiating the table's lock and turn mechanism and rotating them into a prone position. An electromagnetic tracking device captured angular motion between the C5 and C6 vertebral segments. Repeated measures statistical analysis was performed to evaluate the following conditions: collar use (2 levels), headrest (3 levels), and turning technique (2 levels). For all

  16. Discussion on Boiler Efficiency Correction Method with Low Temperature Economizer-Air Heater System

    Science.gov (United States)

    Ke, Liu; Xing-sen, Yang; Fan-jun, Hou; Zhi-hong, Hu

    2017-05-01

    This paper pointed out that it is wrong to take the outlet flue gas temperature of low temperature economizer as exhaust gas temperature in boiler efficiency calculation based on GB10184-1988. What’s more, this paper proposed a new correction method, which decomposed low temperature economizer-air heater system into two hypothetical parts of air preheater and pre condensed water heater and take the outlet equivalent gas temperature of air preheater as exhaust gas temperature in boiler efficiency calculation. This method makes the boiler efficiency calculation more concise, with no air heater correction. It has a positive reference value to deal with this kind of problem correctly.

  17. Extensions of guiding center motion to higher order

    International Nuclear Information System (INIS)

    Northrop, T.G.; Rome, J.A.

    1978-01-01

    In a static magnetic field, some well-known guiding center equations maintain their form when extended to next order in gyroradius. In these cases, it is only necessary to include the next order term in the magnetic moment series. The differential equation for guiding center motion which describes both the parallel and perpendicular velocities correctly through first order in gyroradius is given. The question of how to define the guiding center position through second order arises and is discussed, and second order drifts are derived for one usual definition. The toroidal canonical angular momentum, P/sub phi/, of the guiding center in an axisymmetric field is shown to be conserved using the guiding center velocity correct through first order. When second-order motion is included, P/sub phi/ is no longer a constant. The above extensions of guiding center theory help to resolve the different tokamak orbits obtained either by using the guiding center equations of motion or by using conservation of P/sub phi/

  18. Extensions of guiding center motion to higher order

    International Nuclear Information System (INIS)

    Northrop, T.G.; Rome, J.A.

    1977-07-01

    In a static magnetic field, some well-known guiding center equations maintain their form when extended to next order in gyroradius. In these cases, it is only necessary to include the next order term in the magnetic moment series. The differential equation for guiding center motion which describes both the parallel and perpendicular velocities correctly through first order in gyroradius is given. The question of how to define the guiding center position through second order arises and is discussed, and second order drifts are derived for one usual definition. The toroidal canonical angular momentum, P/sub phi/, of the guiding center in an axisymmetric field is shown to be conserved using the guiding center velocity correct through first order. When second order motion is included, P/sub phi/ is no longer a constant. The above extensions of guiding center theory help to resolve the different tokamak orbits obtained either by using the guiding center equations of motion or by using conservation of P/sub phi/

  19. Ballistic deficit correction methods for large Ge detectors-high counting rate study

    International Nuclear Information System (INIS)

    Duchene, G.; Moszynski, M.

    1995-01-01

    This study presents different ballistic correction methods versus input count rate (from 3 to 50 kcounts/s) using four large Ge detectors of about 70 % relative efficiency. It turns out that the Tennelec TC245 linear amplifier in the BDC mode (Hinshaw method) is the best compromise for energy resolution throughout. All correction methods lead to narrow sum-peaks indistinguishable from single Γ lines. The full energy peak throughput is found representative of the pile-up inspection dead time of the corrector circuits. This work also presents a new and simple representation, plotting simultaneously energy resolution and throughput versus input count rate. (TEC). 12 refs., 11 figs

  20. A Hold-out method to correct PCA variance inflation

    DEFF Research Database (Denmark)

    Garcia-Moreno, Pablo; Artes-Rodriguez, Antonio; Hansen, Lars Kai

    2012-01-01

    In this paper we analyze the problem of variance inflation experienced by the PCA algorithm when working in an ill-posed scenario where the dimensionality of the training set is larger than its sample size. In an earlier article a correction method based on a Leave-One-Out (LOO) procedure...

  1. A comparison of two methods for earthquake source inversion using strong motion seismograms

    Directory of Open Access Journals (Sweden)

    G. C. Beroza

    1994-06-01

    Full Text Available In this paper we compare two time-domain inversion methods that have been widely applied to the problem of modeling earthquake rupture using strong-motion seismograms. In the multi-window method, each point on the fault is allowed to rupture multiple times. This allows flexibility in the rupture time and hence the rupture velocity. Variations in the slip-velocity function are accommodated by variations in the slip amplitude in each time-window. The single-window method assumes that each point on the fault ruptures only once, when the rupture front passes. Variations in slip amplitude are allowed and variations in rupture velocity are accommodated by allowing the rupture time to vary. Because the multi-window method allows greater flexibility, it has the potential to describe a wider range of faulting behavior; however, with this increased flexibility comes an increase in the degrees of freedom and the solutions are comparatively less stable. We demonstrate this effect using synthetic data for a test model of the Mw 7.3 1992 Landers, California earthquake, and then apply both inversion methods to the actual recordings. The two approaches yield similar fits to the strong-motion data with different seismic moments indicating that the moment is not well constrained by strong-motion data alone. The slip amplitude distribution is similar using either approach, but important differences exist in the rupture propagation models. The single-window method does a better job of recovering the true seismic moment and the average rupture velocity. The multi-window method is preferable when rise time is strongly variable, but tends to overestimate the seismic moment. Both methods work well when the rise time is constant or short compared to the periods modeled. Neither approach can recover the temporal details of rupture propagation unless the distribution of slip amplitude is constrained by independent data.

  2. The study on the X-ray correction method of long fracture displacement

    International Nuclear Information System (INIS)

    Jia Bin; Huang Ailing; Chen Fuzhong; Men Chunyan; Sui Chengzong; Cui Yiming; Yang Yundong

    2010-01-01

    Objective: To explore the image correction of fracture displacement by conventional X-ray photography (ortho tropic and lateral) and test by computed tomography (CT). Methods: The correction method of fracture displacement was designed according to geometry of X-ray photography. Selected one midhumeral fracture specimen which designed with lateral shift and angular displacement, and scanned from anteroposterior and position respectively, and also volume scanned using CT, the data obtained from volume scan were processed using multiplanar reconstruction (MPR) and shaded surface display (SSD). The displacement data relied on X-ray image, CT with MPR and SSD processing, actual design of specimens were compared respectively. Results: The direction and degree of displacement among correction data of X-ray images and the data from MPR and SSD, actual design of specimen were little difference, location difference <1.5 mm, degree difference <1.5 degree. Conclusion: It is really reliable for fracture displacement by conventional X-ray photography with coordinate correction, and it is helpful to obviously improve the diagnostic accuracy of the degree of fracture displacement. (authors)

  3. A software-based x-ray scatter correction method for breast tomosynthesis

    International Nuclear Information System (INIS)

    Jia Feng, Steve Si; Sechopoulos, Ioannis

    2011-01-01

    Purpose: To develop a software-based scatter correction method for digital breast tomosynthesis (DBT) imaging and investigate its impact on the image quality of tomosynthesis reconstructions of both phantoms and patients. Methods: A Monte Carlo (MC) simulation of x-ray scatter, with geometry matching that of the cranio-caudal (CC) view of a DBT clinical prototype, was developed using the Geant4 toolkit and used to generate maps of the scatter-to-primary ratio (SPR) of a number of homogeneous standard-shaped breasts of varying sizes. Dimension-matched SPR maps were then deformed and registered to DBT acquisition projections, allowing for the estimation of the primary x-ray signal acquired by the imaging system. Noise filtering of the estimated projections was then performed to reduce the impact of the quantum noise of the x-ray scatter. Three dimensional (3D) reconstruction was then performed using the maximum likelihood-expectation maximization (MLEM) method. This process was tested on acquisitions of a heterogeneous 50/50 adipose/glandular tomosynthesis phantom with embedded masses, fibers, and microcalcifications and on acquisitions of patients. The image quality of the reconstructions of the scatter-corrected and uncorrected projections was analyzed by studying the signal-difference-to-noise ratio (SDNR), the integral of the signal in each mass lesion (integrated mass signal, IMS), and the modulation transfer function (MTF). Results: The reconstructions of the scatter-corrected projections demonstrated superior image quality. The SDNR of masses embedded in a 5 cm thick tomosynthesis phantom improved 60%-66%, while the SDNR of the smallest mass in an 8 cm thick phantom improved by 59% (p < 0.01). The IMS of the masses in the 5 cm thick phantom also improved by 15%-29%, while the IMS of the masses in the 8 cm thick phantom improved by 26%-62% (p < 0.01). Some embedded microcalcifications in the tomosynthesis phantoms were visible only in the scatter-corrected

  4. Integrals of random fields treated by the model correction factor method

    DEFF Research Database (Denmark)

    Franchin, P.; Ditlevsen, Ove Dalager; Kiureghian, Armen Der

    2002-01-01

    The model correction factor method (MCFM) is used in conjunction with the first-order reliability method (FORM) to solve structural reliability problems involving integrals of non-Gaussian random fields. The approach replaces the limit-state function with an idealized one, in which the integrals ...

  5. A canonical perturbation method for computing the guiding-center motion in magnetized axisymmetric plasma columns

    International Nuclear Information System (INIS)

    Gratreau, P.

    1987-01-01

    The motion of charged particles in a magnetized plasma column, such as that of a magnetic mirror trap or a tokamak, is determined in the framework of the canonical perturbation theory through a method of variation of constants which preserves the energy conservation and the symmetry invariance. The choice of a frame of coordinates close to that of the magnetic coordinates allows a relatively precise determination of the guiding-center motion with a low-ordered approximation in the adiabatic parameter. A Hamiltonian formulation of the motion equations is obtained

  6. Correction of the closed orbit and vertical dispersion and the tuning and field correction system in ISABELLE

    International Nuclear Information System (INIS)

    Parzen, G.

    1979-01-01

    Each ring in ISABELLE will have 10 separately powered systematic field correction coils to make required corrections which are the same in corresponding magnets around the ring. These corrections include changing the ν-value, shaping the working line in ν-space, correction of field errors due to iron saturation effects, the conductor arrangements, the construction of the coil ends, diamagnetic effects in the superconductor and to rate-dependent induced currents. The twelve insertion quadrupoles in the insertion surrounding each crossing point will each have a quadrupole trim coil. The closed orbit will be controlled by a system of 84 horizontal dipole coils and 90 vertical dipole coils in each ring, each coil being separately powered. This system of dipole coils will also be used to correct the vertical dispersion at the crossing points. Two families of skew quadrupoles per ring will be provided for correction of the coupling between the horizontal and vertical motions. Although there will be 258 separately powered correction coils in each ring

  7. Implementation of the Centroid Method for the Correction of Turbulence

    Directory of Open Access Journals (Sweden)

    Enric Meinhardt-Llopis

    2014-07-01

    Full Text Available The centroid method for the correction of turbulence consists in computing the Karcher-Fréchet mean of the sequence of input images. The direction of deformation between a pair of images is determined by the optical flow. A distinguishing feature of the centroid method is that it can produce useful results from an arbitrarily small set of input images.

  8. Synthesis of High-Frequency Ground Motion Using Information Extracted from Low-Frequency Ground Motion

    Science.gov (United States)

    Iwaki, A.; Fujiwara, H.

    2012-12-01

    Broadband ground motion computations of scenario earthquakes are often based on hybrid methods that are the combinations of deterministic approach in lower frequency band and stochastic approach in higher frequency band. Typical computation methods for low-frequency and high-frequency (LF and HF, respectively) ground motions are the numerical simulations, such as finite-difference and finite-element methods based on three-dimensional velocity structure model, and the stochastic Green's function method, respectively. In such hybrid methods, LF and HF wave fields are generated through two different methods that are completely independent of each other, and are combined at the matching frequency. However, LF and HF wave fields are essentially not independent as long as they are from the same event. In this study, we focus on the relation among acceleration envelopes at different frequency bands, and attempt to synthesize HF ground motion using the information extracted from LF ground motion, aiming to propose a new method for broad-band strong motion prediction. Our study area is Kanto area, Japan. We use the K-NET and KiK-net surface acceleration data and compute RMS envelope at four frequency bands: 0.5-1.0 Hz, 1.0-2.0 Hz, 2.0-4.0 Hz, .0-8.0 Hz, and 8.0-16.0 Hz. Taking the ratio of the envelopes of adjacent bands, we find that the envelope ratios have stable shapes at each site. The empirical envelope-ratio characteristics are combined with low-frequency envelope of the target earthquake to synthesize HF ground motion. We have applied the method to M5-class earthquakes and a M7 target earthquake that occurred in the vicinity of Kanto area, and successfully reproduced the observed HF ground motion of the target earthquake. The method can be applied to a broad band ground motion simulation for a scenario earthquake by combining numerically-computed low-frequency (~1 Hz) ground motion with the empirical envelope ratio characteristics to generate broadband ground motion

  9. Residual motion compensation in ECG-gated interventional cardiac vasculature reconstruction

    International Nuclear Information System (INIS)

    Schwemmer, C; Müller, K; Hornegger, J; Rohkohl, C; Lauritsch, G

    2013-01-01

    Three-dimensional reconstruction of cardiac vasculature from angiographic C-arm CT (rotational angiography) data is a major challenge. Motion artefacts corrupt image quality, reducing usability for diagnosis and guidance. Many state-of-the-art approaches depend on retrospective ECG-gating of projection data for image reconstruction. A trade-off has to be made regarding the size of the ECG-gating window. A large temporal window is desirable to avoid undersampling. However, residual motion will occur in a large window, causing motion artefacts. We present an algorithm to correct for residual motion. Our approach is based on a deformable 2D–2D registration between the forward projection of an initial, ECG-gated reconstruction, and the original projection data. The approach is fully automatic and does not require any complex segmentation of vasculature, or landmarks. The estimated motion is compensated for during the backprojection step of a subsequent reconstruction. We evaluated the method using the publicly available CAVAREV platform and on six human clinical datasets. We found a better visibility of structure, reduced motion artefacts, and increased sharpness of the vessels in the compensated reconstructions compared to the initial reconstructions. At the time of writing, our algorithm outperforms the leading result of the CAVAREV ranking list. For the clinical datasets, we found an average reduction of motion artefacts by 13 ± 6%. Vessel sharpness was improved by 25 ± 12% on average. (paper)

  10. SU-E-J-11: A New Optical Method to Register Patient External Motion

    International Nuclear Information System (INIS)

    Barbes, B; Azcona, J; Moreno, M; Prieto, E; Foronda, J; Burguete, J

    2014-01-01

    Purpose: To devise and implement a new system to measure and register the patient motion during radiotherapy treatments. Methods: The system can obtain the position of several points in the 3D-space, through their projections in the 2D-images recorded by two cameras. The algorithm needs a series of constants, that are obtained using the images of a calibrated phantom.To test the system, some adhesive labels were placed on the surface of an object. Two cameras recorded the moving object over time. An in-house developed software localized the labels in each image. In the first pair of images, the program used a first approximation given by the user. In the subsequent images, it used the last position as an approximate location. The final exact coordinates of the point were obtained in a two-step process using the contrast of the images. From the 2D-positions of the point in each frame, the 3D-trajectories of each of these marks were obtained.The system was tested with linear displacements, oscillations of a mechanical oscillator, circular trajectories of a rotating disk, and with respiratory motion of a volunteer. Results: Trajectories of several points were reproduced with sub-millimeter accuracy in the three directions of the space. The system was able to follow periodic motion with amplitudes lower than 0.5mm; and trajectories of rotating points at speeds up to 200mm/s. The software could also track accurately the respiration motion of a person. Conclusion: A new, inexpensive optical tracking system for patient motion has been demonstrated. The system detects motion with high accuracy. Installation and calibration of the system is simple and quick. Data collection is not expected to involve any discomfort for the patient, nor any delay for the treatment. The system could be also used as a method of warning for patient movements, and for gating. We acknowledge financial support from Fundacion Mutua Madrilena, Madrid, Spain

  11. SU-E-J-11: A New Optical Method to Register Patient External Motion

    Energy Technology Data Exchange (ETDEWEB)

    Barbes, B; Azcona, J; Moreno, M; Prieto, E [Clinica Universidad de Navarra, Pamplona, Navarra (Spain); Foronda, J [Tecnun Universidad de Navarra, San Sabastian (Spain); Burguete, J [Universidad de Navarra, Pamplona, Navarra (Spain)

    2014-06-01

    Purpose: To devise and implement a new system to measure and register the patient motion during radiotherapy treatments. Methods: The system can obtain the position of several points in the 3D-space, through their projections in the 2D-images recorded by two cameras. The algorithm needs a series of constants, that are obtained using the images of a calibrated phantom.To test the system, some adhesive labels were placed on the surface of an object. Two cameras recorded the moving object over time. An in-house developed software localized the labels in each image. In the first pair of images, the program used a first approximation given by the user. In the subsequent images, it used the last position as an approximate location. The final exact coordinates of the point were obtained in a two-step process using the contrast of the images. From the 2D-positions of the point in each frame, the 3D-trajectories of each of these marks were obtained.The system was tested with linear displacements, oscillations of a mechanical oscillator, circular trajectories of a rotating disk, and with respiratory motion of a volunteer. Results: Trajectories of several points were reproduced with sub-millimeter accuracy in the three directions of the space. The system was able to follow periodic motion with amplitudes lower than 0.5mm; and trajectories of rotating points at speeds up to 200mm/s. The software could also track accurately the respiration motion of a person. Conclusion: A new, inexpensive optical tracking system for patient motion has been demonstrated. The system detects motion with high accuracy. Installation and calibration of the system is simple and quick. Data collection is not expected to involve any discomfort for the patient, nor any delay for the treatment. The system could be also used as a method of warning for patient movements, and for gating. We acknowledge financial support from Fundacion Mutua Madrilena, Madrid, Spain.

  12. Coherent states with classical motion: from an analytic method complementary to group theory

    International Nuclear Information System (INIS)

    Nieto, M.M.

    1982-01-01

    From the motivation of Schroedinger, that of finding states which follow the motion which a classical particle would have in a given potential, we discuss generalizations of the coherent states of the harmonic oscillator. We focus on a method which is the analytic complement to the group theory point of view. It uses a minimum uncertainty formalism as its basis. We discuss the properties and time evolution of these states, always keeping in mind the desire to find quantum states which follow the classical motion

  13. Unsupervised motion-based object segmentation refined by color

    Science.gov (United States)

    Piek, Matthijs C.; Braspenning, Ralph; Varekamp, Chris

    2003-06-01

    for its ability to estimate motion vectors which closely resemble the true motion. BLOCK-BASED MOTION SEGMENTATION As mentioned above we start with a block-resolution segmentation based on motion vectors. The presented method is inspired by the well-known K-means segmentation method te{K-means}. Several other methods (e.g. te{kmeansc}) adapt K-means for connectedness by adding a weighted shape-error. This adds the additional difficulty of finding the correct weights for the shape-parameters. Also, these methods often bias one particular pre-defined shape. The presented method, which we call K-regions, encourages connectedness because only blocks at the edges of segments may be assigned to another segment. This constrains the segmentation method to such a degree that it allows the method to use least squares for the robust fitting of affine motion models for each segment. Contrary to te{parmkm}, the segmentation step still operates on vectors instead of model parameters. To make sure the segmentation is temporally consistent, the segmentation of the previous frame will be used as initialisation for every new frame. We also present a scheme which makes the algorithm independent of the initially chosen amount of segments. COLOUR-BASED INTRA-BLOCK SEGMENTATION The block resolution motion-based segmentation forms the starting point for the pixel resolution segmentation. The pixel resolution segmentation is obtained from the block resolution segmentation by reclassifying pixels only at the edges of clusters. We assume that an edge between two objects can be found in either one of two neighbouring blocks that belong to different clusters. This assumption allows us to do the pixel resolution segmentation on each pair of such neighbouring blocks separately. Because of the local nature of the segmentation, it largely avoids problems with heterogeneously coloured areas. Because no new segments are introduced in this step, it also does not suffer from oversegmentation problems

  14. A brain MRI bias field correction method created in the Gaussian multi-scale space

    Science.gov (United States)

    Chen, Mingsheng; Qin, Mingxin

    2017-07-01

    A pre-processing step is needed to correct for the bias field signal before submitting corrupted MR images to such image-processing algorithms. This study presents a new bias field correction method. The method creates a Gaussian multi-scale space by the convolution of the inhomogeneous MR image with a two-dimensional Gaussian function. In the multi-Gaussian space, the method retrieves the image details from the differentiation of the original image and convolution image. Then, it obtains an image whose inhomogeneity is eliminated by the weighted sum of image details in each layer in the space. Next, the bias field-corrected MR image is retrieved after the Υ correction, which enhances the contrast and brightness of the inhomogeneity-eliminated MR image. We have tested the approach on T1 MRI and T2 MRI with varying bias field levels and have achieved satisfactory results. Comparison experiments with popular software have demonstrated superior performance of the proposed method in terms of quantitative indices, especially an improvement in subsequent image segmentation.

  15. On transcending the impasse of respiratory motion correction applications in routine clinical imaging - a consideration of a fully automated data driven motion control framework

    International Nuclear Information System (INIS)

    Kesner, Adam L; Schleyer, Paul J; Büther, Florian; Walter, Martin A; Schäfers, Klaus P; Koo, Phillip J

    2014-01-01

    Positron emission tomography (PET) is increasingly used for the detection, characterization, and follow-up of tumors located in the thorax. However, patient respiratory motion presents a unique limitation that hinders the application of high-resolution PET technology for this type of imaging. Efforts to transcend this limitation have been underway for more than a decade, yet PET remains for practical considerations a modality vulnerable to motion-induced image degradation. Respiratory motion control is not employed in routine clinical operations. In this article, we take an opportunity to highlight some of the recent advancements in data-driven motion control strategies and how they may form an underpinning for what we are presenting as a fully automated data-driven motion control framework. This framework represents an alternative direction for future endeavors in motion control and can conceptually connect individual focused studies with a strategy for addressing big picture challenges and goals. The online version of this article (doi:10.1186/2197-7364-1-8) contains supplementary material, which is available to authorized users.

  16. Restoration of motion-blurred image based on border deformation detection: a traffic sign restoration model.

    Directory of Open Access Journals (Sweden)

    Yiliang Zeng

    Full Text Available Due to the rapid development of motor vehicle Driver Assistance Systems (DAS, the safety problems associated with automatic driving have become a hot issue in Intelligent Transportation. The traffic sign is one of the most important tools used to reinforce traffic rules. However, traffic sign image degradation based on computer vision is unavoidable during the vehicle movement process. In order to quickly and accurately recognize traffic signs in motion-blurred images in DAS, a new image restoration algorithm based on border deformation detection in the spatial domain is proposed in this paper. The border of a traffic sign is extracted using color information, and then the width of the border is measured in all directions. According to the width measured and the corresponding direction, both the motion direction and scale of the image can be confirmed, and this information can be used to restore the motion-blurred image. Finally, a gray mean grads (GMG ratio is presented to evaluate the image restoration quality. Compared to the traditional restoration approach which is based on the blind deconvolution method and Lucy-Richardson method, our method can greatly restore motion blurred images and improve the correct recognition rate. Our experiments show that the proposed method is able to restore traffic sign information accurately and efficiently.

  17. A Time-Walk Correction Method for PET Detectors Based on Leading Edge Discriminators.

    Science.gov (United States)

    Du, Junwei; Schmall, Jeffrey P; Judenhofer, Martin S; Di, Kun; Yang, Yongfeng; Cherry, Simon R

    2017-09-01

    The leading edge timing pick-off technique is the simplest timing extraction method for PET detectors. Due to the inherent time-walk of the leading edge technique, corrections should be made to improve timing resolution, especially for time-of-flight PET. Time-walk correction can be done by utilizing the relationship between the threshold crossing time and the event energy on an event by event basis. In this paper, a time-walk correction method is proposed and evaluated using timing information from two identical detectors both using leading edge discriminators. This differs from other techniques that use an external dedicated reference detector, such as a fast PMT-based detector using constant fraction techniques to pick-off timing information. In our proposed method, one detector was used as reference detector to correct the time-walk of the other detector. Time-walk in the reference detector was minimized by using events within a small energy window (508.5 - 513.5 keV). To validate this method, a coincidence detector pair was assembled using two SensL MicroFB SiPMs and two 2.5 mm × 2.5 mm × 20 mm polished LYSO crystals. Coincidence timing resolutions using different time pick-off techniques were obtained at a bias voltage of 27.5 V and a fixed temperature of 20 °C. The coincidence timing resolution without time-walk correction were 389.0 ± 12.0 ps (425 -650 keV energy window) and 670.2 ± 16.2 ps (250-750 keV energy window). The timing resolution with time-walk correction improved to 367.3 ± 0.5 ps (425 - 650 keV) and 413.7 ± 0.9 ps (250 - 750 keV). For comparison, timing resolutions were 442.8 ± 12.8 ps (425 - 650 keV) and 476.0 ± 13.0 ps (250 - 750 keV) using constant fraction techniques, and 367.3 ± 0.4 ps (425 - 650 keV) and 413.4 ± 0.9 ps (250 - 750 keV) using a reference detector based on the constant fraction technique. These results show that the proposed leading edge based time-walk correction method works well. Timing resolution obtained

  18. Correction of measured multiplicity distributions by the simulated annealing method

    International Nuclear Information System (INIS)

    Hafidouni, M.

    1993-01-01

    Simulated annealing is a method used to solve combinatorial optimization problems. It is used here for the correction of the observed multiplicity distribution from S-Pb collisions at 200 GeV/c per nucleon. (author) 11 refs., 2 figs

  19. N3 Bias Field Correction Explained as a Bayesian Modeling Method

    DEFF Research Database (Denmark)

    Larsen, Christian Thode; Iglesias, Juan Eugenio; Van Leemput, Koen

    2014-01-01

    Although N3 is perhaps the most widely used method for MRI bias field correction, its underlying mechanism is in fact not well understood. Specifically, the method relies on a relatively heuristic recipe of alternating iterative steps that does not optimize any particular objective function. In t...

  20. A Unifying model of perfusion and motion applied to reconstruction of sparsely sampled free-breathing myocardial perfusion MRI

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Ólafsdóttir, Hildur; Larsen, Rasmus

    2010-01-01

    The clinical potential of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is currently limited by respiratory induced motion of the heart. This paper presents a unifying model of perfusion and motion in which respiratory motion becomes an integral part of myocardial perfusion...... quantification. Hence, the need for tedious manual motion correction prior to perfusion quantification is avoided. In addition, we demonstrate that the proposed framework facilitates the process of reconstructing DCEMRI from sparsely sampled data in the presence of respiratory motion. The paper focuses primarily...... on the underlying theory of the proposed framework, but shows in vivo results of respiratory motion correction and simulation results of reconstructing sparsely sampled data....

  1. Predicting 2D target velocity cannot help 2D motion integration for smooth pursuit initiation.

    Science.gov (United States)

    Montagnini, Anna; Spering, Miriam; Masson, Guillaume S

    2006-12-01

    Smooth pursuit eye movements reflect the temporal dynamics of bidimensional (2D) visual motion integration. When tracking a single, tilted line, initial pursuit direction is biased toward unidimensional (1D) edge motion signals, which are orthogonal to the line orientation. Over 200 ms, tracking direction is slowly corrected to finally match the 2D object motion during steady-state pursuit. We now show that repetition of line orientation and/or motion direction does not eliminate the transient tracking direction error nor change the time course of pursuit correction. Nonetheless, multiple successive presentations of a single orientation/direction condition elicit robust anticipatory pursuit eye movements that always go in the 2D object motion direction not the 1D edge motion direction. These results demonstrate that predictive signals about target motion cannot be used for an efficient integration of ambiguous velocity signals at pursuit initiation.

  2. High-order multi-implicit spectral deferred correction methods for problems of reactive flow

    International Nuclear Information System (INIS)

    Bourlioux, Anne; Layton, Anita T.; Minion, Michael L.

    2003-01-01

    Models for reacting flow are typically based on advection-diffusion-reaction (A-D-R) partial differential equations. Many practical cases correspond to situations where the relevant time scales associated with each of the three sub-processes can be widely different, leading to disparate time-step requirements for robust and accurate time-integration. In particular, interesting regimes in combustion correspond to systems in which diffusion and reaction are much faster processes than advection. The numerical strategy introduced in this paper is a general procedure to account for this time-scale disparity. The proposed methods are high-order multi-implicit generalizations of spectral deferred correction methods (MISDC methods), constructed for the temporal integration of A-D-R equations. Spectral deferred correction methods compute a high-order approximation to the solution of a differential equation by using a simple, low-order numerical method to solve a series of correction equations, each of which increases the order of accuracy of the approximation. The key feature of MISDC methods is their flexibility in handling several sub-processes implicitly but independently, while avoiding the splitting errors present in traditional operator-splitting methods and also allowing for different time steps for each process. The stability, accuracy, and efficiency of MISDC methods are first analyzed using a linear model problem and the results are compared to semi-implicit spectral deferred correction methods. Furthermore, numerical tests on simplified reacting flows demonstrate the expected convergence rates for MISDC methods of orders three, four, and five. The gain in efficiency by independently controlling the sub-process time steps is illustrated for nonlinear problems, where reaction and diffusion are much stiffer than advection. Although the paper focuses on this specific time-scales ordering, the generalization to any ordering combination is straightforward

  3. Design and Voluntary Motion Intention Estimation of a Novel Wearable Full-Body Flexible Exoskeleton Robot

    Directory of Open Access Journals (Sweden)

    Chunjie Chen

    2017-01-01

    Full Text Available The wearable full-body exoskeleton robot developed in this study is one application of mobile cyberphysical system (CPS, which is a complex mobile system integrating mechanics, electronics, computer science, and artificial intelligence. Steel wire was used as the flexible transmission medium and a group of special wire-locking structures was designed. Additionally, we designed passive joints for partial joints of the exoskeleton. Finally, we proposed a novel gait phase recognition method for full-body exoskeletons using only joint angular sensors, plantar pressure sensors, and inclination sensors. The method consists of four procedures. Firstly, we classified the three types of main motion patterns: normal walking on the ground, stair-climbing and stair-descending, and sit-to-stand movement. Secondly, we segregated the experimental data into one gait cycle. Thirdly, we divided one gait cycle into eight gait phases. Finally, we built a gait phase recognition model based on k-Nearest Neighbor perception and trained it with the phase-labeled gait data. The experimental result shows that the model has a 98.52% average correct rate of classification of the main motion patterns on the testing set and a 95.32% average correct rate of phase recognition on the testing set. So the exoskeleton robot can achieve human motion intention in real time and coordinate its movement with the wearer.

  4. Extension of the Method of Direct Separation of Motions for Problems of Oscillating Action on Dynamical Systems

    DEFF Research Database (Denmark)

    Blekhman, Iliya I.; Sorokin, Vladislav

    2016-01-01

    A general approach to study oscillating action on nonlinear dynamical systems is developed. It implies a transition from initial governing equations of motion to much more simple equations describing only the main slow component of motions (the vibro-transformed dynamics equations). The approach...... is named as the Oscillatory Strobodynamics, since motions are perceived as under a stroboscopic light. The vibro-transformed dynamics equations comprise terms that represent the averaged effect of the oscillating action. The method of direct separation of motions (MDSM) appears to be an efficient...

  5. Reduction of prostate intrafraction motion using gas-release rectal balloons

    International Nuclear Information System (INIS)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy

    2012-01-01

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5Σ+ 0.7σ to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior–inferior (SI) and anterior–posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left–right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  6. Reduction of prostate intrafraction motion using gas-release rectal balloons

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy [Department of Radiation Oncology, University of Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States)

    2012-10-15

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5{Sigma}+ 0.7{sigma} to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior-inferior (SI) and anterior-posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left-right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  7. Evaluation of a method for correction of scatter radiation in thorax cone beam CT; Evaluation d'une methode de correction du rayonnement diffuse en tomographie du thorax avec faisceau conique

    Energy Technology Data Exchange (ETDEWEB)

    Rinkel, J.; Dinten, J.M. [CEA Grenoble (DTBS/STD), Lab. d' Electronique et de Technologie de l' Informatique, LETI, 38 (France); Esteve, F. [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France)

    2004-07-01

    Purpose: Cone beam CT (CBCT) enables three-dimensional imaging with isotropic resolution. X-ray scatter estimation is a big challenge for quantitative CBCT imaging of thorax: scatter level is significantly higher on cone beam systems compared to collimated fan beam systems. The effects of this scattered radiation are cupping artefacts, streaks, and quantification inaccuracies. The beam stops conventional scatter estimation approach can be used for CBCT but leads to a significant increase in terms of dose and acquisition time. At CEA-LETI has been developed an original scatter management process without supplementary acquisition. Methods and Materials: This Analytical Plus Indexing-based method (API) of scatter correction in CBCT is based on scatter calibration through offline acquisitions with beam stops on lucite plates, combined to an analytical transformation issued from physical equations. This approach has been applied with success in bone densitometry and mammography. To evaluate this method in CBCT, acquisitions from a thorax phantom with and without beam stops have been performed. To compare different scatter correction approaches, Feldkamp algorithm has been applied on rough data corrected from scatter by API and by beam stops approaches. Results: The API method provides results in good agreement with the beam stops array approach, suppressing cupping artefact. Otherwise influence of the scatter correction method on the noise in the reconstructed images has been evaluated. Conclusion: The results indicate that the API method is effective for quantitative CBCT imaging of thorax. Compared to a beam stops array method it needs a lower x-ray dose and shortens acquisition time. (authors)

  8. A convolution method for predicting mean treatment dose including organ motion at imaging

    International Nuclear Information System (INIS)

    Booth, J.T.; Zavgorodni, S.F.; Royal Adelaide Hospital, SA

    2000-01-01

    Full text: The random treatment delivery errors (organ motion and set-up error) can be incorporated into the treatment planning software using a convolution method. Mean treatment dose is computed as the convolution of a static dose distribution with a variation kernel. Typically this variation kernel is Gaussian with variance equal to the sum of the organ motion and set-up error variances. We propose a novel variation kernel for the convolution technique that additionally considers the position of the mobile organ in the planning CT image. The systematic error of organ position in the planning CT image can be considered random for each patient over a population. Thus the variance of the variation kernel will equal the sum of treatment delivery variance and organ motion variance at planning for the population of treatments. The kernel is extended to deal with multiple pre-treatment CT scans to improve tumour localisation for planning. Mean treatment doses calculated with the convolution technique are compared to benchmark Monte Carlo (MC) computations. Calculations of mean treatment dose using the convolution technique agreed with MC results for all cases to better than ± 1 Gy in the planning treatment volume for a prescribed 60 Gy treatment. Convolution provides a quick method of incorporating random organ motion (captured in the planning CT image and during treatment delivery) and random set-up errors directly into the dose distribution. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  9. Guidance and Control Design for a Class of Spin-Stabilized Projectiles with a Two-Dimensional Trajectory Correction Fuze

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2015-01-01

    Full Text Available A guidance and control strategy for a class of 2D trajectory correction fuze with fixed canards is developed in this paper. Firstly, correction control mechanism is researched through studying the deviation motion, the key point of which is the dynamic equilibrium angle. Phase lag of swerve response is the dominating factor for correction control, and formula is deduced with the Mach number as argument. Secondly, impact point deviation prediction based on perturbation theory is proposed, and the numerical solution and application method are introduced. Finally, guidance and control strategy is developed, and simulations to validate the strategy are conducted.

  10. Fission track dating of volcanic glass: experimental evidence for the validity of the Size-Correction Method

    International Nuclear Information System (INIS)

    Bernardes, C.; Hadler Neto, J.C.; Lattes, C.M.G.; Araya, A.M.O.; Bigazzi, G.; Cesar, M.F.

    1986-01-01

    Two techniques may be employed for correcting thermally lowered fission track ages on glass material: the so called 'size-correcting method' and 'Plateau method'. Several results from fission track dating on obsidian were analysed in order to compare the model rising size-correction method with experimental evidences. The results from this work can be summarized as follows: 1) The assumption that mean size of spontaneous and induced etched tracks are equal on samples unaffected by partial fading is supported by experimental results. If reactor effects such as an enhancing of the etching rate in the irradiated fraction due to the radiation damage and/or to the fact that induced fission releases a quantity of energy slightly greater than spontaneous one exist, their influence on size-correction method is very small. 2) The above two correction techniques produce concordant results. 3) Several samples from the same obsidian, affected by 'instantaneous' as well as 'continuous' natural fading to different degrees were analysed: the curve showing decreasing of spontaneous track mean-size vs. fraction of spontaneous tracks lost by fading is in close agreement with the correction curve constructed for the same obsidian by imparting artificial thermal treatements on induced tracks. By the above points one can conclude that the assumptions on which size-correction method is based are well supported, at least in first approximation. (Author) [pt

  11. COMPARISON OF BACKGROUND SUBTRACTION, SOBEL, ADAPTIVE MOTION DETECTION, FRAME DIFFERENCES, AND ACCUMULATIVE DIFFERENCES IMAGES ON MOTION DETECTION

    Directory of Open Access Journals (Sweden)

    Dara Incam Ramadhan

    2018-02-01

    Full Text Available Nowadays, digital image processing is not only used to recognize motionless objects, but also used to recognize motions objects on video. One use of moving object recognition on video is to detect motion, which implementation can be used on security cameras. Various methods used to detect motion have been developed so that in this research compared some motion detection methods, namely Background Substraction, Adaptive Motion Detection, Sobel, Frame Differences and Accumulative Differences Images (ADI. Each method has a different level of accuracy. In the background substraction method, the result obtained 86.1% accuracy in the room and 88.3% outdoors. In the sobel method the result of motion detection depends on the lighting conditions of the room being supervised. When the room is in bright condition, the accuracy of the system decreases and when the room is dark, the accuracy of the system increases with an accuracy of 80%. In the adaptive motion detection method, motion can be detected with a condition in camera visibility there is no object that is easy to move. In the frame difference method, testing on RBG image using average computation with threshold of 35 gives the best value. In the ADI method, the result of accuracy in motion detection reached 95.12%.

  12. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: Relevance to morphology of structures such as microcalcifications

    International Nuclear Information System (INIS)

    Chen Ying; Lo, Joseph Y.; Dobbins, James T. III

    2007-01-01

    Digital breast tomosynthesis is a three-dimensional imaging technique that provides an arbitrary set of reconstruction planes in the breast from a limited-angle series of projection images acquired while the x-ray tube moves. Traditional shift-and-add (SAA) tomosynthesis reconstruction is a common mathematical method to line up each projection image based on its shifting amount to generate reconstruction slices. With parallel-path geometry of tube motion, the path of the tube lies in a plane parallel to the plane of the detector. The traditional SAA algorithm gives shift amounts for each projection image calculated only along the direction of x-ray tube movement. However, with the partial isocentric motion of the x-ray tube in breast tomosynthesis, small objects such as microcalcifications appear blurred (for instance, about 1-4 pixels in blur for a microcalcification in a human breast) in traditional SAA images in the direction perpendicular to the direction of tube motion. Some digital breast tomosynthesis algorithms reported in the literature utilize a traditional one-dimensional SAA method that is not wholly suitable for isocentric motion. In this paper, a point-by-point back projection (BP) method is described and compared with traditional SAA for the important clinical task of evaluating morphology of small objects such as microcalcifications. Impulse responses at different three-dimensional locations with five different combinations of imaging acquisition parameters were investigated. Reconstruction images of microcalcifications in a human subject were also evaluated. Results showed that with traditional SAA and 45 deg. view angle of tube movement with respect to the detector, at the same height above the detector, the in-plane blur artifacts were obvious for objects farther away from x-ray source. In a human subject, the appearance of calcifications was blurred in the direction orthogonal to the tube motion with traditional SAA. With point-by-point BP, the

  13. New methods for the correction of 31P NMR spectra in in vivo NMR spectroscopy

    International Nuclear Information System (INIS)

    Starcuk, Z.; Bartusek, K.; Starcuk, Z. jr.

    1994-01-01

    The new methods for the correction of 31 P NMR spectra in vivo NMR spectroscopy have been performed. A method for the baseline correction of the spectra which represents a combination of time-domain and frequency-domain has been discussed.The method is very fast and efficient for minimization of base line artifacts of biological tissues impact

  14. WE-AB-303-05: Breathing Motion of Liver Segments From Fiducial Tracking During Robotic Radiosurgery and Comparison with 4D-CT-Derived Fiducial Motion

    International Nuclear Information System (INIS)

    Sutherland, J; Pantarotto, J; Nair, V; Cook, G; Plourde, M; Vandervoort, E

    2015-01-01

    Purpose: To quantify respiratory-induced motion of liver segments using the positions of implanted fiducials during robotic radiosurgery. This study also compared fiducial motion derived from four-dimensional computed tomography (4D-CT) maximum intensity projections (MIP) with motion derived from imaging during treatment. Methods: Forty-two consecutive liver patients treated with liver ablative radiotherapy were accrued to an ethics approved retrospective study. The liver segment in which each fiducial resided was identified. Fiducial positions throughout each treatment fraction were determined using orthogonal kilovoltage images. Any data due to patient repositioning or motion was removed. Mean fiducial positions were calculated. Fiducial positions beyond two standard deviations of the mean were discarded and remaining positions were fit to a line segment using least squares minimization (LSM). For eight patients, fiducial motion was derived from 4D-CT MIPs by calculating the CT number weighted mean position of the fiducial on each slice and fitting a line segment to these points using LSM. Treatment derived fiducial trajectories were corrected for patient rotation and compared to MIP derived trajectories. Results: The mean total magnitude of fiducial motion across all liver segments in left-right, anteroposterior, and superoinferior (SI) directions were 3.0 ± 0.2 mm, 9.3 ± 0.4 mm, and 20.5 ± 0.5 mm, respectively. Differences in per-segment mean fiducial motion were found with SI motion ranging from 12.6 ± 0.8 mm to 22.6 ± 0.9 mm for segments 3 and 8, respectively. Large, varied differences between treatment and MIP derived motion at simulation were found with the mean difference for SI motion being 2.6 mm (10.8 mm standard deviation). Conclusion: The magnitude of liver fiducial motion was found to differ by liver segment. MIP derived liver fiducial motion differed from motion observed during treatment, implying that 4D-CTs may not accurately capture the

  15. WE-AB-303-05: Breathing Motion of Liver Segments From Fiducial Tracking During Robotic Radiosurgery and Comparison with 4D-CT-Derived Fiducial Motion

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J; Pantarotto, J; Nair, V; Cook, G; Plourde, M; Vandervoort, E [The Ottawa Hospital Cancer Centre, Ottawa, Ontario (Canada)

    2015-06-15

    Purpose: To quantify respiratory-induced motion of liver segments using the positions of implanted fiducials during robotic radiosurgery. This study also compared fiducial motion derived from four-dimensional computed tomography (4D-CT) maximum intensity projections (MIP) with motion derived from imaging during treatment. Methods: Forty-two consecutive liver patients treated with liver ablative radiotherapy were accrued to an ethics approved retrospective study. The liver segment in which each fiducial resided was identified. Fiducial positions throughout each treatment fraction were determined using orthogonal kilovoltage images. Any data due to patient repositioning or motion was removed. Mean fiducial positions were calculated. Fiducial positions beyond two standard deviations of the mean were discarded and remaining positions were fit to a line segment using least squares minimization (LSM). For eight patients, fiducial motion was derived from 4D-CT MIPs by calculating the CT number weighted mean position of the fiducial on each slice and fitting a line segment to these points using LSM. Treatment derived fiducial trajectories were corrected for patient rotation and compared to MIP derived trajectories. Results: The mean total magnitude of fiducial motion across all liver segments in left-right, anteroposterior, and superoinferior (SI) directions were 3.0 ± 0.2 mm, 9.3 ± 0.4 mm, and 20.5 ± 0.5 mm, respectively. Differences in per-segment mean fiducial motion were found with SI motion ranging from 12.6 ± 0.8 mm to 22.6 ± 0.9 mm for segments 3 and 8, respectively. Large, varied differences between treatment and MIP derived motion at simulation were found with the mean difference for SI motion being 2.6 mm (10.8 mm standard deviation). Conclusion: The magnitude of liver fiducial motion was found to differ by liver segment. MIP derived liver fiducial motion differed from motion observed during treatment, implying that 4D-CTs may not accurately capture the

  16. A Method to Transit the Rotor-to-Stator Rubbing to Normal Motion Using the Phase Characteristic

    Directory of Open Access Journals (Sweden)

    Jieqiong Xu

    2014-01-01

    Full Text Available A method is proposed to transit the rotor-to-stator rubbing to no-rub motion through active auxiliary bearing. The key point of this technique is to express the attractive domain of no-rub motion based on the phase characteristic and to represent the desired status. The feedback actuation is applied by an active auxiliary bearing to drive the rotor approaching the desired status. After that, the control actuation is turned off. Although the desired status is still in rubbing, it is in the attractive domain of no-rub motion, and the response of the rotor is automatically attracted to no-rub motion.

  17. A priori motion models for four-dimensional reconstruction in gated cardiac SPECT

    International Nuclear Information System (INIS)

    Lalush, D.S.; Tsui, B.M.W.; Cui, Lin

    1996-01-01

    We investigate the benefit of incorporating a priori assumptions about cardiac motion in a fully four-dimensional (4D) reconstruction algorithm for gated cardiac SPECT. Previous work has shown that non-motion-specific 4D Gibbs priors enforcing smoothing in time and space can control noise while preserving resolution. In this paper, we evaluate methods for incorporating known heart motion in the Gibbs prior model. The new model is derived by assigning motion vectors to each 4D voxel, defining the movement of that volume of activity into the neighboring time frames. Weights for the Gibbs cliques are computed based on these open-quotes most likelyclose quotes motion vectors. To evaluate, we employ the mathematical cardiac-torso (MCAT) phantom with a new dynamic heart model that simulates the beating and twisting motion of the heart. Sixteen realistically-simulated gated datasets were generated, with noise simulated to emulate a real Tl-201 gated SPECT study. Reconstructions were performed using several different reconstruction algorithms, all modeling nonuniform attenuation and three-dimensional detector response. These include ML-EM with 4D filtering, 4D MAP-EM without prior motion assumption, and 4D MAP-EM with prior motion assumptions. The prior motion assumptions included both the correct motion model and incorrect models. Results show that reconstructions using the 4D prior model can smooth noise and preserve time-domain resolution more effectively than 4D linear filters. We conclude that modeling of motion in 4D reconstruction algorithms can be a powerful tool for smoothing noise and preserving temporal resolution in gated cardiac studies

  18. A third-generation dispersion and third-generation hydrogen bonding corrected PM6 method

    DEFF Research Database (Denmark)

    Kromann, Jimmy Charnley; Christensen, Anders Steen; Svendsen, Casper Steinmann

    2014-01-01

    We present new dispersion and hydrogen bond corrections to the PM6 method, PM6-D3H+, and its implementation in the GAMESS program. The method combines the DFT-D3 dispersion correction by Grimme et al. with a modified version of the H+ hydrogen bond correction by Korth. Overall, the interaction...... in GAMESS, while the corresponding numbers for PM6-DH+ implemented in MOPAC are 54, 17, 15, and 2. The PM6-D3H+ method as implemented in GAMESS offers an attractive alternative to PM6-DH+ in MOPAC in cases where the LBFGS optimizer must be used and a vibrational analysis is needed, e.g., when computing...... vibrational free energies. While the GAMESS implementation is up to 10 times slower for geometry optimizations of proteins in bulk solvent, compared to MOPAC, it is sufficiently fast to make geometry optimizations of small proteins practically feasible....

  19. Scatter correction using a primary modulator on a clinical angiography C-arm CT system.

    Science.gov (United States)

    Bier, Bastian; Berger, Martin; Maier, Andreas; Kachelrieß, Marc; Ritschl, Ludwig; Müller, Kerstin; Choi, Jang-Hwan; Fahrig, Rebecca

    2017-09-01

    Cone beam computed tomography (CBCT) suffers from a large amount of scatter, resulting in severe scatter artifacts in the reconstructions. Recently, a new scatter correction approach, called improved primary modulator scatter estimation (iPMSE), was introduced. That approach utilizes a primary modulator that is inserted between the X-ray source and the object. This modulation enables estimation of the scatter in the projection domain by optimizing an objective function with respect to the scatter estimate. Up to now the approach has not been implemented on a clinical angiography C-arm CT system. In our work, the iPMSE method is transferred to a clinical C-arm CBCT. Additional processing steps are added in order to compensate for the C-arm scanner motion and the automatic X-ray tube current modulation. These challenges were overcome by establishing a reference modulator database and a block-matching algorithm. Experiments with phantom and experimental in vivo data were performed to evaluate the method. We show that scatter correction using primary modulation is possible on a clinical C-arm CBCT. Scatter artifacts in the reconstructions are reduced with the newly extended method. Compared to a scan with a narrow collimation, our approach showed superior results with an improvement of the contrast and the contrast-to-noise ratio for the phantom experiments. In vivo data are evaluated by comparing the results with a scan with a narrow collimation and with a constant scatter correction approach. Scatter correction using primary modulation is possible on a clinical CBCT by compensating for the scanner motion and the tube current modulation. Scatter artifacts could be reduced in the reconstructions of phantom scans and in experimental in vivo data. © 2017 American Association of Physicists in Medicine.

  20. A Geometric Correction Method of Plane Image Based on OpenCV

    Directory of Open Access Journals (Sweden)

    Li Xiaopeng

    2014-02-01

    Full Text Available Using OpenCV, a geometric correction method of plane image from single grid image in a state of unknown camera position is presented. The method can remove the perspective and lens distortions from an image. The method is simple and easy to implement, and the efficiency is high. Experiments indicate that this method has high precision, and can be used in some domains such as plane measurement.

  1. An efficient shutter-less non-uniformity correction method for infrared focal plane arrays

    Science.gov (United States)

    Huang, Xiyan; Sui, Xiubao; Zhao, Yao

    2017-02-01

    The non-uniformity response in infrared focal plane array (IRFPA) detectors has a bad effect on images with fixed pattern noise. At present, it is common to use shutter to prevent from radiation of target and to update the parameters of non-uniformity correction in the infrared imaging system. The use of shutter causes "freezing" image. And inevitably, there exists the problems of the instability and reliability of system, power consumption, and concealment of infrared detection. In this paper, we present an efficient shutter-less non-uniformity correction (NUC) method for infrared focal plane arrays. The infrared imaging system can use the data gaining in thermostat to calculate the incident infrared radiation by shell real-timely. And the primary output of detector except the shell radiation can be corrected by the gain coefficient. This method has been tested in real infrared imaging system, reaching high correction level, reducing fixed pattern noise, adapting wide temperature range.

  2. Methods of correction of carriage of junior schoolchildren by facilities of physical exercises

    Directory of Open Access Journals (Sweden)

    Gagara V.F.

    2012-08-01

    Full Text Available The results of influence of methods of physical rehabilitation on the organism of children are resulted. In research took part 16 children of lower school with the scoliotic changes of pectoral department of spine. The complex of methods of physical rehabilitation included special correction and general health-improving exercises, medical gymnastics, correction position. Employments on a medical gymnastics during 30-45 minutes 3-4 times per a week were conducted. The improvement of indexes of mobility of spine and state of carriage of schoolchildren is marked. The absolute indexes of the state of carriage and flexibility of spine considerably got around physiology sizes. A rehabilitation complex which includes the elements of correction gymnastics is recommended, medical physical culture, correction, massage of muscles of trunk, position. It is also necessary to adhere to the rational mode of day and feed, provide the normative parameters of working furniture and self-control of the state of carriage.

  3. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, Sinara, E-mail: sinara.vijayan@ntnu.no [Norwegian University of Science and Technology, 7491 Trondheim (Norway); Klein, Stefan [Norwegian University of Science and Technology, 7491 Trondheim, Norway and Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, 3000 CA Rotterdam (Netherlands); Hofstad, Erlend Fagertun; Langø, Thomas [SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Lindseth, Frank [Norwegian University of Science and Technology, 7491 Trondheim, Norway and SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Ystgaard, Brynjulf [Department of Surgery, St. Olavs Hospital, 7030 Trondheim (Norway)

    2014-08-15

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequence in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe

  4. Band extension in digital methods of transfer function determination – signal conditioners asymmetry error corrections

    Directory of Open Access Journals (Sweden)

    Zbigniew Staroszczyk

    2014-12-01

    Full Text Available [b]Abstract[/b]. In the paper, the calibrating method for error correction in transfer function determination with the use of DSP has been proposed. The correction limits/eliminates influence of transfer function input/output signal conditioners on the estimated transfer functions in the investigated object. The method exploits frequency domain conditioning paths descriptor found during training observation made on the known reference object.[b]Keywords[/b]: transfer function, band extension, error correction, phase errors

  5. Lattice Boltzmann method used to simulate particle motion in a conduit

    Czech Academy of Sciences Publication Activity Database

    Dolanský, Jindřich; Chára, Zdeněk; Vlasák, Pavel; Kysela, Bohuš

    2017-01-01

    Roč. 65, č. 2 (2017), s. 105-113 ISSN 0042-790X R&D Projects: GA ČR GA15-18870S Institutional support: RVO:67985874 Keywords : Lattice Boltzmann method * particle motion * particle–fluid interaction * PIV * particle tracking Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.654, year: 2016

  6. A new method of derived equatorial plasma bubbles motion by tracing OI 630 nm emission all-sky images

    Science.gov (United States)

    Li, M.; Yu, T.; Chunliang, X.; Zuo, X.; Liu, Z.

    2017-12-01

    A new method for estimating the equatorial plasma bubbles (EPBs) motions from airglow emission all-sky images is presented in this paper. This method, which is called 'cloud-derived wind technology' and widely used in satellite observation of wind, could reasonable derive zonal and meridional velocity vectors of EPBs drifts by tracking a series of successive airglow 630.0 nm emission images. Airglow emission images data are available from an all sky airglow camera in Hainan Fuke (19.5°N, 109.2°E) supported by China Meridional Project, which can receive the 630.0nm emission from the ionosphere F region at low-latitudes to observe plasma bubbles. A series of pretreatment technology, e.g. image enhancement, orientation correction, image projection are utilized to preprocess the raw observation. Then the regions of plasma bubble extracted from the images are divided into several small tracing windows and each tracing window can find a target window in the searching area in following image, which is considered as the position tracing window moved to. According to this, velocities in each window are calculated by using the technology of cloud-derived wind. When applying the cloud-derived wind technology, the maximum correlation coefficient (MCC) and the histogram of gradient (HOG) methods to find the target window, which mean to find the maximum correlation and the minimum euclidean distance between two gradient histograms in respectively, are investigated and compared in detail. The maximum correlation method is fianlly adopted in this study to analyze the velocity of plasma bubbles because of its better performance than HOG. All-sky images from Hainan Fuke, between August 2014 and October 2014, are analyzed to investigate the plasma bubble drift velocities using MCC method. The data at different local time at 9 nights are studied and find that zonal drift velocity in different latitude at different local time ranges from 50 m/s to 180 m/s and there is a peak value at

  7. A new method to make gamma-ray self-absorption correction

    International Nuclear Information System (INIS)

    Tian Dongfeng; Xie Dong; Ho Yukun; Yang Fujia

    2001-01-01

    This paper is devoted to discuss a new method to directly extract the information of the geometric self-absorption correction through the measurement of characteristic γ radiation emitted spontaneously from nuclear fissile material. The numerical simulation tests show that this method can extract the purely original information needed for nondestructive assay method by the γ-ray spectra to be measured, even though the geometric shape of the sample and materials between sample and detector are not known in advance. (author)

  8. Evaluation of a breath-motion-correction technique in reducing measurement error in hepatic CT perfusion imaging

    International Nuclear Information System (INIS)

    He Wei; Liu Jianyu; Li Xuan; Li Jianying; Liao Jingmin

    2009-01-01

    Objective: To evaluate the effect of a breath-motion-correction (BMC) technique in reducing measurement error of the time-density curve (TDC) in hepatic CT perfusion imaging. Methods: Twenty-five patients with suspected liver diseases underwent hepatic CT perfusion scans. The right branch of portal vein was selected as the anatomy of interest and performed BMC to realign image slices for the TDC according to the rule of minimizing the temporal changes of overall structures. Ten ROIs was selected on the right branch of portal vein to generate 10 TDCs each with and without BMC. The values of peak enhancement and the time-to-peak enhancement for each TDC were measured. The coefficients of variation (CV) of peak enhancement and the time-to-peak enhancement were calculated for each patient with and without BMC. Wilcoxon signed ranks test was used to evaluate the difference between the CV of the two parameters obtained with and without BMC. Independent-samples t test was used to evaluate the difference between the values of peak enhancement obtained with and without BMC. Results: The median (quartiles) of CV of peak enhancement with BMC [2.84% (2.10%, 4.57%)] was significantly lower than that without BMC [5.19% (3.90%, 7.27%)] (Z=-3.108,P<0.01). The median (quartiles) of CV of time-to-peak enhancement with BMC [2.64% (0.76%, 4.41%)] was significantly lower than that without BMC [5.23% (3.81%, 7.43%)] (Z=-3.924, P<0.01). In 8 cases, TDC demonstrated statistically significant higher peak enhancement with BMC (P<0.05). Conclusion: By applying the BMC technique we can effectively reduce measurement error for parameters of the TDC in hepatic CT perfusion imaging. (authors)

  9. A method of bias correction for maximal reliability with dichotomous measures.

    Science.gov (United States)

    Penev, Spiridon; Raykov, Tenko

    2010-02-01

    This paper is concerned with the reliability of weighted combinations of a given set of dichotomous measures. Maximal reliability for such measures has been discussed in the past, but the pertinent estimator exhibits a considerable bias and mean squared error for moderate sample sizes. We examine this bias, propose a procedure for bias correction, and develop a more accurate asymptotic confidence interval for the resulting estimator. In most empirically relevant cases, the bias correction and mean squared error correction can be performed simultaneously. We propose an approximate (asymptotic) confidence interval for the maximal reliability coefficient, discuss the implementation of this estimator, and investigate the mean squared error of the associated asymptotic approximation. We illustrate the proposed methods using a numerical example.

  10. Joint de-blurring and nonuniformity correction method for infrared microscopy imaging

    Science.gov (United States)

    Jara, Anselmo; Torres, Sergio; Machuca, Guillermo; Ramírez, Wagner; Gutiérrez, Pablo A.; Viafora, Laura A.; Godoy, Sebastián E.; Vera, Esteban

    2018-05-01

    In this work, we present a new technique to simultaneously reduce two major degradation artifacts found in mid-wavelength infrared microscopy imagery, namely the inherent focal-plane array nonuniformity noise and the scene defocus presented due to the point spread function of the infrared microscope. We correct both nuisances using a novel, recursive method that combines the constant range nonuniformity correction algorithm with a frame-by-frame deconvolution approach. The ability of the method to jointly compensate for both nonuniformity noise and blur is demonstrated using two different real mid-wavelength infrared microscopic video sequences, which were captured from two microscopic living organisms using a Janos-Sofradir mid-wavelength infrared microscopy setup. The performance of the proposed method is assessed on real and simulated infrared data by computing the root mean-square error and the roughness-laplacian pattern index, which was specifically developed for the present work.

  11. Development of a frameless stereotactic radiosurgery system based on real-time 6D position monitoring and adaptive head motion compensation

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, Rodney D; Wen Zhifei; Sadinski, Meredith; Farrey, Karl; Yenice, Kamil M [Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 (United States)], E-mail: rwiersma@uchicago.edu

    2010-01-21

    Stereotactic radiosurgery delivers radiation with great spatial accuracy. To achieve sub-millimeter accuracy for intracranial SRS, a head ring is rigidly fixated to the skull to create a fixed reference. For some patients, the invasiveness of the ring can be highly uncomfortable and not well tolerated. In addition, placing and removing the ring requires special expertise from a neurosurgeon, and patient setup time for SRS can often be long. To reduce the invasiveness, hardware limitations and setup time, we are developing a system for performing accurate head positioning without the use of a head ring. The proposed method uses real-time 6D optical position feedback for turning on and off the treatment beam (gating) and guiding a motor-controlled 3D head motion compensation stage. The setup consists of a central control computer, an optical patient motion tracking system and a 3D motion compensation stage attached to the front of the LINAC couch. A styrofoam head cast was custom-built for patient support and was mounted on the compensation stage. The motion feedback of the markers was processed by the control computer, and the resulting motion of the target was calculated using a rigid body model. If the target deviated beyond a preset position of 0.2 mm, an automatic position correction was performed with stepper motors to adjust the head position via the couch mount motion platform. In the event the target deviated more than 1 mm, a safety relay switch was activated and the treatment beam was turned off. The feasibility of the concept was tested using five healthy volunteers. Head motion data were acquired with and without the use of motion compensation over treatment times of 15 min. On average, test subjects exceeded the 0.5 mm tolerance 86% of the time and the 1.0 mm tolerance 45% of the time without motion correction. With correction, this percentage was reduced to 5% and 2% for the 0.5 mm and 1.0 mm tolerances, respectively.

  12. Development of a frameless stereotactic radiosurgery system based on real-time 6D position monitoring and adaptive head motion compensation

    International Nuclear Information System (INIS)

    Wiersma, Rodney D; Wen Zhifei; Sadinski, Meredith; Farrey, Karl; Yenice, Kamil M

    2010-01-01

    Stereotactic radiosurgery delivers radiation with great spatial accuracy. To achieve sub-millimeter accuracy for intracranial SRS, a head ring is rigidly fixated to the skull to create a fixed reference. For some patients, the invasiveness of the ring can be highly uncomfortable and not well tolerated. In addition, placing and removing the ring requires special expertise from a neurosurgeon, and patient setup time for SRS can often be long. To reduce the invasiveness, hardware limitations and setup time, we are developing a system for performing accurate head positioning without the use of a head ring. The proposed method uses real-time 6D optical position feedback for turning on and off the treatment beam (gating) and guiding a motor-controlled 3D head motion compensation stage. The setup consists of a central control computer, an optical patient motion tracking system and a 3D motion compensation stage attached to the front of the LINAC couch. A styrofoam head cast was custom-built for patient support and was mounted on the compensation stage. The motion feedback of the markers was processed by the control computer, and the resulting motion of the target was calculated using a rigid body model. If the target deviated beyond a preset position of 0.2 mm, an automatic position correction was performed with stepper motors to adjust the head position via the couch mount motion platform. In the event the target deviated more than 1 mm, a safety relay switch was activated and the treatment beam was turned off. The feasibility of the concept was tested using five healthy volunteers. Head motion data were acquired with and without the use of motion compensation over treatment times of 15 min. On average, test subjects exceeded the 0.5 mm tolerance 86% of the time and the 1.0 mm tolerance 45% of the time without motion correction. With correction, this percentage was reduced to 5% and 2% for the 0.5 mm and 1.0 mm tolerances, respectively.

  13. A software-based x-ray scatter correction method for breast tomosynthesis

    OpenAIRE

    Jia Feng, Steve Si; Sechopoulos, Ioannis

    2011-01-01

    Purpose: To develop a software-based scatter correction method for digital breast tomosynthesis (DBT) imaging and investigate its impact on the image quality of tomosynthesis reconstructions of both phantoms and patients.

  14. An evaluation of data-driven motion estimation in comparison to the usage of external-surrogates in cardiac SPECT imaging

    International Nuclear Information System (INIS)

    Mukherjee, Joyeeta Mitra; Johnson, Karen L; Pretorius, P Hendrik; King, Michael A; Hutton, Brian F

    2013-01-01

    visual appearance of motion-corrected images using data-driven motion estimates was compared to that obtained using the external motion-tracking system in patient studies. Pattern intensity and normalized mutual information cost functions were observed to have the best performance in terms of lowest average position error and stability with degradation of image quality of the partial reconstruction in simulations. In all patients, the visual quality of PI-based estimation was either significantly better or comparable to NMI-based estimation. Best visual quality was obtained with PI-based estimation in one of the five patient studies, and with external-surrogate based correction in three out of five patients. In the remaining patient study there was little motion and all methods yielded similar visual image quality. (paper)

  15. Peculiarities of application the method of autogenic training in the correction of eating behavior

    OpenAIRE

    Shebanova, Vitaliya

    2014-01-01

    The article presented peculiarities of applying the method of autogenic training in the correction of eating disorders. Described stages of correction work with desadaptive eating behavior. Author makes accent on the rules self-assembly formula intentions.

  16. Method for measuring multiple scattering corrections between liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J.M., E-mail: verbeke2@llnl.gov; Glenn, A.M., E-mail: glenn22@llnl.gov; Keefer, G.J., E-mail: keefer1@llnl.gov; Wurtz, R.E., E-mail: wurtz1@llnl.gov

    2016-07-21

    A time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  17. A Method To ModifyCorrect The Performance Of Amplifiers

    Directory of Open Access Journals (Sweden)

    Rohith Krishnan R

    2015-01-01

    Full Text Available Abstract The actual response of the amplifier may vary with the replacement of some aged or damaged components and this method is to compensate that problem. Here we use op-amp Fixator as the design tool. The tool helps us to isolate the selected circuit component from rest of the circuit adjust its operating point to correct the performance deviations and to modify the circuit without changing other parts of the circuit. A method to modifycorrect the performance of amplifiers by properly redesign the circuit is presented in this paper.

  18. Verifying a computational method for predicting extreme ground motion

    Science.gov (United States)

    Harris, R.A.; Barall, M.; Andrews, D.J.; Duan, B.; Ma, S.; Dunham, E.M.; Gabriel, A.-A.; Kaneko, Y.; Kase, Y.; Aagaard, Brad T.; Oglesby, D.D.; Ampuero, J.-P.; Hanks, T.C.; Abrahamson, N.

    2011-01-01

    In situations where seismological data is rare or nonexistent, computer simulations may be used to predict ground motions caused by future earthquakes. This is particularly practical in the case of extreme ground motions, where engineers of special buildings may need to design for an event that has not been historically observed but which may occur in the far-distant future. Once the simulations have been performed, however, they still need to be tested. The SCEC-USGS dynamic rupture code verification exercise provides a testing mechanism for simulations that involve spontaneous earthquake rupture. We have performed this examination for the specific computer code that was used to predict maximum possible ground motion near Yucca Mountain. Our SCEC-USGS group exercises have demonstrated that the specific computer code that was used for the Yucca Mountain simulations produces similar results to those produced by other computer codes when tackling the same science problem. We also found that the 3D ground motion simulations produced smaller ground motions than the 2D simulations.

  19. Interactive motion tracing for Rowing Training

    DEFF Research Database (Denmark)

    Dai, Zheng

    2011-01-01

    This paper studies motion tracking and team coordination for the training of rowers. The design research is drawn upon the division of contribution between the designers input and the user input in a design process. We built a training system that can record and show the action of a rower’s hand....... Designer proposed solutions for both a fundamental problem and a very advanced problem. Users guided the design direction, and spoke what they expected or what they disliked. As the result, our design provided a real-time recording tool for rowers and coaches to discuss and analyze the motion. The coach...... can correct the path immediately and save the corrected path for the rower to try to imitate and train. The members in a rowing team train with the same path from to coordinate and synchronize their actions for the best performance. The training system was developed through a user-centered design...

  20. Effective inclusion of polarization effects in calculations of the oscillator strengths and transition energies in atoms and molecules using the equation-of-motion method

    International Nuclear Information System (INIS)

    Glushkov, A.V.; Kol'tsova, N.Yu.

    1994-01-01

    Equations of motion were solved by a modified method in a quasi-particle representation of the density functional taking into account the most important polarization effects, including the so-called 2p-2h two-particle-two-hole interactions. Based on these calculations, spectroscopic data on energies and oscillator strengths of the helium atom (the test computation), carbon monoxide, nitrogen molecule, and ethylene are presented that refine some previously reported experimental and theoretical results. It is shown that in some cases the inclusion of polarization corrections introduced by 2p-2h effects is of basic importance because it provides up to ∼30% contribution to the energies and oscillator strengths. 23 refs., 5 tabs