WorldWideScience

Sample records for montrose county colorado

  1. Environmental Assessment and Finding of No Significant Impact: Curecanti-Lost Canyon 230-kV Transmission Line Reroute Project, Montrose County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-03-20

    The Department of Energy (DOE), Western Area Power Administration (Western) is proposing to reroute a section of the Curecanti-Lost Canyon 230-kilovolt (kV) transmission line, in Montrose County, Colorado. A portion of the transmission line, situated 11 miles southeast of Montrose, Colorado, crosses Waterdog Peak, an area of significant geologic surface activity, which is causing the transmission line's lattice steel towers to shift. This increases stress to structure hardware and conductors, and poses a threat to the integrity of the transmission system. Western proposes to relocate the lattice steel towers and line to a more geologically stable area. The existing section of transmission line and the proposed relocation route cross Bureau of Land Management and private land holdings.

  2. National uranium resource evaluation, Montrose Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Goodknight, C.S.; Ludlam, J.R.

    1981-06-01

    The Montrose Quadrangle in west-central Colorado was evaluated to identify and delineate areas favorable for the occurrence of uranium deposits according to National Uranium Resource Evaluation program criteria. General surface reconnaissance and geochemical sampling were conducted in all geologic environments in the quadrangle. Preliminary data from aerial radiometric and hydrogeochemical and stream-sediment reconnaissance were analyzed and brief followup studies were performed. Twelve favorable areas were delineated in the quadrangle. Five favorable areas contain environments for magmatic-hydrothermal uranium deposits along fault zones in the Colorado mineral belt. Five areas in parts of the Harding and Entrada Sandstones and Wasatch and Ohio Creek Formations are favorable environments for sandstone-type uranium deposits. The area of late-stage rhyolite bodies related to the Lake City caldera is a favorable environment for hydroauthigenic uranium deposits. One small area is favorable for uranium deposits of uncertain genesis. All near-surface Phanerozoic sedimentary rocks are unfavorable for uranium deposits, except parts of four formations. All near-surface plutonic igneous rocks are unfavorable for uranium deposits, except five areas of vein-type deposits along Tertiary fault zones. All near-surface volcanic rocks, except one area of rhyolite bodies and several unevaluated areas, are unfavorable for uranium. All near-surface Precambrian metamorphic rocks are unfavorable for uranium deposits. Parts of two wilderness areas, two primitive areas, and most of the subsurface environment are unevaluated

  3. Physical properties of uranium host rocks and experimental drilling at Long Park, Montrose County, Colorado. Final report

    International Nuclear Information System (INIS)

    Manger, G.E.; Gates, G.L.; Cadigan, R.A.

    1975-01-01

    A core-drilling study in uranium host rocks of the Jurassic Morrison Formation in southwestern Colorado attempted to obtain samples of host rock in its natural state. Three holes were drilled, holes and core were logged for radioactivity and electrical properties. Samples were analyzed for physical and chemical properties. Drilling results suggest that drilling with dried air yields core with least contamination at least cost. Drilling with oil results in maximum core recovery but also maximum cost and significant core contamination. Drilling with water results in contamination and loss of original pore water. A factor group of variables present are: Those positively related to uranium mineralization are poor sorting, percent by weight clay, percent of pore space containing water; negatively related variables are median grain size (mm), electrical resistivity, permeability. Optimum depth to locate ore seems to be at the top of the pore water capillary circulation zone, below the dehydrated no-capillary-circulation zone

  4. Characterization of salinity and selenium loading and land-use change in Montrose Arroyo, western Colorado, from 1992 to 2010

    Science.gov (United States)

    Moore, Jennifer L.

    2011-01-01

    Salinity and selenium are naturally occurring and perva-sive in the lower Gunnison River Basin of Colorado, includ-ing the watershed of Montrose Arroyo. Although some of the salinity and selenium loading in the Montrose Arroyo study area is from natural sources, additional loading has resulted from the introduction of intensive irrigation in the water-shed. With increasing land-use change and the conversion from irrigated agricultural to urban land, land managers and stakeholders need information about the long-term effects of land-use change on salinity and selenium loading. In response to the need to advance salinity and selenium science, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, Colorado River Basin Salinity Control Forum, and Colorado River Water Conservation District, developed a study to characterize salinity and selenium loading and how salinity and selenium sources may relate to land-use change in Montrose Arroyo. This report characterizes changes in salinity and selenium loading to Montrose Arroyo from March 1992 to February 2010 and the magnitude of land-use change between unirrigated desert, irrigated agricultural, and urban land-use/land-cover types, and discusses how the respective loads may relate to land-use change. Montrose Arroyo is an approximately 8-square-mile watershed in Montrose County in western Colorado. Salinity and selenium were studied in Montrose Arroyo in a 2001 study as part of a salinity- and selenium-control lateral project. The robust nature of the historical dataset indicated that Montrose Arroyo was a prime watershed for a follow-up study. Two sites from the 2001 study were used to monitor salinity and selenium loads in Montrose Arroyo in the follow-up study. Over the period of 2 water years and respective irrigation seasons (2008-2010), 27 water-quality samples were collected and streamflow measurements were made at the historical sites MA2 and MA4. Salinity and selenium concen-trations, loads

  5. Multisource data set integration and characterization of uranium mineralization for the Montrose Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Bolivar, S.L.; Balog, S.H.; Campbell, K.; Fugelso, L.E.; Weaver, T.A.; Wecksung, G.W.

    1981-04-01

    Several data-classification schemes were developed by the Los Alamos National Laboratory to detect potential uranium mineralization in the Montrose 1 0 x 2 0 quadrangle, Colorado. A first step was to develop and refine the techniques necessary to digitize, integrate, and register various large geological, geochemical, and geophysical data sets, including Landsat 2 imagery, for the Montrose quadrangle, Colorado, using a grid resolution of 1 km. All data sets for the Montrose quadrangle were registered to the Universal Transverse Mercator projection. The data sets include hydrogeochemical and stream sediment analyses for 23 elements, uranium-to-thorium ratios, airborne geophysical survey data, the locations of 90 uranium occurrences, a geologic map and Landsat 2 (bands 4 through 7) imagery. Geochemical samples were collected from 3965 locations in the 19 200 km 2 quadrangle; aerial data were collected on flight lines flown with 3 to 5 km spacings. These data sets were smoothed by universal kriging and interpolated to a 179 x 119 rectangular grid. A mylar transparency of the geologic map was prepared and digitized. Locations for the known uranium occurrences were also digitized. The Landsat 2 imagery was digitally manipulated and rubber-sheet transformed to quadrangle boundaries and bands 4 through 7 were resampled to both a 1-km and 100-m resolution. All possible combinations of three, for all data sets, were examined for general geologic correlations by utilizing a color microfilm output. Subsets of data were further examined for selected test areas. Two classification schemes for uranium mineralization, based on selected test areas in both the Cochetopa and Marshall Pass uranium districts, are presented. Areas favorable for uranium mineralization, based on these schemes, were identified and are discussed

  6. Analysis of stream sediment reconnaissance data for mineral resources from the Montrose NTMS Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Beyth, M.; Broxton, D.; McInteer, C.; Averett, W.R.; Stablein, N.K.

    1980-06-01

    Multivariate statistical analysis to support the National Uranium Resource Evaluation and to evaluate strategic and other commercially important mineral resources was carried out on Hydrogeochemical and Stream Sediment Reconnaissance data from the Montrose quadrangle, Colorado. The analysis suggests that: (1) the southern Colorado Mineral Belt is an area favorable for uranium mineral occurrences; (2) carnotite-type occurrences are likely in the nose of the Gunnison Uplift; (3) uranium mineral occurrences may be present along the western and northern margins of the West Elk crater; (4) a base-metal mineralized area is associated with the Uncompahgre Uplift; and (5) uranium and base metals are associated in some areas, and both are often controlled by faults trending west-northwest and north

  7. Characterization of streamflow, salinity, and selenium loading and land-use change in Montrose Arroyo, western Colorado, from 1992 to 2013

    Science.gov (United States)

    Richards, Rodney J.; Moore, Jennifer L.

    2015-01-01

    Salinity and dissolved selenium are known water-quality impairments in the lower Gunnison River watershed of western Colorado. Salinity is a concern because of its adverse effects on agricultural land and equipment, and on municipal and industrial users. The Montrose Arroyo watershed in Montrose, Colorado, contains agricultural and residential areas as well as undeveloped land and has undergone substantial land-use change since the early 1990s. Previous sampling efforts indicated salinity concentrations and loads have remained constant since land-use change began in the early 1990s; however, recent sampling also indicated that dissolved-selenium concentrations and loads have begun to increase. In response to the potential increasing dissolved-selenium concentrations and loads, the U.S. Geological Survey—in cooperation with the Bureau of Reclamation; Colorado River Basin Salinity Control Forum; and Colorado River Water Conservation District—continued to monitor salinity and dissolved-selenium concentrations and loads in the Montrose Arroyo watershed. This report characterizes salinity and dissolved-selenium loads in Montrose Arroyo from 1992 to 2013 at three sites: Montrose Arroyo at East Niagara Street (MA2, U.S. Geological Survey site identification number 382802107513301), Montrose Arroyo at 6700 Road (MA3, U.S. Geological Survey site identification number 382711107500501), and Montrose Arroyo at 6750 and Ogden Roads (MA4, U.S. Geological Survey site identification number 382702107493701). A detailed land-use change analysis was also characterized in the MA3 subwatershed.

  8. Groundwater and surface-water resources in the Bureau of Land Management Moab Master Leasing Plan area and adjacent areas, Grand and San Juan Counties, Utah, and Mesa and Montrose Counties, Colorado

    Science.gov (United States)

    Masbruch, Melissa D.; Shope, Christopher L.

    2014-01-01

    The Bureau of Land Management (BLM) Canyon Country District Office is preparing a leasing plan known as the Moab Master Leasing Plan (Moab MLP) for oil, gas, and potash mineral rights in an area encompassing 946,469 acres in southeastern Utah. The BLM has identified water resources as being potentially affected by oil, gas, and potash development and has requested that the U.S. Geological Survey prepare a summary of existing water-resources information for the Moab MLP area. This report includes a summary and synthesis of previous and ongoing investigations conducted in the Moab MLP and adjacent areas in Utah and Colorado from the early 1930s through the late 2000s.Eight principal aquifers and six confining units were identified within the study area. Permeability is a function of both the primary permeability from interstitial pore connectivity and secondary permeability created by karst features or faults and fractures. Vertical hydraulic connection generally is restricted to strongly folded and fractured zones, which are concentrated along steeply dipping monoclines and in narrow regions encompassing igneous and salt intrusive masses. Several studies have identified both an upper and lower aquifer system separated by the Pennsylvanian age Paradox Member of the Hermosa Formation evaporite, which is considered a confining unit and is present throughout large parts of the study area.Surface-water resources of the study area are dominated by the Colorado River. Several perennial and ephemeral or intermittent tributaries join the Colorado River as it flows from northeast to southwest across the study area. An annual spring snowmelt and runoff event dominates the hydrology of streams draining mountainous parts of the study area, and most perennial streams in the study area are snowmelt-dominated. A bimodal distribution is observed in hydrographs from some sites with a late-spring snowmelt-runoff peak followed by smaller peaks of shorter duration during the late summer

  9. Aerial gamma ray and magnetic survey, Montrose detail Area 1, Colorado. Final report

    International Nuclear Information System (INIS)

    1980-05-01

    The Montrose Detail Area No. 1 covers a 150 square mile area near the central portion of the San Juan Volcanic Region. The areas' geology is completely dominated by Tertiary volcanic events and subsequent surficial modifications. A group of 25 groups of samples in the uranium window constitute anomalies as defined in Volume I. These anomalies lie over the highest uranium, thorium, and potassium count rate areas primarily in the La Garita Mountains and the South Fork Saquache Creek drainage. Highest count rates appear to be associated with certain tuffaceous units as mapped. High gradients completely dominate the magnetic signature of the area. Little correlation with the radiometric data was expected or observed. The region appeared geochemically homogenous on the basis of radiometric data according to the criteria set forth in Volume I

  10. Aerial gamma ray and magnetic survey, Montrose detail Area 4, Colorado. Final report

    International Nuclear Information System (INIS)

    1980-05-01

    The Montrose Detail Area No. 4 comprises approximately 215 square miles in the Central Sawatch Mountains in a region dominated by outcrops of Precambrian basement, Tertiary and Cretaceous intrusives, and glacial cover. A single uranium prospect lies in Precambrian rocks west of the Taylor Park. Other mining activity in the area appears to be limited to extensive prospecting for molybdenum in the Tertiary rocks in the Winfield area. A total of 26 groups of uranium samples constitute anomalies as defined in Volume I. the largest group of anomalies lies over the Windfield area. Other significant anomalies overlie certain Precambrian rocks, as in the Three Apostles area and over the single uranium prospect. Magnetic data outline some Precambrian and Tertiary rock units, but are largely uninterpretable in the scope of this report. There is little apparent correlation with the geology as mapped, or with the radiometric data. Three geochemical units were defined on the basis of the radiometric criteria set forth in Volume I

  11. Aerial gamma ray and magnetic survey, Montrose detail Area 5, Colorado. Final report

    International Nuclear Information System (INIS)

    1980-04-01

    The Montrose Detail Area No. 5 consists of a 180 square mile area covering portions of the West Elk Mountains, the Ruby Range, and associated mountainous regions of the Southern Rocky Mountains. The area's geology is dominated by Tertiary intrusive and extrusive rocks related to the West Elk Mountains Volcanic Province. Some exposures of underlying Tertiary and Cretaceous material are present. The Irwin Mining District (Anthracite) lies within the detail area, as well as several small prospects for zinc, lead, and silver. No uranium occurrences are known to be associated with these mineralized areas. A total of 26 groups of samples in the uranium window constitute anomalies as defined in Volume I. These anomalies lie over the highest uranium count rate areas in the Ruby Range, the Anthracite Range, and the East Beckwith Mountain area. The highest count rates appear associated with dikes of granodiorite and/or white quartz porphyry. Magnetic data outline the major intrusive and extrusive bodies in the south, but only partially define the intrusive complex to the north. Little correlation with the radiometric data was expected or observed. Despite a wide range in the count rates of the three radioisotopes, the area appeared to be geochemically homogeneous according to the criteria set forth in Volume I. Other methods of separating geochemically distinctive areas may be more successful. Multivariate analysis showed a high degree of correleation between the three isotopes

  12. Aerial gamma ray and magnetic survey, Montrose detail Area 3, Colorado. Final report

    International Nuclear Information System (INIS)

    1980-04-01

    The Montrose Detail Area No. 3 comprises approximately 140 square miles at the extreme southern end of the Sawatch Mountains. The region's geology is apparently a complex interface between Precambrian and associated Paleozoic rocks of the Sawatch Uplift, and faulted Tertiary intrusive and extrusive rocks of the San Juan Mountains Volcanic Province. Oligocene igneous rocks dominate the surface of the area. Mining activity (Pb-Zn-Ag) is extensive in the Bonanza Area, which occupies most of the western half of the detail area. Some occurrences of uranium are known in the mines, and in a single prospect in Paleozoics to the southeast. A total of 34 groups of samples in the uranium window constitute anomalies as defined in Volume I. The majority of the anomalies lie over mine shafts or related features. Some of the other anomalies appear in close proximity to the Sheep Mountain area along the northwest border in association with faults and Tertiary igneous units. Magnetic data outline the major Tertiary intrusive bodies, as well as some heavily faulted Tertiary volcanics and portions of the Precambrian metamorphic sequence. Three geochemical units were defined on the basis of radiometric criteria set forth in Volume I. The spatial distribution of these units showed varying correlations with the geologic, magnetic, and topographic variations within the detail area

  13. Aerial gamma ray and magnetic survey, Montrose detail Area 2, Colorado. Final report

    International Nuclear Information System (INIS)

    1980-04-01

    The Montrose Detail Area No. 2 covers 315 square miles of area along the western edge of the Sawatch Mountains. Precambrian crystalline rocks and Paleozoic sediments share dominance in the area. The Paleozoic section deepens toward the north. Some Tertiary intrusive and extrusive rocks that may relate to the nearby igneous activity in the San Juan Mountains are present in the area. Cretaceous and Jurassic sediments also have limited exposure. The Whitepine Mining District (Zn-Pb) lies in the southern end of the detail area. Mineralization occurs in shear zones along the contact between Early Paleozoics and Precambrian rocks. Two uranium deposits occur nearby in a similar geologic setting. One other known uranium deposit occurs in the northern end of the detail area. The geologic characteristics of this deposit are not known. A total of 37 groups of samples in the uranium window constitute anomalies as defined in Volume I. These anomalies cluster over the high uranium count rate areas in the Fossil Ridge-Taylor River and Canyon Creek areas. Highest count rates appear to be associated with faulted Early Paleozoics and adjacent Precambrian rocks. Some high count rate localities appear to overlie isolated Tertiary intrusive bodies. Magnetic data do not outline structural features as mapped by Tweto and others (1976). Some areas mapped as Precambrian and others mapped as Tertiary intrusives have associated high magnetic gradients. Other areas mapped similarly do not have high magnetic gradients. Little correlation with the radiometric data was expected or observed. Three geochemical subdivisions were made on the basis of radiometric data according to the criteria set forth in Volume I, only two of which appeared to have any apparent geologic meaning. Multivariate analysis lends support to this conclusion

  14. Detailed uranium hydrogeochemical and stream sediment reconnaissance data release for the eastern portion of the Montrose NTMS Quadrangle, Colorado, including concentrations of forty-five additional elements

    International Nuclear Information System (INIS)

    Maassen, L.W.

    1981-01-01

    In September and October 1979, the Los Alamos Scientific Laboratory (LASL) conducted a detailed geochemical survey for uranium primarily in the Sawatch Range in the eastern part of the Montrose National Topographic Map Series (NTMS) quadrangle, Colorado, as part of the National Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). Totals of 1034 water and 2087 sediment samples were collected from streams and springs from 2088 locations within a 5420-km 2 area. Statistical data for uranium concentrations in water and sediment samples are presented. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments in appendices. Uranium/thorium ratios for sediment samples are also included. This report contains uranium analyses for water samples and multielement analyses for sediment samples. Sediments were analyzed for uranium and thorium as well as Al, Sb, As, Ba, Be, Bi, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Dy, Eu, Au, Hf, Fe, La, Pb, Li, Lu, Mg, Mn, Ni, Nb, K, Rb, Sm, Sc, Se, Ag, Na, Sr, Ta, Tb, Sn, Ti, W, V, Yb, Zn, and Zr. All elemental analyses were performed at the LASL. Water samples were analyzed for uranium by fluorometry. Sediments were analyzed for uranium by delayed neutron counting. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. Descriptions of procedures as analytical precisions and detection limits are given in the appendix

  15. County business patterns, 1996 : Colorado

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  16. County business patterns, 1997 : Colorado

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  17. Cancer incidence study in Mesa County, Colorado

    International Nuclear Information System (INIS)

    Ouimette, D.R.; Ferguson, S.W.; Zoglo, D.; Murphy, S.; Alley, S.; Bahler, S.

    1983-01-01

    In November of 1982 the Colorado Department of Health completed an epidemiologic investigation of leukemia, multiple myeloma, and cancers of the lung, stomach, pancreas and colon in Mesa County, Colorado for the years 1970 to 1979. This investigation was performed in response to a concern that the presence of uranium mill tailings in some Mesa County homes presents a potential cancer hazard. The results of the investigation show that the incidence of multiple myeloma, colon, stomach and pancreatic cancer are not above expected rates. The incidence of leukemia is not above expected rates for the entire study period, 1970 to 1979. The incidence of lung cancer appears elevated when compared to the The Third National Cancer Survey data for Colorado but lower than expected when compared to Surveillance, Epidemiology and End Results data. To further examine the leukemia and lung cancer incidence findings, a case/control study was conducted. The controls consisted of colon, stomach and pancreatic cancer cases. The results of the leukemia case/control analysis show no association with the radiation exposure variables: occupational radiation exposure; uranium mining exposure; having ever lived in a type A home (uranium tailings home); and radiation therapy. The lung cancer case/control analysis shows a significant association with only the radiation exposure variable, uranium mining history, indicating cases were more likely to have been uranium miners than were controls. As with leukemia, the study found no association between lung cancer and living in a uranium mill tailings home. The relatively low radiation exposures typical of type A homes and the small number of persons exposed make it very difficult to establish, by epidemiologic methods, that a risk exists

  18. Environmental assessment, expanded Ponnequin wind energy project, Weld County, Colorado

    International Nuclear Information System (INIS)

    1999-02-01

    The US Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCo) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE's deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program

  19. Environmental assessment, expanded Ponnequin wind energy project, Weld County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The US Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCo) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE`s deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.

  20. Ponnequin Wind Energy Project Weld County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The purpose of this environmental assessment (EA) is to provide the U.S. Department of Energy (DOE) and the public with information on potential environmental impacts associated with the development of the Ponnequin Wind Energy Project in Colorado. This EA and public comments received on it will be used in DOE`s deliberations on whether to release funding for the project. This document provides a detailed description of the proposed project and an assessment of potential impacts associated with its construction and operations. Resources and conditions considered in the analysis include streams; wetlands; floodplains; water quality; soils; vegetation; air quality; socioeconomic conditions; energy resources; noise; transportation; cultural resources; visual and land use resources; public health and safety; wildlife; threatened, endangered, and candidate species; and cumulative impacts. The analysis found that the project would have minimal impacts on these resources and conditions, and would not create impacts that exceed the significance criteria defined in this document. 90 refs., 5 figs.

  1. A Literature Review of Cultural Resources in Morgan County, Colorado,

    Science.gov (United States)

    1978-06-02

    MILES APPRCXI: %TE LOCATIONS OF SURVEY AREAS 1. NARROWS DAM SURVEY 2. WILDCAT CREEK SURVEY 3. BRUS { FLOOD CO’IOL PROJECT L B3I B LI 0 RAP H Y...Kenneth L. 1975 Edible plants available to aboriginal occupants of the Narrows area. IN Morris, Elizabeth Ann, Bruce J. Lutz, N. Ted Ohr, Timothy J...Reservoi - , Morgan County. Prepared for -1e Riverside IrrigaLion District and Public Service Company of Colorado. Morris, Elizabeth Ann, Bruce J. Lutz, N

  2. Environmental Assessment Expanded Ponnequin Wind Energy Project Weld County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-03-02

    The U.S.Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCO) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. DOE completed an environmental assessment of the original proposed project in August 1997. Since then, the geographic scope and the design of the project changed, necessitating additional review of the project under the National Environmental Policy Act. The project now calls for the possible construction of up to 48 wind turbines on State and private lands. PSCo and its partners have initiated construction of the project on private land in Weld County, Colorado. A substation, access road and some wind turbines have been installed. However, to date, DOE has not provided any funding for these activities. DOE, through its Commercialization Ventures Program, has solicited applications for financial assistance from state energy offices, in a teaming arrangement with private-sector organizations, for projects that will accelerate the commercialization of emerging renewable energy technologies. The Commercialization Ventures Program was established by the Renewable Energy and Energy Efficiency Technology Competitiveness Act of 1989 (P.L. 101-218) as amended by the Energy Policy Act of 1992 (P.L. 102-486). The Program seeks to assist entry into the marketplace of newly emerging renewable energy technologies, or of innovative applications of existing technologies. In short, an emerging renewable energy technology is one which has already proven viable but which has had little or no operational experience. The Program is managed by the Department of Energy, Office of Energy Efficiency and Renewable Energy. The

  3. Optimization Review: French Gulch/Wellington-Oro Mine Site Water Treatment Plant, Breckenridge, Summit County, Colorado

    Science.gov (United States)

    The French Gulch/Wellington-Oro Mine Site is located near the town of Breckenridge in Summit County, Colorado. Environmental contamination of surface water, groundwater, soil and sediment at the site resulted from mining activities dating to the 1880s.

  4. Land resource information needs of county government : a case study in Larimer County, Colorado

    Science.gov (United States)

    Alexander, Robert H.

    1983-01-01

    My two colleagues on the study team, Rex Burns of the Larimer County Planning Department, and Glenn McCarty of the Fort Collins office of the Soil Conservation Service, contributed substantially to this report; many of their written words have found their way directly into the text. Jill O'Gara later replaced Rex Burns as the Larimer County coordinator in the study's final stages. John Rold, Colorado State Geologist, assisted in coordinating our efforts at the beginning of this study. Lou Campbell, State Cartographer, gave valuable advice and assistance throughout the effort. Wallace Hansen and James Blakey of the USGS Geologic and Water Resources Divisions, respectively, read the final manuscript and helped in many other ways. Joanna Trolinger served as research assistant and manuscript typist. Many others in the USGS, SCS, and other organizations helped in supplying information and advice. Tom Bates, then Chairman of the USGS Central Region Earth Science Applications Task Force, was the originator of the study, leader of the USGS participation effort, and guiding inspiration throughout. The study was carried out in association with the Program on Environment and Behavior, Institute of Behavioral Science, University of Colorado, Boulder.

  5. Geologic Map of the San Luis Quadrangle, Costilla County, Colorado

    Science.gov (United States)

    Machette, Michael N.; Thompson, Ren A.; Drenth, Benjamin J.

    2008-01-01

    The map area includes San Luis and the primarily rural surrounding area. San Luis, the county seat of Costilla County, is the oldest surviving settlement in Colorado (1851). West of the town are San Pedro and San Luis mesas (basalt-covered tablelands), which are horsts with the San Luis fault zone to the east and the southern Sangre de Cristo fault zone to the west. The map also includes the Sanchez graben (part of the larger Culebra graben), a deep structural basin that lies between the San Luis fault zone (on the west) and the central Sangre de Cristo fault zone (on the east). The oldest rocks exposed in the map area are the Pliocene to upper Oligocene basin-fill sediments of the Santa Fe Group, and Pliocene Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) forms extensive coalesced alluvial fan and piedmont surfaces, the largest of which is known as the Costilla Plain. This surface extends west from San Pedro Mesa to the Rio Grande. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. The landslides may have seismogenic origins; that is, they may be stimulated by strong ground shaking during large earthquakes. Machette and Thompson based this geologic map entirely on new mapping, whereas Drenth supplied geophysical data and interpretations.

  6. Field performance of timber bridges. 15, Pueblo County, Colorado, stress-laminated deck bridge

    Science.gov (United States)

    L. E. Hislop

    The Pueblo County 204B bridge was constructed in March 1990 in Pueblo, Colorado, as a demonstration bridge under the USDA Forest Service Timber Bridge Initiative. The stress-laminated deck superstructure is approximately 10 m long, 9 m wide, and 406 mm deep, with a skew of 10 degrees. Performance monitoring was conducted for 3 years, beginning at...

  7. 76 FR 77245 - Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX...

    Science.gov (United States)

    2011-12-12

    ...-FF02R06000] Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX... (EA) for Attwater Prairie Chicken National Wildlife Refuge (Refuge, NWR), located approximately 60... Prairie Chicken NWR draft CCP and EA'' in the subject line of the message. Fax: Attn: Monica Kimbrough...

  8. Uranium Geologic Drilling Project, Sand Wash Basin, Moffat and Routt Counties, Colorado:

    International Nuclear Information System (INIS)

    1978-01-01

    This environmental assessment of drill holes in Moffat and Routt Counties, Colorado considered the current environment; potential impacts from site preparation, drilling operations, and site restoration; coordination among local, state and federal plans; and consideration of alternative actions for this uranium drilling project

  9. Responses of soil and water chemistry to mountain pine beetle induced tree mortality in Grand County, Colorado, USA

    Science.gov (United States)

    David W. Clow; Charles C. Rhoades; Jennifer Briggs; Megan Caldwell; William M. Lewis

    2011-01-01

    Pine forest in northern Colorado and southern Wyoming, USA, are experiencing the most severe mountain pine beetle epidemic in recorded history, and possible degradation of drinking-water quality is a major concern. The objective of this study was to investigate possible changes in soil and water chemistry in Grand County, Colorado in response to the epidemic,...

  10. Geologic map of the Frisco quadrangle, Summit County, Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Bartos, Paul J.; Williams, Cindy L.

    2002-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the USGS Central Region State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Frisco quadrangle is near the headwaters of the Blue River and straddles features of the Blue River graben (Kellogg, K.S., 1999, Neogene basins of the northern Rio Grande rift?partitioning and asymmetry inherited from Laramide and older uplifts: Tectonophysics, v. 305, p. 141-152.), part of the northernmost reaches of the Rio Grande rift, a major late Oligocene to recent zone of extension that extends from Colorado to Mexico. The Williams Range thrust fault, the western structural margin of the Colorado Front Range, cuts the northeastern corner of the quadrangle. The oldest rocks in the quadrangle underlie the Tenmile Range and include biotite-sillimanite schist and gneiss, amphibolite, and migmatite that are intruded by granite inferred to be part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, Ogden, 1987, Rock units of the Precambrian- basement in Colorado: U.S. Geological Survey Professional Paper 1321-A, 54 p.). The oldest sedimentary unit is the Pennsylvanian Maroon Formation, a sequence of red sandstone, conglomerate, and interbedded shale. The thickest sequence of sedimentary rocks is Cretaceous in age and includes at least 500 m of the Upper Cretaceous Pierre Shale. The sedimentary rocks are intruded by sills and dikes of dacite porphyry sills of Swan Mountain, dated at 44 Ma (Marvin, R.F., Mehnert, H.H., Naeser, C.W., and Zartman, R.E., 1989, U.S. Geological Survey radiometric ages, compilation ?C??Part five?Colorado, Montana, Utah, and Wyoming: Isochron/West, no. 53, p. 14-19. Simmons, E.C., and Hedge, C.E., 1978, Minor-element and Sr-isotope geochemistry of Tertiary stocks, Colorado mineral belt

  11. Aquatic Resources of Rocky Mountain Arsenal Adams County, Colorado

    Science.gov (United States)

    1989-09-01

    Consequently, temperatures rise and oxygen levels fall. Primary producers in these stretches shift from periphyton to phytoplankton (suspended algae ...trees and have rocky substrates. Primary production in these cold- water and coolwater reaches is generally limited to periphyton (attached algae ...Adams County. Biotic components investigated included phytoplankton , zooplankton, aquatic macrophytes, benthic macroinvertebrates, fish eggs and

  12. Variation in the annual average radon concentration measured in homes in Mesa County, Colorado

    International Nuclear Information System (INIS)

    Rood, A.S.; George, J.L.; Langner, G.H. Jr.

    1990-04-01

    The purpose of this study is to examine the variability in the annual average indoor radon concentration. The TMC has been collecting annual average radon data for the past 5 years in 33 residential structures in Mesa County, Colorado. This report is an interim report that presents the data collected up to the present. Currently, the plans are to continue this study in the future. 62 refs., 3 figs., 12 tabs

  13. Canine neoplasia and exposure to uranium mill tailings in Mesa County, Colorado

    International Nuclear Information System (INIS)

    Reif, J.S.; Schweitzer, D.J.; Ferguson, S.W.; Benjamin, S.A.

    1983-01-01

    A canine cancer registry was established for Mesa County, Colorado in order to collect material for a case control analysis of exposure to uranium tailings. Between 1979 and 1981, 212 cases of canine cancer were confirmed histologically. Based on the address provided at the time of diagnosis, 33 dogs (15.6%) lived in a house with some exposure to uranium tailings. A control group, comprised of dogs with a histologic diagnosis other than cancer, was stratified according to hospital and matched with cases on a 1:1 basis. No significant differences were noted with respect to exposure to uranium tailings for total cancers or cancers of specific sites including lymph node, breast, liver, testicle and bone. The overall estimated relative risk was 0.70 (95% CI 0.04 to 1.16). Canine population estimates were derived for Mesa County in order to develop crude incidence rates for the major types and sites of cancer. Crude rates were compared with those published previously for Alameda County, California and Tulsa County, Oklahoma. Mesa County rates for total cancer incidence, connective tissue tumors and non melanoma skin cancer were higher than those reported for Alameda County. When compared with Tulsa County, Mesa County rates for total cancer, breast cancer, melanoma and mastocytoma were lower than expected while rates for osteosarcoma, hemangiosarcoma and fibrosarcoma significantly exceeded expected values

  14. Geologic map of the Vail West quadrangle, Eagle County, Colorado

    Science.gov (United States)

    Scott, Robert B.; Lidke, David J.; Grunwald, Daniel J.

    2002-01-01

    This new 1:24,000-scale geologic map of the Vail West 7.5' quadrangle, as part of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area on the southwest flank of the Gore Range. Bedrock strata include Miocene tuffaceous sedimentary rocks, Mesozoic and upper Paleozoic sedimentary rocks, and undivided Early(?) Proterozoic metasedimentary and igneous rocks. Tuffaceous rocks are found in fault-tilted blocks. Only small outliers of the Dakota Sandstone, Morrison Formation, Entrada Sandstone, and Chinle Formation exist above the redbeds of the Permian-Pennsylvanian Maroon Formation and Pennsylvanian Minturn Formation, which were derived during erosion of the Ancestral Front Range east of the Gore fault zone. In the southwestern area of the map, the proximal Minturn facies change to distal Eagle Valley Formation and the Eagle Valley Evaporite basin facies. The Jacque Mountain Limestone Member, previously defined as the top of the Minturn Formation, cannot be traced to the facies change to the southwest. Abundant surficial deposits include Pinedale and Bull Lake Tills, periglacial deposits, earth-flow deposits, common diamicton deposits, common Quaternary landslide deposits, and an extensive, possibly late Pliocene landslide deposit. Landscaping has so extensively modified the land surface in the town of Vail that a modified land-surface unit was created to represent the surface unit. Laramide movement renewed activity along the Gore fault zone, producing a series of northwest-trending open anticlines and synclines in Paleozoic and Mesozoic strata, parallel to the trend of the fault zone. Tertiary down-to-the-northeast normal faults are evident and are parallel to similar faults in both the Gore Range and the Blue River valley to the northeast; presumably these are related to extensional deformation that occurred during formation of the northern end of the

  15. Geochemistry of Standard Mine Waters, Gunnison County, Colorado, July 2009

    Science.gov (United States)

    Verplanck, Philip L.; Manning, Andrew H.; Graves, Jeffrey T.; McCleskey, R. Blaine; Todorov, Todor I.; Lamothe, Paul J.

    2009-01-01

    In many hard-rock-mining districts water flowing from abandoned mine adits is a primary source of metals to receiving streams. Understanding the generation of adit discharge is an important step in developing remediation plans. In 2006, the U.S. Environmental Protection Agency listed the Standard Mine in the Elk Creek drainage basin near Crested Butte, Colorado as a superfund site because drainage from the Standard Mine enters Elk Creek, contributing dissolved and suspended loads of zinc, cadmium, copper, and other metals to the stream. Elk Creek flows into Coal Creek, which is a source of drinking water for the town of Crested Butte. In 2006 and 2007, the U.S. Geological Survey undertook a hydrogeologic investigation of the Standard Mine and vicinity and identified areas of the underground workings for additional work. Mine drainage, underground-water samples, and selected spring water samples were collected in July 2009 for analysis of inorganic solutes as part of a follow-up study. Water analyses are reported for mine-effluent samples from Levels 1 and 5 of the Standard Mine, underground samples from Levels 2 and 3 of the Standard Mine, two spring samples, and an Elk Creek sample. Reported analyses include field measurements (pH, specific conductance, water temperature, dissolved oxygen, and redox potential), major constituents and trace elements, and oxygen and hydrogen isotopic determinations. Overall, water samples collected in 2009 at the same sites as were collected in 2006 have similar chemical compositions. Similar to 2006, water in Level 3 did not flow out the portal but was observed to flow into open workings to lower parts of the mine. Many dissolved constituent concentrations, including calcium, magnesium, sulfate, manganese, zinc, and cadmium, in Level 3 waters substantially are lower than in Level 1 effluent. Concentrations of these dissolved constituents in water samples collected from Level 2 approach or exceed concentrations of Level 1 effluent

  16. Geologic map of the Rifle Falls quadrangle, Garfield County, Colorado

    Science.gov (United States)

    Scott, Robert B.; Shroba, Ralph R.; Egger, Anne

    2001-01-01

    New 1:24,000-scale geologic map of the Rifle Falls 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Upper Cretaceous Iles Formation through Ordovician and Cambrian units. The Iles Formation includes the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale is divided into three members, an upper member, the Niobrara Member, and a lower member. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and the Entrada Sandstone are present. Below the Upper Jurassic Entrada Sandstone, the easternmost limit of the Lower Jurassic and Upper Triassic Glen Canyon Sandstone is recognized. Both the Upper Triassic Chinle Formation and the Lower Triassic(?) and Permian State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is divided into two members, the Schoolhouse Member and a lower member. All the exposures of the Middle Pennsylvanian Eagle Evaporite intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Middle and Lower Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group is divided into the Dyer Dolomite, which is broken into the Coffee Pot Member and the Broken Rib Member, and the Parting Formation. Ordovician through Cambrian units are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two is a large-offset, mid

  17. Geologic report on the Sand Wash Drilling Project, Moffat and Routt Counties, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.E.; Wayland, T.E.

    1981-09-01

    The Sand Wash Basin Drilling Project comprises twenty-seven (27) drill holes located in Moffat and Routt Counties, northwest Colorado, having an aggregate depth of 26,107.5 feet (7957.6 m). The holes penetrate the Browns Park Formation of Miocene age, which is a tuffaceous continental sandstone deposited in fluvial, eolian, and lacustrine environments. Partly based on project drilling results, uranium potential resource estimates for this formation in the $50/lb U/sub 3/O/sub 8/ forward-cost category have been increased by 34,476 tons U/sub 3/O/sub 8/ (35,036 metric tons). Three areas between Maybell and Craig, Colorado, considered favorable for uranium occurrences were verified as favorable by project drilling, and a fourth favorable area northwest of Maybell has been expanded. In addition, project drilling results indicate two new favorable areas, one north and northwest and one south of Steamboat Springs, Colorado. Anomalous radioactivity was detected in drill holes in all six study areas of the project. The most important factor in concentrating significant amounts of uranium in the target formation appears to be the availability of gaseous or liquid hydrocarbons and/or hydrogen sulfide gas as reductants. Where subjacent formations supply these reductants to the Browns Park Formation, project drilling encountered 0.05 percent to 0.01 percent uranium concentrations. Potential, though unproven, sources of these reductants are believed to underlie parts of all six project study areas.

  18. Geologic report on the Sand Wash Drilling Project, Moffat and Routt Counties, Colorado

    International Nuclear Information System (INIS)

    Carter, T.E.; Wayland, T.E.

    1981-09-01

    The Sand Wash Basin Drilling Project comprises twenty-seven (27) drill holes located in Moffat and Routt Counties, northwest Colorado, having an aggregate depth of 26,107.5 feet (7957.6 m). The holes penetrate the Browns Park Formation of Miocene age, which is a tuffaceous continental sandstone deposited in fluvial, eolian, and lacustrine environments. Partly based on project drilling results, uranium potential resource estimates for this formation in the $50/lb U 3 O 8 forward-cost category have been increased by 34,476 tons U 3 O 8 (35,036 metric tons). Three areas between Maybell and Craig, Colorado, considered favorable for uranium occurrences were verified as favorable by project drilling, and a fourth favorable area northwest of Maybell has been expanded. In addition, project drilling results indicate two new favorable areas, one north and northwest and one south of Steamboat Springs, Colorado. Anomalous radioactivity was detected in drill holes in all six study areas of the project. The most important factor in concentrating significant amounts of uranium in the target formation appears to be the availability of gaseous or liquid hydrocarbons and/or hydrogen sulfide gas as reductants. Where subjacent formations supply these reductants to the Browns Park Formation, project drilling encountered 0.05 percent to 0.01 percent uranium concentrations. Potential, though unproven, sources of these reductants are believed to underlie parts of all six project study areas

  19. Weld-Windsor 115-kV Transmission Line Project, Weld County, Colorado

    International Nuclear Information System (INIS)

    1996-05-01

    The Western Area Power Administration is proposing to rebuild a 3.0 mile segment of the existing Flatiron-Weld 115-kV transmission line in Weld County. The line would be reconductored with new conductor on new wood pole double circuit structures. The new structures would support a double circuit transmission line configuration. The first circuit would be owned by Western and the second by Public Service Company of Colorado (PSCO). Alternatives considered included no action, constructing PSCO's circuit on new right-of-way, and reconductoring Western's existing line on the same structures. The proposed action was selected because it provided an opportunity to share structures with PSCO and, overall, would minimize costs and environmental impacts. The environmental assessment identifies minor effects on existing natural or human resources and minor benefits for agricultural operations

  20. Draft environmental statement. Homestake Mining Company: Homestake Mining Company Pitch Project (Saguache County, Colorado)

    International Nuclear Information System (INIS)

    1978-01-01

    The draft concerns the proposed issuance of approvals, permits, and licenses to the Homestake Mining Company for the implementation of the Pitch Project. The Pitch Project consists of mining and milling operations involving uranium ore deposits located in Gunnison National Forest, Saguache County, Colorado. Mining of uranium ore will take place over an estimated period of 20 years; a mill with a nominal capacity of 544 metric tons per day (600 tons per day) will be constructed and operated as long as ore is available. The waste material (tailings) from the mill, also produced at a rate of about 544 metric tons per day (600 tons per day), will be buried onsite at the head end of a natural valley. The environmental impacts are summarized in sections on the existing environment, applicant's proposed mining and milling operation, environmental effects of accidents, monitoring programs, productivity, commitment of resources, alternatives, and cost-benefit evaluation

  1. Validation of the abbreviated Radon Progeny Integrating Sampling Unit (RPISU) method for Mesa County, Colorado

    International Nuclear Information System (INIS)

    Langner, G.H. Jr.

    1987-06-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center at the DOE Grand Junction, Colorado, Projects Office to standardize, calibrate, and compare measurements made in support of DOE remedial action programs. Indoor radon-daughter concentration measurements are made to determine whether a structure is in need of remedial action. The Technical Measurements Center conducted this study to validate an abbreviated Radon Progeny Integrated Sampling Unit (RPISU) method of making indoor radon-daughter measurements to determine whether a structure has a radon-daughter concentration (RDC) below the levels specified in various program standards. The Technical Measurements Center established a criterion against which RDC measurements made using the RPISU sampling method are evaluated to determine if sampling can be terminated or whether further measurements are required. This abbreviated RPISU criterion was tested against 317 actual sets of RPISU data from measurements made over an eight-year period in Mesa County, Colorado. The data from each location were tested against a standard that was assumed to be the same as the actual annual average RDC from that location. At only two locations was the criterion found to fail. Using the abbreviated RPISU method, only 0.6% of locations sampled can be expected to be falsely indicated as having annual average RDC levels below a given standard

  2. Economic Impacts from the Boulder County, Colorado, ClimateSmart Loan Program: Using Property-Assessed Clean Energy Financing

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, M.; Cliburn, J. K.; Coughlin, J.

    2011-04-01

    This report examines the economic impacts (including job creation) from the Boulder County, Colorado, ClimateSmart Loan Program (CSLP), an example of Property-Assessed Clean Energy (PACE) financing. The CSLP was the first test of PACE financing on a multi-jurisdictional level (involving individual cities as well as the county government). It was also the first PACE program to comprehensively address energy efficiency measures and renewable energy, and it was the first funded by a public offering of both taxable and tax-exempt bonds.

  3. Characterization of hydrology and water quality of Piceance Creek in the Alkali Flat area, Rio Blanco County, Colorado, March 2012

    Science.gov (United States)

    Thomas, Judith C.

    2015-12-07

    Previous studies by the U.S. Geological Survey identified Alkali Flat as an area of groundwater upwelling, with increases in concentrations of total dissolved solids, and streamflow loss, but additional study was needed to better characterize these observations. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, White River Field Office, conducted a study to characterize the hydrology and water quality of Piceance Creek in the Alkali Flat area of Rio Blanco County, Colorado.

  4. Colorado

    Directory of Open Access Journals (Sweden)

    Gerardo Rodríguez Quiroz

    2008-01-01

    Full Text Available La conservación de la biodiversidad cuenta, entre sus principales mecanismos de intervención, con las áreas naturales protegidas. En el alto Golfo de California (AGC se ubica la Reser-va de la Biosfera del Alto Golfo de California y Delta del Río Colorado, en la que subsisten especies de alto valor económico, así como especies en peligro de extinción. Este último factor justificó el establecimiento de la reserva. El estudio analiza la efectividad de la Reserva del Alto Golfo como mecanismo de protección de los recursos naturales, en particular de las que están en riesgo de desaparecer, así como de comprobar si los pescadores han mejorado sus condiciones de vida tras la operación de esa área natural. La exploración se llevó a cabo mediante la aplicación de una encuesta a los pescadores. Se sugiere que es indispensable un gran esfuerzo, de autoridades y grupos organizados, para encontrar soluciones al manejo de la Reserva, a fin fijar un programa que permita la recuperación de las especies en peligro de extinción, elevar la calidad de vida de los pescadores y con ello garantizar un equilibrio entre la conservación y la sustentabilidad de la pesca y de los pescadores en el Alto Golfo de California.

  5. Flatiron-Erie 115kV transmission line project, Larimer, Weld and Boulder Counties, Colorado

    International Nuclear Information System (INIS)

    1993-05-01

    Western Area Power Administration (Western) proposes to uprate its existing 115-kV Flatiron-Erie transmission line. The line is located in Larimer, Weld and Boulder Counties, Colorado, and passes through the City of Longmont. The line connects Flatiron Substation and several of the substations supplying Longmont. It is a single circuit 115-kV line, 31.5 miles long, and was built in 1950-51 on a 75-foot wide right-of-way (ROW) using wood H-frame structures. Western proposes to build 27 new structures along the line, to replace or modify 45 of the existing structures and to remote 11 of them. Many of these additions and changes would involve structures that are approximately 5 to 15 feet taller than the existing ones. The existing conductors and ground wires would remain in place. The purpose of these actions would be to allow the power carrying capability of the line to be increased and to replace deteriorating/structural members. Western would be the sole participant in the proposed project. This report gives an analysis of the study area environment and the development of alternative routes. An assessment is presented of the impacts of the primary alternative routes. The environmental consequences of this project are addressed

  6. Morrowan stratigraphy, depositional systems, and hydrocarbon accumulation, Sorrento field, Cheyenne County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Orchard, D.M.; Kidwell, M.R.

    1983-08-01

    The Sorrento field, located on the western flank of the present-day Las Animas arch in western Cheyenne County, Colorado, has approximately 29 million bbl of oil and 12 bcf of gas in place in sandstones of the Lower Pennsylvanian Morrow units. The sandstones were deposited in a fluvially dominated deltaic system, and the trap for the hydrocarbon accumulation is formed by pinch-out of this deltaic system onto regional dip. The primary reservoirs are point-bar deposits. At the Sorrento field, the basal Keyes limestone member of the Morrow formation rests unconformably on the Mississippian St. Louis Formation. Above the Keyes limestone, the Morrow shale is 180 to 214 ft (55 to 65 m) thick, and locally contains reservoir sands. Gas/oil and oil/water contacts are not uniform through the field owing to discontinuities between separate point bars. One such discontinuity is formed by an apparent mud plug of an abandoned channel separating two point bars on the southeastern end of the field. In a well 7000 ft (2100 m) from the edge of the meander belt, the regressive sequence is represented by a shoreline siltstone unit 8 ft (2 m) thick with flaser bedding, graded bedding, load structures, and rare wave-ripple cross-bedding overlain by 3 ft (1 m) of flood-plain mudstone and coal with no indication of proximity to a nearby sand system.

  7. Demonstration of massive hydraulic fracturing Piceance Basin, Rio Blanco County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, J L; Medlin, W L; Strubhar, M K

    1979-08-01

    Demonstration of massive fracturing to provide gas production from tight gas sands in the Piceance Basin was the objective of this jointly funded Mobil DOE project. This effort has been at least partially successful. The uppermost interval fractured, the Ohio Creek formation at 7324 to 7476 ft, appears to be commercially viable. The remaining sequence to total depth of 10,800 ft may also be commercially attractive, depending on fractured well costs, gas prices and the risk of failure to achieve production capacity equal to, or greater than, that achieved in the present well. Prior work was performed by Mobil in the Brush Creek Unit, Mesa County, Colorado. One well, Brush Creek 1-25, was drilled to 10,330 ft and given two massive fracturing treatments before the well was plugged and abandoned as noncommercial. It was concluded that formation permeability was too low to justify additional work in the Brush Creek Unit. Piceance Creek well F31-13G was drilled to 10,800 ft. Nine zones were tested in the Mesaverde and Ohio Creek formations between 7324 to 10,680 ft. Six massive fracturing treatments were performed covering 7 of the 9 intervals. Average first-year flow potential of the well is estimated at 2.9 MMCF/day with 1.1 MMCF/day of this amount attributed to the uppermost zone.

  8. Stratigraphy of Slick Rock district and vicinity, San Miguel and Dolores Counties, Colorado

    Science.gov (United States)

    Shawe, Daniel R.; Simmons, George C.; Archbold, Norbert L.

    1968-01-01

    The Slick Rock district covers about 570 square miles in western San Miguel and Dolores Counties, in southwestern Colorado. It is at the south edge of the salt-anticline region of southwestern Colorado and southeastern Utah and of the Uravan mineral belt.Deposition of Paleozoic sedimentary rocks in the district and vicinity was principally controlled by development of the Paradox Basin, and of Mesozoic rocks by development of a depositional basin farther west. The Paleozoic rocks generally are thickest at the northeast side of the Paradox Basin in a northwest- trending trough which seems to be a wide graben in Precambrian igneous and metamorphic basement rocks; Mesozoic rocks generally thicken westward and southwestward from the district.Sedimentary rocks rest on a Precambrian basement consisting of a variety of rocks, including granite and amphibolite. The surface of the Precambrian rocks is irregular and generally more than 2,000 feet below sea level and 7,000-11,000 feet below the ground surface. In the northern part of the district the Precambrian surface plunges abruptly northeastward into the trough occupying the northeast side of the Paradox Basin, and in the southern part it sags in a narrow northeasterly oriented trough. Deepening of both troughs, or crustal deformation in their vicinity, influenced sedimentation during much of late Paleozoic and Mesozoic time.The maximum total thickness of sedimentary rocks underlying the district is 13,000 feet, and prior to extensive erosion in the late Tertiary and the Quaternary it may have been as much as about 18,000 feet. The lower 5,000 feet or more of the sequence of sedimentary rocks consists of arenaceous strata of early Paleozoic age overlain by dominantly marine carbonate rocks and evaporite beds interbedded with lesser amounts of clastic sediments of late Paleozoic age. Overlying these rocks is about 4,500 feet of terrestrial clastic sediments, dominantly sandstone with lesser amounts of shale, mudstone

  9. Radium and uranium concentrations and associated hydrogeochemistry in ground water in southwestern Pueblo County, Colorado

    Science.gov (United States)

    Felmlee, J. Karen; Cadigan, Robert Allen

    1979-01-01

    Radium and uranium concentrations in water from 37 wells tapping the aquifer system of the Dakota Sandstone and Purgatoire Formation in southwestern Pueblo County, Colorado, have a wide range of values and define several areas of high radioactivity in the ground water. Radium ranges from 0.3 to 420 picocuries per liter and has a median value of 8.8, and uranium ranges from 0.02 to 180 micrograms per liter and has a median value of 2.4. Radon concentrations, measured in 32 of the 37 wells, range from less than 100 picocuries per liter to as much as 27,000 and have a median value of 580. Relationships among the radioactive elements and 28 other geochemical parameters were studied by using correlation coefficients and R-mode factor analysis. Five factor groups were determined to represent major influences on water chemistry: (1) short-term solution reactions, (2) oxidation reactions, (3) hydrolysis reactions, (4) uranium distribution, and (5) long-term solution reactions. Uranium concentrations are most strongly influenced by oxidation reactions but also are affected by solution reactions and distribution of uranium in the rocks of the aquifer system. Radon and radium concentrations are mostly controlled by uranium distribution; radium also shows a moderate negative relationship with oxidation. To explain the statistical and spatial relationships among the parameters, a model was developed involving the selective leaching of uranium-bearing phases and metal sulfides which occur in discontinuous zones in sandstone and shale. When reducing conditions prevail, uranium is immobile, but radium can be taken into solution. When faults and associated fractured rocks allow oxidizing conditions to dominate, uranium can be taken into solution; radium can also be taken into solution, or it may become immobilized by coprecipitation with iron and manganese oxides or with barite. Several areas within the study area are discussed in terms of the model.

  10. Numerical modeling of variably saturated flow and transport, 881 Hillside at Rocky Flats Plant, Jefferson County, Colorado

    International Nuclear Information System (INIS)

    Fedors, R.W.; Warner, J.W.

    1993-01-01

    This study characterizes the unconfined groundwater flow and chemical transport in a thin veneer of colluvial and alluvial Quaternary sediments on the 881 Hillslope at Rocky Flats Plant, Jefferson County, Colorado. Colluvial deposits with a varying thickness of 1.5 to 6.7 meters mantle a 255 meter steeply dipping hillslope. Saturated and the similar material types. A two-dimensional finite element code for variably saturated conditions is used to obtain steady state flow conditions from which water contents and Darcy velocities are used for transient contaminant transport modeling. The migration of an absorptive solute is modeled over a twenty year period using the transport portion of the two-dimensional finite element code. Different potential scenarios for the source area are compared with actual well sample data. The solutes considered for this study are Trichloroethene (TCE) and tetrachloroethene (PCE) dissolved in the water phase

  11. Geology and uranium deposits of the Cochetopa and Marshall Pass districts, Saguache and Gunnison Counties, Colorado

    International Nuclear Information System (INIS)

    Olson, J.C.

    1988-01-01

    The geology of two districts in southwestern Colorado is described, particularly geologic features bearing on the uranium deposits, which are mainly fault controlled and localized near an unconformity beneath Tertiary volcanics. A genetic model for uranium ore formation is proposed to aid in exploration and evaluation of uranium potential; this model involves Tertiary siliceous tuffs as source rocks, leaching and solution of uranium by supergene ground waters, and localization of ore in favorable structural environments along faults and other permeable zones

  12. Seasonal blood-feeding behavior of Culex tarsalis (Diptera: Culicidae) in Weld County, Colorado, 2007.

    Science.gov (United States)

    Kent, Rebekah; Juliusson, Lara; Weissmann, Michael; Evans, Sara; Komar, Nicholas

    2009-03-01

    Studies on Culex tarsalis Coquillett in Colorado have shown marked seasonal variation in the proportion of blood meals from birds and mammals. However, limitations in the specificity of antibodies used in the precipitin test and lack of vertebrate host availability data warrant revisiting Cx. tarsalis blood feeding behavior in the context of West Nile virus (WNV) transmission. We characterized the host preference of Cx. tarsalis during peak WNV transmission season in eastern Colorado and estimated the relative contribution of different avian species to WNV transmission. Cx. tarsalis preferred birds to mammals each month, although the proportion of blood meals from mammals increased in July and August. The distribution of blood meals differed significantly across months, in part because of changes in the proportion of blood meals from American robins, a preferred host. The estimated proportion of WNV-infectious vectors derived from American robins declined from 60 to 1% between June and August. The majority of avian blood meals came from doves, preferred hosts that contributed 25-40% of the WNV-infectious mosquitoes each month. Active WNV transmission was observed in association with a large house sparrow communal roost. These data show how seasonal patterns in Cx. tarsalis blood feeding behavior relate to WNV transmission in eastern Colorado, with the American robin contributing greatly to early-season virus transmission and a communal roost of sparrows serving as a focus for late-season amplification.

  13. Unconventional oil and gas development and its stresses on water resources in the context of Water-Energy-Food Nexus: The case of Weld County, Colorado

    Science.gov (United States)

    Oikonomou, P. D.; Waskom, R.; Boone, K.; Ryan, J. N.

    2015-12-01

    The development of unconventional oil and gas resources in Colorado started to rapidly increase since the early 2000's. The recent oil price plunge resulted in a decline of well starts' rate in the US, but in Weld County, Colorado, it is currently at the 2013-levels. The additional water demand, despite its insignificant percentage in overall state's demand (0.1% in 2012), it competes with traditional ones, since Colorado's water is almost fully appropriated. Presently, the state has 53,597 active producing oil and gas wells. More than 40% of these are located in Weld County, which happens also to be one of top food production U.S. counties. The competition for land and water resources between the energy and agricultural sectors in water stressed areas, like the western U.S., is further intensified if recycle and reuse practices are not preferred to water disposal by the energy industry. Satisfying the multiple objectives of the Water-Energy-Food Nexus in order to achieve sustainable economic development requires balanced management of these resources. Identifying pressures on key areas that food and energy sectors are competing for water, is essential for prudent water management and developing appropriate policies. Weld County, as a water stressed and fossil fuel producing area, was selected for investigating current stresses on local water resources alongside with future climatic and water demand scenarios for exploring probable long-term effects.

  14. Geologic map of the Weldona 7.5' quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Taylor, Emily M.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.

    2018-03-21

    The Weldona 7.5′ quadrangle is located on the semiarid plains of northeastern Colorado, along the South Platte River corridor where the river has incised into Upper Cretaceous Pierre Shale. The Pierre Shale is largely covered by surficial deposits that formed from alluvial, eolian, and hillslope processes operating in concert with environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Rocky Mountains, has played a major role in shaping surficial geology in the map area, which is several tens of kilometers downstream from where headwater tributaries join the river. Recurrent glaciation (and deglaciation) of basin headwaters has affected river discharge and sediment supply far downstream, influencing deposition of alluvium and river incision in the Weldona quadrangle. During the Pleistocene the course of the river within the map area shifted progressively southward as it incised, and by late middle Pleistocene the river was south of its present position, cutting and filling deep paleochannels now covered by younger alluvium. The river shifted back to the north during the late Pleistocene. Kiowa and Bijou Creeks are unglaciated tributaries originating in the Colorado Piedmont east of the Front Range that also have played a major role in shaping surficial geology of the map area. Periodically during the late Pleistocene, major flood events on these tributaries deposited large volumes of sediment at their confluences, forming a broad, low-gradient fan of sidestream alluvium that could have occasionally dammed the river for short periods of time. Eolian sand deposits of the Sterling (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of prolonged drought. With the onset of irrigation and damming during historical times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly

  15. Geologic map of the Weldona 7.5′ quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Taylor, Emily M.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.

    2018-03-21

    The Weldona 7.5′ quadrangle is located on the semiarid plains of northeastern Colorado, along the South Platte River corridor where the river has incised into Upper Cretaceous Pierre Shale. The Pierre Shale is largely covered by surficial deposits that formed from alluvial, eolian, and hillslope processes operating in concert with environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Rocky Mountains, has played a major role in shaping surficial geology in the map area, which is several tens of kilometers downstream from where headwater tributaries join the river. Recurrent glaciation (and deglaciation) of basin headwaters has affected river discharge and sediment supply far downstream, influencing deposition of alluvium and river incision in the Weldona quadrangle. During the Pleistocene the course of the river within the map area shifted progressively southward as it incised, and by late middle Pleistocene the river was south of its present position, cutting and filling deep paleochannels now covered by younger alluvium. The river shifted back to the north during the late Pleistocene. Kiowa and Bijou Creeks are unglaciated tributaries originating in the Colorado Piedmont east of the Front Range that also have played a major role in shaping surficial geology of the map area. Periodically during the late Pleistocene, major flood events on these tributaries deposited large volumes of sediment at their confluences, forming a broad, low-gradient fan of sidestream alluvium that could have occasionally dammed the river for short periods of time. Eolian sand deposits of the Sterling (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of prolonged drought. With the onset of irrigation and damming during historical times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly

  16. Geologic map of the Fort Morgan 7.5' quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Taylor, Emily M.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.

    2018-06-08

    The Fort Morgan 7.5′ quadrangle is located on the semiarid plains of northeastern Colorado, along the South Platte River corridor where the river has incised into Upper Cretaceous Pierre Shale. The Pierre Shale is largely covered by surficial deposits that formed from alluvial, eolian, and hillslope processes operating in concert with environmental changes from the late Pliocene to the present. The South Platte River, originating high in the Colorado Rocky Mountains, has played a major role in shaping surficial geology in the map area, which is several tens of kilometers downstream from where headwater tributaries join the river. Recurrent glaciation (and deglaciation) of basin headwaters has affected river discharge and sediment supply far downstream, influencing deposition of alluvium and river incision in the Fort Morgan quadrangle. Distribution and characteristics of the alluvial deposits indicate that during the Pleistocene the course of the river within the map area shifted progressively southward as it incised, and by late middle Pleistocene the river was south of its present position, cutting and filling a deep paleochannel near the south edge of the quadrangle. The river shifted back to the north during the late Pleistocene. Kiowa and Bijou Creeks are unglaciated tributaries originating in the Colorado Piedmont east of the Front Range that also have played a major role in shaping surficial geology of the map area. Periodically during the late Pleistocene, major flood events on these tributaries deposited large volumes of sediment at and near their confluences, forming a broad, low-gradient fan composed of sidestream alluvium that could have occasionally dammed the river for short periods of time. Wildcat Creek, also originating on the Colorado Piedmont, and the small drainage of Cris Lee Draw dissect the map area north of the river. Eolian sand deposits of the Sterling (north of river) and Fort Morgan (south of river) dune fields cover much of the

  17. THIN SECTION DESCRIPTIONS: LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    Energy Technology Data Exchange (ETDEWEB)

    David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field in Utah (figure 1). However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  18. Geologic map of the Orchard 7.5' quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Slate, Janet L.; Hanson, Paul R.; Brandt, Theodore R.

    2015-01-01

    The Orchard 7.5' quadrangle is located along the South Platte River corridor on the semi-arid plains of eastern Colorado, and contains surficial deposits that record alluvial, eolian, and hillslope processes that have operated through environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Front Range, has played a major role in shaping the geology of the quadrangle, which is situated downstream of where the last of the major headwater tributaries (St. Vrain, Big Thompson, and Cache la Poudre) join the river. Recurrent glaciation (and deglaciation) of basin headwaters affected river discharge and sediment supply far downstream, influencing alluvium deposition and terrace formation in the Orchard quadrangle. Kiowa and Bijou Creeks, unglaciated tributaries originating east of the Front Range also have played a major role by periodically delivering large volumes of sediment to the river during flood events, which may have temporarily dammed the river. Eolian sand deposits of the Greeley (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of drought. With the onset of irrigation during historic times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly seasonal discharge to a much narrower, deeper river with braided-meandering transition morphology and more uniform discharge. Along this reach, the river has incised into Upper Cretaceous Pierre Shale, which, although buried by alluvial deposits in Orchard quadrangle, is locally exposed downstream along the South Platte River bluff near the Bijou Creek confluence, in some of the larger draws, and along Wildcat Creek.

  19. Example evaluation of a permit application for a proposed hazardous-waste landfill in eastern Adams County, Colorado

    Science.gov (United States)

    Banta, E.R.

    1986-01-01

    A project was undertaken by the U.S. Geological Survey in cooperation with the U. S. Environmental Protection Agency to demonstrate methods by which RCRA (Resources Conservation and Recovery Act of 1976) Part B permit applications might be evaluated. The purpose of the project was to prepare a report that would supplement a series of case studies to be made available to permit writers in the U.S. Environmental Protection Agency. Four sites in the United States were chosen for their potential applicability to geologically similar sites. The Adams County, Colorado, site was chosen to be representative of sites in the Upper Cretaceous Pierre Shale. The intent of this report is to provide an example of how available earth-science information might be used in evaluating an application and not to evaluate the acceptability of the site. Because this study is an evaluation of a permit application, the data used are limited to the data supplied in the application and in published reports. Of the five criteria required by the U.S. Environmental Protection Agency to be addressed in the permit application considered in the case study, the application was evaluated to be inadequate in addressing three criteria: (1) Site characterization, (2) ability to monitor the location, and (3) flow paths and 100-foot time of travel. Details of the inadequacies and a description of the information needed to eliminate the inadequacies are included in the report. (USGS)

  20. Uranium favorability of precambrian rocks in the Badger Flats - Elkhorn Thrust Area, Park and Teller Counties, Colorado

    International Nuclear Information System (INIS)

    Gallagher, G.L.

    1976-10-01

    The area is approximately 1,800 square miles and extends from Cripple Creek northward to Fairplay and Bailey. The Precambrian rocks include the metamorphic sequences of the Idaho Springs Formation and the Boulder Creek Granodiorite, Silver Plume Granite, Pikes Peak Granite, and Redskin Granite. The known uranium deposits in the area include six vein deposits, three pegmatite occurrences, and one zone of probable secondary enrichment; they have not yielded any significant production. The vein deposits are probably the result of downward percolation of ground water. The zone of secondary uranium enrichment may have formed above a volcanic pipe, vein, or tuffaceous lake bed. Favorability in the area is considered good for both vein and large, disseminated, low-grade uranium deposits. On the bases of known uranium occurrences, favorable structures and host rocks, and a water-sampling program, recommendations are given for exploration. The occurrences in the area have substantial similarities with the Rossing deposit in South-West Africa and the Wheeler Basin uranium occurrence in Grand County, Colorado. 6 figures, 9 tables

  1. Values of Deploying a Compact Polarimetric Radar to Monitor Extreme Precipitation in a Mountainous Area: Mineral County, Colorado

    Science.gov (United States)

    Cheong, B. L.; Kirstetter, P. E.; Yu, T. Y.; Busto, J.; Speeze, T.; Dennis, J.

    2015-12-01

    Precipitation in mountainous regions can trigger flash floods and landslides especially in areas affected by wildfire. Because of the small space-time scales required for observation, they remain poorly observed. A light-weighted X-band polarimetric radar can rapidly respond to the situation and provide continuous rainfall information with high resolution for flood forecast and emergency management. A preliminary assessment of added values to the operational practice in Mineral county, Colorado was performed in Fall 2014 and Summer 2015 with a transportable polarimetric radar deployed at the Lobo Overlook. This region is one of the numerous areas in the Rocky Mountains where the WSR-88D network does not provide sufficient weather coverage due to blockages, and the limitations have impeded forecasters and local emergency managers from making accurate predictions and issuing weather warnings. High resolution observations were collected to document the precipitation characteristics and demonstrate the added values of deploying a small weather radar in such context. The analysis of the detailed vertical structure of precipitation explain the decreased signal sampled by the operational radars. The specific microphysics analyzed though polarimetry suggest that the operational Z-R relationships may not be appropriate to monitor severe weather over this wildfire affected region. Collaboration with the local emergency managers and the National Weather Service shows the critical value of deploying mobile, polarimetric and unmanned radars in complex terrain. Several selected cases are provided in this paper for illustration.

  2. Review and analysis of available streamflow and water-quality data for Park County, Colorado, 1962-98

    Science.gov (United States)

    Kimbrough, Robert A.

    2001-01-01

    Information on streamflow and surface-water and ground-water quality in Park County, Colorado, was compiled from several Federal, State, and local agencies. The data were reviewed and analyzed to provide a perspective of recent (1962-98) water-resource conditions and to help identify current and future water-quantity and water-quality concerns. Streamflow has been monitored at more than 40 sites in the county, and data for some sites date back to the early 1900's. Existing data indicate a need for increased archival of streamflow data for future use and analysis. In 1998, streamflow was continuously monitored at about 30 sites, but data were stored in a data base for only 10 sites. Water-quality data were compiled for 125 surface-water sites, 398 wells, and 30 springs. The amount of data varied considerably among sites; however, the available information provided a general indication of where water-quality constituent concentrations met or exceeded water-quality standards. Park County is primarily drained by streams in the South Platte River Basin and to a lesser extent by streams in the Arkansas River Basin. In the South Platte River Basin in Park County, more than one-half the annual streamflow occurs in May, June, and July in response to snowmelt in the mountainous headwaters. The annual snowpack is comparatively less in the Arkansas River Basin in Park County, and mean monthly streamflow is more consistent throughout the year. In some streams, the timing and magnitude of streamflow have been altered by main-stem reservoirs or by interbasin water transfers. Most values of surface-water temperature, dissolved oxygen, and pH were within recommended limits set by the Colorado Department of Public Health and Environment. Specific conductance (an indirect measure of the dissolved-solids concentration) generally was lowest in streams of the upper South Platte River Basin and higher in the southern one-half of the county in the Arkansas River Basin and in the South

  3. Geologic map of the Harvard Lakes 7.5' quadrangle, Park and Chaffee Counties, Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Lee, Keenan; Premo, Wayne R.; Cosca, Michael A.

    2013-01-01

    The Harvard Lakes 1:24,000-scale quadrangle spans the Arkansas River Valley in central Colorado, and includes the foothills of the Sawatch Range on the west and Mosquito Range on the east. The Arkansas River valley lies in the northern end of the Rio Grande rift and is structurally controlled by Oligocene and younger normal faults mostly along the west side of the valley. Five separate pediment surfaces were mapped, and distinctions were made between terraces formed by the Arkansas River and surfaces that formed from erosion and alluviation that emanated from the Sawatch Range. Three flood deposits containing boulders as long as 15 m were deposited from glacial breakouts just north of the quadrangle. Miocene and Pliocene basin-fill deposits of the Dry Union Formation are exposed beneath terrace or pediment deposits in several places. The southwestern part of the late Eocene Buffalo Peaks volcanic center, mostly andesitic breccias and flows and ash-flow tuffs, occupy the northeastern corner of the map. Dated Tertiary intrusive rocks include Late Cretaceous or early Paleocene hornblende gabbro and hornblende monzonite. Numerous rhyolite and dacite dikes of inferred early Tertiary or Late Cretaceous age also intrude the basement rocks. Basement rocks are predominantly Mesoproterozoic granites, and subordinately Paleoproterozoic biotite gneiss and granitic gneiss.

  4. Geologic map of the Leadville North 7.5’ quadrangle, Eagle and Lake Counties, Colorado

    Science.gov (United States)

    Ruleman, Chester A.; Brandt, Theodore R.; Caffee, Marc W.; Goehring, Brent M.

    2018-04-24

    The Leadville North 7.5’ quadrangle lies at the northern end of the Upper Arkansas Valley, where the Continental Divide at Tennessee Pass creates a low drainage divide between the Colorado and Arkansas River watersheds. In the eastern half of the quadrangle, the Paleozoic sedimentary section dips generally 20–30 degrees east. At Tennessee Pass and Missouri Hill, the core of the Sawatch anticlinorium is mapped as displaying a tight hanging-wall syncline and foot-wall anticline within the basement-cored structure. High-angle, west-dipping, Neogene normal faults cut the eastern margin of the broad, Sawatch anticlinorium. Minor displacements along high-angle, east- and west-dipping Laramide reverse faults occurred in the core of the north-plunging anticlinorium along the western and eastern flanks of Missouri Hill. Within the western half of the quadrangle, Meso- and Paleoproterozoic metamorphic and igneous rocks are uplifted along the generally east-dipping, high-angle Sawatch fault system and are overlain by at least three generations of glacial deposits in the western part of the quadrangle. 10Be and 26Al cosmogenic nuclide ages of the youngest glacial deposits indicate a last glacial maximum age of about 21–22 kilo-annum and complete deglaciation by about 14 kilo-annum, supported by chronologic studies in adjacent drainages. No late Pleistocene tectonic activity is apparent within the quadrangle.

  5. Selected water-quality data for the Standard Mine, Gunnison County, Colorado, 2006-2007

    Science.gov (United States)

    Verplanck, Philip L.; Manning, Andrew H.; Mast, M. Alisa; Wanty, Richard B.; McCleskey, R. Blaine; Todorov, Todor I.; Adams, Monique

    2007-01-01

    Mine drainage and underground water samples were collected for analysis of inorganic solutes as part of a 1-year, hydrogeologic investigation of the Standard Mine and vicinity. The U.S. Environmental Protection Agency has listed the Standard Mine in the Elk Creek drainage near Crested Butte, Colorado, as a Superfund Site because discharge from the Standard Mine enters Elk Creek, contributing dissolved and suspended loads of zinc, cadmium, copper, and other metals to Coal Creek, which is the primary drinking-water supply for the town of Crested Butte. Water analyses are reported for mine-effluent samples from Levels 1 and 5 of the Standard Mine, underground samples from Levels 3 and 5 of the Standard Mine, mine effluent from an adit located on the Elk Lode, and two spring samples that emerged from waste-rock material below Level 5 of the Standard Mine and the adit located on the Elk Lode. Reported analyses include field parameters (pH, specific conductance, water temperature, dissolved oxygen, and redox potential) and major constituents and trace elements.

  6. Predicting Nitrogen Transport From Individual Sewage Disposal Systems for a Proposed Development in Adams County, Colorado

    Science.gov (United States)

    Heatwole, K. K.; McCray, J.; Lowe, K.

    2005-12-01

    Individual sewage disposal systems (ISDS) have demonstrated the capability to be an effective method of treatment for domestic wastewater. They also are advantageous from a water resources standpoint because there is little water leaving the local hydrologic system. However, if unfavorable settings exist, ISDS can have a detrimental effect on local water-quality. This presentation will focus on assessing the potential impacts of a large housing development to area water quality. The residential development plans to utilize ISDS to accommodate all domestic wastewater generated within the development. The area of interest is located just west of Brighton, Colorado, on the northwestern margin of the Denver Basin. Efforts of this research will focus on impacts of ISDS to local groundwater and surface water systems. The Arapahoe Aquifer, which exists at relatively shallow depths in the area of proposed development, is suspected to be vulnerable to contamination from ISDS. Additionally, the local water quality of the Arapahoe Aquifer was not well known at the start of the study. As a result, nitrate was selected as a fo-cus water quality parameter because it is easily produced through nitrification of septic tank effluent and because of the previous agricultural practices that could be another potential source of nitrate. Several different predictive tools were used to attempt to predict the potential impacts of ISDS to water quality in the Arapahoe Aquifer. The objectives of these tools were to 1) assess the vulnerability of the Arapahoe Aquifer to ni-trate contamination, 2) predict the nitrate load to the aquifer, and 3) determine the sensitivity of different parameter inputs and the overall prediction uncertainty. These predictive tools began with very simple mass-loading calcula-tions and progressed to more complex, vadose-zone numerical contaminant transport modeling.

  7. Effective mitigation of debris flows at Lemon Dam, La Plata County, Colorado

    Science.gov (United States)

    deWolfe, V.G.; Santi, P.M.; Ey, J.; Gartner, J.E.

    2008-01-01

    To reduce the hazards from debris flows in drainage basins burned by wildfire, erosion control measures such as construction of check dams, installation of log erosion barriers (LEBs), and spreading of straw mulch and seed are common practice. After the 2002 Missionary Ridge Fire in southwest Colorado, these measures were implemented at Knight Canyon above Lemon Dam to protect the intake structures of the dam from being filled with sediment. Hillslope erosion protection measures included LEBs at concentrations of 220-620/ha (200-600% of typical densities), straw mulch was hand spread at concentrations up to 5.6??metric tons/hectare (125% of typical densities), and seeds were hand spread at 67-84??kg/ha (150% of typical values). The mulch was carefully crimped into the soil to keep it in place. In addition, 13 check dams and 3 debris racks were installed in the main drainage channel of the basin. The technical literature shows that each mitigation method working alone, or improperly constructed or applied, was inconsistent in its ability to reduce erosion and sedimentation. At Lemon Dam, however, these methods were effective in virtually eliminating sedimentation into the reservoir, which can be attributed to a number of factors: the density of application of each mitigation method, the enhancement of methods working in concert, the quality of installation, and rehabilitation of mitigation features to extend their useful life. The check dams effectively trapped the sediment mobilized during rainstorms, and only a few cubic meters of debris traveled downchannel, where it was intercepted by debris racks. Using a debris volume-prediction model developed for use in burned basins in the Western U.S., recorded rainfall events following the Missionary Ridge Fire should have produced a debris flow of approximately 10,000??m3 at Knight Canyon. The mitigation measures, therefore, reduced the debris volume by several orders of magnitude. For comparison, rainstorm

  8. Surficial Geologic Map of Mesa Verde National Park, Montezuma County, Colorado

    Science.gov (United States)

    Carrara, Paul E.

    2012-01-01

    Mesa Verde National Park in southwestern Colorado was established in 1906 to preserve and protect the artifacts and dwelling sites, including the famous cliff dwellings, of the Ancestral Puebloan people who lived in the area from about A.D. 550 to A.D. 1300. In 1978, the United Nations designated the park as a World Heritage Site. The geology of the park played a key role in the lives of these ancient people. For example, the numerous (approximately 600) cliff dwellings are closely associated with the Cliff House Sandstone of Late Cretaceous age, which weathers to form deep alcoves. In addition, the ancient people farmed the thick, red loess (wind-blown dust) deposits on the mesa tops, which because of its particle size distribution has good moisture retention properties. The soil in this loess cover and the seasonal rains allowed these people to grow their crops (corn, beans, and squash) on the broad mesa tops. Today, geology is still an important concern in the Mesa Verde area because the landscape is susceptible to various forms of mass movement (landslides, debris flows, rockfalls), swelling soils, and flash floods that affect the park's archeological sites and its infrastructure (roads, septic systems, utilities, and building sites). The map, which encompasses an area of about 100 mi2 (260 km2), includes all of Mesa Verde National Park, a small part of the Ute Mountain Indian Reservation that borders the park on its southern and western sides, and some Bureau of Land Management and privately owned land to the north and east. Surficial deposits depicted on the map include: artificial fills, alluvium of small ephemeral streams, alluvium deposited by the Mancos River, residual gravel on high mesas, a combination of alluvial and colluvial deposits, fan deposits, colluvial deposits derived from the Menefee Formation, colluvial deposits derived from the Mancos Shale, rockfall deposits, debris flow deposits, earthflow deposits, translational and rotational landslide

  9. Availability, Sustainability, and Suitability of Ground Water, Rogers Mesa, Delta County, Colorado - Types of Analyses and Data for Use in Subdivision Water-Supply Reports

    Science.gov (United States)

    Watts, Kenneth R.

    2008-01-01

    The population of Delta County, Colorado, like that in much of the Western United States, is forecast to increase substantially in the next few decades. A substantial portion of the increased population likely will reside in rural subdivisions and use residential wells for domestic water supplies. In Colorado, a subdivision developer is required to submit a water-supply plan through the county for approval by the Colorado Division of Water Resources. If the water supply is to be provided by wells, the water-supply plan must include a water-supply report. The water-supply report demonstrates the availability, sustainability, and suitability of the water supply for the proposed subdivision. During 2006, the U.S. Geological Survey, in cooperation with Delta County, Colorado, began a study to develop criteria that the Delta County Land Use Department can use to evaluate water-supply reports for proposed subdivisions. A table was prepared that lists the types of analyses and data that may be needed in a water-supply report for a water-supply plan that proposes the use of ground water. A preliminary analysis of the availability, sustainability, and suitability of the ground-water resources of Rogers Mesa, Delta County, Colorado, was prepared for a hypothetical subdivision to demonstrate hydrologic analyses and data that may be needed for water-supply reports for proposed subdivisions. Rogers Mesa is a 12-square-mile upland mesa located along the north side of the North Fork Gunnison River about 15 miles east of Delta, Colorado. The principal land use on Rogers Mesa is irrigated agriculture, with about 5,651 acres of irrigated cropland, grass pasture, and orchards. The principal source of irrigation water is surface water diverted from the North Fork Gunnison River and Leroux Creek. The estimated area of platted subdivisions on or partially on Rogers Mesa in 2007 was about 4,792 acres of which about 2,756 acres was irrigated land in 2000. The principal aquifer on Rogers

  10. Pitchblende deposits at the Wood and Calhoun mines, Central City mining district, Gilpin County, Colorado

    Science.gov (United States)

    Moore, Frank R.; Butler, C.R.

    1952-01-01

    Pitchblende has been mined in commercial quantities from four gold- and silver-bearing pyrite-sphalerite-galena veins that occur in an area about one-half mile square on the south side of Quartz Hill, Central City district, Gilpin County, Colo. These veins are the Kirk, the German-Belcher, the Wood, and the Calhoun. Two of these veins, the Wood and the Calhoun, were studied in an attempt to determine the geologic factors favorable for pitchblende deposition. All accessible workings at the Wood and East Calhoun mines were mapped by tape and compass, and the distribution of radioactivity was studied in the field. Channel and chip samples were taken for chemical assay to compare radioactivity with uranium content. The pitchblende-bearing veins cat both pre-Cambrian granite gneiss and quartz-biotite schist; however, the gneiss was the more favorable host rock. Two bostonite porphyry dikes of Tertiary(?) age were crosscut by the Wood and Calhoun veins. The pitchblende occurs in lenses erratically distributed along the veins and in stringers extending outward from the veins. In the lenses it forms hard'. masses, but elsewhere it is Soft and powdery. The pitchblende is contemporaneous with the pyrite bat earlier than the sphalerite and galena in the same vein. All the observed pitchblende was at depths of less than 400 ft. The veins probably cannot be mined profitably for the pitchblende alone under present conditions.

  11. Uranium deposits in the Eureka Gulch area, Central City district, Gilpin County, Colorado

    Science.gov (United States)

    Sims, P.K.; Osterwald, F.W.; Tooker, E.W.

    1954-01-01

    The Eureka Gulch area of the Central City district, Gilpin County, Colo., was mined for ores of gold, silver, copper, lead, and zinc; but there has been little mining activity in the area since World War I. Between 1951 and 1953 nine radioactive mine dumps were discovered in the area by the U.S. Geological Survey and by prospectors. the importance of the discoveries has not been determined as all but one of the mines are inaccessible, but the distribution, quantity, and grade of the radioactive materials found on the mine dumps indicate that the area is worth of additional exploration as a possible source of uranium ore. The uranium ans other metals are in and near steeply dipping mesothermal veins of Laramide age intrusive rocks. Pitchblende is present in at least four veins, and metatorbernite, associated at places with kosolite, is found along two veins for a linear distance of about 700 feet. The pitchblends and metatorbernite appear to be mutually exclusive and seem to occur in different veins. Colloform grains of pitchblende were deposited in the vein essentially contemporaneously with pyrite. The pitchblende is earlier in the sequence of deposition than galena and sphalerite. The metatorbernite replaces altered biotite-quartz-plagioclase gneiss and altered amphibolite, and to a lesser extent forms coatings on fractures in these rocks adjacent to the veins; the kasolite fills vugs in highly altered material and in altered wall rocks. Much of the pitchblende found on the dumps has been partly leached subsequent to mining and is out of equilibrium. Selected samples of metatorbernite-bearing rock from one mine dump contain as much as 6.11 percent uranium. The pitchblende is a primary vein mineral deposited from uranium-bearing hydrothermal solutions. The metatorbernite probably formed by oxidation, solution, and transportation of uranium from primary pitchblende, but it may be a primary mineral deposited directly from fluids of different composition from these

  12. Geologic map of the Fraser 7.5-minute quadrangle, Grand County, Colorado

    Science.gov (United States)

    Shroba, Ralph R.; Bryant, Bruce; Kellogg, Karl S.; Theobald, Paul K.; Brandt, Theodore R.

    2010-01-01

    The geologic map of the Fraser quadrangle, Grand County, Colo., portrays the geology along the western boundary of the Front Range and the eastern part of the Fraser basin near the towns of Fraser and Winter Park. The oldest rocks in the quadrangle include gneiss, schist, and plutonic rocks of Paleoproterozoic age that are intruded by younger plutonic rocks of Mesoproterozoic age. These basement rocks are exposed along the southern, eastern, and northern margins of the quadrangle. Fluvial claystone, mudstone, and sandstone of the Upper Jurassic Morrison Formation, and fluvial sandstone and conglomeratic sandstone of the Lower Cretaceous Dakota Group, overlie Proterozoic rocks in a small area near the southwest corner of the quadrangle. Oligocene rhyolite tuff is preserved in deep paleovalleys cut into Proterozoic rocks near the southeast corner of the quadrangle. Generally, weakly consolidated siltstone and minor unconsolidated sediments of the upper Oligocene to upper Miocene Troublesome Formation are preserved in the post-Laramide Fraser basin. Massive bedding and abundant silt suggest that loess or loess-rich alluvium is a major component of the siltstone in the Troublesome Formation. A small unnamed fault about one kilometer northeast of the town of Winter Park has the youngest known displacement in the quadrangle, displacing beds of the Troublesome Formation. Surficial deposits of Pleistocene and Holocene age are widespread in the Fraser quadrangle, particularly in major valleys and on slopes underlain by the Troublesome Formation. Deposits include glacial outwash and alluvium of non-glacial origin; mass-movement deposits transported by creep, debris flow, landsliding, and rockfall; pediment deposits; tills deposited during the Pinedale and Bull Lake glaciations; and sparse diamictons that may be pre-Bull Lake till or debris-flow deposits. Some of the oldest surficial deposits may be as old as Pliocene.

  13. Biological assessment of remedial action at the abandoned uranium mill tailings site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, the U.S. Department of Energy (DOE) is proposing to conduct remedial action to clean up the residual radioactive materials (RRM) at the Naturita uranium processing site in Colorado. The Naturita site is in Montrose County, Colorado, and is approximately 2 miles (mi) (3 kilometer [km]) from the unincorporated town of Naturita. The proposed remedial action is to remove the RRM from the Naturita site to the Upper Burbank Quarry at the Uravan disposal site. To address the potential impacts of the remedial action on threatened and endangered species, the DOE prepared this biological assessment. Informal consultations with the U.S. Department of the Interior, Fish and Wildlife Service (FWS) were initiated in 1986, and the FWS provided a list of the threatened and endangered species that may occur in the Naturita study area. This list was updated by two FWS letters in 1988 and by verbal communication in 1990. A biological assessment was included in the environmental assessment (EA) of the proposed remedial action that was prepared in 1990. This EA addressed the impacts of moving the Naturita RRM to the Dry Flats disposal site. In 1993, the design for the Dry Flats disposal alternative was changed. The FWS was again consulted in 1993 and provided a new list of threatened and endangered species that may occur in the Naturita study area. The Naturita EA and the biological assessment were revised in response to these changes. In 1994, remedial action was delayed because an alternate disposal site was being considered. The DOE decided to move the FIRM at the Naturita site to the Upper Burbank Quarry at the Uravan site. Due to this delay, the FWS was consulted in 1995 and a list of threatened and endangered species was provided. This biological assessment is a revision of the assessment attached to the Naturita EA and addresses moving the Naturita RRM to the Upper Burbank Quarry disposal site.

  14. Clean/alternative fueled fleet programs - 1990 Amendments to the Clean Air Act, the Colorado Air Pollution Prevention and Control Act, and Denver City and County regulations

    International Nuclear Information System (INIS)

    Bowles, S.L.; Manderino, L.A.

    1993-01-01

    Despite substantial regulations for nearly two decades, attainment of this ambient standards for ozone and carbon monoxide (CO) remain difficult goals to achieve, Even with of ozone precursors and CO. The 1990 Amendments to the Clean Air Act (CAA90) prescribe further reductions of mobile source emissions. One such reduction strategy is using clean fuels, such as methanol, ethanol, or other alcohols (in blends of 85 percent or more alcohol with gasoline or other fuel), reformulated gasoline or diesel, natural gas, liquified petroleum gas, hydrogen, or electricity. There are regulatory measures involving special fuels which will be required in areas heavily polluted with ozone and CO. The state of Colorado recently passed the 1992 Air Pollution Prevention and Control Act which included provisions for the use of alternative fuels which will be implemented in 1994. In addition to adhering to the Colorado state regulations, the city and county of Denver also have regulations pertaining to the use of alternative fuels in fleets of 10 or more vehicles. Denver's program began in 1992. This paper will address the issue of fleet conversion and its impact on industry in Colorado, and Denver in particular

  15. FLOODPLAIN, DENVER COUNTY, COLORADO

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  16. Probability of Elevated Volatile Organic Compound (VOC) Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated volatile organic compound (VOC) concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  17. Probability of Elevated Nitrate Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated nitrate concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  18. Structural implications of underground coal mining in the Mesaverde Group in the Somerset Coal Field, Delta and Gunnison Counties, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Carroll; Eric Robeck; Greg Hunt; Wendell Koontz [Colorado Geological Survey, Denver, CO (United States)

    2004-07-01

    Paleogene and Neogene faults and fractures on the eastern edge of the Colorado Plateau are present in Mesaverde Group coal and sandstone beds. Recent observations of coal cleat orientation in relation to faults in coal mines have significant impacts for mine planning in the area. Faults, coal cleats, and natural fractures are interpreted to show a structural evolution of the Mesaverde Group through time. This field trip included a visit to two active underground coal mines, the Bowie Resources' Bowie No. 2 Mine, and Mountain Coal's West Elk Mine. Mine geologists discussed structural styles including fault orientations and timing, cleat development, and rotation. Geologic encounters ranging from fault flooding, subsidence, mine fires, methane gas problems, and land use restrictions were also discussed. Coal cleat development and open-mode fractures in adjacent sandstones were observed on outcrops and compared to underground measurements in coal mines in the Somerset Coal Field, Colorado's most productive. Coal cleat orientations along a reverse fault in one mine showed rotation in relation to possible Neogene age displacement.

  19. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Weld County Colorado using δ13CH4 analysis

    Science.gov (United States)

    Rella, C.; Jacobson, G. A.; Crosson, E.; Sweeney, C.; Karion, A.; Petron, G.

    2012-12-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Given that the global warming potential of methane is many times greater than that of carbon dioxide (Forster et al. 2007), the importance of quantifying methane emissions becomes clear. Companion presentations at this meeting describe efforts to quantify the overall methane emissions in two separate gas producing areas in Colorado and Utah during intensive field campaigns undertaken in 2012. A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One method for assessing the contribution of these different sources is stable isotope analysis. In particular, the δ13CH4 signature of natural gas (-37 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-50 to -70 permil). In this paper we present measurements of δ13CH4 in Colorado in Weld County, a region of intense natural gas production, using a mobile δ13CH4¬ analyzer capable of high-precision measurements of the stable isotope ratio of methane at ambient levels. This analyzer was used to make stable isotope measurements at a fixed location near the center of the gas producing region, from which an overall isotope ratio for the regional emissions is determined. In addition, mobile measurements in the nocturnal boundary layer have been made, over a total distance of 150 km throughout Weld County, allowing spatially resolved measurements of this isotope signature. Finally, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in this region, by making

  20. DELIVERABLE 1.2.1.B THIN SECTION DESCRIPTIONS: LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    International Nuclear Information System (INIS)

    Eby, David E.; Wray, Laura L.

    2003-01-01

    Over 400 million barrels (64 million m 3 ) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m 3 ) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field in Utah (figure 1). However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m 3 ) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado

  1. Preliminary Geologic Map of the Vermejo Peak area, Colfax and Taos Counties, New Mexico and Las Animas and Costilla Counties, Colorado

    Science.gov (United States)

    Fridrich, Christopher J.; Shroba, Ralph R.; Pillmore, Charles L.; Hudson, Adam M.

    2009-01-01

    This geologic map covers four 7.5-minute quadrangles-The Wall, NM-CO (New Mexico-Colorado), Vermejo Park, NM-CO, Ash Mountain, NM, and Van Bremmer Park, NM. The study area straddles the boundary between the eastern flank of the Sangre de Cristo Mountains and the western margin of the Raton Basin, with about two-thirds of the map area in the basin. The Raton Basin is a foreland basin that formed immediately eastward of the Sangre de Cristo Mountains during their initial uplift, in the Late Cretaceous through early Eocene Laramide orogeny. Subsequently, these mountains have been extensively modified during formation of the Rio Grande rift, from late Oligocene to present. The map area is within that part of the Sangre de Cristo Mountains that is called the Culebra Range. Additionally, the map covers small parts of the Devil's Park graben and the Valle Vidal half-graben, in the northwestern and southwestern parts of the map area, respectively. These two grabens are small intermontaine basins, that are satellitic to the main local basin of the Rio Grande rift, the San Luis Basin, that are an outlying, early- formed part of the rift, and that separate the Culebra Range from the Taos Range, to the southwest.

  2. Preliminary report on the geology of uranium deposits in the Browns Park Formation in Moffat County, Colorado, and Carbon County, Wyoming

    International Nuclear Information System (INIS)

    Ormond, A.

    1957-06-01

    Uranium was first discovered in the Browns Park Formation in 1951 in the Miller Hill area of south-central Wyoming. Since that time economically important deposits in this formation have been discovered and developed in the Poison Basin of south-central Wyoming and in the Maybell area of northwest Colorado. The Browns Park is the youngest formation (Miocene) in the region and overlies older rocks with angular unconformity. The formation consists of a basal conglomerate, fluviatile, lacustrine, and eolian sandstones, and locally a few thin beds of clay, tuff, and algal limestone. The sandstones are predominantly fine- to medium-grained and consist of quartz grains, scattered black chert grains, and interstitial clay. The uranium deposits are of the sandstone-impregnation type and are not confined to specific stratigraphic horizons. The important ore minerals are autunite and uranophane in oxidized sandstones, and uraninite and coffinite in unoxidized sandstones. Uranium is often associated with limonite and calcium carbonate in concretionary forms. Woody material, thought to play an important part in the deposition of uranium in many sandstone-type deposits, is not present in the deposits of the Browns Park Formation. However, organic carbon in the form of petroleum and petroleum residues has been observed in association with uranium in both the Poison Basin and the Maybell areas

  3. Remedial actions at the former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado. Volume 1. Text. Draft environmental impact statement

    International Nuclear Information System (INIS)

    1986-03-01

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: no action; stabilization at the Grand Junction site; disposal at the Cheney Reservoir site with truck transport; disposal at the Cheney Reservoir site with train and truck transport; disposal at the Two Road site with truck transport; disposal at the Two Road site with train and truck transport. All of the alternatives except include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE's preferred alternative. 29 figs., 25 tabs

  4. Chemistry and age of groundwater in bedrock aquifers of the Piceance and Yellow Creek watersheds, Rio Blanco County, Colorado, 2010-12

    Science.gov (United States)

    McMahon, P.B.; Thomas, J.C.; Hunt, A.G.

    2013-01-01

    Fourteen monitoring wells completed in the Uinta and Green River Formations in the Piceance Creek and Yellow Creek watersheds in Rio Blanco County, Colorado, were sampled for chemical, isotopic, and groundwater-age tracers to provide information on the overall groundwater quality, the occurrence and distribution of chemicals that could be related to the development of underlying natural-gas reservoirs, and to better understand groundwater residence times in the flow system. Methane concentrations in groundwater ranged from less than 0.0005 to 387 milligrams per liter. The methane was predominantly biogenic in origin, although the biogenic methane was mixed with thermogenic methane in water from seven wells. Three BTEX compounds (benzene, toluene, and ethylbenzene) were detected in water from six of the wells, but none of the concentrations exceeded Federal drinking-water standards. The presence of thermogenic methane in the aquifers indicates a connection and vulnerability to chemicals in deeper geologic units. Helium-4 data indicate that groundwater had ages ranging from less than 1,000 years to greater than 50,000 years. The presence of old groundwater in parts of the aquifers indicates that these aquifers may not be useful for large-scale water supply because of low recharge rates.

  5. Environmental analysis of geopressured-geothermal prospect areas, De Witt and Colorado counties, Texas. Final report, March 1 - August 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, T.C.; Reeder, F.S.; Badger, E.A.

    1980-02-01

    Information collected and analyzed for a preliminary environmental analysis of geopressured geothermal prospect areas in Colorado and DeWitt Counties, Texas is presented. Specific environmental concerns for each geopressured geothermal prospect area are identified and discussed. Approximately 218 km/sup 2/(85 mi/sup 2/) were studied in the vicinity of each prospect area to: (1) conduct an environmental analysis to identify more and less suited areas for geopressured test wells; and (2) provide an environmental data base for future development of geopressured geothermal energy resources. A series of maps and tables are included to illustrate environmental characteristics including: geology, water resources, soils, current land use, vegetation, wildlife, and meteorological characteristics, and additional relevant information on cultural resources, power- and pipelines, and regulatory agencies. A series of transparent overlays at the scale of the original mapping has also been produced for the purposes of identifying and ranking areas of potential conflict between geopressured geothermal development and environmental characteristics. The methodology for ranking suitability of areas within the two prospect areas is discussed in the appendix. (MHR)

  6. Quantification and Simulation of Metal Loading to the Upper Animas River, Eureka to Silverton, San Juan County, Colorado, September 1997 and August 1998

    Science.gov (United States)

    Paschke, Suzanne S.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    the 1998 study. The second affected reach was downstream from Arrastra Gulch, where the increase in zinc load seems related to a series of right-bank inflows with low pH Quantification and Simulation of Metal Loading to the Upper Animas River, Eureka to Silverton, San Juan County, Colorado, September 1997 and August 1998By Suzanne S. Paschke, Briant A. Kimball, and Robert L. Runkeland elevated dissolved zinc concentrations. A third increase in zinc load occurred 6,100 meters downstream from the 1997 injection site and may have been from ground-water discharge with elevated zinc concentrations based on mass-loading graphs and the lack of visible inflow in the reach. A fourth but lesser dissolved zinc load increase occurred downstream from tailings near the Lackawanna Mill. Results of the tracer-injection studies and the effects of potential remediation were analyzed using the one- dimensional stream-transport computer code OTIS. Based on simulation results, instream zinc concentrations downstream from the Kittimack tailings to upstream from Arrastra Gulch would approach 0.16 milligram per liter (the upper limit of acute toxicity for some sensitive aquatic species) if zinc inflow concentrations were reduced by 75 percent in the stream reaches receiving inflow from the Forest Queen mine, the Kittimack tailings, and downstream from Howardsville. However, simulated zinc concentrations downstream from Arrastra Gulch were higher than approximately 0.30 milligram per liter due to numerous visible inflows and assumed ground-water discharge with elevated zinc concentrations in the lower part of the study reach. Remediation of discrete visible inflows seems a viable approach to reducing zinc inflow loads to the upper Animas River. Remediation downstream from Arrastra Gulch is more complicated because ground-water discharge with elevated zinc concentrations seems to contribute to the instream zinc load.

  7. 2011 Kids Count in Colorado! The Impact of the Great Recession on Colorado's Children

    Science.gov (United States)

    Colorado Children's Campaign, 2011

    2011-01-01

    "Kids Count in Colorado!" is an annual publication of the Colorado Children's Campaign, which provides the best available state- and county-level data to measure and track the education, health and general well-being of the state's children. "Kids Count in Colorado!" informs policy debates and community discussions, serving as…

  8. Analysis of waste-load assimilative capacity of the Yampa River, Steamboat Springs to Hayden, Routt County, Colorado

    Science.gov (United States)

    Bauer, Daniel P.; Steele, Timothy Doak; Anderson, Richard D.

    1978-01-01

    An analysis of the waste-load assimilative capacity of the Yampa River from Steamboat Springs to Hayden, Colo., a distance of 38 miles, was made during September 1975 to obtain information on the effects of projected waste loadings on this stream reach. Simulations of effects of waste loadings on streamflow quality were made using a steady-state water-quality model. The simulations were based on 7-day low-flow values with a 10-year recurrence interval and population projections for 2010. Model results for December and September streamflow conditions indicated that the recommended 1978 Colorado and 1976 U.S. Environmental Protection Agency water-quality standard of 0.02 milligram per liter for nonionized ammonia concentration would be exceeded. Model simulations also included the effect of a flow augmentation of 20 cubic feet per second from a proposed upstream reservoir. The permissible ammonia loading in the study reach could be increased approximately 25 percent with this amount of flow augmentation. Simulations of concentrations of dissolved oxygen, fecal-coliform bacteria, and nitrate nitrogen indicated that the State 's water-quality goals proposed for 1978, 1983, or 1985 would not be exceeded. (Woodard-USGS)

  9. Uranium favorability of tertiary rocks in the Badger Flats, Elkhorn Thrust Area, Park and Teller Counties, Colorado

    International Nuclear Information System (INIS)

    Young, P.; Mickle, D.G.

    1976-10-01

    Uranium potential of Tertiary rocks in the Badger Flats--Elkhorn Thrust area of central Colorado is closely related to a widespread late Eocene erosion surface. Most uranium deposits in the area are in the Eocene Echo Park Alluvium and Oligocene Tallahassee Creek Conglomerate, which were deposited in paleodrainage channels on or above this surface. Arkosic detritus within the channels and overlying tuffaceous sedimentary rocks of the Antero and Florissant Formations of Oligocene age and silicic tuffs within the volcanic units provide abundant sources of uranium that could be concentrated in the channels where carbonaceous debris facilitates a reducing environment. Anomalous soil, water, and stream-sediment samples near the Elkhorn Thrust and in Antero basin overlie buried channels or are offset from them along structural trends; therefore, uranium-bearing ground water may have moved upward from buried uranium deposits along faults. The area covered by rocks younger than the late Eocene erosion surface, specifically the trends of mapped or inferred paleochannels filled with Echo Park Alluvium and Tallahassee Creek Conglomerate, and the Antero Formation are favorable for the occurrence of uranium deposits

  10. Ground water in Fountain and Jimmy Camp Valleys, El Paso County, Colorado with a section on Computations of drawdowns caused by the pumping of wells in Fountain Valley

    Science.gov (United States)

    Jenkins, Edward D.; Glover, Robert E.

    1964-01-01

    The part of Fountain Valley considered in this report extends from Colorado Springs to the Pueblo County line. It is 23 miles long and has an area of 26 square miles. The part of Jimmy Camp Valley discussed is 11 miles long and has an area of 9 square miles. The topography is characterized by level flood plains and alluvial terraces that parallel the valley and by rather steep hills along the valley sides. The climate is semiarid, average annual precipitation being about 13 inches. Farming and stock raising are the principal occupations in the valleys; however, some of the agricultural land near Colorado Springs is being used for housing developments. The Pierre Shale and alluvium underlie most of the area, and mesa gravel caps the shale hills adjacent to Fountain Valley. The alluvium yields water to domestic, stock, irrigation, and public-supply wells and is capable of yielding large quantities of water for intermittent periods. Several springs issue along the sides of the valley at the contact of the mesa gravel and the underlying Pierre Shale. The water table ranges in depth from less than 10 feet along the bottom lands to about 80 feet along the sides of the valleys; the saturated thickness ranges from less than a foot to about 50 feet. The ground-water reservoir in Fountain Valley is recharged by precipitation that falls within the area, by percolation from Fountain Creek, which originates in the Pikes Peak, Monument Valley, and Rampart Range areas, and by seepage from irrigation water. This reservoir contains about 70,000 acre-feet of ground water in storage. The ground-water reservoir in Jimmy Camp Valley is recharged from precipitation that falls within the area, by percolation from Jimmy Camp Creek during periods of streamflow, and by seepage from irrigation water. The Jimmy Camp ground-water reservoir contains about 25,000 acre-feet of water in storage. Ground water is discharged from the area by movement to the south, by evaporation and transpiration in

  11. Rocky Flats Plant site, Golden, Jefferson County, Colorado. Final environmental impact statement (final statement to ERDA 1545-D)

    International Nuclear Information System (INIS)

    1980-04-01

    This final Environmental Impact Statement (FEIS) incorporates a number of changes as a result of the comments and suggestions received on the Draft Environmental Impact Statement. The major additions and revisions of this first of the three-volume statement are discussed. Chapter titles are: summary; background; environmental impacts; unavoidable adverse environmental effects; alternatives; relationship between short-term uses and long-term productivity; relationship to land-use plans; irreversible and irretrievable commitments of resources; and, environmental trade-off analysis. Chapter 2 includes updated information on seismic stability of the area and seismic design criteria are presented. A mechanism for dissemination of the data from seismic studies in progress is specified. The Plant's personnel protection program with respect to nonradioactive materials, Plant security systems, and the emergency plans of the Plant and the State of Colorado are discussed in greater detail. Material on the environmental monitoring program was updated to reflect current monitoring and measuring conditions. Discussions of various soil sampling methods, plutonium background levels in soil, and plutonium soil standards, are presented. The dose calculations in Chapter 3 were extended to include comparisons of organ doses to natural background organ doses as well as the dose to the whole body. Doses to women and children are considered by exposure pathway as well as those for Standard Man. All credible accident scenarios were reviewed and details updated. A comprehensive discussion of genetic and health effects is presented in Appendices G-2 through G-4. Chapter 5 was revised to reflect the effort and cost involved in decontaminating soil, both on-site and offsite, relative to various decontamination criteria which might be employed

  12. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-12-01

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

  13. Ferricrete, manganocrete, and bog iron occurrences with selected sedge bogs and active iron bogs and springs in the upper Animas River watershed, San Juan County, Colorado

    Science.gov (United States)

    Yager, Douglas B.; Church, Stan E.; Verplanck, Philip L.; Wirt, Laurie

    2003-01-01

    During 1996 to 2000, the Bureau of Land Management, National Park Service, Environmental Protection Agency, United States Department of Agriculture (USDA) Forest Service, and the U.S. Geological Survey (USGS) developed a coordinated strategy to (1) study the environmental effects of historical mining on Federal lands, and (2) remediate contaminated sites that have the greatest impact on water quality and ecosystem health. This dataset provides information that contributes to these overall objectives and is part of the USGS Abandoned Mine Lands Initiative. Data presented here represent ferricrete occurrences and selected iron bogs and springs in the upper Animas River watershed in San Juan County near Silverton, Colorado. Ferricretes (stratified iron and manganese oxyhydroxide-cemented sedimentary deposits) are one indicator of the geochemical baseline conditions as well as the effect that weathering of mineralized rocks had on water quality in the Animas River watershed prior to mining. Logs and wood fragments preserved in several ferricretes in the upper Animas River watershed, collected primarily along streams, yield radiocarbon ages of modern to 9,580 years B.P. (P.L. Verplanck, D.B. Yager, and S.E. Church, work in progress). The presence of ferricrete deposits along the current stream courses indicates that climate and physiography of the Animas River watershed have been relatively constant throughout the Holocene and that weathering processes have been ongoing for thousands of years prior to historical mining activities. Thus, by knowing where ferricrete is preserved in the watershed today, land-management agencies have an indication of (1) where metal precipitation from weathering of altered rocks has occurred in the past, and (2) where this process is ongoing and may confound remediation efforts. These data are included as two coverages-a ferricrete coverage and a bogs and springs coverage. The coverages are included in ArcInfo shapefile and Arc

  14. Geographic information system datasets of regolith-thickness data, regolith-thickness contours, raster-based regolith thickness, and aquifer-test and specific-capacity data for the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Science.gov (United States)

    Arnold, L. Rick

    2010-01-01

    These datasets were compiled in support of U.S. Geological Survey Scientific-Investigations Report 2010-5082-Hydrogeology and Steady-State Numerical Simulation of Groundwater Flow in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. The datasets were developed by the U.S. Geological Survey in cooperation with the Lost Creek Ground Water Management District and the Colorado Geological Survey. The four datasets are described as follows and methods used to develop the datasets are further described in Scientific-Investigations Report 2010-5082: (1) ds507_regolith_data: This point dataset contains geologic information concerning regolith (unconsolidated sediment) thickness and top-of-bedrock altitude at selected well and test-hole locations in and near the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Data were compiled from published reports, consultant reports, and from lithologic logs of wells and test holes on file with the U.S. Geological Survey Colorado Water Science Center and the Colorado Division of Water Resources. (2) ds507_regthick_contours: This dataset consists of contours showing generalized lines of equal regolith thickness overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness was contoured manually on the basis of information provided in the dataset ds507_regolith_data. (3) ds507_regthick_grid: This dataset consists of raster-based generalized thickness of regolith overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness in this dataset was derived from contours presented in the dataset ds507_regthick_contours. (4) ds507_welltest_data: This point dataset contains estimates of aquifer transmissivity and hydraulic conductivity at selected well locations in the Lost Creek Designated Ground Water Basin, Weld, Adams, and

  15. 2013 Kids Count in Colorado! Community Matters

    Science.gov (United States)

    Colorado Children's Campaign, 2013

    2013-01-01

    "Kids Count in Colorado!" is an annual publication of the Children's Campaign, providing state and county level data on child well-being factors including child health, education, and economic status. Since its first release 20 years ago, "Kids Count in Colorado!" has become the most trusted source for data and information on…

  16. ORTHOIMAGERY, PARK COUNTY, COLORADO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This data set contains imagery from the National Agricultural Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in...

  17. FLOODPLAIN, FREMONT COUNTY, COLORADO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  18. ORTHOIMAGERY, SUMMIT COUNTY, COLORADO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This data set contains imagery from the National Agricultural Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in...

  19. Living with wildfire in Colorado

    Science.gov (United States)

    Patricia A. Champ; Nicholas Flores; Hannah Brenkert-Smith

    2010-01-01

    In this presentation, we describe results of a survey to homeowners living in wildfire-prone areas of two counties along the Front Range of the Rocky Mountains in Colorado. The survey was designed to elicit information on homeowners' experience with wildfire, perceptions of wildfire risk on their property and neighboring properties, mitigation efforts undertaken...

  20. Estimated probabilities, volumes, and inundation areas depths of potential postwildfire debris flows from Carbonate, Slate, Raspberry, and Milton Creeks, near Marble, Gunnison County, Colorado

    Science.gov (United States)

    Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.

    2011-01-01

    During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for

  1. 77 FR 23498 - Notice of Intent To Repatriate Cultural Items: The Colorado College, Colorado Springs, CO

    Science.gov (United States)

    2012-04-19

    ... Taylor Museum and the Colorado Springs Fine Arts Center) and the Denver Museum of Nature & Science... Davis, Chief of Staff, President's Office, Colorado College, Armstrong Hall, Room 201, 14 E. Cache La... objects, as well as other cultural items were removed from Canyon de Chelly, Apache County, AZ, under the...

  2. Proposal to amend existing operating permit for the Ault-Craig 345-kV and Hayden-Archer 230-kV transmission lines, Routt, Jackson and Larimer Counties, Colorado

    International Nuclear Information System (INIS)

    1997-08-01

    The Western Area Power Administration, Rocky Mountain Region, is proposing to amend an existing US Forest Service operating permit for the Ault-Craig 345-kV and Hayden-Archer 230-kV transmission lines, which are located in Routt, jackson, and Larimer counties, Colorado. These transmission lines cross portions of the Roosevelt and Routt National Forests. The long-term use authorization Western is requesting from the Forest Service would be for the life of the Ault-Craig and Hayden-Archer transmission lines. This environmental assessment addresses those access road and right-of-way maintenance activities identified by Western that would be performed on Forest Service managed lands during the next approximately five years

  3. Proposal to amend existing operating permit for the Ault-Craig 345-kV and Hayden-Archer 230-kV transmission lines, Routt, Jackson and Larimer Counties, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The Western Area Power Administration, Rocky Mountain Region, is proposing to amend an existing US Forest Service operating permit for the Ault-Craig 345-kV and Hayden-Archer 230-kV transmission lines, which are located in Routt, jackson, and Larimer counties, Colorado. These transmission lines cross portions of the Roosevelt and Routt National Forests. The long-term use authorization Western is requesting from the Forest Service would be for the life of the Ault-Craig and Hayden-Archer transmission lines. This environmental assessment addresses those access road and right-of-way maintenance activities identified by Western that would be performed on Forest Service managed lands during the next approximately five years.

  4. Probability of Unmixed Young Groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of unmixed young groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps were developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  5. Energy Smart Colorado, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gitchell, John M. [Program Administrator; Palmer, Adam L. [Program Manager

    2014-03-31

    Energy Smart Colorado is an energy efficiency program established in 2011 in the central mountain region of Colorado. The program was funded through a grant of $4.9 million, awarded in August 2010 by the U.S. Department of Energy’s Better Buildings Program. As primary grant recipient, Eagle County coordinated program activities, managed the budget, and reported results. Eagle County staff worked closely with local community education and outreach partner Eagle Valley Alliance for Sustainability (now Walking Mountains Science Center) to engage residents in the program. Sub-recipients Pitkin County and Gunnison County assigned local implementation of the program in their regions to their respective community efficiency organizations, Community Office for Resource Efficiency (CORE) in Pitkin County, and Office for Resource Efficiency (ORE) in Gunnison County. Utility partners contributed $166,600 to support Home Energy Assessments for their customers. Program staff opened Energy Resource Centers, engaged a network of qualified contractors, developed a work-flow, an enrollment website, a loan program, and a data management system to track results.

  6. Hydraulic, geomorphic, and trout habitat conditions of the Lake Fork of the Gunnison River in Hinsdale County, Lake City, Colorado, Water Years 2010-2011

    Science.gov (United States)

    Williams, Cory A.; Richards, Rodney J.; Schaffrath, Keelin R.

    2015-01-01

    Channel rehabilitation, or reconfiguration, to mitigate a variety of riverine problems has become a common practice in the western United States. However, additional work to monitor and assess the channel response to, and the effectiveness of, these modifications over longer periods of time (decadal or longer) is still needed. The Lake Fork of the Gunnison River has been an area of active channel modification to accommodate the needs of the Lake City community since the 1950s. The Lake Fork Valley Conservancy District began a planning process to assess restoration options for a reach of the Lake Fork in Lake City to enhance hydraulic and ecologic characteristics of the reach. Geomorphic channel form is affected by land-use changes within the basin and geologic controls within the reach. The historic channel was defined as a dynamic, braided channel with an active flood plain. This can result in a natural tendency for the channel to braid. A braided channel can affect channel stability of reconfigured reaches when a single-thread meandering channel is imposed on the stream. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and Colorado River Water Conservation District, began a study in 2010 to quantify existing hydraulic and habitat conditions for a reach of the Lake Fork of the Gunnison River in Lake City, Colorado. The purpose of this report is to quantify existing Lake Fork hydraulic and habitat conditions and establish a baseline against which post-reconfiguration conditions can be compared. This report (1) quantifies the existing hydraulic and geomorphic conditions in a 1.1-kilometer section of the Lake Fork at Lake City that has been proposed as a location for future channel-rehabilitation efforts, (2) characterizes the habitat suitability of the reach for two trout species based on physical conditions within the stream, and (3) characterizes the current riparian canopy density.

  7. Exposure of insects and insectivorous birds to metals and other elements from abandoned mine tailings in three Summit County drainages, Colorado

    Science.gov (United States)

    Custer, Christine M.; Yang, C.; Crock, J.G.; Shearn-Bochsler, V.; Smith, K.S.; Hageman, P.L.

    2009-01-01

    Concentrations of 31 metals, metalloids, and other elements were measured in insects and insectivorous bird tissues from three drainages with different geochemistry and mining histories in Summit Co., Colorado, in 2003, 2004, and 2005. In insect samples, all 25 elements that were analyzed in all years increased in both Snake and Deer Creeks in the mining impacted areas compared to areas above and below the mining impacted areas. This distribution of elements was predicted from known or expected sediment contamination resulting from abandoned mine tailings in those drainages. Element concentrations in avian liver tissues were in concordance with levels in insects, that is with concentrations higher in mid-drainage areas where mine tailings were present compared to both upstream and downstream locations; these differences were not always statistically different, however. The lack of statistically significant differences in liver tissues, except for a few elements, was due to relatively small sample sizes and because many of these elements are essential and therefore well regulated by the bird's homeostatic processes. Most elements were at background concentrations in avian liver tissue except for Pb which was elevated at mid-drainage sites to levels where ??-aminolevulinic acid dehydratase activity was inhibited at other mining sites in Colorado. Lead exposure, however, was not at toxic levels. Fecal samples were not a good indication of what elements birds ingested and were potentially exposed to. ?? Springer Science+Business Media B.V. 2008.

  8. 77 FR 21803 - Notice of Competitive Coal Lease Sale, Colorado

    Science.gov (United States)

    2012-04-11

    ..., COC-70615] Notice of Competitive Coal Lease Sale, Colorado AGENCY: Bureau of Land Management, Interior... described below in Gunnison County, Colorado, will be offered for competitive lease by sealed bid in accordance with the provisions of the Mineral Leasing Act of 1920, as amended. DATES: The lease sale will be...

  9. 77 FR 40630 - Notice of Competitive Coal Lease Sale, Colorado

    Science.gov (United States)

    2012-07-10

    ..., COC-74219] Notice of Competitive Coal Lease Sale, Colorado AGENCY: Bureau of Land Management, Interior... in the Wadge Seam described below in Routt County, Colorado, will be offered for competitive lease by sealed bid in accordance with the provisions of the Mineral Leasing Act of 1920, as amended. DATES: The...

  10. Review and interpretation of previous work and new data on the hydrogeology of the Schwartzwalder Uranium Mine and vicinity, Jefferson County, Colorado

    Science.gov (United States)

    Caine, Jonathan S.; Johnson, Raymond H.; Wild, Emily C.

    2011-01-01

    The Schwartzwalder deposit is the largest known vein type uranium deposit in the United States. Located about eight miles northwest of Golden, Colorado it occurs in Proterozoic metamorphic rocks and was formed by hydrothermal fluid flow, mineralization, and deformation during the Laramide Orogeny. A complex brittle fault zone hosts the deposit comprising locally brecciated carbonate, oxide, and sulfide minerals. Mining of pitchblende, the primary ore mineral, began in 1953 and an extensive network of underground workings was developed. Mine dewatering, treatment of the effluent and its discharge into the adjacent Ralston Creek was done under State permit from about 1990 through about 2008. Mining and dewatering ceased in 2000 and natural groundwater rebound has filled the mine workings to a current elevation that is above Ralston Creek but that is still below the lowest ground level adit. Water in the 'mine pool' has concentrations of dissolved uranium in excess of 1,000 times the U.S. Environmental Protection Agency drinking-water standard of 30 milligrams per liter. Other dissolved constituents such as molybdenum, radium, and sulfate are also present in anomalously high concentrations. Ralston Creek flows in a narrow valley containing Quaternary alluvium predominantly derived from weathering of crystalline bedrock including local mineralized rock. Just upstream of the mine site, two capped and unsaturated waste rock piles with high radioactivity sit on an alluvial terrace. As Ralston Creek flows past the mine site, a host of dissolved metal concentrations increase. Ralston Creek eventually discharges into Ralston Reservoir about 2.5 miles downstream. Because of highly elevated uranium concentrations, the State of Colorado issued an enforcement action against the mine permit holder requiring renewed collection and treatment of alluvial groundwater. As part of planned mine reclamation, abundant data were collected and compiled into a report by Wyman and Effner

  11. DELIVERABLE 1.3.1 GEOPHYSICAL WELL LOG/CORE DESCRIPTIONS, CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    International Nuclear Information System (INIS)

    Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laura L.

    2003-01-01

    Over 400 million barrels (64 million m 3 ) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m 3 ) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m 3 ) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado

  12. DELIVERABLE 1.4.1 AND 1.4.2 CROSS SECTIONS AND FIELD MAPS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    International Nuclear Information System (INIS)

    Chidsey, Thomas C. Jr; Morgan, Craig D.; McClure, Kevin; Eby, David E.; Wray, Laura L.

    2003-01-01

    Over 400 million barrels (64 million m 3 ) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m 3 ) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m 3 ) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado

  13. DELIVERABLE 2.1.1 POROSITY/PERMEABILITY CROSS-PLOTS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    International Nuclear Information System (INIS)

    Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laura L.

    2003-01-01

    Over 400 million barrels (64 million m 3 ) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m 3 ) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m 3 ) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado

  14. Characterization of Geologic Structures and Host Rock Properties Relevant to the Hydrogeology of the Standard Mine in Elk Basin, Gunnison County, Colorado

    Science.gov (United States)

    Caine, Jonathan S.; Manning, Andrew H.; Berger, Byron R.; Kremer, Yannick; Guzman, Mario A.; Eberl, Dennis D.; Schuller, Kathryn

    2010-01-01

    The Standard Mine Superfund Site is a source of mine drainage and associated heavy metal contamination of surface and groundwaters. The site contains Tertiary polymetallic quartz veins and fault zones that host precious and base metal sulfide mineralization common in Colorado. To assist the U.S. Environmental Protection Agency in its effort to remediate mine-related contamination, we characterized geologic structures, host rocks, and their potential hydraulic properties to better understand the sources of contaminants and the local hydrogeology. Real time kinematic and handheld global positioning systems were used to locate and map precisely the geometry of the surface traces of structures and mine-related features, such as portals. New reconnaissance geologic mapping, field and x-ray diffraction mineralogy, rock sample collection, thin-section analysis, and elemental geochemical analysis were completed to characterize hydrothermal alteration, mineralization, and subsequent leaching of metallic phases. Surface and subsurface observations, fault vein and fracture network characterization, borehole geophysical logging, and mercury injection capillary entry pressure data were used to document potential controls on the hydrologic system.

  15. Sample descriptions and geophysical logs for cored well BP-3-USGS, Great Sand Dunes National Park and Preserve, Alamosa County, Colorado

    Science.gov (United States)

    Grauch, V.J.S.; Skipp, Gary L.; Thomas, Jonathan V.; Davis, Joshua K.; Benson, Mary Ellen

    2015-01-01

    The BP-3-USGS well was drilled at the southwestern corner of Great Sand Dunes National Park in the San Luis Valley, south-central Colorado, 68 feet (ft, 20.7 meters [m]) southwest of the National Park Service’s boundary-piezometer (BP) well 3. BP-3-USGS is located at latitude 37°43ʹ18.06ʺN. and longitude 105°43ʹ39.30ʺW., at an elevation of 7,549 ft (2,301 m). The well was drilled through poorly consolidated sediments to a depth of 326 ft (99.4 m) in September 2009. Water began flowing from the well after penetrating a clay-rich layer that was first intercepted at a depth of 119 ft (36.3 m). The base of this layer, at an elevation of 7,415 ft (2,260 m) above sea level, likely marks the top of a regional confined aquifer recognized throughout much of the San Luis Valley. Approximately 69 ft (21 m) of core was recovered (about 21 percent), almost exclusively from clay-rich zones. Coarser grained fractions were collected from mud extruded from the core barrel or captured from upwelling drilling fluids. Natural gamma-ray, full waveform sonic, density, neutron, resistivity, spontaneous potential, and induction logs were acquired. The well is now plugged and abandoned.

  16. Site evaluation for U.S. Bureau of Mines experimental oil-shale mine, Piceance Creek basin, Rio Blanco County, Colorado

    Science.gov (United States)

    Ege, John R.; Leavesley, G.H.; Steele, G.S.; Weeks, J.B.

    1978-01-01

    The U.S. Geological Survey is cooperating with the U.S. Bureau of Mines in the selection of a site for a shaft and experimental mine to be constructed in the Piceance Creek basin, Rio Blanco County, Colo. The Piceance Creek basin, an asymmetric, northwest-trending large structural downwarp, is located approximately 40 km (25 mi) west of the town of Meeker in Rio Blanco County, Colo. The oil-shale, dawsonite, nahcolite, and halite deposits of the Piceance Creek basin occur in the lacustrine Green River Formation of Eocene age. In the basin the Green River Formation comprises three members. In ascending order, they are the Douglas Creek, the Garden Gulch, and the Parachute Creek Members, Four sites are presented for consideration and evaluated on geology and hydrology with respect to shale-oil economics. Evaluated criteria include: (1) stratigraphy, (2) size of site, (3) oil-shale yield, (4) representative quantities of the saline minerals dawsonite and nahcolite, which must be present with a minimum amount of halite, (5) thickness of a 'leached' saline zone, (6) geologic structure, (7) engineering characteristics of rock, (8) representative surface and ground-water conditions, with emphasis on waste disposal and dewatering, and (9) environmental considerations. Serious construction and support problems are anticipated in sinking a deep shaft in the Piceance Creek basin. The two major concerns will be dealing with incompetent rock and large inflow of saline ground water, particularly in the leached zone. Engineering support problems will include stabilizing and hardening the rock from which a certain amount of ground water has been removed. The relative suitability of the four potential oil-shale experimental shaft sites in the Piceance Creek basin has been considered on the basis of all available geologic, hydrologic, and engineering data; site 2 is preferred to sites 1, 3, and 4, The units in this report are presented in the form: metric (English). Both units of

  17. 2014 Kids Count in Colorado! The Big Picture: Taking the Whole Child Approach to Child Well-Being

    Science.gov (United States)

    Colorado Children's Campaign, 2014

    2014-01-01

    "Kids Count in Colorado!" is an annual publication of the Colorado Children's Campaign, which provides the best available state- and county-level data to measure and track the education, health and general well-being of the state's children. "Kids Count in Colorado!" informs policy debates and community discussions, serving as…

  18. Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007

    Science.gov (United States)

    Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.

    2011-01-01

    From the early mining days to the current tourism-based economy, the Eagle River watershed (ERW) in central Colorado has undergone a sequence of land-use changes that has affected the hydrology, habitat, and water quality of the area. In 2000, the USGS, in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, City of Colorado Springs, Colorado Springs Utilities, and Denver Water, initiated a retrospective analysis of surface-water quantity and quality in the ERW.

  19. Understanding change: Wildfire in Larimer County, Colorado

    Science.gov (United States)

    Hannah Brenkert-Smith; Patricia A. Champ

    2013-01-01

    Wildfire activity continues to plague communities in the American West. Three causes are often identified as key contributors to the wildfire problem: accumulated fuels on public lands due to a history of suppressing wildfires; climate change; and an influx of residents into fire prone areas referred to as the wildland-urban interface (WUI). The latter of these...

  20. Understanding change: Wildfire in Boulder County, Colorado

    Science.gov (United States)

    Hannah Brenkert-Smith; Patricia A. Champ; Amy L. Telligman

    2013-01-01

    Wildfire activity continues to plague communities in the American West. Three causes are often identified as key contributors to the wildfire problem: accumulated fuels on public lands due to a history of suppressing wildfires; climate change; and an influx of residents into fire prone areas referred to as the wildland-urban interface (WUI). The latter of these...

  1. FLOODPLAIN MAPPING FOR COLORADO COUNTY TX

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  2. Casa de la Esperanza: A Case Study of Service Coordination at Work in Colorado.

    Science.gov (United States)

    Franquiz, Maria E.; Hernandez, Carlota Loya

    This chapter describes how a federally funded farmworker housing facility in northern Colorado--Casa de la Esperanza--has changed the lives of migrant students and their families. The history of migrant workers in Colorado is described, as well as the struggle to construct a permanent farmworker housing facility. Casa was built in Boulder County,…

  3. 78 FR 44186 - Colorado Disaster # CO-00058 Declaration of Economic Injury

    Science.gov (United States)

    2013-07-23

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 13662] Colorado Disaster CO-00058 Declaration... notice of an Economic Injury Disaster Loan (EIDL) declaration for the State of Colorado, dated 07/15/2013... areas have been determined to be adversely affected by the disaster: Primary Counties: Hinsdale, Mineral...

  4. 76 FR 53693 - Notice of Invitation To Participate; Coal Exploration License Application COC-74911, Colorado

    Science.gov (United States)

    2011-08-29

    ...] Notice of Invitation To Participate; Coal Exploration License Application COC-74911, Colorado AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: Pursuant to the Mineral Leasing Act of 1920... America in lands located in Delta County, Colorado. DATES: This notice of invitation was published in the...

  5. County Spending

    Data.gov (United States)

    Montgomery County of Maryland — This dataset includes County spending data for Montgomery County government. It does not include agency spending. Data considered sensitive or confidential and will...

  6. Estimated Colorado Golf Course Irrigation Water Use, 2005

    Science.gov (United States)

    Ivahnenko, Tamara

    2009-01-01

    Golf course irrigation water-use data were collected as part of the U.S. Geological Survey National Water Use Program's 2005 compilation to provide baseline information, as no golf course irrigation water-use data (separate from crop irrigation) have been reported in previous compilations. A Web-based survey, designed by the U.S. Geological Survey, in cooperation with the Rocky Mountain Golf Course Superintendents Association (RMGCSA), was electronically distributed by the association to the 237 members in Colorado. Forty-three percent of the members returned the survey, and additional source water information was collected by telephone for all but 20 of the 245 association member and non-member Colorado golf courses. For golf courses where no data were collected at all, an average 'per hole' coefficient, based on returned surveys from that same county, were applied. In counties where no data were collected at all, a State average 'per hole' value of 13.2 acre-feet was used as the coefficient. In 2005, Colorado had 243 turf golf courses (there are 2 sand courses in the State) that had an estimated 2.27 acre-feet per irrigated course acre, and 65 percent of the source water for these courses was surface water. Ground water, potable water (public supply), and reclaimed wastewater, either partially or wholly, were source waters for the remaining courses. Fifty-three of the 64 counties in Colorado have at least one golf course, with the greatest number of courses in Jefferson (23 courses), Arapahoe (22 courses), and El Paso Counties (20 courses). In 2005, an estimated 5,647.8 acre-feet in Jefferson County, 5,402 acre-feet in Arapahoe County, and 4,473.3 acre-feet in El Paso County were used to irrigate the turf grass.

  7. Colorado Water Institute

    Science.gov (United States)

    Colorado Water Institute Colorado State University header HomeMission StatementGRAD592NewslettersPublications/ReportsCSU Water ExpertsFunding OpportunitiesScholarshipsSubscribeEmploymentAdvisory BoardStaffContact UsCommentsLinks Water Center Logo Water Resources Archive Office of Engagement Ag Water

  8. Environmental Impact Analysis Process. Draft Environmental Assessment. SAC Low-Altitude Flight Operations at the Airburst Range, Colorado

    Science.gov (United States)

    1990-01-01

    Engineering and Housing Fort Carson, Colorado (719) 579-2022 Bill Giordano Department of Planning and Zoning Fremont County, Colorado (719) 275-7510 Anita...Originator. Melissa Mooney Person Contacted: Melvin Nail, Manager Alamosa/Monte Vista National Wildlife Refuge Subject- Request for species lists I called...I CONTACT REPORT Date of Contact- December 1, 1989 0 Originator. Melissa Mooney Person Contacted: Dave Kuntz Colorado Natural Areas Progiam

  9. 76 FR 55701 - Notice of Invitation to Participate; Exploration for Coal in Colorado License Application COC-74895

    Science.gov (United States)

    2011-09-08

    ...] Notice of Invitation to Participate; Exploration for Coal in Colorado License Application COC-74895... Mineral Leasing Act of 1920, as amended by the Federal Coal Leasing Amendments Act of 1976, and to Bureau... coal deposits owned by the United States of America in lands located in Routt County, Colorado. DATES...

  10. The historical distribution of Gunnison Sage-Grouse in Colorado

    Science.gov (United States)

    Braun, Clait E.; Oyler-McCance, Sara J.; Nehring, Jennifer A.; Commons, Michelle L.; Young, Jessica R.; Potter, Kim M.

    2014-01-01

    The historical distribution of Gunnison Sage-Grouse (Centrocercus minimus) in Colorado is described based on published literature, observations, museum specimens, and the known distribution of sagebrush (Artemisia spp.). Historically, Gunnison Sage-Grouse were widely but patchily distributed in up to 22 counties in south-central and southwestern Colorado. The historical distribution of this species was south of the Colorado-Eagle river drainages primarily west of the Continental Divide. Potential contact areas with Greater Sage-Grouse (C. urophasianus) were along the Colorado-Eagle river system in Mesa, Garfield, and Eagle counties, west of the Continental Divide. Gunnison Sage-Grouse historically occupied habitats that were naturally highly fragmented by forested mountains and plateaus/mesas, intermountain basins without robust species of sagebrush, and river systems. This species adapted to use areas with more deciduous shrubs (i.e., Quercus spp., Amelanchier spp., Prunus spp.) in conjunction with sagebrush. Most areas historically occupied were small, linear, and patchily distributed within the overall landscape matrix. The exception was the large intermountain basin in Gunnison, Hinsdale, and Saguache counties. The documented distribution east of the Continental Divide within the large expanse of the San Luis Valley (Alamosa, Conejos, Costilla, and Rio Grande counties) was minimal and mostly on the eastern, northern, and southern fringes. Many formerly occupied habitat patches were vacant by the mid 1940s with extirpations continuing to the late 1990s. Counties from which populations were recently extirpated include Archuleta and Pitkin (1960s), and Eagle, Garfield, Montezuma, and Ouray (1990s).

  11. Agricultural water conservation programs in the lower Colorado River Authority

    International Nuclear Information System (INIS)

    Kabir, J.

    1993-01-01

    Rice irrigation is the largest user of water within the area served by the Lower Colorado River Authority (LCRA), accounting for approximately 75 percent of total annual surface and ground water demands. In an average year, about 30 percent of surface water supplied to rice irrigation is satisfied with water released from the storage in the Highland Lakes located at the upstream reaches of the Lower Colorado River and its tributaries. During a severe drought, the demand for stored water could be as much as 70 percent of annual rice irrigation demand. LCRA owns and operates two irrigation canal systems which together supply water to irrigate 60,000 acres of rice each year. These irrigation systems are the Lakeside and Gulf Coast Irrigation Divisions. The Lakeside system is located in Colorado and Wharton Counties and the Gulf Coast system is located in Wharton and Matagorda Counties. In the 1987 and 1989, the Lower Colorado River Authority Board of Directors authorized implementation and funding for Canal Rehabilitation Project and Irrigation Water Measurement Project respectively. These two projects are key initiatives to agricultural water conservation goals established in the LCRA Water Management Plan and Water Conservation Policy. In addition LCRA participated actively in agricultural water conservation research projects and technology transfer activities

  12. 77 FR 56808 - Arapaho and Roosevelt National Forests and Pawnee National Grassland; Larimer County, CO; Middle...

    Science.gov (United States)

    2012-09-14

    ... telecommunication devices for the deaf (TDD) may call the Federal Information Relay Service (FIRS) at 1-800-877-8339..., Colorado Department of Transportation, and the Colorado State Patrol. The principal land mobile radio... County and in additional reaches of the Canyon that would allow fire and medical first-responders, law...

  13. Colorado Children's Budget 2010

    Science.gov (United States)

    Colorado Children's Campaign, 2010

    2010-01-01

    The "Children's Budget 2010" is intended to be a resource guide for policymakers and advocates who are interested in better understanding how Colorado funds children's programs and services. It attempts to clarify often confusing budget information and describe where the state's investment trends are and where those trends will lead the…

  14. Colorado Children's Budget 2013

    Science.gov (United States)

    Buck, Beverly; Baker, Robin

    2013-01-01

    The "Colorado Children's Budget" presents and analyzes investments and spending trends during the past five state fiscal years on services that benefit children. The "Children's Budget" focuses mainly on state investment and spending, with some analysis of federal investments and spending to provide broader context of state…

  15. Western Slope Colorado

    International Nuclear Information System (INIS)

    Epis, R.C.; Callender, J.F.

    1981-01-01

    A conference on the geology and geologic resources of the Western Slope of western Colorado and eastern Utah is presented. Fourteen papers from the conference have been abstracted and indexed for the Department of Energy's Energy Data Base. These papers covered such topics as uranium resources, oil shale deposits, coal resources, oil and gas resources, and geothermal resources of the area

  16. 78 FR 50095 - Notice of Inventory Completion: History Colorado, Formerly Colorado Historical Society, Denver, CO

    Science.gov (United States)

    2013-08-16

    ... Mountain Reservation, Colorado, New Mexico & Utah may proceed. History Colorado is responsible for....R50000] Notice of Inventory Completion: History Colorado, Formerly Colorado Historical Society, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. [[Page 50096

  17. 76 FR 17444 - Notice of Inventory Completion: Colorado Historical Society (History Colorado), Denver, CO

    Science.gov (United States)

    2011-03-29

    ... Culture, Colorado Historical Society (History Colorado), 1560 Broadway, Suite 400, Denver, CO 80202...: Colorado Historical Society (History Colorado), Denver, CO AGENCY: National Park Service, Interior. ACTION... control of the Colorado Historical Society (History Colorado), Denver, CO. The human remains were removed...

  18. Colorado Better Buildings Project. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Strife, Susie [Boulder County, Boulder, CO (United States); Yancey, Lea [Boulder County, Boulder, CO (United States)

    2013-12-30

    The Colorado Better Buildings project intended to bring new and existing energy efficiency model programs to market with regional collaboration and funding partnerships. The goals for Boulder County and its program partners were to advance energy efficiency investments, stimulate economic growth in Colorado and advance the state’s energy independence. Collectively, three counties set out to complete 9,025 energy efficiency upgrades in 2.5 years and they succeeded in doing so. Energy efficiency upgrades have been completed in more than 11,000 homes and businesses in these communities. Boulder County and its partners received a $25 million BetterBuildings grant from the U.S. Department of Energy under the American Recovery and Reinvestment Act in the summer of 2010. This was also known as the Energy Efficiency and Conservation Block Grants program. With this funding, Boulder County, the City and County of Denver, and Garfield County set out to design programs for the residential and commercial sectors to overcome key barriers in the energy upgrade process. Since January 2011, these communities have paired homeowners and business owners with an Energy Advisor – an expert to help move from assessment to upgrade with minimal hassle. Pairing this step-by-step assistance with financing incentives has effectively addressed many key barriers, resulting in energy efficiency improvements and happy customers. An expert energy advisor guides the building owner through every step of the process, coordinating the energy assessment, interpreting results for a customized action plan, providing a list of contractors, and finding and applying for all available rebates and low-interest loans. In addition to the expert advising and financial incentives, the programs also included elements of social marketing, technical assistance, workforce development and contractor trainings, project monitoring and verification, and a cloud-based customer data system to coordinate among field

  19. Uranium indicator plants of the Colorado plateau

    International Nuclear Information System (INIS)

    Massingill, G.L.

    1979-01-01

    Two methods of botanical prospecting for uranium deposits have been applied on the Colorado Plateau. The first, based on a chemical analysis of deep-rooted plants that absorb uranium from ore bodies, detects small but measurable amounts of the element in plants rooted in ore. A second method involves mapping the distribution of indicator plants because these plants are dependent--either directly or indirectly--upon the presence of abnormally high levels of elements in the parent soil or rock. Botanical prospecting studies made in ten districts have been productive. In the Thompson district, Grand County, Utah, five ore bodies were found solely on the basis of indicator plant data. 15 refs

  20. SPANISH PEAKS WILDERNESS STUDY AREA, COLORADO.

    Science.gov (United States)

    Budding, Karin E.; Kluender, Steven E.

    1984-01-01

    A geologic and geochemical investigation and a survey of mines and prospects were conducted to evaluate the mineral-resource potential of the Spanish Peaks Wilderness Study Area, Huerfano and Las Animas Counties, in south-central Colorado. Anomalous gold, silver, copper, lead, and zinc concentrations in rocks and in stream sediments from drainage basins in the vicinity of the old mines and prospects on West Spanish Peak indicate a substantiated mineral-resource potential for base and precious metals in the area surrounding this peak; however, the mineralized veins are sparse, small in size, and generally low in grade. There is a possibility that coal may underlie the study area, but it would be at great depth and it is unlikely that it would have survived the intense igneous activity in the area. There is little likelihood for the occurrence of oil and gas because of the lack of structural traps and the igneous activity.

  1. Radioactive mineral occurences of Colorado and bibliography

    International Nuclear Information System (INIS)

    Nelson-Moore, J.L.; Collins, D.B.; Hornbaker, A.L.

    1978-01-01

    This two-part report provides an essentially complete listing of radioactive occurrences in Colorado, with a comprehensive bibliography and bibliographic cross-indexes. Part 1 lists approximately 3000 known radioactive occurrences with their locations and brief accounts of the geology, mineralogy, radioactivity, host rock, production data, and source of data for each. The occurrences are classified by host rock and plotted on U.S. Geological Survey 1 0 x 2 0 topographic quadrangle maps with a special 1 : 100,000-scale base map for the Uravan mineral belt. Part 2 contains the bibliography of approximately 2500 citations on radioactive mineral occurrences in the state, with cross-indexes by county, host rock, and the special categories of ''Front Range,'' ''Colorado Plateau,'' and ''thorium.'' The term ''occurrence'' as used in this report is defined as any site where the concentration of uranium or thorium is at least 0.01% or where the range of radioactivity is greater than twice the background radioactivity. All citations and occurrence data are stored on computer diskettes for easy retrieval, correction, and updating

  2. 77 FR 11573 - Notice of Inventory Completion: History Colorado, Denver, CO

    Science.gov (United States)

    2012-02-27

    ... during a drug raid in Jefferson County, CO. The origin of the remains is unknown. The remains were turned... Charney, a former professor at the University, who died in 1998. The human remains were subsequently taken... objects originating from inadvertent discoveries on Colorado state and private lands. As a result of the...

  3. NPDES Permit for Leadville Mine Drainage Tunnel Treatment Plant in Colorado

    Science.gov (United States)

    Under NPDES permit CO-0021717, the U.S. Bureau of Reclamation is authorized to discharge from the Leadville Mine Drainage Tunnel Treatment Plant in Lake County, Colorado to an unnamed drainage way tributary to the East Fork of the Arkansas River.

  4. 76 FR 74074 - Final Environmental Impact Statement for the Windy Gap Firming Project, Colorado

    Science.gov (United States)

    2011-11-30

    ... to an electric power line that would be affected by the project, while Grand County is involved... Firming Project and discuss the factors, including C-BT water rights, considered in making that decision... Windy Gap Firming Project, Colorado AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of...

  5. Reconnaissance-level application of physical habitat simulation in the evaluation of physical habitat limits in the Animas Basin, Colorado

    Science.gov (United States)

    Milhous, Robert T.

    2003-01-01

    The Animas River is in southwestern Colorado and flows mostly to the south to join the San Juan River at Farmington, New Mexico (Figure 1). The Upper Animas River watershed is in San Juan County, Colorado and is located in the San Juan Mountains. The lower river is in the Colorado Plateau country. The winters are cold with considerable snowfall and little snowmelt in the mountains in the upper part of the basin. The lower basin has less snow but the winters are still cold. The streamflows during the winter are low and reasonably stable.

  6. Colorado State Capitol Geothermal project

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Lance [Colorado Department of Personnel and Adminstration, Denver, CO (United States)

    2016-04-29

    Colorado State Capitol Geothermal Project - Final report is redacted due to space constraints. This project was an innovative large-scale ground-source heat pump (GSHP) project at the Colorado State Capitol in Denver, Colorado. The project employed two large wells on the property. One for pulling water from the aquifer, and another for returning the water to the aquifer, after performing the heat exchange. The two wells can work in either direction. Heat extracted/added to the water via a heat exchanger is used to perform space conditioning in the building.

  7. Navigation Study, Colorado Locks, Colorado River, Matagorda, Texas

    National Research Council Canada - National Science Library

    McCollum, Randy

    2000-01-01

    A 1:70 physical navigation model was built to replicate the Matagorda Locks, approximately one mile of the GIWW east of the locks, approximately one-half mile of the Colorado River north of the GIWW...

  8. BLM Colorado Federal Mineral Estate

    Data.gov (United States)

    Department of the Interior — Shapefile Format –This Federal Mineral Estate (Subsurface) dataset is a result of combining data sets that were collected at each BLM Colorado Field Office and using...

  9. BLM Colorado Oil Shale Leases

    Data.gov (United States)

    Department of the Interior — KMZ file Format –This data set contains the Oil Shale Leases for the State of Colorado, derived from Legal Land Descriptions (LLD) contained in the US Bureau of Land...

  10. Quality of life on the Colorado Plateau: A report to camera-survey collaborators in southeast Utah

    Science.gov (United States)

    Taylor, Jonathan G.; Reis-Ruehrwein, Jessica B.; Sexton, Natalie R.; Blahna, Dale J.

    1999-01-01

    What constitutes quality of life among community residents in southeastern and central Utah? What critical areas, elements, and special outdoor places are essential to quality of life in those areas? Answering these questions was the goal of this "quality-of-life" research collaboration in the Colorado Plateau region. Collaborators include the Utah Travel Council (UTC), Canyon Country Partnership, Utah State University, and the county governments of Carbon, Emery, Grand, San Juan, and Wayne counties.

  11. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, Rio Grande County, Colorado

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  12. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, Elbert County, Colorado

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  13. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, DELTA COUNTY, COLORADO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk Information And supporting data used to develop the risk data. The primary risk;...

  14. Vegetation Resources of Rocky Mountain Arsenal, Adams County, Colorado

    Science.gov (United States)

    1989-10-01

    SUCCULENTS Opuntia polyacantha Plains Prickly Pear Cactaceae Table 4 .(cont’d.) Scientific Name Common Name Family Name Yucca glauca Spanish Bayonet Agavaceae...Lycium halimitolium Matrim~ony Bush Solanceae Salix exigua Coyote Willow Salicaceae CACTI AND SUCCULENTS Coryphantha vivipara Ball Cactus Cactaceae ...Qpuntia compressa Prickly Pear Cactus Cactaceae Opuntia polyacantha Plains Prickly Pear Cactaceae Yucca glauca Spanish Bayonet Agavaceae cq Nl Nl Co~ V c0

  15. Floods in Colorado

    Science.gov (United States)

    Follansbee, Robert; Sawyer, Leon R.

    1948-01-01

    The first records of floods in Colorado antedated the settlement of the State by about 30 years. These were records of floods on the Arkansas and Republican Rivers in 1826. Other floods noted by traders, hunters and emigrants, some of whom were on their way to the Far West, occurred in 1844 on the Arkansas River, and by inference on the South Platte River. Other early floods were those on the Purgatoire, the Lower Arkansas, and the San Juan Rivers about 1859. The most serious flood since settlement began was that on the Arkansas River during June 1921, which caused the loss of about 100 lives and an estimated property loss of $19,000,000. Many floods of lesser magnitude have occurred, and some of these have caused loss of life and very considerable property damage. Topography is the chief factor in determining the location of storms and resulting floods. These occur most frequently on the eastern slope of the Front Range. In the mountains farther west precipitation is insufficient to cause floods except during periods of melting snow, in June. In the southwestern part of the State, where precipitation during periods of melting snow is insufficient to cause floods, the severest floods yet experienced resulted from heavy rains in September 1909 and October 1911. In the eastern foothills region, usually below an altitude of about 7,500 feet and extending for a distance of about 50 miles east of the mountains, is a zone subject to rainfalls of great intensity known as cloudbursts. These cloudbursts are of short duration and are confined to very small areas. At times the intensity is so great as to make breathing difficult for those exposed to a storm. The areas of intense rainfall are so small that Weather Bureau precipitation stations have not been located in them. Local residents, being cloudburst conscious, frequently measure the rainfall in receptacles in their yards, and such records constitute the only source of information regarding the intensity. A flood

  16. 78 FR 19296 - Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO

    Science.gov (United States)

    2013-03-29

    ... Reservation, Colorado, New Mexico & Utah agreed to accept disposition of the human remains. In 2006, History....R50000] Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: History Colorado, formerly...

  17. 78 FR 30737 - Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...

    Science.gov (United States)

    2013-05-23

    ... FR] Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...: This final rule reestablishes the membership on the Colorado Potato Administrative Committee, Area No... Irish potatoes grown in Colorado. This action modifies the Committee membership structure by amending...

  18. 76 FR 62819 - Notice of Intent To Amend the Resource Management Plan for the San Luis Resource Area, Colorado...

    Science.gov (United States)

    2011-10-11

    ... Public Lands Center, Monte Vista, Colorado, intends to prepare a Resource Management Plan (RMP) Amendment...: [email protected] . Fax: 719-852-6250 Mail: BLM, La Jara Field Office, 15571, County Road T-5, La... at the La Jara Field Office. FOR FURTHER INFORMATION CONTACT: For further information and/or to have...

  19. 78 FR 46521 - Approval and Promulgation of Air Quality Implementation Plans; State of Colorado; Second 10-Year...

    Science.gov (United States)

    2013-08-01

    ... Springs area through 2010. The Governor also submitted a transportation conformity motor vehicle emission... revisions to AQCC Regulation No. 11, ``Motor Vehicle Emissions Inspection Program,'' which allowed for the removal of the basic inspection/ maintenance program in El Paso County, including the Colorado Springs...

  20. Colorado Academic Library Master Plan, Spring 1982.

    Science.gov (United States)

    Breivik, Patricia Senn; And Others

    Based on a need to assess current library strengths and weaknesses and to project potential library roles in supporting higher education, this master plan makes a series of recommendations to Colorado's academic libraries. It is noted that the plan was endorsed by both the Colorado Commission on Higher Education and the Colorado State Department…

  1. Residential Energy Efficiency Potential: Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Colorado single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. PIEDRA WILDERNESS STUDY AREA, COLORADO.

    Science.gov (United States)

    Condon, Steven M.; Brown, S. Don

    1984-01-01

    The Pedra Wilderness Study Area, located approximately 30 mi northeast of Durango, Colorado, was evaluated for its mineral-resource potential. Geochemical and geophysical studies indicate little promise for the occurrence of mineral or energy resources in this area. This conclusion is supported by the findings of the earlier study and is suggested by the absence of significant mining activity in the area.

  3. Decay of aspen in Colorado

    Science.gov (United States)

    Ross W. Davidson; Thomas E. Hinds; Frank G. Hawksworth

    1959-01-01

    Quaking aspen (Populus tremuloides Michx.) stands are extensive in the central Rocky Mountains. The species reaches its maximum development in the mountains and high mesas west of the Continental Divide in Colorado (Baker, 1925). On the better sites aspen yields a greater volume of wood in a shorter period than most of the conifers growing at comparable elevations. The...

  4. Energy development in the US Rockies: A Role for counties?

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.; Hoffer, K. [Colorado State University, Fort Collins, CO (United States)

    2010-04-01

    This article analyzes the role played by county commissioners in Colorado and Montana in restricting or facilitating the use of clean energy sources in the generation of electrical power. Using data obtained from responses to an internet survey, we found that many commissioners in both states developed land use policies dealing with renewable energy resources over the preceding five years. Colorado and Montana officials were quite similar in terms of their positive reaction to changes that would facilitate greater county interest in clean energy policies. Most respondents favored increasing the pace of renewable energy use in relation to traditional energy sources but were also supportive of a more inclusive renewable portfolio standard that would embrace clean coal technologies and nuclear power.

  5. Approaches to local climate action in Colorado

    Science.gov (United States)

    Huang, Y. D.

    2011-12-01

    Though climate change is a global problem, the impacts are felt on the local scale; it follows that the solutions must come at the local level. Fortunately, many cities and municipalities are implementing climate mitigation (or climate action) policies and programs. However, they face many procedural and institutional barriers to their efforts, such of lack of expertise or data, limited human and financial resources, and lack of community engagement (Krause 2011). To address the first obstacle, thirteen in-depth case studies were done of successful model practices ("best practices") of climate action programs carried out by various cities, counties, and organizations in Colorado, and one outside Colorado, and developed into "how-to guides" for other municipalities to use. Research was conducted by reading documents (e.g. annual reports, community guides, city websites), email correspondence with program managers and city officials, and via phone interviews. The information gathered was then compiled into a series of reports containing a narrative description of the initiative; an overview of the plan elements (target audience and goals); implementation strategies and any indicators of success to date (e.g. GHG emissions reductions, cost savings); and the adoption or approval process, as well as community engagement efforts and marketing or messaging strategies. The types of programs covered were energy action plans, energy efficiency programs, renewable energy programs, and transportation and land use programs. Between the thirteen case studies, there was a range of approaches to implementing local climate action programs, examined along two dimensions: focus on climate change (whether it was direct/explicit or indirect/implicit) and extent of government authority. This benchmarking exercise affirmed the conventional wisdom propounded by Pitt (2010), that peer pressure (that is, the presence of neighboring jurisdictions with climate initiatives), the level of

  6. Allegheny County Air Quality

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Air quality data from Allegheny County Health Department monitors throughout the county. Air quality monitored data must be verified by qualified individuals before...

  7. Allegheny County Municipal Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...

  8. Allegheny County Addressing Landmarks

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  9. Allegheny County Council Districts

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset portrays the boundaries of the County Council Districts in Allegheny County. The dataset is based on municipal boundaries and City of Pittsburgh ward...

  10. Allegheny County Address Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  11. Gunnison, Colorado, subpile study report

    International Nuclear Information System (INIS)

    1994-03-01

    To protect human health and the environment, the UMTRA project will remediate the uranium mill tailings site at Gunnison, Colorado. There are explicit requirements (i.e., 40 Part CFR Part 192) for the surface remediation of radiologically contaminated soils on UMTRA sites. The removal of subpile sediment to the depth required by 40 CFR Part 192 will leave in place deeper foundation sediment that is contaminated with hazardous constituents other than radium-226 and thorium-230. The Department of Energy and the Colorado Department of Health have questioned whether this contaminated soil could potentially act as a continuing source of ground water contamination even after surface remediation based on 40 CFR Part 192 is complete. To evaluate the subpile sediments as a potential source of ground water contamination, the Gunnison subpile study was initiated. This report summarizes the results and findings of this study

  12. Los 'Colorados': Etnohistoria y Toponimia

    NARCIS (Netherlands)

    Gómez-Rendón, J.

    2015-01-01

    Los "colorados" comprendían varios grupos étnicos emparentados etnolingüísticamente que ocupaban el piedemonte andino occidental desde El Carchi hasta Bolívar así como las tierras bajas del Pacífico en los sistemas hidrográficos de los ríos Esmeraldas y Guayas. Aunque la ocupación "colorada" de

  13. Water quality and water rights in Colorado

    International Nuclear Information System (INIS)

    MacDonnell, L.J.

    1989-07-01

    The report begins with a review of early Colorado water quality law. The present state statutory system of water quality protection is summarized. Special attention is given to those provisions of Colorado's water quality law aimed at protecting water rights. The report then addresses several specific issues which involve the relationship between water quality and water use. Finally, recommendations are made for improving Colorado's approach to integrating quality and quantity concerns

  14. 78 FR 72700 - Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO

    Science.gov (United States)

    2013-12-03

    ... Mexico, were invited to consult but did not participate. History and Description of the Remains In the....R50000] Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: History Colorado has completed...

  15. 78 FR 9629 - Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato...

    Science.gov (United States)

    2013-02-11

    ... Service 7 CFR Part 948 [Doc. No. AMS-FV-12-0044; FV12-948-2 PR] Irish Potatoes Grown in Colorado; Reestablishment of Membership on the Colorado Potato Administrative Committee, Area No. 2 AGENCY: Agricultural... membership on the Colorado Potato Administrative Committee, Area No. 2 (Committee). The Committee locally...

  16. Prevalence of neutralizing antibodies to rabies virus in serum of seven species of insectivorous bats from Colorado and New Mexico, United States

    Science.gov (United States)

    Bowen, Richard A.; O'Shea, Thomas J.; Shankar, Vidya; Neubaum, Melissa A.; Neubaum, Daniel J.; Rupprecht, Charles E.

    2013-01-01

    We determined the presence of rabies-virus-neutralizing antibodies (RVNA) in serum of 721 insectivorous bats of seven species captured, sampled, and released in Colorado and New Mexico, United States in 2003-2005. A subsample of 160 bats was tested for rabies-virus RNA in saliva. We sampled little brown bats (Myotis lucifugus) at two maternity roosts in Larimer County, Colorado; big brown bats (Eptesicus fuscus) at three maternity roosts in Morgan County, Colorado; and big brown bats at five maternity roosts in Larimer County. We also sampled hoary bats (Lasiurus cinereus) and silver-haired bats (Lasionycteris noctivagans) captured while drinking or foraging over water in Bernalillo County, New Mexico and at various locations in Larimer County. Big brown bats, little brown bats, long-legged myotis (Myotis volans), long-eared myotis (Myotis evotis), and fringed myotis (Myotis thysanodes) were also sampled over water in Larimer County. All species except long-eared myotis included individuals with RVNA, with prevalences ranging from 7% in adult female silver-haired bats to 32% in adult female hoary bats. None of the bats had detectable rabies-virus RNA in oropharyngeal swabs, including 51 bats of 5 species that had RVNA in serum. Antibody-positive bats were present in nine of the 10 maternity colonies sampled. These data suggest that wild bats are commonly exposed to rabies virus and develop a humoral immune response suggesting some degree of viral replication, but many infections fail to progress to clinical disease.

  17. Uranium deposits: northern Denver Julesburg basin, Colorado

    International Nuclear Information System (INIS)

    Reade, H.L.

    1978-01-01

    The Fox Hills Sandstone and the Laramie Formation (Upper Cretaceous) are the host rocks for uranium deposits in Weld County, northern Denver Julesburg basin, Colorado. The uranium deposits discovered in the Grover and Sand Creek areas occur in well-defined north--south trending channel sandstones of the Laramie Formation whereas the sandstone channel in the upper part of the Fox Hills Sandstone trends east--west. Mineralization was localized where the lithology was favorable for uranium accumulation. Exploration was guided by log interpretation methods similar to those proposed by Bruce Rubin for the Powder River basin, Wyoming, because alteration could not be readily identified in drilling samples. The uranium host rocks consist of medium- to fine-grained carbonaceous, feldspathic fluvial channel sandstones. The uranium deposits consist of simple to stacked roll fronts. Reserve estimates for the deposits are: (1) Grover 1,007,000 lbs with an average grade of 0.14 percent eU 3 O 8 ,2) Sand Creek 154,000 lbs with an average grade of 0.08 percent eU 3 O 8 , and 3) The Pawnee deposit 1,060,000 lbs with an average grade of 0.07 percent eU 3 O 8 . The configuration of the geochemical cells in the Grover and Sand Creek sandstones indicate that uraniferous fluids moved northward whereas in the Pawnee sandstone of the Fox Hills uraniferous fluids moved southward. Precipitation of uranium in the frontal zone probably was caused by downdip migration of oxygcnated groundwater high in uranium content moving through a favorable highly carbonaceous and pyritic host sandstone

  18. Locations and attributes of wind turbines in Colorado, 2009

    Science.gov (United States)

    Carr, Natasha B.; Diffendorfer, Jay E.; Fancher, Tammy S.; Latysh, Natalie E.; Leib, Kenneth J.; Matherne, Anne-Marie; Turner, Christine

    2011-01-01

    The Colorado wind-turbine data series provides geospatial data for all wind turbines established within the State as of August 2009. Attributes specific to each turbine include: turbine location, manufacturer and model, rotor diameter, hub height, rotor height, potential megawatt output, land ownership, and county. Wind energy facility data for each turbine include: facility name, facility power capacity, number of turbines associated with each facility to date, facility developer, facility ownership, year the facility went online, and development status of wind facility. Turbine locations were derived from August 2009 1-meter true-color aerial photographs produced by the National Agriculture Imagery Program; the photographs have a positional accuracy of about + or - 5 meters. The location of turbines under construction during August 2009 likely will be less accurate than the location of existing turbines. This data series contributes to an Online Interactive Energy Atlas currently (2011) in development by the U.S. Geological Survey. The Energy Atlas will synthesize data on existing and potential energy development in Colorado and New Mexico and will include additional natural resource data layers. This information may be used by decisionmakers to evaluate and compare the potential benefits and tradeoffs associated with different energy development strategies or scenarios. Interactive maps, downloadable data layers, comprehensive metadata, and decision-support tools will be included in the Energy Atlas. The format of the Energy Atlas will facilitate the integration of information about energy with key terrestrial and aquatic resources for evaluating resource values and minimizing risks from energy development.

  19. From Waste to Wealth: Using Produced Water for Agriculture in Colorado

    Science.gov (United States)

    Dolan, F.; Hogue, T. S.

    2017-12-01

    According to estimates from the Colorado Water Plan, the state's population may double by 2050. Due to increasing demand, as much as 0.8 million irrigated acres may dry up statewide from agricultural to municipal and industrial transfers. To help mitigate this loss, new sources of water are being explored in Colorado. One such source may be produced water. Oil and gas production in 2016 alone produced over 300 million barrels of produced water. Currently, the most common method of disposal of produced water is deep well injection, which is costly and has been shown to cause induced seismicity. Treating this water to agricultural standards eliminates the need to dispose of this water and provides a new source of water. This research explores which counties in Colorado may be best suited to reusing produced water for agriculture based on a combined index of need, quality of produced water, and quantity of produced water. The volumetric impact of using produced water for agricultural needs is determined for the top six counties. Irrigation demand is obtained using evapotranspiration estimates from a range of methods, including remote sensing products and ground-based observations. The economic feasibility of treating produced water to irrigation standards is also determined using treatment costs found in the literature and disposal costs in each county. Finally, data from the IHS database is used to obtain the ratio between hydraulic fracturing fluid volumes and produced water volumes in each county. The results of this research will aid in the transition between viewing produced water as a waste product and using it as a tool to help secure water for the arid West.

  20. Water quality and trend analysis of Colorado--Big Thompson system reservoirs and related conveyances, 1969 through 2000

    Science.gov (United States)

    Stevens, Michael R.

    2003-01-01

    The U.S. Geological Survey, in an ongoing cooperative monitoring program with the Northern Colorado Water Conservancy District, Bureau of Reclamation, and City of Fort Collins, has collected water-quality data in north-central Colorado since 1969 in reservoirs and conveyances, such as canals and tunnels, related to the Colorado?Big Thompson Project, a water-storage, collection, and distribution system. Ongoing changes in water use among agricultural and municipal users on the eastern slope of the Rocky Mountains in Colorado, changing land use in reservoir watersheds, and other water-quality issues among Northern Colorado Water Conservancy District customers necessitated a reexamination of water-quality trends in the Colorado?Big Thompson system reservoirs and related conveyances. The sampling sites are on reservoirs, canals, and tunnels in the headwaters of the Colorado River (on the western side of the transcontinental diversion operations) and the headwaters of the Big Thompson River (on the eastern side of the transcontinental diversion operations). Carter Lake Reservoir and Horsetooth Reservoir are off-channel water-storage facilities, located in the foothills of the northern Colorado Front Range, for water supplied from the Colorado?Big Thompson Project. The length of water-quality record ranges from approximately 3 to 30 years depending on the site and the type of measurement or constituent. Changes in sampling frequency, analytical methods, and minimum reporting limits have occurred repeatedly over the period of record. The objective of this report was to complete a retrospective water-quality and trend analysis of reservoir profiles, nutrients, major ions, selected trace elements, chlorophyll-a, and hypolimnetic oxygen data from 1969 through 2000 in Lake Granby, Shadow Mountain Lake, and the Granby Pump Canal in Grand County, Colorado, and Horsetooth Reservoir, Carter Lake, Lake Estes, Alva B. Adams Tunnel, and Olympus Tunnel in Larimer County, Colorado

  1. 40 CFR 81.406 - Colorado.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Colorado. 81.406 Section 81.406 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF... Visibility Is an Important Value § 81.406 Colorado. Area name Acreage Public Law establishing Federal land...

  2. Locations and attributes of wind turbines in Colorado, 2011

    Science.gov (United States)

    Carr, Natasha B.; Diffendorfer, James E.; Fancher, Tammy; Hawkins, Sarah J.; Latysh, Natalie; Leib, Kenneth J.; Matherne, Anne Marie

    2013-01-01

    This dataset represents an update to U.S. Geological Survey Data Series 597. Locations and attributes of wind turbines in Colorado, 2009 (available at http://pubs.usgs.gov/ds/597/). This updated Colorado wind turbine Data Series provides geospatial data for all 1,204 wind turbines established within the State of Colorado as of September 2011, an increase of 297 wind turbines from 2009. Attributes specific to each turbine include: turbine location, manufacturer and model, rotor diameter, hub height, rotor height, potential megawatt output, land ownership, county, and development status of the wind turbine. Wind energy facility data for each turbine include: facility name, facility power capacity, number of turbines associated with each facility to date, facility developer, facility ownership, and year the facility went online. The locations of turbines are derived from 1-meter true-color aerial photographs produced by the National Agriculture Imagery Program (NAIP); the photographs have a positional accuracy of about ±5 meters. Locations of turbines constructed during or prior to August 2009 are based on August 2009 NAIP imagery and turbine locations constructed after August 2009 were based on September 2011 NAIP imagery. The location of turbines under construction during September 2011 likely will be less accurate than the location of existing turbines. This data series contributes to an Online Interactive Energy Atlas developed by the U.S. Geological Survey (http://my.usgs.gov/eerma/). The Energy Atlas synthesizes data on existing and potential energy development in Colorado and New Mexico and includes additional natural resource data layers. This information may be used by decisionmakers to evaluate and compare the potential benefits and tradeoffs associated with different energy development strategies or scenarios. Interactive maps, downloadable data layers, comprehensive metadata, and decision-support tools also are included in the Energy Atlas. The format of

  3. 7 CFR 948.51 - Colorado Potato Committee.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Colorado Potato Committee. 948.51 Section 948.51... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN COLORADO Order Regulating Handling Committees § 948.51 Colorado Potato Committee. The Colorado Potato Committee...

  4. Colorado's prospectus on uranium milling

    International Nuclear Information System (INIS)

    Hazle, A.J.; Franz, G.A.; Gamewell, R.

    1982-01-01

    The first part of this paper will discuss Colorado's control of uranium mill tailings under Titles I and II of the Uranium Mill Tailings Radiation Control Act of 1978. Colorado has a legacy of nine inactive mill sites requiring reclamation under Title I, and two presently active plus a number of new mill proposals which must be regulated in accordance with Title II. Past failures in siting and control on the part of federal jurisdictions have left the state with a heavy legacy requiring extensive effort to address impacts to the state's environment and population. The second part of this paper will discuss the remedial action programme authorized under Public Law 92-314 for Mesa Country, where lack of federal control led to the dispersal of several hundred thousand tons of uranium mill tailings on thousands of properties, including hundreds of homes, schools and other structures. Successful completion of the State efforts under both programmes will depend on a high level of funding and on the maintenance of adequate regulatory standards. (author)

  5. Optimization of Water Resources and Agricultural Activities for Economic Benefit in Colorado

    Science.gov (United States)

    LIM, J.; Lall, U.

    2017-12-01

    The limited water resources available for irrigation are a key constraint for the important agricultural sector of Colorado's economy. As climate change and groundwater depletion reshape these resources, it is essential to understand the economic potential of water resources under different agricultural production practices. This study uses a linear programming optimization at the county spatial scale and annual temporal scales to study the optimal allocation of water withdrawal and crop choices. The model, AWASH, reflects streamflow constraints between different extraction points, six field crops, and a distinct irrigation decision for maize and wheat. The optimized decision variables, under different environmental, social, economic, and physical constraints, provide long-term solutions for ground and surface water distribution and for land use decisions so that the state can generate the maximum net revenue. Colorado, one of the largest agricultural producers, is tested as a case study and the sensitivity on water price and on climate variability is explored.

  6. Allegheny County Obesity Rates

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Obesity rates for each Census Tract in Allegheny County were produced for the study “Developing small-area predictions for smoking and obesity prevalence in the...

  7. Allegheny County Dam Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the point locations of dams in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  8. Allegheny County Asbestos Permits

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Current asbestos permit data issued by the County for commercial building demolitions and renovations as required by the EPA. This file is updated daily and can be...

  9. Allegheny County Crash Data

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Contains locations and information about every crash incident reported to the police in Allegheny County from 2004 to 2016. Fields include injury severity,...

  10. Allegheny County Anxiety Medication

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — These Census Tract-level datasets described here provide de-identified diagnosis data for customers of three managed care organizations in Allegheny County (Gateway...

  11. Allegheny County Smoking Rates

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Smoking rates for each Census Tract in Allegheny County were produced for the study “Developing small-area predictions for smoking and obesity prevalence in the...

  12. Allegheny County Employee Salaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Employee salaries are a regular Right to Know request the County receives. Here is the disclaimer language that is included with the dataset from the Open Records...

  13. ROE County Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This polygon dataset shows the outlines of states, counties, and county equivalents (Louisiana parishes, Alaska boroughs, Puerto Rico municipalities, and U.S. Virgin...

  14. Allegheny County Parcel Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains parcel boundaries attributed with county block and lot number. Use the Property Information Extractor for more control downloading a filtered...

  15. Allegheny County Tobacco Vendors

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The tobacco vendor information provides the location of all tobacco vendors in Allegheny County in 2015. Data was compiled from administrative records managed by...

  16. Allegheny County Plumbers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — All master plumbers must be registered with the Allegheny County Health Department. Only Registered Master Plumbers who possess a current plumbing license or...

  17. Allegheny County Traffic Counts

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Traffic sensors at over 1,200 locations in Allegheny County collect vehicle counts for the Pennsylvania Department of Transportation. Data included in the Health...

  18. Allegheny County Greenways

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Greenways data was compiled by the Allegheny Land Trust as a planning effort in the development of Allegheny Places, the Allegheny County Comprehensive Plan. The...

  19. Allegheny County Street Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the locations of the street centerlines for vehicular and foot traffic in Allegheny County. Street Centerlines are classified as Primary Road,...

  20. Allegheny County Major Rivers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of major rivers that flow through Allegheny County. These shapes have been taken from the Hydrology dataset. The Ohio River,...

  1. Allegheny County Depression Medication

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — These Census Tract-level datasets described here provide de-identified diagnosis data for customers of three managed care organizations in Allegheny County (Gateway...

  2. Taos County Roads

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Vector line shapefile under the stewardship of the Taos County Planning Department depicting roads in Taos County, New Mexico. Originally under the Emergency...

  3. Allegheny County Property Assessments

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Real Property parcel characteristics for Allegheny County, PA. Includes information pertaining to land, values, sales, abatements, and building characteristics (if...

  4. Allegheny County Hospitals

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The data on health care facilities includes the name and location of all the hospitals and primary care facilities in Allegheny County. The current listing of...

  5. Allegheny County Parks Outlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Shows the size and shape of the nine Allegheny County parks. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  6. Allegheny County Crash Data

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Contains locations and information about every crash incident reported to the police in Allegheny County from 2004 to 2017. Fields include injury severity,...

  7. Allegheny County Property Viewer

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Webmap of Allegheny municipalities and parcel data. Zoom for a clickable parcel map with owner name, property photograph, and link to the County Real Estate website...

  8. County Population Vulnerability

    Data.gov (United States)

    City and County of Durham, North Carolina — This layer summarizes the social vulnerability index for populations within each county in the United States at scales 1:3m and below. It answers the question...

  9. Groundwater quality, age, and susceptibility and vulnerability to nitrate contamination with linkages to land use and groundwater flow, Upper Black Squirrel Creek Basin, Colorado, 2013

    Science.gov (United States)

    Wellman, Tristan P.; Rupert, Michael G.

    2016-03-03

    The Upper Black Squirrel Creek Basin is located about 25 kilometers east of Colorado Springs, Colorado. The primary aquifer is a productive section of unconsolidated deposits that overlies bedrock units of the Denver Basin and is a critical resource for local water needs, including irrigation, domestic, and commercial use. The primary aquifer also serves an important regional role by the export of water to nearby communities in the Colorado Springs area. Changes in land use and development over the last decade, which includes substantial growth of subdivisions in the Upper Black Squirrel Creek Basin, have led to uncertainty regarding the potential effects to water quality throughout the basin. In response, the U.S. Geological Survey, in cooperation with Cherokee Metropolitan District, El Paso County, Meridian Service Metropolitan District, Mountain View Electric Association, Upper Black Squirrel Creek Groundwater Management District, Woodmen Hills Metropolitan District, Colorado State Land Board, and Colorado Water Conservation Board, and the stakeholders represented in the Groundwater Quality Study Committee of El Paso County conducted an assessment of groundwater quality and groundwater age with an emphasis on characterizing nitrate in the groundwater.

  10. Surface Chloride Levels in Colorado Structural Concrete

    Science.gov (United States)

    2018-01-01

    This project focused on the chloride-induced corrosion of reinforcing steel in structural concrete. The primary goal of this project is to analyze the surface chloride concentration level of the concrete bridge decks throughout Colorado. The study in...

  11. BLM Colorado Oil & Gas Geophysical Permits (Dissolved)

    Data.gov (United States)

    Department of the Interior — KMZ File Format –This data is one feature type that is a part of a set consisting of six shapefiles pertaining to energy development and production in Colorado. The...

  12. BLM Colorado Oil and Gas Leases (Dissolved)

    Data.gov (United States)

    Department of the Interior — KMZ File Format –This data is one feature type that is a part of a set consisting of six shapefiles pertaining to energy development and production in Colorado. The...

  13. BLM Colorado Oil & Gas Geophysical Permits (Dissolved)

    Data.gov (United States)

    Department of the Interior — Shapefile Format –This data is one feature type that is a part of a set consisting of six shapefiles pertaining to energy development and production in Colorado. The...

  14. BLM Colorado Oil and Gas Units (Dissolve)

    Data.gov (United States)

    Department of the Interior — KMZ File Format –This data is one feature type that is a part of a set consisting of six shapefiles pertaining to energy development and production in Colorado. The...

  15. BLM Colorado Oil and Gas Leases (Dissolved)

    Data.gov (United States)

    Department of the Interior — Shapefile Format –This data is one feature type that is a part of a set consisting of six shapefiles pertaining to energy development and production in Colorado. The...

  16. BLM Colorado Oil and Gas Units (Dissolve)

    Data.gov (United States)

    Department of the Interior — Shapefile Format –This data is one feature type that is a part of a set consisting of six shapefiles pertaining to energy development and production in Colorado. The...

  17. Long-term surveillance plan for the Burro Canyon disposal cell, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1996-11-01

    This long-term surveillance plant (LTSP) describes the US Department of energy's (DOE) long-term care program for the Uranium Mill Tailings Remediation Action (UMTRA) Project's burro Canyon disposal cell in San Miguel County, Colorado. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. No ground water monitoring will be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low-yield from the upper-most aquifer

  18. Interim long-term surveillance plan for the Cheney disposal site near, Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1997-08-01

    This interim long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site in Mesa County near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  19. Assessment of the Economic Potential of Distributed Wind in Colorado, Minnesota, and New York

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sigrin, Benjamin O. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lantz, Eric J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mooney, Meghan E. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    This work seeks to identify current and future spatial distributions of economic potential for behind-the-meter distributed wind, serving primarily rural or suburban homes, farms, and manufacturing facilities in Colorado, Minnesota, and New York. These states were identified by technical experts based on their current favorability for distributed wind deployment. We use NREL's Distributed Wind Market Demand Model (dWind) (Lantz et al. 2017; Sigrin et al. 2016) to identify and rank counties in each of the states by their overall and per capita potential. From this baseline assessment, we also explore how and where improvements in cost, performance, and other market sensitivities affect distributed wind potential.

  20. Colorado School Finance Partnership: Report and Recommendations. Financing Colorado's Future: Assessing Our School Finance System

    Science.gov (United States)

    Colorado Children's Campaign, 2012

    2012-01-01

    Over the last decade, Colorado has emerged as a national leader in crafting innovative solutions for challenges facing its public school system. From implementing the Colorado Student Assessment Program (CSAP) and No Child Left Behind (NCLB) reforms to more recent legislation including standards and assessments for a preschool-through-college…

  1. VT Boundaries - county polygons

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The BNDHASH dataset depicts Vermont villages, towns, counties, Regional Planning Commissions (RPC), and LEPC (Local Emergency Planning Committee)...

  2. Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas

    Science.gov (United States)

    Fueling Stations Colorado Airport Relies on Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on

  3. Allegheny County Blazed Trails Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Shows the location of blazed trails in all Allegheny County parks. This is the same data used in the Allegheny County Parks Trails Mobile App, available for Apple...

  4. Allegheny County Supermarkets & Convenience Stores

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Location information for all Supermarkets and Convenience Stores in Allegheny County was produced using the Allegheny County Fee and Permit Data for 2016.

  5. Allegheny County Watershed Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the 52 isolated sub-Watersheds of Allegheny County that drain to single point on the main stem rivers. Created by 3 Rivers 2nd Nature based...

  6. Allegheny County Block Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset overlays a grid on the County to assist in locating a parcel. The grid squares are 3,500 by 4,500 square feet. The data was derived from original...

  7. LANDSLIDES IN SUCEAVA COUNTY

    Directory of Open Access Journals (Sweden)

    Dan Zarojanu

    2017-07-01

    Full Text Available In the county of Suceava, the landslides are a real and permanent problem. This paper presents the observations of landslides over the last 30 years in Suceava County, especially their morphology, theirs causes and the landslide stopping measures. It presents also several details regarding the lanslides from the town of Suceava, of Frasin and the village of Brodina.

  8. Cultural Resource Survey for the Consolidated Space Operations Center Project Near Colorado Springs, El Paso County, Colorado.

    Science.gov (United States)

    1982-01-01

    fauna, to attract hunters prehistorically. I But as this area was not prime habitable land for humans, it probably also did not support large herds ...Rocky Mountain areas. The Archaic people were less dependent on herd movement, thus their socio-economic systems changed. This adaptation to a changing...coyotes, skunks, ground squirrels, pocket gophers, wolves, mule deer, white- tail deer, beaver, and porcupine (Larsen 1981; Goodlng 1977:4; Eddy 1981:7

  9. The Chapter 1 Challenge: Colorado's Contribution 1993.

    Science.gov (United States)

    Petro, Janice Rose; And Others

    An overview is provided of Colorado's participation in Chapter 1, the largest federally funded program designed to provide services to elementary and secondary students. Chapter 1 provides financial assistance to state and local education agencies to meet the special needs of educationally deprived children who reside in areas with high…

  10. Insects associated with ponderosa pine in Colorado

    Science.gov (United States)

    Robert E. Stevens; J. Wayne Brewer; David A. Leatherman

    1980-01-01

    Ponderosa pine serves as a host for a wide variety of insects. Many of these, including all the particularly destructive ones in Colorado, are discussed in this report. Included are a key to the major insect groups, an annotated list of the major groups, a glossary, and a list of references.

  11. Bats of the Colorado oil shale region

    Energy Technology Data Exchange (ETDEWEB)

    Finley, R.B. Jr.; Caire, W.; Wilhelm, D.E.

    1984-10-31

    New records for Myotis californicus, M. evotis, M. leibii, M. lucifugus, M. thysanodes, M. volans, M. yumanensis, Lasionycteris noctivagans, Pipistrellus hesperus, Eptesicus fuscus, Lasiurus cinereus, Plecotus townsendii, and Antrozous pallidus and their habitat occurrence in northwestern Colorado are reported. Mortality of 27 bats of six species trapped in an oil sludge pit is described. 7 references.

  12. 76 FR 76109 - Colorado Regulatory Program

    Science.gov (United States)

    2011-12-06

    ... its program to improve operational efficiency. This document gives the times and locations that the... the amendment during regular business hours at the following locations: Kenneth Walker, Chief, Denver... available for you to read at the locations listed above under ADDRESSES. Specifically, Colorado proposes...

  13. Feeding stimulants for the colorado beetle

    NARCIS (Netherlands)

    Ritter, F.J.

    1967-01-01

    Potato leaf extract was fractionated and the fractions obtained were tested for their activity as feeding stimulants for Colorado beetle larvae. Also leaves and leaf extracts of different kinds of plants, as well as a number of known pure compounds and mixtures of them, were tested for this

  14. Understanding uncertainties in future Colorado River streamflow

    Science.gov (United States)

    Julie A. Vano,; Bradley Udall,; Cayan, Daniel; Jonathan T Overpeck,; Brekke, Levi D.; Das, Tapash; Hartmann, Holly C.; Hidalgo, Hugo G.; Hoerling, Martin P; McCabe, Gregory J.; Morino, Kiyomi; Webb, Robert S.; Werner, Kevin; Lettenmaier, Dennis P.

    2014-01-01

    The Colorado River is the primary water source for more than 30 million people in the United States and Mexico. Recent studies that project streamf low changes in the Colorado River all project annual declines, but the magnitude of the projected decreases range from less than 10% to 45% by the mid-twenty-first century. To understand these differences, we address the questions the management community has raised: Why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted? We identify four major sources of disparities among studies that arise from both methodological and model differences. In order of importance, these are differences in 1) the global climate models (GCMs) and emission scenarios used; 2) the ability of land surface and atmospheric models to simulate properly the high-elevation runoff source areas; 3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and 4) the methods used to statistically downscale GCM scenarios. In accounting for these differences, there is substantial evidence across studies that future Colorado River streamflow will be reduced under the current trajectories of anthropogenic greenhouse gas emissions because of a combination of strong temperature-induced runoff curtailment and reduced annual precipitation. Reconstructions of preinstrumental streamflows provide additional insights; the greatest risk to Colorado River streamf lows is a multidecadal drought, like that observed in paleoreconstructions, exacerbated by a steady reduction in flows due to climate change. This could result in decades of sustained streamflows much lower than have been observed in the ~100 years of instrumental record.

  15. Allegheny County Hydrology Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  16. Allegheny County Walk Scores

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Walk Score measures the walkability of any address using a patented system developed by the Walk Score company. For each 2010 Census Tract centroid, Walk Score...

  17. Allegheny County Sheriff Sales

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — List of properties up for auction at a Sheriff Sale. Datasets labeled "Current" contain this month's postings, while those labeled "Archive" contain a running list...

  18. Allegheny County Older Housing

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Older housing can impact the quality of the occupant's health in a number of ways, including lead exposure, housing quality, and factors that may exacerbate...

  19. Allegheny County Dog Licenses

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — A list of dog license dates, dog breeds, and dog name by zip code. Currently this dataset does not include City of Pittsburgh dogs.

  20. Allegheny County Housing Tenure

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Home ownership provides a number of financial, social, and health benefits to American families. Especially in areas with housing price appreciation, home ownership...

  1. Allegheny County Hydrology Lines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  2. Durham County Demographic Profile

    Data.gov (United States)

    City and County of Durham, North Carolina — (a) Includes persons reporting only one race.(b) Hispanics may be of any race, so also are included in applicable race categories. D: Suppressed to avoid disclosure...

  3. Allegheny County Vacant Properties

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Mail carriers routinely collect data on address no longer receiving mail due to vacancy. This vacancy data is reported quarterly at census tract geographies in the...

  4. Conservation planning for the Colorado River in Utah

    Science.gov (United States)

    Christine Rasmussen,; Shafroth, Patrick B.

    2016-01-01

    Strategic planning is increasingly recognized as necessary for providing the greatest possible conservation benefits for restoration efforts. Rigorous, science-based resource assessment, combined with acknowledgement of broader basin trends, provides a solid foundation for determining effective projects. It is equally important that methods used to prioritize conservation investments are simple and practical enough that they can be implemented in a timely manner and by a variety of resource managers. With the help of local and regional natural resource professionals, we have developed a broad-scale, spatially-explicit assessment of 146 miles (~20,000 acres) of the Colorado River mainstem in Grand and San Juan Counties, Utah that will function as the basis for a systematic, practical approach to conservation planning and riparian restoration prioritization. For the assessment we have: 1) acquired, modified or created spatial datasets of Colorado River bottomland conditions; 2) synthesized those datasets into habitat suitability models and estimates of natural recovery potential, fire risk and relative cost; 3) investigated and described dominant ecosystem trends and human uses, and; 4) suggested site selection and prioritization approaches. Partner organizations (The Nature Conservancy, National Park Service, Bureau of Land Management and Utah Forestry Fire and State Lands) are using the assessment and datasets to identify and prioritize a suite of restoration actions to increase ecosystem resilience and improve habitat for bottomland species. Primary datasets include maps of bottomland cover types, bottomland extent, maps of areas inundated during high and low flow events, as well as locations of campgrounds, roads, fires, invasive vegetation treatment areas and other features. Assessment of conditions and trends in the project area entailed: 1) assemblage of existing data on geology, changes in stream flow, and predictions of future conditions; 2) identification

  5. Gunnison, Colorado subpile study report. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    To protect human health and the environment, the Uranium Mill Tailings Remedial Action (UMTRA) Project will remediate the uranium mill tailings site at Gunnison Colorado. There are explicit requirements (i.e., 40 CFR Part 192) for the surface remediation of radiologically contaminated soils on UMTRA sites. The removal of subpile sediment to the depth required by 40 CFR Part 192 will leave in place deeper foundation sediment that is contaminated with hazardous constituents other than radium-226 and thorium-230. The Department of Energy and the Colorado Department of Health have questioned whether this contaminated soil could potentially act as a continuing source of ground water contamination even after surface remediation based on 40 CFR Part 192 is complete. To evaluate the subpile sediments as a potential source of ground water contamination, the Gunnison Subpile study was initiated. This report summarizes the results and findings of this study

  6. Mineral exploration with ERTS imagery. [Colorado

    Science.gov (United States)

    Nicolais, S. M.

    1974-01-01

    Ten potential target areas for metallic mineral exploration were selected on the basis of a photo-lineament interpretation of the ERTS image 1172-17141 in central Colorado. An evaluation of bias indicated that prior geologic knowledge of the region had little, if any, effect on target selection. In addition, a contoured plot of the frequency of photo-lineament intersections was made to determine what relationships exist between the photo-lineaments and mineral districts. Comparison of this plot with a plot of the mineral districts indicates that areas with a high frequency of intersections commonly coincide with known mineral districts. The results of this experiment suggest that photo-lineaments are fractures or fracture-controlled features, and their distribution may be a guide to metallic mineral deposits in Colorado, and probably other areas as well.

  7. Green pricing: A Colorado case study

    Energy Technology Data Exchange (ETDEWEB)

    Blank, E.; Udall, J.R.

    1996-12-31

    A model program for green pricing targeted primarily at large customers is proposed in this paper. The program would create a partnership between a local community group, a renewables advocacy group, and several Colorado utilities. The first part of the paper summarizes pertinent background issues, including utility experience with green pricing programs. The rest of the paper outlines the program proposal, focusing primarily on organizational structure.

  8. Colorado family physicians' attitudes toward medical marijuana.

    Science.gov (United States)

    Kondrad, Elin; Reid, Alfred

    2013-01-01

    Over the last decade, the use of medical marijuana has expanded dramatically; it is now permitted in 16 states and the District of Columbia. Our study of family physicians in Colorado is the first to gather information about physician attitudes toward this evolving practice. We distributed an anonymous web-based electronic survey to the 1727 members of the Colorado Academy of Family Physicians' listserv. Items included individual and practice characteristics as well as experience with and attitudes toward medical marijuana. Five hundred twenty family physicians responded (30% response rate). Of these, 46% did not support physicians recommending medical marijuana; only 19% thought that physicians should recommend it. A minority thought that marijuana conferred significant benefits to physical (27%) and mental (15%) health. Most agreed that marijuana poses serious mental (64%) and physical (61%) health risks. Eighty-one percent agreed that physicians should have formal training before recommending medical marijuana, and 92% agreed that continuing medical education about medical marijuana should be available to family physicians. Despite a high prevalence of use in Colorado, most family physicians are not convinced of marijuana's health benefits and believe its use carries risks. Nearly all agreed on the need for further medical education about medical marijuana.

  9. Remedial action selection report Maybell, Colorado, site. Final report

    International Nuclear Information System (INIS)

    1996-12-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The site is 2.5 mi (4 km) northeast of the Yampa River on relatively flat terrain broken by low, flat-topped mesas. U.S. Highway 40 runs east-west 2 mi (3.2 km) south of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. The site is situated between Johnson Wash to the east and Rob Pit Mine to the west. Numerous reclaimed and unreclaimed mines are in the immediate vicinity. Aerial photographs (included at the end of this executive summary) show evidence of mining activity around the Maybell site. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [ml]) and contains 2.8 million cubic yards (yd 3 ) (2.1 million cubic meters [m 3 ]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m 3 ) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd 3 (420,000 m 3 ). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd 3 (2.58 million m 3 )

  10. Preliminary geologic map of the Big Costilla Peak area, Taos County, New Mexico, and Costilla County, Colorado

    Science.gov (United States)

    Fridrich, Christopher J.; Shroba, Ralph R.; Hudson, Adam M.

    2012-01-01

    This map covers the Big Costilla Peak, New Mex.&nash;Colo. quadrangle and adjacent parts of three other 7.5 minute quadrangles: Amalia, New Mex.–Colo., Latir Peak, New Mex., and Comanche Point, New Mex. The study area is in the southwesternmost part of that segment of the Sangre de Cristo Mountains known as the Culebra Range; the Taos Range segment lies to the southwest of Costilla Creek and its tributary, Comanche Creek. The map area extends over all but the northernmost part of the Big Costilla horst, a late Cenozoic uplift of Proterozoic (1.7-Ga and less than 1.4-Ga) rocks that is largely surrounded by down-faulted middle to late Cenozoic (about 40 Ma to about 1 Ma) rocks exposed at significantly lower elevations. This horst is bounded on the northwest side by the San Pedro horst and Culebra graben, on the northeast and east sides by the Devils Park graben, and on the southwest side by the (about 30 Ma to about 25 Ma) Latir volcanic field. The area of this volcanic field, at the north end of the Taos Range, has undergone significantly greater extension than the area to the north of Costilla Creek. The horsts and grabens discussed above are all peripheral structures on the eastern flank of the San Luis basin, which is the axial part of the (about 26 Ma to present) Rio Grande rift at the latitude of the map. The Raton Basin lies to the east of the Culebra segment of the Sangre de Cristo Mountains. This foreland basin formed during, and is related to, the original uplift of the Sangre de Cristo Mountains which was driven by tectonic contraction of the Laramide (about 70 Ma to about 40 Ma) orogeny. Renewed uplift and structural modification of these mountains has occurred during formation of the Rio Grande rift. Surficial deposits in the study area include alluvial, mass-movement, and glacial deposits of middle Pleistocene to Holocene age.

  11. Geologic map of the Ute Mountain 7.5' quadrangle, Taos County, New Mexico, and Conejos and Costilla Counties, Colorado

    Science.gov (United States)

    Thompson, Ren A.; Turner, Kenzie J.; Shroba, Ralph R.; Cosca, Michael A.; Ruleman, Chester A.; Lee, John P.; Brandt, Theodore R.

    2014-01-01

    The Ute Mountain 7.5' quadrangle is located in the south-central part of the San Luis Basin of northern New Mexico, in the Rio Grande del Norte National Monument, and contains deposits that record volcanic, tectonic, and associated alluvial and colluvial processes over the past four million years. Ute Mountain has the distinction of being one of the largest intermediate composition eruptive centers of the Taos Plateau, a largely volcanic tableland occupying the southern portion of the San Luis Basin. Ute Mountain rises to an elevation in excess of 3,000 m, nearly 700 m above the basaltic plateau at its base, and is characterized by three distinct phases of Pliocene eruptive activity recorded in the stratigraphy exposed on the flanks of the mountain and in the Rio Grande gorge. Unconformably overlain by largely flat-lying lava flows of Servilleta Basalt, the area surrounding Ute Mountain records a westward thickening of basin-fill volcanic deposits interstratified in the subsurface with Pliocene basin-fill sedimentary deposits derived from older Tertiary and Precambrian sources to the east. Superimposed on this volcanic stratigraphy are alluvial and colluvial deposits derived from the flanks of Ute Mountain and more distally-derived alluvium from the uplifted Sangre de Cristo Mountains to the east, that record a complex temporal and stratigraphic succession of Quaternary basin deposition and erosion. Pliocene and younger basin deposition was accommodated along predominantly north-trending fault-bounded grabens. These poorly exposed fault scarps cutting lava flows of Ute Mountain volcano. The Servilleta Basalt and younger surficial deposits record largely down-to-east basinward displacement. Faults are identified with varying confidence levels in the map area. Recognizing and mapping faults developed near the surface in young, brittle volcanic rocks is difficult because: (1) they tend to form fractured zones tens of meters wide rather than discrete fault planes, (2) the relative youth of the deposits has resulted in only modest displacements on most faults, and (3) some of the faults may have significant strike-slip components that do not result in large vertical offsets that are readily apparent in offset of sub-horizontal contacts. Those faults characterized as “certain” either have distinct offset of map units or had slip planes that were directly observed in the field. Lineaments defined from magnetic anomalies form an additional constraint on potential fault locations and are indicated as such on the map sheet.

  12. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1993-06-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC)

  13. Long-term surveillance plan for the Burro Canyon disposal cell Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1997-08-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Burro Canyon disposal cell performs as designed and is cared for in a manner that protects the public health and safety and the environment. The program is based on site inspections to identify threats to disposal cell integrity. Before each disposal cell is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  14. Finding of No Significant Impact, proposed remediation of the Maybell Uranium Mill Processing Site, Maybell, Colorado

    International Nuclear Information System (INIS)

    1995-01-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0347) on the proposed surface remediation of the Maybell uranium mill processing site in Moffat County, Colorado. The mill site contains radioactively contaminated materials from processing uranium ore that would be stabilized in place at the existing tailings pile location. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, Public Law 91-190 (42 U.S.C. section 4321 et seq.), as amended. Therefore, preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI)

  15. Superfund Record of Decision (EPA Region 8): Denver Radium Site Streets, Colorado, March 1986. Final report

    International Nuclear Information System (INIS)

    1986-01-01

    Denver Radium Site Streets is located in Denver, Colorado. The operable unit is comprised of eight street segments in the Cheesman Park area and one segment in the upper downtown area. The nine contaminated street segments are owned by the City and County of Denver and extend approximately 4.5 miles through largely residential areas. The Denver Radium Site Streets contain a 4- to 6-inch layer of radium-contaminated asphalt. The contaminated layer is underlain by compacted gravel road base and is usually overlain by 4 to 12 inches of uncontaminated asphalt pavement. There is an estimated 38,500 cubic yards of contaminated material covering approximately 832,000 square feet. The selected remedial action for the site includes: leaving the contaminated material in place; improving institutional controls; and removing any contaminated material excavated during routine maintenance, repair, or construction activities in the affected streets to a facility approved for storage or disposal of contaminated material

  16. Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995

    International Nuclear Information System (INIS)

    1995-12-01

    This Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1995 (1 July 1994 through 30 June 1995). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock, Colorado. Economic data were requested from the Remedial Action Contractor (RAC), the Technical Assistance Contractor (TAC) and the US Department of Energy (DOE). The most significant benefits associated with the UMTRA Project in Colorado are summarized

  17. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993

    International Nuclear Information System (INIS)

    1993-12-01

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1993 (July 1, 1992, through June 30, 1993). To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized

  18. Landslides in the northern Colorado Front Range caused by rainfall, September 11-13, 2013

    Science.gov (United States)

    Godt, Jonathan W.; Coe, Jeffrey A.; Kean, Jason W.; Baum, Rex L.; Jones, Eric S.; Harp, Edwin L.; Staley, Dennis M.; Barnhart, William D.

    2014-01-01

    During the second week of September 2013, nearly continuous rainfall caused widespread landslides and flooding in the northern Colorado Front Range. The combination of landslides and flooding was responsible for eight fatalities and caused extensive damage to buildings, highways, and infrastructure. Three fatalities were attributed to a fast moving type of landslide called debris flow. One fatality occurred in Jamestown, and two occurred in the community of Pinebrook Hills immediately west of the City of Boulder. All major canyon roads in the northern Front Range were periodically closed between September 11 and 13, 2013. Some canyon closures were caused by undercutting of roads by landslides and flooding, and some were caused by debris flows and rock slides that deposited material on road surfaces. Most of the canyon roads, with the exceptions of U.S. Highway 6 (Clear Creek Canyon), State Highway 46/Jefferson Co. Rd. 70 (Golden Gate Canyon), and Sunshine Canyon in Boulder County, remained closed at the end of September 2013. A review of historical records in Colorado indicates that this type of event, with widespread landslides and flooding occurring over a very large region, in such a short period of time, is rare.

  19. Radioactive mineral occurences of Colorado and bibliography. [2500 citations in bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Nelson-Moore, J.L.; Collins, D.B.; Hornbaker, A.L.

    1978-01-01

    This two-part report provides an essentially complete listing of radioactive occurrences in Colorado, with a comprehensive bibliography and bibliographic cross-indexes. Part 1 lists approximately 3000 known radioactive occurrences with their locations and brief accounts of the geology, mineralogy, radioactivity, host rock, production data, and source of data for each. The occurrences are classified by host rock and plotted on U.S. Geological Survey 1/sup 0/ x 2/sup 0/ topographic quadrangle maps with a special 1 : 100,000-scale base map for the Uravan mineral belt. Part 2 contains the bibliography of approximately 2500 citations on radioactive mineral occurrences in the state, with cross-indexes by county, host rock, and the special categories of ''Front Range,'' ''Colorado Plateau,'' and ''thorium.'' The term ''occurrence'' as used in this report is defined as any site where the concentration of uranium or thorium is at least 0.01% or where the range of radioactivity is greater than twice the background radioactivity. All citations and occurrence data are stored on computer diskettes for easy retrieval, correction, and updating.

  20. Allegheny County Fatal Accidental Overdoses

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Fatal accidental overdose incidents in Allegheny County, denoting age, gender, race, drugs present, zip code of incident and zip code of residence. Zip code of...

  1. Allegheny County Zip Code Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the zip code boundaries that lie within Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open...

  2. Allegheny County School District Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the school district boundaries within Allegheny County If viewing this description on the Western Pennsylvania Regional Data Center’s open...

  3. 2015 Lowndes County (GA) Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: NOAA OCM Lidar for Lowndes County, GA with the option to Collect Lidar in Cook and Tift Counties, GA Lidar Data Acquisition and Processing Production Task...

  4. Allegheny County Fast Food Establishments

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Allegheny County Health Department has generated this list of fast food restaurants by exporting all chain restaurants without an alcohol permit from the...

  5. Allegheny County Park Rangers Outreach

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Launched in June 2015, the Allegheny County Park Rangers program reached over 48,000 people in its first year. Park Rangers interact with residents of all ages and...

  6. Allegheny County Jail Daily Census

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — A daily census of the inmates at the Allegheny County Jail (ACJ). Includes gender, race, age at booking, and current age. The records for each month contain a...

  7. Allegheny County Mortgage Foreclosure Records

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data includes filings related to mortgage foreclosure in Allegheny County. The foreclosure process enables a lender to take possession of a property due to an...

  8. Allegheny County Poor Housing Conditions

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This estimate of the percent of distressed housing units in each Census Tract was prepared using data from the American Community Survey and the Allegheny County...

  9. Providing engineering services to counties.

    Science.gov (United States)

    2008-09-01

    An engineer is required by law to safeguard the health, safety and welfare of the public. The current Kansas : statute state, The Board of County Commissioners of each county shall appoint a licensed professional : engineer, whose title shall be c...

  10. Allegheny County Cell Tower Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset portrays cell tower locations as points in Allegheny County. The dataset is based on outbuilding codes in the Property Assessment Parcel Database used...

  11. Curry County E-911 Roads

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Line attributes denoting all street centerlines in Curry County. Dataset includes all centerlines for all county maintained roads, all state and federal highways,and...

  12. Allegheny County Summer Food Sites

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data set shows the Summer Food Sites located within Allegheny County for children (18 years and younger) for breakfast and lunch during summer recess. OPEN...

  13. Allegheny County Property Sale Transactions

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains data on all Real Property parcels that have sold since 2013 in Allegheny County, PA. Before doing any market analysis on property sales, check...

  14. Allegheny County Land Use Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Allegheny County land use as ascribed to areas of land. The Land Use Feature Dataset contains photogrammetrically compiled information concerning vegetation and...

  15. DOT Official County Highway Map

    Data.gov (United States)

    Minnesota Department of Natural Resources — The County Highway Map theme is a scanned and rectified version of the original MnDOT County Highway Map Series. The cultural features on some of these maps may be...

  16. Allegheny County Primary Care Access

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The data on health care facilities includes the name and location of all the hospitals and primary care facilities in Allegheny County. The current listing of...

  17. Colorado Fathers' Resource Guide = Guia de Recursos para los Padres en Colorado.

    Science.gov (United States)

    Colorado Foundation for Families and Children, Denver.

    Developed through the Colorado Fatherhood Connection, this guide, in English- and Spanish-language versions, provides suggestions and resources for fathers as well as tips on discipline, communication, and activities fathers can do with their children. Topics addressed in the guide include characteristics of responsible fatherhood, characteristics…

  18. 75 FR 58426 - Notice of Inventory Completion: The Colorado College, Colorado Springs, CO; Correction

    Science.gov (United States)

    2010-09-24

    ... Counsel, The Colorado College c/o Jan Bernstein, President, Bernstein & Associates - NAGPRA Consultants... responsible for notifying the Hopi Tribe of Arizona; Navajo Nation, Arizona, New Mexico & Utah; Ohkay Owingeh, New Mexico; Pueblo of Acoma, New Mexico; Pueblo of Cochiti, New Mexico; Pueblo of Isleta, New Mexico...

  19. Minnesota County Boundaries - lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....

  20. Minnesota County Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....

  1. Centauri High School Teacher Honored as Colorado Outstanding Biology

    Science.gov (United States)

    Teacher Centauri High School Teacher Honored as Colorado Outstanding Biology Teacher For more information contact: e:mail: Public Affairs Golden, Colo., May 2, 1997 -- Tracy Swedlund, biology teacher at Centauri High School in LaJara, was selected as Colorado's 1997 Outstanding Biology Teacher and will be

  2. Extensive Green Roof Research Program at Colorado State University

    Science.gov (United States)

    In the high elevation, semi-arid climate of Colorado, green roofs have not been scientifically tested. This research examined alternative plant species, media blends, and plant interactions on an existing modular extensive green roof in Denver, Colorado. Six plant species were ev...

  3. Colorado River cutthroat trout: a technical conservation assessment

    Science.gov (United States)

    Michael K. Young

    2008-01-01

    The Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus) was once distributed throughout the colder waters of the Colorado River basin above the Grand Canyon. About 8 percent of its historical range is occupied by unhybridized or ecologically significant populations. It has been petitioned for listing under the Endangered Species Act...

  4. Development of industrial minerals in Colorado

    Science.gov (United States)

    Arbogast, Belinda F.; Knepper, Daniel H.; Langer, William H.; Cappa, James A.; Keller, John W.; Widmann, Beth L.; Ellefsen, Karl J.; Klein, Terry L.; Lucius, Jeffrey E.; Dersch, John S.

    2011-01-01

    Technology and engineering have helped make mining safer and cleaner for both humans and the environment. Inevitably, mineral development entails costs as well as benefits. Developing a mine is an environmental, engineering, and planning challenge that must conform to many Federal, State, and local regulations. Community collaboration, creative design, and best management practices of sustainability and biodiversity can be positive indicators for the mining industry. A better understanding of aesthetics, culture, economics, geology, climate, vegetation and wildlife, topography, historical significance, and regional land planning is important in resolving land-use issues and managing mineral resources wisely. Ultimately, the consuming public makes choices about product use (including water, food, highways, housing, and thousands of other items) that influence operations of the mineral industry. Land planners, resource managers, earth scientists, designers, and public groups have a responsibility to consider sound scientific information, society's needs, and community appeals in making smart decisions concerning resource use and how complex landscapes should change. An effort to provide comprehensive geosciences data for land management agencies in central Colorado was undertaken in 2003 by scientists of the U.S. Geological Survey and the Colorado Geological Survey. This effort, the Central Colorado Assessment Project, addressed a variety of land-use issues: an understanding of the availability of industrial and metallic rocks and minerals, the geochemical and environmental effects of historic mining activity on surface water and groundwater, and the geologic controls on the availability and quality of groundwater. The USDA Forest Service and other land management agencies have the opportunity to contribute to the sustainable management of natural aggregate and other mineral resources through the identification and selective development of mineral resources and the

  5. Mount Zirkel Wilderness and vicinity, Colorado

    International Nuclear Information System (INIS)

    Snyder, G.L.; Patten, L.L.

    1984-01-01

    Several areas of metallic and nonmetallic mineralization have been identified from surface occurrences within the Mount Zirkel Wilderness and vicinity, Colorado. Three areas of probable copper-lead-zinc-silver-gold resource potential, two areas of probable chrome-platinum resource potential, four areas of probable uranium-thorium resource potential, two areas of probable molybdenum resource potential, and one area of probable fluorspar potential were identified by studies in 1965-1973 by the USGS and USBM. No potential for fossil fuel or geothermal resources was identified

  6. Streamflow characteristics of the Colorado River Basin in Utah through September 1981

    Science.gov (United States)

    Christensen, R.C.; Johnson, E.B.; Plantz, G.G.

    1987-01-01

     This report summarizes discharge data and other streamflow characteristics developed from gag ing-station records collected through September 1981 at 337 stations in the Colorado River Basin in Utah. Data also are included for 14 stations in adjacent areas of the bordering states of Arizona, Colorado, and Wyoming (fig. 1). The study leading to this report was done in cooperation with the U.S. Bureau of Land Management, which needs the streamflow data in order to evaluate impacts of mining on the hydrologic system. The report also will be beneficial to other Federal, State, and county agencies and to individuals concerned with water supply and water problems in the Colorado River Basin.The streamflow characteristics in the report could be useful in many water-related studies that involve the following:Definition of baseline-hydrologic conditions; studies of the effects of man's activities on streamflow; frequency analyses of low and high flows; regional analyses of streamflow characteristics; design of water-supply systems; water-power studies; forecasting of stream discharge; time-series analyses of streamflow; design of flood-control structures; stream-pollution studies; and water-chemistry transport studies.The basic data used to develop the summaries in this report are records of daily and peak discharge collected by the U.S. Geological Survey and other Federal agencies. Much of the work of the Geological Survey was done in cooperation with Federal, State, and county agencies. Discharge recordsincluded in the report generally were for stations with at least 1 complete water year of record and nearby stations that were on the same stream and had different streamflow characteristics. A water year is a 12-month period ending September 30, and it is designated by the calendar year in which it ends. For streams that have had significant changes in regulation by reservoirs or diversions, the records before and after those changes were used separately to provide

  7. Binational Dengue Outbreak Along the United States-Mexico Border - Yuma County, Arizona, and Sonora, Mexico, 2014.

    Science.gov (United States)

    Jones, Jefferson M; Lopez, Benito; Adams, Laura; Gálvez, Francisco Javier Navarro; Núñez, Alfredo Sánchez; Santillán, Nubia Astrid Hernández; Plante, Lydia; Hemme, Ryan R; Casal, Mariana; Hunsperger, Elizabeth A; Muñoz-Jordan, Jorge; Acevedo, Veronica; Ernst, Kacey; Hayden, Mary; Waterman, Steve; Gomez, Diana; Sharp, Tyler M; Komatsu, Kenneth K

    2016-05-20

    Dengue is an acute febrile illness caused by any of four dengue virus types (DENV-1-4). DENVs are transmitted by mosquitos of the genus Aedes (1) and are endemic throughout the tropics (2). In 2010, an estimated 390 million DENV infections occurred worldwide (2). During 2007-2013, a total of three to 10 dengue cases were reported annually in Arizona and all were travel-associated. During September-December 2014, coincident with a dengue outbreak in Sonora, Mexico, 93 travel-associated dengue cases were reported in Arizona residents; 70 (75%) cases were among residents of Yuma County, which borders San Luis Río Colorado, Sonora, Mexico. San Luis Río Colorado reported its first case of locally acquired dengue in September 2014. To investigate the temporal relationship of the dengue outbreaks in Yuma County and San Luis Río Colorado and compare patient characteristics and signs and symptoms, passive surveillance data from both locations were analyzed. In addition, household-based cluster investigations were conducted near the residences of reported dengue cases in Yuma County to identify unreported cases and assess risk for local transmission. Surveillance data identified 52 locally acquired cases (21% hospitalized) in San Luis Río Colorado and 70 travel-associated cases (66% hospitalized) in Yuma County with illness onset during September-December 2014. Among 194 persons who participated in the cluster investigations in Yuma County, 152 (78%) traveled to Mexico at least monthly during the preceding 3 months. Four (2%) of 161 Yuma County residents who provided serum samples for diagnostic testing during cluster investigations had detectable DENV immunoglobulin M (IgM); one reported a recent febrile illness, and all four had traveled to Mexico during the preceding 3 months. Entomologic assessments among 105 households revealed 24 water containers per 100 houses colonized by Ae. aegypti. Frequent travel to Mexico and Ae. aegypti colonization indicate risk for local

  8. Epidemiologic characterization of Colorado backyard bird flocks.

    Science.gov (United States)

    Smith, Emily I; Reif, John S; Hill, Ashley E; Slota, Katharine E; Miller, Ryan S; Bjork, Kathe E; Pabilonia, Kristy L

    2012-06-01

    Backyard gallinaceous bird flocks may play an important role in the spread of infectious diseases within poultry populations as well as the transmission of zoonotic diseases to humans. An epidemiologic characterization was conducted of Colorado backyard flocks to gather information on general flock characteristics, human movement of birds, human-bird interaction, biosecurity practices, and flock health. Our results suggest that backyard poultry flocks in Colorado are small-sized flocks (68.6% of flocks had meat or egg) production for the family (86.44%) or as pet or hobby birds (42.27%). The backyard flock environment may promote bird-to-bird transmission as well as bird-to-human transmission of infectious disease. Birds are primarily housed with free access to the outside (96.85%), and many are moved from the home premises (46.06% within 1 yr). Human contact with backyard flocks is high, biosecurity practices are minimal, and bird health is negatively impacted by increased movement events. Increased knowledge of backyard bird characteristics and associated management practices can provide guidelines for the development of measures to decrease disease transmission between bird populations, decrease disease transmission from birds to humans, and increase the overall health of backyard birds.

  9. 40 CFR 81.306 - Colorado.

    Science.gov (United States)

    2010-07-01

    ... Stage Road to Gold Camp Road; north on Gold Camp Road to High Drive; north on High Drive to Lower Gold Camp Road; north on Lower Gold Camp Road to the Pike National Forest boundary; west along the Forest... (part) West of Kiowa Creek Attainment Boulder County (part) excluding Rocky Mountain National Park...

  10. Limerick, City and County

    OpenAIRE

    2011-01-01

    Postcard. Colour drawings of maps of Limerick city and county and Foynes - transatlantic air base flying boat, Dromore Castle, Glenstal Abbey, Ardagh Chalice, Askeaton; the Abbey, Gate Loge Adare Manor, Newcastlewest, King John's Castle, St. Mary's Cathedral (Church of Ireland), The Old Custom House, The Hunt Museum, The Old Mill and Bridge croom, The Coll (de Valera) Cottage Buree, Town Gate Kilmallock, Lough Gur Interpretive Centre, Hospital Ancient hostelry and The Treaty Stone. Copyright ...

  11. Public Health Economic Burden Associated with Two Single Measles Case Investigations - Colorado, 2016-2017.

    Science.gov (United States)

    Marx, Grace E; Chase, Jennifer; Jasperse, Joseph; Stinson, Kaylan; McDonald, Carol E; Runfola, Janine K; Jaskunas, Jillian; Hite, Donna; Barnes, Meghan; Askenazi, Michele; Albanese, Bernadette

    2017-11-24

    During July 2016-January 2017, two unrelated measles cases were identified in the Denver, Colorado area after patients traveled to countries with endemic measles transmission. Each case resulted in multiple exposures at health care facilities and public venues, and activated an immediate and complex response by local and state public health agencies, with activities led by the Tri-County Health Department (TCHD), which serves Adams, Arapahoe, and Douglas counties. To track the economic burden associated with investigating and responding to single measles cases, personnel hours and supply costs incurred during each investigation were tracked prospectively. No secondary cases of measles were identified in either investigation. Postexposure prophylaxis (PEP) was administered to 31 contacts involving the first case; no contacts of the second case were eligible for PEP because of a delay in diagnosing measles disease. Public health costs of disease investigation in the first and second case were estimated at $49,769 and $18,423, respectively. Single measles cases prompted coordinated public health action and were costly and resource-intensive for local public health agencies.

  12. Geologic history of the Slick Rock district and vicinity, San Miguel and Dolores Counties, Colorado

    International Nuclear Information System (INIS)

    Shawe, D.R.

    1976-01-01

    This report is a narrative summary and interpretation, in the form of a geologic history of the Slick Rock district and vicinity, of four previously published chapters in this series dealing with stratigraphy of the Slick Rock district and vicinity, petrography of sedimentary rocks of the district, structure of the district and vicinity, and altered sedimentary rocks of the district, and of other previously published reports on the district. It forms the background, with the earlier reports, for presentation of a final report in the series describing the uranium-vanadium ore deposits. A review of the origin of sedimentary rocks and geologic history of the region indicates that formation of uranium-vanadium deposits was a natural result of the deposition of th rocks, the occurrence of intrastratal waters therein, and the post-depositional movement of the waters resulting from evolution of the sedimentary rock environment. 31 refs

  13. Hydrology of a nuclear-processing plant site, Rocky Flats, Jefferson County, Colorado

    Science.gov (United States)

    Hurr, R. Theodore

    1976-01-01

    Accidental releases of contaminants resulting from the operation of the U.S. Energy Research and Development Administration's nuclear-processing and recovery plant located on Rocky Flats will move at different rates through -different parts of the hydrologic system. Rates of movement are dependent upon the magnitude of the accidental release and the hydrologic conditions at the time of the release. For example, during wet periods, a contaminant resulting from a 5,000-gallon (19,000-1itre) release on the land surface would enter the ground-water system in about 2 to 12 hours. Ground-water flow in the Rocky Flats Alluvium might move the contaminant eastward at a rate of about 3 to 11 feet (0.9 to 3.4 metres) per day, if it remains dissolved. Maximum time to a point of discharge would be about 3 years; minimum time could be a few days. A contaminant entering a stream would then move at a rate of about 60 feet (18 metres) per minute under pool-and-riffle conditions. The rate of movement might be about 420 feet (128 metres) per minute under open-channel-flow conditions following intense thunderstorms.

  14. Revised preliminary geologic map of the Rifle Quadrangle, Garfield County, Colorado

    Science.gov (United States)

    Shroba, R.R.; Scott, R.B.

    1997-01-01

    The Rifle quadrangle extends from the Grand Hogback monocline into the southeastern part of the Piceance basin. In the northeastern part of the map area, the Wasatch Formation is nearly vertical, and over a distance of about 1 km, the dip decreases sharply from about 70-85o to about 15-30o toward the southwest. No evidence of a fault in this zone of sharp change in dip is observed but exposures in the Shire Member of the Wasatch Formation are poor, and few marker horizons that might demonstrate offset are distinct. In the central part of the map area, the Shire Member is essentially flat lying. In the south and southwest part of the map area, the dominant dip is slightly to the north, forming an open syncline that plunges gently to the northwest. Evidence for this fold also exists in the subsurface from drill-hole data. According to Tweto (1975), folding of the early Eocene to Paleocene Wasatch Formation along the Grand Hogback reqired an early Eocene age for the last phase of Laramide compression. We find the attitude of the Wasatch Formation to be nearly horizontal, essentially parallel to the overlying Anvil Points Member of the Eocene Green River Formation; therefore, we have no information that either confirms or disputes that early Eocene was the time of the last Laramide event. Near Rifle Gap in the northeast part of the map area, the Mesaverde Group locally dips about 10o less steeply than the overlying Wasatch Formation, indicating that not only had the formation of the Hogback monocline not begun by the time the Wasatch was deposited at this locality, but the underlying Mesaverde Group was locally tilted slightly toward the present White River uplift. Also the basal part of the Atwell Gulch Member of the Wasatch Formation consists of fine-grained mudstones and siltstones containing sparse sandstone and rare conglomerates, indicating that the source of sediment was not from erosion of the adjacent Upper Cretaceous Mesaverde Group. The most likely source of andesitic conglomerate clasts abundant in the upper part of the Atwell Gulch Member was Late Cretaceous-Early Tertiary andesitic igneous rocks, remnants of which are present southeast of the Piceance Basin (Tweto, 1979). Thinning of the Atwell Gulch and Molina Members to the northwest also suggests a southeastern source of sediments, ruling out a northeastern source related to earlier deformation of the Upper Cretaceous Mesa Verde Group.

  15. Stare Decisis: Dueling Legal Interpretations of the Douglas County, Colorado Choice Scholarship Program

    Science.gov (United States)

    Fox, Robert A.

    2016-01-01

    In the absence of incontrovertible performance data in support of, or opposition to, school vouchers, court decisions on their legality become increasingly important. Analysis of legal challenges provides a rich opportunity for scholars and policymakers to follow arguments for or against their positions. We present a chronicle of the litigation…

  16. Revised Geologic Map of the Fort Garland Quadrangle, Costilla County, Colorado

    Science.gov (United States)

    Wallace, Alan R.; Machette, Michael N.

    2008-01-01

    The map area includes Fort Garland, Colo., and the surrounding area, which is primarily rural. Fort Garland was established in 1858 to protect settlers in the San Luis Valley, then part of the Territory of New Mexico. East of the town are the Garland mesas (basalt-covered tablelands), which are uplifted as horsts with the Central Sangre de Cristo fault zone. The map also includes the northern part of the Culebra graben, a deep structural basin that extends from south of San Luis (as the Sanchez graben) to near Blanca, about 8 km west of Fort Garland. The oldest rocks exposed in the map area are early Proterozic basement rocks (granites in Ikes Creek block) that occupy an intermediate structural position between the strongly uplifted Blanca Peak block and the Culebra graben. The basement rocks are overlain by Oligocene volcanic and volcaniclastic rocks of unknown origin. The volcanic rocks were buried by a thick sequence of basin-fill deposits of the Santa Fe Group as the Rio Grande rift formed about 25 million years ago. The Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts, was deposited within sediment, and locally provides a basis for dividing the group into upper and lower parts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Exposures of the sediment beneath the basalt and within the low foothills east of the Central Sangre de Cristo fault zone are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) is preserved as isolated remnants that cap high surfaces north and east of Fort Garland. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. The Central Sangre de Cristo fault zone shows evidence for latest Pleistocene to possible early Holocene movement. The landslides may have seismogenic origins; that is, they may be stimulated by strong ground shaking during large earthquakes. This revised geologic map is based on previous mapping by Wallace (1997) and new mapping, primarily of the Quaternary deposits, by Machette.

  17. Archeological Testing at Four Sites on the Pinon Canyon Maneuver Site, Las Animas County, Colorado

    Science.gov (United States)

    2007-01-01

    Although it is possible that the nails may have been used to stake materials such as a hide for drying or curing , no clear evidence of these activities...34Females are ’ absentee mothers’ and up to [thirty] hours may elapse between nursing bouts" (Fitzgerald et al. 1994:141). Desert cottontail may live

  18. DCS Hydrology Submission for Bear Creek and Witter Gulch in Clear Creek County, Colorado

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  19. Mineral resource potential of the Piedra Wilderness Study Area, Archuleta and Hinsdale counties, Colorado

    Science.gov (United States)

    Bush, Alfred L.; Condon, Steven M.; Franczyk, Karen J.; Brown, S.Don

    1983-01-01

    The mineral resource potential of the Piedra Wilderness Study Area is low. No occurrences of metallic minerals, of valuable industrial rocks and minerals, or of useful concentrations of organic fuels are known in the study area. However, a noneconomic occurrence of gypsum in the Jurassic Wanakah Formation lies a few hundred feet west of the WSA boundary, is believed to extend into the WSA, and has a low resource potential. Particular attention was paid to the possible occurrence of organic fuels in the Pennsylvanian Hermosa Formation, of uranium and vanadium in the Jurassic Entrada Sandstone and Morrison Formation, and of coal in the Cretaceous Dakota Sandstone. Thin coaly beds in the Dakota have a low resource potential. Extensive sampling of stream sediments, limited sampling of rock outcrops and springs, and a number of scintillometer traverses failed to pinpoint significant anomalies that might be clues to mineral deposits.

  20. Geology of dolomite-hosted uranium deposits at the Pitch Mine, Saguache County, Colorado

    International Nuclear Information System (INIS)

    Nash, J.T.

    1981-01-01

    Newly documented uranium ore in the Pitch mine occurs chiefly in brecciated Mississippian Leadville Dolomite along the Chester upthrust zone, and to a lesser extent in sandstone, siltstone, and carbonaceous shale of the Pennsylvanian Belden Formation and in Precambrian granitic rocks and schist. Uranium-mineralized zones are generally thicker, more consistent, and of higher grade in dolomite than in other hosts, and roughly 50 percent of the new reserves are in dolomite. Strong physical control by dolomite is evident, as this is the only rock type that is pervasively brecciated within the fault slices that make up the footwall of the reverse-fault zone. Other rocks tended to either remain unbroken or undergo ductile deformation. Chemical controls on uranium deposition are subtle and appear chiefly to involve coprecipitation of FeS 2 as pyrite and marcasite, suggesting that sulfide ion may be the reductant

  1. 77 FR 47660 - Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX; Final...

    Science.gov (United States)

    2012-08-09

    ...) (40 CFR 1506.6(b)) requirements. We completed a thorough analysis of impacts on the human environment...; evaluate and remove services roads where necessary. Facilities Issue 2: Development Administrative... at three public libraries in surrounding communities. A public open house meeting was held on January...

  2. Remedial actions at the former Union Carbide Corporation uranium mill sites, Rifle, Garfield County, Colorado

    International Nuclear Information System (INIS)

    1990-03-01

    This appendix provides the information needed to understand the conceptual designs for the remedial action alternatives addressed in this environmental impact statement (EIS). It is intended to provide sufficient details for the reader to evaluate the feasibility and assess the impacts of each remedial action alternative. It is not intended to provide the detailed engineering necessary to implement the alternatives. Details of the preferred remedial action will be presented in the remedial action plan (RAP). The remedial action alternatives addressed in this EIS include no action, stabilization at the New Rifle site, disposal at the Estes Gulch site, and disposal at the Lucas Mesa site. All alternatives include interim actions to remediate existing health and safety hazards to the Rifle community that presently exist at the Old and New Rifle processing sites. It should be noted that the borrow sites included in this EIS were selected as the sources of the necessary borrow materials for impacts analyses purposes only. The borrow sites to be used for the remedial action will be selected during the final design. 21 figs., 18 tabs

  3. UNEMPLOYMENT IN HUNEDOARA COUNTY

    Directory of Open Access Journals (Sweden)

    CLAUDIA ISAC

    2015-12-01

    Full Text Available Unemployment highlights a state of imbalance on the labour market which is characterized by a surplus of workforce in relation to job vacancies. This imbalance has been more apparent in Hunedoara County than in other counties, due to the fact that there are 3 mono-industrial areas that have been restructured over the past two decades. The effects are presented in this paper in the form of a complex statistical analysis. Thus, based on the evolution of the number of unemployed individuals in 1995, one can observe the periods of significant adverse effects upon the degree of employment. Moreover, one can make correlations with periods of international financial crisis and with the number of employees in the County in order to determine significant variables of the unemployment phenomenon. The content of this paper is significant and represents the analysis of the number of unemployed in the Jiu Valley, scattered across towns. As a form of financial protection, the unemployment benefit represents a financial instrument in the cases determined by this negative phenomenon, which is why in conclusion we make a comparison of the ways this aid is granted throughout several years and in various forms.

  4. Somerset County Renewable Energy Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Katula, Denise [County of Somerset, Somervile, NJ (United States)

    2014-05-07

    The County of Somerset, New Jersey, through the Somerset County Improvement Authority (SCIA), applied Federal funding through the U.S. Department of Energy to will apply project funds to buy-down the capital costs of equipment associated with the installation of solar photovoltaic (PV) systems at two sites owned by the County. This Renewable Energy Initiative allows the County to take advantage of clean renewable energy, without any adverse debt impacts, and at a price that results in operating budget savings beyond what is presently available in the marketplace. This project addressed the objectives of the Office of Energy Efficiency and Renewable Energy by making the acquisition of renewable energy more affordable for the County, thereby, encouraging other counties and local units to develop similar programs and increase the deployment of solar energy technologies. The two sites that were funded by the DOE grant are part of a much larger, ambitious, and unique renewable energy project, described in the next section.

  5. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    Science.gov (United States)

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  6. Upper Colorado River Basin Climate Effects Network

    Science.gov (United States)

    Belnap, Jayne; Campbell, Donald; Kershner, Jeff

    2011-01-01

    The Upper Colorado River Basin (UCRB) Climate Effects Network (CEN) is a science team established to provide information to assist land managers in future decision making processes by providing a better understanding of how future climate change, land use, invasive species, altered fire cycles, human systems, and the interactions among these factors will affect ecosystems and the services they provide to human communities. The goals of this group are to (1) identify science needs and provide tools to assist land managers in addressing these needs, (2) provide a Web site where users can access information pertinent to this region, and (3) provide managers technical assistance when needed. Answers to the team's working science questions are intended to address how interactions among climate change, land use, and management practices may affect key aspects of water availability, ecosystem changes, and societal needs within the UCRB.

  7. Case study: Khoramdareh County

    Directory of Open Access Journals (Sweden)

    Vahid Riahi Riahi

    2016-10-01

    Full Text Available Environmental sustainability of rural settlements based on a systematic viewpoint may be defined as a realization of sustainable development in different social, economic and environmental aspects of rural areas. Achieving this goal requires that we pay more attention to effective elements and factors through a set of sustainability indices. This research was meant to analyze sustainable factors of rural settlement in three dimensions: environmental, social and economic context using multi-criteria decision analysis and explanation of the relationships between its active and effective factors in the rural area of the Khorramdarreh County in the province of Zanjan. The research method used is the descriptive analytic approach. Data from 287 households were sampled randomly from a total of 1143 households in the four villages including: Rahmat Abad, Alvand, Baghdareh and, Sukhariz (out of 15 villages in the Khorramdarreh County. In the process of doing this research and after calculating the weights, the difference in the sustainability of environmental, social, economic and physical aspects in rural areas of this county have been determined. Data was collected using library and field research through questionnaires. Data analysis was performed by the One-Sample t Test and the Vikur and path analysis techniques, using statistical software SPSS. The findings show that environmental sustainability in the study area is half desirable. Among the different aspects of environmental sustainability, the most effective factors are physical, economic, social and environmental aspects, respectively. Little attention of policy-making –system to socio-cultural and environmental aspects, especially in practice, and rapid and unplanned utilization of production resources are the most important factors affecting this situation in two given dimensions. Although, in programmed documents the planning system agents emphasize on the socio-cultural sustainability

  8. Colorado's hydrothermal resource base: an assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pearl, R.H.

    1981-01-01

    As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.

  9. BLM Colorado Oil and Gas Communitization Agreements (Dissolve)

    Data.gov (United States)

    Department of the Interior — Shapefile Format –This data is one feature type that is a part of a set consisting of six shapefiles pertaining to energy development and production in Colorado. The...

  10. BLM Colorado Oil and Gas Storage Agreements (Dissolve)

    Data.gov (United States)

    Department of the Interior — Shapefile Format –This data is one feature type that is a part of a set consisting of six shapefiles pertaining to energy development and production in Colorado. The...

  11. Evaluation of guardrail embedded lighting system in Trinidad, Colorado.

    Science.gov (United States)

    2014-02-01

    This report provides information on the design considerations of the embedded highway lighting : design on Interstate-25 in Trinidad, Colorado, in terms of visibility. The information is based on : visibility characterizations of small targets using ...

  12. BLM Colorado Oil and Gas Storage Agreements (Dissolve)

    Data.gov (United States)

    Department of the Interior — KMZ File Format –This data is one feature type that is a part of a set consisting of six shapefiles pertaining to energy development and production in Colorado. The...

  13. Effect of food factor on microevolution of Colorado beetle

    Directory of Open Access Journals (Sweden)

    N. А. Ryabchenko

    2005-12-01

    Full Text Available Many-sided research of interaction of Colorado beetle and fodder plant (potato, nightshade sweetly-bitter defines the role of the plants as guiding factor of microevolutional processes in pest population.

  14. Colorado River Sewer System Joint Venture to Upgrade Wastewater System

    Science.gov (United States)

    SAN FRANCISCO -Today, the Colorado River Sewer System Joint Venture, located in Parker, Ariz. entered into an agreement with the EPA to upgrade their wastewater treatment system to meet stringent water quality standards. The cost of the upgrade is ap

  15. BLM Colorado Oil and Gas Communitization Agreements (Dissolve)

    Data.gov (United States)

    Department of the Interior — KMZ File Format –This data is one feature type that is a part of a set consisting of six shapefiles pertaining to energy development and production in Colorado. The...

  16. University of Colorado Students Join Pros in Covering Columbine Incident.

    Science.gov (United States)

    Litherland, Chip

    1999-01-01

    Describes the experiences and feelings of a university photojournalist as he covered the shootings at Columbine High School in Littleton, Colorado. Notes the onslaught of the media presence and the overwhelming emotion he witnessed. (RS)

  17. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques; SEMIANNUAL

    International Nuclear Information System (INIS)

    Wray, Laura L.; Eby, David E.; Chidsey, Jr. Thomas C.

    2002-01-01

    This report covers research activities for the second half of the second project year (October 6, 2001, through April 5, 2002). This work includes description and analysis of cores, correlation of geophysical well logs, reservoir mapping, petrographic description of thin sections, cross plotting of permeability and porosity data, and development of horizontal drilling strategies for the Little Ute and Sleeping Ute fields in Montezuma County, Colorado. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible compartmentalization, within these fields. This study utilizes representative core, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells

  18. Barriers to Enrollment in Health Coverage in Colorado.

    Science.gov (United States)

    Martin, Laurie T; Bharmal, Nazleen; Blanchard, Janice C; Harvey, Melody; Williams, Malcolm

    2015-03-20

    As part of the implementation of the Affordable Care Act, Colorado has expanded Medicaid and also now operates its own health insurance exchange for individuals (called Connect for Health Colorado). As of early 2014, more than 300,000 Coloradans have newly enrolled in Medicaid or health insurance through Connect for Health Colorado, but there also continues to be a diverse mix of individuals in Colorado who remain eligible for but not enrolled in either private insurance or Medicaid. The Colorado Health Foundation commissioned the RAND Corporation to conduct a study to better understand why these individuals are not enrolled in health insurance coverage and to develop recommendations for how Colorado can strengthen its outreach and enrollment efforts during the next open enrollment period, which starts in November 2014. RAND conducted focus groups with uninsured and newly insured individuals across the state and interviews with local stakeholders responsible for enrollment efforts in their regions. The authors identified 11 commonly cited barriers, as well as several that were specific to certain regions or populations (such as young adults and seasonal workers). Collectively, these barriers point to a set of four priority recommendations that stakeholders in Colorado may wish to consider: (1) Support and expand localized outreach and tailored messaging; (2) Strengthen marketing and messaging to be clear, focused on health benefits of insurance (rather than politics and mandates), and actionable; (3) Improve the clarity and transparency of insurance and health care costs and enrollment procedures; and (4) Revisit the two-stage enrollment process and improve Connect for Health Colorado website navigation and technical support.

  19. 2015 Resident Survey (City and County)

    Data.gov (United States)

    City and County of Durham, North Carolina — The purpose of the annual City/County survey: To objectively assess citizen satisfaction with the delivery of City/County servicesTo set a baseline for future...

  20. Allegheny County Beltway System Street Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Authoritative dataset of the beltway system in Allegheny County. The system was developed to help motorists navigate through Allegheny County on low-traffic roads....

  1. 2016 Resident Survey (City and County)

    Data.gov (United States)

    City and County of Durham, North Carolina — The purpose of the annual City/County survey: To objectively assess citizen satisfaction with the delivery of City/County servicesTo set a baseline for future...

  2. Tracking Water-Use in Colorado's Energy Exploration and Development

    Science.gov (United States)

    Halamka, T. A.; Ge, S.

    2017-12-01

    By the year 2050 Colorado's population is projected to nearly double, posing many important questions about the stresses that Colorado's water resources will experience. Growing in tandem with Colorado's population is the state's energy exploration and development industry. As water demands increase across the state, the energy exploration and development industry must adapt to and prepare for future difficulties surrounding the legal acquisition of water. The goal of this study is to map out the potential sources of water within the state of Colorado that are being purchased, or will be eligible for purchase, for unconventional subsurface energy extraction. The background of this study includes an overview of the intertwined relationship between water, the energy industry, and the Colorado economy. The project also aims to determine the original purpose of legally appropriated water that is used in Colorado's energy exploration and development. Is the water primarily being purchased or leased from the agricultural sector? Is the water mostly surface water or groundwater? In order to answer these questions, we accessed data from numerous water reporting agencies and examined legal methods of acquisition of water for use in the energy industry. Using these data, we assess the future water quantity available to the energy industry. Knowledge and foresight on the origins of the water used by the energy industry will allow for better and strategic planning of water resources and how the industry will respond to statewide water-related stresses.

  3. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1

    International Nuclear Information System (INIS)

    1994-12-01

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information

  4. 2006 Fulton County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) LAS dataset is a survey of Fulton County. The Fulton County LiDAR Survey project area consists of approximately 690.5 square...

  5. Ground-water conditions in the Grand County area, Utah, with emphasis on the Mill Creek-Spanish Valley area

    Science.gov (United States)

    Blanchard, Paul J.

    1990-01-01

    The Grand County area includes all of Grand County, the Mill Creek and Pack Creek drainages in San Juan County, and the area between the Colorado and Green Rivers in San Juan County. The Grand County area includes about 3,980 square miles, and the Mill Creek-Spanish Valley area includes about 44 square miles. The three principal consolidated-rock aquifers in the Grand County area are the Entrada, Navajo, and Wingate aquifers in the Entrada Sandstone, the Navajo Sandstone, and the Wingate Sandstone, and the principal consolidated-rock aquifer in the Mill Creek-Spanish Valley area is the Glen Canyon aquifer in the Glen Canyon Group, comprised of the Navajo Sandstone, the Kayenta Formation, and the Wingate Sandstone.Recharge to the Entrada, Navajo, and Glen Canyon aquifers typically occurs where the formations containing the aquifers crop out or are overlain by unconsolidated sand deposits. Recharge is enhanced where the sand deposits are saturated at a depth of more than about 6 feet below the land surface, and the effects of evaporation begin to decrease rapidly with depth. Recharge to the Wingate aquifer typically occurs by downward movement of water from the Navajo aquifer through the Kayenta Formation, and primarily occurs where the Navajo Sandstone, Kayenta Formation, and the Wingate Sandstone are fractured.

  6. 77 FR 12878 - National Register of Historic Places; Notification of Pending Nominations and Related Actions

    Science.gov (United States)

    2012-03-02

    ... County MPS), 23531 Cty. Rd. J.2, San Francisco, 12000144 Montezuma County Indian Camp Ranch Archeological... mi. E. of Cortez on US 160, Cortez, 12000146 Montrose County Shavano Valley Rock Art Site (Boundary...., Hernando, 12000153 Hinds County Municipal Art Gallery, 839 N. State St., Jackson, 12000154 Washington...

  7. Puente Río Colorado - Costa Rica

    Directory of Open Access Journals (Sweden)

    Kulka, F.

    1973-03-01

    Full Text Available The Colorado River bridge is located in a 95 m deep canyon, with a 122 m span. To choose the type of bridge, it has been endeavoured to use the largest possible number of national building materials which, together with the difficulty of reaching the site, meant that a series of classical solutions had to be rejected. That of an arch bridge was adopted, with a reversed support on prestressed cables, on which the road passes. The system is based on the hanging bridge principle, but with the rolling track resting on the cables, instead of hanging from them. There is a first cover, made up of prefabricated components, on the cables, which strengthens the bridge's stability. This cover supports three portal-columns, the pillars of the final roadway. The cables were prestressed from the heads of the two sloping pillars. The two side spans were designed with prefabricated T girders.El puente Río Colorado está situado en un cañón de 95 m de profundidad, salvando una luz de 122 m. Para la elección del tipo de puente se ha procurado emplear el mayor número posible de materiales de construcción nacionales, lo que, unido a la dificultad de acceso a la obra, hizo que se rechazaran una serie de soluciones clásicas. Se adoptó la de un puente-arco con un soporte invertido sobre cables pretensados, encima del cual descansa la calzada. El sistema está basado en los principios del puente colgante, pero apoyando el camino de rodadura en los cables, en lugar de colgarlo de ellos. Sobre los cables existe una primera cubierta, integrada por elementos prefabricados, que refuerza la estabilidad del puente. Esta cubierta soporta tres pórticos-columna, pilares de la calzada definitiva. El pretensado de los cables se realizó desde las cabezas de dos pilares inclinados. Los dos vanos laterales se proyectaron con vigas en T prefabricadas.

  8. Colorado River basin sensitivity to disturbance impacts

    Science.gov (United States)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing

  9. Elementary particle physics and high energy phenomena. [Dept. of Physics, Univ. of Colorado, Boulder, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z[sup 0] with the SLD detector; fixed-target K-decay experiments; the R D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs.

  10. Finding of no significant impact proposed remedial action at two uranium processing sites near Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0339) of the proposed remedial action at two uranium processing sites near Slick Rock in San Miguel County, Colorado. These sites contain radioactively contaminated materials that would be removed and stabilized at a remote location. Based on the information and analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321 et seq.), as amended. Therefore, preparation of an environmental impact statement is not required, and the DOE is issuing this Finding of No Significant Impact (ONSI)

  11. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites Slick Rock, Colorado. Draft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC).

  12. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1993-07-01

    The Slick Rock uranium mill tailings sites are located near the small town of Slick Rock, in San Miguel County, Colorado. There are two designated UMTRA sites at Slick Rock, the Union Carbide (UC) site and the North Continent (NC) site. Both sites are adjacent to the Dolores River. The UC site is approximately 1 mile (mi) [2 kilometers (km)] downstream of the NC site. Contaminated materials cover an estimated 55 acres (ac) [22 hectares (ha)] at the UC site and 12 ac (4.9 ha) at the NC site. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 620, 000 cubic yards (yd 3 ) [470,000 cubic meters (m 3 )]. In addition to the contamination at the two processing site areas, four vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into groundwater

  13. Preliminary Site Characterization Report, Rulsion Site, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report is a summary of environmental information gathered during a review of the documents pertaining to Project Rulison and interviews with personnel who worked on the project. Project Rulison was part of Operation Plowshare (a program designed to explore peaceful uses for nuclear devices). The project consisted of detonating a 43-kiloton nuclear device on September 10, 1969, in western Colorado to stimulate natural gas production. Following the detonation, a reentry well was drilled and several gas production tests were conducted. The reentry well was shut-in after the last gas production test and was held in standby condition until the general cleanup was undertaken in 1972. A final cleanup was conducted after the emplacement and testing wells were plugged in 1976. However, some surface radiologic contamination resulted from decontamination of the drilling equipment and fallout from the gas flaring during drilling operations. With the exception of the drilling effluent pond, all surface contamination at the Rulison Site was removed during the cleanup operations. All mudpits and other excavations were backfilled, and both upper and lower drilling pads were leveled and dressed. This report provides information regarding known or suspected areas of contamination, previous cleanup activities, analytical results, a review of the regulatory status, the site`s physical environment, and future recommendations for Project Ruhson. Based on this research, several potential areas of contamination have been identified. These include the drilling effluent pond and mudpits used during drilling operations. In addition, contamination could migrate in the gas horizon.

  14. National Uranium Resource Evaluation: Durango Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Theis, N.J.; Madson, M.E.; Rosenlund, G.C.; Reinhart, W.R.; Gardner, H.A.

    1981-06-01

    The Durango Quadrangle (2 0 ), Colorado, was evaluated using National Uranium Resource Evaluation criteria to determine environments favorable for uranium deposits. General reconnaissance, geologic and radiometric investigations, was augmented by detailed surface examination and radiometric and geochemical studies in selected areas. Eight areas favorable for uranium deposits were delineated. Favorable geologic environments include roscoelite-type vanadium-uranium deposits in the Placerville and Barlow Creek-Hermosa Creek districts, sandstone uranium deposits along Hermosa Creek, and vein uranium deposits in the Precambrian rocks of the Needle Mountains area and in the Paleozoic rocks of the Tuckerville and Piedra River Canyon areas. The major portions of the San Juan volcanic field, the San Juan Basin, and the San Luis Basin within the quadrangle were judged unfavorable. Due to lack of information, the roscoelite belt below 1000 ft (300 m), the Eolus Granite below 0.5 mi (0.8 km), and the Lake City caldera are unevaluated. The Precambrian Y melasyenite of Ute Creek and the Animas Formation within the Southern Ute Indian Reservation are unevaluated due to lack of access

  15. Macroinvertebrate and algal community sample collection methods and data collected at selected sites in the Eagle River watershed, Colorado, 2000-07

    Science.gov (United States)

    Zuellig, Robert E.; Bruce, James F.

    2010-01-01

    State and local agencies are concerned about the effects of increasing urban development and human population growth on water quality and the biological condition of regional streams in the Eagle River watershed. In response to these needs, the U.S. Geological Survey initiated a study in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, Colorado Springs Utilities, Denver Water, and the U.S. Department of Agriculture Forest Service. As part of this study, previously collected macroinvertebrate and algal data from the Eagle River watershed were compiled. This report includes macroinvertebrate data collected by the U.S. Geological Survey and(or) the U.S. Department of Agriculture Forest Service from 73 sites from 2000 to 2007 and algal data collected from up to 26 sites between 2000 and 2001 in the Eagle River watershed. Additionally, a brief description of the sample collection methods and data processing procedures are presented.

  16. Good Days on the Trail, 1938-1942: Film Footage of the Rocky Mountains, Colorado

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This film documents student hiking trips conducted by the University of Colorado at Boulder in the Rocky Mountains, Colorado, USA during the summers of 1938-1942....

  17. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Colorado. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Colorado.

  18. Structuring Disaster Recovery Infrastructure Decisions: Lessons from Boulder County's 2013 Flood Recovery

    Science.gov (United States)

    Clavin, C.; Petropoulos, Z.

    2017-12-01

    Recovery phase decision making processes, as compared to mitigation and response phase decision making processes, require communities make significant financial and capital decisions in the months after a disaster. Collectively, these investments may significantly contribute to the resilience of a community to future hazards. Pre-disaster administrative decisions are well-established within existing planning processes. Post-event recovery requires community decision makers to quickly evaluate technical proposals and manage significant recovery financial resources to ensure their community rebuilds in a manner that will be more resilient to future events. These technical and administrative hurdles in the aftermath of a disaster create a challenging atmosphere to make sound, scientifically-informed decisions leading to resilient recovery. In September 2013, a 1,000-year rain event that resulted in flooding throughout the Front Range of Colorado, significantly impacting Boulder County. While the event is long past, disaster recovery efforts still continue in parts of Boulder County. Boulder County officials formed a county collaborative that adapted the NIST Community Resilience Planning Guide for Buildings and Infrastructure Systems to facilitate a goals-based multi-criteria decision making process. Rather than use hazard-based information to guide infrastructure design, the county's decision process established time-to-recovery goals for infrastructure systems that were used as criteria for project design. This presentation explores the decision-making process employed by Boulder County to specify design standards for resilient rebuilding of infrastructure systems and examine how this infrastructure planning model could be extrapolated to other situations where there is uncertainty regarding future infrastructure design standards.

  19. 2009 SCDRN Lidar: Florence County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The South Carolina Department of Natural Resources (SCDNR) contracted with Sanborn to provide LiDAR mapping services for Florence County, SC. Utilizing multi-return...

  20. Allegheny County Soil Type Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains soil type and soil classification, by area. Additional info at: http://mcdc.cas.psu.edu/datawiz.htm;...

  1. Allegheny County Property Assessment Appeals

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Lists property assessment appeals filed and heard with the Board of Property Assessment Appeals and Review (BPAAR) and the hearing results, for tax years 2015 to...

  2. Allegheny County Basin Outlines Map

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This basins dataset was created to initiate regional watershed approaches with respect to sewer rehabilitation. If viewing this description on the Western...

  3. 2009 SCDNR Charleston County Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photoscience completed the original collection and classification of the multiple return LiDAR of Charleston County, South Carolina in the winter of 2006-2007. In...

  4. Allegheny County Certified MWDBE Businesses

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — According to the Federal Department of Transportation, Disadvantaged Business Enterprises (DBE) are for-profit small business concerns where socially and...

  5. County Boundaries with Shorelines (National)

    Data.gov (United States)

    Department of Transportation — County boundaries with shorelines cut in (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and...

  6. Allegheny County Land Cover Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Land Cover dataset demarcates 14 land cover types by area; such as Residential, Commercial, Industrial, Forest, Agriculture, etc. If viewing this description on...

  7. 2009 Chatham County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR generated point cloud acquired in spring 2009 for Chatham County, Georgia for the Metropolitan Planning Commission. The data are classified as follows: Class 1...

  8. 2014 Mobile County, AL Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Atlantic was contracted to acquire high resolution topographic LiDAR (Light Detection and Ranging) data located in Mobile County, Alabama. The intent was to collect...

  9. Uninsured Young Adults by County

    Data.gov (United States)

    U.S. Department of Health & Human Services — This data file indicates the estimated number of uninsured individuals ages 19-25 in each U.S. county. These individuals may be eligible to join their parents health...

  10. Allegheny County Toxics Release Inventory

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Toxics Release Inventory (TRI) data provides information about toxic substances released into the environment or managed through recycling, energy recovery, and...

  11. Allegheny County Map Index Grid

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Map Index Sheets from Block and Lot Grid of Property Assessment and based on aerial photography, showing 1983 datum with solid line and NAD 27 with 5 second grid...

  12. Allegheny County Building Footprint Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains photogrammetrically compiled roof outlines of buildings. All near orthogonal corners are square. Buildings that are less than 400 square feet...

  13. County business patterns, 1996 : Nevada

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  14. County business patterns, 1997 : Wisconsin

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  15. County business patterns, 1997 : Arizona

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  16. County business patterns, 1997 : Wyoming

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  17. County business patterns, 1997 : Minnesota

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  18. County business patterns, 1996 : Montana

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  19. County business patterns, 1996 : Nebraska

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  20. County business patterns, 1996 : Kentucky

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  1. County business patterns, 1996 : Idaho

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  2. County business patterns, 1997 : Alabama

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  3. County business patterns, 1997 : Maryland

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  4. County business patterns, 1997 : Maine

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  5. County business patterns, 1996 : Utah

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  6. County business patterns, 1996 : Oklahoma

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  7. County business patterns, 1996 : Alaska

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  8. County business patterns, 1997 : Kansas

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  9. County business patterns, 1997 : Florida

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  10. County business patterns, 1997 : Oklahoma

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  11. County business patterns, 1997 : Michigan

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  12. County business patterns, 1997 : Tennessee

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  13. County business patterns, 1997 : Kentucky

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  14. County business patterns, 1996 : Louisiana

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  15. County business patterns, 1997 : Texas

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  16. County business patterns, 1997 : Virginia

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  17. County business patterns, 1996 : Delaware

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  18. County business patterns, 1997 : Idaho

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  19. County business patterns, 1997 : Nevada

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  20. County business patterns, 1996 : Wisconsin

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  1. County business patterns, 1996 : Arkansas

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  2. County business patterns, 1996 : Florida

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  3. County business patterns, 1997 : Mississippi

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  4. County business patterns, 1996 : Missouri

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  5. County business patterns, 1996 : Maryland

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  6. County business patterns, 1997 : Hawaii

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  7. County business patterns, 1996 : Ohio

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  8. County business patterns, 1996 : Alabama

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  9. County business patterns, 1997 : Alaska

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  10. County business patterns, 1996 : Iowa

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  11. County business patterns, 1996 : Georgia

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  12. County business patterns, 1996 : Michigan

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  13. County business patterns, 1996 : Texas

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  14. County business patterns, 1997 : Nebraska

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  15. County business patterns, 1997 : Massachusetts

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  16. County business patterns, 1997 : Indiana

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  17. County business patterns, 1996 : Pennsylvania

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  18. County business patterns, 1997 : Arkansas

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  19. County business patterns, 1996 : Arizona

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  20. County business patterns, 1997 : Oregon

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  1. County business patterns, 1997 : Georgia

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  2. County business patterns, 1997 : Missouri

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  3. County business patterns, 1997 : Illinois

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  4. County business patterns, 1997 : Utah

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  5. County business patterns, 1996 : Kansas

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  6. County business patterns, 1996 : Maine

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  7. County business patterns, 1997 : Pennsylvania

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  8. County business patterns, 1996 : Tennessee

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  9. County business patterns, 1997 : Ohio

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  10. County business patterns, 1996 : Vermont

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  11. County business patterns, 1996 : Wyoming

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  12. County business patterns, 1996 : Illinois

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  13. County business patterns, 1996 : Virginia

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  14. County business patterns, 1997 : Iowa

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  15. County business patterns, 1997 : Connecticut

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  16. County business patterns, 1996 : Hawaii

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  17. County business patterns, 1997 : Washington

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  18. County business patterns, 1997 : Vermont

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  19. County business patterns, 1996 : Oregon

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  20. County business patterns, 1996 : Minnesota

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  1. County business patterns, 1996 : California

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  2. County business patterns, 1996 : Indiana

    Science.gov (United States)

    1998-11-01

    County Business Patterns is an annual series that : provides subnational economic data by industry. The series : is useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  3. County business patterns, 1997 : Delaware

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  4. County business patterns, 1997 : Montana

    Science.gov (United States)

    1999-09-01

    County Business Patterns is an annual series that provides : subnational economic data by industry. The series is : useful for studying the economic activity of small areas; : analyzing economic changes over time; and as a benchmark : for statistical...

  5. Allegheny County WIC Vendor Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the locations of Women, Infants, and Children (WIC) program vendors. If viewing this description on the Western Pennsylvania Regional Data...

  6. 2009 SCDNR Horry County Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sanborn Map Company completed the original classification of the multiple return LiDAR of Horry County, South Carolina in 2009. In 2013, Dewberry was tasked with...

  7. Soils - Volusia County Soils (Polygons)

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Soils: 1:24000 SSURGO Map. Polygon boundaries of Soils in Volusia County, downloaded from SJRWMD and created by NRCS and SJRWMD. This data set is a digital version...

  8. Allegheny County Environmental Justice Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Environmental Justice areas in this guide have been defined by the Pennsylvania Department of Environmental Protection. The Department defines an environmental...

  9. Allegheny County Illegal Dump Sites

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Illegal Dump Site dataset includes information on illegal dump sites, their type of trash, and the estimate tons of trash at each site. The information was...

  10. Allegheny County Wooded Area Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates stands of trees (coniferous and deciduous) too numerous to plot as individual trees. The area is delineated following a generalized line...

  11. Colorado Disciplinary Practices, 2008-2010: Disciplinary Actions, Student Behaviors, Race, and Gender

    Science.gov (United States)

    Pfleger, Ryan; Wiley, Kathryn

    2012-01-01

    The Colorado legislature has recently taken school discipline policies under review, pursuant to SB 11-133. To inform the discussion in Colorado as well as a national discussion about discipline, this report presents an analysis of the most complete set of Colorado discipline data. It adds to and reinforces existing studies, documenting some…

  12. 77 FR 42510 - Notice of Inventory Completion: History Colorado, Denver, CO

    Science.gov (United States)

    2012-07-19

    ... associated funerary objects may contact History Colorado. Disposition of the human remains and associated... human remains and associated funerary objects under the control of History Colorado, Denver, CO. One set... detailed assessment of the human remains and associated funerary objects was made by History Colorado...

  13. 77 FR 51792 - Colorado Interstate Gas Company, L.L.C.; Notice of Application

    Science.gov (United States)

    2012-08-27

    ... Interstate Gas Company, L.L.C.; Notice of Application Take notice that on August 7, 2012, Colorado Interstate Gas Company, L.L.C. (CIG), Post Office Box 1087, Colorado Springs, Colorado 80944, filed in the above captioned docket an application pursuant to section 7(c) of the Natural Gas Act (NGA) for a certificate of...

  14. Latinos in Colorado: A Profile of Culture, Changes, and Challenges. Volume V.

    Science.gov (United States)

    Pappas, Georgia, Ed.; Guajardo, Maria, Ed.

    It is projected that the population of Colorado will increase by 25% between 1990 and 2000. The Latino community will experience a slight increase in the proportion of Colorado's population, and will remain the largest ethnic group over the next 30 years. The chapters in this profile describe the Latino population of Colorado. The following essays…

  15. 30 CFR 906.25 - Approval of Colorado abandoned mine land reclamation plan amendments.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Colorado abandoned mine land reclamation plan amendments. 906.25 Section 906.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE COLORADO § 906.25 Approval of Colorado abandoned mine land reclamation plan amendments. The...

  16. Land and federal mineral ownership coverage for northwestern Colorado

    Science.gov (United States)

    Biewick, L.H.; Mercier, T.J.; Levitt, Pam; Deikman, Doug; Vlahos, Bob

    1999-01-01

    This Arc/Info coverage contains land status and Federal mineral ownership for approximately 26,800 square miles in northwestern Colorado. The polygon coverage (which is also provided here as a shapefile) contains two attributes of ownership information for each polygon. One attribute indicates where the surface is State owned, privately owned, or, if Federally owned, which Federal agency manages the land surface. The other attribute indicates which minerals, if any, are owned by the Federal govenment. This coverage is based on land status and Federal mineral ownership data compiled by the U.S. Geological Survey (USGS) and three Colorado State Bureau of Land Management (BLM) former district offices at a scale of 1:24,000. This coverage was compiled primarily to serve the USGS National Oil and Gas Resource Assessment Project in the Uinta-Piceance Basin Province and the USGS National Coal Resource Assessment Project in the Colorado Plateau.

  17. The Colorado Plateau II: biophysical, socioeconomic, and cultural research

    Science.gov (United States)

    Mattson, David J.; van Riper, Charles

    2005-01-01

    The publication of The Colorado Plateau: Cultural, Biological, and Physical Research in 2004 marked a timely summation of current research in the Four Corners states. This new volume, derived from the seventh Biennial Conference on the Colorado Plateau in 2003, complements the previous book by focusing on the integration of science into resource management issues. The 32 chapters range in content from measuring human impacts on cultural resources, through grazing and the wildland-urban interface issues, to parameters of climate change on the Plateau. The book also introduces economic perspectives by considering shifting patterns and regional disparities in the Colorado Plateau economy. A series of chapters on mountain lions explores the human-wildland interface. These chapters deal with the entire spectrum of challenges associated with managing this large mammal species in Arizona and on the Colorado Plateau, conveying a wealth of timely information of interest to wildlife managers and enthusiasts. Another provocative set of chapters on biophysical resources explores the management of forest restoration, from the micro scale all the way up to large-scale GIS analyses of ponderosa pine ecosystems on the Colorado Plateau. Given recent concerns for forest health in the wake of fires, severe drought, and bark-beetle infestation, these chapters will prove enlightening for forest service, park service, and land management professionals at both the federal and state level, as well as general readers interested in how forest management practices will ultimately affect their recreation activities. With broad coverage that touches on topics as diverse as movement patterns of rattlesnakes, calculating watersheds, and rescuing looted rockshelters, this volume stands as a compendium of cutting-edge research on the Colorado Plateau that offers a wealth of insights for many scholars.

  18. Source Signature of Volatile Organic Compounds (VOCs) associated with oil and natural gas operations in Utah and Colorado

    Science.gov (United States)

    Gilman, J.; Lerner, B. M.; Warneke, C.; Holloway, J. S.; Peischl, J.; Ryerson, T. B.; Young, C. J.; Edwards, P.; Brown, S. S.; Wolfe, D. E.; Williams, E. J.; De Gouw, J. A.

    2012-12-01

    The U.S. Energy Information Administration has reported a sharp increase in domestic oil and natural gas production from "unconventional" reserves (e.g., shale and tight sands) between 2005 and 2012. The recent growth in drilling and fossil fuel production has led to environmental concerns regarding local air quality. Severe wintertime ozone events (greater than 100 ppb ozone) have been observed in Utah's Uintah Basin and Wyoming's Upper Green River Basin, both of which contain large natural gas fields. Raw natural gas is a mixture of approximately 60-95 mole percent methane while the remaining fraction is composed of volatile organic compounds (VOCs) and other non-hydrocarbon gases. We measured an extensive set of VOCs and other trace gases near two highly active areas of oil and natural gas production in Utah's Uintah Basin and Colorado's Denver-Julesburg Basin in order to characterize primary emissions of VOCs associated with these industrial operations and identify the key VOCs that are precursors for potential ozone formation. UBWOS (Uintah Basin Winter Ozone Study) was conducted in Uintah County located in northeastern Utah in January-February 2012. Two Colorado studies were conducted at NOAA's Boulder Atmospheric Observatory in Weld County in northeastern Colorado in February-March 2011 and July-August 2012 as part of the NACHTT (Nitrogen, Aerosol Composition, and Halogens on a Tall Tower) and SONNE (Summer Ozone Near Natural gas Emissions) field experiments, respectively. The C2-C6 hydrocarbons were greatly enhanced for all of these studies. For example, the average propane mixing ratio observed during the Utah study was 58 ppb (median = 35 ppb, minimum = 0.8, maximum = 520 ppb propane) compared to urban averages which range between 0.3 and 6.0 ppb propane. We compare the ambient air composition from these studies to urban measurements in order to show that the VOC source signature from oil and natural gas operations is distinct and can be clearly

  19. Best Manufacturing Practices. Report of Survey Conducted at Stafford County Public Schools, Stafford County, VA

    National Research Council Canada - National Science Library

    1994-01-01

    During the week of August 8, 1994, a Best Manufacturing Practices (BMP) survey was conducted at the Stafford County Public Schools located in Stafford County, Virginia, considered one of the fastest growing counties in the state...

  20. 2007 Lake County Board of County Commissioners Topographic LiDAR: Lake County, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata document describes the LiDAR point data in LAS format produced by Kucera covering the project area of Lake County, FL. The data produced is...

  1. Groundwater quality in the Colorado River basins, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  2. Small Wind Turbine Applications: Current Practice in Colorado

    International Nuclear Information System (INIS)

    Green, Jim

    1999-01-01

    Numerous small wind turbines are being used by homeowners in Colorado. Some of these installations are quite recent while others date back to the federal tax-credit era of the early 1980s. Through visits with small wind turbine owners in Colorado, I have developed case studies of six small wind energy applications focusing on the wind turbine technology, wind turbine siting, the power systems and electric loads, regulatory issues, and motivations about wind energy. These case studies offer a glimpse into the current state-of-the-art of small-scale wind energy and provide some insight into issues affecting development of a wider market

  3. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1995-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project

  4. Long-term surveillance plan for the Gunnison, Colorado disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  5. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  6. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  7. Long-term surveillance plan for the Maybell, Colorado Disposal Site

    International Nuclear Information System (INIS)

    1997-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE's determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  8. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1994-05-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC section 7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd 3 ). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM)

  9. Long-term surveillance plan for the Gunnison, Colorado disposal site

    International Nuclear Information System (INIS)

    1996-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  10. Long-term surveillance plan for the Gunnison, Colorado disposal site. Revision 2

    International Nuclear Information System (INIS)

    1997-02-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance

  11. Long-term surveillance plan for the Burro Canyon disposal cell, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1998-05-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. The US Nuclear Regulatory Commission (NRC) developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Burro Canyon disposal cell. The general license becomes effective when the NRC concurs with the DOE's determination that remedial action is complete at the Burro Canyon disposal cell and the NRC formally accepts this LTSP. Attachment 1 contains the concurrence letters from NRC. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. Ground water monitoring will not be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low yield from the uppermost aquifer

  12. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    International Nuclear Information System (INIS)

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  13. Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE's determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  14. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    International Nuclear Information System (INIS)

    1996-05-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment.For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP

  15. Long-term surveillance plan for the Rifle, Colorado, Disposal site

    International Nuclear Information System (INIS)

    1996-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site in Garfield County, Colorado. The U.S. Environmental Protection Agency (EPA) has developed regulations for the issuance of a general license by the U.S. Nuclear Regulatory Commission (NRC) for the custody and long-term care of UMTRA Project disposal Sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites, will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Estes Gulch disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Estes Gulch site and the NRC formally accepts this LTSP

  16. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    International Nuclear Information System (INIS)

    1996-05-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  17. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

  18. 75 FR 3333 - Irish Potatoes Grown in Colorado; Modification of the Handling Regulation for Area No. 2

    Science.gov (United States)

    2010-01-21

    ... FR] Irish Potatoes Grown in Colorado; Modification of the Handling Regulation for Area No. 2 AGENCY... requirement under the Colorado potato marketing order, Area No. 2. The marketing order regulates the handling of Irish potatoes grown in Colorado, and is administered locally by the Colorado Potato...

  19. Beyond Colorado's Front Range - A new look at Laramide basin subsidence, sedimentation, and deformation in north-central Colorado

    Science.gov (United States)

    Cole, James C.; Trexler, James H.; Cashman, Patricia H.; Miller, Ian M.; Shroba, Ralph R.; Cosca, Michael A.; Workman, Jeremiah B.

    2010-01-01

    This field trip highlights recent research into the Laramide uplift, erosion, and sedimentation on the western side of the northern Colorado Front Range. The Laramide history of the North Park?Middle Park basin (designated the Colorado Headwaters Basin in this paper) is distinctly different from that of the Denver basin on the eastern flank of the range. The Denver basin stratigraphy records the transition from Late Cretaceous marine shale to recessional shoreline sandstones to continental, fluvial, marsh, and coal mires environments, followed by orogenic sediments that span the K-T boundary. Upper Cretaceous and Paleogene strata in the Denver basin consist of two mega-fan complexes that are separated by a 9 million-year interval of erosion/non-deposition between about 63 and 54 Ma. In contrast, the marine shale unit on the western flank of the Front Range was deeply eroded over most of the area of the Colorado Headwaters Basin (approximately one km removed) prior to any orogenic sediment accumulation. New 40Ar-39Ar ages indicate the oldest sediments on the western flank of the Front Range were as young as about 61 Ma. They comprise the Windy Gap Volcanic Member of the Middle Park Formation, which consists of coarse, immature volcanic conglomerates derived from nearby alkalic-mafic volcanic edifices that were forming at about 65?61 Ma. Clasts of Proterozoic granite, pegmatite, and gneiss (eroded from the uplifted core of the Front Range) seem to arrive in the Colorado Headwaters Basin at different times in different places, but they become dominant in arkosic sandstones and conglomerates about one km above the base of the Colorado Headwaters Basin section. Paleocurrent trends suggest the southern end of the Colorado Headwaters Basin was structurally closed because all fluvial deposits show a northward component of transport. Lacustrine depositional environments are indicated by various sedimentological features in several sections within the >3 km of sediment

  20. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  1. Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere.

    Science.gov (United States)

    Roy, Mousumi; Jordan, Thomas H; Pederson, Joel

    2009-06-18

    The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension, the plateau experienced approximately 2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr(-1) and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.

  2. Being PREPaREd for Crisis in Northern Colorado

    Science.gov (United States)

    Hancock, Kathy; Malvey, Michelle; Rastatter, Dennis

    2010-01-01

    The Thompson School District recognized after the Columbine incident in the spring of 1999 that it was lacking an adequate plan for crisis response. Colorado legislation led to a mandate for having a crisis response plan so the district purchased a "canned" crisis response plan that served the needs of response in a very immediate but…

  3. Examining the Spatial Distribution of Marijuana Establishments in Colorado

    Science.gov (United States)

    Kerski, Joseph

    2018-01-01

    In this 22-question activity, high school students investigate the spatial distribution of marijuana stores in Colorado using an interactive web map containing stores, centers, highways, population, and other data at several scales. After completing this lesson, students will know and be able to: (1) Use interactive maps, layers, and tools in…

  4. Radiation balance in a deep Colorado valley: ASCOT 84

    International Nuclear Information System (INIS)

    Whiteman, C.D.; Fritschen, L.J.; Simpson, J.R.; Orgill, M.M.

    1984-12-01

    Five surface energy budget stations were installed at four sites in a deep, narrow valley in western Colorado as part of the Atmospheric Studies in Complex Terrain (ASCOT) Study. Radiation balance data are presented from these stations for the clear day September 29, 1984. 3 references, 3 figures, 3 tables

  5. Colorado State University (CSU) accelerator and FEL facility

    NARCIS (Netherlands)

    Milton, S.; Biedron, S.; Harris, J.; Martinez, J.; D'Audney, A.; Edelen, J.; Einstein, J.; Hall, C.; Horovitz, K.; Morin, A.; Sipahi, N.; Sipahi, T.; Williams, J.; Carrico, C.; Van Der Slot, P. J M

    2014-01-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band (1.3 GHz) electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test laboratory, and a magnetic test laboratory.

  6. Transgenic resistance of eggplants to the Colorado potato beetle

    NARCIS (Netherlands)

    Arpaia, S.

    1999-01-01

    The subject of this thesis is the use of transgenic plant resistance as a method to control the Colorado potato beetle, Leptinotarsa decemlineata Say in eggplant. The gene conferring resistance is coding for a Cry3B toxin and it is a synthetic version of a wild-type

  7. Digital Learning Compass: Distance Education State Almanac 2017. Colorado

    Science.gov (United States)

    Seaman, Julia E.; Seaman, Jeff

    2017-01-01

    This brief report uses data collected under the U.S. Department of Education's National Center for Educational Statistics (NCES) Integrated Postsecondary Education Data System (IPEDS) Fall Enrollment survey to highlight distance education data in the state of Colorado. The sample for this analysis is comprised of all active, degree-granting…

  8. Discovery of cryptic Armillaria solidipes genotypes within the Colorado Plateau

    Science.gov (United States)

    J. W. Hanna; N. B. Klopfenstein; M. -S. Kim; S. M. Ashiglar; A. L. Ross-Davis; G. I. McDonald

    2012-01-01

    Armillaria solidipes (= A. ostoyae) is a root-disease pathogen that causes severe losses in growth and productivity of forest trees throughout the Northern Hemisphere. This species is genetically diverse with variable disease activities across different regions of the world. In North America, A. solidipes in the Colorado Plateau exists in drier habitats and causes more...

  9. Construction of calibration pads facility, Walker Field, Grand Junction, Colorado

    International Nuclear Information System (INIS)

    Ward, D.L.

    1978-08-01

    A gamma-ray spectrometer facility was completed at Walker Field Airport, Grand Junction, Colorado, in November 1976. This report describes spectrometers and their calibration, the construction of the spectrometer facility, the radioelement concentrations, procedures for using the facilites, and environmental considerations

  10. The Colorado Gambling Boom: An Experiment in Rural Community Development.

    Science.gov (United States)

    Stokowski, Patricia A.

    1992-01-01

    Three small Colorado towns that faced a declining economy as the mining resource ran out used gambling-based tourism as a strategy for community development. Although economic benefits to the towns have far exceeded expectations, negative social, environmental, and political changes, such as crime alcoholism, traffic problems, and conflicts…

  11. Colorado's Alternative School Calendar Program and the Four Day Week.

    Science.gov (United States)

    Brubacher, Roy G.; Stiverson, C. L.

    Taking advantage of legislation permitting modified school calendars, the four-day work week has been implemented by 23 small, rural Colorado school districts representing 5,200 children. Thirteen districts implemented the four-day program in the 1980-81 school year. Ten additional districts applied as first year pilot programs in the 1981-82…

  12. Colorado Handbook for State-Funded Student Assistance Programs. Revised.

    Science.gov (United States)

    Colorado Commission on Higher Education, Denver.

    Policies and procedures established by the Colorado Commission on Higher Education for the use of state-funded student assistance are presented. Annual budget ranges, sample forms, and instructions are included. In addition to providing definitions and general policy information, the guidelines cover fund application and allocation; accounting,…

  13. Radon from coal ash in Colorado. Final report

    International Nuclear Information System (INIS)

    Morse, J.G.

    1981-01-01

    An attempt was made to develop a radiation profile of Colorado, based on available measured radon data. Data reported indicate that the release of radon to the atmosphere during uranium milling and mining is not a significant health hazard or air pollutant, when compared with radon in soils. 1 figure, 2 tables

  14. Geothermal development plan: Maricopa county

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  15. Heat flow in the north-central Colorado Plateau

    International Nuclear Information System (INIS)

    Bodell, J.M.; Chapman, D.S.

    1982-01-01

    We report new heat flow measurements at 25 evenly distributed sites in the north-central Colorado Plateau. Heat flow values computed for these new sites and one previously published site range from 43 to 116 mW m -2 but fall into the following district subsets related to physiographic and tectonic elements within the Plateau: (1) heat flow of 51 mW m -2 (12 sites; s.d. 6) in the San Rafael Swell and Green River Desert which constitute the core of the Colorado Plateau at this latitude, (2) heat flows of 69 mW m -2 (5 sites; s.d. 10) in successive parallel north-south bands approaching the Wasatch Plateau to the west but still 80 km east of the Basin and Range physiographic boundary, (3) heat flow of 64 mW m -2 (5 sites; s.d. 2) along the Salt Anticline trend which strikes northwest in the region of Moab, Utah. Heat flow results for the entire Colorado Plateau have been reexamined in view of our new results, and the overall pattern supports the concept of a low heat flow 'thermal interior' for the plateau surrounded by a periphery some 100 km wide having substantially higher heat flow. Average heat flow in the thermal interior is about 60 mW m -2 compared to 80--90 mW m -2 in the periphery. This regional heat flow pattern supports a model of tertiary lithospheric thinning under the Colorado Plateau whereby the plateau is still in transient thermal response and a 15--20 m.y. lag between uplift and corresponding surface heat flow anomaly is to be expected. The position of the heat flow transition between our interior and peripheral regions in the northwest plateau is roughly consistent with lateral warming and weakening of the Colorado Plateau lithosphere initiated at the Basin and Range boundary some 20 m.y. ago

  16. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1994

    International Nuclear Information System (INIS)

    1994-11-01

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994. To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized. This study assesses benefits associated with the Grand Junction, Gunnison, Naturita, and Rifle UMTRA Projects sites for the 1-year period under study. Work at the Naturita site was initiated in April 1994 and involved demolition of buildings at the processing site. Actual start-up of remediation of Naturita is planned to begin in the spring of 1995. Work at the Slick Rock and Maybell sites is expected to begin in 1995. The only current economic benefits associated with these sites are related to UMTRA Project support work

  17. Allegheny County-Owned Roads Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the roads owned by Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  18. Allegheny County Farmers Markets Locations (2017)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the locations of farmers markets in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  19. Elevation - LIDAR Survey - Roseau County, Minnesota

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LIDAR Data for Roseau County Minnesota. This project consists of approximately 87 square miles of LIDAR mapping in Roseau County, Minnesota at two sites: area 1,...

  20. Allegheny County Polling Place Locations (November 2017)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of the polling places in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  1. Allegheny County Voting District (2016) Web Map

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This webmap demarcates municipal voting districts in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  2. Port Authority of Allegheny County Transit Stops

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — All transit stops within the Port Authority of Allegheny County's service area for the November 20, 2016 - March (TBD) 2017 schedule period.

  3. Allegheny County Particulate Matter 2.5

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The U.S. Environmental Protection Agency provides information on the particulate matter concentration for Allegheny County that have a diameter greater or equal to...

  4. State of Aging in Allegheny County Survey

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — For more than three decades UCSUR has documented the status of older adults in the County along multiple life domains. Every decade we issue a comprehensive report...

  5. Allegheny County Polling Place Locations (May 2017)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of the polling places in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  6. 2010 South Carolina DNR Lidar: Sumter County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide high density LiDAR elevation data map of Sumter County, SC. Provide Bare Earth DEM (vegetation removal) of Sumter County, SC.

  7. 2010 South Carolina DNR Lidar: Richland County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide high density LiDAR elevation data map of Richland County, SC. Provide Bare Earth DEM (vegetation removal) of Richland County, SC.

  8. Allegheny County Weights and Measures Inspections

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Inspections conducted by the Allegheny County Bureau of Weights and Measures. The Bureau inspects weighing and timing devices such as gas pumps, laundromat timers,...

  9. Allegheny County Voting District (2015) Web Map

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This webmap demarcates municipal voting districts in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  10. Allegheny County Polling Place Locations (November 2015)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of the polling places in Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open data...

  11. Allegheny County-Owned Bridges Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the location of bridges owned by Allegheny County as centroids. If viewing this description on the Western Pennsylvania Regional Data Center’s...

  12. Allegheny County Magisterial Districts Outlines (2015)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the magisterial districts in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  13. 2010 South Carolina DNR Lidar: Kershaw County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide high density LiDAR elevation data map of Kershaw County, SC. Provide Bare Earth DEM (vegetation removal) of Kershaw County, SC.

  14. Allegheny County Median Age at Death

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The median age at death is calculated for each municipality in Allegheny County. Data is based on the decedent's residence at the time of death, not the location...

  15. Douglas County Historical Rectified Aerial Photos 1937

    Data.gov (United States)

    Kansas Data Access and Support Center — This raster dataset consists of approximately 200 aerial photographs taken in 1937 in Douglas county, Kansas, United States. The Douglas County Public Works...

  16. Douglas County Historical Rectified Aerial Photos 1954

    Data.gov (United States)

    Kansas Data Access and Support Center — This raster dataset consists of approximately 200 aerial photographs taken in 1954 in Douglas county, Kansas, United States. The Douglas County Public Works...

  17. Statement of Kenneth E. Yager, County Executive, Roane County, TN

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    I am Ken Yager, I am the county executive for Roane County, TN which is the preferred site for the proposed Monitored Retrieval Storage facility, or the MRS. and I am submitting into the record additional written testimony which was written largely by the Honorable Robert Peele, who is sitting here, who is a member of the Roane County Board of Commissioners, our local legislative body. The premise of my remarks is that the Department of Energy proposal for the MRS in our county in unacceptable unless the Congress and the Department of Energy are to be willing partners with the local communities. Our considerations have been limited to: one, can an MRS be operated safely, and if so under what conditions; and what would be the impacts of the facility and how might they be mitigated. Our recommendations on those two points lead me to my earlier comment about being partners with the Congress, because our recommendations can be summed up simply, Mr. Chairman, as local control. We are exceedingly concerned about the prospect of being trapped in a national squeeze play, caught between a recognized need for a way to deal with nuclear waste and intense political efforts to put that problem in somebody else's back yard. And if we are to be that back yard, we would ask that the Congress and the Department of Energy recognize our stake in this national effort. We must have an equal role in the process

  18. 78 FR 52984 - Stone Age Interiors, Inc.; d/b/a Colorado Springs Marble and Granite Including On-Site Leased...

    Science.gov (United States)

    2013-08-27

    ....; d/b/a Colorado Springs Marble and Granite Including On-Site Leased Workers From Express Employment... Colorado Springs Marble and Granite, Colorado Springs, Colorado (hereafter collectively referred to as..., Inc., d/b/a Colorado Springs Marble and Granite, including on-site leased workers from Express...

  19. Geology of the central Mineral Mountains, Beaver County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Sibbett, B.S.; Nielson, D.L.

    1980-03-01

    The Mineral Mountains are located in Beaver and Millard Counties, southwestern Utah. The range is a horst located in the transition zone between the Basin and Range and Colorado Plateau geologic provinces. A multiple-phase Tertiary pluton forms most of the range, with Paleozoic rocks exposed on the north and south and Precambrian metamorphic rocks on the west in the Roosevelt Hot Springs KGRA (Known Geothermal Resource Area). Precambrian banded gneiss and Cambrian carbonate rocks have been intruded by foliated granodioritic to monzonitic rocks of uncertain age. The Tertiary pluton consists of six major phases of quartz monzonitic to leucocratic granitic rocks, two diorite stocks, and several more mafic units that form dikes. During uplift of the mountain block, overlying rocks and the upper part of the pluton were partially removed by denudation faulting to the west. The interplay of these low-angle faults and younger northerly trending Basin and Range faults is responsible for the structural control of the Roosevelt Hot Springs geothermal system. The structural complexity of the Roosevelt Hot Springs KGRA is unique within the range, although the same tectonic style continues throughout the range. During the Quaternary, rhyolite volcanism was active in the central part of the range and basaltic volcanism occurred in the northern portion of the map area. The heat source for the geothermal system is probably related to the Quaternary rhyolite volcanic activity.

  20. Low-Wage Counties Face Locational Disadvantages.

    Science.gov (United States)

    Gibbs, Robert; Cromartie, John B.

    2000-01-01

    Small populations and remoteness are the most salient features of low-wage counties. These locational attributes coincide with fewer high-wage jobs, yet low wages within industries define low-wage counties more than industry composition. Although adults in low-wage counties have less education and labor force participation overall, the role played…