WorldWideScience

Sample records for monthly record meteorological

  1. A globally calibrated scheme for generating daily meteorology from monthly statistics: Global-WGEN (GWGEN) v1.0

    Science.gov (United States)

    Sommer, Philipp S.; Kaplan, Jed O.

    2017-10-01

    While a wide range of Earth system processes occur at daily and even subdaily timescales, many global vegetation and other terrestrial dynamics models historically used monthly meteorological forcing both to reduce computational demand and because global datasets were lacking. Recently, dynamic land surface modeling has moved towards resolving daily and subdaily processes, and global datasets containing daily and subdaily meteorology have become available. These meteorological datasets, however, cover only the instrumental era of the last approximately 120 years at best, are subject to considerable uncertainty, and represent extremely large data files with associated computational costs of data input/output and file transfer. For periods before the recent past or in the future, global meteorological forcing can be provided by climate model output, but the quality of these data at high temporal resolution is low, particularly for daily precipitation frequency and amount. Here, we present GWGEN, a globally applicable statistical weather generator for the temporal downscaling of monthly climatology to daily meteorology. Our weather generator is parameterized using a global meteorological database and simulates daily values of five common variables: minimum and maximum temperature, precipitation, cloud cover, and wind speed. GWGEN is lightweight, modular, and requires a minimal set of monthly mean variables as input. The weather generator may be used in a range of applications, for example, in global vegetation, crop, soil erosion, or hydrological models. While GWGEN does not currently perform spatially autocorrelated multi-point downscaling of daily weather, this additional functionality could be implemented in future versions.

  2. The Dust Storm Index (DSI): A method for monitoring broadscale wind erosion using meteorological records

    Science.gov (United States)

    O'Loingsigh, T.; McTainsh, G. H.; Tews, E. K.; Strong, C. L.; Leys, J. F.; Shinkfield, P.; Tapper, N. J.

    2014-03-01

    Wind erosion of soils is a natural process that has shaped the semi-arid and arid landscapes for millennia. This paper describes the Dust Storm Index (DSI); a methodology for monitoring wind erosion using Australian Bureau of Meteorology (ABM) meteorological observational data since the mid-1960s (long-term), at continental scale. While the 46 year length of the DSI record is its greatest strength from a wind erosion monitoring perspective, there are a number of technical challenges to its use because when the World Meteorological Organisation (WMO) recording protocols were established the use of the data for wind erosion monitoring was never intended. Data recording and storage protocols are examined, including the effects of changes to the definition of how observers should interpret and record dust events. A method is described for selecting the 180 long-term ABM stations used in this study and the limitations of variable observation frequencies between stations are in part resolved. The rationale behind the DSI equation is explained and the examples of temporal and spatial data visualisation products presented include; a long term national wind erosion record (1965-2011), continental DSI maps, and maps of the erosion event types that are factored into the DSI equation. The DSI is tested against dust concentration data and found to provide an accurate representation of wind erosion activity. As the ABM observational records used here were collected according to WMO protocols, the DSI methodology could be used in all countries with WMO-compatible meteorological observation and recording systems.

  3. Meteorological factors, aeroallergens and asthma-related visits inKuwait: a 12-month retrospective study

    International Nuclear Information System (INIS)

    Qasem, Jafar A.; Al-Sherfyee, A.; Al-Mathkouri, Samirah A.; Nasrallah, H.; Al-Khalaf, Bader N.; Al-Sharifi, F.; Al-Saraf, H.

    2008-01-01

    The increasing prevalence of asthma in many countries has been related toweather factors and aerllergen concentrations, but this has not been studiedin Kuwait. We evaluated the effect of meteorological factors and theoccurrence of aerobiologicals on the number of asthma cases in Kuwait. Thenumber of daily asthma visits to the allergy center and emergency departmentat Al-Sabha Hospital for 1 year were examined on a monthly basis forcorrelation with major meteorological factors (temperature, relativehumidity, rain, wind speed and direction). Spore and pollen counts werecollected hourly. A total of 4353 patients received asthma treatment duringthe year. The highest pollen count was in the month of September with amaximum relative humidity of 47% and no precipitation, but with a high meantemperature of 39.7C. Pollen counts were higher in the late summer(September) and occurred with a high patient visit to the allergy center.Fungal spore counts were significantly higher in early winter (December). Thehigh fungal spore count seemed related to with high relative humidity andhigh precipitation with a low mean average temperature of 19.7C. The increasenumber of patients with bronchial asthma visiting an emergency clinic duringDecember was significantly associated with high aerial counts for fungalspores (P<0.3) and the months of September and October were more significantfor pollen. This study indicates that meteorological factors, aeroallergenconcentrations and asthma-related visits were interrelated. The results mayprove useful in the generation of hypotheses and development of designs formore comprehensive, individual-based epidemiological studies. (author)

  4. Generation of typical meteorological year for different climates of China

    International Nuclear Information System (INIS)

    Jiang, Yingni

    2010-01-01

    Accurate prediction of building energy performance requires precise information of the local climate. Typical weather year files like typical meteorological year (TMY) are commonly used in building simulation. They are also essential for numerical analysis of sustainable and renewable energy systems. The present paper presents the generation of typical meteorological year (TMY) for eight typical cities representing the major climate zones of China. The data set, which includes global solar radiation data and other meteorological parameters referring to dry bulb temperature, relative humidity, wind speed, has been analyzed. The typical meteorological year is generated from the available meteorological data recorded during the period 1995-2004, using the Finkelstein-Schafer statistical method. The cumulative distribution function (CDF) for each year is compared with the CDF for the long-term composite of all the years in the period. Typical months for each of the 12 calendar months from the period of years are selected by choosing the one with the smallest deviation from the long-term CDF. The 12 typical months selected from the different years are used for the formulation of a TMY.

  5. Universal scaling behaviors of meteorological variables’ volatility and relations with original records

    Science.gov (United States)

    Lu, Feiyu; Yuan, Naiming; Fu, Zuntao; Mao, Jiangyu

    2012-10-01

    Volatility series (defined as the magnitude of the increments between successive elements) of five different meteorological variables over China are analyzed by means of detrended fluctuation analysis (DFA for short). Universal scaling behaviors are found in all volatility records, whose scaling exponents take similar distributions with similar mean values and standard deviations. To reconfirm the relation between long-range correlations in volatility and nonlinearity in original series, DFA is also applied to the magnitude records (defined as the absolute values of the original records). The results clearly indicate that the nonlinearity of the original series is more pronounced in the magnitude series.

  6. Design and use of climatological data banks, with emphasis on the preparation and homogenization of surface monthly records

    Energy Technology Data Exchange (ETDEWEB)

    Palutikof, J P; Goodess, C M

    1986-01-01

    The procedures involved in constructing data banks for use in climatological research are described. Such data banks will normally have two component parts: the meteorological records themselves, and the accompanying documentary and information systems. As a first step, meteorological records appropriate for the intended application of the data bank must be collected and stored, commonly in a computer. Individual records must then be merged into a form convenient for the user. Procedures for quality control of the data are discussed. The authors emphasize the need to ensure that records are homogeneous, i.e., that they do not contain spurious jumps or trends caused by non-climatic factor such as site change or urbanization. Some techniques to correct inhomogeneities in meteorological records are described. The documentation accompanying the meteorological records has three components: first, information on the individual records, second, a list of data sources, third, station histories. The station histories will be added to as work progresses on the data bank, to describe any attempts to homogenize records, and ultimately to give the compiler's assessment of the reliability of each record. User needs must be considered at all stages of data bank design and construction.

  7. Seasonality of human leptospirosis in Reunion Island (Indian Ocean and its association with meteorological data.

    Directory of Open Access Journals (Sweden)

    Amélie Desvars

    Full Text Available BACKGROUND: Leptospirosis is a disease which occurs worldwide but particularly affects tropical areas. Transmission of the disease is dependent on its excretion by reservoir animals and the presence of moist environment which allows the survival of the bacteria. METHODS AND FINDINGS: A retrospective study was undertaken to describe seasonal patterns of human leptospirosis cases reported by the Centre National de Références des Leptospiroses (CNRL, Pasteur Institute, Paris between 1998 and 2008, to determine if there was an association between the occurrence of diagnosed cases and rainfall, temperature and global solar radiation (GSR. Meteorological data were recorded in the town of Saint-Benoît (Météo France "Beaufonds-Miria" station, located on the windward (East coast. Time-series analysis was used to identify the variables that best described and predicted the occurrence of cases of leptospirosis on the island. Six hundred and thirteen cases were reported during the 11-year study period, and 359 cases (58.56% were diagnosed between February and May. A significant correlation was identified between the number of cases in a given month and the associated cumulated rainfall as well as the mean monthly temperature recorded 2 months prior to diagnosis (r = 0.28 and r = 0.23 respectively. The predictive model includes the number of cases of leptospirosis recorded 1 month prior to diagnosis (b = 0.193, the cumulated monthly rainfall recorded 2 months prior to diagnosis (b = 0.145, the average monthly temperature recorded 0 month prior to diagnosis (b = 3.836, and the average monthly GSR recorded 0 month prior to diagnosis (b = -1.293. CONCLUSIONS: Leptospirosis has a seasonal distribution in Reunion Island. Meteorological data can be used to predict the occurrence of the disease and our statistical model can help to implement seasonal prevention measures.

  8. Database of meteorological and radiation measurements made in Belarus during the first three months following the Chernobyl accident

    International Nuclear Information System (INIS)

    Drozdovitch, Vladimir; Zhukova, Olga; Germenchuk, Maria; Khrutchinsky, Arkady; Kukhta, Tatiana; Luckyanov, Nickolas; Minenko, Victor; Podgaiskaya, Marina; Savkin, Mikhail; Vakulovsky, Sergey; Voillequé, Paul; Bouville, André

    2013-01-01

    Results of all available meteorological and radiation measurements that were performed in Belarus during the first three months after the Chernobyl accident were collected from various sources and incorporated into a single database. Meteorological information such as precipitation, wind speed and direction, and temperature in localities were obtained from meteorological station facilities. Radiation measurements include gamma-exposure rate in air, daily fallout, concentration of different radionuclides in soil, grass, cow's milk and water as well as total beta-activity in cow's milk. Considerable efforts were made to evaluate the reliability of the measurements that were collected. The electronic database can be searched according to type of measurement, date, and location. The main purpose of the database is to provide reliable data that can be used in the reconstruction of thyroid doses resulting from the Chernobyl accident. - Highlights: ► Meteorological and radiation measurements done after the Chernobyl accident in Belarus were collected. ► Data were verified and incorporated into a single database. ► Results of this study is being used to improve the thyroid dose estimates after the Chernobyl accident.

  9. Meteorological factors, aeroallergens and asthma-related visits in Kuwait : A 12-month retrospective study

    International Nuclear Information System (INIS)

    Jafar A Qasem

    2010-01-01

    The increasing prevalence of asthma in many countries has been related to weather factors and aeroallergen concentrations , but this has not been studied in Kuwait. We evaluated the effect of meteorological factors and the occurrence of aerobiologicals on the number of asthma cases in Kuwait.The number of daily asthma visits to the allergy center and emergency department at Al-Sabha Hospital for 1 year were examined on a monthly basis for correlation with major metereological factors (temperature , relative humidity , rain , wind speed and direction). Spore and pollen counts were collected hourly. Results: A total of 4353 patients received asthma treatment during the year. The highest pollen count was in the month of September with a maximum relative humidity of 47% and no precipitation , but with a high mean temperature of 39.7 0 C. . Pollen counts were higher in the late summer (September) and occurred with a high patient visit to the allergy center. Fungal spore counts were significantly higher in early winter (December). The high fungal spore count seemed related to with high relative humidity and high precipitation with a low mean average temperature of 19.7 0 C. The increase number of patients with bronchial asthma visiting an emergency clinic during December was significantly associated with high aerial counts for fungal spores (P<.03) , and the months of September and October were more significant for pollen.This study indicates that meteorological factors , aeroallergen concentrations and asthma related visits are interrelated. The results may prove useful in the generation of hypotheses and development of designs for more comprehensive , individual-based epidemiological studies (Author).

  10. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  11. Fundamental statistical relationships between monthly and daily meteorological variables: Temporal downscaling of weather based on a global observational dataset

    Science.gov (United States)

    Sommer, Philipp; Kaplan, Jed

    2016-04-01

    Accurate modelling of large-scale vegetation dynamics, hydrology, and other environmental processes requires meteorological forcing on daily timescales. While meteorological data with high temporal resolution is becoming increasingly available, simulations for the future or distant past are limited by lack of data and poor performance of climate models, e.g., in simulating daily precipitation. To overcome these limitations, we may temporally downscale monthly summary data to a daily time step using a weather generator. Parameterization of such statistical models has traditionally been based on a limited number of observations. Recent developments in the archiving, distribution, and analysis of "big data" datasets provide new opportunities for the parameterization of a temporal downscaling model that is applicable over a wide range of climates. Here we parameterize a WGEN-type weather generator using more than 50 million individual daily meteorological observations, from over 10'000 stations covering all continents, based on the Global Historical Climatology Network (GHCN) and Synoptic Cloud Reports (EECRA) databases. Using the resulting "universal" parameterization and driven by monthly summaries, we downscale mean temperature (minimum and maximum), cloud cover, and total precipitation, to daily estimates. We apply a hybrid gamma-generalized Pareto distribution to calculate daily precipitation amounts, which overcomes much of the inability of earlier weather generators to simulate high amounts of daily precipitation. Our globally parameterized weather generator has numerous applications, including vegetation and crop modelling for paleoenvironmental studies.

  12. Repeated and random components in Oklahoma's monthly precipitation record

    Science.gov (United States)

    Precipitation across Oklahoma exhibits a high degree of spatial and temporal variability and creates numerous water resources management challenges. The monthly precipitation record of the Central Oklahoma climate division was evaluated in a proof-of-concept to establish whether a simple monthly pre...

  13. Meteorological observations at Syowa Station, Antarctica, 2008 by the 49th Japanese Antarctic Research Expedition

    Directory of Open Access Journals (Sweden)

    Hideshi Yoshimi

    2013-07-01

    Full Text Available This report describes the result of meteorological observations at Syowa Station by the Meteorological Observation Team of the 49th Japanese Antarctic Research Expedition (JARE-49 during the period 1 February 2008 to 27 January 2009. The observation methods, instruments, and statistical methods used by the JARE-49 team are nearly the same as those used by the JARE-48 observation team. Remarkable weather phenomena observed during the period of JARE-49 are as follows. 1 On 1 September 2008, the record minimum temperature for September was observed in the upper atmosphere (pressure greater than 175 hPa. 2 The monthly mean temperature at Syowa Station during October 2008 was -17.5°C; this is the lowest monthly mean October temperature recorded at Syowa Station. 3 The total ozone over Syowa Station was less than or equal to 220 m atm-cm during the period from late August to late November, and was close to minimum levels during the period from mid-September to mid-October. The lowest total ozone in 2008, recorded on 16 October 2008, was 140 m atm-cm.

  14. Jens Esmark's Christiania (Oslo) meteorological observations 1816-1838: the first long-term continuous temperature record from the Norwegian capital homogenized and analysed

    Science.gov (United States)

    Hestmark, Geir; Nordli, Øyvind

    2016-11-01

    In 2010 we rediscovered the complete set of meteorological observation protocols made by Jens Esmark (1762-1839) during his years of residence in the Norwegian capital of Oslo (then Christiania). From 1 January 1816 to 25 January 1839, Esmark at his house in Øvre Voldgate in the morning, early afternoon and late evening recorded air temperature with state-of-the-art thermometers. He also noted air pressure, cloud cover, precipitation and wind directions, and experimented with rain gauges and hygrometers. From 1818 to the end of 1838 he twice a month provided weather tables to the official newspaper Den Norske Rigstidende, and thus acquired a semi-official status as the first Norwegian state meteorologist. This paper evaluates the quality of Esmark's temperature observations and presents new metadata, new homogenization and analysis of monthly means. Three significant shifts in the measurement series were detected, and suitable corrections are proposed. The air temperature in Oslo during this period is shown to exhibit a slow rise from 1816 towards 1825, followed by a slighter fall again towards 1838.

  15. Meteorological and hydrological extremes derived from taxation records: case study for south-western Moravia (Czech Republic)

    Science.gov (United States)

    Chromá, Kateřina; Brázdil, Rudolf; Valášek, Hubert; Zahradníček, Pavel

    2013-04-01

    Meteorological and hydrological extremes (MHEs) cause great material damage or even loss of human lives in the present time, similarly as it was in the past. In the Czech Lands (recently the Czech Republic), systematic meteorological and hydrological observations started generally in the latter half of the 19th century. Therefore, in order to create long-term series of such extremes, it is necessary to search for other sources of information. Different types of documentary evidence are used in historical climatology and hydrology to find such information. Some of them are related to records connected with taxation system. The taxation system in Moravia allowed farmers to request tax relief if their crops have been damaged by MHEs. The corresponding documents contain information about the type of extreme event and the date of its occurrence; often also impacts on crops or land may be derived. The nature of events leading to damage include particularly hailstorms, torrential rain, flash floods, floods (in regions along larger rivers), less frequently windstorms, late frosts and in some cases also information about droughts or extreme snow depths. However, the results obtained are influenced by uncertainties related to taxation records - their temporal and spatial incompleteness, limitation of the MHEs occurrence in the period of main agricultural work (May-August) and the purpose for which they were originally collected (primarily tax alleviation, i.e. information about MHEs was of secondary importance). All these aspects related to the study of MHEs from taxation records are demonstrated for five estates (Bítov, Budkov, Jemnice with Staré Hobzí, Nové Syrovice and Uherčice) in the south-western part of Moravia for the 18th-19th centuries. The analysis shows importance of taxation records for the study of past MHEs as well as great potential for their use.

  16. Modeling monthly meteorological and agronomic frost days, based on minimum air temperature, in Center-Southern Brazil

    Science.gov (United States)

    Alvares, Clayton Alcarde; Sentelhas, Paulo César; Stape, José Luiz

    2017-09-01

    Although Brazil is predominantly a tropical country, frosts are observed with relative high frequency in the Center-Southern states of the country, affecting mainly agriculture, forestry, and human activities. Therefore, information about the frost climatology is of high importance for planning of these activities. Based on that, the aims of the present study were to develop monthly meteorological (F MET) and agronomic (F AGR) frost day models, based on minimum shelter air temperature (T MN), in order to characterize the temporal and spatial frost days variability in Center-Southern Brazil. Daily minimum air temperature data from 244 weather stations distributed across the study area were used, being 195 for developing the models and 49 for validating them. Multivariate regression models were obtained to estimate the monthly T MN, once the frost day models were based on this variable. All T MN regression models were statistically significant (p Brazilian region are the first zoning of these variables for the country.

  17. Large-scale drivers of Caucasus climate variability in meteorological records and Mt El'brus ice cores

    Science.gov (United States)

    Kozachek, Anna; Mikhalenko, Vladimir; Masson-Delmotte, Valérie; Ekaykin, Alexey; Ginot, Patrick; Kutuzov, Stanislav; Legrand, Michel; Lipenkov, Vladimir; Preunkert, Susanne

    2017-05-01

    A 181.8 m ice core was recovered from a borehole drilled into bedrock on the western plateau of Mt El'brus (43°20'53.9'' N, 42°25'36.0'' E; 5115 m a.s.l.) in the Caucasus, Russia, in 2009 (Mikhalenko et al., 2015). Here, we report on the results of the water stable isotope composition from this ice core with additional data from the shallow cores. The distinct seasonal cycle of the isotopic composition allows dating by annual layer counting. Dating has been performed for the upper 126 m of the deep core combined with 20 m from the shallow cores. The whole record covers 100 years, from 2013 back to 1914. Due to the high accumulation rate (1380 mm w.e. year-1) and limited melting, we obtained isotopic composition and accumulation rate records with seasonal resolution. These values were compared with available meteorological data from 13 weather stations in the region and also with atmosphere circulation indices, back-trajectory calculations, and Global Network of Isotopes in Precipitation (GNIP) data in order to decipher the drivers of accumulation and ice core isotopic composition in the Caucasus region. In the warm season (May-October) the isotopic composition depends on local temperatures, but the correlation is not persistent over time, while in the cold season (November-April), atmospheric circulation is the predominant driver of the ice core's isotopic composition. The snow accumulation rate correlates well with the precipitation rate in the region all year round, which made it possible to reconstruct and expand the precipitation record at the Caucasus highlands from 1914 until 1966, when reliable meteorological observations of precipitation at high elevation began.

  18. Meteorology in site operations

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    During the site selection and design phases of a plant, meteorological assistance must be based on past records, usually accumulated at stations not actually on the site. These preliminary atadvices will be averages and extremes that might be expected. After a location has been chosen and work has begun, current and forecast weather conditions become of immediate concern. On-site meteorological observations and forecasts have many applications to the operating program of an atomic energy site. Requirements may range from observations of the daily minimum temperatures to forecasts of radiation dosages from airborne clouds

  19. Simulation of 7Be monthly depositions using normally available data on environmental monitoring and local meteorology

    International Nuclear Information System (INIS)

    Sakashita, Tetsuya; Nakamura, Yuji; Doi, Masahiro

    2003-01-01

    Monthly depositions of Beryllium-7 were simulated using normally available data on environmental monitoring and local meteorology over a 5-year period, from 1986 to 1990. The washout scheme of ApSimon et al., the constant dry deposition velocity (0.002 ms -1 ), and the rainout scheme of Kasibhatla et al. (K scheme) were used for simulation. Seasonal variations in the observed depositions were relatively well simulated by the present parameterization, however, there was a tendency for simulations to exceed the observed values, when heavy rain was measured. The revised parameterization of rainout scheme was introduced and improved the overestimation. The result may suggest that aerosols containing 7 Be are removed at a relatively high rate from the formation area of raindrops. (author)

  20. Literary Fiction or Ancient Astronomical and Meteorological Observations in the Work of Maria Valtorta?

    Directory of Open Access Journals (Sweden)

    Emilio Matricciani

    2017-06-01

    Full Text Available In The Gospel as revealed to me, Maria Valtorta reports a lot of information on the Holy Land at the time of Jesus: historical, archaeological, astronomical, geographical, meteorological. She states she has written what seen “in vision”. By a detailed astronomical analysis of explicit and implicit calendar information reported while she narrates detailed episodes concerning the three years of Jesus’ public life—possible because of many references to lunar phases, constellations, planets visible in the night sky in her writings—it is ascertained that every event described implies a precise date—day, month, year—without being explicitly reported by her. For example, Jesus’ crucifixion should have occurred on Friday April 23 of the year 34, a date proposed by Isaac Newton. She has also recorded the occurrence of rain so that the number of rainy days reported can be compared to the current meteorological data, supposing random observations and no important changes in rainfall daily frequency in the last 2000 years, the latter issue discussed in the paper. Unexpectedly, both the annual and monthly averages of rainy days deduced from the data available from the Israel Meteorological Service and similar averages deduced from her writings agree very well.

  1. 17 CFR 1.34 - Monthly record, “point balance”.

    Science.gov (United States)

    2010-04-01

    ... REGULATIONS UNDER THE COMMODITY EXCHANGE ACT Recordkeeping § 1.34 Monthly record, “point balance”. (a) Each... statement commonly known as a “point balance,” which accrues or brings to the official closing price, or... contracts long and short in the customers' accounts are in balance with those in the carrying futures...

  2. Non-linear modelling of monthly mean vorticity time changes: an application to the western Mediterranean

    Directory of Open Access Journals (Sweden)

    M. Finizio

    Full Text Available Starting from a number of observables in the form of time-series of meteorological elements in various areas of the northern hemisphere, a model capable of fitting past records and predicting monthly vorticity time changes in the western Mediterranean is implemented. A new powerful statistical methodology is introduced (MARS in order to capture the non-linear dynamics of time-series representing the available 40-year history of the hemispheric circulation. The developed model is tested on a suitable independent data set. An ensemble forecast exercise is also carried out to check model stability in reference to the uncertainty of input quantities.

    Key words. Meteorology and atmospheric dynamics · General circulation ocean-atmosphere interactions · Synoptic-scale meteorology

  3. Impact of meteorological changes on the incidence of scarlet fever in Hefei City, China

    Science.gov (United States)

    Duan, Yu; Huang, Xiao-lei; Wang, Yu-jie; Zhang, Jun-qing; Zhang, Qi; Dang, Yue-wen; Wang, Jing

    2016-10-01

    Studies on scarlet fever with meteorological factors included were few. We aimed to illustrate meteorological factors' effects on monthly incidence of scarlet fever. Cases of scarlet fever were collected from the report of legal infectious disease in Hefei City from 1985 to 2006; the meteorological data were obtained from the weather bureau of Hefei City. Monthly incidence and corresponding meteorological data in these 22 years were used to develop the model. The model of auto regressive integrated moving average with covariates was used in statistical analyses. There was a highest peak from March to June and a small peak from November to January. The incidence of scarlet fever ranges from 0 to 0.71502 (per 105 population). SARIMAX (1,0,0)(1,0,0)12 model was fitted with monthly incidence and meteorological data optimally. It was shown that relative humidity ( β = -0.002, p = 0.020), mean temperature ( β = 0.006, p = 0.004), and 1 month lag minimum temperature ( β = -0.007, p ARIMA model could be useful not only for prediction but also for the analysis of multiple correlations.

  4. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; Markstrom, Steven L.; Emmerich, Christopher; Talbert, Marian

    2017-05-03

    The U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) is a user-friendly interface that summarizes monthly historical and simulated future conditions for seven hydrologic and meteorological variables (actual evapotranspiration, potential evapotranspiration, precipitation, runoff, snow water equivalent, atmospheric temperature, and streamflow) at locations across the conterminous United States (CONUS).The estimates of these hydrologic and meteorological variables were derived using a Monthly Water Balance Model (MWBM), a modular system that simulates monthly estimates of components of the hydrologic cycle using monthly precipitation and atmospheric temperature inputs. Precipitation and atmospheric temperature from 222 climate datasets spanning historical conditions (1952 through 2005) and simulated future conditions (2020 through 2099) were summarized for hydrographic features and used to drive the MWBM for the CONUS. The MWBM input and output variables were organized into an open-access database. An Open Geospatial Consortium, Inc., Web Feature Service allows the querying and identification of hydrographic features across the CONUS. To connect the Web Feature Service to the open-access database, a user interface—the Monthly Water Balance Model Futures Portal—was developed to allow the dynamic generation of summary files and plots  based on plot type, geographic location, specific climate datasets, period of record, MWBM variable, and other options. Both the plots and the data files are made available to the user for download 

  5. Evaluation of PERSIANN-CDR for Meteorological Drought Monitoring over China

    Directory of Open Access Journals (Sweden)

    Hao Guo

    2016-05-01

    Full Text Available In this paper, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR is analyzed for the assessment of meteorological drought. The evaluation is conducted over China at 0.5° spatial resolution against a ground-based gridded China monthly Precipitation Analysis Product (CPAP from 1983 to 2014 (32 years. The Standardized Precipitation Index (SPI at various time scales (1 month to 12 months is calculated for detecting drought events. The results show that PERSIANN-CDR depicts similar drought behavior as the ground-based CPAP in terms of capturing the spatial and temporal patterns of drought events over eastern China, where the intensity of gauge networks and the frequency of droughts are high. 6-month SPI shows the best agreement with CPAP in identifying drought months. However, large differences between PERSIANN-CDR and CPAP in depicting drought patterns and identifying specific drought events are found over northwestern China, particularly in Xinjiang and Qinghai-Tibet Plateau region. Factors behind this may be due to the relatively sparse gauge networks, the complicated terrain and the performance of PERSIANN algorithm.

  6. The temporal and spatial distribution characteristics of air pollution index and meteorological elements in Beijing, Tianjin and Shijiazhuang, China.

    Science.gov (United States)

    Huading, Shi; Critto, Andrea; Torresan, Silvia; Qingxian, Gao

    2018-06-13

    With the rapid economic development and the continuous population growth, several important cities in China suffer serious air pollution, especially in the Beijing-Tianjin-Hebei economic developing area. Based on the daily air pollution index (API) and surface meteorological elements in Beijing, Tianjin and Shijiazhuang from 2001 to 2010, the relationships between API and meteorological elements were analyzed. The statistical analysis focused on the relationships at seasonal and monthly average scales, on different air pollution grades and air pollution processes. The results revealed that the air pollution conditions in the three areas gradually improved from 2001 to 2010, especially during summer; and the worst conditions in air quality were recorded in Beijing in spring due to the influences of dust, while in Tianjin and Shijiazhuang in winter due to household heating. Meteorological elements exhibited different influences on air pollution, showing similar relationships between API in monthly averages and four meteorological elements (i.e., the average, maximum and minimum temperatures, maximum air pressure, vapor pressure, and maximum wind speed); while the relationships on a seasonal average scale demonstrated significant differences. Compared with seasonal and monthly average scales of API, the relation coefficients based on different air pollution grades were significatively lower; while the relationship between API and meteorological elements based on air pollution process reduced the smoothing effect due to the average processing of seasonal and monthly API and improved the accuracy of the results based on different air pollution grades. Finally, statistical analysis of the distribution of pollution days in different wind directions indicated the directions of extreme and maximum wind speeds that mainly influence air pollution; representing a valuable information that could support the definition of air pollution control strategies through the

  7. Meteorological Drivers of Extreme Air Pollution Events

    Science.gov (United States)

    Horton, D. E.; Schnell, J.; Callahan, C. W.; Suo, Y.

    2017-12-01

    The accumulation of pollutants in the near-surface atmosphere has been shown to have deleterious consequences for public health, agricultural productivity, and economic vitality. Natural and anthropogenic emissions of ozone and particulate matter can accumulate to hazardous concentrations when atmospheric conditions are favorable, and can reach extreme levels when such conditions persist. Favorable atmospheric conditions for pollutant accumulation include optimal temperatures for photochemical reaction rates, circulation patterns conducive to pollutant advection, and a lack of ventilation, dispersion, and scavenging in the local environment. Given our changing climate system and the dual ingredients of poor air quality - pollutants and the atmospheric conditions favorable to their accumulation - it is important to characterize recent changes in favorable meteorological conditions, and quantify their potential contribution to recent extreme air pollution events. To facilitate our characterization, this study employs the recently updated Schnell et al (2015) 1°×1° gridded observed surface ozone and particulate matter datasets for the period of 1998 to 2015, in conjunction with reanalysis and climate model simulation data. We identify extreme air pollution episodes in the observational record and assess the meteorological factors of primary support at local and synoptic scales. We then assess (i) the contribution of observed meteorological trends (if extant) to the magnitude of the event, (ii) the return interval of the meteorological event in the observational record, simulated historical climate, and simulated pre-industrial climate, as well as (iii) the probability of the observed meteorological trend in historical and pre-industrial climates.

  8. Advanced software tool for the creation of a typical meteorological year

    International Nuclear Information System (INIS)

    Skeiker, Kamal; Ghani, Bashar Abdul

    2008-01-01

    The generation of a typical meteorological year is of great importance for calculations concerning many applications in the field of thermal engineering. In this context, method that has been proposed by Hall et al. is selected for generating typical data, and an improved criterion for final selection of typical meteorological month (TMM) was demonstrated. The final selection of the most representative year was done by examining a composite score S. The composite score was calculated as the weighed sum of the scores of the four meteorological parameters used. These parameters are air dry bulb temperature, relative humidity, wind velocity and global solar radiation intensity. Moreover, a new modern software tool using Delphi 6.0 has been developed, utilizing the Filkenstein-Schafer statistical method for the creation of a typical meteorological year for any site of concern. Whereas, an improved criterion for final selection of typical meteorological month was employed. Such tool allows the user to perform this task without an intimate knowledge of all of the computational details. The final alphanumerical and graphical results are presented on screen, and can be saved to a file or printed as a hard copy. Using this software tool, a typical meteorological year was generated for Damascus, capital of Syria, as a test run example. The data processed used were obtained from the Department of Meteorology and cover a period of 10 years (1991-2000)

  9. Meteorological Data from the Russian Arctic, 1961-2000

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains monthly means of meteorological observation data from Russian stations from 1961-2000 (for most stations). The Russian station observations...

  10. assessment and monitoring of meteorological and hydrological ...

    African Journals Online (AJOL)

    F. Djellouli, A. Bouanani and K. Babahamed

    2016-09-01

    Sep 1, 2016 ... en meteorological drought indices was found for 9-month time step ... Drought severity is expected to increase further in the next 50 years [20]. ... In the present study, our interest to examine the applicability of various drought ...

  11. A new interpretation of the historical records of observing Venus in daytime with naked eye: Focusing on the meteorological factors in the astronomical observation records

    Science.gov (United States)

    Jeon, Junhyeok; Kwon, Young-Joo; Lee, Yong-Sam

    2018-04-01

    Observing Venus during the daytime is challenging. However, observational data of Venus during the daytime can be found in history books from East Asian countries such as Korea, China and Japan. In this study, we are focused on data from Korean history book, and using records left in the Joseon wangjo sillok, one of the Korean history books from the Joseon dynasty (CE 1392-1910), tries to prove whether the reported observations were actual observation data. We collected these 4663 records from the Joseon wangjo sillok to determine whether they were actual observations, and to confirm the scientific validity of the records. When we looked at the distribution of observations on a yearly basis, we noticed that there were more observations in the fall and winter, while there were only limited numbers of observations in the spring. This difference in distribution suggests that observations were strongly affected by atmospheric conditions due to the weather. From the 4663 data collected, we found a cycle of about 1.6 years. The cycle of about 1.6 years is assumed to be related to the conjunction cycle of Venus. And, we found a cycle of about 1.0 years. The cycle of about 1.0 years is assumed to reflect the indirect effects of the Asian dust phenomenon. Our research result verified the record as actual observational data. In addition, this result verified that meteorological factors were involved in the recorded astronomical observation data. We think that our data can be helpful to climate studies on the natural sources of key climate-affecting aerosols.

  12. Using routine meteorological data to derive sky conditions

    Directory of Open Access Journals (Sweden)

    D. Pagès

    2003-03-01

    Full Text Available Sky condition is a matter of interest for public and weather predictors as part of weather analyses. In this study, we apply a method that uses total solar radiation and other meteorological data recorded by an automatic station for deriving an estimation of the sky condition. The impetus of this work is the intention of the Catalan Meteorological Service (SMC to provide the public with real-time information about the sky condition. The methodology for deriving sky conditions from meteorological records is based on a supervised classification technique called maximum likelihood method. In this technique we first need to define features which are derived from measured variables. Second, we must decide which sky conditions are intended to be distinguished. Some analyses have led us to use four sky conditions: (a cloudless or almost cloudless sky, (b scattered clouds, (c mostly cloudy – high clouds, (d overcast – low clouds. An additional case, which may be treated separately, corresponds to precipitation (rain or snow. The main features for estimating sky conditions are, as expected, solar radiation and its temporal variability. The accuracy of this method of guessing sky conditions compared with human observations is around 70% when applied to four sites in Catalonia (NE Iberian Peninsula. The agreement increases if we take into account the uncertainty both in the automatic classifier and in visual observations.Key words. Meteorological and atmospheric dynamics (instruments and techniques; radiative processes – Atmospheric composition and structure (cloud physics and chemistry

  13. Links between meteorological conditions and spatial/temporal variations in long-term isotope records from the Austrian precipitation network

    International Nuclear Information System (INIS)

    Kaiser, A.; Scheifinger, H.; Kralik, M.; Papesch, W.; Rank, D.; Stichler, W.

    2002-01-01

    The isotope records from the Austrian Network for Isotopes in Precipitation (ANIP) show significant but not uniform long-term trends. While the 10-year running means of some mountain stations exhibit a pronounced increase in δ 18 O of about 1 per mille since 1975, the change of δ 18 O at the valley stations is much lower. There are also differences in the time behaviour. The differences in the δ 18 O-values of sampling stations at similar altitudes can be explained by different origins of the air moisture (Atlantic or Mediterranean influence). Furthermore, a significant difference in the behaviour of the deuterium excess at neighbouring mountain and valley stations has been observed. There is a slight increase of the yearly mean of the deuterium excess with increasing altitude of the sampling station. But moreover, the seasonal pattern of the deuterium excess is quite different. While the valley stations exhibit the expected minimum in summer, the mountain stations show a distinct maximum between June and October. As a first step into a comprehensive analysis of the meteorological effects on the isotope patterns, the role of advection of different air masses is studied by trajectory statistics. Back trajectories, based on the three dimensional wind fields of the ECMWF model, are calculated for each hour within each precipitation event. Thus, the frequency of the origin of air masses and their contribution to the isotope patterns of the monthly precipitation samples are studied for two selected mountain stations north and south of the main ridge of the Alps. (author)

  14. Viking-2 Seismometer Measurements on Mars: PDS Data Archive and Meteorological Applications

    Science.gov (United States)

    Lorenz, Ralph D.; Nakamura, Yosio; Murphy, James R.

    2017-11-01

    A data product has been generated and archived on the NASA Planetary Data System (Geosciences Node), which presents the seismometer readings of Viking Lander 2 in an easy-to-access form, for both the raw ("high rate") waveform records and the compressed ("event mode") amplitude and frequency records. In addition to the records themselves, a separate summary file for each instrument mode lists key statistics of each record together with the meteorological measurements made closest in time to the seismic record. This juxtaposition facilitates correlation of the seismometer instrument response to different meteorological conditions, or the selection of seismic data during which wind disturbances can be expected to be small. We summarize data quality issues and also discuss lander-generated seismic signals, due to operation of the sampling arm or other systems, which may be of interest for prospective missions to other bodies. We review wind-seismic correlation, the "Martian solar day (sol) 80" candidate seismic event, and identify the seismic signature of a probable dust devil vortex on sol 482 : the seismometer data allow an estimate of the peak wind, occurring between coarsely spaced meteorology measurements. We present code to generate the plots in this paper to illustrate use of the data product.

  15. The relationship of meteorological patterns with changes in floristic richness along a large elevational gradient in a seasonally dry region of southern Mexico

    Science.gov (United States)

    Salas-Morales, Silvia H.; Meave, Jorge A.; Trejo, Irma

    2015-12-01

    Globally, climate is a fundamental driver of plant species' geographical distributions, yet we still lack a good understanding of climatic variation on tropical mountains and its consequences for elevational floristic patterns. In a seasonally dry region of southern Mexico, we analysed meteorological patterns along a large elevational gradient (0-3670 m a.s.l.) and examined their relationship with changes in floristic richness. Meteorological patterns were characterised using two data sources. First, climatic information was extracted from cartography and records from a few existing meteorological stations. Additionally, air temperature and humidity were recorded hourly during 1 year with data loggers, at sites representing 200-m elevation increments. Floristic information was extracted from a database containing 10,124 records of plant collections, and organized in 200-m elevational belts. Climatic charts distinguished three climate types along the gradient, all with marked rainfall seasonality, but these bore little correspondence with the information obtained with the data loggers. Mean annual air temperature decreased with increasing elevation (lapse rate of 0.542 °C 100 m-1). Thermal oscillation was minimum around 1400 m and increased towards both extremes of the gradient. Relative humidity opposed this pattern, with maxima between 800 and 1800 m, decreasing towards the highest elevations. An analysis of temperature frequency distributions revealed meteorological features undetectable from the annual or monthly means of this variable; despite an overall gradual transition of the proportions of time recorded at different temperatures, some changes did not conform to this pattern. The first discontinuity occurred between 1000-1200 m, where dominant temperatures shifted abruptly; also noticeable was an abrupt increase of the proportion of time elapsed at 0.1-10 °C between 2400 and 2600 m. Air temperature appears to be the most influential climatic factor

  16. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  17. Tornado frequency in the USA - meteorological and non-meteorological factors of a downward trend

    Directory of Open Access Journals (Sweden)

    Mihajlović Jovan

    2015-01-01

    Full Text Available Citing numerical simulations, climate alarmists believe that global warming will lead to more frequent and more intensive tornadoes. Considering temperature increase data in the contiguous USA, this study has investigated the trend of strong tornadoes in F3+ category in the 1954-2012 period. Statistically significant decrease of tornadoes per year at an average rate of 0.44 has been recorded, that is, 4.4 tornadoes per decade. Tornado increase has been recorded with F0 and F1 categories and the cause of this increase lies in meteorological and non-meteorological factors. By using upper and lower standard deviation values, the stages of tornado activity have been singled out. The 1957-1974 period may be considered as an active stage and the 1978-2009 period as an inactive stage. Upward trend of air temperature increase does not correspond with the downward trend of the number of F3+ tornado category, while the correlation coefficient between these two variables is R = −0.14. This fact does not correspond with the simulation results and output data of various numerical models anticipating an increase in the number and intensity of tornado events in the conditions of surface air temperature growth.

  18. assessment and monitoring of meteorological and hydrological ...

    African Journals Online (AJOL)

    During the last century, Algeria experienced a rainfall deficit was recorded in 1944, then successive drought periods since 1975 to the present day in Northen and Eastern. The most recent has repercussions on water resources and on agriculture. In this paper, we focus on the meteorological and hydrological drought.

  19. Meteorological conditions of the mudflow origin in the northern part of the French Alps

    Directory of Open Access Journals (Sweden)

    L. O. Pavlova

    2012-01-01

    Full Text Available A mudflow phenomena are at the top of the list of dangerous natural hazards in the mountains areas all over the world. Among factors resulting in a mudflow phenomena triggering, meteorological conditions are considered to be the most relevant. The general objective of this study was to identify meteorological parameters controlling the triggering of mudflow phenomena in one part of the French Alps over the last 40 years. Major factors are quite well explored at the global scale or contrariwise in very precise territory in particular catchment areas. However, for now we have a poor knowledge of those factors at the scale of a medium-sized region (including catchments with different geomorphic characteristics over several km² especially in the French Alps. In addition, in this region only a few studies focused on relationships with climate. To understand mudflow phenomena activity and their link with meteorological parameters in the north region of the French Alps, we used a multivariate statistical approach. Regional meteorological parameters (such as mean monthly temperature and precipitation were first computed from a Principal Component Analysis of observed meteorological data from four weather stations. A binomial monthly logistic regression probability model was then fitted between the main principal components and mudflow phenomena data base composed of 298 debris flow events triggered between 1971 and 2008. Results revealed that the most successful model including two meteorological predictors (minimal monthly temperature and the number of rainy days between May and September correctly explains more than 60% of the mudflow phenomena events.

  20. Using routine meteorological data to derive sky conditions

    Directory of Open Access Journals (Sweden)

    D. Pagès

    Full Text Available Sky condition is a matter of interest for public and weather predictors as part of weather analyses. In this study, we apply a method that uses total solar radiation and other meteorological data recorded by an automatic station for deriving an estimation of the sky condition. The impetus of this work is the intention of the Catalan Meteorological Service (SMC to provide the public with real-time information about the sky condition. The methodology for deriving sky conditions from meteorological records is based on a supervised classification technique called maximum likelihood method. In this technique we first need to define features which are derived from measured variables. Second, we must decide which sky conditions are intended to be distinguished. Some analyses have led us to use four sky conditions: (a cloudless or almost cloudless sky, (b scattered clouds, (c mostly cloudy – high clouds, (d overcast – low clouds. An additional case, which may be treated separately, corresponds to precipitation (rain or snow. The main features for estimating sky conditions are, as expected, solar radiation and its temporal variability. The accuracy of this method of guessing sky conditions compared with human observations is around 70% when applied to four sites in Catalonia (NE Iberian Peninsula. The agreement increases if we take into account the uncertainty both in the automatic classifier and in visual observations.

    Key words. Meteorological and atmospheric dynamics (instruments and techniques; radiative processes – Atmospheric composition and structure (cloud physics and chemistry

  1. Meteorological Automatic Weather Station (MAWS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Kyrouac, Jenni A [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    The Meteorological Automatic Weather Station (MAWS) is a surface meteorological station, manufactured by Vaisala, Inc., dedicated to the balloon-borne sounding system (BBSS), providing surface measurements of the thermodynamic state of the atmosphere and the wind speed and direction for each radiosonde profile. These data are automatically provided to the BBSS during the launch procedure and included in the radiosonde profile as the surface measurements of record for the sounding. The MAWS core set of measurements is: Barometric Pressure (hPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variables are mounted at the standard heights defined for each variable.

  2. Homogenization of Tianjin monthly near-surface wind speed using RHtestsV4 for 1951-2014

    Science.gov (United States)

    Si, Peng; Luo, Chuanjun; Liang, Dongpo

    2018-05-01

    Historical Chinese surface meteorological records provided by the special fund for basic meteorological data from the National Meteorological Information Center (NMIC) were processed to produce accurate wind speed data. Monthly 2-min near-surface wind speeds from 13 observation stations in Tianjin covering 1951-2014 were homogenized using RHtestV4 combined with their metadata. Results indicate that 10 stations had significant breakpoints—77% of the Tianjin stations—suggesting that inhomogeneity was common in the Tianjin wind speed series. Instrument change accounted for most changes, based on the metadata, including changes in type and height, especially for the instrument type. Average positive quantile matching (QM) adjustments were more than negative adjustments at 10 stations; positive biases with a probability density of 0.2 or more were mainly concentrates in the range 0.2 m s-1 to 1.2 m s-1, while the corresponding negative biases were mainly in the range -0.1 to -1.2 m s-1. Here, changes in variances and trends in the monthly mean surface wind speed series at 10 stations before and after adjustment were compared. Climate characteristics of wind speed in Tianjin were more reasonably reflected by the adjusted data; inhomogeneity in wind speed series was largely corrected. Moreover, error analysis reveals that there was a high consistency between the two datasets here and that from the NMIC, with the latter as the reference. The adjusted monthly near-surface wind speed series shows a certain reliability for the period 1951-2014 in Tianjin.

  3. Airline meteorological requirements

    Science.gov (United States)

    Chandler, C. L.; Pappas, J.

    1985-01-01

    A brief review of airline meteorological/flight planning is presented. The effects of variations in meteorological parameters upon flight and operational costs are reviewed. Flight path planning through the use of meteorological information is briefly discussed.

  4. Arctic Sea Ice Charts from Danish Meteorological Institute, 1893 - 1956

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — From 1893 to 1956, the Danish Meteorological Institute (DMI) created charts of observed and inferred sea ice extent for each summer month. These charts are based on...

  5. Forecast of Frost Days Based on Monthly Temperatures

    Science.gov (United States)

    Castellanos, M. T.; Tarquis, A. M.; Morató, M. C.; Saa-Requejo, A.

    2009-04-01

    Although frost can cause considerable crop damage and mitigation practices against forecasted frost exist, frost forecasting technologies have not changed for many years. The paper reports a new method to forecast the monthly number of frost days (FD) for several meteorological stations at Community of Madrid (Spain) based on successive application of two models. The first one is a stochastic model, autoregressive integrated moving average (ARIMA), that forecasts monthly minimum absolute temperature (tmin) and monthly average of minimum temperature (tminav) following Box-Jenkins methodology. The second model relates these monthly temperatures to minimum daily temperature distribution during one month. Three ARIMA models were identified for the time series analyzed with a stational period correspondent to one year. They present the same stational behavior (moving average differenced model) and different non-stational part: autoregressive model (Model 1), moving average differenced model (Model 2) and autoregressive and moving average model (Model 3). At the same time, the results point out that minimum daily temperature (tdmin), for the meteorological stations studied, followed a normal distribution each month with a very similar standard deviation through years. This standard deviation obtained for each station and each month could be used as a risk index for cold months. The application of Model 1 to predict minimum monthly temperatures showed the best FD forecast. This procedure provides a tool for crop managers and crop insurance companies to asses the risk of frost frequency and intensity, so that they can take steps to mitigate against frost damage and estimated the damage that frost would cost. This research was supported by Comunidad de Madrid Research Project 076/92. The cooperation of the Spanish National Meteorological Institute and the Spanish Ministerio de Agricultura, Pesca y Alimentation (MAPA) is gratefully acknowledged.

  6. Relations between groundwater levels and anthropogenic and meteorological stressors at selected sites in east-central Florida, 1995-2007

    Science.gov (United States)

    Murray, Louis C.

    2010-01-01

    Multivariate linear regression analyses were used to define the relations of water levels in the Upper Floridan aquifer (UFA) and surficial aquifer system (SAS) to anthropogenic and meteorological stressors between 1995 and 2007 at two monitoring well sites (Charlotte Street and Lake Oliver) in east-central Florida. Anthropogenic stressors of interest included municipal and agricultural groundwater withdrawals, and application of reclaimed-water to rapid-infiltration basins (source of aquifer recharge). Meteorological stressors included precipitation and potential evapotranspiration. Overall, anthropogenic and meteorological stressors accounted for about 40 to 89 percent of the variance in UFA and SAS groundwater levels and water-level changes. While mean monthly water levels were better correlated with monthly stressor values, changes in UFA and SAS water levels were better correlated with changes in stressor values. Water levels and water-level changes were influenced by system persistence as the moving-averaged values of both stressor types, which accounted for the influence of the previous month(s) conditions, consistently yielded higher adjusted coefficients of determination (R2 adj) values than did single monthly values. While monthly water-level changes tend to be influenced equally with both stressors across the hydrologically averaged 13-year period, changes were more influenced by one stressor or the other seasonally and during extended wet and dry periods. Seasonally, UFA water-level changes tended to be more influenced by anthropogenic stressors than by meteorological stressors, while changes in SAS water levels tended to be more influenced by meteorological stressors. During extended dry periods (12 months or greater), changes in UFA water levels at Charlotte Street were more affected by anthropogenic stressors than by meteorological stressors, while changes in SAS levels were more affected by meteorological stressors. At Lake Oliver, changes in both

  7. Effect of the Duration of Meteorological Data Collection on the Atmospheric Dispersion Assessment

    International Nuclear Information System (INIS)

    Choi, Yoo-mi; Kim, Eun-hee

    2017-01-01

    This study regards the duration of meteorological data record for a prospective assessment of the environmental impact of gas release from Kori nuclear power plant under normal operation. We compared the atmospheric dispersion factors obtained by employing the meteorological data from 2- and 5-year durations with the corresponding values obtained by employing yearly meteorological data in the period of 2001 to 2008. Influence of the duration of meteorological data collection on short-term atmospheric dispersion factors was previously studied. In this study, long-term dispersion factors were assessed to investigate the influence of the duration of meteorological data collection on the assessment of environmental impact by gas release from Kori nuclear power plant under normal operation. We counted how many yearly meteorological conditions would be represented by 2 or 5 years of long-term data collection. The distribution of shaded cells in Tables I and II indicated that some of the yearly meteorological condition could be properly represented by the conditions averaged over 2- or 5-year durations.

  8. Estimating monthly temperature using point based interpolation techniques

    Science.gov (United States)

    Saaban, Azizan; Mah Hashim, Noridayu; Murat, Rusdi Indra Zuhdi

    2013-04-01

    This paper discusses the use of point based interpolation to estimate the value of temperature at an unallocated meteorology stations in Peninsular Malaysia using data of year 2010 collected from the Malaysian Meteorology Department. Two point based interpolation methods which are Inverse Distance Weighted (IDW) and Radial Basis Function (RBF) are considered. The accuracy of the methods is evaluated using Root Mean Square Error (RMSE). The results show that RBF with thin plate spline model is suitable to be used as temperature estimator for the months of January and December, while RBF with multiquadric model is suitable to estimate the temperature for the rest of the months.

  9. Generation of a typical meteorological year for Hong Kong

    International Nuclear Information System (INIS)

    Chan, Apple L.S.; Chow, T.T.; Fong, Square K.F.; Lin, John Z.

    2006-01-01

    Weather data can vary significantly from year to year. There is a need to derive typical meteorological year (TMY) data to represent the long-term typical weather condition over a year, which is one of the crucial factors for successful building energy simulation. In this paper, various types of typical weather data sets including the TMY, TMY2, WYEC, WYEC2, WYEC2W, WYEC2T and IWEC were reviewed. The Finkelstein-Schafer statistical method was applied to analyze the hourly measured weather data of a 25-year period (1979-2003) in Hong Kong and select representative typical meteorological months (TMMs). The cumulative distribution function (CDF) for each year was compared with the CDF for the long-term composite of all the years in the period for four major weather indices including dry bulb temperature, dew point temperature, wind speed and solar radiation. Typical months for each of the 12 calendar months from the period of years were selected by choosing the one with the smallest deviation from the long-term CDF. The 12 TMMs selected from the different years were used for formulation of a TMY for Hong Kong

  10. Meteorological services annual data report for 2016

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, John [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, S.

    2017-01-18

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2016. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  11. Meteorological services annual data report for 2015

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, John [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-25

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2015. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  12. Meteorological services annual data report for 2017

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, John

    2018-01-18

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2017. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  13. 17 CFR 1.18 - Records for and relating to financial reporting and monthly computation by futures commission...

    Science.gov (United States)

    2010-04-01

    ... financial reporting and monthly computation by futures commission merchants and introducing brokers. 1.18... UNDER THE COMMODITY EXCHANGE ACT Minimum Financial and Related Reporting Requirements § 1.18 Records for and relating to financial reporting and monthly computation by futures commission merchants and...

  14. Motivational Meteorology.

    Science.gov (United States)

    Benjamin, Lee

    1993-01-01

    Describes an introductory meteorology course for nonacademic high school students. The course is made hands-on by the use of an educational software program offered by Accu-Weather. The program contains a meteorology database and instructional modules. (PR)

  15. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  16. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  17. Assessment of BSRN radiation records for the computation of monthly means

    Science.gov (United States)

    Roesch, A.; Wild, M.; Ohmura, A.; Dutton, E. G.; Long, C. N.; Zhang, T.

    2011-02-01

    . The authors suggest using a standardized method for the computation of monthly means which addresses diurnal variations in the missing data in order to avoid a mismatch of future published monthly mean radiation fluxes from BSRN. The application of robust statistics would probably lead to less biased results for data records with frequent gaps and/or flagged data and outliers. The currently applied empirical methods should, therefore, be completed by the development of robust methods.

  18. NOAA Climate Data Record (CDR) of Monthly Outgoing Longwave Radiation (OLR), Version 2.2-1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Climate Data Record (CDR) of monthly mean High Resolution Infrared Radiation Sounder (HIRS) Outgoing Longwave Radiation (OLR) flux at the top of the atmosphere...

  19. Associations of meteorology with adverse pregnancy outcomes: a systematic review of preeclampsia, preterm birth and birth weight.

    Science.gov (United States)

    Beltran, Alyssa J; Wu, Jun; Laurent, Olivier

    2013-12-20

    The relationships between meteorology and pregnancy outcomes are not well known. This article reviews available evidence on the relationships between seasonality or meteorology and three major pregnancy outcomes: the hypertensive disorders of pregnancy (including preeclampsia, eclampsia and gestational hypertension), gestational length and birth weight. In total 35, 28 and 27 studies were identified for each of these outcomes. The risks of preeclampsia appear higher for women with conception during the warmest months, and delivery in the coldest months of the year. Delivery in the coldest months is also associated with a higher eclampsia risk. Patterns of decreased gestational lengths have been observed for births in winter, as well as summer months. Most analytical studies also report decreases in gestational lengths associated with heat. Birth weights are lower for deliveries occurring in winter and in summer months. Only a limited number of studies have investigated the effects of barometric pressure on gestational length or the effects of temperature and sunshine exposure on birth weight, but these questions appear worth investigating further. Available results should encourage further etiological research aiming at enhancing our understanding of the relationships between meteorology and adverse pregnancy outcomes, ideally via harmonized multicentric studies.

  20. Automated meteorological data from commercial aircraft via satellite - Present experience and future implications

    Science.gov (United States)

    Steinberg, R.

    1978-01-01

    The National Aeronautics and Space Administration has developed a low-cost communications system to provide meteorological data from commercial aircraft, in near real-time, on a fully automated basis. The complete system including the low profile antenna and all installation hardware weighs 34 kg. The prototype system has been installed on a Pan American B-747 aircraft and has been providing meteorological data (wind angle and velocity, temperature, altitude and position as a function of time) on a fully automated basis for the past several months. The results have been exceptional. This concept is expected to have important implications for operational meteorology and airline route forecasting.

  1. Report of meteorological observations in site of Tokai Research Establishment in 1971

    International Nuclear Information System (INIS)

    1978-05-01

    Covered are the meteorological observations from January to December 1971 in Tokai Research Establishment as monthly summaries, including daily and hourly mean wind speeds, frequencies of wind directions and atmospheric stability. (auth.)

  2. Estimation of 305 Day Milk Yield from Cumulative Monthly and Bimonthly Test Day Records in Indonesian Holstein Cattle

    Science.gov (United States)

    Rahayu, A. P.; Hartatik, T.; Purnomoadi, A.; Kurnianto, E.

    2018-02-01

    The aims of this study were to estimate 305 day first lactation milk yield of Indonesian Holstein cattle from cumulative monthly and bimonthly test day records and to analyze its accuracy.The first lactation records of 258 dairy cows from 2006 to 2014 consisted of 2571 monthly (MTDY) and 1281 bimonthly test day yield (BTDY) records were used. Milk yields were estimated by regression method. Correlation coefficients between actual and estimated milk yield by cumulative MTDY were 0.70, 0.78, 0.83, 0.86, 0.89, 0.92, 0.94 and 0.96 for 2-9 months, respectively, meanwhile by cumulative BTDY were 0.69, 0.81, 0.87 and 0.92 for 2, 4, 6 and 8 months, respectively. The accuracy of fitting regression models (R2) increased with the increasing in the number of cumulative test day used. The used of 5 cumulative MTDY was considered sufficient for estimating 305 day first lactation milk yield with 80.6% accuracy and 7% error percentage of estimation. The estimated milk yield from MTDY was more accurate than BTDY by 1.1 to 2% less error percentage in the same time.

  3. Idiopathic epistaxis and meteorological factors: case-control study.

    Science.gov (United States)

    Jelavic, B; Majstorovic, Z; Kordić, M; Leventić, M; Grgić, M V; Baudoin, T

    2015-01-01

    The aim of this study was to determine the relationship between the occurrence of idiopathic epistaxis and daily values of air pressure, temperature, and humidity. We also investigated whether biometeorological forecasts should be addressed to persons with a history of nosebleed diathesis. We analyzed consecutive idiopathic epistaxis events over a 3-year period. Patients were included if they had been in the municipality of Mostar, Bosnia and Herzegovina at least 24 hours before the epistaxis occurrence. The monthly variation in epistaxis events was determined. Epistaxis days (Days "0", 0 = day with epistaxis occurrence) and selected nonepistaxis days (Days "-1", -1 = each first single day without epistaxis prior to Day 0) were compared according to daily values of mean, minimum, and maximum temperature; diurnal temperature range; minimum and maximum atmospheric pressure; diurnal pressure range; and mean relative humidity. The greatest and smallest percentage of epistaxis events occurred in the months of March and August, respectively. There were no significant differences between Days 0 and Days -1 with respect to the examined meteorological factors. In this region with a Mediterranean climate, we found a seasonal variation with an incidence peak during the spring transition months, but we did not identify any meteorological trigger factors for epistaxis. Thus, there is no need for biometeorological forecasts to be addressed to persons with a history of nosebleed diathesis.

  4. Reliability analysis of meteorological data registered during nuclear power plant normal operation

    International Nuclear Information System (INIS)

    Amado, V.; Ulke, A.; Marino, B.; Thomas, L.

    2011-01-01

    The atmosphere is the environment in which gaseous radioactive discharges from nuclear power plants are transported. It is therefore essential to have reliable meteorological information to characterize the dispersion and feed evaluation models and radiological environmental impact during normal operation of the plant as well as accidental releases. In this way it is possible to determine the effects on the environment and in humans. The basic data needed to represent adequately the local weather include air temperature, wind speed and direction, rainfall, humidity and pressure. On the other hand, specific data consistent with the used model is required to determine the turbulence, for instance, radiation, cloud cover and vertical temperature gradient. It is important that the recorded data are representative of the local meteorology. This requires, first, properly placed instruments, that should be kept in operation and undergoing maintenance on a regular basis. Second, but equally substantial, a thorough analysis of its reliability must be performed prior to storage and/or data processing. In this paper we present the main criteria to consider choosing the location of a meteorological tower in the area of a nuclear power plant and propose a methodology for assessing the reliability of recorded data. The methodology was developed from the analysis of meteorological data registered in nuclear power plants in Argentina. (authors) [es

  5. Role of meteorology in seasonality of air pollution in megacity Delhi, India.

    Science.gov (United States)

    Guttikunda, Sarath K; Gurjar, Bhola R

    2012-05-01

    The winters in megacity Delhi are harsh, smoggy, foggy, and highly polluted. The pollution levels are approximately two to three times those monitored in the summer months, and the severity is felt not only in the health department but also in the transportation department, with regular delays at airport operations and series of minor and major accidents across the road corridors. The impacts felt across the city are both manmade (due to the fuel burning) and natural (due to the meteorological setting), and it is hard to distinguish their respective proportions. Over the last decade, the city has gained from timely interventions to control pollution, and yet, the pollution levels are as bad as the previous year, especially for the fine particulates, the most harmful of the criteria pollutants, with a daily 2009 average of 80 to 100 μg/m(3). In this paper, the role of meteorology is studied using a Lagrangian model called Atmospheric Transport Modeling System in tracer mode to better understand the seasonality of pollution in Delhi. A clear conclusion is that irrespective of constant emissions over each month, the estimated tracer concentrations are invariably 40% to 80% higher in the winter months (November, December, and January) and 10% to 60% lower in the summer months (May, June, and July), when compared to annual average for that year. Along with monitoring and source apportionment studies, this paper presents a way to communicate complex physical characteristics of atmospheric modeling in simplistic manner and to further elaborate linkages between local meteorology and pollution.

  6. Does a more skilful meteorological input lead to a more skilful flood forecast at seasonal timescales?

    Science.gov (United States)

    Neumann, Jessica; Arnal, Louise; Magnusson, Linus; Cloke, Hannah

    2017-04-01

    Seasonal river flow forecasts are important for many aspects of the water sector including flood forecasting, water supply, hydropower generation and navigation. In addition to short term predictions, seasonal forecasts have the potential to realise higher benefits through more optimal and consistent decisions. Their operational use however, remains a challenge due to uncertainties posed by the initial hydrologic conditions (e.g. soil moisture, groundwater levels) and seasonal climate forcings (mainly forecasts of precipitation and temperature), leading to a decrease in skill with increasing lead times. Here we present a stakeholder-led case study for the Thames catchment (UK), currently being undertaken as part of the H2020 IMPREX project. The winter of 2013-14 was the wettest on record in the UK; driven by 12 major Atlantic depressions, the Thames catchment was subject to compound (concurrent) flooding from fluvial and groundwater sources. Focusing on the 2013-14 floods, this study aims to see whether increased skill in meteorological input translates through to more accurate forecasting of compound flood events at seasonal timescales in the Thames catchment. An earlier analysis of the ECMWF System 4 (S4) seasonal meteorological forecasts revealed that it did not skilfully forecast the extreme event of winter 2013-14. This motivated the implementation of an atmospheric experiment by the ECMWF to force the S4 to more accurately represent the low-pressure weather conditions prevailing in winter 2013-14 [1]. Here, we used both the standard and the "improved" S4 seasonal meteorological forecasts to force the EFAS (European Flood Awareness System) LISFLOOD hydrological model. Both hydrological forecasts were started on the 1st of November 2013 and run for 4 months of lead time to capture the peak of the 2013-14 flood event. Comparing the seasonal hydrological forecasts produced with both meteorological forcing data will enable us to assess how the improved meteorology

  7. World War II Weather Record Transmittances

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World War II Weather Record Transmittances are a record of the weather and meteorological data observed during World War II and transferred to the archive. It...

  8. Developmental milestones record - 4 months

    Science.gov (United States)

    ... are expected to develop certain physical and mental skills. These skills are called milestones. Information All children develop a ... your child's health care provider. PHYSICAL AND MOTOR SKILLS The typical 4-month-old baby should: Slow ...

  9. Developmental milestones record - 18 months

    Science.gov (United States)

    ... The typical 18-month-old: Shows affection Has separation anxiety Listens to a story or looks at pictures Can say 10 or more words when asked Kisses parents with lips puckered Identifies one or more parts ...

  10. Developmental milestones record - 12 months

    Science.gov (United States)

    ... to 2 naps during the day SENSORY AND COGNITIVE DEVELOPMENT The typical 12-month-old: Begins pretend play ( ... Editorial team. Infant and Newborn Development Read more Toddler Development Read more NIH MedlinePlus Magazine Read more A. ...

  11. Documentation of meteorological data from the coniferous forest biome primary station in Oregon.

    Science.gov (United States)

    R.H. Waring; H.R. Holbo; R.P. Bueb; R.L. Fredriksen

    1978-01-01

    As part of the International Biological Program, a primary meteorological station was installed in the west-central Cascade Range of Oregon. Short-wave solar radiation, air temperature, dewpoint temperature, windspeed, and precipitation are recorded continuously. Climatic data are summarized in a daily record available from May 11, 1972, to date. This report details...

  12. U.S. Monthly Climate Normals (1981-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Monthly Climate Normals for 1981 to 2010 are 30-year averages of meteorological parameters for thousands of U.S. stations located across the 50 states, as...

  13. Meteorology Products - Naval Oceanography Portal

    Science.gov (United States)

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › FNMOC › Meteorology Products FNMOC Logo FNMOC Navigation Meteorology Products Oceanography Products Tropical Applications Climatology and Archived Data Info Meteorology Products Global

  14. Meteorological Monitoring Program

    International Nuclear Information System (INIS)

    Hancock, H.A. Jr.; Parker, M.J.; Addis, R.P.

    1994-01-01

    The purpose of this technical report is to provide a comprehensive, detailed overview of the meteorological monitoring program at the Savannah River Site (SRS) near Aiken, South Carolina. The principle function of the program is to provide current, accurate meteorological data as input for calculating the transport and diffusion of any unplanned release of an atmospheric pollutant. The report is recommended for meteorologists, technicians, or any personnel who require an in-depth understanding of the meteorological monitoring program

  15. Meteorological Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, H.A. Jr. [ed.; Parker, M.J.; Addis, R.P.

    1994-09-01

    The purpose of this technical report is to provide a comprehensive, detailed overview of the meteorological monitoring program at the Savannah River Site (SRS) near Aiken, South Carolina. The principle function of the program is to provide current, accurate meteorological data as input for calculating the transport and diffusion of any unplanned release of an atmospheric pollutant. The report is recommended for meteorologists, technicians, or any personnel who require an in-depth understanding of the meteorological monitoring program.

  16. Assessing storm events for energy meteorology: using media and scientific reports to track a North Sea autumn storm.

    Science.gov (United States)

    Kettle, Anthony

    2016-04-01

    Important issues for energy meteorology are to assess meteorological conditions for normal operating conditions and extreme events for the ultimate limit state of engineering structures. For the offshore environment in northwest Europe, energy meteorology encompasses weather conditions relevant for petroleum production infrastructure and also the new field of offshore wind energy production. Autumn and winter storms are an important issue for offshore operations in the North Sea. The weather in this region is considered as challenging for extreme meteorological events as the Gulf of Mexico with its attendant hurricane risk. The rise of the Internet and proliferation of digital recording devices has placed a much greater amount of information in the public domain than was available to national meteorological agencies even 20 years ago. This contribution looks at reports of meteorology and infrastructure damage from a storm in the autumn of 2006 to trace the spatial and temporal record of meteorological events. Media reports give key information to assess the events of the storm. The storm passed over northern Europe between Oct.31-Nov. 2, 2006, and press reports from the time indicate that its most important feature was a high surge that inundated coastal areas. Sections of the Dutch and German North Sea coast were affected, and there was record flooding in Denmark and East Germany in the southern Baltic Sea. Extreme wind gusts were also reported that were strong enough to damage roofs and trees, and there was even tornado recorded near the Dutch-German border. Offshore, there were a series of damage reports from ship and platforms that were linked with sea state, and reports of rogue waves were explicitly mentioned. Many regional government authorities published summaries of geophysical information related to the storm, and these form part of a regular series of online winter storm reports that started as a public service about 15 years ago. Depending on the

  17. Global Summary of the Month, version 1.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global summaries data set contains a monthly (GSOM) resolution of meteorological elements (max temp, snow, etc) from 1763 to present with updates weekly. The...

  18. Considering abortion: a 12-month audit of records of women contacting a Pregnancy Advisory Service.

    Science.gov (United States)

    Rowe, Heather J; Kirkman, Maggie; Hardiman, E Annarella; Mallett, Shelley; Rosenthal, Doreen A

    2009-01-19

    To characterise the demographic and psychosocial circumstances of women contacting Victoria's largest public pregnancy advisory service (PAS). Audit of PAS electronic records for the 12 months from 1 October 2006 to 30 September 2007. De-identified data were extracted from a comprehensive electronic database used for recording consultations. Summary statistics and measures of association. During the 12 months, 5462 women contacted PAS; records were created for 3827 women, and data were available in more than 80% of records for 77% (13/17) of items. Over half of the women receiving pregnancy support from PAS (60%) were 18-29 years old; 12% lived outside the metropolitan area; 51% held a health care card, and smaller percentages faced housing, financial, or drug and alcohol problems; 16% reported violence, but 71% described partners as involved and supportive. Most (79%) made contact within 2 weeks of discovering pregnancy, and 72% were referred by a general practitioner. Later gestation at contact was associated with younger age (P abortion were the desire to delay pregnancy (23%) and family completion (18%); 42% already had at least one child. Twenty-three women reported that the pregnancy was the result of rape. Ten per cent had mental health problems, and smaller numbers faced access barriers and had special needs. This PAS responds to demand from women with diverse social and personal circumstances. Findings provide evidence for policy, prevention and service development.

  19. Wind power variations under humid and arid meteorological conditions

    International Nuclear Information System (INIS)

    Şen, Zekâi

    2013-01-01

    Highlights: • It indicates the role of weather parameters’ roles in the wind energy calculation. • Meteorological variables are more significant in arid regions for wind power. • It provides opportunity to take into consideration air density variability. • Wind power is presented in terms of the wind speed, temperature and pressure. - Abstract: The classical wind power per rotor area per time is given as the half product of the air density by third power of the wind velocity. This approach adopts the standard air density as constant (1.23 g/cm 3 ), which ignores the density dependence on air temperature and pressure. Weather conditions are not taken into consideration except the variations in wind velocity. In general, increase in pressure and decrease in temperature cause increase in the wind power generation. The rate of increase in the pressure has less effect on the wind power as compared with the temperature rate. This paper provides the wind power formulation based on three meteorological variables as the wind velocity, air temperature and air pressure. Furthermore, from the meteorology point of view any change in the wind power is expressed as a function of partial changes in these meteorological variables. Additionally, weather conditions in humid and arid regions differ from each other, and it is interesting to see possible differences between the two regions. The application of the methodology is presented for two meteorology stations in Istanbul, Turkey, as representative of the humid regions and Al-Madinah Al-Monawwarah, Kingdom of Saudi Arabia, for arid region, both on daily record bases for 2010. It is found that consideration of air temperature and pressure in the average wind power calculation gives about 1.3% decrease in Istanbul, whereas it is about 13.7% in Al-Madinah Al-Monawwarah. Hence, consideration of meteorological variables in wind power calculations becomes more significant in arid regions

  20. Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe - Part 1: Model description, evaluation of meteorological predictions, and aerosol-meteorology interactions

    Science.gov (United States)

    Zhang, Y.; Sartelet, K.; Wu, S.-Y.; Seigneur, C.

    2013-07-01

    Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e., the Weather Research and Forecast model (WRF)/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) (WRF/Chem-MADRID)) are conducted over Western Europe. Part 1 describes the background information for the model comparison and simulation design, the application of WRF for January and July 2001 over triple-nested domains in Western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°, and the effect of aerosol/meteorology interactions on meteorological predictions. Nine simulated meteorological variables (i.e., downward shortwave and longwave radiation fluxes (SWDOWN and LWDOWN), outgoing longwave radiation flux (OLR), temperature at 2 m (T2), specific humidity at 2 m (Q2), relative humidity at 2 m (RH2), wind speed at 10 m (WS10), wind direction at 10 m (WD10), and precipitation (Precip)) are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. The vertical profiles of temperature, dew points, and wind speed/direction are also evaluated using sounding data. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients and vertical profiles of major meteorological variables. While the domainwide performance of LWDOWN, OLR, T2, Q2, and RH2 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in SWDOWN, WS10, and Precip even at 0.125° or 0.025° in both months and in WD10 in January. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex terrain and

  1. Lectures in Micro Meteorology

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling

    This report contains the notes from my lectures on Micro scale meteorology at the Geophysics Department of the Niels Bohr Institute of Copenhagen University. In the period 1993-2012, I was responsible for this course at the University. At the start of the course, I decided that the text books...... available in meteorology at that time did not include enough of the special flavor of micro meteorology that characterized the work of the meteorology group at Risø (presently of the Institute of wind energy of the Danish Technical University). This work was focused on Boundary layer flows and turbulence...

  2. Synoptic and meteorological drivers of extreme ozone concentrations over Europe

    Science.gov (United States)

    Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim

    2016-04-01

    The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.

  3. The Science Behind Moravian Meteorological Observations for Late-18th Century Labrador

    Science.gov (United States)

    Newell, Dianne; Lüdecke, Cornelia; Matiu, Michael; Menzel, Annette

    2017-04-01

    From the time they established their first shelter among the Inuit population of the northern coast of Labrador in 1771, the brethren of the Moravian Church began producing series of daily instrumental and qualitative meteorological observations of significance to science networks of the day (Macpherson, 1987, Demarée & Ogilvie, 2008). Contrary to what is understood, missionaries did not make these observations for their own purposes. Rather, they responded to requests from scientists who commissioned the data. Scientists also equipped these undertakings. The enlightened observers provided handwritten copies that were publicized in England and continental Europe by individuals and their philosophical and scientific institutions. This pattern of producing reliable records specifically for scientists was true for the 15-year span of Moravian meteorological observations for all 3 Labrador stations in the late 18th century; the 40-year span of records for 10 Moravian stations in Labrador and Greenland in the mid-19th century; and the observations from 5 Labrador stations commissioned for the 1st international Polar Year, 1882, and continuing for several decades afterward, and longer in the case of Nain. When Nain data is combined with that from the Canadian meteorological service, we have a relatively straight run from 1882 to 2015. In this paper, we examine the late-18th century Moravian meteorological observations for qualitative information of interest to modern scientific research. The daily entries comprise not only measurements of temperature and air pressure, but also other weather observations, such as wind direction, estimated wind speed, cloudiness, information which has already allowed us to begin tracking polar lows travelling from Labrador to Greenland across the Labrador Sea. The annual missionary reports of Moravians provide critical supplementary data identifying recurring local phenological events in nature, which offer an integrated signal of weather

  4. Temperature Discontinuity Caused by Relocation of Meteorological Stations in Taiwan

    Directory of Open Access Journals (Sweden)

    Chih-wen Hung

    2009-01-01

    Full Text Available With global warming upon us, it has be come increasingly important to identify the extent of this warming trend and in doing so be able to rank mean temperature changes in particular seasons and years. This requires a need for homogeneous climate data, which do not reflect individual anomalies in instruments, station locations or local environments (urbanization. Ac curate homogeneous long-term meteorological data helps show how temperature variations have truly occurred in the climate. Many possible factors contribute to artificial abrupt changes or sharp discontinuities in long time series data, such as the impact of station relocation, changes in observational schedules and instrumentation. Homogeneity adjustments of in situ climate data are very important processes for preparing observational data to be used in further analysis and research. Users require a well-documented history of stations to make appropriate homogeneity adjustments because precise historical back ground records of stations can provide researchers with knowledge of when artificial discontinuity has occurred and its causes. With out such de tailed historical data for each meteorological station, abrupt changes are difficult to interpret. Unfortunately, no homogeneity adjustments for temperature records have been con ducted previously in Tai wan, and present available sources of the history of Taiwan's meteorological stations exhibit in consistencies. In this study, information pertaining to station history, especially relocation records, is pro vided. This information is essential for anal y sis of continuous time series data for temperature and climate warming studies. Temperature data from several stations is given in this study to show how artificial discontinuity occurs due to station relocation. Al though there is no homogeneous adjusted climate data provided in this preliminary work, the summarizing of information regarding station relocations should be of assistance

  5. An 18-yr long (1993–2011 snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325 m alt. for driving and evaluating snowpack models

    Directory of Open Access Journals (Sweden)

    S. Morin

    2012-07-01

    Full Text Available A quality-controlled snow and meteorological dataset spanning the period 1 August 1993–31 July 2011 is presented, originating from the experimental station Col de Porte (1325 m altitude, Chartreuse range, France. Emphasis is placed on meteorological data relevant to the observation and modelling of the seasonal snowpack. In-situ driving data, at the hourly resolution, consist of measurements of air temperature, relative humidity, windspeed, incoming short-wave and long-wave radiation, precipitation rate partitioned between snow- and rainfall, with a focus on the snow-dominated season. Meteorological data for the three summer months (generally from 10 June to 20 September, when the continuity of the field record is not warranted, are taken from a local meteorological reanalysis (SAFRAN, in order to provide a continuous and consistent gap-free record. Data relevant to snowpack properties are provided at the daily (snow depth, snow water equivalent, runoff and albedo and hourly (snow depth, albedo, runoff, surface temperature, soil temperature time resolution. Internal snowpack information is provided from weekly manual snowpit observations (mostly consisting in penetration resistance, snow type, snow temperature and density profiles and from a hourly record of temperature and height of vertically free ''settling'' disks. This dataset has been partially used in the past to assist in developing snowpack models and is presented here comprehensively for the purpose of multi-year model performance assessment. The data is placed on the PANGAEA repository (http://dx.doi.org/10.1594/PANGAEA.774249 as well as on the public ftp server ftp://ftp-cnrm.meteo.fr/pub-cencdp/.

  6. Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe – Part 1: Model description, evaluation of meteorological predictions, and aerosol–meteorology interactions

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2013-07-01

    Full Text Available Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e., the Weather Research and Forecast model (WRF/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID (WRF/Chem-MADRID are conducted over Western Europe. Part 1 describes the background information for the model comparison and simulation design, the application of WRF for January and July 2001 over triple-nested domains in Western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°, and the effect of aerosol/meteorology interactions on meteorological predictions. Nine simulated meteorological variables (i.e., downward shortwave and longwave radiation fluxes (SWDOWN and LWDOWN, outgoing longwave radiation flux (OLR, temperature at 2 m (T2, specific humidity at 2 m (Q2, relative humidity at 2 m (RH2, wind speed at 10 m (WS10, wind direction at 10 m (WD10, and precipitation (Precip are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. The vertical profiles of temperature, dew points, and wind speed/direction are also evaluated using sounding data. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients and vertical profiles of major meteorological variables. While the domainwide performance of LWDOWN, OLR, T2, Q2, and RH2 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in SWDOWN, WS10, and Precip even at 0.125° or 0.025° in both months and in WD10 in January. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex

  7. Technical Work Plan For: Meteorological Monitoring and Data Analysis

    International Nuclear Information System (INIS)

    C.T. Bastian

    2003-01-01

    The meteorological monitoring and analysis program has three overall objectives. First, the program will acquire qualified meteorological data from monitoring activities in the Environmental Safety and Health (ES and H) network, including appropriate controls on measuring and test equipment. All work will be completed in accordance with U.S. Department of Energy (DOE) Office of Repository Development (ORD) administrative procedures and Bechtel SAIC Co., LLC (BSC) line procedures. The continuously operating monitoring program includes measuring and test equipment calibrations, operational checks, preventive and corrective maintenance, and data collection. Second, the program will process the raw monitoring data collected in the field and submit technically reviewed, traceable data to the Technical Data Management System (TDMS) and the Records Processing Center. Third, reports containing analyses or calculations could be created to provide information to data requesters

  8. A study of the dengue epidemic and meteorological factors in Guangzhou, China, by using a zero-inflated Poisson regression model.

    Science.gov (United States)

    Wang, Chenggang; Jiang, Baofa; Fan, Jingchun; Wang, Furong; Liu, Qiyong

    2014-01-01

    The aim of this study is to develop a model that correctly identifies and quantifies the relationship between dengue and meteorological factors in Guangzhou, China. By cross-correlation analysis, meteorological variables and their lag effects were determined. According to the epidemic characteristics of dengue in Guangzhou, those statistically significant variables were modeled by a zero-inflated Poisson regression model. The number of dengue cases and minimum temperature at 1-month lag, along with average relative humidity at 0- to 1-month lag were all positively correlated with the prevalence of dengue fever, whereas wind velocity and temperature in the same month along with rainfall at 2 months' lag showed negative association with dengue incidence. Minimum temperature at 1-month lag and wind velocity in the same month had a greater impact on the dengue epidemic than other variables in Guangzhou.

  9. Application of Standardized Precipitation Index to assess meteorological drought in Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Anarul H. Mondol

    2016-09-01

    Full Text Available Bangladesh is one of the vulnerable countries of the world for natural disasters. Drought is one of the common and severe calamities in Bangladesh that causes immense suffering to people in various ways. The present research has been carried out to examine the frequency of meteorological droughts in Bangladesh using the long-term rainfall data of 30 meteorological observatories covering the period of 1948–2011. The study uses the highly effective Standardized Precipitation Index (SPI for drought assessment in Bangladesh. By assessing the meteorological droughts and the history of meteorological droughts of Bangladesh, the spatial distributions of meteorological drought indices were also analysed. The spatial and temporal changes in meteorological drought and changes in different years based on different SPI month intervals were analysed. The results indicate that droughts were a normal and recurrent feature and it occurred more or less all over the country in virtually all climatic regions of the country. As meteorological drought depends on only rainfall received in an area, anomaly of rainfall is the main cause of drought. Bangladesh experienced drought in the years 1950, 1951, 1953, 1954, 1957, 1958, 1960, 1961, 1962, 1963, 1965, 1966, 1967 and 1971 before independence and after independence Bangladesh has experienced droughts in the years 1972, 1973, 1975, 1979, 1980, 1983, 1985, 1992, 1994, 1995, 2002, 2004, 2006, 2009 and 2011 during the period 1948–2011. The study indicated that Rajshahi and its surroundings, in the northern regions and Jessore and its surroundings areas, the island Bhola and surrounding regions, in the south-west region, were vulnerable. In the Sylhet division, except Srimongal, the areas were not vulnerable but the eastern southern sides of the districts Chittagong, Rangamati, Khagrachhari, Bandarban and Teknaf were vulnerable. In the central regions, the districts of Mymensingh and Faridpur were more vulnerable

  10. Meteorological measurements performed at the Saclay Centre of Nuclear Studies, and used equipment

    International Nuclear Information System (INIS)

    Levrard, A.

    1960-01-01

    This note first recalls the objective of meteorological measurements performed at the CENS station atmospheric radioactivity control station. It briefly recalls some definitions and notions in meteorology: atmosphere vertical structure, atmospheric humidity, atmospheric pressure, weather fronts and passage of disturbances, cloud systems. It indicates measurements performed on a daily basis (temperature in the shelter, minimum and maximum temperature, relative humidity, dew point temperature, atmospheric pressure, soil condition, present weather, visibility, past weather, cloudiness, precipitations, miscellaneous phenomena), recorded measurements (wind strength and direction, atmospheric pressure, relative humidity, temperature, pluviometry), while indicating and presenting corresponding measurement devices

  11. HYDRO-METEOROLOGICAL CHARACTERISTICS FOR SUSTAINABLE LAND MANAGEMENT IN THE SINGKARAK BASIN, WEST SUMATRA

    Directory of Open Access Journals (Sweden)

    Kasdi Subagyono

    2008-11-01

    Full Text Available Studi tentang karakteristik hidro-meteorologi telah dilakukan di wilayah danau Singkarak pada 2006-2007 dengan melibatkan partisipasi masyarakat. Stasiun iklim otomatis dan pengukur tinggi muka air otomatis dipasang untuk memonitor data hidrologi dan meteorologi di wilayah cekungan Singkarak. Data meteorologi dianalisa untuk mengetahui karakteristik iklim di wilayah sekitar danau. Model hidrologi GR4J dan H2U diaplikasikan untuk simulasi discharge dan untuk mengkarakterisasi proses hidrologi di wilayah danau. Simulasi model aliran divalidasi pada musim hujan. Alternatif pengelolaan lahan diformulasikan berdasarkan karakteristik hidrologi daerah aliran sungai di sekitar cekungan Singkarak. Hasil penelitian menunjukkan bahwa daerah tangkapan di sekitar danau Singkarak memiliki respon yang tinggi terhadap jumlah dan intensitas hujan. Hidrograp menunjukkan peningkatan yang tajam dari discharge segera setelah curah hujan mulai dan menurun relative lamban ketika curah hujan berhenti. Untuk pengelolaan lahan secara berkelanjutan di wilayah danau Singkarak, konservasi lahan dan air harus menjadi prioritas utama. Wanatani dapat diimplementasikan sebagai alternatif sistem pertanaman oleh penduduk lokal. Karena potensi kelangkaan air bisa terjadi pada periode kering, panen air dan konservasi air dapat diterapkan sebagai opsi yang dapat dikombinasikan dalam sistem pengelolaan lahan.   Hydro-meteorological processes of the Singkarak basin has been studied involving participatory of local community in 2006-2007. Automatic weather station (AWS and automatic water level recorder (AWLR were installed to record meteorological and hydrological data within the Singkarak Basin. Meteorological data was analyzed to understand the meteorological characteristic surrounding the Basin area. Model of GR4J and H2U were used to simulated discharge and to understand the hydrological processes within the basin. The validation of simulated discharge was done in the wet season

  12. Development of an estimated food record for 9-36-month-old toddlers.

    Science.gov (United States)

    Hilbig, A; Drossard, C; Kersting, M; Alexy, U

    2014-08-01

    Adequacy of dietary intake in the sensitive period of toddler development is a key determinant of health in a short- and long-term perspective. Therefore, studies focussing the nutrition of toddlers are of importance. For this purpose, tailored dietary record methods are an important prerequisite. The objective of this work is to develop a toddler-specific estimated food record (EFR) in a booklet providing photographs of age-specific foods and portion sizes that should be accurate and simple. For a toddler study in Germany, a 7-day consecutive EFR was developed. Data were obtained from a sample of toddlers in Germany. The basis is an evaluation of 3-day weighing food records on food choice and portion size of the DONALD (Dortmund Nutritional and Anthropometric Longitudinally Designed) study for 227 toddlers (118 boys) aged 9-36 months from January 2004 to March 2008. In the analysed food records, a total of 15.147 eating occasions with 24.820 dishes were reported and grouped in 17 food groups. To estimate the portion size, the median consumption amounts of the 194 most frequently consumed dishes were calculated and photographed. Formula and commercial complementary food are collected separately. EFR was structured into seven eating occasions of the day: before breakfast, breakfast, mid-morning, lunch, mid-afternoon, dinner, and before bed. The EFR booklet provides a simple, feasible and validated instrument that can be used to update information on dietary habits during the transition from infant to childhood diet for families in different social classes.

  13. Meteorology/Oceanography Help - Naval Oceanography Portal

    Science.gov (United States)

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Help › Meteorology/Oceanography Help USNO Logo USNO Info Meteorology/Oceanography Help Send an e-mail regarding meteorology or oceanography products. Privacy Advisory Your E-Mail

  14. Network-derived inhomogeneity in monthly rainfall analyses over western Tasmania

    International Nuclear Information System (INIS)

    Fawcett, Robert; Trewin, Blair; Barnes-Keoghan, Ian

    2010-01-01

    Monthly rainfall in the wetter western half of Tasmania was relatively poorly observed in the early to middle parts of the 20th century, and this causes a marked inhomogeneity in the operational gridded monthly rainfall analyses generated by the Australian Bureau of Meteorology up until the end of 2009. These monthly rainfall analyses were generated for the period 1900 to 2009 in two forms; a national analysis at 0.25 0 latitude-longitude resolution, and a southeastern Australia regional analysis at 0.1 0 resolution. For any given month, they used all the monthly data from the standard Bureau rainfall gauge network available in the Australian Data Archive for Meteorology. Since this network has changed markedly since Federation (1901), there is obvious scope for network-derived inhomogeneities in the analyses. In this study, we show that the topography-resolving techniques of the new Australian Water Availability Project analyses, adopted as the official operational analyses from the start of 2010, substantially diminish those inhomogeneities, while using largely the same observation network. One result is an improved characterisation of recent rainfall declines across Tasmania. The new analyses are available at two resolutions, 0.25 0 and 0.05 0 .

  15. Automated data system for emergency meteorological response

    International Nuclear Information System (INIS)

    Kern, C.D.

    1975-01-01

    The Savannah River Plant (SRP) releases small amounts of radioactive nuclides to the atmosphere as a consequence of the production of radioisotopes. The potential for larger accidental releases to the atmosphere also exists, although the probability for most accidents is low. To provide for emergency meteorological response to accidental releases and to conduct research on the transport and diffusion of radioactive nuclides in the routine releases, a series of high-quality meteorological sensors have been located on towers in and about SRP. These towers are equipped with instrumentation to detect and record temperature and wind turbulence. Signals from the meterological sensors are brought by land-line to the SRL Weather Center-Analysis Laboratory (WC-AL). At the WC-AL, a Weather Information and Display (WIND) system has been installed. The WIND system consists of a minicomputer with graphical displays in the WC-AL and also in the emergency operating center (EOC) of SRP. In addition, data are available to the system from standard weat []er teletype services, which provide both routine surface weather observations and routine upper air wind and temperature observations for the southeastern United States. Should there be an accidental release to the atmosphere, available recorded data and computer codes would allow the calculation and display of the location, time, and downwind concentration of the atmospheric release. These data are made available to decision makers in near real-time to permit rapid decisive action to limit the consequences of such accidental releases. (auth)

  16. Relationship of spontaneous pneumothorax cases seen in Eastern Black Sea region with meteorological changes

    Science.gov (United States)

    Yamac, Mustafa Esat; Karapolat, Sami; Turkyilmaz, Atila; Seyis, Kubra Nur; Tekinbas, Celal

    2017-08-01

    The relationship of climate changes or weather conditions with the incidence of pneumothorax has been explored for many years. We aimed at revealing the effects of meteorological changes on the incidence of pneumothorax in the Eastern Black Sea region where spontaneous pneumothorax cases are seen relatively more frequently. The records of 195 subjects (179 males and 16 females) who had been monitored and treated due to spontaneous pneumothorax between January 2006 and December 2012 at our clinic were reviewed retrospectively, and their relationship was investigated with the meteorological data obtained by going through the database archive records of the 11th Regional Meteorology Directorate for the years between 2006 and 2012. Wind velocity was observed to be less in the days of having spontaneous pneumothorax than in the days of having no spontaneous pneumothorax, and the difference was found statistically significant ( P = 0.026). The people of our region whose active lifestyle is reflected in their working life, social life, and even in their folk dances usually take a rest in the days of slower wind speed. We think that this state of resting leads to an increase in the frequency of spontaneous pneumothorax.

  17. Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway

    NARCIS (Netherlands)

    Giesen, R.H.; Andreassen, L.M.; van den Broeke, M.R.; Oerlemans, J.

    2009-01-01

    We compare 5 years of meteorological records from automatic weather stations (AWSs) on Storbreen and Midtdalsbreen, two glaciers in southern Norway, located approximately 120 km apart. The records are obtained from identical AWSs with an altitude difference of 120 m and cover the period September

  18. Meteorology and atomic energy

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The science of meteorology is useful in providing information that will be of assistance in the choice of favorable plant locations and in the evaluation of significant relations between meteorology and the design, construction, and operation of plant and facilities, especially those from which radioactive or toxic products could be released to the atmosphere. Under a continuing contract with the Atomic Energy Commission, the Weather Bureau has carried out this study. Some of the meteorological techniques that are available are summarized, and their applications to the possible atmospheric pollution deriving from the use of atomic energy are described. Methods and suggestions for the collection, analysis, and use of meteorological data are presented. Separate abstracts are included of 12 chapters in this publication for inclusion in the Energy Data Base

  19. Dynamics of meteorological and hydrological droughts in the Neman river basin

    International Nuclear Information System (INIS)

    Rimkus, Egidijus; Stonevičius, Edvinas; Kažys, Justas; Valiuškevičius, Gintaras; Korneev, Vladimir; Pakhomau, Aliaksandr

    2013-01-01

    The analysis of drought dynamics in the Neman river basin allows an assessment of extreme regional climate changes. Meteorological and hydrological warm period droughts were analyzed in this study. Meteorological droughts were identified using the standardized precipitation index, and hydrological droughts using the streamflow drought index. The whole river basin was analyzed over the period from 1961 to 2010. Precipitation data from Vilnius meteorological station (from 1887) and discharge data from Smalininkai (Neman) hydrological station (from 1811) were used for an evaluation of meteorological and hydrological drought recurrence over a long-term period. It was found that the total area dryness has decreased over the last 50 years. A statistically significant increase in standardized precipitation index values was observed in some river sub-basins. An analysis of drought recurrence dynamics showed that there was no indication that the number of dangerous drought was increased. It was determined that the standardized precipitation index cannot successfully identify the hydrological summer droughts in an area where the spring snowmelt forms a large part of the annual flow. In particular, the weak relationship between the indices was recorded in the first half of the summer, when a large part of the river runoff depends on accumulated water during the spring thaw. (letter)

  20. Meteorological instrumentation for nuclear facilities

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. An analysis of the problems associated with grounding of a typical meteorological station is presented. (Author) [pt

  1. Meteorological instrumentation for nuclear installations

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. Finally, it is presented an analysis of the problems associated with grounding of a typical meteorological station. (Author) [pt

  2. GENERATION OF A TYPICAL METEOROLOGICAL YEAR FOR PORT HARCOURT ZONE

    Directory of Open Access Journals (Sweden)

    OGOLOMA O.B.

    2011-04-01

    Full Text Available This paper presents data for the typical meteorological year (TMY for the Port Harcourt climatic zone based on the hourly meteorological data recorded during the period 1983–2002, using the Finkelstein-Schafer statistical method. The data are the global solar radiation, wind velocity, dry bulb temperature, relative humidity, and others. The HVAC outside design conditions for the Port Harcourt climatic zone (latitude 4.44oN, longitude 7.1oE, elevation 20 m were found to be 26.7oC, 78.6% and 3.5 m/s for the dry bulb temperature, relative humidity and wind speed, respectively, and 13.5 MJ/m2/day for the global solar radiation. The TMY data for the zone are shown to be sufficiently reliable for engineering practice.

  3. Meteorologically induced modulation in sea level off Tikkavanipalem Coast - Central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desai, R.G.P.; VijayKumar, K.; Mehra, P.; Nagvekar, S.

    on simultaneous observations of tidal and surface meteorological parameters in four temporal segments of 1-month duration each during a 1-year period in 1997-98. Sea level oscillations along the Tikkavanipalem segment of the central east coast of India contain...

  4. METRODOS: Meteorological preprocessor chain

    DEFF Research Database (Denmark)

    Astrup, P.; Mikkelsen, T.; Deme, S.

    2001-01-01

    The METRODOS meteorological preprocessor chain combines measured tower data and coarse grid numerical weather prediction (NWP) data with local scale flow models and similarity scaling to give high resolution approximations of the meteorological situation. Based on available wind velocity and dire...

  5. Effect of temporal averaging of meteorological data on predictions of groundwater recharge

    Directory of Open Access Journals (Sweden)

    Batalha Marcia S.

    2018-06-01

    Full Text Available Accurate estimates of infiltration and groundwater recharge are critical for many hydrologic, agricultural and environmental applications. Anticipated climate change in many regions of the world, especially in tropical areas, is expected to increase the frequency of high-intensity, short-duration precipitation events, which in turn will affect the groundwater recharge rate. Estimates of recharge are often obtained using monthly or even annually averaged meteorological time series data. In this study we employed the HYDRUS-1D software package to assess the sensitivity of groundwater recharge calculations to using meteorological time series of different temporal resolutions (i.e., hourly, daily, weekly, monthly and yearly averaged precipitation and potential evaporation rates. Calculations were applied to three sites in Brazil having different climatological conditions: a tropical savanna (the Cerrado, a humid subtropical area (the temperate southern part of Brazil, and a very wet tropical area (Amazonia. To simplify our current analysis, we did not consider any land use effects by ignoring root water uptake. Temporal averaging of meteorological data was found to lead to significant bias in predictions of groundwater recharge, with much greater estimated recharge rates in case of very uneven temporal rainfall distributions during the year involving distinct wet and dry seasons. For example, at the Cerrado site, using daily averaged data produced recharge rates of up to 9 times greater than using yearly averaged data. In all cases, an increase in the time of averaging of meteorological data led to lower estimates of groundwater recharge, especially at sites having coarse-textured soils. Our results show that temporal averaging limits the ability of simulations to predict deep penetration of moisture in response to precipitation, so that water remains in the upper part of the vadose zone subject to upward flow and evaporation.

  6. Pantex Plant meteorological monitoring program

    International Nuclear Information System (INIS)

    Snyder, S.F.

    1993-07-01

    The current meteorological monitoring program of the US Department of Energy's Pantex Plant, Amarillo, Texas, is described in detail. Instrumentation, meteorological data collection and management, and program management are reviewed. In addition, primary contacts are noted for instrumentation, calibration, data processing, and alternative databases. The quality assurance steps implemented during each portion of the meteorological monitoring program are also indicated

  7. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation

    Science.gov (United States)

    Crandall, Sharifa G.; Gilbert, Gregory S.

    2017-08-01

    The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the

  8. Meteorological Controls on Local and Regional Volcanic Ash Dispersal.

    Science.gov (United States)

    Poulidis, Alexandros P; Phillips, Jeremy C; Renfrew, Ian A; Barclay, Jenni; Hogg, Andrew; Jenkins, Susanna F; Robertson, Richard; Pyle, David M

    2018-05-02

    Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume.

  9. Diffuse solar radiation and associated meteorological parameters in India

    Directory of Open Access Journals (Sweden)

    A. B. Bhattacharya

    Full Text Available Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another.

  10. Reports on 1979 result of Sunshine Project. Research on solar energy system (meteorological investigation); 1979 nendo taiyo energy system no kenkyu seika hokokusho. Kisho chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-31

    The following were implemented with the purpose of collecting, measuring and putting in order the meteorological data required for the R and D on solar energy technology. (1) Observation of direct solar radiation (Nagoya/Sendai), (2) Meteorological observation for the pilot plant site of 1,000kW solar thermal power generation, (3) Studies on estimation of quantity of direct solar radiation, and (4) Studies on characteristics of quantity of direct solar radiation. In (1), the summary and the results were explained on the continuous observation of the quantity of the direct solar radiation conducted in Nagoya and Sendai using a self-recording actinometer. In (2), meteorological observation was conducted for building lots reclaimed from a salt pan at Nio-cho, Mitoyo county, Kagawa prefecture, a scheduled site for the pilot plant. The items were the quantity of global solar radiation, quantity of sky solar radiation, quantity of direct solar radiation, temperature, wet-bulb temperature, wind direction and wind velocity. In (3), A method was developed for estimating the monthly average quantity of the global solar radiation, normal direct solar radiation, horizontal sky solar radiation at an arbitrary spot. In (4), the characteristics of direct/specified direct solar radiation flux curves were elucidated as the basic data for the technological development of solar energy utilization using a sun follower type heat collecting device, with research done on a method for estimating these curves from other meteorological factors. (NEDO)

  11. Quercus pollen season dynamics in the Iberian peninsula: response to meteorological parameters and possible consequences of climate change.

    Science.gov (United States)

    Garcia-Mozo, Herminia; Galan, Carmen; Jato, Victoria; Belmonte, Jordina; de la Guardia, Consuelo; Fernandez, Delia; Gutierrez, Montserrat; Aira, M; Roure, Joan; Ruiz, Luis; Trigo, Mar; Dominguez-Vilches, Eugenio

    2006-01-01

    The main characteristics of the Quercus pollination season were studied in 14 different localities of the Iberian Peninsula from 1992-2004. Results show that Quercus flowering season has tended to start earlier in recent years, probably due to the increased temperatures in the pre-flowering period, detected at study sites over the second half of the 20th century. A Growing Degree Days forecasting model was used, together with future meteorological data forecast using the Regional Climate Model developed by the Hadley Meteorological Centre, in order to determine the expected advance in the start of Quercus pollination in future years. At each study site, airborne pollen curves presented a similar pattern in all study years, with different peaks over the season attributable in many cases to the presence of several species. High pollen concentrations were recorded, particularly at Mediterranean sites. This study also proposes forecasting models to predict both daily pollen values and annual pollen emission. All models were externally validated using data for 2001 and 2004, with acceptable results. Finally, the impact of the highly-likely climate change on Iberian Quercus pollen concentration values was studied by applying RCM meteorological data for different future years, 2025, 2050, 2075 and 2099. Results indicate that under a doubled CO(2) scenario at the end of the 21st century Quercus pollination season could start on average one month earlier and airborne pollen concentrations will increase by 50 % with respect to current levels, with higher values in Mediterranean inland areas.

  12. On the spectra and coherence of some surface meteorological parameters in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Fernandes, A.A.

    . In addition to peaks in the annual, semiannual and four-month periodicities, the various surface parameters exhibited some energy at 2, 3 and 4 year cycles. It was also found that most of the surface meteorological parameters were coherent (at 95% confidence...

  13. Climate and meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Hoitink, D.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the significant activities conducted in 1994 to monitor the meteorology and climatology of the site. Meteorological measurements are taken to support Hanford Site emergency preparedness and response, Hanford Site operations, and atmospheric dispersion calculations. Climatological data are collected to help plan weather-dependent activities and are used as a resource to assess the environmental effects of Hanford Site operations.

  14. Climate and meteorology

    International Nuclear Information System (INIS)

    Hoitink, D.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the significant activities conducted in 1994 to monitor the meteorology and climatology of the site. Meteorological measurements are taken to support Hanford Site emergency preparedness and response, Hanford Site operations, and atmospheric dispersion calculations. Climatological data are collected to help plan weather-dependent activities and are used as a resource to assess the environmental effects of Hanford Site operations

  15. DMSP SSM/I Daily and Monthly Polar Gridded Bootstrap Sea Ice Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — DMSP SSM/I Daily and Monthly Polar Gridded Bootstrap Sea Ice Concentrations in polar stereographic projection currently include Defense Meteorological Satellite...

  16. Defense meteorological satellite measurements of total ozone

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.; Luther, F.M.; Sullivan, R.J.; Weichel, R.L.

    1992-01-01

    A multichannel filter radiometer (MFR) on Defense Meteorological Satellites (DMS) that measured total ozone on a global-scale from March 1977 - February 1980 is described. The total ozone data measured by the MFR were compared with total ozone data taken by surfaced-based Dobson spectrophotometers. When comparisons were made for five months, the Dobson spectrophotometer measured 2-5% more total ozone than the MFR. Comparisons between the Dobson spectrophotometer and the MFR showed a reduced RMS difference as the comparisons were made at closer proximity. A Northern Hemisphere total ozone distribution obtained from MFR data is presented

  17. Influence of Meteorological Conditions in the Annual Variation of Environmental Radon Activity

    International Nuclear Information System (INIS)

    Márquez, J.L.; Sáez, J.C.; Álvarez, A.; Quiñones, J.

    2015-01-01

    The aim of this study is to determine the correlations that exist between Rn gas, the Rn progeny and the meteorological variables. Also it takes part from the study to observe which variables are responsible of ambient dose equivalent rate variations. The study of correlations between different variables was performed using two methodologies; the first of them is a graphical representation of all variables to observe the temporal evolution of each variable and the second is the application of a Principal Component Analysis. The study of variables behavior has been divided into three periods (day, month and year), considering the presence and absence of rainfall for daily and monthly period. Several correlations have been identified between the Rn gas, Rn progeny and meteorological variables. It has also identified the influence of rainfall on the ambient dose equivalent rate due to the radon progeny. To complete the study, a theoretical model based on an adjustment by the least-squares has been performed to estimate the levels of exhaled radon in atmosphere for any day of the year.

  18. Journal of Meteorology and Climate Science

    African Journals Online (AJOL)

    The Journal of Meteorology and Climate Science publishes rigorous theoretical reasoning and advanced empirical research in all areas of Meteorology and Climate Sciences. We welcome articles or proposals from all perspectives and on all subjects pertaining to Meteorology, Agriculture, Humanity, Physics, Geography, ...

  19. Predicting Malaria occurrence in Southwest and North central Nigeria using Meteorological parameters

    Science.gov (United States)

    Akinbobola, A.; Omotosho, J. Bayo

    2013-09-01

    Malaria is a major public health problem especially in the tropics with the potential to significantly increase in response to changing weather and climate. This study explored the impact of weather and climate and its variability on the occurrence and transmission of malaria in Akure, the tropical rain forest area of southwest and Kaduna, in the savanna area of Nigeria. We investigate this supposition by looking at the relationship between rainfall, relative humidity, minimum and maximum temperature, and malaria at the two stations. This study uses monthly data of 7 years (2001-2007) for both meteorological data and record of reported cases of malaria infection. Autoregressive integrated moving average (ARIMA) models were used to evaluate the relationship between weather factors and malaria incidence. Of all the models tested, the ARIMA (1, 0, 1) model fits the malaria incidence data best for Akure and Kaduna according to normalized Bayesian information criterion (BIC) and goodness-of-fit criteria. Humidity and rainfall have almost the same trend of association in all the stations while maximum temperature share the same negative association at southwestern stations and positive in the northern station. Rainfall and humidity have a positive association with malaria incidence at lag of 1 month. In all, we found that minimum temperature is not a limiting factor for malaria transmission in Akure but otherwise in the other stations.

  20. Time variation of meteorological elements as controlled by the quasi-biennial periodicity in the solar phenomena

    International Nuclear Information System (INIS)

    Inoue, Michiharu; Sakurai, Kunitomo

    1981-01-01

    It is shown that the quasi-biennial oscillation observed on some meteorological elements as the ozone content at middle latitudes, both north and south, the zonal wind velocity at the equator and the ground-level temperature at middle latitudes, is produced by the variation of the ultraviolet flux emitted from the sun, which is varying with the solar activity with the period of about 26 months. The ozone content is varying in phase with the ultraviolet flux and the solar activity, whereas the other two elements mentioned above are changing out of phase with these phenomena. There is a possibility that both these meteorological elements and the solar activity are varying quasi-biennially while being modulated by the 26 month periodicity in the efficiency of thermonuclear fusions at the central core of the sun. (author)

  1. Probability of occurrence of monthly and seasonal winter precipitation over Northwest India based on antecedent-monthly precipitation

    Science.gov (United States)

    Nageswararao, M. M.; Mohanty, U. C.; Dimri, A. P.; Osuri, Krishna K.

    2018-05-01

    Winter (December, January, and February (DJF)) precipitation over northwest India (NWI) is mainly associated with the eastward moving mid-latitude synoptic systems, western disturbances (WDs), embedded within the subtropical westerly jet (SWJ), and is crucial for Rabi (DJF) crops. In this study, the role of winter precipitation at seasonal and monthly scale over NWI and its nine meteorological subdivisions has been analyzed. High-resolution (0.25° × 0.25°) gridded precipitation data set of India Meteorological Department (IMD) for the period of 1901-2013 is used. Results indicated that the seasonal precipitation over NWI is below (above) the long-term mean in most of the years, when precipitation in any of the month (December/January/February) is in deficit (excess). The contribution of December precipitation (15-20%) to the seasonal (DJF) precipitation is lesser than January (35-40%) and February (35-50%) over all the subdivisions. December (0.60), January (0.57), and February (0.69) precipitation is in-phase (correlation) with the corresponding winter season precipitation. However, January precipitation is not in-phase with the corresponding December (0.083) and February (-0.03) precipitation, while December is in-phase with the February (0.21). When monthly precipitation (December or January or December-January or February) at subdivision level over NWI is excess (deficit); then, the probability of occurrence of seasonal excess (deficit) precipitation is high (almost nil). When antecedent-monthly precipitation is a deficit or excess, the probability of monthly (January or February or January + February) precipitation to be a normal category is >60% over all the subdivisions. This study concludes that the December precipitation is a good indicator to estimate the performance of January, February, January-February, and the seasonal (DJF) precipitation.

  2. The meteorological measurement system of the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Dilger, H.

    1976-08-01

    The system mainly serves to record the parameters which are important for the diffusion of offgas plume. The system includes 47 instruments in total which are used to measure the wind velocity, the wind direction, the wind vector, the temperature, the dew point, the solar and heat radiation, the precipitations and the atmospheric pressure, most of them mounted at the 200 m high meteorological tower. (orig./HP) [de

  3. Relationship between particle matter and meteorological data in Canada

    Science.gov (United States)

    Bahrami, Azad; Memarian Fard, Mahsa; Bahrami, Ala

    2017-04-01

    The fine particulate matter (PM2.5) has a strong influence on the hydrological cycle, cloud formation, visibility, global climate, and human health. The meteorological conditions have important effects on PM2.5 mass concentration. Canada's National Air Pollution Surveillance (NAPS) network measures air pollutants at urban, suburban and rural locations in Canada. In this study, the point monthly relationships between meteorological data provided by Environment of Canada and PM2.5 mass concentration from January 1st, 2010 to December 31st, 2015 of fifteen speciation stations in Canada were analyzed. The correlation analysis results between PM2.5 concentrations and precipitation as well as surface pressure demonstrated a negative correlation. It should be noted that the correlation between temperature and special humidity with PM2.5 in cold seasons and warm seasons were negative and positive respectively. Moreover, the weak correlation between wind speed and PM2.5 were obtained.

  4. Syllabi for Instruction in Agricultural Meteorology.

    Science.gov (United States)

    De Villiers, G. D. B.; And Others

    A working group of the Commission for Agricultural Meteorology has prepared this report to fill a need for detailed syllabi for instruction in agricultural meteorology required by different levels of personnel. Agrometeorological personnel are classified in three categories: (1) professional meteorological personnel (graduates with basic training…

  5. Month of Conception and Learning Disabilities: A Record-Linkage Study of 801,592 Children.

    Science.gov (United States)

    Mackay, Daniel F; Smith, Gordon C S; Cooper, Sally-Ann; Wood, Rachael; King, Albert; Clark, David N; Pell, Jill P

    2016-10-01

    Learning disabilities have profound, long-lasting health sequelae. Affected children born over the course of 1 year in the United States of America generated an estimated lifetime cost of $51.2 billion. Results from some studies have suggested that autistic spectrum disorder may vary by season of birth, but there have been few studies in which investigators examined whether this is also true of other causes of learning disabilities. We undertook Scotland-wide record linkage of education (annual pupil census) and maternity (Scottish Morbidity Record 02) databases for 801,592 singleton children attending Scottish schools in 2006-2011. We modeled monthly rates using principal sine and cosine transformations of the month number and demonstrated cyclicity in the percentage of children with special educational needs. Rates were highest among children conceived in the first quarter of the year (January-March) and lowest among those conceived in the third (July-September) (8.9% vs 7.6%; P disabilities, and learning difficulties (e.g., dyslexia) and were absent for sensory or motor/physical impairments and mental, physical, or communication problems. Seasonality accounted for 11.4% (95% confidence interval: 9.0, 13.7) of all cases. Some biologically plausible causes of this variation, such as infection and maternal vitamin D levels, are potentially amendable to intervention. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Modeling the Effects of Meteorological Conditions on the Neutron Flux

    Science.gov (United States)

    2017-05-22

    about 2% between day and night on a given day [2]. In the 1960s, the launch of satellites allowed scientists to measure the sun’s cosmic rays outside...hour, a 20% variation, over five months of data collection with large variation between days . Meteorological data were collected with two commercially...contributes to the formation of the neutron flux. To account for the earth’s magnetic field, scientists have done extensive three-dimensional analysis

  7. Fire and forest meteorology

    Science.gov (United States)

    SA Ferguson; T.J. Brown; M. Flannigan

    2005-01-01

    The American Meteorological Society symposia series on Fire and Forest Meteorology provides biennial forums for atmospheric and fire scientists to introduce and discuss the latest and most relevant research on weather, climate and fire. This special issue highlights significant work that was presented at the Fifth Symposium in Orlando, Florida during 16-20 November...

  8. Analysis of typical meteorological years in different climates of China

    International Nuclear Information System (INIS)

    Yang, Liu; Lam, Joseph C.; Liu, Jiaping

    2007-01-01

    Typical meteorological years (TMYs) for 60 cities in the five major climatic zones (severe cold, cold, hot summer and cold winter, hot summer and warm winter, mild) in China were investigated. Long term (1971-2000) measured weather data such as dry bulb and dew point temperatures, wind speed and global solar radiation were gathered and analysed. A total of seven climatic indices were used to select the 12 typical meteorological months (TMMs) that made up the TMY for each city. In general, the cumulative distribution functions of the TMMs selected tended to follow their long term counterparts quite well. There was no persistent trend in any particular years being more representative than the others, though 1978 and 1982 tended to be picked most often. This paper presents the work and its findings. Future work on the assessment of TMYs in building energy simulation is also discussed

  9. Effect of Meteorological Conditions and Geographical Factors in the Onset of Enterovirus 71

    Science.gov (United States)

    Chen, Yu-An; Yu, Hwa-Lung

    2015-04-01

    Since it was first recognized in California in 1969, enterovirus 71 (EV71) infection has been a significant cause of neurological disorder and death in children worldwide. In 1998 a historic epidemic of EV71 infection caused hand-foot-and-mouth disease and herpangina in thousands of people in Taiwan. The impact of EV71 infection is greatest during the summer months in Asia, and epidemics recur with a seasonal pattern. It was reported that seasonal patterns of EV71 differed by geographical localities. Previous studies have also showed significant relationships between meteorological variables, in particular, temperature and relative humidity, and the seasonal epidemic patterns of EV71. However, important issues that remain unclear include the spatiotemporal pattern of the EV71 outbreaks in Taiwan, and what role of favorable meteorological conditions in the transmission of the disease in the space-time domain. Thus, this study used a semiparametric generalized additive model (GAM) to understand the association between EV71 and meteorological factors across space and time. This study utilized a population-based database containing space-time data for clinic and hospital visits (i.e., hospital location and appointment times) of EV71 occurring in children less than 18 years old in Taipei from 1998 to 2008. Meteorological data (i.e., temperature, rainfall, and relative humidity) for the study period were provided by the Taiwan Central Weather Bureau. This study expect to find out an important meteorological factor and threshold.

  10. DESCARTES AND THE METEOROLOGY OF THE WORLD

    Directory of Open Access Journals (Sweden)

    Patrick BRISSEY

    2012-11-01

    Full Text Available Descartes claimed that he thought he could deduce the assumptions of his Meteorology by the contents of the Discourse. He actually began the Meteorology with assumptions. The content of the Discourse, moreover, does not indicate how he deduced the assumptions of the Meteorology. We seem to be left in a precarious position. We can examine the text as it was published, independent of Descartes’ claims, which suggests that he incorporated a presumptive or hypothetical method. On the other hand, we can take Descartes’ claims as our guide and search for the epistemic foundations of the Meteorology independent of the Discourse. In this paper, I will pursue the latter route. My aim is to explain why, and how, Descartes thought that he had deduced the assumptions of the Meteorology. My interest, in this case, is solely Descartes’ physical foundation for the Meteorology, in the physics and physiology that resulted in Descartes’ explanation. With this aim, I provide an interpretation of Descartes’ World where many of its conclusions serve as evidence for the assumptions of the Meteorology. I provisionally conclude that Descartes thought that his World was the epistemic foundation for his Meteorology.

  11. Lloyd Berkner: Catalyst for Meteorology's Fabulous Fifties

    Science.gov (United States)

    Lewis, J. M.

    2002-05-01

    In the long sweep of meteorological history - from Aristotle's Meteorologica to the threshold of the third millennium - the 1950s will surely be recognized as a defining decade. The contributions of many individuals were responsible for the combination of vision and institution building that marked this decade and set the stage for explosive development during the subsequent forty years. In the minds of many individuals who were active during those early years, however, one name stands out as a prime mover par excellence: Lloyd Viel Berkner. On May 1, 1957, Berkner addressed the National Press Club. The address was entitled, "Horizons of Meteorology". It reveals Berkner's insights into meteorology from his position as Chairman of the Committee on Meteorology of the National Academy of Sciences, soon to release the path-breaking report, Research and Education in Meteorology (1958). The address also reflects the viewpoint of an individual deeply involved in the International Geophysical Year (IGY). It is an important footnote to meteorological history. We welcome this opportunity to profile Berkner and to discuss "Horizons of Meteorology" in light of meteorology's state-of-affairs in the 1950s and the possible relevance to Berkner's ideas to contemporary issues.

  12. Equine grass sickness in Scotland: a case-control study of signalment- and meteorology-related risk factors.

    Science.gov (United States)

    Wylie, C E; Shaw, D J; Fordyce, F M; Lilly, A; McGorum, B C

    2014-01-01

    Equine grass sickness (EGS) remains a frequently fatal disease of equids in Britain. Since previous investigations of signalment- and meteorology-related risk factors for EGS have yielded some conflicting data, further investigation is warranted. To identify signalment- and meteorology-related risk factors for EGS in Scotland. Retrospective time-matched case-control study. This study was undertaken using data for 455 EGS cases and 910 time-matched controls that were referred to the Royal (Dick) School of Veterinary Studies, and average UK Meteorological Office weather station meteorological values from the month of admission of the animal, from the 3, 6 and 12 months prior to admission, and for the entire 1990-2006 period. Signalment-related risk factors associated with an increased risk of EGS were native Scottish pure breeds compared with crossbreeds (odds ratio [OR] = 3.56, 95% confidence interval [CI] 2.43-5.43) and animals living on premises located further north within the study region (OR = 1.08, 95% CI 1.06-1.10). There was a decreased risk of EGS in animals aged 11-20 years compared with animals 2-10 years (OR = 0.32, 95% CI 0.22-0.45), non-native Scottish pure breeds compared with crossbreeds (OR = 0.71, 95% CI 0.54-0.94), and stallions compared with mares (OR = 0.43, 95% CI 0.22-0.86). Meteorology-related risk factors associated with an increased risk of EGS were (if Ordnance Survey northing is excluded) more sun hours (OR>1.43) and more frost days (OR>1.13), while there was a decreased risk of EGS with higher average maximum temperature (ORmeteorological risk factors may assist studies on the aetiology of EGS. © 2013 EVJ Ltd.

  13. The influence of meteorological variables on the development of deep venous thrombosis.

    Science.gov (United States)

    Brown, Helen K; Simpson, A John; Murchison, John T

    2009-10-01

    The influence of weather on deep venous thrombosis (DVT) incidence remains controversial. We aimed to characterize the temporal association between DVT and meteorological variables including atmospheric pressure. Data relating to hospital admissions with DVT in Scotland were collected retrospectively for a 20 year period for which corresponding meteorological recordings were available. Weather variables were calculated as weighted daily averages to adjust for variations in population density. Seasonal variation in DVT and short-term effects of weather variables on the relative risk of developing DVT were assess using Poisson regression modelling. The models allowed for the identification of lag periods between variation in the weather and DVT presentation. A total of 37,336 cases of DVT were recorded. There was significant seasonal variation in DVT with a winter peak. Seasonal variation in wind speed and temperature were significantly associated with seasonal variation in DVT. When studying more immediate meteorological influences, low atmospheric pressure, high wind speed and high rainfall were significantly associated with an increased risk of DVT approximately 9-10 days later. The effect was most strikingly demonstrated for atmospheric pressure, every 10 millibar decrease in pressure being associated with a 2.1% increase in relative risk of DVT. Alterations in weather have a small but significant impact upon the incidence of DVT. DVT is particularly associated with reduction in atmospheric pressure giving weight to the hypothesis that reduced cabin pressure in long haul flights contributes to DVT. These findings have implications for our understanding of the pathogenesis of DVT.

  14. The meteorological data acquisition system

    International Nuclear Information System (INIS)

    Bouharrour, S.; Thomas, P.

    1975-07-01

    The 200 m meteorological tower of the Karlsruhe Nuclear Research Center has been equipped with 45 instruments measuring the meteorological parameters near the ground level. Frequent inquiry of the instruments implies data acquisition with on-line data reduction. This task is fulfilled by some peripheral units controlled by a PDP-8/I. This report presents details of the hardware configuration and a short description of the software configuration of the meteorological data acquisition system. The report also serves as an instruction for maintenance and repair work to be carried out at the system. (orig.) [de

  15. Long-period fading in atmospherics during severe meteorological activity and associated solar geophysical phenomena at low latitudes

    Directory of Open Access Journals (Sweden)

    A. B. Bhattacharya

    1998-02-01

    Full Text Available The records of VLF atmospherics over Calcutta and then over Kalyani (West Bengal during the torrential rainfall, caused by violent monsoon and post-monsoon depressions, exhibit distinct long-period fadings both at day and night. Interesting results obtained from an analysis of round-the-clock atmospherics data and associated meteorological parameters are reported in this paper. A possible correlation between the severe meteorological activity with the solar geophysical phenomena was studied. The results are indicative of an interesting sequence of solar-terrestrial events. A tentative conclusion is reached, suggesting an origin of the fading from atmospheric gravity waves generated in the centre of activity of the depressions concerned.Key words. Meteorology and atmospheric dynamics · Lightning · Precipitation

  16. NASA Prediction of Worldwide Energy Resource High Resolution Meteorology Data For Sustainable Building Design

    Science.gov (United States)

    Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping; Stackhouse, Paul W., Jr.

    2013-01-01

    A primary objective of NASA's Prediction of Worldwide Energy Resource (POWER) project is to adapt and infuse NASA's solar and meteorological data into the energy, agricultural, and architectural industries. Improvements are continuously incorporated when higher resolution and longer-term data inputs become available. Climatological data previously provided via POWER web applications were three-hourly and 1x1 degree latitude/longitude. The NASA Modern Era Retrospective-analysis for Research and Applications (MERRA) data set provides higher resolution data products (hourly and 1/2x1/2 degree) covering the entire globe. Currently POWER solar and meteorological data are available for more than 30 years on hourly (meteorological only), daily, monthly and annual time scales. These data may be useful to several renewable energy sectors: solar and wind power generation, agricultural crop modeling, and sustainable buildings. A recent focus has been working with ASHRAE to assess complementing weather station data with MERRA data. ASHRAE building design parameters being investigated include heating/cooling degree days and climate zones.

  17. Analytical Assessment of the Relationship between 100MWp Large-scale Grid-connected Photovoltaic Plant Performance and Meteorological Parameters

    Science.gov (United States)

    Sheng, Jie; Zhu, Qiaoming; Cao, Shijie; You, Yang

    2017-05-01

    This paper helps in study of the relationship between the photovoltaic power generation of large scale “fishing and PV complementary” grid-tied photovoltaic system and meteorological parameters, with multi-time scale power data from the photovoltaic power station and meteorological data over the same period of a whole year. The result indicates that, the PV power generation has the most significant correlation with global solar irradiation, followed by diurnal temperature range, sunshine hours, daily maximum temperature and daily average temperature. In different months, the maximum monthly average power generation appears in August, which related to the more global solar irradiation and longer sunshine hours in this month. However, the maximum daily average power generation appears in October, this is due to the drop in temperature brings about the improvement of the efficiency of PV panels. Through the contrast of monthly average performance ratio (PR) and monthly average temperature, it is shown that, the larger values of monthly average PR appears in April and October, while it is smaller in summer with higher temperature. The results concluded that temperature has a great influence on the performance ratio of large scale grid-tied PV power system, and it is important to adopt effective measures to decrease the temperature of PV plant properly.

  18. Statistical analysis of aerosol species, trace gasses, and meteorology in Chicago.

    Science.gov (United States)

    Binaku, Katrina; O'Brien, Timothy; Schmeling, Martina; Fosco, Tinamarie

    2013-09-01

    Both canonical correlation analysis (CCA) and principal component analysis (PCA) were applied to atmospheric aerosol and trace gas concentrations and meteorological data collected in Chicago during the summer months of 2002, 2003, and 2004. Concentrations of ammonium, calcium, nitrate, sulfate, and oxalate particulate matter, as well as, meteorological parameters temperature, wind speed, wind direction, and humidity were subjected to CCA and PCA. Ozone and nitrogen oxide mixing ratios were also included in the data set. The purpose of statistical analysis was to determine the extent of existing linear relationship(s), or lack thereof, between meteorological parameters and pollutant concentrations in addition to reducing dimensionality of the original data to determine sources of pollutants. In CCA, the first three canonical variate pairs derived were statistically significant at the 0.05 level. Canonical correlation between the first canonical variate pair was 0.821, while correlations of the second and third canonical variate pairs were 0.562 and 0.461, respectively. The first canonical variate pair indicated that increasing temperatures resulted in high ozone mixing ratios, while the second canonical variate pair showed wind speed and humidity's influence on local ammonium concentrations. No new information was uncovered in the third variate pair. Canonical loadings were also interpreted for information regarding relationships between data sets. Four principal components (PCs), expressing 77.0 % of original data variance, were derived in PCA. Interpretation of PCs suggested significant production and/or transport of secondary aerosols in the region (PC1). Furthermore, photochemical production of ozone and wind speed's influence on pollutants were expressed (PC2) along with overall measure of local meteorology (PC3). In summary, CCA and PCA results combined were successful in uncovering linear relationships between meteorology and air pollutants in Chicago and

  19. A Methodological Inter-Comparison of Gridded Meteorological Products

    Science.gov (United States)

    Newman, A. J.; Clark, M. P.; Longman, R. J.; Giambelluca, T. W.; Arnold, J.

    2017-12-01

    Here we present a gridded meteorology inter-comparison using the state of Hawaíi as a testbed. This inter-comparison is motivated by two general goals: 1) the broad user community of gridded observation based meteorological fields should be aware of inter-product differences and the reasons they exist, which allows users to make informed choices on product selection to best meet their specific application(s); 2) we want to demonstrate the utility of inter-comparisons to meet the first goal, yet highlight that they are limited to mostly generic statements regarding attribution of differences that limits our understanding of these complex algorithms and obscures future research directions. Hawaíi is a useful testbed because it is a meteorologically complex region with well-known spatial features that are tied to specific physical processes (e.g. the trade wind inversion). From a practical standpoint, there are now several monthly climatological and daily precipitation and temperature datasets available that are being used for impact modeling. General conclusions that have emerged are: 1) differences in input station data significantly influence product differences; 2) prediction of precipitation occurrence is crucial across multiple metrics; 3) derived temperature statistics (e.g. diurnal temperature range) may have large spatial differences across products; and 4) attribution of differences to methodological choices is difficult and may limit the outcomes of these inter-comparisons, particularly from a development viewpoint. Thus, we want to continue to move the community towards frameworks that allow for multiple options throughout the product generation chain and allow for more systematic testing.

  20. In search of colonial El Niño events and a brief history of meteorology in Ecuador

    Directory of Open Access Journals (Sweden)

    A. Terneus

    2006-01-01

    Full Text Available This study shows a brief overview of the development of meteorology in Ecuador from historical documentation of climatic events in the Colonial era through to modern data collection. In the colonial era (16th century-1824, historical documents of rogation ceremonies and municipal proceedings, from the Quito area, provide a rich source of climate information, including El Niño events. Our preliminary findings show that very few of the historically documented catastrophes and other marked environmental events in Quito match known El Niño episodes. Independently, the first meteorological data was collected in Ecuador (beginning with La Condamine in 1738, followed by the earliest attempts to build a national meteorological network in the 1860's, linked closely to President Gabriel García Moreno and the Jesuits. The 1925 El Niño phenomenon was the first important meteorological episode recorded with scientific instrumentation in Ecuador, with newspapers providing complementary archives about the extreme impact of this event.

  1. In search of colonial El Niño events and a brief history of meteorology in Ecuador

    Science.gov (United States)

    Terneus, A.; Gioda, A.

    2006-02-01

    This study shows a brief overview of the development of meteorology in Ecuador from historical documentation of climatic events in the Colonial era through to modern data collection. In the colonial era (16th century-1824), historical documents of rogation ceremonies and municipal proceedings, from the Quito area, provide a rich source of climate information, including El Niño events. Our preliminary findings show that very few of the historically documented catastrophes and other marked environmental events in Quito match known El Niño episodes. Independently, the first meteorological data was collected in Ecuador (beginning with La Condamine in 1738), followed by the earliest attempts to build a national meteorological network in the 1860's, linked closely to President Gabriel García Moreno and the Jesuits. The 1925 El Niño phenomenon was the first important meteorological episode recorded with scientific instrumentation in Ecuador, with newspapers providing complementary archives about the extreme impact of this event.

  2. Mathematical problems in meteorological modelling

    CERN Document Server

    Csomós, Petra; Faragó, István; Horányi, András; Szépszó, Gabriella

    2016-01-01

    This book deals with mathematical problems arising in the context of meteorological modelling. It gathers and presents some of the most interesting and important issues from the interaction of mathematics and meteorology. It is unique in that it features contributions on topics like data assimilation, ensemble prediction, numerical methods, and transport modelling, from both mathematical and meteorological perspectives. The derivation and solution of all kinds of numerical prediction models require the application of results from various mathematical fields. The present volume is divided into three parts, moving from mathematical and numerical problems through air quality modelling, to advanced applications in data assimilation and probabilistic forecasting. The book arose from the workshop “Mathematical Problems in Meteorological Modelling” held in Budapest in May 2014 and organized by the ECMI Special Interest Group on Numerical Weather Prediction. Its main objective is to highlight the beauty of the de...

  3. Forecast of Antarctic Sea Ice and Meteorological Fields

    Science.gov (United States)

    Barreira, S.; Orquera, F.

    2017-12-01

    Since 2001, we have been forecasting the climatic fields of the Antarctic sea ice (SI) and surface air temperature, surface pressure and precipitation anomalies for the Southern Hemisphere at the Meteorological Department of the Argentine Naval Hydrographic Service with different techniques that have evolved with the years. Forecast is based on the results of Principal Components Analysis applied to SI series (S-Mode) that gives patterns of temporal series with validity areas (these series are important to determine which areas in Antarctica will have positive or negative SI anomalies based on what happen in the atmosphere) and, on the other hand, to SI fields (T-Mode) that give us the form of the SI fields anomalies based on a classification of 16 patterns. Each T-Mode pattern has unique atmospheric fields associated to them. Therefore, it is possible to forecast whichever atmosphere variable we decide for the Southern Hemisphere. When the forecast is obtained, each pattern has a probability of occurrence and sometimes it is necessary to compose more than one of them to obtain the final result. S-Mode and T-Mode are monthly updated with new data, for that reason the forecasts improved with the increase of cases since 2001. We used the Monthly Polar Gridded Sea Ice Concentrations database derived from satellite information generated by NASA Team algorithm provided monthly by the National Snow and Ice Data Center of USA that begins in November 1978. Recently, we have been experimenting with multilayer Perceptron (neuronal network) with supervised learning and a back-propagation algorithm to improve the forecast. The Perceptron is the most common Artificial Neural Network topology dedicated to image pattern recognition. It was implemented through the use of temperature and pressure anomalies field images that were associated with a the different sea ice anomaly patterns. The variables analyzed included only composites of surface air temperature and pressure anomalies

  4. Spatial and temporal variability of reference evapotranspiration and influenced meteorological factors in the Jialing River Basin, China

    Science.gov (United States)

    Herath, Imali Kaushalya; Ye, Xuchun; Wang, Jianli; Bouraima, Abdel-Kabirou

    2018-02-01

    Reference evapotranspiration (ETr) is one of the important parameters in the hydrological cycle. The spatio-temporal variation of ETr and other meteorological parameters that influence ETr were investigated in the Jialing River Basin (JRB), China. The ETr was estimated using the CROPWAT 8.0 computer model based on the Penman-Montieth equation for the period 1964-2014. Mean temperature (MT), relative humidity (RH), sunshine duration (SD), and wind speed (WS) were the main input parameters of CROPWAT while 12 meteorological stations were evaluated. Linear regression and Mann-Kendall methods were applied to study the spatio-temporal trends while the inverse distance weighted (IDW) method was used to identify the spatial distribution of ETr. Stepwise regression and partial correlation methods were used to identify the meteorological variables that most significantly influenced the changes in ETr. The highest annual ETr was found in the northern part of the basin, whereas the lowest rate was recorded in the western part. In the autumn, the highest ETr was recorded in the southeast part of JRB. The annual ETr reflected neither significant increasing nor decreasing trends. Except for the summer, ETr is slightly increasing in other seasons. The MT significantly increased whereas SD and RH were significantly decreased during the 50-year period. Partial correlation and stepwise regression methods found that the impact of meteorological parameters on ETr varies on an annual and seasonal basis while SD, MT, and RH contributed to the changes of annual and seasonal ETr in the JRB.

  5. Nephrolithiasis, stone composition, meteorology, and seasons in Malta: Is there any connection?

    Science.gov (United States)

    Buttigieg, Jesmar; Attard, Stephanie; Carachi, Alexander; Galea, Ruth; Fava, Stephen

    2016-01-01

    The effect of seasons and meteorology on the incidence of nephrolithiasis has been studied in various regions around the globe, but seldom in the Mediterranean. This retrospective analysis aims at investigating these putative effects in the Maltese Islands, whose climate is typically Mediterranean, followed by a systematic review of the literature. Submission rate and chemical composition of all kidney stones after spontaneous passage or surgical removal between January 2009 and December 2011 were analyzed according to seasons and corresponding meteorology. A total of 389 stones were analyzed. A higher stone submission rate was observed in summer compared to winter (31.6% vs. 20.8%, P = 0.0008) and in the warm period compared to the cold period (57.1% vs. 42.9%, P = 0.0001). Significant correlation was established between the monthly number of stones and mean monthly maximum temperature (r = 0.50, P = 0.002), mean monthly temperature (r = 0.49, P = 0.003) and mean monthly Humidex (r = 0.49, P = 0.007). Humidex was found to be an independent predictor for stone submission (β = 0.49, P = 0.007). The majority of stones contained calcium (83.3%), combined with oxalate (77.6%), phosphate (14.7%), and carbonate (2.8%). Some stones (11.8%) contained a mixture of >1 negatively charged molecules. Urate (11.6%), cysteine (4.6%), and ammonium-magnesium-phosphate (0.5%) constituted the rest. There was no association between chemical composition and seasons. Literature review included 25 articles. Higher ambient temperature and warm seasons were the most commonly encountered risk factors for both presentation and etiology of nephrolithiasis. A significant positive correlation was noted between ambient temperature and stone submission rate, which was significantly higher during the warm months in Malta.

  6. Recapitulation of the Research Leading to the Treatise on "Physical Hydrodynamics with Applications to Dynamical Meteorology" as recorded by V. Bjerknes, 1933

    OpenAIRE

    Berger, Wolfgang H

    2007-01-01

    Vilhelm Frimann Koren Bjerknes, Norwegian physicist (1862-1951), was a central figure in the pioneering stage of modern meteorology and oceanography. His meteorological theories (especially with regard to cyclogenesis along the polar front) helped establish the basis for weather forecasting in temperate and high latitudes. His mathematical treatment of water motions in the sea helped establish the foundations for dynamic oceanography. Bjerknes was the leading figure of the "Bergen Sc...

  7. Analysis of monthly, winter, and annual temperatures in Zagreb, Croatia, from 1864 to 2010: the 7.7-year cycle and the North Atlantic Oscillation

    Science.gov (United States)

    Sen, Asok K.; Ogrin, Darko

    2016-02-01

    Long instrumental records of meteorological variables such as temperature and precipitation are very useful for studying regional climate in the past, present, and future. They can also be useful for understanding the influence of large-scale atmospheric circulation processes on the regional climate. This paper investigates the monthly, winter, and annual temperature time series obtained from the instrumental records in Zagreb, Croatia, for the period 1864-2010. Using wavelet analysis, the dominant modes of variability in these temperature series are identified, and the time intervals over which these modes may persist are delineated. The results reveal that all three temperature records exhibit low-frequency variability with a dominant periodicity at around 7.7 years. The 7.7-year cycle has also been observed in the temperature data recorded at several other stations in Europe, especially in Northern and Western Europe, and may be linked to the North Atlantic Oscillation (NAO) and/or solar/geomagnetic activity.

  8. Meteorology Online.

    Science.gov (United States)

    Kahl, Jonathan D. W.

    2001-01-01

    Describes an activity to learn about meteorology and weather using the internet. Discusses the National Weather Service (NWS) internet site www.weather.gov. Students examine maximum and minimum daily temperatures, wind speed, and direction. (SAH)

  9. Estimation of monthly wind power outputs of WECS with limited record period using artificial neural networks

    International Nuclear Information System (INIS)

    Tu, Yi-Long; Chang, Tsang-Jung; Chen, Cheng-Lung; Chang, Yu-Jung

    2012-01-01

    Highlights: ► ANN with short record training data is used to estimate power outputs in an existing station. ► The suitable numbers/parameters of input neurons for ANN are presented. ► Current wind speeds and previous power outputs are the most important input neurons. ► Choosing suitable input parameters is more important than choosing multiple parameters. - Abstract: For the brand new wind power industry, online recordings of wind power data are always in a relatively limited period. The aim of the study is to investigate the suitable numbers/parameters of input neurons for artificial neural networks under a short record of measured data. Measured wind speeds, wind directions (yaw angles) and power outputs with 10-min resolution at an existing wind power station, located at Jhongtun, Taiwan, are integrated to form three types of input neuron numbers and sixteen cases of input neurons. The first-10 days of each month in 2006 are used for data training to simulate the following 20-day power generation of the same month. The performance of various input neuron cases is evaluated. The simulated results show that using the first 10-day training data with adequate input neurons can estimate energy outputs well except the weak wind regime (May, June, and July). Among the input neuron parameters used, current wind speeds V(t) and previous power outputs P(t − 1) are the most important. Individually using one of them into input neurons can only provide satisfactory estimation. However, simultaneously using these two parameters into input neurons can give the best estimation. Thus, choosing suitable input parameters is more important than choosing multiple parameters.

  10. Epicurean Meteorology: Sources, method, scope and organization

    NARCIS (Netherlands)

    Bakker, F.A.

    2016-01-01

    In Epicurean Meteorology Frederik Bakker discusses the meteorology as laid out by Epicurus (341-270 BCE) and Lucretius (1st century BCE). Although in scope and organization their ideas are clearly rooted in the Peripatetic tradition, their meteorology sets itself apart from this tradition by its

  11. Model variations in predicting incidence of Plasmodium falciparum malaria using 1998-2007 morbidity and meteorological data from south Ethiopia.

    Science.gov (United States)

    Loha, Eskindir; Lindtjørn, Bernt

    2010-06-16

    Malaria transmission is complex and is believed to be associated with local climate changes. However, simple attempts to extrapolate malaria incidence rates from averaged regional meteorological conditions have proven unsuccessful. Therefore, the objective of this study was to determine if variations in specific meteorological factors are able to consistently predict P. falciparum malaria incidence at different locations in south Ethiopia. Retrospective data from 42 locations were collected including P. falciparum malaria incidence for the period of 1998-2007 and meteorological variables such as monthly rainfall (all locations), temperature (17 locations), and relative humidity (three locations). Thirty-five data sets qualified for the analysis. Ljung-Box Q statistics was used for model diagnosis, and R squared or stationary R squared was taken as goodness of fit measure. Time series modelling was carried out using Transfer Function (TF) models and univariate auto-regressive integrated moving average (ARIMA) when there was no significant predictor meteorological variable. Of 35 models, five were discarded because of the significant value of Ljung-Box Q statistics. Past P. falciparum malaria incidence alone (17 locations) or when coupled with meteorological variables (four locations) was able to predict P. falciparum malaria incidence within statistical significance. All seasonal AIRMA orders were from locations at altitudes above 1742 m. Monthly rainfall, minimum and maximum temperature was able to predict incidence at four, five and two locations, respectively. In contrast, relative humidity was not able to predict P. falciparum malaria incidence. The R squared values for the models ranged from 16% to 97%, with the exception of one model which had a negative value. Models with seasonal ARIMA orders were found to perform better. However, the models for predicting P. falciparum malaria incidence varied from location to location, and among lagged effects, data

  12. Model variations in predicting incidence of Plasmodium falciparum malaria using 1998-2007 morbidity and meteorological data from south Ethiopia

    Directory of Open Access Journals (Sweden)

    Loha Eskindir

    2010-06-01

    Full Text Available Abstract Background Malaria transmission is complex and is believed to be associated with local climate changes. However, simple attempts to extrapolate malaria incidence rates from averaged regional meteorological conditions have proven unsuccessful. Therefore, the objective of this study was to determine if variations in specific meteorological factors are able to consistently predict P. falciparum malaria incidence at different locations in south Ethiopia. Methods Retrospective data from 42 locations were collected including P. falciparum malaria incidence for the period of 1998-2007 and meteorological variables such as monthly rainfall (all locations, temperature (17 locations, and relative humidity (three locations. Thirty-five data sets qualified for the analysis. Ljung-Box Q statistics was used for model diagnosis, and R squared or stationary R squared was taken as goodness of fit measure. Time series modelling was carried out using Transfer Function (TF models and univariate auto-regressive integrated moving average (ARIMA when there was no significant predictor meteorological variable. Results Of 35 models, five were discarded because of the significant value of Ljung-Box Q statistics. Past P. falciparum malaria incidence alone (17 locations or when coupled with meteorological variables (four locations was able to predict P. falciparum malaria incidence within statistical significance. All seasonal AIRMA orders were from locations at altitudes above 1742 m. Monthly rainfall, minimum and maximum temperature was able to predict incidence at four, five and two locations, respectively. In contrast, relative humidity was not able to predict P. falciparum malaria incidence. The R squared values for the models ranged from 16% to 97%, with the exception of one model which had a negative value. Models with seasonal ARIMA orders were found to perform better. However, the models for predicting P. falciparum malaria incidence varied from location

  13. Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology

    Science.gov (United States)

    Hashim, Roslan; Roy, Chandrabhushan; Motamedi, Shervin; Shamshirband, Shahaboddin; Petković, Dalibor; Gocic, Milan; Lee, Siew Cheng

    2016-05-01

    Rainfall is a complex atmospheric process that varies over time and space. Researchers have used various empirical and numerical methods to enhance estimation of rainfall intensity. We developed a novel prediction model in this study, with the emphasis on accuracy to identify the most significant meteorological parameters having effect on rainfall. For this, we used five input parameters: wet day frequency (dwet), vapor pressure (e̅a), and maximum and minimum air temperatures (Tmax and Tmin) as well as cloud cover (cc). The data were obtained from the Indian Meteorological Department for the Patna city, Bihar, India. Further, a type of soft-computing method, known as the adaptive-neuro-fuzzy inference system (ANFIS), was applied to the available data. In this respect, the observation data from 1901 to 2000 were employed for testing, validating, and estimating monthly rainfall via the simulated model. In addition, the ANFIS process for variable selection was implemented to detect the predominant variables affecting the rainfall prediction. Finally, the performance of the model was compared to other soft-computing approaches, including the artificial neural network (ANN), support vector machine (SVM), extreme learning machine (ELM), and genetic programming (GP). The results revealed that ANN, ELM, ANFIS, SVM, and GP had R2 of 0.9531, 0.9572, 0.9764, 0.9525, and 0.9526, respectively. Therefore, we conclude that the ANFIS is the best method among all to predict monthly rainfall. Moreover, dwet was found to be the most influential parameter for rainfall prediction, and the best predictor of accuracy. This study also identified sets of two and three meteorological parameters that show the best predictions.

  14. Meteorological Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multi-year summaries of one or more meteorological elements at a station or in a state. Primarily includes Form 1078, a United States Weather Bureau form designed...

  15. Medical Meteorology: the Relationship between Meteorological Parameters (Humidity, Rainfall, Wind, and Temperature and Brucellosis in Zanjan Province

    Directory of Open Access Journals (Sweden)

    Yousefali Abedini

    2016-06-01

    Full Text Available Background: Brucellosis (Malta fever is a major contagious zoonotic disease, with economic and public health importance. Methods To assess the effect of meteorological (temperature, rainfall, humidity, and wind and climate parameters on incidence of brucellosis, brucellosis distribution and meteorological zoning maps of Zanjan Province were prepared using Inverse Distance Weighting (IDW and Kriging technique in Arc GIS medium. Zoning maps of mean temperature, rainfall, humidity, and wind were compared to brucellosis distribution maps. Results: Correlation test showed no relationship between the mean number of patients with brucellosis and any of the four meteorological parameters. Conclusion: It seems that in Zanjan province there is no correlation between brucellosis and meteorological parameters.

  16. Technology and Meteorology. An Action Research Paper.

    Science.gov (United States)

    Taggart, Raymond F.

    Meteorology, the science of weather and weather conditions, has traditionally been taught via textbook and rote demonstration. This study was intended to determine to what degree utilizing technology in the study of meteorology improves students' attitudes towards science and to measure to what extent technology in meteorology increases…

  17. Defense Meteorological Satellite Program (DMSP) Film

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The United States Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) is a polar orbiting meteorological sensor with two...

  18. Estimation of monthly solar exposure on horizontal surface by Angstrom-type regression equation

    International Nuclear Information System (INIS)

    Ravanshid, S.H.

    1981-01-01

    To obtain solar flux intensity, solar radiation measuring instruments are the best. In the absence of instrumental data there are other meteorological measurements which are related to solar energy and also it is possible to use empirical relationships to estimate solar flux intensit. One of these empirical relationships to estimate monthly averages of total solar radiation on a horizontal surface is the modified angstrom-type regression equation which has been employed in this report in order to estimate the solar flux intensity on a horizontal surface for Tehran. By comparing the results of this equation with four years measured valued by Tehran's meteorological weather station the values of meteorological constants (a,b) in the equation were obtained for Tehran. (author)

  19. Extreme meteorological conditions

    International Nuclear Information System (INIS)

    Altinger de Schwarzkopf, M.L.

    1983-01-01

    Different meteorological variables which may reach significant extreme values, such as the windspeed and, in particular, its occurrence through tornadoes and hurricanes that necesarily incide and wich must be taken into account at the time of nuclear power plants' installation, are analyzed. For this kind of study, it is necessary to determine the basic phenomenum of design. Two criteria are applied to define the basic values of design for extreme meteorological variables. The first one determines the expected extreme value: it is obtained from analyzing the recurence of the phenomenum in a convened period of time, wich may be generally of 50 years. The second one determines the extreme value of low probability, taking into account the nuclear power plant's operating life -f.ex. 25 years- and considering, during said lapse, the occurrence probabilities of extreme meteorological phenomena. The values may be determined either by the deterministic method, which is based on the acknowledgement of the fundamental physical characteristics of the phenomena or by the probabilistic method, that aims to the analysis of historical statistical data. Brief comments are made on the subject in relation to the Argentine Republic area. (R.J.S.) [es

  20. Modern history of meteorological services with pictures for a century

    International Nuclear Information System (INIS)

    2004-07-01

    This book deals with modern history of meteorological services with pictures for a century. It is divided into twelve chapters, which mention meteorological services before the Joseon Dynasty period, meteorological observation about surface weather observation, aero logical observation, meteorological satellite, seismometry, observation on yellow dust, and observation on the falling of thunderbolt, weather forecast, meteorological telecommunication, education for weather, research for weather, promotion on weather, international cooperation, main events, special aid on meteorological services, meteorological disaster and the list of the offices for meteorological services.

  1. Meteorological interpretation of transient LOD changes

    Science.gov (United States)

    Masaki, Y.

    2008-04-01

    The Earth’s spin rate is mainly changed by zonal winds. For example, seasonal changes in global atmospheric circulation and episodic changes accompanied with El Nĩ os are clearly detected n in the Length-of-day (LOD). Sub-global to regional meteorological phenomena can also change the wind field, however, their effects on the LOD are uncertain because such LOD signals are expected to be subtle and transient. In our previous study (Masaki, 2006), we introduced atmospheric pressure gradients in the upper atmosphere in order to obtain a rough picture of the meteorological features that can change the LOD. In this presentation, we compare one-year LOD data with meteorological elements (winds, temperature, pressure, etc.) and make an attempt to link transient LOD changes with sub-global meteorological phenomena.

  2. EVALUATION OF METEOROLOGICAL ALERT CHAIN IN CASTILLA Y LEÓN (SPAIN): How can the meteorological risk managers help researchers?

    Science.gov (United States)

    López, Laura; Guerrero-Higueras, Ángel Manuel; Sánchez, José Luis; Matía, Pedro; Ortiz de Galisteo, José Pablo; Rodríguez, Vicente; Lorente, José Manuel; Merino, Andrés; Hermida, Lucía; García-Ortega, Eduardo; Fernández-Manso, Oscar

    2013-04-01

    Evaluating the meteorological alert chain, or, how information is transmitted from the meteorological forecasters to the final users, passing through risk managers, is a useful tool that benefits all the links of the chain, especially the meteorology researchers and forecasters. In fact, the risk managers can help significantly to improve meteorological forecasts in different ways. Firstly, by pointing out the most appropriate type of meteorological format, and its characteristics when representing the meteorological information, consequently improving the interpretation of the already-existing forecasts. Secondly, by pointing out the specific predictive needs in their workplaces related to the type of significant meteorological parameters, temporal or spatial range necessary, meteorological products "custom-made" for each type of risk manager, etc. In order to carry out an evaluation of the alert chain in Castilla y León, we opted for the creation of a Panel of Experts made up of personnel specialized in risk management (Responsible for Protection Civil, Responsible for Alert Services and Hydrological Planning of Hydrographical Confederations, Responsible for highway maintenance, and management of fires, fundamentally). In creating this panel, a total of twenty online questions were evaluated, and the majority of the questions were multiple choice or open-ended. Some of the results show how the risk managers think that it would be interesting, or very interesting, to carry out environmental educational campaigns about the meteorological risks in Castilla y León. Another result is the elevated importance that the risk managers provide to the observation data in real-time (real-time of wind, lightning, relative humidity, combined indices of risk of avalanches, snowslides, index of fires due to convective activity, etc.) Acknowledgements The authors would like to thank the Junta de Castilla y León for its financial support through the project LE220A11-2.

  3. Test reference year generation from meteorological and simulated solar radiation data

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, A. de; Bilbao, J. [University of Valladolid (Spain). Dept. of Applied Physics

    2005-06-01

    In this paper, a new method for generating test reference year (TRY) from the measured meteorological variables is proposed. Hourly recorded data of air temperature, relative humidity and wind velocity for two stations, Valladolid and Madrid (Spain) were selected to develop the method and a TRY was obtained. Monthly average solar radiation values were calculated taking into account the temperature and solar radiation correlations. Four different methodologies were used to evaluate hourly global solar radiation from hourly weather data of temperature and, as a consequence, four different TRYs with common data sets of temperature, relative humidity and wind velocity were generated for Valladolid and Madrid (Spain) stations. In order to evaluate the four different methodologies, TRYs data were compared with long-term measured data series using statistical estimators such as average, standard deviation, root mean square error (rmse) and mean bias error (mbe). Festa and Ratto and the TAG model, from Aguiar and Collares-Pereira, respectively, turned out to be the best methods for generating hourly solar irradiation data. The best performance was shown by the TRY0 year which was based on the solar radiation models mentioned above. The results show that the best reference year for each site varies with the season and the characteristics of the station. (author)

  4. The Fleet Numerical Meteorology and Oceanography Center (FNMOC) - Naval

    Science.gov (United States)

    Meteorology Oceanography Ice You are here: Home › FNMOC FNMOC Logo FNMOC Navigation Meteorology Products Oceanography Products Tropical Applications Climatology and Archived Data Info The Fleet Numerical Meteorology and Oceanography Center (FNMOC) The Fleet Numerical Meteorology and Oceanography Center (FNMOC

  5. Interim report on the meteorological database

    International Nuclear Information System (INIS)

    Stage, S.A.; Ramsdell, J.V.; Simonen, C.A.; Burk, K.W.

    1993-01-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is estimating radiation doses that individuals may have received from operations at Hanford from 1944 to the present. An independent Technical Steering Panel (TSP) directs the project, which is being conducted by the Battelle, Pacific Northwest Laboratories in Richland, Washington. The goals of HEDR, as approved by the TSP, include dose estimates and determination of confidence ranges for these estimates. This letter report describes the current status of the meteorological database. The report defines the meteorological data available for use in climate model calculations, describes the data collection procedures and the preparation and control of the meteorological database. This report also provides an initial assessment of the data quality. The available meteorological data are adequate for atmospheric calculations. Initial checks of the data indicate the data entry accuracy meets the data quality objectives

  6. Virtual Meteorological Center

    Directory of Open Access Journals (Sweden)

    Marius Brinzila

    2007-10-01

    Full Text Available A virtual meteorological center, computer based with Internet possibility transmission of the information is presented. Circumstance data is collected with logging field meteorological station. The station collects and automatically save data about the temperature in the air, relative humidity, pressure, wind speed and wind direction, rain gauge, solar radiation and air quality. Also can perform sensors test, analyze historical data and evaluate statistical information. The novelty of the system is that it can publish data over the Internet using LabVIEW Web Server capabilities and deliver a video signal to the School TV network. Also the system performs redundant measurement of temperature and humidity and was improved using new sensors and an original signal conditioning module.

  7. Enhancement of PM2.5 Concentrations by Aerosol-Meteorology Interactions Over China

    Science.gov (United States)

    Zhang, Xin; Zhang, Qiang; Hong, Chaopeng; Zheng, Yixuan; Geng, Guannan; Tong, Dan; Zhang, Yuxuan; Zhang, Xiaoye

    2018-01-01

    Aerosol-meteorology interactions can change surface aerosol concentrations via different mechanisms such as altering radiation budget or cloud microphysics. However, few studies investigated the impacts of different mechanisms on temporal and spatial distribution of PM2.5 concentrations over China. Here we used the fully coupled Weather Research and Forecasting model with online chemistry (WRF-Chem) to quantify the enhancement of PM2.5 concentrations by aerosol-meteorology feedback in China in 2014 for different seasons and separate the relative impacts of aerosol radiation interactions (ARIs) and aerosol-cloud interactions (ACIs). We found that ARIs and ACIs could increase population-weighted annual mean PM2.5 concentration over China by 4.0 μg/m3 and 1.6 μg/m3, respectively. We found that ARIs play a dominant role in aerosol-meteorology interactions in winter, while the enhancement of PM2.5 concentration by ARIs and ACIs is comparable in other three seasons. ARIs reduced the wintertime monthly mean wind speed and planetary boundary layer (PBL) height by up to 0.1 m/s and 160 m, respectively, but increased the relative humidity by up to 4%, leading to accumulation of pollutants within PBL. Also, ARIs reduced dry deposition velocity of aerosols by up to 20%, resulting in an increase in PM2.5 lifetime and concentrations. ARIs can increase wintertime monthly mean surface PM2.5 concentration by a maximum of 30 μg/m3 in Sichuan Basin. ACIs can also increase PM2.5 concentration with more significant impacts in wet seasons via reduced wet scavenging and enhanced in-cloud chemistry. Dominant processes in PM2.5 enhancement are also clarified in different seasons. Results show that physical process is more important than chemical processes in winter in ARIs, while chemical process of secondary inorganic aerosols production may be crucial in wet seasons via ACIs.

  8. Meteorological Data Analysis Using MapReduce

    Directory of Open Access Journals (Sweden)

    Wei Fang

    2014-01-01

    Full Text Available In the atmospheric science, the scale of meteorological data is massive and growing rapidly. K-means is a fast and available cluster algorithm which has been used in many fields. However, for the large-scale meteorological data, the traditional K-means algorithm is not capable enough to satisfy the actual application needs efficiently. This paper proposes an improved MK-means algorithm (MK-means based on MapReduce according to characteristics of large meteorological datasets. The experimental results show that MK-means has more computing ability and scalability.

  9. Meteorological observations at Syowa Station, Antarctica, 2009 by the 50th Japanese Antarctic Research Expedition

    Directory of Open Access Journals (Sweden)

    Juhei Sugaya

    2014-07-01

    Full Text Available This report describes the results of meteorological observations carried out by the Meteorological Observation Team of the 50th Japanese Antarctic Research Expedition (JARE-50 at Syowa Station from February 2009 to January 2010. The observation methods, instruments, and statistical methods used by JARE-50 were similar to those used by JARE-49.  The most notable results are as follows.  1 Class-A blizzards, the heaviest storm class, were recorded 13 times. This frequency is the same as in 1978, which was the highest on record. A total of 29 blizzards (of various classes occurred in 2009, which is close to normal.  2 The maximum sustained wind speed of 47.4 m/s was recorded on 21 February 2009.  3 Tropospheric temperatures for May-July over Syowa Station were higher than normal, but temperatures in the lower stratosphere for August-October were lower than normal.  4 Total ozone over Syowa Station was less than 220 m atm-cm between the middle of August and the end of October. The minimum value in 2009 was 135 m atm-cm. Total ozone increased rapidly in November 2009 when the ozone-hole area decreased around Syowa Station.

  10. Spatiotemporal analysis of hydro-meteorological drought in the Johor River Basin, Malaysia

    Science.gov (United States)

    Tan, Mou Leong; Chua, Vivien P.; Li, Cheng; Brindha, K.

    2018-02-01

    Assessment of historical hydro-meteorological drought is important to develop a robust drought monitoring and prediction system. This study aims to assess the historical hydro-meteorological drought of the Johor River Basin (JRB) from 1975 to 2010, an important basin for the population of southern Peninsular Malaysia and Singapore. The Standardized Precipitation Index (SPI) and Standardized Streamflow Index (SSI) were selected to represent the meteorological and hydrological droughts, respectively. Four absolute homogeneity tests were used to assess the rainfall data from 20 stations, and two stations were flagged by these tests. Results indicate the SPI duration to be comparatively low (3 months), and drier conditions occur over the upper JRB. The annual SSI had a strong decreasing trend at 95% significance level, showing that human activities such as reservoir construction and agriculture (oil palm) have a major influence on streamflow in the middle and lower basin. In addition, moderate response rate of SSI to SPI was found, indicating that hydrological drought could also have occurred in normal climate condition. Generally, the El Niño-Southern Oscillation and Madden Julian Oscillation have greater impacts on drought events in the basin. Findings of this study could be beneficial for future drought projection and water resources management.

  11. A Hybrid Method for Generation of Typical Meteorological Years for Different Climates of China

    Directory of Open Access Journals (Sweden)

    Haixiang Zang

    2016-12-01

    Full Text Available Since a representative dataset of the climatological features of a location is important for calculations relating to many fields, such as solar energy system, agriculture, meteorology and architecture, there is a need to investigate the methodology for generating a typical meteorological year (TMY. In this paper, a hybrid method with mixed treatment of selected results from the Danish method, the Festa-Ratto method, and the modified typical meteorological year method is proposed to determine typical meteorological years for 35 locations in six different climatic zones of China (Tropical Zone, Subtropical Zone, Warm Temperate Zone, Mid Temperate Zone, Cold Temperate Zone and Tibetan Plateau Zone. Measured weather data (air dry-bulb temperature, air relative humidity, wind speed, pressure, sunshine duration and global solar radiation, which cover the period of 1994–2015, are obtained and applied in the process of forming TMY. The TMY data and typical solar radiation data are investigated and analyzed in this study. It is found that the results of the hybrid method have better performance in terms of the long-term average measured data during the year than the other investigated methods. Moreover, the Gaussian process regression (GPR model is recommended to forecast the monthly mean solar radiation using the last 22 years (1994–2015 of measured data.

  12. Ecological and meteorological drought monitoring in East Asia

    Science.gov (United States)

    Kim, J. B.; Um, M. J.; Kim, Y.; Chae, Y.

    2016-12-01

    This study aims to how well the ecological drought index can capture the drought status in the East Asia. We estimated the drought severe index (DSI), which uses the evapotranspiration, potential evapotranspiration and the normalized difference vegetation index (NDVI), suggested by Mu et al. (2013) to define the ecological drought. In addition, the meteorological drought index, which is standardized precipitation and evapotranspiration index (SPEI), are estimated and compared to the DSI. The satellite data by moderate resolution imaging spectroradiometer (MODIS) and advanced very-high-resolution radiometer (AVHRR) are used to analyze the DSI and the monthly precipitation and temperature data in the climate research unit (CRU) are applied to estimate the SPEI for 2000-2013 in the East Asia. We conducted the statistical analyses to investigate the drought characteristics of the ecological and meteorological drought indices (i.e. the DSI and SPEI, respectively) and then compared those characteristics drought indices depending on the drought status. We found the DSI did not well captured the drought status when the categories originally suggested by Mu et al. (2013) are applied to divide the drought status in the study area. Consequently, the modified categories for the DSI in this study is suggested and then applied to define the drought status. The modified categories in this study show the great improvement to capture the drought status in the East Asia even though the results cannot be acquired around Taklamakan desert due to the lack of the satellite data. These results illustrate the ecological drought index, such as the DSI, can be applied for the monitoring of the drought in the East Asia and then can give the detailed information of drought status because the satellite data have the relatively high spatial resolutions compared to the observations such as the CRU data. Reference Mu Q, Zhao M, Kimball JS, McDowell NG, Running SW (2013) A remotely sensed global

  13. Women in Meteorology.

    Science.gov (United States)

    Lemone, Margaret A.; Waukau, Patricia L.

    1982-11-01

    The names of 927 women who are or have been active in meteorology or closely related fields have been obtained from various sources. Of these women, at least 500 are presently active. An estimated 4-5% of the total number of Ph.D.s in meteorology are awarded to women. About 10% of those receiving B.S. and M.S. degrees are women.The work patterns, accomplishments, and salaries of employed women meteorologists have been summarized from 330 responses to questionnaires, as functions of age, family status, part- or full-time working status, and employing institutions. It was found that women meteorologists holding Ph.D.s are more likely than their male counterparts to be employed by universities. As increasing number of women were employed in operational meteorology, although few of them were married and fewer still responsible for children. Several women were employed by private industry and some had advanced into managerial positions, although at the present time, such positions remain out of the reach of most women.The subjective and objective effects of several gender-related factors have been summarized from the comments and responses to the questionnaires. The primary obstacles to advancement were found to be part-time work and the responsibility for children. Part-time work was found to have a clearly negative effect on salary increase as a function of age. prejudicated discrimination and rules negatively affecting women remain important, especially to the older women, and affirmative action programs are generally seen as beneficial.Surprisingly, in contrast to the experience of women in other fields of science, women Ph.D.s in meteorology earn salaries comparable of their employment in government or large corporations and universities where there are strong affirmative action programs and above-average salaries. Based on the responses to the questionnaire, the small size of the meteorological community is also a factor, enabling women to become recognized

  14. Six- and three-hourly meteorological observations from 223 USSR stations

    Energy Technology Data Exchange (ETDEWEB)

    Razuvaev, V.N.; Apasova, E.B.; Martuganov, R.A. [All-Russian Research Inst. of Hydrometeorologicl Information, Obninsk (Russia). World Data Centre; Kaiser, D.P. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    This document describes a database containing 6- and 3-hourly meteorological observations from a 223-station network of the former Soviet Union. These data have been made available through cooperation between the two principal climate data centers of the United States and Russia: the National Climatic Data Center (NCDC), in Asheville, North Carolina, and the All-Russian Research Institute of Hydrometeorological Information -- World Data Centre (RIHMI-WDC) in Obninsk. Station records consist of 6- and 3-hourly observations of some 24 meteorological variables including temperature, weather type, precipitation amount, cloud amount and type, sea level pressure, relative humidity, and wind direction and speed. The 6-hourly observations extend from 1936 to 1965; the 3-hourly observations extend from 1966 through the mid-1980s (1983, 1984, 1985, or 1986; depending on the station). These data have undergone extensive quality assurance checks by RIHMI-WDC, NCDC, and the Carbon Dioxide Information Analysis Center (CDIAC). The database represents a wealth of meteorological information for a large and climatologically important portion of the earth`s land area, and should prove extremely useful for a wide variety of regional climate change studies. These data are available free of charge as a numeric data package (NDP) from CDIAC. The NDP consists of this document and 40 data files that are available via the Internet or on 8mm tape. The total size of the database is {approximately}2.6 gigabytes.

  15. Simulations of monthly mean nitrate concentrations in precipitation over East Asia

    International Nuclear Information System (INIS)

    Junling An; Xinjin Cheng; Ueda, Hiromasa; Kajino, Mizuo

    2002-01-01

    Monthly mean nitrate concentrations in precipitation over East Asia (10-55 o N, 75-155 o E) in April, July, September, and December of 1999 were simulated by using a regional air quality Eulerian model (RAQM) with meteorological fields four times per day taken from National Centers for Environmental Prediction. The distribution of the nitrate concentration in precipitation depends significantly on the emission patterns of nitrogen oxides (NO x =NO+NO 2 ) and volatile organic compound (VOC) and seasonal precipitation variability. The downward trend is also revealed, particularly on July and December. Highest concentrations are found in the industrialized regions, i.e., the coastal area of the Mainland of China, the Bay of the Huanghai Sea and the Bohai Sea, Korea, and Southern Japan. Long-range transport may cause elevated concentrations in remote areas downwind of the industrialized regions under favorable meteorological conditions, e.g., low precipitation. Comparison of observation and simulations indicates that the RAQM model reasonably predicts synoptic-scale changes in different months (seasons) and simulated nitrate levels in 4 months fit observed data with the discrepancy within a factor of 2. Exclusion of liquid chemistry within clouds is feasible for regional (1 o x1 o ) and long-term (monthly) nitrate simulations. The uncertainty originates mainly from that of the emission data and modeled precipitation amounts and initial and boundary conditions. (author)

  16. Impact of meteorological factors on the incidence of bacillary dysentery in Beijing, China: A time series analysis (1970-2012.

    Directory of Open Access Journals (Sweden)

    Long Yan

    Full Text Available Influence of meteorological variables on the transmission of bacillary dysentery (BD is under investigated topic and effective forecasting models as public health tool are lacking. This paper aimed to quantify the relationship between meteorological variables and BD cases in Beijing and to establish an effective forecasting model.A time series analysis was conducted in the Beijing area based upon monthly data on weather variables (i.e. temperature, rainfall, relative humidity, vapor pressure, and wind speed and on the number of BD cases during the period 1970-2012. Autoregressive integrated moving average models with explanatory variables (ARIMAX were built based on the data from 1970 to 2004. Prediction of monthly BD cases from 2005 to 2012 was made using the established models. The prediction accuracy was evaluated by the mean square error (MSE.Firstly, temperature with 2-month and 7-month lags and rainfall with 12-month lag were found positively correlated with the number of BD cases in Beijing. Secondly, ARIMAX model with covariates of temperature with 7-month lag (β = 0.021, 95% confidence interval(CI: 0.004-0.038 and rainfall with 12-month lag (β = 0.023, 95% CI: 0.009-0.037 displayed the highest prediction accuracy.The ARIMAX model developed in this study showed an accurate goodness of fit and precise prediction accuracy in the short term, which would be beneficial for government departments to take early public health measures to prevent and control possible BD popularity.

  17. 107 Range Commanders Council Meteorology Group Meeting (RCC-MG): NASA Marshall Space Flight Center Range Report

    Science.gov (United States)

    Roberts, Barry C.

    2016-01-01

    The following is a summary of the major meteorological/atmospheric projects and research that have been or currently are being accomplished at Marshall Space Flight Center (MSFC). Listed below are highlights of work done during the past 6 months in the Engineering Directorate (ED) and in the Science and Mission Systems Office (ZP).

  18. The Quality Control Algorithms Used in the Creation of NASA Kennedy Space Center Lightning Protection System Towers Meteorological Database

    Science.gov (United States)

    Orcutt, John M.; Brenton, James C.

    2016-01-01

    An accurate database of meteorological data is essential for designing any aerospace vehicle and for preparing launch commit criteria. Meteorological instrumentation were recently placed on the three Lightning Protection System (LPS) towers at Kennedy Space Center (KSC) launch complex 39B (LC-39B), which provide a unique meteorological dataset existing at the launch complex over an extensive altitude range. Data records of temperature, dew point, relative humidity, wind speed, and wind direction are produced at 40, 78, 116, and 139 m at each tower. The Marshall Space Flight Center Natural Environments Branch (EV44) received an archive that consists of one-minute averaged measurements for the period of record of January 2011 - April 2015. However, before the received database could be used EV44 needed to remove any erroneous data from within the database through a comprehensive quality control (QC) process. The QC process applied to the LPS towers' meteorological data is similar to other QC processes developed by EV44, which were used in the creation of meteorological databases for other towers at KSC. The QC process utilized in this study has been modified specifically for use with the LPS tower database. The QC process first includes a check of each individual sensor. This check includes removing any unrealistic data and checking the temporal consistency of each variable. Next, data from all three sensors at each height are checked against each other, checked against climatology, and checked for sensors that erroneously report a constant value. Then, a vertical consistency check of each variable at each tower is completed. Last, the upwind sensor at each level is selected to minimize the influence of the towers and other structures at LC-39B on the measurements. The selection process for the upwind sensor implemented a study of tower-induced turbulence. This paper describes in detail the QC process, QC results, and the attributes of the LPS towers meteorological

  19. A multi-year data set on aerosol-cloud-precipitation-meteorology interactions for marine stratocumulus clouds.

    Science.gov (United States)

    Sorooshian, Armin; MacDonald, Alexander B; Dadashazar, Hossein; Bates, Kelvin H; Coggon, Matthew M; Craven, Jill S; Crosbie, Ewan; Hersey, Scott P; Hodas, Natasha; Lin, Jack J; Negrón Marty, Arnaldo; Maudlin, Lindsay C; Metcalf, Andrew R; Murphy, Shane M; Padró, Luz T; Prabhakar, Gouri; Rissman, Tracey A; Shingler, Taylor; Varutbangkul, Varuntida; Wang, Zhen; Woods, Roy K; Chuang, Patrick Y; Nenes, Athanasios; Jonsson, Haflidi H; Flagan, Richard C; Seinfeld, John H

    2018-02-27

    Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter for 113 flight days, amounting to 514 flight hours. A unique aspect of the compiled data set is detailed measurements of aerosol microphysical properties (size distribution, composition, bioaerosol detection, hygroscopicity, optical), cloud water composition, and different sampling inlets to distinguish between clear air aerosol, interstitial in-cloud aerosol, and droplet residual particles in cloud. Measurements and data analysis follow documented methods for quality assurance. The data set is suitable for studies associated with aerosol-cloud-precipitation-meteorology-radiation interactions, especially owing to sharp aerosol perturbations from ship traffic and biomass burning. The data set can be used for model initialization and synergistic application with meteorological models and remote sensing data to improve understanding of the very interactions that comprise the largest uncertainty in the effect of anthropogenic emissions on radiative forcing.

  20. Comparison of missing value imputation methods in time series: the case of Turkish meteorological data

    Science.gov (United States)

    Yozgatligil, Ceylan; Aslan, Sipan; Iyigun, Cem; Batmaz, Inci

    2013-04-01

    This study aims to compare several imputation methods to complete the missing values of spatio-temporal meteorological time series. To this end, six imputation methods are assessed with respect to various criteria including accuracy, robustness, precision, and efficiency for artificially created missing data in monthly total precipitation and mean temperature series obtained from the Turkish State Meteorological Service. Of these methods, simple arithmetic average, normal ratio (NR), and NR weighted with correlations comprise the simple ones, whereas multilayer perceptron type neural network and multiple imputation strategy adopted by Monte Carlo Markov Chain based on expectation-maximization (EM-MCMC) are computationally intensive ones. In addition, we propose a modification on the EM-MCMC method. Besides using a conventional accuracy measure based on squared errors, we also suggest the correlation dimension (CD) technique of nonlinear dynamic time series analysis which takes spatio-temporal dependencies into account for evaluating imputation performances. Depending on the detailed graphical and quantitative analysis, it can be said that although computational methods, particularly EM-MCMC method, are computationally inefficient, they seem favorable for imputation of meteorological time series with respect to different missingness periods considering both measures and both series studied. To conclude, using the EM-MCMC algorithm for imputing missing values before conducting any statistical analyses of meteorological data will definitely decrease the amount of uncertainty and give more robust results. Moreover, the CD measure can be suggested for the performance evaluation of missing data imputation particularly with computational methods since it gives more precise results in meteorological time series.

  1. Mexico City ozone concentrations as a function of readily-available meteorological parameters

    International Nuclear Information System (INIS)

    Brown, M.J.

    1994-01-01

    Daily maximum ozone concentrations measured at four sites within the Mexico City basin during the winter months are plotted as functions of different meteorological parameters that are routinely measured at surface stations. We found that ozone concentrations are most strongly correlated to the increase in daytime temperature and the maximum daytime wind speed. We also discovered that high ozone values at the sites in the southern end of the basin occur when winds come out of the northeast. In contrast, wind direction was found to be uncorrelated with high ozone values at the northern sites. From straightforward combinations of the meteorological variables, we derived some simple rules for estimating lower and upper bounds on the ozone concentration. Scatter in the data was too long to give significance to best-fit equations and statistics. Additionally, a small rawinsonde data set was used to investigate ozone's dependence on boundary-layer height and near-surface temperature gradient. Results were inconclusive, however, due to the small size of the data set

  2. Meteorological Influences on the Seasonality of Lyme Disease in the United States

    Science.gov (United States)

    Moore, Sean M.; Eisen, Rebecca J.; Monaghan, Andrew; Mead, Paul

    2014-01-01

    Lyme disease (Borrelia burgdorferi infection) is the most common vector-transmitted disease in the United States. The majority of human Lyme disease (LD) cases occur in the summer months, but the timing of the peak occurrence varies geographically and from year to year. We calculated the beginning, peak, end, and duration of the main LD season in 12 highly endemic states from 1992 to 2007 and then examined the association between the timing of these seasonal variables and several meteorological variables. An earlier beginning to the LD season was positively associated with higher cumulative growing degree days through Week 20, lower cumulative precipitation, a lower saturation deficit, and proximity to the Atlantic coast. The timing of the peak and duration of the LD season were also associated with cumulative growing degree days, saturation deficit, and cumulative precipitation, but no meteorological predictors adequately explained the timing of the end of the LD season. PMID:24470565

  3. Meteorological research studies at Jervis Bay, Australia

    International Nuclear Information System (INIS)

    Clark, G.H.; Bendun, E.O.K.

    1974-07-01

    A climatological study of the winds and temperature from the Jervis Bay region which commenced in October 1970 has shown the presence of a coastal sea breeze and secondary bay breeze circulation system. In an attempt to define the influence of the Murray's Beach site on the local atmospheric dispersion, special smoke plume photography studies were conducted in the lower atmosphere. In June 1972 a meteorological acoustic sounding research programme was initiated at the Jervis Bay settlement. The aims of the research are to calibrate the sounder in terms of surface wind, turbulence and temperature measurements pertinent to a description of the lower atmospheric dispersion potential. Preliminary results on six months' data have shown encouraging correlations between the acoustic sounder patterns and particularly the wind direction turbulence traces. (author)

  4. Jesuits' Contribution to Meteorology.

    Science.gov (United States)

    Udías, Agustín

    1996-10-01

    Starting in the middle of the nineteenth century, as part of their scientific tradition, Jesuits founded a considerable number of meteorological observatories throughout the world. In many countries, Jesuits established and maintained the first meteorological stations during the period from 1860 to 1950. The Jesuits' most important contribution to atmospheric science was their pioneer work related to the study and forecast of tropical hurricanes. That research was carried out at observatories of Belén (Cuba), Manila (Philippines), and Zikawei (China). B. Viñes, M. Decheyrens, J. Aigué, and C.E. Deppermann stood out in this movement.

  5. Meteorological factors and risk of scrub typhus in Guangzhou, southern China, 2006-2012.

    Science.gov (United States)

    Li, Tiegang; Yang, Zhicong; Dong, Zhiqiang; Wang, Ming

    2014-03-12

    Scrub typhus is becoming the most common vector born disease in Guangzhou, southern China. In this study, we aimed to examine the effect of weather patterns on the incidence of Scrub typhus in the subtropical city of Guangzhou for the period 2006-2012, and assist public health prevention and control measures. Scrub typhus reported cases during the period of 2006-2012 in Guangzhou were obtained from National Notifiable Disease Report System (NNDRS). Simultaneous meteorological data including temperature, relative humidity, atmospheric pressure, sunshine, and rainfall were obtained from the documentation of the Guangzhou Meteorological Bureau. A negative binomial regression was used to identify the relationship between meteorological variables and scrub typhus. Annual incidence rates of scrub typhus from 2006 to 2012 were 3.25, 2.67, 3.81, 4.22, 4.41, 5.12, and 9.75 (per 100 000) respectively. Each 1°C rise in temperature corresponded to an increase of 14.98% (95% CI 13.65% to 16.33%) in the monthly number of scrub typhus cases, while a 1 hPa rise in atmospheric pressure corresponded to a decrease in the number of cases by 8.03% (95% CI -8.75% to -7.31%). Similarly, a 1 hour rise in sunshine corresponded to an increase of 0.17% or 0.54%, and a 1 millimeter rise in rainfall corresponded to an increase of 0.05% or 0.10%, in the monthly number of scrub typhus cases, depending on the variables considered in the model. Our study provided evidence that climatic factors were associated with occurrence of scrub typhus in Guangzhou city, China. Temperature, duration of sunshine, and rainfall were positively associated with scrub typhus incidence, while atmospheric pressure was inversely associated with scrub typhus incidence. These findings should be considered in the prediction of future patterns of scrub typhus transmission.

  6. Ionospheric irregularities in periods of meteorological disturbances

    Science.gov (United States)

    Borchevkina, O. P.; Karpov, I. V.

    2017-09-01

    The results of observations of the total electron content (TEC) in periods of storm disturbances of meteorological situation are presented in the paper. The observational results have shown that a passage of a meteorological storm is accompanied by a substantial decrease in values of TEC and critical frequencies of the ionospheric F2 region. The decreases in values of these ionospheric parameters reach 50% and up to 30% in TEC and critical frequency of the F2 layer, respectively, as compared to meteorologically quiet days. Based on qualitative analysis, it is found that the processes related to formation of local regions of thermospheric heating due to a dissipation of AGW coming into the upper atmosphere from the region of the meteorological disturbance in the lower atmosphere are a possible cause of these ionospheric disturbances.

  7. Development of adequate meteorological monitoring standards for safety analysis of nuclear facilities

    International Nuclear Information System (INIS)

    Alp, E.; Lewis, P.J.

    1985-09-01

    The aim of this report is to identify what constitutes adequate meteorological information for airborne dispersion calculations in case of releases from nuclear facilities during 'normal operation', 'design postulated accidents', and 'emergency situations'. The models used for estimating downwind dispersion are reviewed, including short-range simple terrain, short-range complex terrain and medium to long range models with emphasis on Lagrangian models. The meteorogolical input parameters required for running these models are identified. The methods by which these parameters may be obtained from raw meteorological data are then considered. Emphasis is placed on well-tried and recommended methods rather than those which are currently being developed and lack long-term field tests. The meteorological data required to calculate the parameters that are in turn input to dispersion calculation methods can be obtained mainly from tower measurements. Recommended tower height is 50 m, with two levels of instruments (10 and 50 m) for wind speed, wind direction and temperature. Data for precipitation and solar radiation, that may be required under certain conditions and for special calculations, may be estimated from nearby representative weather stations (if available). For simple terrain, a single tower is sufficient. For complex terrain, such as coastal regions, two towers are desirable for accurate characterization of the turbulence regime in the vicinity of a release site. The report provides the necessary accuracy specifications for instruments required for the meteorological measurements. Data monitoring and recording, maintenance, quality control and assurance are also discussed. Error propagation analyses are recommended to determine the full implications of instrument accuracies on the accuracy of dispersion model predictions. 82 refs

  8. Analysis environment meteorology data around PPNY using PC with windows system

    International Nuclear Information System (INIS)

    Widjaya, S. G.; Yazid, M.; Isman, M.T.

    1996-01-01

    The Installation of a small station to measure some meteorological parameters had been done in Yogyakarta Nuclear Research Centre (PPNY) in order to keep the weather conditions under control, especially wind direction, wind speed, and outdoor temperature. The anemometer with temperature probe (WS-10T) was connected to the game adapter of the Personal Computer (PC) using 40 feet flat cable. A data file entry was automatically written by WS-10T at six minutes interval whenever the program was in operation. The data files are labeled by date as MMDD.log (MM=Months, DD=Day) and if the program is operated continuously. a new file be started each midnight. By the analysis data using SPSS for windows. The range of temperature were 67 o F until 97.6 o F . he maximum speed of wind was 17.7 Mph and the frequency of wind direction at the most was to the North (18.9 %). The analysis of meteorological data around vicinity was done to get the annual profile of wind speed , wind direction and outdoor temperature. (author)

  9. Estimation of monthly solar radiation distribution for solar energy system analysis

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2011-01-01

    The concept of probability density frequency, which is successfully used for analyses of wind speed and outdoor temperature distributions, is now modified and proposed for estimating solar radiation distributions for design and analysis of solar energy systems. In this study, global solar radiation distribution is comprehensively analyzed for photovoltaic (PV) panel and thermal collector systems. In this regard, a case study is conducted with actual global solar irradiation data of the last 15 years recorded by the Turkish State Meteorological Service. It is found that intensity of global solar irradiance greatly affects energy and exergy efficiencies and hence the performance of collectors. -- Research highlights: → The first study to apply global solar radiation distribution in solar system analyzes. → The first study showing global solar radiation distribution as a parameter of the solar irradiance intensity. → Time probability intensity frequency and probability power distribution do not have similar distribution patterns for each month. → There is no relation between the distribution of annual time lapse and solar energy with the intensity of solar irradiance.

  10. Research in karst aquifers developed in high-mountain areas combining KARSYS models with springs discharge records. Picos de Europa, Spain

    Science.gov (United States)

    Ballesteros, Daniel; Meléndez, Mónica; Malard, Arnauld; Jiménez-Sánchez, Montserrat; Heredia, Nemesio; Jeannin, Pierre-Yves; García-Sansegundo, Joaquín

    2014-05-01

    The study of karst aquifers developed in high-mountain areas is quite complex since the application of many techniques of hydrogeology in these areas is difficult, expensive, and requires many hours of field work. In addition, the access to the study area is usually conditioned by the orography and the meteorological conditions. A pragmatic approach to study these aquifers can be the combination of geometric models of the aquifer with the monitoring of the discharge rate of springs and the meteorological records. KARSYS approach (Jeannin et al. 2013) allows us to elaborate a geometric model of karst aquifers establishing the boundaries of the groundwater bodies, the main drainage axes and providing evidences of the catchment delineation of the springs. The aim of this work is to analyse the functioning of the karst aquifer from the western and central part of the Picos de Europa Mountains (Spain) combining the KARSYS approach, the discharge record from two springs and the meteorological records (rain, snow and temperature). The Picos de Europa (North Spain) is a high-mountains area up to 2.6 km altitude with 2,500 mm/year of precipitations. The highest part of these mountains is covered by snow four to seven months a year. The karst aquifer is developed in Carboniferous limestone which is strongly compartmentalized in, at least, 17 groundwater bodies. The method of work includes: 1) the elaboration of a hydrogeological 3D model of the geometry of the karst aquifers by KARSYS approach, 2) the definition of the springs catchment areas based on the hydrogeological 3D model, 3) the selection of two representative springs emerging from the aquifers to study it, 4) the continuous monitoring of water levels in two karst springs since October 2013, 5) the transformation of the water level values to flow values using height-stream relation curves constructed by measures of the spring discharge, and 5) the comparison of the spring discharge rate records and meteorological

  11. Meteorological considerations in emergency response capability at nuclear power plant

    International Nuclear Information System (INIS)

    Fairobent, J.E.

    1985-01-01

    Meteorological considerations in emergency response at nuclear power plants are discussed through examination of current regulations and guidance documents, including discussion of the rationale for current regulatory requirements related to meteorological information for emergency response. Areas discussed include: major meteorological features important to emergency response; onsite meteorological measurements programs, including redundant and backup measurements; access to offsite sources of meteorological information; consideration of real-time and forecast conditions and atmospheric dispersion modeling

  12. Applied Meteorology Unit (AMU)

    Science.gov (United States)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2010-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the first quarter of Fiscal Year 2010 (October - December 2009). A detailed project schedule is included in the Appendix. Included tasks are: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool, Phase III, (3) Peak Wind Tool for General Forecasting, Phase II, (4) Upgrade Summer Severe Weather Tool in Meteorological Interactive Data Display System (MIDDS), (5) Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) Update and Maintainability, (5) Verify 12-km resolution North American Model (MesoNAM) Performance, and (5) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Graphical User Interface.

  13. Statistical methods for change-point detection in surface temperature records

    Science.gov (United States)

    Pintar, A. L.; Possolo, A.; Zhang, N. F.

    2013-09-01

    We describe several statistical methods to detect possible change-points in a time series of values of surface temperature measured at a meteorological station, and to assess the statistical significance of such changes, taking into account the natural variability of the measured values, and the autocorrelations between them. These methods serve to determine whether the record may suffer from biases unrelated to the climate signal, hence whether there may be a need for adjustments as considered by M. J. Menne and C. N. Williams (2009) "Homogenization of Temperature Series via Pairwise Comparisons", Journal of Climate 22 (7), 1700-1717. We also review methods to characterize patterns of seasonality (seasonal decomposition using monthly medians or robust local regression), and explain the role they play in the imputation of missing values, and in enabling robust decompositions of the measured values into a seasonal component, a possible climate signal, and a station-specific remainder. The methods for change-point detection that we describe include statistical process control, wavelet multi-resolution analysis, adaptive weights smoothing, and a Bayesian procedure, all of which are applicable to single station records.

  14. A 17-year Record of Meteorological Observations Across the Gran Campo Nevado Ice Cap in Southern Patagonia, Chile, Related to Synoptic Weather Types and Climate Modes

    Directory of Open Access Journals (Sweden)

    Stephanie S. Weidemann

    2018-05-01

    Full Text Available The network of long-term meteorological observations in Southernmost Patagonia is still sparse but crucial to improve our understanding of climatic variability, in particular in the more elevated and partially glaciated Southernmost Andes. Here we present a unique 17-year meteorological record (2000–2016 of four automatic weather stations (AWS across the Gran Campo Nevado Ice Cap (53°S in the Southernmost Andes (Chile and the conventional weather station Jorge Schythe of the Instituto de la Patagonia in Punta Arenas for comparison. We revisit the relationship between in situ observations and large-scale climate models as well as mesoscale weather patterns. For this purpose, a 37-year record of ERA Interim Reanalysis data has been used to compute a weather type classification based on a hierarchical correlation-based leader algorithm. The orographic perturbation on the predominantly westerly airflow determines the hydroclimatic response across the mountain range, leading to significant west-east gradients of precipitation, air temperature and humidity. Annual precipitation sums heavily drop within only tens of kilometers from ~7,500 mm a−1 to less than 800 mm a−1. The occurrence of high precipitation events of up to 620 mm in 5 days and wet spells of up to 61 consecutive days underscore the year-around wet conditions in the Southernmost Andes. Given the strong link between large-scale circulation and orographically controlled precipitation, the synoptic-scale weather conditions largely determine the precipitation and temperature variability on all time scales. Major synoptic weather types with distinct low-pressure cells in the Weddell Sea or Bellingshausen Sea, causing a prevailing southwesterly, northwesterly or westerly airflow, determine the weather conditions in Southernmost Patagonia during 68% of the year. At Gran Campo Nevado, more than 80% of extreme precipitation events occur during the persistence of these weather types. The

  15. Irradiation Processing Department monthly record report, July 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-08-21

    This document details activities of the irradiation processing department during the month of July 1959. A general summary is included at the start of the report, after which the report is divided into the following sections: research and engineering operations; facilities engineering operation; employee relations operation; and financial operation.

  16. Evaluation of an atmospheric model with surface and ABL meteorological data for energy applications in structured areas

    Science.gov (United States)

    Triantafyllou, A. G.; Kalogiros, J.; Krestou, A.; Leivaditou, E.; Zoumakis, N.; Bouris, D.; Garas, S.; Konstantinidis, E.; Wang, Q.

    2018-03-01

    This paper provides the performance evaluation of the meteorological component of The Air Pollution Model (TAPM), a nestable prognostic model, in predicting meteorological variables in urban areas, for both its surface layer and atmospheric boundary layer (ABL) turbulence parameterizations. The model was modified by incorporating four urban land surface types, replacing the existing single urban surface. Control runs were carried out over the wider area of Kozani, an urban area in NW Greece. The model was evaluated for both surface and ABL meteorological variables by using measurements of near-surface and vertical profiles of wind and temperature. The data were collected by using monitoring surface stations in selected sites as well as an acoustic sounder (SOnic Detection And Ranging (SODAR), up to 300 m above ground) and a radiometer profiler (up to 600 m above ground). The results showed the model demonstrated good performance in predicting the near-surface meteorology in the Kozani region for both a winter and a summer month. In the ABL, the comparison showed that the model's forecasts generally performed well with respect to the thermal structure (temperature profiles and ABL height) but overestimated wind speed at the heights of comparison (mostly below 200 m) up to 3-4 ms-1.

  17. Air pollutants, meteorology and plant injury

    Energy Technology Data Exchange (ETDEWEB)

    Mukammal, E I; Brandt, C S; Neuwirth, R; Pack, D H; Swinbank, W C

    1968-01-01

    The study of the effect of air pollutants on plant growth inevitably involves meteorological factors, and the World Meteorological Organization has therefore been giving much attention to this matter for some time. Within the Organization, responsibility for this work naturally fell to the Commission for Agricultural Meteorology (CAgM), and following the time-honored procedure in such cases, the Commission established in 1962 a small international group of acknowledged experts to study plant injury and reduction of yield by non-radioactive air pollutants, and charged it with the specific task of preparing a review of present knowledge of the subjects involved. After several years' work, the group fulfilled its appointed task and the resulting report is now published in this WMO Technical Note. 95 references.

  18. Meteorological uncertainty of atmospheric dispersion model results (MUD)

    International Nuclear Information System (INIS)

    Havskov Soerensen, J.; Amstrup, B.; Feddersen, H.

    2013-08-01

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble of meteorological forecasts is produced from which uncertainties in the various meteorological parameters are estimated, e.g. probabilities for rain. Corresponding ensembles of atmospheric dispersion can now be computed from which uncertainties of predicted radionuclide concentration and deposition patterns can be derived. (Author)

  19. Development of regional meteorological and atmospheric diffusion simulation system

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Iwashige, Kengo; Kasano, Toshio

    2002-01-01

    Regional atmospheric diffusion online network (RADON) with atmospheric diffusion analysis code (ADAC) : a simulation program of diffusion of radioactive materials, volcanic ash, pollen, NOx and SOx was developed. This system can be executed in personal computer (PC) and note PC on Windows. Emission data consists of online, offline and default data. It uses the meteorology data sources such as meteorological forecasting mesh data, automated meteorological data acquisition system (AMeDAS) data, meteorological observation data in site and municipality observation data. The meteorological forecasting mesh data shows forecasting value of temperature, wind speed, wind direction and humidity in about two days. The nuclear environmental monitoring center retains the online data (meteorological data, emission source data, monitoring station data) in its PC server and can run forecasting or repeating calculation using these data and store and print out the calculation results. About 30 emission materials can be calculated simultaneously. This system can simulate a series of weather from the past and real time to the future. (S.Y.)

  20. Meteorological tracers in regional planning

    International Nuclear Information System (INIS)

    Mueller, K.H.

    1974-11-01

    Atmospheric tracers can be used as indicators to study both the ventilation of an urban region and its dispersion meteorology for air pollutants. A correlation analysis applied to the space-time dependent tracer concentrations is able to give transfer functions, the structure and characteristic parameters of which describe the meteorological and topographical situation of the urban region and its surroundings in an integral manner. To reduce the number of persons usually involved in a tracer experiment an automatic air sampling system had to be developed

  1. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2005

    Science.gov (United States)

    Smith, Kirk P.

    2007-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2005 (October 2004 through September 2005). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for selected elements, organic constituents, suspended sediment, and Escherichia coli bacteria. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir capacities for the Cambridge Reservoir varied from about 59 to 98 percent during water year 2005, while monthly reservoir capacities for the Stony Brook Reservoir and the Fresh Pond Reservoir were maintained at capacities greater than 84 and 96 percent, respectively. Assuming a water demand of 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2005 water year is equivalent to an annual water surplus of about 119 percent. Recorded precipitation in the source area for the 2005 water year was within 2 inches of the total annual precipitation for the previous 2 water years. The monthly mean specific conductances for the outflow of the Cambridge Reservoir were similar to historical monthly mean values. However, monthly mean specific conductances for Stony Brook near Route 20, in Waltham (U.S. Geological Survey station 01104460), which is the principal tributary feeding the Stony Brook Reservoir, were generally higher than the medians of the monthly mean specific conductances for the period of record. Similarly, monthly mean specific conductances for a small tributary to Stony Brook (U.S. Geological Survey

  2. Irradiation Processing Department monthly record report, May 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-06-20

    This document details activities of the irradiation processing department during the month of May 1958. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  3. Irradiation Processing Department monthly record report, September 1959

    Energy Technology Data Exchange (ETDEWEB)

    Greninger, A.B.

    1959-10-22

    This document details activities of the irradiation processing department during the month of September, 1959. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  4. Irradiation Processing Department monthly record report, August 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-09-19

    This document details activities of the irradiation processing department during the month of August, 1958. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  5. Irradiation Processing Department monthly record report, October 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-11-21

    This document details activities of the irradiation processing department during the month of October, 1956. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  6. Irradiation Processing Department monthly record report, March 1959

    Energy Technology Data Exchange (ETDEWEB)

    Greninger, A.B.

    1959-04-21

    This document details activities of the irradiation processing department during the month of March, 1959. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  7. Irradiation Processing Department monthly record report, December 1956

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-19

    This document details activities of the Irradiation Processing Department during the month of December 1956. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  8. Irradiation Processing Department monthly record report, November 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-12-19

    This document details activities of the irradiation processing department during the month of November 1958. A general summary is included at the start of the report, after which the report is divided into the following sections: research and engineering operation; production and reactor operations; facilities engineering operation; employee relations operations; and financial operation.

  9. Irradiation Processing Department monthly record report, July 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-08-21

    This document details activities of the irradiation processing department during the month of July, 1958. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  10. Irradiation Processing Department monthly record report, March 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-04-19

    This document details activities of the irradiation processing department during the month of March, 1957. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  11. Irradiation Processing Department monthly record report, November 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-12-20

    This document details activities of the irradiation processing department during the month of November 1956. A general summary is included at the start of the report, after which the report is divided into the following sections: research and engineering operations; production and reactor operations; facilities engineering operation; employee relations operation; and financial operation.

  12. Irradiation Processing Department monthly record report, January 1959

    Energy Technology Data Exchange (ETDEWEB)

    Greninger, A.B.

    1959-02-20

    This document details activities of the irradiation processing department during the month of January 1959. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering operation; Employee Relations Operation; and Financial Operation.

  13. Characterizing Temperature Variability and Associated Large Scale Meteorological Patterns Across South America

    Science.gov (United States)

    Detzer, J.; Loikith, P. C.; Mechoso, C. R.; Barkhordarian, A.; Lee, H.

    2017-12-01

    South America's climate varies considerably owing to its large geographic range and diverse topographical features. Spanning the tropics to the mid-latitudes and from high peaks to tropical rainforest, the continent experiences an array of climate and weather patterns. Due to this considerable spatial extent, assessing temperature variability at the continent scale is particularly challenging. It is well documented in the literature that temperatures have been increasing across portions of South America in recent decades, and while there have been many studies that have focused on precipitation variability and change, temperature has received less scientific attention. Therefore, a more thorough understanding of the drivers of temperature variability is critical for interpreting future change. First, k-means cluster analysis is used to identify four primary modes of temperature variability across the continent, stratified by season. Next, composites of large scale meteorological patterns (LSMPs) are calculated for months assigned to each cluster. Initial results suggest that LSMPs, defined using meteorological variables such as sea level pressure (SLP), geopotential height, and wind, are able to identify synoptic scale mechanisms important for driving temperature variability at the monthly scale. Some LSMPs indicate a relationship with known recurrent modes of climate variability. For example, composites of geopotential height suggest that the Southern Annular Mode is an important, but not necessarily dominant, component of temperature variability over southern South America. This work will be extended to assess the drivers of temperature extremes across South America.

  14. Supporting data for hydrologic studies in San Francisco Bay, California : meteorological measurements at the Port of Redwood City during 1998-2001

    Science.gov (United States)

    Schemel, Laurence E.

    2002-01-01

    Meteorological data were collected during 1998-2001 at the Port of Redwood City, California, to support hydrologic studies in South San Francisco Bay. The measured meteorological variables were air temperature, atmospheric pressure, quantum flux (insolation), and four parameters of wind speed and direction: scalar mean horizontal wind speed, (vector) resultant horizontal wind speed, resultant wind direction, and standard deviation of the wind direction. Hourly mean values based on measurements at five-minute intervals were logged at the site. Daily mean values were computed for temperature, infolation, pressure, and scalar wind speed. Daily mean values for 1998-2001 are described in this report, and a short record of hourly mean values is compared to data from another near-by station. Data (hourly and daily mean) from the entire period of record (starting in April 1992) and reports describing data prior to 1998 are provided.

  15. The effects of meteorological factors on the occurrence of Ganoderma sp. spores in the air

    Science.gov (United States)

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2011-03-01

    Ganoderma sp. is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we analysed fungal spore circulation in Szczecin, Poland, and its dependence on meteorological conditions. Statistical models for the airborne spore concentrations of Ganoderma sp.—one of the most abundant fungal taxa in the area—were developed. Aerobiological sampling was conducted over 2004-2008 using a volumetric Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation, maximum and average wind speed, relative humidity and maximum, minimum, average and dew point temperatures. These data were used as the explaining variables. Due to the non-linearity and non-normality of the data set, the applied modelling techniques were artificial neural networks (ANN) and mutlivariate regression trees (MRT). The obtained classification and MRT models predicted threshold conditions above which Ganoderma sp. appeared in the air. It turned out that dew point temperature was the main factor influencing the presence or absence of Ganoderma sp. spores. Further analysis of spore seasons revealed that the airborne fungal spore concentration depended only slightly on meteorological factors.

  16. 108 Range Commanders Council Meteorology Group Meeting (RCC-MG) NASA Marshall Space Flight Center Range Report - April 2017

    Science.gov (United States)

    Roberts, Barry C.

    2017-01-01

    The following is a summary of the major meteorological/atmospheric projects and research that have been or currently are being accomplished at Marshall Space Flight Center (MSFC). Listed below are highlights of work done during the past 6 months in the Engineering Directorate (ED) and in the Science and Technology Office (ST).

  17. The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores

    International Nuclear Information System (INIS)

    Grinn-Gofron, Agnieszka; Strzelczak, Agnieszka; Wolski, Tomasz

    2011-01-01

    Fungal spores are an important component of bioaerosol and also considered to act as indicator of the level of atmospheric bio-pollution. Therefore, better understanding of these phenomena demands a detailed survey of airborne particles. The objective of this study was to examine the dependence of two the most important allergenic taxa of airborne fungi - Alternaria and Cladosporium - on meteorological parameters and air pollutant concentrations during three consecutive years (2006-2008). This study is also an attempt to create artificial neural network (ANN) forecasting models useful in the prediction of aeroallergen abundance. There were statistically significant relationships between spore concentration and environmental parameters as well as pollutants, confirmed by the Spearman's correlation rank analysis and high performance of the ANN models obtained. The concentrations of Cladosporium and Alternaria spores can be predicted with quite good accuracy from meteorological conditions and air pollution recorded three days earlier. - ANN models predict airspore contents from weather conditions and air pollutant.

  18. Meteorological Factors Affecting Evaporation Duct Height Climatologies.

    Science.gov (United States)

    1980-07-01

    Italy Maritime Meteorology Division Japan Meteorological Agency Ote-Machi 1-3-4 Chiyoda-Ku Tokyo, Japan Instituto De Geofisica U.N.A.M. Biblioteca ...Torre De Ciencias, 3ER Piso Ciudad Universitaria Mexico 20, D.F. Koninklijk Nederlands Meteorologisch Instituu. Postbus 201 3730 AE Debilt Netherlands

  19. Research Ship Oceanus Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Oceanus Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  20. Research Ship Melville Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Melville Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  1. Research Ship Healy Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Healy Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  2. Research Ship Knorr Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Knorr Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  3. Research Ship Atlantis Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Atlantis Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  4. NOAA Ship Fairweather Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Fairweather Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  5. NOAA Ship Rainier Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Rainier Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  6. Research Ship Tangaroa Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Tangaroa Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  7. Irradiation Processing Department, monthly record report, February, 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-03-22

    This document details activities of the irradiation processing department at the Hanford Reservation during the month of February, 1960. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operation; Manufacturing Operation; Facilities Engineering Operation; Relations Practices Operation; Financial Operation; and NPR operation.

  8. Medical Meteorology: the Relationship between Meteorological Parameters (Humidity, Rainfall, Wind, and Temperature) and Brucellosis in Zanjan Province

    OpenAIRE

    Yousefali Abedini; Nahideh Mohammadi; Koorosh Kamali; Mohsen Ahadnejad; Mehdi Azari

    2016-01-01

    Background: Brucellosis (Malta fever) is a major contagious zoonotic disease, with economic and public health importance. Methods To assess the effect of meteorological (temperature, rainfall, humidity, and wind) and climate parameters on incidence of brucellosis, brucellosis distribution and meteorological zoning maps of Zanjan Province were prepared using Inverse Distance Weighting (IDW) and Kriging technique in Arc GIS medium. Zoning maps of mean temperature, rainfall, humidity, and win...

  9. NOAA Ship Pisces Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Pisces Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  10. Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard

    Directory of Open Access Journals (Sweden)

    M. Maturilli

    2013-04-01

    Full Text Available A consistent meteorological dataset of the Arctic site Ny-Ålesund (11.9° E, 78.9° N spanning the 18 yr-period 1 August 1993 to 31 July 2011 is presented. Instrumentation and data handling of temperature, humidity, wind and pressure measurements are described in detail. Monthly mean values are shown for all years to illustrate the interannual variability of the different parameters. Climatological mean values are given for temperature, humidity and pressure. From the climatological dataset, we also present the time series of annual mean temperature and humidity, revealing a temperature increase of +1.35 K per decade and an increase in water vapor mixing ratio of +0.22 g kg−1 per decade for the given time period, respectively. With the continuation of the presented measurements, the Ny-Ålesund high resolution time series will provide a reliable source to monitor Arctic change and retrieve trends in the future. The relevant data are provided in high temporal resolution as averages over 5 (1 min before (after 14 July 1998, respectively, placed on the PANGAEA repository (doi:10.1594/PANGAEA.793046. While 6 hourly synoptic observations in Ny-Ålesund by the Norwegian Meteorological Institute reach back to 1974 (Førland et al., 2011, the meteorological data presented here cover a shorter time period, but their high temporal resolution will be of value for atmospheric process studies on shorter time scales.

  11. A comparison of long-term parallel measurements of sunshine duration obtained with a Campbell-Stokes sunshine recorder and two automated sunshine sensors

    Science.gov (United States)

    Baumgartner, D. J.; Pötzi, W.; Freislich, H.; Strutzmann, H.; Veronig, A. M.; Foelsche, U.; Rieder, H. E.

    2017-06-01

    In recent decades, automated sensors for sunshine duration (SD) measurements have been introduced in meteorological networks, thereby replacing traditional instruments, most prominently the Campbell-Stokes (CS) sunshine recorder. Parallel records of automated and traditional SD recording systems are rare. Nevertheless, such records are important to understand the differences/similarities in SD totals obtained with different instruments and how changes in monitoring device type affect the homogeneity of SD records. This study investigates the differences/similarities in parallel SD records obtained with a CS and two automated SD sensors between 2007 and 2016 at the Kanzelhöhe Observatory, Austria. Comparing individual records of daily SD totals, we find differences of both positive and negative sign, with smallest differences between the automated sensors. The larger differences between CS-derived SD totals and those from automated sensors can be attributed (largely) to the higher sensitivity threshold of the CS instrument. Correspondingly, the closest agreement among all sensors is found during summer, the time of year when sensitivity thresholds are least critical. Furthermore, we investigate the performance of various models to create the so-called sensor-type-equivalent (STE) SD records. Our analysis shows that regression models including all available data on daily (or monthly) time scale perform better than simple three- (or four-) point regression models. Despite general good performance, none of the considered regression models (of linear or quadratic form) emerges as the "optimal" model. Although STEs prove useful for relating SD records of individual sensors on daily/monthly time scales, this does not ensure that STE (or joint) records can be used for trend analysis.

  12. Meteorological measurements at nuclear power plants

    International Nuclear Information System (INIS)

    1995-01-01

    On-site meteorological measurements are necessary for evaluating atmospheric dispersion of gaseous effluents. Radiation doses in a plant's vicinity due to these effluents are calculated from the results of dispersion evaluations. The guide addresses the requirements for on-site meteorological measurement systems. Guide YVL 7.3 addresses atmospheric dispersion evaluations and calculation methods, Guide YVL 7.2 radiation dose calculations and Guide YVL 7.8 environmental data reporting. (5 refs.)

  13. Meteorological uncertainty of atmospheric dispersion model results (MUD)

    Energy Technology Data Exchange (ETDEWEB)

    Havskov Soerensen, J.; Amstrup, B.; Feddersen, H. [Danish Meteorological Institute, Copenhagen (Denmark)] [and others

    2013-08-15

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble of meteorological forecasts is produced from which uncertainties in the various meteorological parameters are estimated, e.g. probabilities for rain. Corresponding ensembles of atmospheric dispersion can now be computed from which uncertainties of predicted radionuclide concentration and deposition patterns can be derived. (Author)

  14. Characterising Record Flooding in the United Kingdom

    Science.gov (United States)

    Cox, A.; Bates, P. D.; Smith, J. A.

    2017-12-01

    Though the most notable floods in history have been carefully explained, there remains a lack of literature that explores the nature of record floods as a whole in the United Kingdom. We characterise the seasonality, statistical and spatial distribution, and meteorological causes of peak river flows for 521 gauging stations spread across the British Isles. We use annual maximum data from the National River Flow Archive, catchment descriptors from the Flood Estimation Handbook, and historical records of large floods. What we aim to find is in what ways, if any, the record flood for a station is different from more 'typical' floods. For each station, we calculate two indices: the seasonal anomaly and the flood index. Broadly, the seasonal anomaly is the degree to which a station's record flood happens at a different time of year compared to typical floods at that site, whilst the flood index is a station's record flood discharge divided by the discharge of the 1-in-10-year return period event. We find that while annual maximum peaks are dominated by winter frontal rainfall, record floods are disproportionately caused by summer convective rainfall. This analysis also shows that the larger the seasonal anomaly, the higher the flood index. Additionally, stations across the country have record floods that occur in the summer with no notable spatial pattern, yet the most seasonally anomalous record events are concentrated around the south and west of the British Isles. Catchment descriptors tell us little about the flood index at a particular station, but generally areas with lower mean annual precipitation have a higher flood index. The inclusion of case studies from recent and historical examples of notable floods across the UK supplements our analysis and gives insight into how typical these events are, both statistically and meteorologically. Ultimately, record floods in general happen at relatively unexpected times and with unpredictable magnitudes, which is a

  15. Meteorological and urban landscape factors on severe air pollution in Beijing.

    Science.gov (United States)

    Han, Lijian; Zhou, Weiqi; Li, Weifeng; Meshesha, Derege T; Li, Li; Zheng, Mingqing

    2015-07-01

    Air pollution gained special attention with the rapid development in Beijing. In January 2013, Beijing experienced extreme air pollution, which was not well examined. We thus examine the magnitude of air quality in the particular month by applying the air quality index (AQI), which is based on the newly upgraded Chinese environmental standard. Our finding revealed that (1) air quality has distinct spatial heterogeneity and relatively better air quality was observed in the northwest while worse quality happened in the southeast part of the city; (2) the wind speed is the main determinant of air quality in the city-when wind speed is greater than 4 m/sec, air quality can be significantly improved; and (3) urban impervious surface makes a contribution to the severity of air pollution-that is, with an increase in the fraction of impervious surface in a given area, air pollution is more severe. The results from our study demonstrated the severe pollution in Beijing and its meteorological and landscape factors. Also, the results of this work suggest that very strict air quality management should be conducted when wind speed less than 4 m/sec, especially at places with a large fraction of urban impervious surface. Prevention of air pollution is rare among methods with controls on meteorological and urban landscape conditions. We present research that utilizes the latest air quality index (AQI) to compare air pollution with meteorological and landscape conditions. We found that wind is the major meteorological factor that determines the air quality. For a given wind speed greater than 4 m/sec, the air quality improved significantly. Urban impervious surface also contributes to the severe air pollution: that is, when the fraction of impervious surface increases, there is more severe air pollution. These results suggest that air quality management should be conducted when wind speed is less than 4 m/sec, especially at places with a larger fraction of urban impervious surface.

  16. 10 CFR 960.5-2-3 - Meteorology.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Meteorology. 960.5-2-3 Section 960.5-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-3 Meteorology. (a) Qualifying...

  17. Statistical forecast of seasonal discharge in Central Asia using observational records: development of a generic linear modelling tool for operational water resource management

    Science.gov (United States)

    Apel, Heiko; Abdykerimova, Zharkinay; Agalhanova, Marina; Baimaganbetov, Azamat; Gavrilenko, Nadejda; Gerlitz, Lars; Kalashnikova, Olga; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Gafurov, Abror

    2018-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien Shan and Pamir and Altai mountains. During the summer months the snow-melt- and glacier-melt-dominated river discharge originating in the mountains provides the main water resource available for agricultural production, but also for storage in reservoirs for energy generation during the winter months. Thus a reliable seasonal forecast of the water resources is crucial for sustainable management and planning of water resources. In fact, seasonal forecasts are mandatory tasks of all national hydro-meteorological services in the region. In order to support the operational seasonal forecast procedures of hydro-meteorological services, this study aims to develop a generic tool for deriving statistical forecast models of seasonal river discharge based solely on observational records. The generic model structure is kept as simple as possible in order to be driven by meteorological and hydrological data readily available at the hydro-meteorological services, and to be applicable for all catchments in the region. As snow melt dominates summer runoff, the main meteorological predictors for the forecast models are monthly values of winter precipitation and temperature, satellite-based snow cover data, and antecedent discharge. This basic predictor set was further extended by multi-monthly means of the individual predictors, as well as composites of the predictors. Forecast models are derived based on these predictors as linear combinations of up to four predictors. A user-selectable number of the best models is extracted automatically by the developed model fitting algorithm, which includes a test for robustness by a leave-one-out cross-validation. Based on the cross-validation the predictive uncertainty was quantified for every prediction model. Forecasts of the mean seasonal discharge of the period April to September are derived every month from

  18. Statistical forecast of seasonal discharge in Central Asia using observational records: development of a generic linear modelling tool for operational water resource management

    Directory of Open Access Journals (Sweden)

    H. Apel

    2018-04-01

    Full Text Available The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien Shan and Pamir and Altai mountains. During the summer months the snow-melt- and glacier-melt-dominated river discharge originating in the mountains provides the main water resource available for agricultural production, but also for storage in reservoirs for energy generation during the winter months. Thus a reliable seasonal forecast of the water resources is crucial for sustainable management and planning of water resources. In fact, seasonal forecasts are mandatory tasks of all national hydro-meteorological services in the region. In order to support the operational seasonal forecast procedures of hydro-meteorological services, this study aims to develop a generic tool for deriving statistical forecast models of seasonal river discharge based solely on observational records. The generic model structure is kept as simple as possible in order to be driven by meteorological and hydrological data readily available at the hydro-meteorological services, and to be applicable for all catchments in the region. As snow melt dominates summer runoff, the main meteorological predictors for the forecast models are monthly values of winter precipitation and temperature, satellite-based snow cover data, and antecedent discharge. This basic predictor set was further extended by multi-monthly means of the individual predictors, as well as composites of the predictors. Forecast models are derived based on these predictors as linear combinations of up to four predictors. A user-selectable number of the best models is extracted automatically by the developed model fitting algorithm, which includes a test for robustness by a leave-one-out cross-validation. Based on the cross-validation the predictive uncertainty was quantified for every prediction model. Forecasts of the mean seasonal discharge of the period April to September are derived

  19. PROMET - The Journal of Meteorological Education issued by DWD

    Science.gov (United States)

    Rapp, J.

    2009-09-01

    Promet is published by the German Meteorological Service (DWD) since 1971 to improve meteorologists and weather forecasters skills. The journal comprises mainly contributions to topics like biometeorology, the NAO, or meteorology and insurance business. The science-based articles should illustrate the special issue in an understandable and transparent way. In addition, the journal contains portraits of other national meteorological services and university departments, book reviews, list of university degrees, and other individual papers. Promet is published only in German language, but included English titles and abstracts. The journal is peer-reviewed by renowned external scientists. It is distributed free of charge by DWD to the own meteorological staff. On the other hand, DMG (the German Meteorological Society) hand it out to all members of the society. The current issues deal with "Modern procedures of weather forecasting in DWD” and "E-Learning in Meteorology”.

  20. Development of statistical analysis code for meteorological data (W-View)

    International Nuclear Information System (INIS)

    Tachibana, Haruo; Sekita, Tsutomu; Yamaguchi, Takenori

    2003-03-01

    A computer code (W-View: Weather View) was developed to analyze the meteorological data statistically based on 'the guideline of meteorological statistics for the safety analysis of nuclear power reactor' (Nuclear Safety Commission on January 28, 1982; revised on March 29, 2001). The code gives statistical meteorological data to assess the public dose in case of normal operation and severe accident to get the license of nuclear reactor operation. This code was revised from the original code used in a large office computer code to enable a personal computer user to analyze the meteorological data simply and conveniently and to make the statistical data tables and figures of meteorology. (author)

  1. On the early history of the Finnish Meteorological Institute

    Science.gov (United States)

    Nevanlinna, H.

    2014-03-01

    This article is a review of the foundation (in 1838) and later developments of the Helsinki (Finland) magnetic and meteorological observatory, today the Finnish Meteorological Institute (FMI). The main focus of the study is in the early history of the FMI up to the beginning of the 20th century. The first director of the observatory was Physics Professor Johan Jakob Nervander (1805-1848). He was a famous person of the Finnish scientific, academic and cultural community in the early decades of the 19th century. Finland was an autonomously part of the Russian Empire from 1809 to 1917, but the observatory remained organizationally under the University of Helsinki, independent of Russian scientific institutions, and funded by the Finnish Government. Throughout the late-19th century the Meteorological Institute was responsible of nationwide meteorological, hydrological and marine observations and research. The observatory was transferred to the Finnish Society of Sciences and Letters under the name the Central Meteorological Institute in 1881. The focus of the work carried out in the Institute was changed gradually towards meteorology. Magnetic measurements were still continued but in a lower level of importance. The culmination of Finnish geophysical achievements in the 19th century was the participation to the International Polar Year programme in 1882-1883 by setting up a full-scale meteorological and magnetic observatory in Sodankylä, Lapland.

  2. Generation of a typical meteorological year for north–east, Nigeria

    International Nuclear Information System (INIS)

    Ohunakin, Olayinka S.; Adaramola, Muyiwa S.; Oyewola, Olanrewaju M.; Fagbenle, Richard O.

    2013-01-01

    Highlights: • TMY for sites in north–east Nigeria was produced using Finkelstein–Schafer method. • It was found the TMY can be used to represents the long-term weather parameters. • The generated TMY can be used the design and evaluation of solar energy systems. • A handy database in the estimation of building heating loads in north–east Nigeria. - Abstract: The Finkelstein–Schafer statistical method was applied to analyze a 34-year period (1975–2008) hourly measured weather data which includes global solar radiation, dry bulb temperatures, precipitation, relative humidity and wind speed in order to generate typical meteorological year (TMY) for five locations spreading across north–east zone, Nigeria. The selection criteria are based on solar radiation together with the dry bulb temperature values and representative typical meteorological months (TMMs) were selected by choosing the one with the smallest deviation from the long-term cumulative distribution function. A close-fit agreement is observed between the generated TMY and long-term averages. The TMY generated will be very useful for optimal design and performance evaluation of solar energy conversion systems, heating, ventilation, and air conditioning (HVAC) and other solar energy dependent systems to be located in this part of Nigeria

  3. US Marine Meteorological Journals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This series consists of volumes entitled 'Meteorological Journal' (a regulation Navy-issue publication) which were to be completed by masters of merchant vessels...

  4. Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products

    International Nuclear Information System (INIS)

    Qin, Jun; Chen, Zhuoqi; Yang, Kun; Liang, Shunlin; Tang, Wenjun

    2011-01-01

    Global solar radiation (GSR) is required in a large number of fields. Many parameterization schemes are developed to estimate it using routinely measured meteorological variables, since GSR is directly measured at a limited number of stations. Even so, meteorological stations are sparse, especially, in remote areas. Satellite signals (radiance at the top of atmosphere in most cases) can be used to estimate continuous GSR in space. However, many existing remote sensing products have a relatively coarse spatial resolution and these inversion algorithms are too complicated to be mastered by experts in other research fields. In this study, the artificial neural network (ANN) is utilized to build the mathematical relationship between measured monthly-mean daily GSR and several high-level remote sensing products available for the public, including Moderate Resolution Imaging Spectroradiometer (MODIS) monthly averaged land surface temperature (LST), the number of days in which the LST retrieval is performed in 1 month, MODIS enhanced vegetation index, Tropical Rainfall Measuring Mission satellite (TRMM) monthly precipitation. After training, GSR estimates from this ANN are verified against ground measurements at 12 radiation stations. Then, comparisons are performed among three GSR estimates, including the one presented in this study, a surface data-based estimate, and a remote sensing product by Japan Aerospace Exploration Agency (JAXA). Validation results indicate that the ANN-based method presented in this study can estimate monthly-mean daily GSR at a spatial resolution of about 5 km with high accuracy.

  5. Modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza H5N1.

    Directory of Open Access Journals (Sweden)

    Paritosh K Biswas

    Full Text Available The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1 is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA and multiplicative seasonal autoregressive integrated moving average (SARIMA to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s as inputs did not improve the performance of any multivariable models, but relative humidity (RH was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA order at lag 1 month is considered.

  6. Monthly Electrical Energy Overview Mars 2017

    International Nuclear Information System (INIS)

    2017-04-01

    This publication presents the electricity characteristics and noteworthy developments in France every month: consumption, generation, renewable energies, cross-border trades and transmission system developments, along with feedback on the highlights affecting this data. This issue presents the key figures for March 2017. With 2 deg. C over the normal average temperature, March 2017 was the hottest March recorded over the period 1900-2017. Therefore, gross French power demand fell by 9.4% compared to March 2016. A new record instantaneous balance in favour of exports was reached at over 17 GW. Gross demand was down compared to March 2016, due to milder temperatures. RE generation excluding hydraulic rose after 4 months of falls, driven by favourable weather conditions. The maximum coverage rate of demand by wind power generation reached a new record (18.2%) benefiting from the presence of windy conditions over the country in March. The monthly regional coverage rate of demand by generation of renewable origin exceeded 23% in the Occitanie, Auvergne-Rhone-Alpes, Grand-Est, Provence-Alpes-Cote d'Azur and Nouvelle-Aquitaine regions. The fall in prices continued throughout Europe. On 30 March at 19.30 a new record instantaneous balance in favour of exports was recorded at over 17 GW. 1 new installation went into service in March 2017

  7. Monitoring Forsmark. Meteorological monitoring at Forsmark, January-December 2010

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Cari; Jones, Joergen (Swedish Meteorological and Hydrological Institute (SMHI), Norrkoeping (Sweden))

    2011-01-15

    In the Forsmark area, SKB's meteorological monitoring started in 2003 at the sites Storskaeret and Hoegmasten. However, since July 1, 2007 measurements are only performed at Hoegmasten. Measured and calculated parameters at Hoegmasten are precipitation and corrected precipitation, air temperature, barometric pressure, wind speed and direction, air humidity, global radiation and potential evapotranspiration. The Swedish Meteorological and Hydrological Institute, SMHI, has been responsible for planning and design, as well as for the operation of the stations used for meteorological monitoring. In general, the quality of the meteorological measurements during the period concerned, starting January 1, 2010, and ending December 31, 2010, has shown to be good

  8. Meteorological radar services: a brief discussion and a solution in practice

    Science.gov (United States)

    Nicolaides, K. A.

    2014-08-01

    The Department of Meteorology is the organization designated by the Civil Aviation Department and by the National Supervisory Authority of the Republic of Cyprus, as an air navigation service provider, based on the regulations of the Single European Sky. Department of Meteorology holds and maintains also an ISO: 9001/2008, Quality System, for the provision of meteorological and climatological services to aeronautic and maritime community, but also to the general public. In order to fulfill its obligations the Department of Meteorology customs the rather dense meteorological stations network, with long historical data series, installed and maintained by the Department, in parallel with modelling and Numerical Weather Prediction (NWP), along with training and gaining of expertise. Among the available instruments in the community of meteorologists is the meteorological radar, a basic tool for the needs of very short/short range forecasting (nowcasting). The Department of Meteorology installed in the mid 90's a C-band radar over «Throni» location and expanded its horizons in nowcasting, aviation safety and warnings issuance. The radar has undergone several upgrades but today technology has over passed its rather old technology. At the present the Department of Meteorology is in the process of buying Meteorological Radar Services as a result of a public procurement procedure. Two networked X-band meteorological radar will be installed (the project now is in the phase of infrastructure establishment while the hardware is in the process of assemble), and maintained from Space Hellas (the contractor) for a 13 years' time period. The present article must be faced as a review article of the efforts of the Department of Meteorology to support its weather forecasters with data from meteorological radar.

  9. Development of statistical analysis code for meteorological data (W-View)

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Haruo; Sekita, Tsutomu; Yamaguchi, Takenori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A computer code (W-View: Weather View) was developed to analyze the meteorological data statistically based on 'the guideline of meteorological statistics for the safety analysis of nuclear power reactor' (Nuclear Safety Commission on January 28, 1982; revised on March 29, 2001). The code gives statistical meteorological data to assess the public dose in case of normal operation and severe accident to get the license of nuclear reactor operation. This code was revised from the original code used in a large office computer code to enable a personal computer user to analyze the meteorological data simply and conveniently and to make the statistical data tables and figures of meteorology. (author)

  10. Hyperion technology enables unified meteorological and radiological monitoring

    International Nuclear Information System (INIS)

    Zigic, A.; Saponjic, D.; Arandjelovic, V.; Zunic, Z. . E-mail address of corresponding author: alex@vin.bg.ac.yu; Zigic, A.)

    2005-01-01

    The present state of meteorological and radiological measurement and monitoring are quite localized to smaller areas which implies the difficulties in knowing the measurement results in the wider region instantly. The need for establishing a distributed, flexible, modular and centralized measurement system for both meteorological and radiological parameters of environment is arising. The measurement and monitoring of radiological parameters of environment are not sufficient since there is a strong correlation between radiological and meteorological parameters which implies a unified distributed automatic monitoring system. The unified monitoring system makes it possible to transfer, process and store measured data in local and central databases. Central database gives a possibility of easy access to all measured data for authorized personnel and institutions. Stored measured data in central database gives a new opportunity to create a base for meteorological and radiological modelling and studies. (author)

  11. Meteorological circumstances during the 'Chernobyl-period'

    International Nuclear Information System (INIS)

    Ivens, R.; Lablans, W.N.; Wessels, H.R.A.

    1987-01-01

    The progress of the meteorological circumstances and air flows in Europe from 26th April up to 8th May 1986, which caused the spread of contaminated air originating from Chernobyl is outlined and mapped out. Furthermore a global survey is presented of the precipitation in the Netherlands during the period 2nd May to 10th May based on observations of various observation stations of the Royal Dutch Meteorologic Institute (KNMI). 11 figs.; 1 table (H.W.)

  12. Frequency modulator. Transmission of meteorological signals in LVC

    International Nuclear Information System (INIS)

    Rivero G, P.T.; Ramirez S, R.; Gonzalez M, J.L.; Rojas N, P.; Celis del Angel, L.

    2007-01-01

    The development of the frequency modulator and demodulator circuit for transmission of meteorological signals by means of fiber optics of the meteorology station to the nuclear reactor unit 1 in the Laguna Verde Central in Veracruz is described. (Author)

  13. Statistics of meteorological data at Tokai Research Establishment in JAERI

    International Nuclear Information System (INIS)

    Sekita, Tsutomu; Tachibana, Haruo; Matsuura, Kenichi; Yamaguchi, Takenori

    2003-12-01

    The meteorological observation data at Tokai site were analyzed statistically based on a 'Guideline of meteorological statistics for the safety analysis of nuclear power reactor' (Nuclear Safety Commission on January 28, 1982; revised on March 29, 2001). This report shows the meteorological analysis of wind direction, wind velocity and atmospheric stability etc. to assess the public dose around the Tokai site caused by the released gaseous radioactivity. The statistical period of meteorological data is every 5 years from 1981 to 1995. (author)

  14. Meteorological factors for PM10 concentration levels in Northern Spain

    Science.gov (United States)

    Santurtún, Ana; Mínguez, Roberto; Villar-Fernández, Alejandro; González Hidalgo, Juan Carlos; Zarrabeitia, María Teresa

    2013-04-01

    Atmospheric particulate matter (PM) is made up of a mixture of solid and aqueous species which enter the atmosphere by anthropogenic and natural pathways. The levels and composition of ambient air PM depend on the climatology and on the geography (topography, soil cover, proximity to arid zones or to the coast) of a given region. Spain has particular difficulties in achieving compliance with the limit values established by the European Union (based on recommendations from the World Health Organization) for particulate matter on the order of 10 micrometers of diameter or less (PM10), but not only antropogenical emissions are responsible for this: some studies show that PM10 concentrations originating from these kinds of sources are similar to what is found in other European countries, while some of the geographical features of the Iberian Peninsula (such as African mineral dust intrusion, soil aridity or rainfall) are proven to be a factor for higher PM concentrations. This work aims to describe PM10 concentration levels in Cantabria (Northern Spain) and their relationship with the following meteorological variables: rainfall, solar radiation, temperature, barometric pressure and wind speed. Data consists of daily series obtained from hourly data records for the 2000-2010 period, of PM10 concentrations from 4 different urban-background stations, and daily series of the meteorological variables provided by Spanish National Meteorology Agency. The method used for establishing the relationships between these variables consists of several steps: i) fitting a non-stationary probability density function for each variable accounting for long-term trends, seasonality during the year and possible seasonality during the week to distinguish between work and weekend days, ii) using the marginal distribution function obtained, transform the time series of historical values of each variable into a normalized Gaussian time series. This step allows using consistently time series

  15. Wave Meteorology and Soaring

    Science.gov (United States)

    Wiley, Scott

    2008-01-01

    This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.

  16. A 25-year Record of Antarctic Ice Sheet Elevation and Mass Change

    Science.gov (United States)

    Shepherd, A.; Muir, A. S.; Sundal, A.; McMillan, M.; Briggs, K.; Hogg, A.; Engdahl, M.; Gilbert, L.

    2017-12-01

    Since 1992, the European Remote-Sensing (ERS-1 and ERS-2), ENVISAT, and CryoSat-2 satellite radar altimeters have measured the Antarctic ice sheet surface elevation, repeatedly, at approximately monthly intervals. These data constitute the longest continuous record of ice sheet wide change. In this paper, we use these observations to determine changes in the elevation, volume and mass of the East Antarctic and West Antarctic ice sheets, and of parts of the Antarctic Peninsula ice sheet, over a 25-year period. The root mean square difference between elevation rates computed from our survey and 257,296 estimates determined from airborne laser measurements is 54 cm/yr. The longevity of the satellite altimeter data record allows to identify and chart the evolution of changes associated with meteorology and ice flow, and we estimate that 3.6 % of the continental ice sheet, and 21.7 % of West Antarctica, is in a state of dynamical imbalance. Based on this partitioning, we estimate the mass balance of the East and West Antarctic ice sheet drainage basins and the root mean square difference between these and independent estimates derived from satellite gravimetry is less than 5 Gt yr-1.

  17. High-resolution records of the beryllium-10 solar activity proxy in ice from Law Dome, East Antarctica: measurement, reproducibility and principal trends

    Directory of Open Access Journals (Sweden)

    J. B. Pedro

    2011-07-01

    Full Text Available Three near-monthly resolution 10Be records are presented from the Dome Summit South (DSS ice core site, Law Dome, East Antarctica. The chemical preparation and Accelerator Mass Spectrometer (AMS measurement of these records is described. The reproducibility of 10Be records at DSS is assessed through intercomparison of the ice core data with data from two previously published and contemporaneous snow pits. We find generally good agreement between the five records, comparable to that observed between other trace chemical records from the site. This result allays concerns raised by a previous Antarctic study (Moraal et al., 2005 about poor reproducibility of ice core 10Be records. A single composite series is constructed from the three ice cores providing a monthly-resolved record of 10Be concentrations at DSS over the past decade (1999 to 2009. To our knowledge, this is the first published ice core data spanning the recent exceptional solar minimum of solar cycle 23. 10Be concentrations are significantly correlated to the cosmic ray flux recorded by the McMurdo neutron monitor (rxy = 0.64, with 95 % CI of 0.53 to 0.71, suggesting that solar modulation of the atmospheric production rate may explain up to ~40 % of the variance in 10Be concentrations at DSS. Sharp concentration peaks occur in most years during the summer-to-autumn, possibly caused by stratospheric incursions. Our results underscore the presence of both production and meteorological signals in ice core 10Be data.

  18. The 1989 progress report: dynamic meteorology

    International Nuclear Information System (INIS)

    Sadourny, R.

    1989-01-01

    The 1989 progress report of the laboratory of Dynamic Meteorology of the Polytechnic School (France) is presented. The aim of the research programs is the dynamic study of climate and environment in relationship with the global athmospheric behavior. The investigations reported were performed in the fields of: climate modelling, dynamic study of Turbulence, analysis of atmospheric radiation and nebulosity, tropical meteorology and climate, Earth radioactive balance, lidar measurements, middle atmosphere studies. The published papers, the conferences and Laboratory staff are listed [fr

  19. Annual report of the Dynamic Meteorology Laboratory, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Research on climate simulation; data assimilation and forecasting; nonlinear dynamics and atmospheric turbulence; wave dynamics in the middle atmosphere; African and tropical meteorology and climatology; spectroscopy and modeling of atmospheric radiation; satellite meteorology and climatology; and active lidar remote sensing is presented [fr

  20. The analysis of distribution of meteorological over China in astronomical site selection

    Science.gov (United States)

    Zhang, Cai-yun; Weng, Ning-quan

    2014-02-01

    The distribution of parameters such as sunshine hours, precipitation, and visibility were obtained by analyzing the meteorological data in 906 stations of China during 1981~2012. And the month and annual variations of the parameters in some typical stations were discussed. The results show that: (1) the distribution of clear days is similar to that of sunshine hours, the values of which decrease from north to south and from west to east. The distributions of cloud, precipitation and vapor pressure are opposite. (2) The northwest areas in China have the characteristic such as low precipitation and vapor pressure, small cloud clever, and good visibility, which are the general conditions of astronomical site selection. (3) The parameters have obvious month variation. There are large precipitation, long sunshine hours and strong radiation in the mid months of one year, which are opposite in beginning and ending of one year. (4) In the selected stations, the value of vapor pressure decreases year by year, and the optical depth is similar or invariable. All the above results provided for astronomical site selection.

  1. Comparative analysis of meteorological and hydrological drought in the Pearl River basin during the period 1960-2012

    Science.gov (United States)

    Xu, K.; Wu, C.; Hu, B.; Niu, J.

    2017-12-01

    Drought is one of the major natural hazards that can have devastating impacts on the regional environment, agriculture, and water resources. Previous studies have conducted the assessment of historic changes in meteorological drought over various regional scales but rarely considered hydrological drought due to limited hydrological observations. Here, we use a long-term (1960-2012) gridded hydro-meteorological data to present a comparative analysis of meteorological and hydrological drought in the Pearl River basin in southern China using the standardized precipitation index (SPI) and the standardized runoff index (SRI). The variation in SPI and SRI at four different timescales (1-, 3-, 6-, and 12-month) is investigated using the Mann-Kendall (M-K) method and continuous wavelet transform (CWT). The results indicate that the correlation between SPI and SRI is strong over the Pearl River basin and tends to be stronger at the longer timescale. Meanwhile, the periodic oscillation pattern of SPI becomes more consistent with that of SRI with the increased timescale. The SPI can be used as a substitute for SRI to represent the hydrological drought at the long-term scale. Overall there is a noticeably wetting trend mainly in the eastern parts and a significant drying trend mainly in the western regions and the downstream area of the Pearl River basin. The variability of meteorological drought is significant mainly in the eastern and western regions, while the variability of hydrological drought tends to be larger mainly in the western region. CWT analysis indicates a period of 0.75-7 years in both meteorological and hydrological droughts during the period 1960-2012 in the study region.

  2. Coupling meteorological and hydrological models for flood forecasting

    Directory of Open Access Journals (Sweden)

    Bartholmes

    2005-01-01

    Full Text Available This paper deals with the problem of analysing the coupling of meteorological meso-scale quantitative precipitation forecasts with distributed rainfall-runoff models to extend the forecasting horizon. Traditionally, semi-distributed rainfall-runoff models have been used for real time flood forecasting. More recently, increased computer capabilities allow the utilisation of distributed hydrological models with mesh sizes from tenths of metres to a few kilometres. On the other hand, meteorological models, providing the quantitative precipitation forecast, tend to produce average values on meshes ranging from slightly less than 10 to 200 kilometres. Therefore, to improve the quality of flood forecasts, the effects of coupling the meteorological and the hydrological models at different scales were analysed. A distributed hydrological model (TOPKAPI was developed and calibrated using a 1x1 km mesh for the case of the river Po closed at Ponte Spessa (catchment area c. 37000 km2. The model was then coupled with several other European meteorological models ranging from the Limited Area Models (provided by DMI and DWD with resolutions from 0.0625° * 0.0625°, to the ECMWF ensemble predictions with a resolution of 1.85° * 1.85°. Interesting results, describing the coupled model behaviour, are available for a meteorological extreme event in Northern Italy (Nov. 1994. The results demonstrate the poor reliability of the quantitative precipitation forecasts produced by meteorological models presently available; this is not resolved using the Ensemble Forecasting technique, when compared with results obtainable with measured rainfall.

  3. A method for predicting monthly rainfall patterns

    International Nuclear Information System (INIS)

    Njau, E.C.

    1987-11-01

    A brief survey is made of previous methods that have been used to predict rainfall trends or drought spells in different parts of the earth. The basic methodologies or theoretical strategies used in these methods are compared with contents of a recent theory of Sun-Weather/Climate links (Njau, 1985a; 1985b; 1986; 1987a; 1987b; 1987c) which point towards the possibility of practical climatic predictions. It is shown that not only is the theoretical basis of each of these methodologies or strategies fully incorporated into the above-named theory, but also this theory may be used to develop a technique by which future monthly rainfall patterns can be predicted in further and finer details. We describe the latter technique and then illustrate its workability by means of predictions made on monthly rainfall patterns in some East African meteorological stations. (author). 43 refs, 11 figs, 2 tabs

  4. Calculation of climatic reference values and its use for automatic outlier detection in meteorological datasets

    Directory of Open Access Journals (Sweden)

    B. Téllez

    2008-04-01

    Full Text Available The climatic reference values for monthly and annual average air temperature and total precipitation in Catalonia – northeast of Spain – are calculated using a combination of statistical methods and geostatistical techniques of interpolation. In order to estimate the uncertainty of the method, the initial dataset is split into two parts that are, respectively, used for estimation and validation. The resulting maps are then used in the automatic outlier detection in meteorological datasets.

  5. Atlantic Oceanographic and Meteorological Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Atlantic Oceanographic and Meteorological Laboratory conducts research to understand the physical, chemical, and biological characteristics and processes of the...

  6. Modeling the isotopic composition of Antarctic snow using backward trajectories: simulation of snow pit records

    NARCIS (Netherlands)

    Helsen, M.M.; van de Wal, R.S.W.; van den Broeke, M.R.; Masson-Delmotte, V.; Meijer, H.A.J.; Scheele, M.P.; Werner, M.

    2006-01-01

    The quantitative interpretation of isotope records (d18O, dD, and d excess) in ice cores can benefit from a comparison of observed meteorology with associated isotope variability. For this reason we studied four isotope records from snow pits in western Dronning Maud Land (DML), Antarctica, covering

  7. The data collection component of the Hanford Meteorology Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C.S.; Islam, M.M.

    1988-09-01

    An intensive program of meteorological monitoring is in place at the US Department of Energy's Hanford Site. The Hanford Meteorology Monitoring Program involves the measurement, observation, and storage of various meteorological data; continuous monitoring of regional weather conditions by a staff of professional meteorologists; and around-the-clock forecasting of weather conditions for the Hanford Site. The objective of this report is to document the data collection component of the program. In this report, each meteorological monitoring site is discussed in detail. Each site's location and instrumentation are described and photographs are presented. The methods for processing and communicating data to the Hanford Meteorology Station are also discussed. Finally, the procedures followed to maintain and calibrate these instruments are presented. 2 refs., 83 figs., 15 tabs.

  8. Climatic Forecasting of Net Infiltration at Yucca Mountain Using Analogue Meteorological Data

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    2005-01-01

    At Yucca Mountain, NV, future changes in climatic conditions will probably alter net infiltration, drainage below the bottom of the evapotranspiration zone within the soil profile, or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this study were to: (1) develop a semiempirical model and forecast average net infiltration rates, using the limited meteorological data from analog meteorological stations, for interglacial(present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region; and (2) corroborate the computed net infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. This study approached calculations of net infiltration, aridity, and precipitation effectiveness indices using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate, following a power law relationship between net infiltration and precipitation. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. Forecasting of net infiltration for different climate states is subject to numerous uncertainties associated with selecting climate analog sites, using relatively short analog meteorological records, neglecting the effects of vegetation and surface runoff and run-on on a local scale, as well as possible anthropogenically induced climate changes

  9. NOAA Ship Rainier Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Rainier Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  10. NOAA Ship Pisces Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Pisces Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  11. Research Ship Atlantic Explorer Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Atlantic Explorer Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  12. Research Ship Roger Revelle Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Roger Revelle Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  13. Research Ship New Horizon Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship New Horizon Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  14. Research Ship Aurora Australis Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Aurora Australis Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  15. NOAA Ship Fairweather Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Fairweather Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  16. Research Ship Southern Surveyor Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Southern Surveyor Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  17. NOAA Ship Okeanos Explorer Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Okeanos Explorer Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  18. Meteorology observations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    Meteorological data was collected in the Athabasca oil sands area of Alberta in support of Syncrude' application for approval to develop and operate the Aurora Mine. Meteorology controls the transport and dispersion of gaseous and particulate emissions which are vented into the atmosphere. Several meteorological monitoring stations have been set up in the Fort McMurray and Fort McKay area. The study was part of Suncor's commitment to Alberta Environmental Protection to substantially reduce SO 2 emissions by July 1996. Also, as a condition of approval of the proposed Aurora Mine, the company was required to develop additional ambient air quality, sulphur deposition and biomonitoring programs. Background reports were prepared for: (1) source characterization, (2) ambient air quality observations, (3) meteorology observations, and (4) air quality monitoring. The following factors were incorporated into dispersion modelling: terrain, wind, turbulence, temperature, net radiation and mixing height, relative humidity and precipitation. 15 refs., 9 tabs., 40 figs

  19. ICON - Port Everglades 2014 Meteorological Observations (NCEI Accession 0137094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  20. ICON - Salt River Bay 2010 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  1. ICON - Port Everglades 2013 Meteorological Observations (NODC Accession 0124002)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  2. ICON - Media Luna Reef 2009 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  3. ICON - Port Everglades 2015 Meteorological Observations (NCEI Accession 0156578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  4. NOAA Ship Delaware II Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Delaware II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  5. NOAA Ship Hi'ialakai Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Hi'ialakai Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  6. NOAA Ship Ronald Brown Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ronald Brown Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  7. NOAA Ship Miller Freeman Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Miller Freeman Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  8. NOAA Ship Oscar Dyson Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Dyson Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  9. Research Ship Kilo Moana Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Kilo Moana Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  10. NOAA Ship Nancy Foster Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Nancy Foster Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  11. NOAA Ship Gordon Gunter Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Gordon Gunter Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  12. NOAA Ship Ka'imimoana Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ka'imimoana Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  13. NOAA Ship Oregon II Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  14. ICON - Salt River Bay 2005 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  15. ICON - Salt River Bay 2009 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  16. ICON - Port Everglades 2012 Meteorological Observations (NODC Accession 0117727)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  17. Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran

    Science.gov (United States)

    Kaskaoutis, D. G.; Rashki, A.; Houssos, E. E.; Mofidi, A.; Goto, D.; Bartzokas, A.; Francois, P.; Legrand, M.

    2015-07-01

    Dust storms are considered natural hazards that seriously affect atmospheric conditions, ecosystems and human health. A key requirement for investigating the dust life cycle is the analysis of the meteorological (synoptic and dynamic) processes that control dust emission, uplift and transport. The present work focuses on examining the synoptic and dynamic meteorological conditions associated with dust-storms in the Sistan region, southeastern Iran during the summer season (June-September) of the years 2001-2012. The dust-storm days (total number of 356) are related to visibility records below 1 km at Zabol meteorological station, located near to the dust source. RegCM4 model simulations indicate that the intense northern Levar wind, the high surface heating and the valley-like characteristics of the region strongly affect the meteorological dynamics and the formation of a low-level jet that are strongly linked with dust exposures. The intra-annual evolution of the dust storms does not seem to be significantly associated with El-Nino Southern Oscillation, despite the fact that most of the dust-storms are related to positive values of Oceanic Nino Index. National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis suggests that the dust storms are associated with low sea-level pressure conditions over the whole south Asia, while at 700 hPa level a trough of low geopotential heights over India along with a ridge over Arabia and central Iran is the common scenario. A significant finding is that the dust storms over Sistan are found to be associated with a pronounced increase of the anticyclone over the Caspian Sea, enhancing the west-to-east pressure gradient and, therefore, the blowing of Levar. Infrared Difference Dust Index values highlight the intensity of the Sistan dust storms, while the SPRINTARS model simulates the dust loading and concentration reasonably well, since the dust storms are usually associated with peaks in model

  18. Integrating meteorology into research on migration.

    Science.gov (United States)

    Shamoun-Baranes, Judy; Bouten, Willem; van Loon, E Emiel

    2010-09-01

    Atmospheric dynamics strongly influence the migration of flying organisms. They affect, among others, the onset, duration and cost of migration, migratory routes, stop-over decisions, and flight speeds en-route. Animals move through a heterogeneous environment and have to react to atmospheric dynamics at different spatial and temporal scales. Integrating meteorology into research on migration is not only challenging but it is also important, especially when trying to understand the variability of the various aspects of migratory behavior observed in nature. In this article, we give an overview of some different modeling approaches and we show how these have been incorporated into migration research. We provide a more detailed description of the development and application of two dynamic, individual-based models, one for waders and one for soaring migrants, as examples of how and why to integrate meteorology into research on migration. We use these models to help understand underlying mechanisms of individual response to atmospheric conditions en-route and to explain emergent patterns. This type of models can be used to study the impact of variability in atmospheric dynamics on migration along a migratory trajectory, between seasons and between years. We conclude by providing some basic guidelines to help researchers towards finding the right modeling approach and the meteorological data needed to integrate meteorology into their own research. © The Author 2010. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

  19. Instrumentation for high-frequency meteorological observations from research vessel

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Khalap, S.; Mehra, P.

    Ship provides an attractive platform from which high-frequency meteorological observations (e.g., wind components, water vapor density, and air temperature) can be made accurately. However, accurate observations of meteorological variables depend...

  20. The Quality Control Algorithms Used in the Process of Creating the NASA Kennedy Space Center Lightning Protection System Towers Meteorological Database

    Science.gov (United States)

    Orcutt, John M.; Brenton, James C.

    2016-01-01

    The methodology and the results of the quality control (QC) process of the meteorological data from the Lightning Protection System (LPS) towers located at Kennedy Space Center (KSC) launch complex 39B (LC-39B) are documented in this paper. Meteorological data are used to design a launch vehicle, determine operational constraints, and to apply defined constraints on day-of-launch (DOL). In order to properly accomplish these tasks, a representative climatological database of meteorological records is needed because the database needs to represent the climate the vehicle will encounter. Numerous meteorological measurement towers exist at KSC; however, the engineering tasks need measurements at specific heights, some of which can only be provided by a few towers. Other than the LPS towers, Tower 313 is the only tower that provides observations up to 150 m. This tower is located approximately 3.5 km from LC-39B. In addition, data need to be QC'ed to remove erroneous reports that could pollute the results of an engineering analysis, mislead the development of operational constraints, or provide a false image of the atmosphere at the tower's location.

  1. Climate Record Books

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climate Record Books contain daily, monthly, seasonal, and annual averages, extremes, or occurrences. Most data are sequential by period of record 1871-1910,...

  2. Meteorological factors and risk of scrub typhus in Guangzhou, southern China, 2006–2012

    Science.gov (United States)

    2014-01-01

    Background Scrub typhus is becoming the most common vector born disease in Guangzhou, southern China. In this study, we aimed to examine the effect of weather patterns on the incidence of Scrub typhus in the subtropical city of Guangzhou for the period 2006–2012, and assist public health prevention and control measures. Methods Scrub typhus reported cases during the period of 2006–2012 in Guangzhou were obtained from National Notifiable Disease Report System (NNDRS). Simultaneous meteorological data including temperature, relative humidity, atmospheric pressure, sunshine, and rainfall were obtained from the documentation of the Guangzhou Meteorological Bureau. A negative binomial regression was used to identify the relationship between meteorological variables and scrub typhus. Results Annual incidence rates of scrub typhus from 2006 to 2012 were 3.25, 2.67, 3.81, 4.22, 4.41, 5.12, and 9.75 (per 100 000) respectively. Each 1°C rise in temperature corresponded to an increase of 14.98% (95% CI 13.65% to 16.33%) in the monthly number of scrub typhus cases, while a 1 hPa rise in atmospheric pressure corresponded to a decrease in the number of cases by 8.03% (95% CI −8.75% to −7.31%). Similarly, a 1 hour rise in sunshine corresponded to an increase of 0.17% or 0.54%, and a 1 millimeter rise in rainfall corresponded to an increase of 0.05% or 0.10%, in the monthly number of scrub typhus cases, depending on the variables considered in the model. Conclusion Our study provided evidence that climatic factors were associated with occurrence of scrub typhus in Guangzhou city, China. Temperature, duration of sunshine, and rainfall were positively associated with scrub typhus incidence, while atmospheric pressure was inversely associated with scrub typhus incidence. These findings should be considered in the prediction of future patterns of scrub typhus transmission. PMID:24620733

  3. Newspapers as early meteorological data sources in Andalusia (southern Spain), 1796-1830.

    Science.gov (United States)

    Fernández-Montes, S.; Rodrigo, F. S.

    2010-09-01

    The growing evidence of an anthropogenically induced climatic change and the need to compare present-day climate with that of the past centuries, has boosted the search of early meteorological data from all kind of historical archives. Among the documentary data sources, early newspapers deserve special attention. Anonymous observers began to send their data to local newspapers to ensure that people were informed of them. Hardly anything is known of the conditions in which these recording were made, and press collections conserved from late 18th century to mid-19th century are fragmentary. However, it is interesting to analyze the potential of these newspapers as climatic data sources in a period prior to the existence of an official meteorological service. In this work, some examples of Andalusian cities (southern Spain) are analyzed and their utility as data sources is studied: El Mensagero (1796-1797), El Publicista (1812-1813), Diario Constitucional (1820) of Granada, Diario del Gobierno de Sevilla (1812-1813), Diario de Sevilla (1826-1831), Diario de Sevilla de Comercio, Artes y Literatura (1829-1830) of Seville, and Diario Mercantil de Cádiz (1802-1803, 1816-1830) of Cádiz. Future research is outlined.

  4. Abstraction the public from scientific - applied meteorological-climatologic data

    Science.gov (United States)

    Trajanoska, L.

    2010-09-01

    Mathematical and meteorological statistic processing of meteorological-climatologic data, which includes assessment of the exactness, level of confidence of the average and extreme values, frequencies (probabilities) of the occurrence of each meteorological phenomenon and element e.t.c. helps to describe the impacts climate may have on different social and economic activities (transportation, heat& power generation), as well as on human health. Having in mind the new technology and the commercial world, during the work with meteorological-climatologic data we have meet many different challenges. Priority in all of this is the quality of the meteorological-climatologic set of data. First, we need compatible modern, sophisticated measurement and informatics solution for data. Results of this measurement through applied processing and analyze is the second branch which is very important also. Should we all (country) need that? Today we have many unpleasant events connected with meteorology, many questions which are not answered and all of this has too long lasting. We must give the answers and solve the real and basic issue. In this paper the data issue will be presented. We have too much of data but so little of real and quality applied of them, Why? There is a data for: -public applied -for jurisdiction needs -for getting fast decision-solutions (meteorological-dangerous phenomenon's) -for getting decisions for long-lasting plans -for explore in different sphere of human living So, it is very important for what kind of data we are talking. Does the data we are talking are with public or scientific-applied character? So,we have two groups. The first group which work with the data direct from the measurement place and instrument. They are store a quality data base and are on extra help to the journalists, medical workers, human civil engineers, electromechanical engineers, agro meteorological and forestry engineer e.g. The second group do work with all scientific

  5. Meteorological safeguarding of nuclear power plant operation in Czechoslovakia

    International Nuclear Information System (INIS)

    Rak, J.; Skulec, S.

    1976-01-01

    A meteorological tower 200 m high has to be built for meteorological control of the operation of the A-1 nuclear power plant at Jaslovske Bohunice. This meteorological station will measure the physical properties of the lower layers of the atmosphere, carry out experimental verifications of the models of air pollution, investigate the effects of waste heat and waste water from the nuclear power plant on the microclimate, provide the theoretical processing of measured data with the aim of selecting the most favourable model for conditions prevailing in the Czechoslovak Socialist Republic, perform basic research of the physical properties of the ground and boundary layers of the atmosphere and the coordination of state-wide plans in the field of securing the operation of nuclear power plants with regard to meteorology. (Z.M.)

  6. Meteorological monitoring sampling and analysis plan for the environmental monitoring plan at Waste Area Grouping 6, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    This Sampling and Analysis Plan addresses meteorological monitoring activities that wall be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Lockheed Martin Energy Systems, Inc. Meteorological monitoring of various climatological parameters (e.g., temperature, wind speed, humidity) will be collected by instruments installed at WAG 6. Data will be recorded electronically at frequencies varying from 5-min intervals to 1-h intervals, dependent upon parameter. The data will be downloaded every 2 weeks, evaluated, compressed, and uploaded into a WAG 6 data base for subsequent use. The meteorological data will be used in water balance calculations in support of the WAG 6 hydrogeological model

  7. A Meteorological Distribution System for High Resolution Terrestrial Modeling (MicroMet)

    Science.gov (United States)

    Liston, G. E.; Elder, K.

    2004-12-01

    Spatially distributed terrestrial models generally require atmospheric forcing data on horizontal grids that are of higher resolution than available meteorological data. Furthermore, the meteorological data collected may not necessarily represent the area of interest's meteorological variability. To address these deficiencies, computationally efficient and physically realistic methods must be developed to take available meteorological data sets (e.g., meteorological tower observations) and generate high-resolution atmospheric-forcing distributions. This poster describes MicroMet, a quasi-physically-based, but simple meteorological distribution model designed to produce high-resolution (e.g., 5-m to 1-km horizontal grid increments) meteorological data distributions required to run spatially distributed terrestrial models over a wide variety of landscapes. The model produces distributions of the seven fundamental atmospheric forcing variables required to run most terrestrial models: air temperature, relative humidity, wind speed, wind direction, incoming solar radiation, incoming longwave radiation, and precipitation. MicroMet includes a preprocessor that analyzes meteorological station data and identifies and repairs potential data deficiencies. The model uses known relationships between meteorological variables and the surrounding area (primarily topography) to distribute those variables over any given landscape. MicroMet performs two kinds of adjustments to available meteorological data: 1) when there are data at more than one location, at a given time, the data are spatially interpolated over the domain using a Barnes objective analysis scheme, and 2) physical sub-models are applied to each MicroMet variable to improve its realism at a given point in space and time with respect to the terrain. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) will be used as example Micro

  8. Assessment of a surface-layer parameterization scheme in an atmospheric model for varying meteorological conditions

    Directory of Open Access Journals (Sweden)

    T. J. Anurose

    2014-06-01

    Full Text Available The performance of a surface-layer parameterization scheme in a high-resolution regional model (HRM is carried out by comparing the model-simulated sensible heat flux (H with the concurrent in situ measurements recorded at Thiruvananthapuram (8.5° N, 76.9° E, a coastal station in India. With a view to examining the role of atmospheric stability in conjunction with the roughness lengths in the determination of heat exchange coefficient (CH and H for varying meteorological conditions, the model simulations are repeated by assigning different values to the ratio of momentum and thermal roughness lengths (i.e. z0m/z0h in three distinct configurations of the surface-layer scheme designed for the present study. These three configurations resulted in differential behaviour for the varying meteorological conditions, which is attributed to the sensitivity of CH to the bulk Richardson number (RiB under extremely unstable, near-neutral and stable stratification of the atmosphere.

  9. Influence of meteorological elements on balance control and pain in patients with symptomatic knee osteoarthritis

    Science.gov (United States)

    Peultier, Laetitia; Lion, Alexis; Chary-Valckenaere, Isabelle; Loeuille, Damien; Zhang, Zheng; Rat, Anne-Christine; Gueguen, René; Paysant, Jean; Perrin, Philippe P.

    2017-05-01

    This study aimed to determine if pain and balance control are related to meteorological modifications in patients with knee osteoarthritis (OA). One hundred and thirteen patients with knee OA (mean age = 65 ± 9 years old, 78 women) participated in this study. Static posturography was performed, sway area covered and sway path traveled by the center of foot pressure being recorded under six standing postural conditions that combine three visual situations (eyes open, eyes closed, vision altered) with two platform situations (firm and foam supports). Knee pain score was assessed using a visual analog scale. Balance control and pain measurements recorded in the morning were correlated with the meteorological data. Morning and daily values for temperature, precipitation, sunshine, height of rain in 1 h, wind speed, humidity, and atmospheric pressure were obtained from the nearest data collecting weather station. The relationship between postural control, pain, and weather variations were assessed for each patient on a given day with multiple linear regressions. A decrease of postural stability was observed when atmospheric pressure and maximum humidity decreased in the morning ( p knee pain was more enhanced when it is warmer in the morning ( p < 0.05) and when it is wetter and warmer within a day ( p < 0.05). The relationship between weather, pain, and postural control can help patients and health professionals to better manage daily activities.

  10. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  11. Mesoscale meteorological measurements characterizing complex flows

    International Nuclear Information System (INIS)

    Hubbe, J.M.; Allwine, K.J.

    1993-09-01

    Meteorological measurements are an integral and essential component of any emergency response system for addressing accidental releases from nuclear facilities. An important element of the US Department of Energy's (DOE's) Atmospheric Studies in Complex Terrain (ASCOT) program is the refinement and use of state-of-the-art meteorological instrumentation. ASCOT is currently making use of ground-based remote wind sensing instruments such as doppler acoustic sounders (sodars). These instruments are capable of continuously and reliably measuring winds up to several hundred meters above the ground, unattended. Two sodars are currently measuring the winds, as part of ASCOT's Front Range Study, in the vicinity of DOE's Rocky Flats Plant (RFP) near Boulder, Colorado. A brief description of ASCOT's ongoing Front Range Study is given followed by a case study analysis that demonstrates the utility of the meteorological measurement equipment and the complexity of flow phenomena that are experienced near RFP. These complex flow phenomena can significantly influence the transport of the released material and consequently need to be identified for accurate assessments of the consequences of a release

  12. Developing International Standards for Meteorological Balloon to Facilitate Industrial Progress

    Institute of Scientific and Technical Information of China (English)

    Deng Yizhi

    2011-01-01

    Meteorological balloon is made of natural rubber latex with a special process.On natural conditions,it carries the air sounding instrument into the high air to detect the meteorological elements in the air.As a means of delivery used in the aerological sounding,it is widely used in the meteorological,sailing,aeronautical,aerospace and other fields,and plays an extremely important role in the weather report,disaster prevention,disaster relief,guaranteeing ships and aircrafts to leave ports safely,and scientific research in relevant spaces,etc.Especially,the role of meteorological balloons is not ignorable in the forecast of extremely adverse weather frequently occurring around the world in recent years.

  13. Assessing meteorological key factors influencing crop invasion by pollen beetle (

    Directory of Open Access Journals (Sweden)

    Jürgen Junk

    2016-09-01

    Full Text Available The pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae, is a severe pest of winter oilseed rape. A phenological model to forecast the first spring invasion of crops in Luxembourg by M. aeneus was developed in order to provide a tool for improving pest management and for assessing the potential effects of climate change on this pest. The model was derived using long-term, multi-site observational datasets of pollen beetle migration and meteorological data, as the timing of crop invasion is determined mainly by meteorological variables. Daily values of mean air and soil temperature, accumulated sunshine duration and precipitation were used to create a threshold-based model to forecast crop invasion. Minimising of the root mean squared error (RMSE of predicted versus observed migration dates was used as the quality criterion for selecting the optimum combination of threshold values for meteorological variables. We identified mean air temperature 8.0 °C, mean soil temperature 4.6 °C, and sunshine duration of 3.4 h as the best threshold values, with a cut-off of 1 mm precipitation and with no need for persistence of those conditions for more than one day (RMSE=9.3days$RMSE=9.3\\,\\text{days}$. Only in six out of 30 cases, differences between observed and predicted immigration dates were >5$>5$ days. In the future, crop invasion by pollen beetles will probably be strongly affected by changes in air temperature and precipitation related to climate change. We used a multi-model ensemble of 15 regional climate models driven by the A1B emission scenario to assess meteorological changes in two 30‑year future periods, near future (2021–2050 and far future (2069–2098 in comparison with the reference period (1971–2000. Air temperature and precipitation were predicted to increase in the first three months of each year, both in the near future and the far future. The pollen beetle migration model indicated that this change would

  14. The record precipitation and flood event in Iberia in December 1876: description and synoptic analysis

    Directory of Open Access Journals (Sweden)

    Ricardo Machado Trigo

    2014-04-01

    Full Text Available The first week of December 1876 was marked by extreme weather conditions that affected the south-western sector of the Iberian Peninsula, leading to an all-time record flow in two large international rivers. As a direct consequence, several Portuguese and Spanish towns and villages located in the banks of both rivers suffered serious flood damage on 7 December 1876. These unusual floods were amplified by the preceding particularly autumn wet months, with October 1876 presenting extremely high precipitation anomalies for all western Iberia stations. Two recently digitised stations in Portugal (Lisbon and Evora, present a peak value on 5 December 1876. Furthermore, the values of precipitation registered between 28 November and 7 December were so remarkable that, the episode of 1876 still corresponds to the maximum average daily precipitation values for temporal scales between 2 and 10 days. Using several different data sources, such as historical newspapers of that time, meteorological data recently digitised from several stations in Portugal and Spain and the recently available 20th Century Reanalysis, we provide a detailed analysis on the socio-economic impacts, precipitation values and the atmospheric circulation conditions associated with this event. The atmospheric circulation during these months was assessed at the monthly, daily and sub-daily scales. All months considered present an intense negative NAO index value, with November 1876 corresponding to the lowest NAO value on record since 1865. We have also computed a multivariable analysis of surface and upper air fields in order to provide some enlightening into the evolution of the synoptic conditions in the week prior to the floods. These events resulted from the continuous pouring of precipitation registered between 28 November and 7 December, due to the consecutive passage of Atlantic low-pressure systems fuelled by the presence of an atmospheric-river tropical moisture flow over

  15. New analysis software for Viking Lander meteorological data

    Directory of Open Access Journals (Sweden)

    O. Kemppinen

    2013-02-01

    Full Text Available We have developed a set of tools that enable us to process Viking Lander meteorological data beyond what has been previously publicly available. Besides providing data for new periods of time, the existing data periods have been augmented by enhancing the data resolution significantly. This was accomplished by first transferring the original Prime computer version of the data analysis software to a standard Linux platform, and then by modifying the software to be able to process the data despite irregularities in the original raw data and reverse engineering various parameter files. In addition to this, the processing pipeline has been streamlined, making processing the data faster and easier. As a case example of new data, freshly processed Viking Lander 1 and 2 temperature records are described and briefly analyzed in ways that have not been previously possible due to the lack of data.

  16. Meteorology and Wind Energy Department annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Dannemand Andersen, P.; Skrumsager, B. [eds.

    1997-07-01

    In 1996 the Meteorology and Wind Energy Department has performed research within the programme areas: (1) wind energy and (2) atmospheric processes. The objectives are through research in boundary layer meteorology, fluid dynamics, aerodynamics and structural mechanics to contribute with new knowledge within (1) wind energy in relation to development, manufacturing, operation and export as well as testing and certification of wind turbines, and (2) aspects of boundary-layer meteorology related to environmental and energy problems of society. The work is supported by the research programs of the Ministry of Environment and Energy, the Nordic Council of Ministers, EU as well as by industry. Through our research and development work we develop and provide methodologies including computer models for use by industry, institutions, and governmental authorities. In the long view we are developing facilities and programs enabling us to serve as a national and European centre for wind-energy and boundary-layer meteorological research. A summary of our activities in 1996 is presented. (au) 4 tabs., 5 ills.

  17. European meteorological data: contribution to research, development, and policy support

    Science.gov (United States)

    Biavetti, Irene; Karetsos, Sotiris; Ceglar, Andrej; Toreti, Andrea; Panagos, Panos

    2014-08-01

    The Joint Research Centre of the European Commission has developed Interpolated Meteorological Datasets available on a regular 25x25km grid both to the scientific community and the general public. Among others, the Interpolated Meteorological Datasets include daily maximum/minimum temperature, cumulated daily precipitation, evapotranspiration and wind speed. These datasets can be accessed through a web interface after a simple registration procedure. The Interpolated Meteorological Datasets also serve the Crop Growth Monitoring System (CGMS) at European level. The temporal coverage of the datasets is more than 30 years and the spatial coverage includes EU Member States, neighboring European countries, and the Mediterranean countries. The meteorological data are highly relevant for the development, implementation and assessment of a number of European Union (EU) policy areas: agriculture, soil protection, environment, agriculture, food security, energy, climate change. An online user survey has been carried out in order to assess the impact of the Interpolated Meteorological Datasets on research developments. More than 70% of the users have used the meteorological datasets for research purposes and more than 50% of the users have used those sources as main input for their models. The usefulness of the data scored more than 70% and it is interesting to note that around 25% of the users have published their scientific outputs based on the Interpolated Meteorological Datasets. Finally, the user feedback focuses mostly on improving the data distribution process as well as the visibility of the web platform.

  18. Meteorological data fields 'in perspective'

    Science.gov (United States)

    Hasler, A. F.; Pierce, H.; Morris, K. R.; Dodge, J.

    1985-01-01

    Perspective display techniques can be applied to meteorological data sets to aid in their interpretation. Examples of a perspective display procedure applied to satellite and aircraft visible and infrared image pairs and to stereo cloud-top height analyses are presented. The procedure uses a sophisticated shading algorithm that produces perspective images with greatly improved comprehensibility when compared with the wire-frame perspective displays that have been used in the past. By changing the 'eye-point' and 'view-point' inputs to the program in a systematic way, movie loops that give the impression of flying over or through the data field have been made. This paper gives examples that show how several kinds of meteorological data fields are more effectively illustrated using the perspective technique.

  19. Meteorology and lidar data from the URAHFREP field trials

    DEFF Research Database (Denmark)

    Ott, Søren; Ejsing Jørgensen, Hans

    2002-01-01

    to the HF release. The instrumentation included various types of HF sensors, thermocouple arrays, a fully instrumented release rig, a passive smokemachine, a meteorological mast and a lidar backscatter system. This report deals exclusively with the meteorological data and the lidar data. The trials cover...... a range meteorological conditions. These include neutral conditions with relatively highwindspeed and low humidity as well as unstable conditions with low windspeed and high humidity, the most favorable conditions for lift-off to occur. The lidar was used to scan vertical cross-plume slices 100 meter...

  20. The "dirty weather" diaries of Reverend Richard Davis: insights about early colonial-era meteorology and climate variability for northern New Zealand, 1839-1851

    Science.gov (United States)

    Lorrey, Andrew M.; Chappell, Petra R.

    2016-03-01

    Reverend Richard Davis (1790-1863) was a colonial-era missionary stationed in the Far North of New Zealand who was a key figure in the early efforts of the Church Mission Society. He kept meticulous meteorological records for the early settlements of Waimate North and Kaikohe, and his observations are preserved in a two-volume set in the Sir George Grey Special Collections in the Auckland Central Library. The Davis diary volumes are significant because they constitute some of the earliest land-based meteorological measurements that were continually chronicled for New Zealand. The diary measurements cover nine years within the 1839-1851 time span that are broken into two parts: 1839-1844 and 1848-1851. Davis' meteorological recordings include daily 9 a.m. and noon temperatures and midday pressure measurements. Qualitative comments in the diary note prevailing wind flow, wind strength, cloud cover, climate variability impacts, bio-indicators suggestive of drought, and notes on extreme weather events. "Dirty weather" comments scattered throughout the diary describe disturbed conditions with strong winds and driving rainfall. The Davis diary entries coincide with the end of the Little Ice Age (LIA) and they indicate southerly and westerly circulation influences and cooler winter temperatures were more frequent than today. A comparison of climate field reconstructions derived from the Davis diary data and tree-ring-based winter temperature reconstructions are supported by tropical coral palaeotemperature evidence. Davis' pressure measurements were corroborated using ship log data from vessels associated with iconic Antarctic exploration voyages that were anchored in the Bay of Islands, and suggest the pressure series he recorded are robust and can be used as "station data". The Reverend Davis meteorological data are expected to make a significant contribution to the Atmospheric Circulation Reconstructions across the Earth (ACRE) project, which feeds the major data

  1. Meteorological Observations Available for the State of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-12

    The National Weather Service’s Meteorological Assimilation Data Ingest System (MADIS) contains a large number of station networks of surface and upper air meteorological observations for the state of Utah. In addition to MADIS, observations from individual station networks may also be available. It has been confirmed that LLNL has access to the data sources listed below.

  2. Fifteen-year phenological plant species and meteorological trends in central Italy

    Science.gov (United States)

    Orlandi, F.; Ruga, L.; Bonofiglio, T.; Romano, B.; Fornaciari, M.

    2014-07-01

    The present study was carried out in a phenological garden in central Italy that contains vegetative clones of shrubs and trees common to several international phenological gardens, such as Cornus sanguinea L.; Corylus avellana L.; Ligustrum vulgare L.; Robinia pseudoacacia L.; Salix acutifolia Willd. and Sambucus nigra L. Vegetative plant growth monitoring was carried out weekly using common international keys: BBCH07, bud break and leaf unfolding; BBCH19, young unfolded leaf; BBCH91, adult leaves; BBCH93, beginning of leaf colouring. The phenological dates thus obtained provide a model of the development for these different species in relation to the 15-year period of observation (1997-2011). From a meteorological point of view, temperature and precipitation trends were studied, with the highest anomalies during the study period recorded during the first 2 months of the year (January, February). There was relative invariance in the manifestation of the open bud phase and the contemporary advance of the young open leaves phase, particularly from 2006. This was accompanied by shortening of the leaf opening period, which appeared due to more rapid spring temperature increases over the last few years. The advance tendency of the BBCH91 phase showed adult leaves from the first summer weeks with fully green foliage monitored for a long time. Generally, the autumn leaf colouring phase tended to remain constant, with the exception of Salix acutifolia and Sambucus nigra, for which, on the other hand, the first leaf development phases appeared to be most likely influenced by the photoperiod.

  3. Radiation protection at the RA Reactor in 1998, Part -2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1998-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. Since April 15 1997 meteorology measurements, data acquisition and processing are done by automated meteorology station. The meteorology bulletin for the Vinca Institute is completed every day by computer codes developed by the meteorology staff in the Institute. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute [sr

  4. Radiation protection at the RA Reactor in 1999, Part -2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1999-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. Since April 15 1997 meteorology measurements, data acquisition and processing are done by automated meteorology station. The meteorology bulletin for the Vinca Institute is completed every day by computer codes developed by the meteorology staff in the Institute. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute [sr

  5. Radiation protection at the RA Reactor in 2000, Part 2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    2000-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. Since April 15, 1997 meteorology measurements, data acquisition and processing are done by automated meteorology station. The meteorology bulletin for the Vinca Institute is completed every day by computer codes developed by the meteorology staff in the Institute. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute [sr

  6. Reference crop evapotranspiration estimate using high-resolution meteorological network's data

    Directory of Open Access Journals (Sweden)

    C. Lussana

    2009-10-01

    Full Text Available Water management authorities need detailed information about each component of the hydrological balance. This document presents a method to estimate the evapotranspiration rate, initialized in order to obtain the reference crop evapotranspiration rate (ET0. By using an Optimal Interpolation (OI scheme, the hourly observations of several meteorological variables, measured by a high-resolution local meteorological network, are interpolated over a regular grid. The analysed meteorological fields, containing detailed meteorological information, enter a model for turbulent heat fluxes estimation based on Monin-Obukhov surface layer similarity theory. The obtained ET0 fields are then post-processed and disseminated to the users.

  7. Theory of quasi-biennial and some other oscillations in meteorological parameters

    International Nuclear Information System (INIS)

    Njau, E.C.

    1990-11-01

    We show that quasi-biennial and several other oscillations in meteorological parameters are caused by ''foldover distortions'' in the physical processes represented by the formulations contained in our recent theory. The periods of all these oscillations extend from about 50 days up to over 200,000 years. Additional oscillations within and outside this periodicity range are correspondingly generated primarily as a result of non-linearities in the earth-atmosphere system. Our analysis agrees quite well with past observations as well as results of analyses on climatic records from different locations on the earth and can, therefore, be useful in attempts to make climatic predictions as briefly indicated in the text. (author). 15 refs, 4 figs, 2 tabs

  8. Multifractal Conceptualisation of Hydro-Meteorological Extremes

    Science.gov (United States)

    Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2009-04-01

    Hydrology and more generally sciences involved in water resources management, technological or operational developments face a fundamental difficulty: the extreme variability of hydro-meteorological fields. It clearly appears today that this variability is a function of the observation scale and yield hydro-meteorological hazards. Throughout the world, the development of multifractal theory offers new techniques for handling such non-classical variability over wide ranges of time and space scales. The resulting stochastic simulations with a very limited number of parameters well reproduce the long range dependencies and the clustering of rainfall extremes often yielding fat tailed (i.e., an algebraic type) probability distributions. The goal of this work was to investigate the ability of using very short or incomplete data records for reliable statistical predictions of the extremes. In particular we discuss how to evaluate the uncertainty in the empirical or semi-analytical multifractal outcomes. We consider three main aspects of the evaluation, such as the scaling adequacy, the multifractal parameter estimation error and the quantile estimation error. We first use the multiplicative cascade model to generate long series of multifractal data. The simulated samples had to cover the range of the universal multifractal parameters widely available in the scientific literature for the rainfall and river discharges. Using these long multifractal series and their sub-samples, we defined a metric for parameter estimation error. Then using the sets of estimated parameters, we obtained the quantile values for a range of excedance probabilities from 5% to 0.01%. Plotting the error bars on a quantile plot enable an approximation of confidence intervals that would be particularly important for the predictions of multifractal extremes. We finally illustrate the efficiency of such concept on its application to a large database (more than 16000 selected stations over USA and

  9. Meteorological aspects of siting large wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hiester, T.R.; Pennell, W.T.

    1981-01-01

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  10. Extreme meteorological events in nuclear power plant siting, excluding tropical cyclones

    International Nuclear Information System (INIS)

    1981-01-01

    This Safety Guide deals with the extremes of meteorological variables and the extreme meteorological phenomena in accordance with the general criteria of the Code. The Guide outlines a procedure based on the following steps: (1) The meteorological phenomena and variables are described and classified, according to their effects on safety. (2) Data sources are identified, and data are collected. (3) Meteorological variables such as air temperature are analysed to determine their design bases; and the design basis event in case of phenomena such as the design basis tornado is identified. (4) As appropriate, the design basis value for the variable, or the design basis for the phenomena (such as pressure drop and maximum wind speed of the design basis tornado), is defined. In the following sections, the general procedure for evaluating the design bases of extreme meteorological variables and phenomena is outlined. The procedure is then presented in detail for each variable or phenomenon considered. The variables characterizing the meteorological environment dealt with in this Guide are wind speed, atmospheric precipitation, and temperature. The extreme meteorological phenomena discussed here are the tornado and, briefly, the tropical cyclone, which is discussed more extensively in the Safety Guide on Design Basis Tropical Cyclone for Nuclear Power Plants (IAEA Safety Series No. 50-SG-S11B)

  11. More than 70 years of continuous sea level records on the Santander Bay.

    Science.gov (United States)

    Lavín, Alicia; Tel, Elena; Molinero, Joaquin; Rodriguez, Carmen

    2017-04-01

    movements by monitoring the tide gauge benchmark. Increase in sea level detected in the Santander tide gauge is more than 2 mm/year. Annual and semi-annual cycles are detected in the monthly mean sea level. The amplitude of the annual cycle is 30 mm. and the semiannual 21 mm. Due to the good correlation between the NAO index and the monthly mean sea level we can assume that an important part of these cycles corresponds to the meteorological influence. The historical original records on paper are also digitalized images in order to avoid loses by paper degrading, facilitate the access to them, and in the future, keep a higher frequency record for systematic studies of extreme events.

  12. Meteorological Development Laboratory Student Career Experience Program

    Science.gov (United States)

    McCalla, C., Sr.

    2007-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) provides weather, hydrologic, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy. The NWS's Meteorological Development Laboratory (MDL) supports this mission by developing meteorological prediction methods. Given this mission, NOAA, NWS, and MDL all have a need to continually recruit talented scientists. One avenue for recruiting such talented scientist is the Student Career Experience Program (SCEP). Through SCEP, MDL offers undergraduate and graduate students majoring in meteorology, computer science, mathematics, oceanography, physics, and statistics the opportunity to alternate full-time paid employment with periods of full-time study. Using SCEP as a recruiting vehicle, MDL has employed students who possess some of the very latest technical skills and knowledge needed to make meaningful contributions to projects within the lab. MDL has recently expanded its use of SCEP and has increased the number of students (sometimes called co- ops) in its program. As a co-op, a student can expect to develop and implement computer based scientific techniques, participate in the development of statistical algorithms, assist in the analysis of meteorological data, and verify forecasts. This presentation will focus on describing recruitment, projects, and the application process related to MDL's SCEP. In addition, this presentation will also briefly explore the career paths of students who successfully completed the program.

  13. Meteorological events in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide provides recommendations and guidance on conducting hazard assessments of extreme and rare meteorological phenomena. It is of interest to safety assessors and regulators involved in the licensing process as well as to designers of nuclear power plants. This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It supplements the IAEA Safety Requirements publication on Site Evaluation for Nuclear Facilities which is to supersede the Code on the Safety of Nuclear Power Plants: Siting, Safety Series No. 50-C-S (Rev. 1), IAEA, Vienna (1988). The present Safety Guide supersedes two earlier Safety Guides: Safety Series No. 50-SG-S11A (1981) on Extreme Meteorological Events in Nuclear Power Plant Siting, Excluding Tropical Cyclones and Safety Series No. 50-SG-S11B (1984) on Design Basis Tropical Cyclone for Nuclear Power Plants. The purpose of this Safety Guide is to provide recommendations and guidance on conducting hazard assessments of extreme and rare meteorological phenomena. This Safety Guide provides interpretation of the Safety Requirements publication on Site Evaluation for Nuclear Facilities and guidance on how to fulfil these requirements. It is aimed at safety assessors or regulators involved in the licensing process as well as designers of nuclear power plants, and provides them with guidance on the methods and procedures for analyses that support the assessment of the hazards associated with extreme and rare meteorological events. This Safety Guide discusses the extreme values of meteorological variables and rare meteorological phenomena, as well as their rates of occurrence, according to the following definitions: (a) Extreme values of meteorological variables such as air temperature and wind speed characterize the meteorological or climatological environment. And (b) Rare meteorological phenomena

  14. A 20-year record (1998-2017) of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen)

    Science.gov (United States)

    Boike, Julia; Juszak, Inge; Lange, Stephan; Chadburn, Sarah; Burke, Eleanor; Overduin, Pier Paul; Roth, Kurt; Ippisch, Olaf; Bornemann, Niko; Stern, Lielle; Gouttevin, Isabelle; Hauber, Ernst; Westermann, Sebastian

    2018-03-01

    Most permafrost is located in the Arctic, where frozen organic carbon makes it an important component of the global climate system. Despite the fact that the Arctic climate changes more rapidly than the rest of the globe, observational data density in the region is low. Permafrost thaw and carbon release to the atmosphere are a positive feedback mechanism that can exacerbate global warming. This positive feedback functions via changing land-atmosphere energy and mass exchanges. There is thus a great need to understand links between the energy balance, which can vary rapidly over hourly to annual timescales, and permafrost, which changes slowly over long time periods. This understanding thus mandates long-term observational data sets. Such a data set is available from the Bayelva site at Ny-Ålesund, Svalbard, where meteorology, energy balance components and subsurface observations have been made for the last 20 years. Additional data include a high-resolution digital elevation model (DEM) that can be used together with the snow physical information for snowpack modeling and a panchromatic image. This paper presents the data set produced so far, explains instrumentation, calibration, processing and data quality control, as well as the sources for various resulting data sets. The resulting data set is unique in the Arctic and serves as a baseline for future studies. The mean permafrost temperature is -2.8 °C, with a zero-amplitude depth at 5.5 m (2009-2017). Since the data provide observations of temporally variable parameters that mitigate energy fluxes between permafrost and atmosphere, such as snow depth and soil moisture content, they are suitable for use in integrating, calibrating and testing permafrost as a component in earth system models.The presented data are available in the Supplement for this paper (time series) and through the PANGAEA and Zenodo data portals: time series (https://doi.org/10.1594/PANGAEA.880120, https://zenodo.org/record/1139714) and

  15. Mapping Comparison and Meteorological Correlation Analysis of the Air Quality Index in Mid-Eastern China

    Directory of Open Access Journals (Sweden)

    Zhichen Yu

    2017-02-01

    Full Text Available With the continuous progress of human production and life, air quality has become the focus of attention. In this paper, Beijing, Tianjin, Hebei, Shanxi, Shandong and Henan provinces were taken as the study area, where there are 58 air quality monitoring stations from which daily and monthly data are obtained. Firstly, the temporal characteristics of the air quality index (AQI are explored. Then, the spatial distribution of the AQI is mapped by the inverse distance weighted (IDW method, the ordinary kriging (OK method and the Bayesian maximum entropy (BME method. Additionally, cross-validation is utilized to evaluate the mapping results of these methods with two indexes: mean absolute error and root mean square interpolation error. Furthermore, the correlation analysis of meteorological factors, including precipitation anomaly percentage, precipitation, mean wind speed, average temperature, average water vapor pressure and average relative humidity, potentially affecting the AQI was carried out on both daily and monthly scales. In the study area and period, AQI shows a clear periodicity, although overall, it has a downward trend. The peak of AQI appeared in November, December and January. BME interpolation has a higher accuracy than OK. IDW has the maximum error. Overall, the AQI of winter (November, spring (February is much worse than summer (May and autumn (August. Additionally, the air quality has improved during the study period. The most polluted areas of air quality are concentrated in Beijing, the southern part of Tianjin, the central-southern part of Hebei, the central-northern part of Henan and the western part of Shandong. The average wind speed and average relative humidity have real correlation with AQI. The effect of meteorological factors such as wind, precipitation and humidity on AQI is putative to have temporal lag to different extents. AQI of cities with poor air quality will fluctuate greater than that of others when weather

  16. Whether weather matters: Evidence of association between in utero meteorological exposures and foetal growth among Indigenous and non-Indigenous mothers in rural Uganda.

    Directory of Open Access Journals (Sweden)

    Sarah MacVicar

    Full Text Available Pregnancy and birth outcomes have been found to be sensitive to meteorological variation, yet few studies explore this relationship in sub-Saharan Africa where infant mortality rates are the highest in the world. We address this research gap by examining the association between meteorological factors and birth weight in a rural population in southwestern Uganda. Our study included hospital birth records (n = 3197 from 2012 to 2015, for which we extracted meteorological exposure data for the three trimesters preceding each birth. We used linear regression, controlling for key covariates, to estimate the timing, strength, and direction of meteorological effects on birth weight. Our results indicated that precipitation during the third trimester had a positive association with birth weight, with more frequent days of precipitation associated with higher birth weight: we observed a 3.1g (95% CI: 1.0-5.3g increase in birth weight per additional day of exposure to rainfall over 5mm. Increases in average daily temperature during the third trimester were also associated with birth weight, with an increase of 41.8g (95% CI: 0.6-82.9g per additional degree Celsius. When the sample was stratified by season of birth, only infants born between June and November experienced a significant associated between meteorological exposures and birth weight. The association of meteorological variation with foetal growth seemed to differ by ethnicity; effect sizes of meteorological were greater among an Indigenous subset of the population, in particular for variation in temperature. Effects in all populations in this study are higher than estimates of the African continental average, highlighting the heterogeneity in the vulnerability of infant health to meteorological variation in different contexts. Our results indicate that while there is an association between meteorological variation and birth weight, the magnitude of these associations may vary across ethnic

  17. Comparison of methods for generating typical meteorological year using meteorological data from a tropical environment

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Deeyai, P. [Laboratory of Tropical Atmospheric Physics, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2009-04-15

    This paper presents the comparison of methods for generating typical meteorological year (TMY) data set using a 10-year period of meteorological data from four stations in a tropical environment of Thailand. These methods are the Sadia National Laboratory method, the Danish method and the Festa and Ratto method. In investigating their performance, these methods were employed to generate TMYs for each station. For all parameters of the TMYs and the stations, statistical test indicates that there is no significant difference between the 10-year average values of these parameters and the corresponding average values from TMY generated from each method. The TMY obtained from each method was also used as input data to simulate two solar water heating systems and two photovoltaic systems with different sizes at the four stations by using the TRNSYS simulation program. Solar fractions and electrical output calculated using TMYs are in good agreement with those computed employing the 10-year period hourly meteorological data. It is concluded that the performance of the three methods has no significant difference for all stations under this investigation. Due to its simplicity, the method of Sandia National Laboratories is recommended for the generation of TMY for this tropical environment. The TMYs developed in this work can be used for solar energy and energy conservation applications at the four locations in Thailand. (author)

  18. Future directions of meteorology related to air-quality research.

    Science.gov (United States)

    Seaman, Nelson L

    2003-06-01

    Meteorology is one of the major factors contributing to air-pollution episodes. More accurate representation of meteorological fields has been possible in recent years through the use of remote sensing systems, high-speed computers and fine-mesh meteorological models. Over the next 5-20 years, better meteorological inputs for air quality studies will depend on making better use of a wealth of new remotely sensed observations in more advanced data assimilation systems. However, for fine mesh models to be successful, parameterizations used to represent physical processes must be redesigned to be more precise and better adapted for the scales at which they will be applied. Candidates for significant overhaul include schemes to represent turbulence, deep convection, shallow clouds, and land-surface processes. Improvements in the meteorological observing systems, data assimilation and modeling, coupled with advancements in air-chemistry modeling, will soon lead to operational forecasting of air quality in the US. Predictive capabilities can be expected to grow rapidly over the next decade. This will open the way for a number of valuable new services and strategies, including better warnings of unhealthy atmospheric conditions, event-dependent emissions restrictions, and now casting support for homeland security in the event of toxic releases into the atmosphere.

  19. NOAA Ship Okeanos Explorer Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Okeanos Explorer Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System...

  20. Research Ship Nathaniel B. Palmer Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Nathaniel B. Palmer Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and...

  1. Research Ship Robert Gordon Sproul Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Robert Gordon Sproul Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and...

  2. Environmental impacts of nuclear power plants and the tasks of meteorology

    International Nuclear Information System (INIS)

    Rak, J.; Skulec, S.; Tomlain, J.

    1984-01-01

    The system of meteorological service is presented which is part of the nuclear power plant monitoring system. Tasks are described which the meteorological service fulfils in routine nuclear power plant operation and in case of accident. The meteorological service also studies the potential impacts of heat emissions and water effluents on the environment of nuclear power plants. (E.S.)

  3. Radiation protection at the RA Reactor in 1993, Part 4: meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1993-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. It is foreseen that these measurements should be automated, but up to this moment daily meteorology reports are completed by a computer but the data collection and input are still done manually. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute. Computer codes for these data processing were developed by the meteorology staff in the Institute. Data are collected 24 times per day [sr

  4. Factors affecting yearly and monthly visits to Taipei Zoo

    Science.gov (United States)

    Su, Ai-Tsen; Lin, Yann-Jou

    2018-02-01

    This study investigated factors affecting yearly and monthly numbers of visits to Taipei Zoo. Both linear and nonlinear regression models were used to estimate yearly visits. The results of both models showed that the "opening effect" and "animal star effect" had a significantly positive effect on yearly visits, while a SARS outbreak had a negative effect. The number of years had a significant influence on yearly visits. Results showed that the nonlinear model had better explanatory power and fitted the variations of visits better. Results of monthly model showed that monthly visits were significantly influenced by time fluctuations, weather conditions, and the animal star effect. Chinese New Year, summer vacation, numbers of holidays, and animal star exhibitions increased the number of monthly visits, while the number of days with temperatures at or below 15 °C, the number of days with temperatures at or above 30 °C, and the number of rainy days had significantly negative effects. Furthermore, the model of monthly visits showed that the animal star effect could last for over two quarters. The results of this study clarify the factors affecting visits to an outdoor recreation site and confirm the importance of meteorological factors to recreation use.

  5. ICON - Little Cayman, Cayman Islands 2009 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  6. NOAA Ship Nancy Foster Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Nancy Foster Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  7. NOAA Ship Ka'imimoana Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ka'imimoana Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  8. NOAA Ship Bell M. Shimada Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Bell M. Shimada Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  9. NOAA Ship David Starr Jordan Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship David Starr Jordan Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  10. NOAA Ship Gordon Gunter Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Gordon Gunter Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  11. NOAA Ship Henry B. Bigelow Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Henry B. Bigelow Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  12. NOAA Ship Oregon II Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  13. NOAA Ship Oscar Elton Sette Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Elton Sette Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  14. NOAA Ship Hi'ialakai Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Hi'ialakai Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  15. Research Ship T. G. Thompson Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship T. G. Thompson Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  16. Research Ship Laurence M. Gould Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Laurence M. Gould Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  17. NOAA Ship Ronald Brown Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ronald Brown Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  18. NOAA Ship Oscar Dyson Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Dyson Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  19. ICON - North Norman's Patch Reef 2004 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  20. Air pollution meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Shirvaikar, V V; Daoo, V J [Environmental Assessment Div., Bhabha Atomic Research Centre, Mumbai (India)

    2002-06-01

    This report is intended as a training cum reference document for scientists posted at the Environmental Laboratories at the Nuclear Power Station Sites and other sites of the Department of Atomic Energy with installations emitting air pollutants, radioactive or otherwise. Since a manual already exists for the computation of doses from radioactive air pollutants, a general approach is take here i.e. air pollutants in general are considered. The first chapter presents a brief introduction to the need and scope of air pollution dispersion modelling. The second chapter is a very important chapter discussing the aspects of meteorology relevant to air pollution and dispersion modelling. This chapter is important because without this information one really does not understand the phenomena affecting dispersion, the scope and applicability of various models or their limitations under various weather and site conditions. The third chapter discusses the air pollution models in detail. These models are applicable to distances of a few tens of kilometres. The fourth chapter discusses the various aspects of meteorological measurements relevant to air pollution. The chapters are followed by two appendices. Apendix A discusses the reliability of air pollution estimates. Apendix B gives some practical examples relevant to general air pollution. It is hoped that the document will prove very useful to the users. (author)

  1. Hydro-meteorological evaluation of downscaled global ensemble rainfall forecasts

    Science.gov (United States)

    Gaborit, Étienne; Anctil, François; Fortin, Vincent; Pelletier, Geneviève

    2013-04-01

    Ensemble rainfall forecasts are of high interest for decision making, as they provide an explicit and dynamic assessment of the uncertainty in the forecast (Ruiz et al. 2009). However, for hydrological forecasting, their low resolution currently limits their use to large watersheds (Maraun et al. 2010). In order to bridge this gap, various implementations of the statistic-stochastic multi-fractal downscaling technique presented by Perica and Foufoula-Georgiou (1996) were compared, bringing Environment Canada's global ensemble rainfall forecasts from a 100 by 70-km resolution down to 6 by 4-km, while increasing each pixel's rainfall variance and preserving its original mean. For comparison purposes, simpler methods were also implemented such as the bi-linear interpolation, which disaggregates global forecasts without modifying their variance. The downscaled meteorological products were evaluated using different scores and diagrams, from both a meteorological and a hydrological view points. The meteorological evaluation was conducted comparing the forecasted rainfall depths against nine days of observed values taken from Québec City rain gauge database. These 9 days present strong precipitation events occurring during the summer of 2009. For the hydrologic evaluation, the hydrological models SWMM5 and (a modified version of) GR4J were implemented on a small 6 km2 urban catchment located in the Québec City region. Ensemble hydrologic forecasts with a time step of 3 hours were then performed over a 3-months period of the summer of 2010 using the original and downscaled ensemble rainfall forecasts. The most important conclusions of this work are that the overall quality of the forecasts was preserved during the disaggregation procedure and that the disaggregated products using this variance-enhancing method were of similar quality than bi-linear interpolation products. However, variance and dispersion of the different members were, of course, much improved for the

  2. NOAA Ship McArthurII Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship McArthur II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  3. Computer Exercises in Meteorology.

    Science.gov (United States)

    Trapasso, L. Michael; Conner, Glen; Stallins, Keith

    Beginning with Western Kentucky University's (Bowling Green) fall 1999 semester, exercises required for the geography and meteorology course used computers for learning. This course enrolls about 250 students per year, most of whom choose it to fulfill a general education requirement. Of the 185 geography majors, it is required for those who…

  4. BOREAS TF-02 SSA-OA Tethersonde Meteorological and Ozone Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The BOREAS TF-02 team collected various trace gas and energy flux data along with meteorological parameters at the SSA-OA site. This data set contains meteorological...

  5. Climatic condition of Calabar as typified by some meteorological ...

    African Journals Online (AJOL)

    This study aims at analysing some meteorological data collected by the meteorological department of the Margaret Ekpo International Airport, Calabar between 1985 and 2003. The main objectives were to provide average figures and curves of Calabar climate, and to identify possible trends since 1985. Results show that ...

  6. User-Defined Meteorological (MET) Profiles from Climatological and Extreme Condition Data

    Science.gov (United States)

    2018-04-01

    ARL-TN-0876 ● MAR 2018 US Army Research Laboratory User-Defined Meteorological (MET) Profiles from Climatological and Extreme...needed. Do not return it to the originator. ARL-TN-0876 ● MAR 2018 US Army Research Laboratory User-Defined Meteorological (MET...User-Defined Meteorological (MET) Profiles from Climatological and Extreme Condition Data 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  7. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    2000-10-01

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  8. Spatio-temporal variance and meteorological drivers of the urban heat island in a European city

    Science.gov (United States)

    Arnds, Daniela; Böhner, Jürgen; Bechtel, Benjamin

    2017-04-01

    Urban areas are especially vulnerable to high temperatures, which will intensify in the future due to climate change. Therefore, both good knowledge about the local urban climate as well as simple and robust methods for its projection are needed. This study has analysed the spatio-temporal variance of the mean nocturnal urban heat island (UHI) of Hamburg, with observations from 40 stations from different suppliers. The UHI showed a radial gradient with about 2 K in the centre mostly corresponding to the urban densities. Temporarily, it has a strong seasonal cycle with the highest values between April and September and an inter-annual variability of approximately 0.5 K. Further, synoptic meteorological drivers of the UHI were analysed, which generally is most pronounced under calm and cloud-free conditions. Considered were meteorological parameters such as relative humidity, wind speed, cloud cover and objective weather types. For the stations with the highest UHI intensities, up to 68.7 % of the variance could be explained by seasonal empirical models and even up to 76.6 % by monthly models.

  9. Correlation of meteorological parameters and remotely sensed normalized difference vegetation index (NDVI) with cotton leaf curl virus (CLCV) in Multan

    International Nuclear Information System (INIS)

    Ahmed, A; Akhtar, A; Khalid, B; Shamim, A

    2013-01-01

    Climate change and weather has a profound effect on the spread of Cotton Leaf Curl Virus (CLCV) which is transmitted by whitefly. Climate change is altering temperature and precipitation patterns, resulting in the shift of some insect/pest from small population to large population thus effecting crops yield. To find out the relationship between the weather conditions, outburst of CLCV and changes in Normalized Difference Vegetation Index (NDVI) values due to the outburst of CLCV, a study was carried out for tehsil Multan. Data was acquired for the months of June, July, August and September for the year 2010. Regression analysis between CLCV and meteorological conditions as well as between CLCV and NDVI was performed. Meteorological parameters included temperature, humidity, precipitation, cloud cover, wind direction, pan evaporation and sunshine hours. NDVI values were calculated from SPOT satellite imagery (1km) using ArcMap10 and WinDisp v5.1. Correlation coefficients obtained in most of the cases were acceptable however the significance F and P-value were higher than their critical value at 95% level of significance. Therefore significant correlation was found only between CLCV and temperature and between CLCV and PAN evaporation during the month of July.

  10. Monthly paleostreamflow reconstruction from annual tree-ring chronologies

    Science.gov (United States)

    Stagge, J. H.; Rosenberg, D. E.; DeRose, R. J.; Rittenour, T. M.

    2018-02-01

    Paleoclimate reconstructions are increasingly used to characterize annual climate variability prior to the instrumental record, to improve estimates of climate extremes, and to provide a baseline for climate-change projections. To date, paleoclimate records have seen limited engineering use to estimate hydrologic risks because water systems models and managers usually require streamflow input at the monthly scale. This study explores the hypothesis that monthly streamflows can be adequately modeled by statistically decomposing annual flow reconstructions. To test this hypothesis, a multiple linear regression model for monthly streamflow reconstruction is presented that expands the set of predictors to include annual streamflow reconstructions, reconstructions of global circulation, and potential differences among regional tree-ring chronologies related to tree species and geographic location. This approach is used to reconstruct 600 years of monthly streamflows at two sites on the Bear and Logan rivers in northern Utah. Nash-Sutcliffe Efficiencies remain above zero (0.26-0.60) for all months except April and Pearson's correlation coefficients (R) are 0.94 and 0.88 for the Bear and Logan rivers, respectively, confirming that the model can adequately reproduce monthly flows during the reference period (10/1942 to 9/2015). Incorporating a flexible transition between the previous and concurrent annual reconstructed flows was the most important factor for model skill. Expanding the model to include global climate indices and regional tree-ring chronologies produced smaller, but still significant improvements in model fit. The model presented here is the only approach currently available to reconstruct monthly streamflows directly from tree-ring chronologies and climate reconstructions, rather than using resampling of the observed record. With reasonable estimates of monthly flow that extend back in time many centuries, water managers can challenge systems models with a

  11. Use of data assimilation procedures in the meteorological pre-processors of decision support systems to improve the meteorological input of atmospheric dispersion models

    International Nuclear Information System (INIS)

    Kovalets, I.; Andronopoulos, S.; Bartzis, J.G.

    2003-01-01

    Full text: The Atmospheric Dispersion Models (ADMs) play a key role in decision support systems for nuclear emergency management, as they are used to determine the current, and predict the future spatial distribution of radionuclides after an accidental release of radioactivity to the atmosphere. Meteorological pre-processors (MPPs), usually act as interface between the ADMs and the incoming meteorological data. Therefore the quality of the results of the ADMs crucially depends on the input that they receive from the MPPs. The meteorological data are measurements from one or more stations in the vicinity of the nuclear power plant and/or prognostic data from Numerical Weather Prediction (NWP) models of National Weather Services. The measurements are representative of the past and current local conditions, while the NWP data cover a wider range in space and future time, where no measurements exist. In this respect, the simultaneous use of both by an MPP immediately poses the questions of consistency and of the appropriate methodology for reconciliation of the two kinds of meteorological data. The main objective of the work presented in this paper is the introduction of data assimilation (DA) techniques in the MPP of the RODOS (Real-time On-line Decision Support) system for nuclear emergency management in Europe, developed under the European Project 'RODOS-Migration', to reconcile the NWP data with the local observations coming from the meteorological stations. More specifically, in this paper: the methodological approach for simultaneous use of both meteorological measurements and NWP data in the MPP is presented; the method is validated by comparing results of calculations with experimental data; future ways of improvement of the meteorological input for the calculations of the atmospheric dispersion in the RODOS system are discussed. The methodological approach for solving the DA problem developed in this work is based on the method of optimal interpolation (OI

  12. MODELING OF RELATIONSHIP BETWEEN GROUNDWATER FLOW AND OTHER METEOROLOGICAL VARIABLES USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Şaban YURTÇU

    2006-02-01

    Full Text Available In this study, modeling of the effect of rainfall, flow and evaporation as independent variables on the change of underground water levels as dependent variables were investigated by fuzzy logic (FL. In the study, total 396 values taken from six observation stations belong to Afyon inferior basin in Akarçay from 1977 to 1989 years were used. Using the monthly average values of stations, the change of underground water level was modeled by FL. It is observed that the results obtained from FL and the observations are compatible with each other. This shows FL modeling can be used to estimate groundwater levels from the appropriate meteorological value.

  13. Climatic Forecasting of Net Infiltration at Yucca Mountain Using Analogue Meteorological Data

    International Nuclear Information System (INIS)

    B. Faybishenko

    2006-01-01

    At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes

  14. Optimizing Time Intervals of Meteorological Data Used with Atmospheric Dose Modeling at SRS

    International Nuclear Information System (INIS)

    Simpkins, A.A.

    1999-01-01

    Measured tritium oxide concentrations in air have been compared with calculated values using routine release Gaussian plume models for different time intervals of meteorological data. These comparisons determined an optimum time interval of meteorological data used with atmospheric dose models at the Savannah River Site (SRS). Meteorological data of varying time intervals (1-yr to 10-yr) were used for the comparison. Insignificant differences are seen in using a one-year database as opposed to a five-year database. Use of a ten-year database results in slightly more conservative results. For meteorological databases of length one to five years the mean ratio of predicted to measured tritium oxide concentrations is approximately 1.25 whereas for the ten-year meteorological database the ration is closer to 1.35. Currently at the Savannah River Site a meteorological database of five years duration is used for all dose models. This study suggests no substantially improved accuracy using meteorological files of shorter or longer time intervals

  15. Variations in environmental tritium doses due to meteorological data averaging and uncertainties in pathway model parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kock, A.

    1996-05-01

    The objectives of this research are: (1) to calculate and compare off site doses from atmospheric tritium releases at the Savannah River Site using monthly versus 5 year meteorological data and annual source terms, including additional seasonal and site specific parameters not included in present annual assessments; and (2) to calculate the range of the above dose estimates based on distributions in model parameters given by uncertainty estimates found in the literature. Consideration will be given to the sensitivity of parameters given in former studies.

  16. Variations in environmental tritium doses due to meteorological data averaging and uncertainties in pathway model parameters

    International Nuclear Information System (INIS)

    Kock, A.

    1996-05-01

    The objectives of this research are: (1) to calculate and compare off site doses from atmospheric tritium releases at the Savannah River Site using monthly versus 5 year meteorological data and annual source terms, including additional seasonal and site specific parameters not included in present annual assessments; and (2) to calculate the range of the above dose estimates based on distributions in model parameters given by uncertainty estimates found in the literature. Consideration will be given to the sensitivity of parameters given in former studies

  17. Latin American Network of students in Atmospheric Sciences and Meteorology

    Science.gov (United States)

    Cuellar-Ramirez, P.

    2017-12-01

    The Latin American Network of Students in Atmospheric Sciences and Meteorology (RedLAtM) is a civil nonprofit organization, organized by students from Mexico and some Latin- American countries. As a growing organization, providing human resources in the field of meteorology at regional level, the RedLAtM seeks to be a Latin American organization who helps the development of education and research in Atmospheric Sciences and Meteorology in order to engage and promote the integration of young people towards a common and imminent future: Facing the still unstudied various weather and climate events occurring in Latin America. The RedLAtM emerges from the analysis and observation/realization of a limited connection between Latin American countries around research in Atmospheric Sciences and Meteorology. The importance of its creation is based in cooperation, linking, research and development in Latin America and Mexico, in other words, to join efforts and stablish a regional scientific integration who leads to technological progress in the area of Atmospheric Sciences and Meteorology. As ultimate goal the RedLAtM pursuit to develop climatic and meteorological services for those countries unable to have their own programs, as well as projects linked with the governments of Latin American countries and private companies for the improvement of prevention strategies, research and decision making. All this conducing to enhance the quality of life of its inhabitants facing problems such as poverty and inequality.

  18. Preparation of meteorological data (METPV) which is useful to simulate output from PV systems; Taiyoko hatsuden system no simulation yo data METPV no seibi

    Energy Technology Data Exchange (ETDEWEB)

    Itagaki, A; Iida, H [Japan Weather Association, Tokyo (Japan)

    1996-10-27

    Studies are under way for the nation-wide buildup of a network of METPV data, new standard meteorological data resembling the HASP data, for the time-based simulation of the output of photovoltaic power generation systems. There is a method of preparing hourly data covering a long period of time for computer processing for the determination of the average hourly power generation level, which, however, will be unrealistic because of the enormity of calculation work involved. Hence: the concept of standardized meteorological data, which involves the specification of typical years after examining the data covering a long period and the preparation of the data of the years for computer processing. In the METPV setup, three types of data are prepared: data for the year of the average insolation, data for the year of insufficient insolation, and data for the year of excess insolation. Next, for each of the twelve months, the year of the average insolation is found. When the twelve pieces of data for the twelve months (of different years) are combined, an artificially constructed year results, with each of the twelve months having the average insolation. A technique has been developed for smoothing the discontinuity between the months. Forty observation spots were built in fiscal 1995, and 150 spots will have been prepared across the country by the end of fiscal 1996. 6 refs., 4 figs.

  19. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.

    Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  20. Meteorological aspects of site selection for nuclear power plants

    International Nuclear Information System (INIS)

    Artemova, N.E.

    1983-01-01

    Factors are considered that characterize the NPP safe layout in a specified region and the physicogeographical conditions determining the meteorological dilution coefficient of NPP radioactive wastes in the atmosphere. A three-point scale system is proposed for estimating physicogeographical factors in three ''fitness'' classes. The data required for calculating meteorological dilution coefficient are given

  1. Storms over the METER--ORNL Precipitation Network: the first six months

    International Nuclear Information System (INIS)

    Miller, R.L.; Patrinos, A.A.N.; Saylor, R.E.

    1979-06-01

    This report presents the first set of data collected by the METER--ORNL Precipitation Network. This network of 49 recording raingages and 5 recording windsets was installed in February 1978, around the Bowen Electric Generating Plant in northwest Georgia for the purpose of investigating the potential effect of the plant's cooling towers on rainfall. This study is conducted on behalf of the DOE Program on Meteorological Effects of Thermal Energy Releases (METER). Included in this report are the complete descriptions of 98 rainfall events which occurred over the METER--ORNL network during the period February 22--August 31, 1978. These descriptions are augmented by information and data supplied by the National Weather Service (NWS). Several stratifications of the rainfall events are performed for reference purposes

  2. The cross wavelet analysis of dengue fever variability influenced by meteorological conditions

    Science.gov (United States)

    Lin, Yuan-Chien; Yu, Hwa-Lung; Lee, Chieh-Han

    2015-04-01

    The multiyear variation of meteorological conditions induced by climate change causes the changing diffusion pattern of infectious disease and serious epidemic situation. Among them, dengue fever is one of the most serious vector-borne diseases distributed in tropical and sub-tropical regions. Dengue virus is transmitted by several species of mosquito and causing lots amount of human deaths every year around the world. The objective of this study is to investigate the impact of meteorological variables to the temporal variation of dengue fever epidemic in southern Taiwan. Several extreme and average indices of meteorological variables, i.e. temperature and humidity, were used for this analysis, including averaged, maximum and minimum temperature, and average rainfall, maximum 1-hr rainfall, and maximum 24-hr rainfall. This study plans to identify and quantify the nonlinear relationship of meteorological variables and dengue fever epidemic, finding the non-stationary time-frequency relationship and phase lag effects of those time series from 1998-2011 by using cross wavelet method. Results show that meteorological variables all have a significant time-frequency correlation region to dengue fever epidemic in frequency about one year (52 weeks). The associated phases can range from 0 to 90 degrees (0-13 weeks lag from meteorological factors to dengue incidences). Keywords: dengue fever, cross wavelet analysis, meteorological factor

  3. Analysis of the effect of meteorological factors on dewfall

    International Nuclear Information System (INIS)

    Xiao, Huijie; Meissner, Ralph; Seeger, Juliane; Rupp, Holger; Borg, Heinz; Zhang, Yuqing

    2013-01-01

    To get an insight into when dewfall will occur and how much to expect we carried out extensive calculations with the energy balance equation for a crop surface to 1) identify the meteorological factors which determine dewfall, 2) establish the relationship between dewfall and each of them, and 3) analyse how these relationships are influenced by changes in these factors. The meteorological factors which determine dewfall were found to be air temperature (T a ), cloud cover (N), wind speed (u), soil heat flux (G), and relative humidity (h r ). Net radiation is also a relevant factor. We did not consider it explicitly, but indirectly through the effect of temperature on the night-time radiation balance. The temperature of the surface (T s ) where dew forms on is also important. However, it is not a meteorological factor, but determined by the aforementioned parameters. All other conditions being equal our study revealed that dewfall increases linearly with decreasing N or G, and with increasing h r . The effect of T a and u on dewfall is non-linear: dewfall initially increases with increasing T a or u, and then decreases. All five meteorological factors can lead to variations in dewfall between 0 and 25 W m −2 over the range of their values we studied. The magnitude of the variation due to one factor depends on the value of the others. Dewfall is highest at N = 0, G = 0, and h r = 1. T a at which dewfall is highest depends on u and vice versa. The change in dewfall for a unit change in N, G or h r is not affected by the value of N, G or h r , but increases as T a or u increase. The change in dewfall for a unit change in T a or u depends on the value of the other four meteorological factors. - Highlights: • Process of dewfall is examined for a wide range of meteorological conditions. • Effect of meteorological factors on dewfall is individually elucidated. • Interaction between factors and their combined effect on dewfall is assessed. • Extensive

  4. A 20-year record (1998–2017 of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen

    Directory of Open Access Journals (Sweden)

    J. Boike

    2018-03-01

    Full Text Available Most permafrost is located in the Arctic, where frozen organic carbon makes it an important component of the global climate system. Despite the fact that the Arctic climate changes more rapidly than the rest of the globe, observational data density in the region is low. Permafrost thaw and carbon release to the atmosphere are a positive feedback mechanism that can exacerbate global warming. This positive feedback functions via changing land–atmosphere energy and mass exchanges. There is thus a great need to understand links between the energy balance, which can vary rapidly over hourly to annual timescales, and permafrost, which changes slowly over long time periods. This understanding thus mandates long-term observational data sets. Such a data set is available from the Bayelva site at Ny-Ålesund, Svalbard, where meteorology, energy balance components and subsurface observations have been made for the last 20 years. Additional data include a high-resolution digital elevation model (DEM that can be used together with the snow physical information for snowpack modeling and a panchromatic image. This paper presents the data set produced so far, explains instrumentation, calibration, processing and data quality control, as well as the sources for various resulting data sets. The resulting data set is unique in the Arctic and serves as a baseline for future studies. The mean permafrost temperature is −2.8 °C, with a zero-amplitude depth at 5.5 m (2009–2017. Since the data provide observations of temporally variable parameters that mitigate energy fluxes between permafrost and atmosphere, such as snow depth and soil moisture content, they are suitable for use in integrating, calibrating and testing permafrost as a component in earth system models.The presented data are available in the Supplement for this paper (time series and through the PANGAEA and Zenodo data portals: time series (https://doi.org/10.1594/PANGAEA.880120, https://zenodo.org/record

  5. Overall analysis of meteorological information in the daeduk nuclear complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Woo; Lee, Young Bok; Han, Moon Hee; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae; Hong, Suk Boong [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1992-12-01

    Problem shooting in tower structure, sensor installation, earth, and cabling have been done with integrated field-test, establishment of data acquisition system, and instrument calibration since the completion of the main tower construction in this year. Procedure guide was also made for the effective management covering instrument operation, calibration and repair. Real measurement has been done during two months from this October after whole integration of equipments. Occurrence of nocturnal inversion layer, fogging, and frequent stable condition of atmospheric stability were shown as the analysis results of measured data which well represented seasonal and regional characteristics in the site. Wireless data transmission to MIPS(Meteorological Information Processing System) has been done after collection in the DAS(data acquision system) where environmental assessment can be done by the developed simulation programs in both cases of normal operation and emergency. (Author).

  6. A METEOROLOGICAL RISK ASSESSMENT METHOD FOR POWER LINES BASED ON GIS AND MULTI-SENSOR INTEGRATION

    Directory of Open Access Journals (Sweden)

    Z. Lin

    2016-06-01

    Full Text Available Power lines, exposed in the natural environment, are vulnerable to various kinds of meteorological factors. Traditional research mainly deals with the influence of a single meteorological condition on the power line, which lacks of comprehensive effects evaluation and analysis of the multiple meteorological factors. In this paper, we use multiple meteorological monitoring data obtained by multi-sensors to implement the meteorological risk assessment and early warning of power lines. Firstly, we generate meteorological raster map from discrete meteorological monitoring data using spatial interpolation. Secondly, the expert scoring based analytic hierarchy process is used to compute the power line risk index of all kinds of meteorological conditions and establish the mathematical model of meteorological risk. By adopting this model in raster calculator of ArcGIS, we will have a raster map showing overall meteorological risks for power line. Finally, by overlaying the power line buffer layer to that raster map, we will get to know the exact risk index around a certain part of power line, which will provide significant guidance for power line risk management. In the experiment, based on five kinds of observation data gathered from meteorological stations in Guizhou Province of China, including wind, lightning, rain, ice, temperature, we carry on the meteorological risk analysis for the real power lines, and experimental results have proved the feasibility and validity of our proposed method.

  7. Meteorological, stream-discharge, and water-quality data for water year 1992 from two basins in Central Nevada

    International Nuclear Information System (INIS)

    McKinley, P.W.; Oliver, T.A.

    1995-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is studying Yucca Mountain, Nevada, as a potential repository for high level nuclear waste. As part of the Yucca Mountain Site Project, the analog recharge study is providing data for the evaluation of recharge to the Yucca Mountain ground-water system given a cooler and wetter climate than currently exists. The current and climatic conditions are favorable to the isolation of radioactive waste. Because waste isolation from the accessible environment for 10,000 years is necessary, climatic change and the potential for increased ground-water recharge need to be considered as part of the characterization of the potential repository. Therefore, two small basins, measuring less than 2 square miles, were studied to determine the volume of precipitation available for recharge to ground water. The semiarid 3-Springs Basin is located to the east of Kawich Peak in the Kawich Range east of Tonopah, Nevada. Stewart Basin is a subalpine drainage basin north of Arc Dome in the Toiyabe Range north of Tonopah, Nevada. The purpose of this publication is to make available the meteorological, stream-discharge, and water-quality data collected during the study. Meteorological data collected include air temperature, soil temperature, solar radiation, and relative humidity. Stream-discharge data were collected from the surface-water outlet of each basin. Water-quality data are chemical analyses of water samples collected from surface- and ground-water sources. Each basin has a meteorological station located in the lower and upper reaches of the basin. Hydrologic records include stream-discharge and water-quality data from the lower meteorological site and water-quality data from springs within the basins

  8. Fuzzy rule-based forecast of meteorological drought in western Niger

    Science.gov (United States)

    Abdourahamane, Zakari Seybou; Acar, Reşat

    2018-01-01

    Understanding the causes of rainfall anomalies in the West African Sahel to effectively predict drought events remains a challenge. The physical mechanisms that influence precipitation in this region are complex, uncertain, and imprecise in nature. Fuzzy logic techniques are renowned to be highly efficient in modeling such dynamics. This paper attempts to forecast meteorological drought in Western Niger using fuzzy rule-based modeling techniques. The 3-month scale standardized precipitation index (SPI-3) of four rainfall stations was used as predictand. Monthly data of southern oscillation index (SOI), South Atlantic sea surface temperature (SST), relative humidity (RH), and Atlantic sea level pressure (SLP), sourced from the National Oceanic and Atmosphere Administration (NOAA), were used as predictors. Fuzzy rules and membership functions were generated using fuzzy c-means clustering approach, expert decision, and literature review. For a minimum lead time of 1 month, the model has a coefficient of determination R 2 between 0.80 and 0.88, mean square error (MSE) below 0.17, and Nash-Sutcliffe efficiency (NSE) ranging between 0.79 and 0.87. The empirical frequency distributions of the predicted and the observed drought classes are equal at the 99% of confidence level based on two-sample t test. Results also revealed the discrepancy in the influence of SOI and SLP on drought occurrence at the four stations while the effect of SST and RH are space independent, being both significantly correlated (at α based forecast model shows better forecast skills.

  9. The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment

    DEFF Research Database (Denmark)

    Schofield, J.T.; Barnes, J.R.; Crisp, D.

    1997-01-01

    The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment measured the vertical density, pressure, and temperature structure of the martian atmosphere from the surface to 160 km, and monitored surface meteorology and climate for 83 sols (1 sol = 1 martian day = 24...

  10. Developing the Model for the GIS Applications in National Hydro-Meteorological Service in Poland

    Science.gov (United States)

    Kubacka, D.; Barszczynska, M.; Madej, P.

    2003-04-01

    historic data access. These layers are also sufficient for a hydro-meteorological situation visualisations suitable for the country and division maps. The existing data and thematic layers were used to develop an Internet service providing the information concerning the hydro-meteorological posts. It also allowed presenting the results of the numerical weather forecast model in the Internet. It is planned to perform the visualisation of the hydro-meteorological phenomena in the monthly IMWM bulletin.

  11. Background of the Military Aviation Meteorological Service

    Directory of Open Access Journals (Sweden)

    V.I. Zshumatiy

    2016-09-01

    Full Text Available The article is devoted to the birth of aviation and its meteorological service in the early twentieth century. The article details the military aviation meteorological services in Italy, France, Germany, Austria, the USA and Russia. Are described the problems, which arose with the takeoff and landings of flight vehicles with complex weather conditions. It is shown that the information about the actual and forthcoming weather is capable of reducing a quantity of failures of flight vehicles, of increasing safety of pilots and accuracy of the defeat of enemy, of planning the application of aviation.

  12. The Chinese FY-1 Meteorological Satellite Application in Observation on Oceanic Environment

    Science.gov (United States)

    Weimin, S.

    meteorological satellite is stated in this paper. exploration of the ocean resources has been a very important question of global strategy in the world. The exploration of the ocean resources includes following items: Making full use of oceanic resources and space, protecting oceanic environment. to observe the ocean is by using of satellite. In 1978, US successfully launched the first ocean observation satellite in the world --- Sea Satellite. It develops ancient oceanography in to advanced space-oceanography. FY-1 B and FY- IC respectively. High quality data were acquired at home and abroad. FY-1 is Chinese meteorological satellite, but with 0.43 ~ 0.48 μm ,0.48 ~ 0.53 μm and 0.53 ~ 0.58 μm three ocean color channels, actually it is a multipurpose remote sensing satellite of meteorology and oceanography. FY-1 satellite's capability of observation on ocean partly, thus the application field is expanded and the value is increased. With the addition of oceanic channels on FY-1, the design of the satellite is changed from the original with meteorological observation as its main purpose into remote sensing satellite possessing capability of observing meteorology and ocean as well. Thus, the social and economic benefit of FY-1 is increased. the social and economic benefit of the development of the satellite is the key technique in the system design of the satellite. technically feasible but also save the funds in researching and manufacturing of the satellite, quicken the tempo of researching and manufacturing satellite. the scanning radiometer for FY-1 is conducted an aviation experiment over Chinese ocean. This experiment was of vital importance to the addition of oceanic observation channel on FY-1. FY-1 oceanic channels design to be correct. detecting ocean color. This is the unique character of Chinese FY-1 meteorological satellite. meteorological remote sensing channel on FY-1 to form detecting capability of three visible channels: red, yellow and blue

  13. ICON - Buccoo Reef 2013 Meteorological and Oceanographic Observations (NODC Accession 0123996)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  14. ICON - Angel's Reef 2013 Meteorological and Oceanographic Observations (NODC Accession 0123995)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  15. ICON - Angel's Reef 2015 Meteorological and Oceanographic Observations (NCEI Accession 0156578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  16. ICON - Puerto Plata 2015 Meteorological and Oceanographic Observations (NCEI Accession 0156578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  17. ICON - Buccoo Reef 2014 Meteorological and Oceanographic Observations (NCEI Accession 0137094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  18. ICON - Buccoo Reef 2015 Meteorological and Oceanographic Observations (NCEI Accession 0156578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  19. NOAA Ship Bell M. Shimada Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Bell M. Shimada Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System...

  20. NOAA Ship Henry B. Bigelow Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Henry B. Bigelow Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System...

  1. NOAA Ship Oscar Elton Sette Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Elton Sette Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System...

  2. ICON - Catuan Wreck 2015 Meteorological and Oceanographic Observations (NCEI Accession 0156578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  3. ICON - Angel's Reef 2014 Meteorological and Oceanographic Observations (NCEI Accession 0137094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  4. ICON - Little Cayman 2013 Meteorological and Oceanographic Observations (NODC Accession 0123997)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  5. ICON - Little Cayman 2015 Meteorological and Oceanographic Observations (NCEI Accession 0156578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  6. ICON - Little Cayman 2012 Meteorological and Oceanographic Observations (NODC Accession 0117730)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  7. Meteorological risks as drivers of innovation for agroecosystem management

    Science.gov (United States)

    Gobin, Anne; Van de Vyver, Hans; Zamani, Sepideh; Curnel, Yannick; Planchon, Viviane; Verspecht, Ann; Van Huylenbroeck, Guido

    2015-04-01

    Devastating weather-related events recorded in recent years have captured the interest of the general public in Belgium. The MERINOVA project research hypothesis is that meteorological risks act as drivers of environmental innovation in agro-ecosystem management which is being tested using a "chain of risk" approach. The major objectives are to (1) assess the probability of extreme meteorological events by means of probability density functions; (2) analyse the extreme events impact of on agro-ecosystems using process-based bio-physical modelling methods; (3) identify the most vulnerable agro-ecosystems using fuzzy multi-criteria and spatial analysis; (4) uncover innovative risk management and adaptation options using actor-network theory and economic modelling; and, (5) communicate to research, policy and practitioner communities using web-based techniques. Generalized Extreme Value (GEV) theory was used to model annual rainfall maxima based on location-, scale- and shape-parameters that determine the centre of the distribution, the deviation of the location-parameter and the upper tail decay, respectively. Likewise the distributions of consecutive rainy days, rainfall deficits and extreme 24-hour rainfall were modelled. Spatial interpolation of GEV-derived return levels resulted in maps of extreme precipitation, precipitation deficits and wet periods. The degree of temporal overlap between extreme weather conditions and sensitive periods in the agro-ecosystem was determined using a bio-physically based modelling framework that couples phenological models, a soil water balance, crop growth and environmental models. 20-year return values were derived for frost, heat stress, drought, waterlogging and field access during different sensitive stages for different arable crops. Extreme yield values were detected from detrended long term arable yields and relationships were found with soil moisture conditions, heat stress or other meteorological variables during the

  8. Impact of inherent meteorology uncertainty on air quality ...

    Science.gov (United States)

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is important to understand how uncertainties in these inputs affect the simulated concentrations. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. Most studies explore this uncertainty by running different meteorological models or the same model with different physics options and in some cases combinations of different meteorological and air quality models. While these have been shown to be useful techniques in some cases, we present a technique that leverages the initial condition perturbations of a weather forecast ensemble, namely, the Short-Range Ensemble Forecast system to drive the four-dimensional data assimilation in the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model with a key focus being the response of ozone chemistry and transport. Results confirm that a sizable spread in WRF solutions, including common weather variables of temperature, wind, boundary layer depth, clouds, and radiation, can cause a relatively large range of ozone-mixing ratios. Pollutant transport can be altered by hundreds of kilometers over several days. Ozone-mixing ratios of the ensemble can vary as much as 10–20 ppb

  9. Seasonal variation in month of diagnosis in children with type 1 diabetes registered in 23 European centers during 1989-2008

    DEFF Research Database (Denmark)

    Patterson, C C; Gyürüs, E; Rosenbauer, J

    2015-01-01

    BACKGROUND: The month of diagnosis in childhood type 1 diabetes shows seasonal variation. OBJECTIVE: We describe the pattern and investigate if year-to-year irregularities are associated with meteorological factors using data from 50 000 children diagnosed under the age of 15 yr in 23 population......-based European registries during 1989-2008. METHODS: Tests for seasonal variation in monthly counts aggregated over the 20 yr period were performed. Time series regression was used to investigate if sunshine hour and average temperature data were predictive of the 240 monthly diagnosis counts after taking...

  10. Meteorological Monitoring Sampling and Analysis Plan for Environmental Monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-12-01

    This Sampling and Analysis Plan addresses meteorological monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory (ORNL). Meterological monitoring of various climatological parameters (eg., temperature, wind speed, humidity) will be collected by instruments installed at WAG 6. Data will be recorded electronically at frequencies varying from 5-min intervals to 1-h intervals, dependent upon parameter. The data will be downloaded every 2 weeks, evaluated, compressed, and uploaded into a WAG 6 data base for subsequent use. The meteorological data will be used in water balance calculations in support of the WAG 6 hydrogeological model

  11. Evaporation in hydrology and meteorology

    NARCIS (Netherlands)

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the

  12. Sensitivity of monthly streamflow forecasts to the quality of rainfall forcing: When do dynamical climate forecasts outperform the Ensemble Streamflow Prediction (ESP) method?

    Science.gov (United States)

    Tanguy, M.; Prudhomme, C.; Harrigan, S.; Smith, K. A.; Parry, S.

    2017-12-01

    Forecasting hydrological extremes is challenging, especially at lead times over 1 month for catchments with limited hydrological memory and variable climates. One simple way to derive monthly or seasonal hydrological forecasts is to use historical climate data to drive hydrological models using the Ensemble Streamflow Prediction (ESP) method. This gives a range of possible future streamflow given known initial hydrologic conditions alone. The degree of skill of ESP depends highly on the forecast initialisation month and catchment type. Using dynamic rainfall forecasts as driving data instead of historical data could potentially improve streamflow predictions. A lot of effort is being invested within the meteorological community to improve these forecasts. However, while recent progress shows promise (e.g. NAO in winter), the skill of these forecasts at monthly to seasonal timescales is generally still limited, and the extent to which they might lead to improved hydrological forecasts is an area of active research. Additionally, these meteorological forecasts are currently being produced at 1 month or seasonal time-steps in the UK, whereas hydrological models require forcings at daily or sub-daily time-steps. Keeping in mind these limitations of available rainfall forecasts, the objectives of this study are to find out (i) how accurate monthly dynamical rainfall forecasts need to be to outperform ESP, and (ii) how the method used to disaggregate monthly rainfall forecasts into daily rainfall time series affects results. For the first objective, synthetic rainfall time series were created by increasingly degrading observed data (proxy for a `perfect forecast') from 0 % to +/-50 % error. For the second objective, three different methods were used to disaggregate monthly rainfall data into daily time series. These were used to force a simple lumped hydrological model (GR4J) to generate streamflow predictions at a one-month lead time for over 300 catchments

  13. Correlation between isotopic and meteorological parameters in Italian wines: a local-scale approach.

    Science.gov (United States)

    Aghemo, Costanza; Albertino, Andrea; Gobetto, Roberto; Spanna, Federico

    2011-08-30

    Since the beginning of the 1980s deuterium nuclear magnetic resonance and carbon-13 mass spectrometry have proved to be reliable techniques for detecting adulteration and for classifying natural products by their geographic origin. Scientific literature has so far mainly focused on data acquired at regional level where isotopic parameters are correlated to climatic mean data relative to large territories. Nebbiolo and Barbera wine samples of various vintages and from different areas within the Piedmont region (northern Italy) were analysed using SNIF-NMR and GC-C-IRMS and a large set of meteorological parameters were recorded by means of weather stations placed in fields where the grapes were grown. Correlations between isotopic ((2)H and (13)C) data and several climatic parameters at a local level (mean temperature, total rainfall, mean humidity and thermal sums) were attempted and some linear correlations were found. Mean temperature and total rainfall were found to be correlated to isotopic ((2)H and (13)C) abundance in linear direct and inverse proportions respectively. Lower or no correlations between deuterium and carbon-13 abundances and other meteorological parameters such as mean humidity and thermal sums were found. Moreover, wines produced from different grape varieties in the same grape field showed significantly different isotopic values. Copyright © 2011 Society of Chemical Industry.

  14. Statistical methods and regression analysis of stratospheric ozone and meteorological variables in Isfahan

    Science.gov (United States)

    Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M.

    2008-04-01

    Data of seven meteorological variables (relative humidity, wet temperature, dry temperature, maximum temperature, minimum temperature, ground temperature and sun radiation time) and ozone values have been used for statistical analysis. Meteorological variables and ozone values were analyzed using both multiple linear regression and principal component methods. Data for the period 1999-2004 are analyzed jointly using both methods. For all periods, temperature dependent variables were highly correlated, but were all negatively correlated with relative humidity. Multiple regression analysis was used to fit the meteorological variables using the meteorological variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the linear regression model of the meteorological variables. In 1999, 2001 and 2002 one of the meteorological variables was weakly influenced predominantly by the ozone concentrations. However, the model did not predict that the meteorological variables for the year 2000 were not influenced predominantly by the ozone concentrations that point to variation in sun radiation. This could be due to other factors that were not explicitly considered in this study.

  15. The MSG-SEVIRI-based cloud property data record CLAAS-2

    Directory of Open Access Journals (Sweden)

    N. Benas

    2017-07-01

    Full Text Available Clouds play a central role in the Earth's atmosphere, and satellite observations are crucial for monitoring clouds and understanding their impact on the energy budget and water cycle. Within the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF, a new cloud property data record was derived from geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI measurements for the time frame 2004–2015. The resulting CLAAS-2 (CLoud property dAtAset using SEVIRI, Edition 2 data record is publicly available via the CM SAF website (https://doi.org/10.5676/EUM_SAF_CM/CLAAS/V002. In this paper we present an extensive evaluation of the CLAAS-2 cloud products, which include cloud fractional coverage, thermodynamic phase, cloud top properties, liquid/ice cloud water path and corresponding optical thickness and particle effective radius. Data validation and comparisons were performed on both level 2 (native SEVIRI grid and repeat cycle and level 3 (daily and monthly averages and histograms with reference datasets derived from lidar, microwave and passive imager measurements. The evaluation results show very good overall agreement with matching spatial distributions and temporal variability and small biases attributed mainly to differences in sensor characteristics, retrieval approaches, spatial and temporal samplings and viewing geometries. No major discrepancies were found. Underpinned by the good evaluation results, CLAAS-2 demonstrates that it is fit for the envisaged applications, such as process studies of the diurnal cycle of clouds and the evaluation of regional climate models. The data record is planned to be extended and updated in the future.

  16. Operative meteorological data base in Forsmark

    International Nuclear Information System (INIS)

    Appelgren, A.; Hallberg, B.; Nordlinder, S.

    1990-01-01

    This report describes how data collected during a field measurement campaign were analysed and compiled to create a data base for operative use. The data base gives information about the wind and the atmospheric stability at five locations around the Forsmark nuclear power plant. In the measurement campaign, sodar systems and a 100 m high tower at Forsmark were used. Temperature, wind speed and wind direction were measured by sensors on the tower, while wind speed and direction, and the standard deviation of the vertical wind, were monitored by the sodar systems. This gave meteorological data from several heights. At Forsmark, the temperature difference and the wind speed from the tower were used to determine the atmospheric stability. At the sodar locations, the stability was deduced by employing a scheme which considered the season, the time of day, the wind direction and the wind speed. To create the operative data base, the wind speeds and wind directions, respectively, from two locations at the time were correlated. A code for graphical and numerical presentation of the data from the data base was developed. A special system of warnings was included, featuring notification about phenomena such as sea breeze, warnings about large variation in the wind conditions within the area, and warnings for situations in which the meteorological conditions make the results from the atmospheric dispersion calculations uncertain. This feature was implemented to alert the user to the fact that ordinary dispersion and dose calculations, using meteorological data from a single point, might give erroneous results. The operative data base and the presentation code were integrated with the dispersion and dose calculation code AIRPAC/EMMA, which is to be used in case of increased releases from nuclear power plants. The possibility to use the data from the operative data base in the dispersion calculations was investigated. It was found that a modification of AIRPAC/EMMA, in such a

  17. Variation in the estimations of ETo and crop water use due to the sensor accuracy of the meteorological variables

    Directory of Open Access Journals (Sweden)

    R. Moratiel

    2013-06-01

    Full Text Available In agricultural ecosystems the use of evapotranspiration (ET to improve irrigation water management is generally widespread. Commonly, the crop ET (ETc is estimated by multiplying the reference crop evapotranspiration (ETo by a crop coefficient (Kc. Accurate estimation of ETo is critical because it is the main factor affecting the calculation of crop water use and water management. The ETo is generally estimated from recorded meteorological variables at reference weather stations. The main objective of this paper was assessing the effect of the uncertainty due to random noise in the sensors used for measurement of meteorological variables on the estimation of ETo, crop ET and net irrigation requirements of grain corn and alfalfa in three irrigation districts of the middle Ebro River basin. Five scenarios were simulated, four of them individually considering each recorded meteorological variable (temperature, relative humidity, solar radiation and wind speed and a fifth scenario combining together the uncertainty of all sensors. The uncertainty in relative humidity for irrigation districts Riegos del Alto Aragón (RAA and Bardenas (BAR, and temperature for irrigation district Canal de Aragón y Cataluña (CAC, were the two most important factors affecting the estimation of ETo, corn ET (ETc_corn, alfalfa ET (ETc_alf, net corn irrigation water requirements (IRncorn and net alfalfa irrigation water requirements (IRnalf. Nevertheless, this effect was never greater than ±0.5% over annual scale time. The wind speed variable (Scenario 3 was the third variable more influential in the fluctuations (± of evapotranspiration, followed by solar radiation. Considering the accuracy for all sensors over annual scale time, the variation was about ±1% of ETo, ETc_corn, ETc_alf, IRncorn, and IRnalf. The fluctuations of evapotranspiration were higher at shorter time scale. ETo daily fluctuation remained lower than 5 % during the growing season of corn and

  18. How To...Activities in Meteorology.

    Science.gov (United States)

    Nimmer, Donald N.; Sagness, Richard L.

    This series of experiments seeks to provide laboratory exercises which demonstrate concepts in Earth Science, particularly meteorology. Materials used in the experiments are easily obtainable. Examples of experiments include: (1) making a thermometer; (2) air/space relationship; (3) weight of air; (4) barometers; (5) particulates; (6) evaporation;…

  19. Predicting above normal wildfire activity in southern Europe as a function of meteorological drought

    International Nuclear Information System (INIS)

    Gudmundsson, L; Seneviratne, S I; Rego, F C; Rocha, M

    2014-01-01

    Wildfires are a recurrent feature of ecosystems in southern Europe, regularly causing large ecological and socio-economic damages. For efficient management of this hazard, long lead time forecasts could be valuable tools. Using logistic regression, we show that the probability of above normal summer wildfire activity in the 1985–2010 time period can be forecasted as a function of meteorological drought with significant predictability (p <0.05) several months in advance. The results show that long lead time forecasts of this natural hazard are feasible in southern Europe, which could potentially aid decision-makers in the design of strategies for forest management. (letter)

  20. Added Value of uncertainty Estimates of SOurce term and Meteorology (AVESOME)

    DEFF Research Database (Denmark)

    Sørensen, Jens Havskov; Schönfeldt, Fredrik; Sigg, Robert

    In the early phase of a nuclear accident, two large sources of uncertainty exist: one related to the source term and one associated with the meteorological data. Operational methods are being developed in AVESOME for quantitative estimation of uncertainties in atmospheric dispersion prediction.......g. at national meteorological services, the proposed methodology is feasible for real-time use, thereby adding value to decision support. In the recent NKS-B projects MUD, FAUNA and MESO, the implications of meteorological uncertainties for nuclear emergency preparedness and management have been studied...... uncertainty in atmospheric dispersion model forecasting stemming from both the source term and the meteorological data is examined. Ways to implement the uncertainties of forecasting in DSSs, and the impacts on real-time emergency management are described. The proposed methodology allows for efficient real...

  1. Meteorological detrending of primary and secondary pollutant concentrations: Method application and evaluation using long-term (2000-2012) data in Atlanta

    Science.gov (United States)

    Henneman, Lucas R. F.; Holmes, Heather A.; Mulholland, James A.; Russell, Armistead G.

    2015-10-01

    The effectiveness of air pollution regulations and controls are evaluated based on measured air pollutant concentrations. Air pollution levels, however, are highly sensitive to both emissions and meteorological fluctuations. Therefore, an assessment of the change in air pollutant levels due to emissions controls must account for these meteorological fluctuations. Two empirical methods to quantify the impact of meteorology on pollutant levels are discussed and applied to the 13-year time period between 2000 and 2012 in Atlanta, GA. The methods employ Kolmogorov-Zurbenko filters and linear regressions to detrended pollutant signals into long-term, seasonal, weekly, short-term, and white-noise components. The methods differ in how changes in weekly and holiday emissions are accounted for. Both can provide meteorological adjustments on a daily basis for future use in acute health analyses. The meteorological impact on daily signals of ozone, NOx, CO, SO2, PM2.5, and PM species are quantified. Analyses show that the substantial decreases in seasonal averages of NOx and SO2 correspond with controls implemented in the metropolitan Atlanta area. Detrending allows for the impacts of some controls to be observed with averaging times of as little as 3 months. Annual average concentrations of NOx, SO2, and CO have all fallen by at least 50% since 2000. Reductions in NOx levels, however, do not lead to uniform reductions in ozone. While average detrended summer average maximum daily average 8 h ozone (MDA8h O3) levels fell by 4% (2.2 ± 2 ppb) between 2000 and 2012, winter averages have increased by 12% (3.8 ± 1.4 ppb), providing further evidence that high ozone levels are NOx-limited and lower ozone concentrations are NOx-inhibited. High ozone days (with MDA8h O3 greater than 60 ppb) decreased both in number and in magnitude over the study period.

  2. Meteorological observatory for Antarctic data collection

    International Nuclear Information System (INIS)

    Grigioni, P.; De Silvestri, L.

    1996-01-01

    In the last years, a great number of automatic weather stations was installed in Antarctica, with the aim to examine closely the weather and climate of this region and to improve the coverage of measuring points on the Antarctic surface. In 1987 the Italian Antarctic Project started to set up a meteorological network, in an area not completely covered by other countries. Some of the activities performed by the meteorological observatory, concerning technical functions such as maintenance of the AWS's and the execution of radio soundings, or relating to scientific purposes such as validation and elaboration of collected data, are exposed. Finally, some climatological considerations on the thermal behaviour of the Antarctic troposphere such as 'coreless winter', and on the wind field, including katabatic flows in North Victoria Land are described

  3. Land surface modelling in hydrology and meteorology – lessons learned from the Baltic Basin

    Directory of Open Access Journals (Sweden)

    L. P. Graham

    2000-01-01

    Full Text Available By both tradition and purpose, the land parameterization schemes of hydrological and meteorological models differ greatly. Meteorologists are concerned primarily with solving the energy balance, whereas hydrologists are most interested in the water balance. Meteorological climate models typically have multi-layered soil parameterisation that solves temperature fluxes numerically with diffusive equations. The same approach is carried over to a similar treatment of water transport. Hydrological models are not usually so interested in soil temperatures, but must provide a reasonable representation of soil moisture to get runoff right. To treat the heterogeneity of the soil, many hydrological models use only one layer with a statistical representation of soil variability. Such a hydrological model can be used on large scales while taking subgrid variability into account. Hydrological models also include lateral transport of water – an imperative if' river discharge is to be estimated. The concept of a complexity chain for coupled modelling systems is introduced, together with considerations for mixing model components. Under BALTEX (Baltic Sea Experiment and SWECLIM (Swedish Regional Climate Modelling Programme, a large-scale hydrological model of runoff in the Baltic Basin is used to review atmospheric climate model simulations. This incorporates both the runoff record and hydrological modelling experience into atmospheric model development. Results from two models are shown. A conclusion is that the key to improved models may be less complexity. Perhaps the meteorological models should keep their multi-layered approach for modelling soil temperature, but add a simpler, yet physically consistent, hydrological approach for modelling snow processes and water transport in the soil. Keywords: land surface modelling; hydrological modelling; atmospheric climate models; subgrid variability; Baltic Basin

  4. Towards A Grid Infrastructure For Hydro-Meteorological Research

    Directory of Open Access Journals (Sweden)

    Michael Schiffers

    2011-01-01

    Full Text Available The Distributed Research Infrastructure for Hydro-Meteorological Study (DRIHMS is a coordinatedaction co-funded by the European Commission. DRIHMS analyzes the main issuesthat arise when designing and setting up a pan-European Grid-based e-Infrastructure for researchactivities in the hydrologic and meteorological fields. The main outcome of the projectis represented first by a set of Grid usage patterns to support innovative hydro-meteorologicalresearch activities, and second by the implications that such patterns define for a dedicatedGrid infrastructure and the respective Grid architecture.

  5. Meteorological data assimilation for real-time emergency response

    International Nuclear Information System (INIS)

    Sugiyama, G.; Chan, S.T.

    1996-11-01

    The US Department of Energy's Atmospheric Release Advisory Capability (ARAC) provides real-time dose assessments of airborne pollutant releases. Diverse data assimilation techniques are required to meet the needs of a new generation of ARAC models and to take advantage of the rapidly expanding availability of meteorological data. We are developing a hierarchy of algorithms to provide gridded meteorological fields which can be used to drive dispersion codes or to provide initial fields for mesoscale models. Data to be processed include winds, temperature, moisture, and turbulence

  6. Early meteorological records from Latin-America and the Caribbean during the 18th and 19th centuries.

    Science.gov (United States)

    Domínguez-Castro, Fernando; Vaquero, José Manuel; Gallego, María Cruz; Farrona, Ana María Marín; Antuña-Marrero, Juan Carlos; Cevallos, Erika Elizabeth; Herrera, Ricardo García; de la Guía, Cristina; Mejía, Raúl David; Naranjo, José Manuel; Del Rosario Prieto, María; Ramos Guadalupe, Luis Enrique; Seiner, Lizardo; Trigo, Ricardo Machado; Villacís, Marcos

    2017-11-14

    This paper provides early instrumental data recovered for 20 countries of Latin-America and the Caribbean (Argentina, Bahamas, Belize, Brazil, British Guiana, Chile, Colombia, Costa Rica, Cuba, Ecuador, France (Martinique and Guadalupe), Guatemala, Jamaica, Mexico, Nicaragua, Panama, Peru, Puerto Rico, El Salvador and Suriname) during the 18th and 19th centuries. The main meteorological variables retrieved were air temperature, atmospheric pressure, and precipitation, but other variables, such as humidity, wind direction, and state of the sky were retrieved when possible. In total, more than 300,000 early instrumental data were rescued (96% with daily resolution). Especial effort was made to document all the available metadata in order to allow further post-processing. The compilation is far from being exhaustive, but the dataset will contribute to a better understanding of climate variability in the region, and to enlarging the period of overlap between instrumental data and natural/documentary proxies.

  7. Early meteorological records from Latin-America and the Caribbean during the 18th and 19th centuries

    Science.gov (United States)

    Domínguez-Castro, Fernando; Vaquero, José Manuel; Gallego, María Cruz; Farrona, Ana María Marín; Antuña-Marrero, Juan Carlos; Cevallos, Erika Elizabeth; Herrera, Ricardo García; de La Guía, Cristina; Mejía, Raúl David; Naranjo, José Manuel; Del Rosario Prieto, María; Ramos Guadalupe, Luis Enrique; Seiner, Lizardo; Trigo, Ricardo Machado; Villacís, Marcos

    2017-11-01

    This paper provides early instrumental data recovered for 20 countries of Latin-America and the Caribbean (Argentina, Bahamas, Belize, Brazil, British Guiana, Chile, Colombia, Costa Rica, Cuba, Ecuador, France (Martinique and Guadalupe), Guatemala, Jamaica, Mexico, Nicaragua, Panama, Peru, Puerto Rico, El Salvador and Suriname) during the 18th and 19th centuries. The main meteorological variables retrieved were air temperature, atmospheric pressure, and precipitation, but other variables, such as humidity, wind direction, and state of the sky were retrieved when possible. In total, more than 300,000 early instrumental data were rescued (96% with daily resolution). Especial effort was made to document all the available metadata in order to allow further post-processing. The compilation is far from being exhaustive, but the dataset will contribute to a better understanding of climate variability in the region, and to enlarging the period of overlap between instrumental data and natural/documentary proxies.

  8. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network.

    Science.gov (United States)

    Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui

    2015-07-24

    Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.

  9. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xingming Sun

    2015-07-01

    Full Text Available Air temperature (AT is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS. Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR. Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.

  10. An evaluation of meteorologic data differences between the Pantex Plant and Amarillo, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S.F.

    1993-06-01

    Meteorologic data from the Pantex Plant and from the nearby National Weather Service (NWS) station at the Amarillo, Texas, International Airport were evaluated to determine if the NWS data adequately represented meteorologic conditions at the Pantex Plant. Annual site environmental dose calculations for the Pantex Plant have previously used the NWS data; information from this data comparison helped determine if future environmental dose calculations should use site-specific Pantex meteorologic data. The meteorologic data evaluated were wind speed, wind direction, and atmospheric stability class. Atmospheric stability class data were compared for years 1990 and 1991 and found to be very similar. Stability class designations were identical and one class different in 63% and 30%, respectively, of the paired hourly data. An unexpected finding was the preponderance of Class D stability, which occurred approximately 62% of the time in both data sets. The overall effect of meteorological differences between the two locations was evaluated by performing environmental dose assessments using the GENII dose assessment computer code. Acute and chronic releases of {sup 3}H and {sup 239}Pu were evaluated. Results using the NWS Amarillo meteorologic data were approximately one-half of those generated using Pantex meteorologic data. The two-fold difference in dose results is within the uncertainty expected from current dose assessment codes; therefore, the two meteorologic databases can be used interchangeably and prior dose calculation results using the NWS Amarillo data are acceptable.

  11. Spatial and Temporal Variation of Meteorological Drought in the Parambikulam-Aliyar Basin, Tamil Nadu

    Science.gov (United States)

    Manikandan, M.; Tamilmani, D.

    2015-09-01

    The present study aims to investigate the spatial and temporal variation of meteorological drought in the Parambikulam-Aliyar basin, Tamil Nadu using the Standardized Precipitation Index (SPI) as an indicator of drought severity. The basin was divided into 97 grid-cells of 5 × 5 km with each grid correspondence to approximately 1.03 % of total area. Monthly rainfall data for the period of 40 years (1972-2011) from 28 rain gauge stations in the basin was spatially interpolated and gridded monthly rainfall was created. Regional representative of SPI values calculated from mean areal rainfall were used to analyse the temporal variation of drought at multiple time scales. Spatial variation of drought was analysed based on highest drought severity derived from the monthly gridded SPI values. Frequency analyse was applied to assess the recurrence pattern of drought severity. The temporal analysis of SPI indicated that moderate, severe and extreme droughts are common in the basin and spatial analysis of drought severity identified the areas most frequently affected by drought. The results of this study can be used for developing drought preparedness plan and formulating mitigation strategies for sustainable water resource management within the basin.

  12. A marine meteorological data acquisition system

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Desa, E.; Vithayathil, G.

    A marine meteorological data acquisition system has been developed for long term unattended measurements at remote coastal sites, ocean surface platforms and for use on board research vessels. The system has an open and modular configuration...

  13. Meteorological Data Visualization in Multi-User Virtual Reality

    Science.gov (United States)

    Appleton, R.; van Maanen, P. P.; Fisher, W. I.; Krijnen, R.

    2017-12-01

    Due to their complexity and size, visualization of meteorological data is important. It enables the precise examining and reviewing of meteorological details and is used as a communication tool for reporting, education and to demonstrate the importance of the data to policy makers. Specifically for the UCAR community it is important to explore all of such possibilities.Virtual Reality (VR) technology enhances the visualization of volumetric and dynamical data in a more natural way as compared to a standard desktop, keyboard mouse setup. The use of VR for data visualization is not new but recent developments has made expensive hardware and complex setups unnecessary. The availability of consumer of the shelf VR hardware enabled us to create a very intuitive and low cost way to visualize meteorological data. A VR viewer has been implemented using multiple HTC Vive head sets and allows visualization and analysis of meteorological data in NetCDF format (e.g. of NCEP North America Model (NAM), see figure). Sources of atmospheric/meteorological data include radar and satellite as well as traditional weather stations. The data includes typical meteorological information such as temperature, humidity, air pressure, as well as those data described by the climate forecast (CF) model conventions (http://cfconventions.org). Other data such as lightning-strike data and ultra-high-resolution satellite data are also becoming available. The users can navigate freely around the data which is presented in a virtual room at a scale of up to 3.5 X 3.5 meters. The multiple users can manipulate the model simultaneously. Possible mutations include scaling/translating, filtering by value and using a slicing tool to cut-off specific sections of the data to get a closer look. The slicing can be done in any direction using the concept of a `virtual knife' in real-time. The users can also scoop out parts of the data and walk though successive states of the model. Future plans are (a.o.) to

  14. Eighth joint conference on applications of air pollution meteorology with A & WMA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The eighth Joint Conference on Applications of Air Pollution Meteorology, held January 23-28, 1994, again brings together the American Meteorological Society and Air and Waste Management Association with a broader scientific community to examine the role of the atmosphere on current air quality issues. The CAA Amendments non-attainment title has brought renewed interest in the pairing of complex dynamical meteorological models with photochemical air quality models. Requirements that future attainment to regulations be demonstrated with these models invite a new look at model evaluation. The CAAA titles addressing air toxics have brought renewed interest in near-source dispersion and deposition of toxic chemicals. Consequently, this conference is divided into sessions focusing on topics related to these issues. They include: The Dispersion Environment; Meteorology in Emissions Determination; Long-Range and Mesoscale Pollutant Transport and Fate; Meteorology and Photochemistry; Advanced Dispersion Models and Modeling Systems; Topics in Model Evaluation; Complex Flow Affecting Dispersion Near Structures; and Coastal and Complex Terrain Issues Evaluation.

  15. Training programme for the dissemination of climatological and meteorological applications using GIS technology

    Directory of Open Access Journals (Sweden)

    T. De Filippis

    2006-01-01

    Full Text Available IBIMET-CNR is involved in making different research projects and in managing operational programmes on national and international level and has acquired a relevant training competence to sustain partner countries and improve their methodological and operational skills by using innovative tools, such as Geographical Information Systems focused on the development of meteorological and climatological applications. Training activities are mainly addressed to National Meteorological and Hydrological Services of Partner-Countries and/or to other Specialized Centers in the frame of Cooperation Programmes promoted by the Italian Ministry of Foreign Affairs mainly in favour of the Less Developing Countries (LDC of World Meteorological Organisation (WMO Regional Association I (Africa. The Institute, as a branch of the WMO-Regional Meteorological Training Centre for Region VI (Europe, organizes also international training courses of high-level in Meteorology, Climatology and Remote Sensing applied to environment and agriculture fields. Moreover, considering the increasing evolution of the GIS functions for meteorological information users, IBIMET has promoted in 2005 the EU COST Action 719 Summer School on "GIS applications in meteorology and climatology''. The paper offers an overview of the main institute training programmes organised to share the results of research activities and operational projects, through the exploitation of innovative technologies and tools like GIS.

  16. Meteorology Assessment of Historic Rainfall for Los Alamos During September 2013

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-12

    DOE Order 420.1, Facility Safety, requires that site natural phenomena hazards be evaluated every 10 years to support the design of nuclear facilities. The evaluation requires calculating return period rainfall to determine roof loading requirements and flooding potential based on our on-site rainfall measurements. The return period rainfall calculations are done based on statistical techniques and not site-specific meteorology. This and future studies analyze the meteorological factors that produce the significant rainfall events. These studies provide the meteorology context of the return period rainfall events.

  17. ROMANIAN AERONAUTICAL METEOROLOGY APPLICABLE LEGAL FRAMEWORK –BRIEFING

    Directory of Open Access Journals (Sweden)

    CATALIN POPA

    2012-05-01

    Full Text Available The purpose of this briefing is toprovide an overview of the aeronautical meteorology legal framework in Romania. In this context, the role and importance of aeronautical meteorology in international air traffic management will be underlined, with focus on the civil aviation activity in Romania. The international legal framework and modalities of implementing these rules at national level will constitute a significant part of the present study., Specific accent will be put on the national regulatory framework and structure, means of updating it, and how it responds to changing regulatory requirements.

  18. Application of meteorology to safety at nuclear plants

    International Nuclear Information System (INIS)

    1968-01-01

    This report was prepared on behalf of the International Atomic Energy Agency by an international panel of experts who met at the Agency's headquarters from 10 to 14 April 1967. The application of meteorology to safety at nuclear plants is discussed in connection with site selection, design and construction, operation, and emergency planning and action. The final chapter considers the training to be given to operators and health and safety personnel on meteorology problems. The appendix gives a simple method for computing air concentration values at ground level. An extensive bibliography is also included.

  19. 40 CFR 63.1517 - Records

    Science.gov (United States)

    2010-07-01

    ..., measurement, maintenance, corrective action, report, or record. The most recent 2 years of records must be...-month reporting period, records of each alarm, the time of the alarm, the time corrective action was initiated and completed, and a brief description of the cause of the alarm and the corrective action(s...

  20. Monthly Electrical Energy Overview September 2017

    International Nuclear Information System (INIS)

    2017-10-01

    This publication presents the electricity characteristics and noteworthy developments in France every month: consumption, generation, renewable energies, cross-border trades and transmission system developments, along with feedback on the highlights affecting this data. This issue presents the key figures for September 2017. Gross domestic demand increased slightly compared to September 2016, despite a monthly average temperature of less than 3.4 deg. C. The monthly balance of trade was positive (i.e. France was a net exporter) and increased by 73% compared to September 2016. Total demand corrected for climate contingencies remained stable. Demand by large industry continued its upward trend. Nuclear generation was up 11% compared to September 2016 and reached 29.3 TWh. Wind power production increased 66% compared to September 2016. The Greoux-les-Bains photovoltaic plant was connected to the public electricity transmission network. The plant has a generating power of 70 MW. The Grand-Est and Hauts-de-France regions really benefited from the strong winds observed across France. They thus contributed the most to the record levels of solar and wind generation recorded in September. Market prices were up in most European countries despite a notable decline in week 37. The monthly balance of trade remained exporter. 15 new installations went into service in September

  1. Radiation protection at the RA Reactor in 1992, Part -2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1992-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. It is foreseen that these measurements should be automated, but up to this moment daily meteorology reports are completed by a computer but the data collection and input are still done manually. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute. Computer codes for these data processing were developed by the meteorology staff in the Institute. Data are collected 24 times per day [sr

  2. Radiation protection at the RA Reactor in 1991, Part -2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1995-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. It is foreseen that these measurements should be automated, but up to this moment daily meteorology reports are completed by a computer but the data collection and input are still done manually. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute. Computer codes for these data processing were developed by the meteorology staff in the Institute. Data are collected 24 times per day [sr

  3. Radiation protection at the RA Reactor in 1991, Part 2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1992-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. It is foreseen that these measurements should be automated, but up to this moment daily meteorology reports are completed by a computer but the data collection and input are still done manually. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute. Computer codes for these data processing were developed by the meteorology staff in the Institute. Data are collected 24 times per day [sr

  4. Radiation protection at the RA Reactor in 1994. Part 2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1994-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. It is foreseen that these measurements should be automated, but up to this moment daily meteorology reports are completed by a computer but the data collection and input are still done manually. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute. Computer codes for these data processing were developed by the meteorology staff in the Institute. Data are collected 24 times per day [sr

  5. Monthly Record Tables, December 1998, with Supplement for the 4. quarter 1998

    International Nuclear Information System (INIS)

    1998-12-01

    This report, issued under the aegis of O.P.R.I. (Office of protection against ionizing radiations), contains the activity level measurements of the radiation monitoring units throughout the country recorded in December 1998. A supplement contains the data relative to the 4. quarter is also added. Data relative to atmospheric sampling refer to surface and high altitude air as well as to atmospheric tritium concentration at Valduc. For rain water, dry fallout and deposition at soil level weekly sampling were carried out and monthly surveillance is reported. The drinking, surface and ground water measurements are reported for nuclear and non-nuclear sites. Measurement on food chains refer to cow milk, thyroids of horned cattle and fishes in the national market. Activity levels of given radioisotopes are given for vegetables and coastal sea waters as well as for waste and rain waters. Surveillance of wastes from facilities other than basic nuclear units (hospitals, research units, etc) was measured downstream to large cities in waste waters, rivers, sediments and aquatic flora. Sanitary controls on food and environment are reported as well as those carried out on workers and on operators implied in 6 nuclear incidents without consequences which occurred in December 1998 in French NPPs. The quarterly results refer to the following 16 items: 1. Radioactivity inventory in feedwater (Calvados); 2.Drinking waters; 3.Hydro-mineral sources; 4.Sea medium at Nord-Cotentin; 5.Surveillance of major National Navy facilities; 6.Surveillance of CNPE at Gravelines; 7. Surveillance of CNPE at Civaux; 8.Surveillance of COGEMA site at Marcoule; 9.Marine fauna and flora; 10.Surveillance of rice fields at Camargue; 11.Surveillance of sea sediments in Seine mouth; 12.Controlled releases; 13.Food chains; 14.Animal bones; 15.Soils; 16.Integrating dosemeters

  6. Monthly and diurnal variations of limnological conditions of two ponds

    Directory of Open Access Journals (Sweden)

    AKM Fazlur Rahaman

    2017-06-01

    Full Text Available A study on monthly and diurnal changes of limnological conditions of two ponds was conducted in the Bangladesh Agricultural University campus, Mymensingh. The research work was performed by studying the limnological parameters such as transparency, temperature, dissolved oxygen, free carbon dioxide, pH, total alkalinity, nitrate-nitrogen, phosphate-phosphorus and plankton. Diurnal variations of physico-chemical factors were studied fortnightly at 6 hrs intervals at 6 a.m., 12 noon, 6 p.m. and 12 midnight. The amounts of transparency, dissolved oxygen and pH were higher during winter months than in summer months in both the ponds. Transparency, water temperature, total alkalinity, NO3-N and PO4-P were higher during summer months than in winter months in both the ponds. But the amount of free carbon dioxide was higher during winter months than in summer months in pond 1 while in pond 2 the amount of free carbon dioxide was higher during summer months than in winter months. Qualitative and quantitative monthly variations of phytoplankton and zooplankton were observed in both the ponds during the study period. The highest amount of dissolved oxygen, pH and total alkalinity were recorded at 6 p.m. and the lowest amounts of those at 6 a.m. in both the ponds. The highest temperature was recorded at 12 noon and the lowest at 12 midnight. But the highest amount of free carbon dioxide was recorded at 6 a.m. and the lowest at 6 p.m. in both the ponds. All the factors showed appreciable diel variations throughout the study period, which indicate that the ponds are productive.

  7. Weathering the empire: meteorological research in the early British Straits Settlements.

    Science.gov (United States)

    Williamson, Fiona

    2015-09-01

    This article explores meteorological interest and experimentation in the early history of the Straits Settlements. It centres on the establishment of an observatory in 1840s Singapore and examines the channels that linked the observatory to a global community of scientists, colonial officers and a reading public. It will argue that, although the value of overseas meteorological investigation was recognized by the British government, investment was piecemeal and progress in the field often relied on the commitment and enthusiasm of individuals. In the Straits Settlements, as elsewhere, these individuals were drawn from military or medical backgrounds, rather than trained as dedicated scientists. Despite this, meteorology was increasingly recognized as of fundamental importance to imperial interests. Thus this article connects meteorology with the history of science and empire more fully and examines how research undertaken in British dependencies is revealing of the operation of transnational networks in the exchange of scientific knowledge.

  8. Delayed XBT Data assembled by US NOAA Atlantic Oceanographic Meteorological Laboratory (AOML) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted the month of December 2003 (NODC Accession 0001320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from MULTIPLE PLATFORMS from a World-Wide distribution. Data were collected by the Atlantic Oceanographic and Meteorological Laboratory...

  9. Delayed XBT Data assembled by US NOAA Atlantic Oceanographic Meteorological Laboratory (AOML) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted the month of June 2005 (NODC Accession 0002276)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from MULTIPLE PLATFORMS from a World-Wide distribution. Data were collected by the Atlantic Oceanographic and Meteorological Laboratory...

  10. Delayed XBT Data assembled by US NOAA Atlantic Oceanographic Meteorological Laboratory (AOML) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted the month of October 2003 (NODC Accession 0001234)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from MULTIPLE PLATFORMS from a World-Wide distribution. Data were collected by the Atlantic Oceanographic and Meteorological Laboratory...

  11. Delayed XBT Data assembled by US NOAA Atlantic Oceanographic Meteorological Laboratory (AOML) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted the month of January 2004 (NODC Accession 0001336)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from MULTIPLE PLATFORMS from a World-Wide distribution. Data were collected by the Atlantic Oceanographic and Meteorological Laboratory...

  12. Delayed XBT Data assembled by US NOAA Atlantic Oceanographic Meteorological Laboratory (AOML) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted the month of September 2005 (NODC Accession 0002399)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from MULTIPLE PLATFORMS from a World-Wide distribution. Data were collected by the Atlantic Oceanographic and Meteorological Laboratory...

  13. Delayed XBT Data assembled by US NOAA Atlantic Oceanographic Meteorological Laboratory (AOML) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted the month of June 2001 (NODC Accession 0000478)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from MULTIPLE PLATFORMS from a World-Wide distribution. Data were collected by the Atlantic Oceanographic and Meteorological Laboratory...

  14. Delayed XBT Data assembled by US NOAA Atlantic Oceanographic Meteorological Laboratory (AOML) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted the month of August 2004 (NODC Accession 0001713)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from MULTIPLE PLATFORMS from a World-Wide distribution. Data were collected by the Atlantic Oceanographic and Meteorological Laboratory...

  15. Delayed XBT Data assembled by US NOAA Atlantic Oceanographic Meteorological Laboratory (AOML) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted the month of February 2004 (NODC Accession 0001382)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from MULTIPLE PLATFORMS from a World-Wide distribution. Data were collected by the Atlantic Oceanographic and Meteorological Laboratory...

  16. Delayed XBT Data assembled by US NOAA Atlantic Oceanographic Meteorological Laboratory (AOML) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted the month of May 2004 (NODC Accession 0001504)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from MULTIPLE PLATFORMS from a World-Wide distribution. Data were collected by the Atlantic Oceanographic and Meteorological Laboratory...

  17. Delayed XBT Data assembled by US NOAA Atlantic Oceanographic Meteorological Laboratory (AOML) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted the month of December 2004 (NODC Accession 0002010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from MULTIPLE PLATFORMS from a World-Wide distribution. Data were collected by the Atlantic Oceanographic and Meteorological Laboratory...

  18. Coupled simulation of meteorological parameters and sound intensity in a narrow valley

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, D. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Gross, G. [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie

    1997-07-01

    A meteorological mesoscale model is used to simulate the inhomogeneous distribution of temperature and the appertaining development of thermal wind systems in a narrow two-dimensional valley during the course of a cloud-free day. A simple sound particle model takes up the simulated meteorological fields and calculates the propagation of noise which originates from a line source at one of the slopes of this valley. The coupled modeling system ensures consistency of topography, meteorological parameters and the sound field. The temporal behaviour of the sound intensity level across the valley is examined. It is only governed by the time-dependent meteorology. The results show remarkable variations of the sound intensity during the course of a day depending on the location in the valley. (orig.) 23 refs.

  19. Development of a monthly to seasonal forecast framework tailored to inland waterway transport in central Europe

    Science.gov (United States)

    Meißner, Dennis; Klein, Bastian; Ionita, Monica

    2017-12-01

    Traditionally, navigation-related forecasts in central Europe cover short- to medium-range lead times linked to the travel times of vessels to pass the main waterway bottlenecks leaving the loading ports. Without doubt, this aspect is still essential for navigational users, but in light of the growing political intention to use the free capacity of the inland waterway transport in Europe, additional lead time supporting strategic decisions is more and more in demand. However, no such predictions offering extended lead times of several weeks up to several months currently exist for considerable parts of the European waterway network. This paper describes the set-up of a monthly to seasonal forecasting system for the German stretches of the international waterways of the Rhine, Danube and Elbe rivers. Two competitive forecast approaches have been implemented: the dynamical set-up forces a hydrological model with post-processed outputs from ECMWF general circulation model System 4, whereas the statistical approach is based on the empirical relationship (teleconnection) of global oceanic, climate and regional hydro-meteorological data with river flows. The performance of both forecast methods is evaluated in relation to the climatological forecast (ensemble of historical streamflow) and the well-known ensemble streamflow prediction approach (ESP, ensemble based on historical meteorology) using common performance indicators (correlation coefficient; mean absolute error, skill score; mean squared error, skill score; and continuous ranked probability, skill score) and an impact-based evaluation quantifying the potential economic gain. The following four key findings result from this study: (1) as former studies for other regions of central Europe indicate, the accuracy and/or skill of the meteorological forcing used has a larger effect than the quality of initial hydrological conditions for relevant stations along the German waterways. (2) Despite the predictive

  20. Flight Investigation of the Performance of a Two-stage Solid-propellant Nike-deacon (DAN) Meteorological Sounding Rocket

    Science.gov (United States)

    Heitkotter, Robert H

    1956-01-01

    A flight investigation of two Nike-Deacon (DAN) two-stage solid-propellant rocket vehicles indicated satisfactory performance may be expected from the DAN meteorological sounding rocket. Peak altitudes of 356,000 and 350,000 feet, respectively, were recorded for the two flight tests when both vehicles were launched from sea level at an elevation angle of 75 degrees. Performance calculations based on flight-test results show that altitudes between 358,000 feet and 487,000 feet may be attained with payloads varying between 60 pounds and 10 pounds.

  1. ICON - Media Luna Reef 2011 Meteorological and Oceanographic Observations (NODC Accession 0098078)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  2. ICON - Media Luna Reef 2006 Meteorological and Oceanographic Observations (NODC Accession 0049876)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  3. ICON - Media Luna Reef 2008 Meteorological and Oceanographic Observations (NODC Accession 0039700)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  4. ICON - Lao Lao Bay 2013 Meteorological and Oceanographic Observations (NODC Accession 0123998)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  5. ICON - Salt River Bay 2012 Meteorological and Oceanographic Observations (NODC Accession 0117726)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  6. ICON - Molasses Reef (secondary) 2013 Meteorological and Oceanographic Observations (NODC Accession 0123999)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  7. ICON - Salt River Bay 2013 Meteorological and Oceanographic Observations (NODC Accession 0124001)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  8. ICON - Salt River Bay 2006 Meteorological and Oceanographic Observations (NODC Accession 0049446)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  9. ICON - Media Luna Reef 2007 Meteorological and Oceanographic Observations (NODC Accession 0049877)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  10. ICON - Salt River Bay 2011 Meteorological and Oceanographic Observations (NODC Accession 0098077)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  11. ICON - Media Luna Reef 2013 Meteorological and Oceanographic Observations (NODC Accession 0124000)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  12. ICON - Media Luna Reef 2012 Meteorological and Oceanographic Observations (NODC Accession 0117729)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  13. ICON - Lao Lao Bay 2014 Meteorological and Oceanographic Observations (NCEI Accession 0137094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  14. ICON - Lao Lao Bay 2012 Meteorological and Oceanographic Observations (NODC Accession 0117721)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  15. ICON - Salt River Bay 2014 Meteorological and Oceanographic Observations (NCEI Accession 0137094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  16. ICON - Molasses Reef (secondary) 2012 Meteorological and Oceanographic Observations (NODC Accession 0117728)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  17. Meteorological variables affect fertility rate after intrauterine artificial insemination in sheep in a seasonal-dependent manner: a 7-year study

    Science.gov (United States)

    Palacios, C.; Abecia, J. A.

    2015-05-01

    A total number of 48,088 artificial inseminations (AIs) have been controlled during seven consecutive years in 79 dairy sheep Spanish farms (41° N). Mean, maximum and minimum ambient temperatures ( Ts), temperature amplitude (TA), mean relative humidity (RH), mean solar radiation (SR) and total rainfall of each insemination day and 15 days later were recorded. Temperature-humidity index (THI) and effective temperature (ET) have been calculated. A binary logistic regression model to estimate the risk of not getting pregnant compared to getting pregnant, through the odds ratio (OR), was performed. Successful winter inseminations were carried out under higher SR ( P 1 (maximum T, ET and rainfall on AI day, and ET and rainfall on day 15), and two variables presented OR AI day and maximum T on day 15). However, the effect of meteorological factors affected fertility in opposite ways, so T becomes a protective or risk factor on fertility depending on season. In conclusion, the percentage of pregnancy after AI in sheep is significantly affected by meteorological variables in a seasonal-dependent manner, so the parameters such as temperature reverse their effects in the hot or cold seasons. A forecast of the meteorological conditions could be a useful tool when AI dates are being scheduled.

  18. Comparison of instrumental and interpolated meteorological data-based summer temperature reconstructions on Mt. Taibai in the Qinling Mountains, northwestern China

    Science.gov (United States)

    Qin, Jin; Bai, Hongying; Su, Kai; Liu, Rongjuan; Zhai, Danping; Wang, Jun; Li, Shuheng; Zhou, Qi; Li, Bin

    2018-01-01

    Previous dendroclimatical studies have been based on the relationship between tree growth and instrumental climate data recorded at lower land meteorological stations, but the climate conditions somehow differ between sampling sites and distant population centers. Thus, in this study, we performed a comparison between the 152-year reconstruction of June to July mean air temperature on the basis of interpolated meteorological data and instrumental meteorological data. The reconstruction explained 38.7% of the variance in the interpolated temperature data (37.2% after the degrees of freedom were adjusted) and 39.6% of the variance in the instrumental temperature data (38.4% after adjustment for loss of degrees of freedom) during the period 1962-2013 AD. The first global warming (the 1920s) and recent warming (1990-2013) found from the reconstructed temperature series match reasonably well with two other reported summer temperature reconstructions from north-central China. Cold periods occurred three times during 1866-1885, 1901-1921, and 1981-2000, while hot periods occurred four times during 1886-1900, 1922-1933, 1953-1966, and 2001-2007. The extreme warm (cold) years are coherent with the documentary drought (flood) events. Significant 31-22-year, 22-18-year, and 12-8-year cycles indicate major fluctuations in regional temperatures may reflect large-scale climatic shifts.

  19. Meteorological analysis of symptom data for people with seasonal affective disorder

    NARCIS (Netherlands)

    Sarran, Christophe; Albers, Casper; Sachon, Patrick; Meesters, Ybe

    It is thought that variation in natural light levels affect people with Seasonal Affective Disorder (SAD). Several meteorological factors related to luminance can be forecast but little is known about which factors are most indicative of worsening SAD symptoms. The aim of this meteorological

  20. Linking meteorological drivers of spring-summer drought regimes to agricultural drought risk in China

    Science.gov (United States)

    Dai, L.; Wright, J. S.; Yu, C.; Huang, W. Y.

    2017-12-01

    As a drought prone country, China has experienced frequent severe droughts in recent decades. Drought frequency and severity are projected to increase in China under climate change. An understanding of the physical processes that contribute to extreme droughts is essential for seasonal forecasting, but the dominant physical mechanisms responsible for droughts in most parts of China are still unclear. Moreover, despite numerous studies on droughts in China, there are few clear connections between the meteorological and climatological drivers of extreme droughts and the associated agricultural consequences. This knowledge gap limits the capacity for decision-making support in drought management. The objectives of this study are (1) to identify robust spring-summer drought regimes over China, (2) to investigate the physical mechanisms associated with each regime, and (3) to better clarify connections between meteorological drought regimes and agricultural drought risk. First, we identify six drought regimes over China by applying an area-weighted k-means clustering technique to spatial patterns of spring-summer Standardized Precipitation Index (SPI) obtained from the ten-member ERA-20CM ensemble for 1900-2010. Second, we project these drought regimes onto agricultural drought risk maps for the three major cereal crops (rice, maize, and wheat) in China. Taking into account historical harvest areas for these crops, we then evaluate the potential impact of each drought regime on agricultural production. Third, the physical mechanisms and meteorological context behind each drought regimes are investigated based on monthly outputs from ERA20CM. We analyze the preceding and concurrent atmospheric circulation anomalies associated with each regime, and propose mechanistic explanations for drought development. This work provides a new perspective on diagnosing the physical mechanisms behind seasonal droughts, and lays a foundation for improving seasonal drought prediction and

  1. Karlsruhe Nuclear Research Center, Institute for Meteorology and Climate Research. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The Institute for Meteorology and Climate Research is operated by Karlsruhe Nuclear Research Centre in cooperation with Karlsruhe University. It investigates mesoscale and global atmospheric processes. Work on mesoscale processes focuses on interactions between atmosphere, soil and vegetation via the exchange of momentum, energy, water, and materials. Another field of primary interest are the flow processes and turbulent exchange processes in the lower troposphere. Parallel to the experiments, numerical simulation models for describing and predicting mesospheric climate-relevant processes and atmospheric exchange processes were used and improved upon. For remote processing of atmospheric parameters, a satellite-based data processing system was used for recording land surface parameters and vertical profiles and meteorological variables that are applicable for climatological studies and for the validation of numerical models. For recording and interpretation of the spatial and time-dependent distribution of trace elements, measuring instruments in the field of air chemistry were newly developed or improved upon, especially with a view towards high time resolution of the measured data. Ozone research is a key issue of the remote measurements. Contributions were made primarily in the framework of international research programmes (e.g. EASOE) on the degradation of the atmospheric ozone layer in the higher latitudes of the northern hemisphere. In addition to the experimental investigations, the transport of stratospheric trace elements was simulated numerically. (orig./KW) [de

  2. Meteorology and dispersion forecast in nuclear emergency in Argentina

    International Nuclear Information System (INIS)

    Kunst, Juan J.; Boutet, Luis I.; Jordan, Osvaldo D.; Hernandez, Daniel G.; Guichandut, M.E.; Chiappesoni, H.

    2008-01-01

    The 'Nuclear Regulatory Authority (NRA) (ARN in Spanish)' and the 'National Meteorological Office (NMO) (SMN in Spanish)' of Argentine has been working together on the improvement of both meteorological forecasting and dispersion prediction. In the pre-release phase of a nuclear emergency, it is very important to know the wind direction and the forecast of it, to establish the area, around the installation, where the emergency state is declared and to foresee the modification of this area. Information is also needed about deterministic effects, to begin the evacuation. At this time, meteorological forecast of wind direction and speed, and the real time meteorological information is available in the nuclear power plant (NPP) and in the Nuclear Emergency Control Centre at the ARN headquarters, together with the short-range dose calculation provided by our dispersion code, SEDA. By means of the SEDA code, we can estimate the optimum place to measure the radioactive material concentration in air, needed do to reduce evaluation uncertainties due, among others, to poor knowledge of the source term. The SEDA code allows considering atmospheric condition, and the need to reduced doses of the measuring team in charge of the measurements. For the evaluation in the medium range, we participate in the project IXP, which provides four hours and about 50 kilometres forecast. In the long-range movement of air borne radioactivity, the World Meteorological Organization (WMO), whose contact point in Argentina is the SMN, can assist us. We have developed together, with the SMN, a detailed procedure to request assistance from the WMO. In this work, we describe the combined tasks that were carried out with the SMN to define the procedures and the concepts for their application during a real emergency. The results of an application exercise carried out in 2006 are also described. (author)

  3. Brookhaven National Laboratory meteorological services instrument calibration plan and procedures

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, John [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-02-16

    This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

  4. Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2

    Science.gov (United States)

    Air pollution simulations critically depend on the quality of the underlying meteorology. In phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII-2), thirteen modeling groups from Europe and four groups from North America operating eight different regional...

  5. The Meteorological Monitoring program at a former nuclear weapons plant

    International Nuclear Information System (INIS)

    Maxwell, D.R.; Bowen, B.M.

    1994-01-01

    The purpose of the Meteorological Monitoring program at Rocky Flats Plant (RFP) is to provide meteorological information for use in assessing the transport, and diffusion, and deposition of effluent actually or potentially released into the atmosphere by plant operations. Achievement of this objective aids in protecting health and safety of the public, employees, and environment, and directly supports Emergency Response programs at RFP. Meteorological information supports the design of environmental monitoring networks for impact assessments, environmental surveillance activities, remediation activities, and emergency responses. As the mission of the plant changes from production of nuclear weapons parts to environmental cleanup and economic development, smaller releases resulting from remediation activities become more likely. These possible releases could result from airborne fugitive dust, evaporation from collection ponds, or grass fires

  6. Average wind statistics for SRP area meteorological towers

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1987-01-01

    A quality assured set of average wind Statistics for the seven SRP area meteorological towers has been calculated for the five-year period 1982--1986 at the request of DOE/SR. A Similar set of statistics was previously compiled for the years 1975-- 1979. The updated wind statistics will replace the old statistics as the meteorological input for calculating atmospheric radionuclide doses from stack releases, and will be used in the annual environmental report. This report details the methods used to average the wind statistics and to screen out bad measurements and presents wind roses generated by the averaged statistics

  7. Wavelet based correlation coefficient of time series of Saudi Meteorological Data

    International Nuclear Information System (INIS)

    Rehman, S.; Siddiqi, A.H.

    2009-01-01

    In this paper, wavelet concepts are used to study a correlation between pairs of time series of meteorological parameters such as pressure, temperature, rainfall, relative humidity and wind speed. The study utilized the daily average values of meteorological parameters of nine meteorological stations of Saudi Arabia located at different strategic locations. The data used in this study cover a period of 16 years between 1990 and 2005. Besides obtaining wavelet spectra, we also computed the wavelet correlation coefficients between two same parameters from two different locations and show that strong correlation or strong anti-correlation depends on scale. The cross-correlation coefficients of meteorological parameters between two stations were also calculated using statistical function. For coastal to costal pair of stations, pressure time series was found to be strongly correlated. In general, the temperature data were found to be strongly correlated for all pairs of stations and the rainfall data the least.

  8. First application of the meteorological Mini-UAV 'M{sup 2}AV'

    Energy Technology Data Exchange (ETDEWEB)

    Spiess, T.; Bange, J.; Buschmann, M.; Voersmann, P. [Braunschweig Univ. (Germany). Inst. fuer Luft- und Raumfahrttechnik

    2007-04-15

    The limitations of manned airborne meteorological measurements led to a new unmanned system, the Meteorological Mini-UAV (M{sup 2}AV), recently developed by the Institute of Aerospace Systems, Technical University of Braunschweig. The task was to develop, test and verify a meteorological sensor package as payload for an already available carrier aircraft, the UAV 'Carolo T200'. Thereby the limitations in size and mass had to be respected. The M{sup 2}AV is capable of performing turbulence and wind vector measurements within the atmospheric boundary layer and permits very short measurement cycles as an economic supplement during meteorological campaigns. The article gives details on the technical items. Results from meteorological data sets measured by the M{sup 2}AV are used for data quality assessment. In October 2005 the M{sup 2}AV participated in the meteorological field experiment 'LAUNCH 2005' in Lindenberg near Berlin. The M{sup 2}AV data were compared with lidar and sodar/RASS measurements. Furthermore, an in situ comparison of temperature, humidity and wind vector data with the helicopter-borne turbulence probe Helipod was analysed and gave information about the M{sup 2}AV data quality. (orig.)

  9. COMPARISON OF CONSEQUENCE ANALYSIS RESULTS FROM TWO METHODS OF PROCESSING SITE METEOROLOGICAL DATA

    International Nuclear Information System (INIS)

    , D

    2007-01-01

    Consequence analysis to support documented safety analysis requires the use of one or more years of representative meteorological data for atmospheric transport and dispersion calculations. At minimum, the needed meteorological data for most atmospheric transport and dispersion models consist of hourly samples of wind speed and atmospheric stability class. Atmospheric stability is inferred from measured and/or observed meteorological data. Several methods exist to convert measured and observed meteorological data into atmospheric stability class data. In this paper, one year of meteorological data from a western Department of Energy (DOE) site is processed to determine atmospheric stability class using two methods. The method that is prescribed by the U.S. Nuclear Regulatory Commission (NRC) for supporting licensing of nuclear power plants makes use of measurements of vertical temperature difference to determine atmospheric stability. Another method that is preferred by the U.S. Environmental Protection Agency (EPA) relies upon measurements of incoming solar radiation, vertical temperature gradient, and wind speed. Consequences are calculated and compared using the two sets of processed meteorological data from these two methods as input data into the MELCOR Accident Consequence Code System 2 (MACCS2) code

  10. Understanding meteorological influences on PM2.5 concentrations across China: a temporal and spatial perspective

    Directory of Open Access Journals (Sweden)

    Z. Chen

    2018-04-01

    Full Text Available With frequent air pollution episodes in China, growing research emphasis has been put on quantifying meteorological influences on PM2.5 concentrations. However, these studies mainly focus on isolated cities, whilst meteorological influences on PM2.5 concentrations at the national scale have not yet been examined comprehensively. This research employs the CCM (convergent cross-mapping method to understand the influence of individual meteorological factors on local PM2.5 concentrations in 188 monitoring cities across China. Results indicate that meteorological influences on PM2.5 concentrations have notable seasonal and regional variations. For the heavily polluted North China region, when PM2.5 concentrations are high, meteorological influences on PM2.5 concentrations are strong. The dominant meteorological influence for PM2.5 concentrations varies across locations and demonstrates regional similarities. For the most polluted winter, the dominant meteorological driver for local PM2.5 concentrations is mainly the wind within the North China region, whilst precipitation is the dominant meteorological influence for most coastal regions. At the national scale, the influence of temperature, humidity and wind on PM2.5 concentrations is much larger than that of other meteorological factors. Amongst eight factors, temperature exerts the strongest and most stable influence on national PM2.5 concentrations in all seasons. Due to notable temporal and spatial differences in meteorological influences on local PM2.5 concentrations, this research suggests pertinent environmental projects for air quality improvement should be designed accordingly for specific regions.

  11. Use of geostationary meteorological satellite images in convective rain estimation for flash-flood forecasting

    Science.gov (United States)

    Wardah, T.; Abu Bakar, S. H.; Bardossy, A.; Maznorizan, M.

    2008-07-01

    SummaryFrequent flash-floods causing immense devastation in the Klang River Basin of Malaysia necessitate an improvement in the real-time forecasting systems being used. The use of meteorological satellite images in estimating rainfall has become an attractive option for improving the performance of flood forecasting-and-warning systems. In this study, a rainfall estimation algorithm using the infrared (IR) information from the Geostationary Meteorological Satellite-5 (GMS-5) is developed for potential input in a flood forecasting system. Data from the records of GMS-5 IR images have been retrieved for selected convective cells to be trained with the radar rain rate in a back-propagation neural network. The selected data as inputs to the neural network, are five parameters having a significant correlation with the radar rain rate: namely, the cloud-top brightness-temperature of the pixel of interest, the mean and the standard deviation of the temperatures of the surrounding five by five pixels, the rate of temperature change, and the sobel operator that indicates the temperature gradient. In addition, three numerical weather prediction (NWP) products, namely the precipitable water content, relative humidity, and vertical wind, are also included as inputs. The algorithm is applied for the areal rainfall estimation in the upper Klang River Basin and compared with another technique that uses power-law regression between the cloud-top brightness-temperature and radar rain rate. Results from both techniques are validated against previously recorded Thiessen areal-averaged rainfall values with coefficient correlation values of 0.77 and 0.91 for the power-law regression and the artificial neural network (ANN) technique, respectively. An extra lead time of around 2 h is gained when the satellite-based ANN rainfall estimation is coupled with a rainfall-runoff model to forecast a flash-flood event in the upper Klang River Basin.

  12. Should we use seasonnal meteorological ensemble forecasts for hydrological forecasting? A case study for nordic watersheds in Canada.

    Science.gov (United States)

    Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert; Guay, Catherine

    2017-04-01

    Hydro-electricity is a major source of energy for many countries throughout the world, including Canada. Long lead-time streamflow forecasts are all the more valuable as they help decision making and dam management. Different techniques exist for long-term hydrological forecasting. Perhaps the most well-known is 'Extended Streamflow Prediction' (ESP), which considers past meteorological scenarios as possible, often equiprobable, future scenarios. In the ESP framework, those past-observed meteorological scenarios (climatology) are used in turn as the inputs of a chosen hydrological model to produce ensemble forecasts (one member corresponding to each year in the available database). Many hydropower companies, including Hydro-Québec (province of Quebec, Canada) use variants of the above described ESP system operationally for long-term operation planning. The ESP system accounts for the hydrological initial conditions and for the natural variability of the meteorological variables. However, it cannot consider the current initial state of the atmosphere. Climate models can help remedy this drawback. In the context of a changing climate, dynamical forecasts issued from climate models seem to be an interesting avenue to improve upon the ESP method and could help hydropower companies to adapt their management practices to an evolving climate. Long-range forecasts from climate models can also be helpful for water management at locations where records of past meteorological conditions are short or nonexistent. In this study, we compare 7-month hydrological forecasts obtained from climate model outputs to an ESP system. The ESP system mimics the one used operationally at Hydro-Québec. The dynamical climate forecasts are produced by the European Center for Medium range Weather Forecasts (ECMWF) System4. Forecasts quality is assessed using numerical scores such as the Continuous Ranked Probability Score (CRPS) and the Ignorance score and also graphical tools such as the

  13. Quality Assurance Guidance for the Collection of Meteorological Data Using Passive Radiometers

    Science.gov (United States)

    This document augments the February 2000 guidance entitled Meteorological Monitoring Guidance for Regulatory Modeling Applications and the March 2008 guidance entitled Quality Assurance Handbook for Air Pollution Measurement Systems Volume IV: Meteorological Measurements Version ...

  14. ISLSCP II Reanalysis Near-Surface Meteorology Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set for the ISLSCP Initiative II data collection provides near surface meteorological variables, fluxes of heat, moisture and momentum at the...

  15. Calling phenology of a diverse amphibian assemblage in response to meteorological conditions

    Science.gov (United States)

    Plenderleith, T. Lynette; Stratford, Danial; Lollback, Gregory W.; Chapple, David G.; Reina, Richard D.; Hero, Jean-Marc

    2017-12-01

    The strong association between amphibian activity, breeding and recruitment with local environmental conditions raises concerns regarding how changes in climate may affect the persistence of species populations into the future. Additionally, in a highly diverse assemblage of anurans, competition for breeding sites affects the time and duration of activity, as species compete for limited resources such as water. Meteorological conditions are strong drivers of amphibian activity, so we assessed whether temperature, rainfall, atmospheric pressure and humidity were associated with the calling phenology of an assemblage of anurans in South East Queensland, Australia. We performed calling surveys and collected digital recordings at 45 ponds in an area known for high anuran diversity. We performed detection analyses to investigate the influence of 10 meteorological variables in detection of calling activity in 19 amphibian species. Our results suggest four breeding strategies in the assemblage: explosive summer breeders, prolonged breeders, opportunistic breeders and a winter breeder. Classifying these species into associations provides a framework for understanding how species respond to environmental conditions. Explosive breeders (i.e. species demonstrating short and highly synchronised breeding periods) were particularly responsive to temperature. Our findings help elucidate the breeding phenology of frogs and provide valuable information on their mating systems in native Australian forests. This study highlights the difficulties of surveying even common anurans. We highlight the importance of predictability and stability in climate and the vulnerability of species for which reproduction appears to require highly specific environmental cues.

  16. Calling phenology of a diverse amphibian assemblage in response to meteorological conditions

    Science.gov (United States)

    Plenderleith, T. Lynette; Stratford, Danial; Lollback, Gregory W.; Chapple, David G.; Reina, Richard D.; Hero, Jean-Marc

    2018-05-01

    The strong association between amphibian activity, breeding and recruitment with local environmental conditions raises concerns regarding how changes in climate may affect the persistence of species populations into the future. Additionally, in a highly diverse assemblage of anurans, competition for breeding sites affects the time and duration of activity, as species compete for limited resources such as water. Meteorological conditions are strong drivers of amphibian activity, so we assessed whether temperature, rainfall, atmospheric pressure and humidity were associated with the calling phenology of an assemblage of anurans in South East Queensland, Australia. We performed calling surveys and collected digital recordings at 45 ponds in an area known for high anuran diversity. We performed detection analyses to investigate the influence of 10 meteorological variables in detection of calling activity in 19 amphibian species. Our results suggest four breeding strategies in the assemblage: explosive summer breeders, prolonged breeders, opportunistic breeders and a winter breeder. Classifying these species into associations provides a framework for understanding how species respond to environmental conditions. Explosive breeders (i.e. species demonstrating short and highly synchronised breeding periods) were particularly responsive to temperature. Our findings help elucidate the breeding phenology of frogs and provide valuable information on their mating systems in native Australian forests. This study highlights the difficulties of surveying even common anurans. We highlight the importance of predictability and stability in climate and the vulnerability of species for which reproduction appears to require highly specific environmental cues.

  17. Assessing the impact of local meteorological variables on surface ozone in Hong Kong during 2000-2015 using quantile and multiple line regression models

    Science.gov (United States)

    Zhao, Wei; Fan, Shaojia; Guo, Hai; Gao, Bo; Sun, Jiaren; Chen, Laiguo

    2016-11-01

    The quantile regression (QR) method has been increasingly introduced to atmospheric environmental studies to explore the non-linear relationship between local meteorological conditions and ozone mixing ratios. In this study, we applied QR for the first time, together with multiple linear regression (MLR), to analyze the dominant meteorological parameters influencing the mean, 10th percentile, 90th percentile and 99th percentile of maximum daily 8-h average (MDA8) ozone concentrations in 2000-2015 in Hong Kong. The dominance analysis (DA) was used to assess the relative importance of meteorological variables in the regression models. Results showed that the MLR models worked better at suburban and rural sites than at urban sites, and worked better in winter than in summer. QR models performed better in summer for 99th and 90th percentiles and performed better in autumn and winter for 10th percentile. And QR models also performed better in suburban and rural areas for 10th percentile. The top 3 dominant variables associated with MDA8 ozone concentrations, changing with seasons and regions, were frequently associated with the six meteorological parameters: boundary layer height, humidity, wind direction, surface solar radiation, total cloud cover and sea level pressure. Temperature rarely became a significant variable in any season, which could partly explain the peak of monthly average ozone concentrations in October in Hong Kong. And we found the effect of solar radiation would be enhanced during extremely ozone pollution episodes (i.e., the 99th percentile). Finally, meteorological effects on MDA8 ozone had no significant changes before and after the 2010 Asian Games.

  18. Uncertainty in dispersion forecasts using meteorological ensembles

    International Nuclear Information System (INIS)

    Chin, H N; Leach, M J

    1999-01-01

    The usefulness of dispersion forecasts depends on proper interpretation of results. Understanding the uncertainty in model predictions and the range of possible outcomes is critical for determining the optimal course of action in response to terrorist attacks. One of the objectives for the Modeling and Prediction initiative is creating tools for emergency planning for special events such as the upcoming the Olympics. Meteorological forecasts hours to days in advance are used to estimate the dispersion at the time of the event. However, there is uncertainty in any meteorological forecast, arising from both errors in the data (both initial conditions and boundary conditions) and from errors in the model. We use ensemble forecasts to estimate the uncertainty in the forecasts and the range of possible outcomes

  19. Temporal variations of reference evapotranspiration and its sensitivity to meteorological factors in Heihe River Basin, China

    OpenAIRE

    Zhao, Jie; Xu, Zong-xue; Zuo, De-peng; Wang, Xu-ming

    2015-01-01

    On the basis of daily meteorological data from 15 meteorological stations in the Heihe River Basin (HRB) during the period from 1959 to 2012, long-term trends of reference evapotranspiration (ET0) and key meteorological factors that affect ET0 were analyzed using the Mann-Kendall test. The evaporation paradox was also investigated at 15 meteorological stations. In order to explore the contribution of key meteorological factors to the temporal variation of ET0, a sensitivity coefficient method...

  20. ISLSCP II Reanalysis Near-Surface Meteorology Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set for the ISLSCP Initiative II data collection provides near surface meteorological variables, fluxes of heat, moisture and momentum at the surface, and...