WorldWideScience

Sample records for monthly general circulation

  1. Climatology of the HOPE-G global ocean general circulation model - Sea ice general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Legutke, S. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-12-01

    The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8 grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed general circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmosphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. The model underestimates the meridional transport of heat in the Atlantic Ocean. The simulated heat transport in the other basins, though, is in good agreement with observations. (orig.)

  2. Improved stratospheric atmosphere forecasts in the general circulation model through a methane oxidation parametrization

    Science.gov (United States)

    Wang, S.; Jun, Z.

    2017-12-01

    Climatic characteristics of tropical stratospheric methane have been well researched using various satellite data, and numerical simulations have furtherly conducted using chemical climatic models, while the impact of stratospheric methane oxidation on distribution of water vapor is not paid enough attention in general circulation models. Simulated values of water vapour in the tropical upper stratosphere, and throughout much of the extratropical stratosphere, were too low. Something must be done to remedy this deficiency in order to producing realistic stratospheric water vapor using a general circulation model including the whole stratosphere. Introduction of a simple parametrization of the upper-stratospheric moisture source due to methane oxidation and a sink due to photolysis in the mesosphere was conducted. Numerical simulations and analysis of the influence of stratospheric methane on the prediction of tropical stratospheric moisture and temperature fields were carried out. This study presents the advantages of methane oxidation parametrization in producing a realistic distribution of water vapour in the tropical stratosphere and analyzes the impact of methane chemical process on the general circulation model using two storm cases including a heavy rain in South China and a typhoon caused tropical storm.It is obvious that general circulation model with methane oxidation parametrization succeeds in simulating the water vapor and temperature in stratosphere. The simulating rain center value of contrast experiment is increased up to 10% than that of the control experiment. Introduction of methane oxidation parametrization has modified the distribution of water vapour and then producing a broadly realistic distribution of temperature. Objective weather forecast verifications have been performed using simulating results of one month, which demonstrate somewhat positive effects on the model skill. There is a certain extent impact of methane oxidation

  3. EOP MIT General Circulation Model (MITgcm)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains a regional implementation of the Massachusetts Institute of Technology general circulation model (MITgcm) at a 1-km spatial resolution for the...

  4. A Thermodynamically General Theory for Convective Circulations and Vortices

    Science.gov (United States)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  5. Do downscaled general circulation models reliably simulate historical climatic conditions?

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2018-01-01

    The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.

  6. Passive tracers in a general circulation model of the Southern Ocean

    Directory of Open Access Journals (Sweden)

    I. G. Stevens

    Full Text Available Passive tracers are used in an off-line version of the United Kingdom Fine Resolution Antarctic Model (FRAM to highlight features of the circulation and provide information on the inter-ocean exchange of water masses. The use of passive tracers allows a picture to be built up of the deep circulation which is not readily apparent from examination of the velocity or density fields. Comparison of observations with FRAM results gives good agreement for many features of the Southern Ocean circulation. Tracer distributions are consistent with the concept of a global "conveyor belt" with a return path via the Agulhas retroflection region for the replenishment of North Atlantic Deep Water.

    Key words. Oceanography: general (numerical modeling; water masses · Oceanography: physical (general circulation

  7. The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Mikolajewicz, U. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-02-01

    The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and slowly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the Atlantic intertropical convergence zone is displaced southward and the westerlies in the northern hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface waters in high northern latitudes, which allows them to accumulate more precipitation and runoff from the continents, which results in an increased stability in the North Atlantic.

  8. Distribution of cocaine on banknotes in general circulation in England and Wales.

    Science.gov (United States)

    Aitken, C G G; Wilson, A; Sleeman, R; Morgan, B E M; Huish, J

    2017-01-01

    A study of the quantities of cocaine on banknotes in general circulation was conducted to investigate regional variations across England and Wales. No meaningful support was found for the proposition that there is regional variation in the quantities of cocaine in banknotes in general circulation in England and Wales. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting

    Directory of Open Access Journals (Sweden)

    P. Oddo

    2009-10-01

    Full Text Available A new numerical general circulation ocean model for the Mediterranean Sea has been implemented nested within an Atlantic general circulation model within the framework of the Marine Environment and Security for the European Area project (MERSEA, Desaubies, 2006. A 4-year twin experiment was carried out from January 2004 to December 2007 with two different models to evaluate the impact on the Mediterranean Sea circulation of open lateral boundary conditions in the Atlantic Ocean. One model considers a closed lateral boundary in a large Atlantic box and the other is nested in the same box in a global ocean circulation model. Impact was observed comparing the two simulations with independent observations: ARGO for temperature and salinity profiles and tide gauges and along-track satellite observations for the sea surface height. The improvement in the nested Atlantic-Mediterranean model with respect to the closed one is particularly evident in the salinity characteristics of the Modified Atlantic Water and in the Mediterranean sea level seasonal variability.

  10. Evaluation of water vapor distribution in general circulation models using satellite observations

    Science.gov (United States)

    Soden, Brian J.; Bretherton, Francis P.

    1994-01-01

    This paper presents a comparison of the water vapor distribution obtained from two general circulation models, the European Centre for Medium-Range Weather Forecasts (ECMWF) model and the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM), with satellite observations of total precipitable water (TPW) from Special Sensor Microwave/Imager (SSM/I) and upper tropospheric relative humidity (UTH) from GOES. Overall, both models are successful in capturing the primary features of the observed water vapor distribution and its seasonal variation. For the ECMWF model, however, a systematic moist bias in TPW is noted over well-known stratocumulus regions in the eastern subtropical oceans. Comparison with radiosonde profiles suggests that this problem is attributable to difficulties in modeling the shallowness of the boundary layer and large vertical water vapor gradients which characterize these regions. In comparison, the CCM is more successful in capturing the low values of TPW in the stratocumulus regions, although it tends to exhibit a dry bias over the eastern half of the subtropical oceans and a corresponding moist bias in the western half. The CCM also significantly overestimates the daily variability of the moisture fields in convective regions, suggesting a problem in simulating the temporal nature of moisture transport by deep convection. Comparison of the monthly mean UTH distribution indicates generally larger discrepancies than were noted for TPW owing to the greater influence of large-scale dynamical processes in determining the distribution of UTH. In particular, the ECMWF model exhibits a distinct dry bias along the Intertropical Convergence Zone (ITCZ) and a moist bias over the subtropical descending branches of the Hadley cell, suggesting an underprediction in the strength of the Hadley circulation. The CCM, on the other hand, demonstrates greater discrepancies in UTH than are observed for the ECMWF model, but none that are as

  11. Weak circulation theorems as a way of distinguishing between generalized gravitation theories

    International Nuclear Information System (INIS)

    Enosh, M.

    1980-01-01

    It was proved in a previous paper that a generalized circulation theorem characterizes Einstein's theory of gravitation as a special case of a more general theory of gravitation, which is also based on the principle of equivalence. Here the question of whether it is possible to weaken this circulation theorem in such ways that it would imply more general theories than Einstein's is posed. This problem is solved. Principally, there are two possibilities. One of them is essentially Weyl's theory. (author)

  12. Atmospheric Diabatic Heating in Different Weather States and the General Circulation

    Science.gov (United States)

    Rossow, William B.; Zhang, Yuanchong; Tselioudis, George

    2016-01-01

    Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.

  13. A Statistical Evaluation of Atmosphere-Ocean General Circulation Models: Complexity vs. Simplicity

    OpenAIRE

    Robert K. Kaufmann; David I. Stern

    2004-01-01

    The principal tools used to model future climate change are General Circulation Models which are deterministic high resolution bottom-up models of the global atmosphere-ocean system that require large amounts of supercomputer time to generate results. But are these models a cost-effective way of predicting future climate change at the global level? In this paper we use modern econometric techniques to evaluate the statistical adequacy of three general circulation models (GCMs) by testing thre...

  14. Connection of the stratospheric QBO with global atmospheric general circulation and tropical SST. Part II: interdecadal variations

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zeng-Zhen [Climate Prediction Center (Room 605), NCEP/NWS/NOAA, Camp Springs, MD (United States); Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Huang, Bohua; Kinter, James L. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Wu, Zhaohua [Florida State University, Department of Earth, Ocean, and Atmospheric Science, and Center for Ocean-Atmospheric Prediction Studies, Tallahassee, FL (United States); Kumar, Arun [Climate Prediction Center (Room 605), NCEP/NWS/NOAA, Camp Springs, MD (United States)

    2012-01-15

    The interdecadal variation of the association of the stratospheric quasi-biennial oscillation (QBO) with tropical sea surface temperature (SST) anomalies (SSTA) and with the general circulation in the troposphere and lower stratosphere is examined using the ERA40 and NCEP/NCAR reanalyses, as well as other observation-based analyses. It is found that the relationship between the QBO and tropical SSTA changed once around 1978-1980, and again in 1993-1995. During 1966-1974, negative correlation between the QBO and NINO3.4 indices reached its maximum when the NINO3.4 index lagged the QBO by less than 6 months. Correspondingly, the positive correlations were observed when the NINO3.4 index led the QBO by about 11-13 months or lagged by about 12-18 months. However, maximum negative correlations were shifted from the NINO3.4 index lagging the QBO by about 0-6 months during 1966-1974 to about 3-12 months during 1985-1992. During 1975-1979, both the negative and positive correlations were relatively small and the QBO and ENSO were practically unrelated to each other. The phase-based QBO life cycle composites also confirm that, on average, there are two phase (6-7 months) delay in the evolution of the QBO-associated anomalous Walker circulation, tropical SST, atmospheric stability, and troposphere and lower stratosphere temperature anomalies during 1980-1994 in comparison with those in 1957-1978. The interdecadal variation of the association between the QBO and the troposphere variability may be largely due to the characteristic change of El Nino-Southern Oscillation. The irregularity of the QBO may play a secondary role in the interdecadal variation of the association. (orig.)

  15. The relationship between sea surface temperature anomalies and atmospheric circulation in general circulation model experiments

    International Nuclear Information System (INIS)

    Kharin, V.V.

    1994-01-01

    Several multi-year integrations of the Hamburg version of the ECMWF/T21 general circulation model driven by the sea surface temperature (SST) observed in the period 1970-1988 were examined to study the extratropical response of the atmospheric circulation to SST anomalies in the Northern Hemisphere in winter. In the first 19-years run SST anomalies were prescribed globally (GAGO run), and in two others SST variability was limited to extratropical regions (MOGA run) and to tropics (TOGA run), respectively. A canonical correlation analysis was applied to the monthly means to find the best correlated patterns of SST anomalies in the Atlantic and Pacific Oceans and the Northern Hemisphere atmospheric flow. Contrary to expectation, the extratropical response in the GAGO run is not equal to the linear combination of the responses in the MOGA and TOGA runs. In the GAGO integration with globally prescribed SST the best correlated atmospheric pattern is global and is characterized by dipole structures of the same polarity in the North Atlantic and the North Pacific sectors. In the MOGA and TOGA experiments the atmospheric response is more local with main centers in the North Atlantic and North Pacific, respectively. The atmospheric modes found by the CCA were compared with the normal modes of the barotropic vorticity equation linearized about the 500 mb winter climate of the control integration driven by the climatological SST. The normal modes with smallest eigenvalues are similar to the canonical patterns of 500 mb geopotential height. The corresponding eigenvectors of the adjoint operator, which represent an external forcing optimal for exciting normal modes, have a longitudinal structure with maxima in regions characterized by enhanced high frequency baroclinic activity over both oceans. It was suggested that variability of storm tracks could play an important role in variability of the barotropic normal modes. (orig.)

  16. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea

    Science.gov (United States)

    Sofianos, Sarantis S.; Johns, William E.

    2003-03-01

    The three-dimensional circulation of the Red Sea is studied using a set of Miami Isopycnic Coordinate Ocean Model (MICOM) simulations. The model performance is tested against the few available observations in the basin and shows generally good agreement with the main observed features of the circulation. The main findings of this analysis include an intensification of the along-axis flow toward the coasts, with a transition from western intensified boundary flow in the south to eastern intensified flow in the north, and a series of strong seasonal or permanent eddy-like features. Model experiments conducted with different forcing fields (wind-stress forcing only, surface buoyancy forcing only, or both forcings combined) showed that the circulation produced by the buoyancy forcing is stronger overall and dominates the wind-driven part of the circulation. The main circulation pattern is related to the seasonal buoyancy flux (mostly due to the evaporation), which causes the density to increase northward in the basin and produces a northward surface pressure gradient associated with the downward sloping of the sea surface. The response of the eastern boundary to the associated mean cross-basin geostrophic current depends on the stratification and β-effect. In the northern part of the basin this results in an eastward intensification of the northward surface flow associated with the presence of Kelvin waves while in the south the traditional westward intensification due to Rossby waves takes place. The most prominent gyre circulation pattern occurs in the north where a permanent cyclonic gyre is present that is involved in the formation of Red Sea Outflow Water (RSOW). Beneath the surface boundary currents are similarly intensified southward undercurrents that carry the RSOW to the sill to flow out of the basin into the Indian Ocean.

  17. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

    Science.gov (United States)

    Liu, Zedong; Wan, Xiuquan

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

  18. Optimisation of a parallel ocean general circulation model

    OpenAIRE

    M. I. Beare; D. P. Stevens

    1997-01-01

    International audience; This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by...

  19. 3D General Circulation Model of the Middle Atmosphere of Jupiter

    Science.gov (United States)

    Zube, Nicholas Gerard; Zhang, Xi; Li, Cheng; Le, Tianhao

    2017-10-01

    The characteristics of Jupiter’s large-scale stratospheric circulation remain largely unknown. Detailed distributions of temperature and photochemical species have been provided by recent observations [1], but have not yet been accurately reproduced by middle atmosphere general circulation models (GCM). Jupiter’s stratosphere and upper troposphere are influenced by radiative forcing from solar insolation and infrared cooling from hydrogen and hydrocarbons, as well as waves propagating from the underlying troposphere [2]. The relative significance of radiative and mechanical forcing on stratospheric circulation is still being debated [3]. Here we present a 3D GCM of Jupiter’s atmosphere with a correlated-k radiative transfer scheme. The simulation results are compared with observations. We analyze the impact of model parameters on the stratospheric temperature distribution and dynamical features. Finally, we discuss future tracer transport and gravity wave parameterization schemes that may be able to accurately simulate the middle atmosphere dynamics of Jupiter and other giant planets.[1] Kunde et al. 2004, Science 305, 1582.[2] Zhang et al. 2013a, EGU General Assembly, EGU2013-5797-2.[3] Conrath 1990, Icarus, 83, 255-281.

  20. Simulation of the Low-Level-Jet by general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    To what degree is the low-level jet climatology and it`s impact on clouds and precipitation being captured by current general circulation models? It is hypothesised that a need for a pramaterization exists. This paper describes this parameterization need.

  1. A general circulation model (GCM) parameterization of Pinatubo aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lacis, A.A.; Carlson, B.E.; Mishchenko, M.I. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    The June 1991 volcanic eruption of Mt. Pinatubo is the largest and best documented global climate forcing experiment in recorded history. The time development and geographical dispersion of the aerosol has been closely monitored and sampled. Based on preliminary estimates of the Pinatubo aerosol loading, general circulation model predictions of the impact on global climate have been made.

  2. On the norms of r-circulant matrices with generalized Fibonacci numbers

    Directory of Open Access Journals (Sweden)

    Amara Chandoul

    2017-01-01

    Full Text Available In this paper, we obtain a generalization of [6, 8]. Firstly, we consider the so-called r-circulant matrices with generalized Fibonacci numbers and then found lower and upper bounds for the Euclidean and spectral norms of these matrices. Afterwards, we present some bounds for the spectral norms of Hadamard and Kronecker product of these matrices.

  3. Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using Genetic Programming

    Science.gov (United States)

    Kashid, Satishkumar S.; Maity, Rajib

    2012-08-01

    SummaryPrediction of Indian Summer Monsoon Rainfall (ISMR) is of vital importance for Indian economy, and it has been remained a great challenge for hydro-meteorologists due to inherent complexities in the climatic systems. The Large-scale atmospheric circulation patterns from tropical Pacific Ocean (ENSO) and those from tropical Indian Ocean (EQUINOO) are established to influence the Indian Summer Monsoon Rainfall. The information of these two large scale atmospheric circulation patterns in terms of their indices is used to model the complex relationship between Indian Summer Monsoon Rainfall and the ENSO as well as EQUINOO indices. However, extracting the signal from such large-scale indices for modeling such complex systems is significantly difficult. Rainfall predictions have been done for 'All India' as one unit, as well as for five 'homogeneous monsoon regions of India', defined by Indian Institute of Tropical Meteorology. Recent 'Artificial Intelligence' tool 'Genetic Programming' (GP) has been employed for modeling such problem. The Genetic Programming approach is found to capture the complex relationship between the monthly Indian Summer Monsoon Rainfall and large scale atmospheric circulation pattern indices - ENSO and EQUINOO. Research findings of this study indicate that GP-derived monthly rainfall forecasting models, that use large-scale atmospheric circulation information are successful in prediction of All India Summer Monsoon Rainfall with correlation coefficient as good as 0.866, which may appears attractive for such a complex system. A separate analysis is carried out for All India Summer Monsoon rainfall for India as one unit, and five homogeneous monsoon regions, based on ENSO and EQUINOO indices of months of March, April and May only, performed at end of month of May. In this case, All India Summer Monsoon Rainfall could be predicted with 0.70 as correlation coefficient with somewhat lesser Correlation Coefficient (C.C.) values for different

  4. Ocean bio-geophysical modeling using mixed layer-isopycnal general circulation model coupled with photosynthesis process

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; Saito, H.; Muneyama, K.; Sato, T.; PrasannaKumar, S.; Kumar, A.; Frouin, R.

    -chemical system that supports steady carbon circulation in geological time scale in the world ocean using Mixed Layer-Isopycnal ocean General Circulation model with remotely sensed Coastal Zone Color Scanner (CZCS) chlorophyll pigment concentration....

  5. Impact of variations of gravitational acceleration on the general circulation of the planetary atmosphere

    Science.gov (United States)

    Kilic, Cevahir; Raible, Christoph C.; Stocker, Thomas F.; Kirk, Edilbert

    2017-01-01

    Fundamental to the redistribution of energy in a planetary atmosphere is the general circulation and its meridional structure. We use a general circulation model of the atmosphere in an aquaplanet configuration with prescribed sea surface temperature and investigate the influence of the gravitational acceleration g on the structure of the circulation. For g =g0 = 9.81 ms-2 , three meridional cells exist in each hemisphere. Up to about g /g0 = 1.4 all cells increase in strength. Further increasing this ratio results in a weakening of the thermally indirect cell, such that a two- and finally a one-cell structure of the meridional circulation develops in each hemisphere. This transition is explained by the primary driver of the thermally direct Hadley cell: the diabatic heating at the equator which is proportional to g. The analysis of the energetics of the atmospheric circulation based on the Lorenz energy cycle supports this finding. For Earth-like gravitational accelerations transient eddies are primarily responsible for the meridional heat flux. For large gravitational accelerations, the direct zonal mean conversion of energy dominates the meridional heat flux.

  6. Month-to-month variability of Indian summer monsoon rainfall in 2016: role of the Indo-Pacific climatic conditions

    Science.gov (United States)

    Chowdary, Jasti S.; Srinivas, G.; Du, Yan; Gopinath, K.; Gnanaseelan, C.; Parekh, Anant; Singh, Prem

    2018-03-01

    Indian summer monsoon (ISM) rainfall during 2016 exhibited a prominent month-to-month fluctuations over India, with below normal rainfall in June and August and above normal rainfall in July. The factors determining the month-to-month fluctuations in ISM rainfall during 2016 are investigated with main focus on the Indo-Pacific climatic anomalies. Warm sea surface temperature (SST) anomalies associated with super El Niño 2015 disappeared by early summer 2016 over the central and eastern Pacific. On the other hand, negative Indian Ocean dipole (IOD) like SST anomaly pattern over the equatorial Indian Ocean and anomalous anticyclonic circulation over the western North Pacific (WNP) are reported in summer 2016 concurrently with decaying El Niño/developing La Niña phase. Observations revealed that the low rainfall over central north India in June is due to moisture divergence caused by the westward extension of ridge corresponding to WNP anticyclone and subsidence induced by local Hadley cell partly related to negative IOD. Low level convergence of southeasterly wind from Bay of Bengal associated with weak WNP anticyclone and northwesterly wind corresponding to anticyclonic circulation over the northwest India remarkably contributed to positive rainfall in July over most of the Indian subcontinent. While reduced rainfall over the Indian subcontinent in August 2016 is associated with the anomalous moisture transport from ISM region to WNP region, in contrast to July, due to local cyclogenesis corroborated by number of tropical cyclones in the WNP. In addition to this, subsidence related to strong convection supported by cyclonic circulation over the WNP also resulted in low rainfall over the ISM region. Coupled General Circulation model sensitivity experiments confirmed that strong convective activities associated with cyclonic circulation over the WNP is primarily responsible for the observed negative ISM rainfall anomalies in August 2016. It is noted that the Indo

  7. A report on workshops: General circulation model study of climate- chemistry interaction

    International Nuclear Information System (INIS)

    Wei-Chyung, Wang; Isaksen, I.S.A.

    1993-01-01

    This report summarizes the discussion on General Circulation Model Study of Climate-Chemistry Interaction from two workshops, the first held 19--21 August 1992 at Oslo, Norway and the second 26--27 May 1993 at Albany, New York, USA. The workshops are the IAMAP activities under the Trace Constituent Working Group. The main objective of the two workshops was to recommend specific general circulation model (GCM) studies of the ozone distribution and the climatic effect of its changes. The workshops also discussed the climatic implications of increasing sulfate aerosols because of its importance to regional climate. The workshops were organized into four working groups: observation of atmospheric O 3 ; modeling of atmospheric chemical composition; modeling of sulfate aerosols; and aspects of climate modeling

  8. Stratospheric Ozone Distribution and Tropospheric General Circulation: Interconnections in the UTLS Region

    Science.gov (United States)

    Barodka, S.; Krasovsky, A.; Shalamyansky, A.

    2014-12-01

    The height of the tropopause, which divided the stratosphere and the troposphere, is a result of two rival categories of processes: the tropospheric vertical convection and the radiative heating of the stratosphere resulting from the ozone cycle. Hence, it is natural that tropospheric and stratospheric phenomena can have effect each other in manifold processes of stratosphere-troposphere interactions. In the present study we focus our attention to the "top-down" side of the interaction: the impact of stratospheric ozone distribution on the features of tropospheric circulation and the associated weather patterns and regional climate conditions. We proceed from analyzes of the observational data performed at the A.I. Voeikov Main Geophysical Observatory, which suggest a distinct correlation between stratospheric ozone distribution, synoptic formations and air-masses boundaries in the upper troposphere and the temperature field of the lower stratosphere [1]. Furthermore, we analyze local features of atmospheric general circulation and stratospheric ozone distribution from the atmospheric reanalyses and general circulation model data, focusing our attention to instantaneous positions of subtropical and polar stationary atmospheric fronts, which define regional characteristics of the general circulation cells in the troposphere and separate global tropospheric air-masses, correspond to distinct meteorological regimes in the TOC field [2, 3]. We assume that by altering the tropopause height, stratospheric ozone-related processes can have an impact on the location of the stationary atmospheric fronts, thereby exerting influence on circulation processes in troposphere and lower stratosphere. For midlatitudes, the tropopause height controls the position of the polar stationary front, which has a direct impact on the trajectory of motion of active vortices on synoptic tropospheric levels, thereby controlling weather patterns in that region and the regional climate. This

  9. High resolution reconstruction of monthly precipitation of Iberian Peninsula using circulation weather types

    Science.gov (United States)

    Cortesi, N.; Trigo, R.; Gonzalez-Hidalgo, J. C.; Ramos, A. M.

    2012-06-01

    Precipitation over the Iberian Peninsula (IP) is highly variable and shows large spatial contrasts between wet mountainous regions, to the north, and dry regions in the inland plains and southern areas. In this work, a high-density monthly precipitation dataset for the IP was coupled with a set of 26 atmospheric circulation weather types (Trigo and DaCamara, 2000) to reconstruct Iberian monthly precipitation from October to May with a very high resolution of 3030 precipitation series (overall mean density one station each 200 km2). A stepwise linear regression model with forward selection was used to develop monthly reconstructed precipitation series calibrated and validated over 1948-2003 period. Validation was conducted by means of a leave-one-out cross-validation over the calibration period. The results show a good model performance for selected months, with a mean coefficient of variation (CV) around 0.6 for validation period, being particularly robust over the western and central sectors of IP, while the predicted values in the Mediterranean and northern coastal areas are less acute. We show for three long stations (Lisbon, Madrid and Valencia) the comparison between model and original data as an example to how these models can be used in order to obtain monthly precipitation fields since the 1850s over most of IP for this very high density network.

  10. Response of an ocean general circulation model to wind and ...

    Indian Academy of Sciences (India)

    The stretched-coordinate ocean general circulation model has been designed to study the observed variability due to wind and thermodynamic forcings. The model domain extends from 60°N to 60°S and cyclically continuous in the longitudinal direction. The horizontal resolution is 5° × 5° and 9 discrete vertical levels.

  11. Treatment of cloud radiative effects in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  12. Impact of an improved shortwave radiation scheme in the MAECHAM5 General Circulation Model

    Directory of Open Access Journals (Sweden)

    J. J. Morcrette

    2007-05-01

    Full Text Available In order to improve the representation of ozone absorption in the stratosphere of the MAECHAM5 general circulation model, the spectral resolution of the shortwave radiation parameterization used in the model has been increased from 4 to 6 bands. Two 20-years simulations with the general circulation model have been performed, one with the standard and the other with the newly introduced parameterization respectively, to evaluate the temperature and dynamical changes arising from the two different representations of the shortwave radiative transfer. In the simulation with the increased spectral resolution in the radiation parameterization, a significant warming of almost the entire model domain is reported. At the summer stratopause the temperature increase is about 6 K and alleviates the cold bias present in the model when the standard radiation scheme is used. These general circulation model results are consistent both with previous validation of the radiation scheme and with the offline clear-sky comparison performed in the current work with a discrete ordinate 4 stream scattering line by line radiative transfer model. The offline validation shows a substantial reduction of the daily averaged shortwave heating rate bias (1–2 K/day cooling that occurs for the standard radiation parameterization in the upper stratosphere, present under a range of atmospheric conditions. Therefore, the 6 band shortwave radiation parameterization is considered to be better suited for the representation of the ozone absorption in the stratosphere than the 4 band parameterization. Concerning the dynamical response in the general circulation model, it is found that the reported warming at the summer stratopause induces stronger zonal mean zonal winds in the middle atmosphere. These stronger zonal mean zonal winds thereafter appear to produce a dynamical feedback that results in a dynamical warming (cooling of the polar winter (summer mesosphere, caused by an

  13. Dynamics and transport in the stratosphere : Simulations with a general circulation mode

    NARCIS (Netherlands)

    Aalst, M.K. (Maarten Krispijn) van

    2005-01-01

    The middle atmosphere is strongly affected by two of the world's most important environmental problems: global climate change and stratospheric ozone depletion, caused by anthropogenic emissions of greenhouse gases and chlorofluorocarbons (CFCs), respectively. General circulation models with

  14. Adaptation of a general circulation model to ocean dynamics

    Science.gov (United States)

    Turner, R. E.; Rees, T. H.; Woodbury, G. E.

    1976-01-01

    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.

  15. A Wind Tunnel Model to Explore Unsteady Circulation Control for General Aviation Applications

    Science.gov (United States)

    Cagle, Christopher M.; Jones, Gregory S.

    2002-01-01

    Circulation Control airfoils have been demonstrated to provide substantial improvements in lift over conventional airfoils. The General Aviation Circular Control model is an attempt to address some of the concerns of this technique. The primary focus is to substantially reduce the amount of air mass flow by implementing unsteady flow. This paper describes a wind tunnel model that implements unsteady circulation control by pulsing internal pneumatic valves and details some preliminary results from the first test entry.

  16. Midlatitude Forcing Mechanisms for Glacier Mass Balance Investigated Using General Circulation Models

    NARCIS (Netherlands)

    Reichert, B.K.; Bengtsson, L.; Oerlemans, J.

    2001-01-01

    A process-oriented modeling approach is applied in order to simulate glacier mass balance for individual glaciers using statistically downscaled general circulation models (GCMs). Glacier-specific seasonal sensitivity characteristics based on a mass balance model of intermediate complexity are used

  17. Seasonal Overturning Circulation in the Red Sea

    Science.gov (United States)

    Yao, F.; Hoteit, I.; Koehl, A.

    2010-12-01

    The Red Sea exhibits a distinct seasonal overturning circulation. In winter, a typical two-layer exchange structure, with a fresher inflow from the Gulf of Aden on top of an outflow from the Red Sea, is established. In summer months (June to September) this circulation pattern is changed to a three-layer structure: a surface outflow from the Red Sea on top of a subsurface intrusion of the Gulf of Aden Intermediate Water and a weakened deep outflow. This seasonal variability is studied using a general circulation model, MITgcm, with 6 hourly NCEP atmospheric forcing. The model is able to reproduce the observed seasonal variability very well. The forcing mechanisms of the seasonal variability related to seasonal surface wind stress and buoyancy flux, and water mass transformation processes associated with the seasonal overturning circulation are analyzed and presented.

  18. Seasonal predictability of Kiremt rainfall in coupled general circulation models

    Science.gov (United States)

    Gleixner, Stephanie; Keenlyside, Noel S.; Demissie, Teferi D.; Counillon, François; Wang, Yiguo; Viste, Ellen

    2017-11-01

    The Ethiopian economy and population is strongly dependent on rainfall. Operational seasonal predictions for the main rainy season (Kiremt, June-September) are based on statistical approaches with Pacific sea surface temperatures (SST) as the main predictor. Here we analyse dynamical predictions from 11 coupled general circulation models for the Kiremt seasons from 1985-2005 with the forecasts starting from the beginning of May. We find skillful predictions from three of the 11 models, but no model beats a simple linear prediction model based on the predicted Niño3.4 indices. The skill of the individual models for dynamically predicting Kiremt rainfall depends on the strength of the teleconnection between Kiremt rainfall and concurrent Pacific SST in the models. Models that do not simulate this teleconnection fail to capture the observed relationship between Kiremt rainfall and the large-scale Walker circulation.

  19. Simulation of Venus polar vortices with the non-hydrostatic general circulation model

    Science.gov (United States)

    Rodin, Alexander V.; Mingalev, Oleg; Orlov, Konstantin

    2012-07-01

    The dynamics of Venus atmosphere in the polar regions presents a challenge for general circulation models. Numerous images and hyperspectral data from Venus Express mission shows that above 60 degrees latitude atmospheric motion is substantially different from that of the tropical and extratropical atmosphere. In particular, extended polar hoods composed presumably of fine haze particles, as well as polar vortices revealing mesoscale wave perturbations with variable zonal wavenumbers, imply the significance of vertical motion in these circulation elements. On these scales, however, hydrostatic balance commonly used in the general circulation models is no longer valid, and vertical forces have to be taken into account to obtain correct wind field. We present the first non-hydrostatic general circulation model of the Venus atmosphere based on the full set of gas dynamics equations. The model uses uniform grid with the resolution of 1.2 degrees in horizontal and 200 m in the vertical direction. Thermal forcing is simulated by means of relaxation approximation with specified thermal profile and time scale. The model takes advantage of hybrid calculations on graphical processors using CUDA technology in order to increase performance. Simulations show that vorticity is concentrated at high latitudes within planetary scale, off-axis vortices, precessing with a period of 30 to 40 days. The scale and position of these vortices coincides with polar hoods observed in the UV images. The regions characterized with high vorticity are surrounded by series of small vortices which may be caused by shear instability of the zonal flow. Vertical velocity component implies that in the central part of high vorticity areas atmospheric flow is downwelling and perturbed by mesoscale waves with zonal wavenumbers 1-4, resembling observed wave structures in the polar vortices. Simulations also show the existence of areas with strong vertical flow, concentrated in spiral branches extending

  20. Circulating Irisin Concentrations Are Associated with a Favourable Lipid Profile in the General Population.

    Directory of Open Access Journals (Sweden)

    Simon Oelmann

    Full Text Available Irisin is a myokine, which is mainly inversely associated with the risk for non-communicable diseases. Irisin improves cellular energy metabolism by uncoupling the mitochondrial respiratory chain resulting in increased energy expenditure using lipids. To date potential associations between irisin concentration and lipid profile are poorly understood. Therefore, this investigation aimed to evaluate potential associations between irisin and lipid levels in the general population.Data of 430 men and 537 women from the population-based Study of Health in Pomerania (SHIP-TREND with available irisin and lipid concentrations were used. Analyses of variance, linear and logistic regression models adjusted for age, HBA1c, waist circumference, physical activity, smoking, alcohol consumption, systolic blood pressure, ALAT were calculated.We detected significantly inverse associations between irisin and circulating levels of total [beta coefficient 0.21 (standard error 0.08, p = 0.01], low-density cholesterol [-0.16 (0.07, p = 0.03] and triglycerides [-0.17 (0.08, p = 0.02] for men. Females without lipid lowering medication had an inverse association between irisin and total cholesterol [-0.12 (0.06, p = 0.05]. Further, male subjects with irisin concentrations in the third tertile had an increased odds for elevated low-density cholesterol [odds ratio 1.96 (95% confidence interval 1.07-3.48, p = 0.03 and triglyceride [1.95 (1.09-3.47, p = 0.02] levels, even after exclusion of subjects with lipid lowering medication. In addition, our data revealed an annual rhythm of serum irisin levels with peak levels arise in winter and summer months.This is the first investigation to report a significant association between circulating irisin and a favourable lipid profile in the general population. This may infer that higher irisin concentrations are associated with a reduced risk for non-communicable diseases.

  1. Optimisation of a parallel ocean general circulation model

    Science.gov (United States)

    Beare, M. I.; Stevens, D. P.

    1997-10-01

    This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.

  2. Thermospheric tides simulated by the national center for atmospheric research thermosphere-ionosphere general circulation model at equinox

    International Nuclear Information System (INIS)

    Fesen, C.G.; Roble, R.G.; Ridley, E.C.

    1993-01-01

    The authors use the National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM) to model tides and dynamics in the thermosphere. This model incorporates the latest advances in the thermosphere general circulation model. Model results emphasized the 70 degree W longitude region to overlap a series of incoherent radar scatter installations. Data and the model are available on data bases. The results of this theoretical modeling are compared with available data, and with prediction of more empirical models. In general there is broad agreement within the comparisons

  3. Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations

    DEFF Research Database (Denmark)

    Steen-Larsen, Hans Christian; Risi, C.; Werner, M.

    2017-01-01

    The skills of isotope-enabled general circulation models are evaluated against atmospheric water vapor isotopes. We have combined in situ observations of surface water vapor isotopes spanning multiple field seasons (2010, 2011, and 2012) from the top of the Greenland Ice Sheet (NEEM site: 77.45°N......: 2014). This allows us to benchmark the ability to simulate the daily water vapor isotope variations from five different simulations using isotope-enabled general circulation models. Our model-data comparison documents clear isotope biases both on top of the Greenland Ice Sheet (1-11% for δ18O and 4...... boundary layer water vapor isotopes of the Baffin Bay region show strong influence on the water vapor isotopes at the NEEM deep ice core-drilling site in northwest Greenland. Our evaluation of the simulations using isotope-enabled general circulation models also documents wide intermodel spatial...

  4. A stratiform cloud parameterization for General Circulation Models

    International Nuclear Information System (INIS)

    Ghan, S.J.; Leung, L.R.; Chuang, C.C.; Penner, J.E.; McCaa, J.

    1994-01-01

    The crude treatment of clouds in General Circulation Models (GCMs) is widely recognized as a major limitation in the application of these models to predictions of global climate change. The purpose of this project is to develop a paxameterization for stratiform clouds in GCMs that expresses stratiform clouds in terms of bulk microphysical properties and their subgrid variability. In this parameterization, precipitating cloud species are distinguished from non-precipitating species, and the liquid phase is distinguished from the ice phase. The size of the non-precipitating cloud particles (which influences both the cloud radiative properties and the conversion of non-precipitating cloud species to precipitating species) is determined by predicting both the mass and number concentrations of each species

  5. Optimisation of a parallel ocean general circulation model

    Directory of Open Access Journals (Sweden)

    M. I. Beare

    1997-10-01

    Full Text Available This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.

  6. Optimisation of a parallel ocean general circulation model

    Directory of Open Access Journals (Sweden)

    M. I. Beare

    Full Text Available This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.

  7. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Lawrence J.; Bower, Amy S.; Kö hl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-01-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented

  8. A stratiform cloud parameterization for general circulation models

    International Nuclear Information System (INIS)

    Ghan, S.J.; Leung, L.R.; Chuang, C.C.; Penner, J.E.; McCaa, J.

    1994-01-01

    The crude treatment of clouds in general circulation models (GCMs) is widely recognized as a major limitation in applying these models to predictions of global climate change. The purpose of this project is to develop in GCMs a stratiform cloud parameterization that expresses clouds in terms of bulk microphysical properties and their subgrid variability. Various clouds variables and their interactions are summarized. Precipitating cloud species are distinguished from non-precipitating species, and the liquid phase is distinguished from the ice phase. The size of the non-precipitating cloud particles (which influences both the cloud radiative properties and the conversion of non-precipitating cloud species to precipitating species) is determined by predicting both the mass and number concentrations of each species

  9. Eddy Effects in the General Circulation, Spanning Mean Currents, Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests

    Science.gov (United States)

    2014-09-30

    alongshore winds favoring upwelling circulation. As for the other EBUS (e.g., Humboldt, Benguela, and Canary Currents ), equatorward winds drive...Eddy Effects in the General Circulation, Spanning Mean Currents , Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests...environments OBJECTIVES The central scientific questions are how the eddies control the persistent currents by their eddy-induced momentum and buoyancy fluxes

  10. Aluminium in an ocean general circulation model compared with the West Atlantic Geotraces cruises

    CSIR Research Space (South Africa)

    Van Hulten, M

    2013-10-01

    Full Text Available A model of aluminium has been developed and implemented in an Ocean General Circulation Model (NEMO-PISCES). In the model, aluminium enters the ocean by means of dust deposition. The internal oceanic processes are described by advection, mixing...

  11. Diagnostic model of 3-D circulation in the Arabian Sea and western equatorial Indian Ocean: Results of monthly mean sea surface topography

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Shaji, C.

    A three-dimensional diagnostic model has been developed to compute the monthly mean circulation and sea surface topography in the Western Tropical Indian Ocean north of 20 degrees S and west of 80 degrees E. The diagnostic model equations...

  12. How Robust Are the Surface Temperature Fingerprints of the Atlantic Overturning Meridional Circulation on Monthly Time Scales?

    Science.gov (United States)

    Alexander-Turner, R.; Ortega, P.; Robson, J. I.

    2018-04-01

    It has been suggested that changes in the Atlantic Meridional Overturning Circulation (AMOC) can drive sea surface temperature (SST) on monthly time scales (Duchez et al., 2016, https://doi.org/10.1002/2017GB005667). However, with only 11 years of continuous observations, the validity of this result over longer, or different, time periods is uncertain. In this study, we use a 120 yearlong control simulation from a high-resolution climate model to test the robustness of the AMOC fingerprints. The model reproduces the observed AMOC seasonal cycle and its variability, and the observed 5-month lagged AMOC-SST fingerprints derived from 11 years of data. However, the AMOC-SST fingerprints are very sensitive to the particular time period considered. In particular, both the Florida current and the upper mid-ocean transport produce highly inconsistent fingerprints when using time periods shorter than 30 years. Therefore, several decades of RAPID observations will be necessary to determine the real impact of the AMOC on SSTs at monthly time scales.

  13. Ability of the CCSR-NIES atmospheric general circulation model in the stratosphere. Chapter 3

    International Nuclear Information System (INIS)

    Sugata, S.

    1997-01-01

    A quantitative evaluation of climate change such as global warming is impossible without a high-quality numerical model which describes the dynamics of the climate system and the circulation of energy and materials. The Center for Climate Research - National Institute for Environmental Studies (CCSR-NIES) atmospheric general circulation model (hereafter, GCM for a general circulation model) has been developed to obtain such a high-quality model. The emphasis of the development has been laid on the troposphere and the lower stratosphere below about 30 km altitude. This is natural because human beings live on the Earth's surface and the condition of the lower atmosphere directly affects human life. However, the stratosphere and the upper atmosphere beyond it have recently been the focus even in investigations of climate change, because they are relevant to many issues which relate closely to tropospheric climate change, such as the ozone hole, material exchange between the stratosphere and the troposphere, and physical interaction between the stratosphere and troposphere. This study extended the region of the CCSR-NIES GCM to the lower mesosphere (about 70 km from the surface). This is our first attempt to investigate this GCM's climatology in the upper atmosphere, although some studies for QBO in the middle and lower stratosphere had been done with the GCM

  14. Orographic effects on tropical climate in a coupled ocean-atmosphere general circulation model

    Science.gov (United States)

    Okajima, Hideki

    Large-scale mountain modifies the atmospheric circulation directly through dynamic and thermodynamic process, and also indirectly through the interaction with the ocean. To investigate orographic impacts on tropical climate, a fully coupled general circulation model (CGCM) is developed by coupling a state-of-the-art atmospheric general circulation model and an ocean general circulation model. With realistic boundary conditions, the CGCM produces a reasonable climatology of sea surface temperature (SST), surface winds, and precipitation. When global mountains are removed, the model climatology displays substantial changes in both the mean-state and the seasonal cycle. The equatorial eastern Pacific SST acquires a semi-annual component as inter-tropical convergence zone (ITCZ) flips and flops across the equator following the seasonal migration of the sun. Without the Andes, wet air flows into the southeastern tropical Pacific from the humid Amazon, which weakens the meridional asymmetry during the Peruvian warm season (February-April). In addition, the northeasterly trade winds are enhanced north of the equator without the orographic blocking of Central American mountains and cools SST. Triggered by the SST cooling north and moistening south of the equator, the wind-evaporation-SST (WES) feedback further weakens the meridional asymmetry and prolongs the southern ITCZ. In the Atlantic Ocean, the equatorial cold tongue is substantially strengthened and develops a pronounced annual cycle in the absence of mountains. The easterly winds are overall enhanced over the equatorial Atlantic without orographic heating over the African highlands, developing a zonal asymmetry strengthened by the Bjerknes feedback. In the Indian Ocean, the thermocline shoals eastward and an equatorial cold tongue appears twice a year. During boreal summer, the Findlater jet is greatly weakened off Somalia and SST warms in the western Indian Ocean, forcing the equatorial easterly winds amplified

  15. Updated Results from the Michigan Titan Thermospheric General Circulation Model (TTGCM)

    Science.gov (United States)

    Bell, J. M.; Bougher, S. W.; de Lahaye, V.; Waite, J. H.; Ridley, A.

    2006-05-01

    This paper presents updated results from the Michigan Titan Thermospheric General Circulation Model (TTGCM) that was recently unveiled in operational form (Bell et al 2005 Spring AGU). Since then, we have incorporated a suite of chemical reactions for the major neutral constituents in Titan's upper atmosphere (N2, CH4). Additionally, some selected minor neutral constituents and major ionic species are also supported in the framework. At this time, HCN, which remains one of the critical thermally active species in the upper atmosphere, remains specified at all altitudes, utilizing profiles derived from recent Cassini-Huygen's measurements. In addition to these improvements, a parallel effort is underway to develop a non-hydrostatic Titan Thermospheric General Circulation Model for further comparisons. In this work, we emphasize the impacts of self-consistent chemistry on the results of the updated TTGCM relative to its frozen chemistry predecessor. Meanwhile, the thermosphere's thermodynamics remains determined by the interplay of solar EUV forcing and HCN rotational cooling, which is calculated by a full line- by-line radiative transfer routine along the lines of Yelle (1991) and Mueller-Wodarg (2000, 2002). In addition to these primary drivers, a treatment of magnetospheric heating is further tested. The model's results will be compared with both the Cassini INMS data and the model of Mueller-Wodarg (2000,2002).

  16. Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model

    Science.gov (United States)

    Gnanaseelan, C.; Deshpande, Aditi

    2018-03-01

    The variability of subsurface currents in the equatorial Indian Ocean is studied using high resolution Ocean General Circulation Model (OGCM) simulations during 1958-2009. February-March eastward equatorial subsurface current (ESC) shows weak variability whereas strong variability is observed in northern summer and fall ESC. An eastward subsurface current with maximum amplitude in the pycnocline is prominent right from summer to winter during strong Indian Ocean Dipole (IOD) years when air-sea coupling is significant. On the other hand during weak IOD years, both the air-sea coupling and the ESC are weak. This strongly suggests the role of ESC on the strength of IOD. The extension of the ESC to the summer months during the strong IOD years strengthens the oceanic response and supports intensification and maintenance of IODs through modulation of air sea coupling. Although the ESC is triggered by equatorial winds, the coupled air-sea interaction associated with IODs strengthens the ESC to persist for several seasons thereby establishing a positive feedback cycle with the surface. This suggests that the ESC plays a significant role in the coupled processes associated with the evolution and intensification of IOD events by cooling the eastern basin and strengthening thermocline-SST (sea surface temperature) interaction. As the impact of IOD events on Indian summer monsoon is significant only during strong IOD years, understanding and monitoring the evolution of ESC during these years is important for summer monsoon forecasting purposes. There is a westward phase propagation of anomalous subsurface currents which persists for a year during strong IOD years, whereas such persistence or phase propagation is not seen during weak IOD years, supporting the close association between ESC and strength of air sea coupling during strong IOD years. In this study we report the processes which strengthen the IOD events and the air sea coupling associated with IOD. It also unravels

  17. Selected translated abstracts of Russian-language climate-change publications. 4: General circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Burtis, M.D. [comp.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Razuvaev, V.N.; Sivachok, S.G. [All-Russian Research Inst. of Hydrometeorological Information--World Data Center, Obninsk (Russian Federation)

    1996-10-01

    This report presents English-translated abstracts of important Russian-language literature concerning general circulation models as they relate to climate change. Into addition to the bibliographic citations and abstracts translated into English, this report presents the original citations and abstracts in Russian. Author and title indexes are included to assist the reader in locating abstracts of particular interest.

  18. Dynamics and transport in the stratosphere : Simulations with a general circulation mode

    OpenAIRE

    Aalst, M.K. (Maarten Krispijn) van

    2005-01-01

    The middle atmosphere is strongly affected by two of the world's most important environmental problems: global climate change and stratospheric ozone depletion, caused by anthropogenic emissions of greenhouse gases and chlorofluorocarbons (CFCs), respectively. General circulation models with coupled chemistry are a key tool to advance our understanding of the complex interplay between dynamics, chemistry and radiation in the middle atmosphere. A key problem of such models is that they generat...

  19. A January angular momentum balance in the OSU two-level atmospheric general circulation model

    Science.gov (United States)

    Kim, J.-W.; Grady, W.

    1982-01-01

    The present investigation is concerned with an analysis of the atmospheric angular momentum balance, based on the simulation data of the Oregon State University two-level atmospheric general circulation model (AGCM). An attempt is also made to gain an understanding of the involved processes. Preliminary results on the angular momentum and mass balance in the AGCM are shown. The basic equations are examined, and questions of turbulent momentum transfer are investigated. The methods of analysis are discussed, taking into account time-averaged balance equations, time and longitude-averaged balance equations, mean meridional circulation, the mean meridional balance of relative angular momentum, and standing and transient components of motion.

  20. Mid-latitude afforestation shifts general circulation and tropical precipitation.

    Science.gov (United States)

    Swann, Abigail L S; Fung, Inez Y; Chiang, John C H

    2012-01-17

    We show in climate model experiments that large-scale afforestation in northern mid-latitudes warms the Northern Hemisphere and alters global circulation patterns. An expansion of dark forests increases the absorption of solar energy and increases surface temperature, particularly in regions where the land surface is unable to compensate with latent heat flux due to water limitation. Atmospheric circulation redistributes the anomalous energy absorbed in the northern hemisphere, in particular toward the south, through altering the Hadley circulation, resulting in the northward displacement of the tropical rain bands. Precipitation decreases over parts of the Amazon basin affecting productivity and increases over the Sahel and Sahara regions in Africa. We find that the response of climate to afforestation in mid-latitudes is determined by the amount of soil moisture available to plants with the greatest warming found in water-limited regions. Mid-latitude afforestation is found to have a small impact on modeled global temperatures and on global CO(2), but regional heating from the increase in forest cover is capable of driving unintended changes in circulation and precipitation. The ability of vegetation to affect remote circulation has implications for strategies for climate mitigation.

  1. Vildagliptin, but not glibenclamide, increases circulating endothelial progenitor cell number: a 12-month randomized controlled trial in patients with type 2 diabetes.

    Science.gov (United States)

    Dei Cas, Alessandra; Spigoni, Valentina; Cito, Monia; Aldigeri, Raffaella; Ridolfi, Valentina; Marchesi, Elisabetta; Marina, Michela; Derlindati, Eleonora; Aloe, Rosalia; Bonadonna, Riccardo C; Zavaroni, Ivana

    2017-02-23

    Fewer circulating endothelial progenitor cells (EPCs) and increased plasma (C-term) stromal cell-derived factor 1α (SDF-1α), a substrate of DPP-4, are biomarkers, and perhaps mediators, of cardiovascular risk and mortality. Short-term/acute treatment with DPP-4 inhibitors improve EPC bioavailability; however, long-term effects of DPP-4i on EPCs bioavailability/plasma (C-term) SDF-1α are unknown. Randomized (2:1) open-label trial to compare the effects of vildagliptin (V) (100 mg/day) vs glibenclamide (G) (2.5 mg bid to a maximal dose of 5 mg bid) on circulating EPC levels at 4 and 12 months of treatment in 64 patients with type 2 diabetes in metformin failure. At baseline, and after 4 and 12 months, main clinical/biohumoral parameters, inflammatory biomarkers, concomitant therapies, EPC number (CD34 + /CD133 + /KDR + /10 6 cytometric events) and plasma (C-term) SDF-1α (R&D system) were assessed. Baseline characteristics were comparable in the two groups. V and G similarly and significantly (p < 0.0001) improved glucose control. At 12 months, V significantly increased EPC number (p < 0.05) and significantly reduced (C-term) SDF-1α plasma levels (p < 0.01) compared to G, with no differences in inflammatory biomarkers. V exerts a long-term favorable effect on EPC and (C-term) SDF-1α levels at glucose equipoise, thereby implying a putative beneficial effect on vascular integrity. Trial registration Clinical Trials number: NCT01822548; name: Effect of Vildagliptin vs. Glibenclamide on Circulating Endothelial Progenitor Cell Number Type 2 Diabetes. Registered 28 March, 2013.

  2. Seasonal changes in the atmospheric heat balance simulated by the GISS general circulation model

    Science.gov (United States)

    Stone, P. H.; Chow, S.; Helfand, H. M.; Quirk, W. J.; Somerville, R. C. J.

    1975-01-01

    Tests of the ability of numerical general circulation models to simulate the atmosphere have focussed so far on simulations of the January climatology. These models generally present boundary conditions such as sea surface temperature, but this does not prevent testing their ability to simulate seasonal changes in atmospheric processes that accompany presented seasonal changes in boundary conditions. Experiments to simulate changes in the zonally averaged heat balance are discussed since many simplified models of climatic processes are based solely on this balance.

  3. General circulation and tracers: studies in the Western Indian Ocean

    International Nuclear Information System (INIS)

    Jamous, Daniel

    1991-01-01

    The main question addressed in this thesis is how to best use the information obtained from hydro-biogeochemical tracer data, to study the oceanic general circulation in the Western Indian Ocean. First, a principal component analysis is performed on a historical data set. The tracers considered are temperature, salinity, density, oxygen, phosphate and silica. The method reduces the amount of data to be considered by a factor of 5. It reproduces correctly and efficiently the large-scale distributions of these oceanic properties. The analysed data are then used in a finite-difference nonlinear inverse model. The grid has a resolution of 4 deg. by 4 deg.. Dynamical as well as tracer conservation constraints are used. These constraints are well satisfied by the obtained solutions but the associated errors remain large. Additional constraints would be required in order to discuss the different solutions in more detail. Finally, a qualitative study is done on the deep distribution of helium-3. The data show several important features linked to hydrothermal input in the Gulf of Aden and on the Central Indian Ridge, and to the origin of water masses and deep circulation characteristics. However additional data are required in order to clarify the distribution of this tracer in other key areas. (author) [fr

  4. The Michigan Titan Thermospheric General Circulation Model (TTGCM)

    Science.gov (United States)

    Bell, J. M.; Bougher, S. W.; de Lahaye, V.; Waite, J. H.

    2005-12-01

    The Cassini flybys of Titan since late October, 2004 have provided data critical to better understanding its chemical and thermal structures. With this in mind, a 3-D TGCM of Titan's atmosphere from 600km to the exobase (~1450km) has been developed. This paper presents the first results from the partially operational code. Currently, the TTGCM includes static background chemistry (Lebonnois et al 2001, Vervack et al 2004) coupled with thermal conduction routines. The thermosphere remains dominated by solar EUV forcing and HCN rotational cooling, which is calculated by a full line-by-line radiative transfer routine along the lines of Yelle (1991) and Mueller-Wodarg (2000, 2002). In addition, an approximate treatment of magnetospheric heating is explored. This paper illustrates the model's capabilities as well as some initial results from the Titan Thermospheric General Circulation model that will be compared with both the Cassini INMS data and the model of Mueller-Wodarg (2000,2002).

  5. Integrated cumulus ensemble and turbulence (ICET): An integrated parameterization system for general circulation models (GCMs)

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.L.; Frank, W.M.; Young, G.S. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    Successful simulations of the global circulation and climate require accurate representation of the properties of shallow and deep convective clouds, stable-layer clouds, and the interactions between various cloud types, the boundary layer, and the radiative fluxes. Each of these phenomena play an important role in the global energy balance, and each must be parameterized in a global climate model. These processes are highly interactive. One major problem limiting the accuracy of parameterizations of clouds and other processes in general circulation models (GCMs) is that most of the parameterization packages are not linked with a common physical basis. Further, these schemes have not, in general, been rigorously verified against observations adequate to the task of resolving subgrid-scale effects. To address these problems, we are designing a new Integrated Cumulus Ensemble and Turbulence (ICET) parameterization scheme, installing it in a climate model (CCM2), and evaluating the performance of the new scheme using data from Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART) sites.

  6. Simulation and analysis of the mesoscale circulation in the northwestern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    V. Echevin

    Full Text Available The large-scale and mesoscale circulation of the northwestern Mediterranean Sea are simulated with an eddy-resolving primitive-equation regional model (RM of 1/16° resolution embedded in a general circulation model (GM of the Mediterranean Sea of 1/8° resolution. The RM is forced by a monthly climatology of heat fluxes, precipitation and wind stress. The GM, which uses the same atmospheric forcing, provides initial and boundary conditions for the RM. Analysis of the RM results shows that several realistic features of the large-scale and mesoscale circulation are evident in this region. The mean cyclonic circulation is in good agreement with observations. Mesoscale variability is intense along the coasts of Sardinia and Corsica, in the Gulf of Lions and in the Catalan Sea. The length scales of the Northern Current meanders along the Provence coast and in the Gulf of Lions’ shelf are in good agreement with observations. Winter Intermediate Water is formed along most of the north-coast shelves, between the Gulf of Genoa and Cape Creus. Advection of this water by the mean cyclonic circulation generates a complex eddy field in the Catalan Sea. Intense anticyclonic eddies are generated northeast of the Balearic Islands. These results are in good agreement with mesoscale activity inferred from satellite altimetric data. This work demonstrates the feasibility of a down-scaling system composed of a general-circulation, a regional and a coastal model, which is one of the goals of the Mediterranean Forecasting System Pilot Project.

    Key words. Oceanography: physical (currents; eddies and mesoscale processes; general circulation

  7. Comparison of three-dimensional ocean general circulation models on a benchmark problem

    International Nuclear Information System (INIS)

    Chartier, M.

    1990-12-01

    A french and an american Ocean General Circulation Models for deep-sea disposal of radioactive wastes are compared on a benchmark test problem. Both models are three-dimensional. They solve the hydrostatic primitive equations of the ocean with two different finite difference techniques. Results show that the dynamics simulated by both models are consistent. Several methods for the running of a model from a known state are tested in the French model: the diagnostic method, the prognostic method, the acceleration of convergence and the robust-diagnostic method

  8. Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Ishizaka, J.; Muneyama, K.; Frouin, R.

    The influence of phytoplankton on the upper ocean dynamics and thermodynamics in the equatorial Pacific is investigated using an isopycnal ocean general circulation model (OPYC) coupled with a mixed layer model and remotely sensed chlorophyll...

  9. Water tracers in the general circulation model ECHAM

    International Nuclear Information System (INIS)

    Hoffmann, G.; Heimann, M.

    1993-01-01

    We have installed a water tracer model into the ECHAM General Circulation Model (GCM) parameterizing all fractionation processes of the stable water isotopes ( 1 H 2 18 O and 1 H 2 H 16 O). A five year simulation was performed under present day conditions. We focus on the applicability of such a water tracer model to obtain information about the quality of the hydrological cycle of the GCM. The analysis of the simulated 1 H 2 18 O composition of the precipitation indicates too weak fractionated precipitation over the Antarctic and Greenland ice sheets and too strong fractionated precipitation over large areas of the tropical and subtropical land masses. We can show that these deficiencies are connected with problems of model quantities such as the precipitation and the resolution of the orography. The linear relationship between temperature and the δ 18 O value, i.e. the Dansgaard slope, is reproduced quite well in the model. The slope is slightly too flat and the strong correlation between temperature and δ 18 O vanishes at very low temperatures compared to the observations. (orig.)

  10. General circulation model study of atmospheric carbon monoxide

    International Nuclear Information System (INIS)

    Pinto, J.P.; Yung, Y.L.; Rind, D.; Russell, G.L.; Lerner, J.A.; Hansen, J.E.; Hameed, S.

    1983-01-01

    The carbon monoxide cycle is studied by incorporating the known and hypothetical sources and sinks in a tracer model that uses the winds generated by a general circulation model. Photochemical production and loss terms, which depend on OH radical concentrations, are calculated in an interactive fashion. The computed global distribution and seasonal variations of CO are compared with observations to obtain constraints on the distribution and magnitude of the sources and sinks of CO, and on the tropospheric abundance of OH. The simplest model that accounts for available observations requires a low latitude plant source of about 1.3 x 10 15 g yr -1 , in addition to sources from incomplete combustion of fossil fuels and oxidation of methane. The globally averaged OH concentration calculated in the model is 7 x 10 5 cm -3 . Models that calculate globally averaged OH concentrations much lower than our nominal value are not consistent with the observed variability of CO. Such models are also inconsistent with measurements of CO isotopic abundances, which imply the existence of plant sources

  11. The epistemological status of general circulation models

    Science.gov (United States)

    Loehle, Craig

    2018-03-01

    Forecasts of both likely anthropogenic effects on climate and consequent effects on nature and society are based on large, complex software tools called general circulation models (GCMs). Forecasts generated by GCMs have been used extensively in policy decisions related to climate change. However, the relation between underlying physical theories and results produced by GCMs is unclear. In the case of GCMs, many discretizations and approximations are made, and simulating Earth system processes is far from simple and currently leads to some results with unknown energy balance implications. Statistical testing of GCM forecasts for degree of agreement with data would facilitate assessment of fitness for use. If model results need to be put on an anomaly basis due to model bias, then both visual and quantitative measures of model fit depend strongly on the reference period used for normalization, making testing problematic. Epistemology is here applied to problems of statistical inference during testing, the relationship between the underlying physics and the models, the epistemic meaning of ensemble statistics, problems of spatial and temporal scale, the existence or not of an unforced null for climate fluctuations, the meaning of existing uncertainty estimates, and other issues. Rigorous reasoning entails carefully quantifying levels of uncertainty.

  12. Monthly rifampicin, ofloxacin, and minocycline therapy for generalized and localized granuloma annulare

    Directory of Open Access Journals (Sweden)

    Shilpa Garg

    2015-01-01

    Full Text Available Background: The localized form of granuloma annulare is usually self-limiting, resolving within 2 years. Generalized granuloma annulare, on the other hand, runs a protracted course, with spontaneous resolution being rare. It is also characterized by a later age of onset, an increased incidence of diabetes mellitus, poor response to therapy, and an increased prevalence of HLA Bw35. Objective: To assess the efficacy of monthly pulsed rifampicin, ofloxacin, and minocycline (ROM therapy in the management of granuloma annulare. Methods : Six biopsy proven patients of granuloma annulare were included in the study, five of the generalized variety, and one localized. Three of these patients were resistant to standard modalities of treatment. All six patients were treated with pulses of once monthly ROM till complete resolution of all lesions. Results were analyzed in terms of complete resolution of lesions and side effects. Presence of comorbid conditions was noted. Result: All six patients were successfully treated with 4-8 pulses of monthly ROM. None of the patients reported any adverse effects. Limitations: Small sample size and the lack of a control group are limitations. Conclusion: Treatment with pulses of once monthly ROM caused complete resolution of lesions in both localized and generalized granuloma annulare, even in cases recalcitrant to conventional therapy. There were no side effects in any of the patients. Larger trials are needed to substantiate the efficacy of monthly ROM in granuloma annulare.

  13. [Treatment of cloud radiative effects in general circulation models

    International Nuclear Information System (INIS)

    Wang, W.C.

    1993-01-01

    This is a renewal proposal for an on-going project of the Department of Energy (DOE)/Atmospheric Radiation Measurement (ARM) Program. The objective of the ARM Program is to improve the treatment of radiation-cloud in GCMs so that reliable predictions of the timing and magnitude of greenhouse gas-induced global warming and regional responses can be made. The ARM Program supports two research areas: (I) The modeling and analysis of data related to the parameterization of clouds and radiation in general circulation models (GCMs); and (II) the development of advanced instrumentation for both mapping the three-dimensional structure of the atmosphere and high accuracy/precision radiometric observations. The present project conducts research in area (I) and focuses on GCM treatment of cloud life cycle, optical properties, and vertical overlapping. The project has two tasks: (1) Development and Refinement of GCM Radiation-Cloud Treatment Using ARM Data; and (2) Validation of GCM Radiation-Cloud Treatment

  14. Polynomial Chaos–Based Bayesian Inference of K-Profile Parameterization in a General Circulation Model of the Tropical Pacific

    KAUST Repository

    Sraj, Ihab; Zedler, Sarah E.; Knio, Omar; Jackson, Charles S.; Hoteit, Ibrahim

    2016-01-01

    The authors present a polynomial chaos (PC)-based Bayesian inference method for quantifying the uncertainties of the K-profile parameterization (KPP) within the MIT general circulation model (MITgcm) of the tropical Pacific. The inference

  15. Circulating metabolites and general cognitive ability and dementia: Evidence from 11 cohort studies.

    Science.gov (United States)

    van der Lee, Sven J; Teunissen, Charlotte E; Pool, René; Shipley, Martin J; Teumer, Alexander; Chouraki, Vincent; Melo van Lent, Debora; Tynkkynen, Juho; Fischer, Krista; Hernesniemi, Jussi; Haller, Toomas; Singh-Manoux, Archana; Verhoeven, Aswin; Willemsen, Gonneke; de Leeuw, Francisca A; Wagner, Holger; van Dongen, Jenny; Hertel, Johannes; Budde, Kathrin; Willems van Dijk, Ko; Weinhold, Leonie; Ikram, M Arfan; Pietzner, Maik; Perola, Markus; Wagner, Michael; Friedrich, Nele; Slagboom, P Eline; Scheltens, Philip; Yang, Qiong; Gertzen, Robert E; Egert, Sarah; Li, Shuo; Hankemeier, Thomas; van Beijsterveldt, Catharina E M; Vasan, Ramachandran S; Maier, Wolfgang; Peeters, Carel F W; Jörgen Grabe, Hans; Ramirez, Alfredo; Seshadri, Sudha; Metspalu, Andres; Kivimäki, Mika; Salomaa, Veikko; Demirkan, Ayşe; Boomsma, Dorret I; van der Flier, Wiesje M; Amin, Najaf; van Duijn, Cornelia M

    2018-01-06

    Identifying circulating metabolites that are associated with cognition and dementia may improve our understanding of the pathogenesis of dementia and provide crucial readouts for preventive and therapeutic interventions. We studied 299 metabolites in relation to cognition (general cognitive ability) in two discovery cohorts (N total = 5658). Metabolites significantly associated with cognition after adjusting for multiple testing were replicated in four independent cohorts (N total = 6652), and the associations with dementia and Alzheimer's disease (N = 25,872) and lifestyle factors (N = 5168) were examined. We discovered and replicated 15 metabolites associated with cognition including subfractions of high-density lipoprotein, docosahexaenoic acid, ornithine, glutamine, and glycoprotein acetyls. These associations were independent of classical risk factors including high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, glucose, and apolipoprotein E (APOE) genotypes. Six of the cognition-associated metabolites were related to the risk of dementia and lifestyle factors. Circulating metabolites were consistently associated with cognition, dementia, and lifestyle factors, opening new avenues for prevention of cognitive decline and dementia. Copyright © 2018 the Alzheimer's Association. All rights reserved.

  16. Simulations of physics and chemistry of polar stratospheric clouds with a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, J.

    2005-04-20

    A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H{sub 2}O and HNO{sub 3} redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been

  17. A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model

    International Nuclear Information System (INIS)

    Sekiguchi, Miho; Nakajima, Teruyuki

    2008-01-01

    The gas absorption process scheme in the broadband radiative transfer code 'mstrn8', which is used to calculate atmospheric radiative transfer efficiently in a general circulation model, is improved. Three major improvements are made. The first is an update of the database of line absorption parameters and the continuum absorption model. The second is a change to the definition of the selection rule for gas absorption used to choose which absorption bands to include. The last is an upgrade of the optimization method used to decrease the number of quadrature points used for numerical integration in the correlated k-distribution approach, thereby realizing higher computational efficiency without losing accuracy. The new radiation package termed 'mstrnX' computes radiation fluxes and heating rates with errors less than 0.6 W/m 2 and 0.3 K/day, respectively, through the troposphere and the lower stratosphere for any standard AFGL atmospheres. A serious cold bias problem of an atmospheric general circulation model using the ancestor code 'mstrn8' is almost solved by the upgrade to 'mstrnX'

  18. A numerical three-dimensional ocean general circulation and radionuclides dispersion model

    International Nuclear Information System (INIS)

    Chartier, M.; Marti, O.

    1988-01-01

    The dispersion of radioactive waste disposed of in the deep-sea or transferred from the atmosphere is a complex hydrodynamic problem concerned by space scales as large as the world ocean. The recent development in the high-speed computers has led to significant progress in ocean modelling and now allows a thorough improvement in the accuracy of the simulations of the nuclides dispersion in the sea. A three-dimensional ocean general circulation model has been recently developed in France for research and engineering purposes. The model solves the primitive equation of the ocean hydrodynamics and the advection-diffusion equation for any dissolved tracer. The code has been fully vectorized and multitasked on 1 to 4 processors of the CRAY-2

  19. Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Muneyama, K.; Frouin, R.

    , embedded in the ocean isopycnal general circulation model (OPYC). A higher abundance of chlorophyll in October than in April in the Arabian Sea increases absorption of solar irradiance and heating rate in the upper ocean, resulting in decreasing the mixed...

  20. Gas Cooled Fast Breeder Reactor cost estimate for a circulator test facility (modified HTGR circulator test facility)

    International Nuclear Information System (INIS)

    1979-10-01

    This is a conceptual design cost estimate for a Helium Circulator Test Facility to be located at the General Atomic Company, San Diego, California. The circulator, drive motors, controllers, thermal barrier, and circulator service module installation costs are part of the construction cost included

  1. Use of Ocean Remote Sensing Data to Enhance Predictions with a Coupled General Circulation Model

    Science.gov (United States)

    Rienecker, Michele M.

    1999-01-01

    Surface height, sea surface temperature and surface wind observations from satellites have given a detailed time sequence of the initiation and evolution of the 1997/98 El Nino. The data have beet complementary to the subsurface TAO moored data in their spatial resolution and extent. The impact of satellite observations on seasonal prediction in the tropical Pacific using a coupled ocean-atmosphere general circulation model will be presented.

  2. Improvement of Classification of Enterprise Circulating Funds

    Directory of Open Access Journals (Sweden)

    Rohanova Hanna O.

    2014-02-01

    Full Text Available The goal of the article lies in revelation of possibilities of increase of efficiency of managing enterprise circulating funds by means of improvement of their classification features. Having analysed approaches of many economists to classification of enterprise circulating funds, systemised and supplementing them, the article offers grouping classification features of enterprise circulating funds. In the result of the study the article offers an expanded classification of circulating funds, which clearly shows the role of circulating funds in managing enterprise finance and economy in general. The article supplements and groups classification features of enterprise circulating funds by: the organisation level, functioning character, sources of formation and their cost, and level of management efficiency. The article shows that the provided grouping of classification features of circulating funds allows exerting all-sided and purposeful influence upon indicators of efficiency of circulating funds functioning and facilitates their rational management in general. The prospect of further studies in this direction is identification of the level of attraction of loan resources by production enterprises for financing circulating funds.

  3. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean

    Science.gov (United States)

    Sofianos, Sarantis S.; Johns, William E.

    2002-11-01

    The mechanisms involved in the seasonal exchange between the Red Sea and the Indian Ocean are studied using an Oceanic General Circulation Model (OGCM), namely the Miami Isopycnic Coordinate Ocean Model (MICOM). The model reproduces the basic characteristics of the seasonal circulation observed in the area of the strait of Bab el Mandeb. There is good agreement between model results and available observations on the strength of the exchange and the characteristics of the water masses involved, as well as the seasonal flow pattern. During winter, this flow consists of a typical inverse estuarine circulation, while during summer, the surface flow reverses, there is an intermediate inflow of relatively cold and fresh water, and the hypersaline outflow at the bottom of the strait is significantly reduced. Additional experiments with different atmospheric forcing (seasonal winds, seasonal thermohaline air-sea fluxes, or combinations) were performed in order to assess the role of the atmospheric forcing fields in the exchange flow at Bab el Mandeb. The results of both the wind- and thermohaline-driven experiments exhibit a strong seasonality at the area of the strait, which is in phase with the observations. However, it is the combination of both the seasonal pattern of the wind stress and the seasonal thermohaline forcing that can reproduce the observed seasonal variability at the strait. The importance of the seasonal cycle of the thermohaline forcing on the exchange flow pattern is also emphasized by these results. In the experiment where the thermohaline forcing is represented by its annual mean, the strength of the exchange is reduced almost by half.

  4. Results of an interactively coupled atmospheric chemistry – general circulation model: Comparison with observations

    Directory of Open Access Journals (Sweden)

    R. Hein

    Full Text Available The coupled climate-chemistry model ECHAM4.L39(DLR/CHEM is presented which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks. This is the first model which interactively combines a general circulation model with a chemical model, employing most of the important reactions and species necessary to describe the stratospheric and upper tropospheric ozone chemistry, and which is computationally fast enough to allow long-term integrations with currently available computer resources. This is possible as the model time-step used for the chemistry can be chosen as large as the integration time-step for the dynamics. Vertically the atmosphere is discretized by 39 levels from the surface up to the top layer which is centred at 10 hPa, with a relatively high vertical resolution of approximately 700 m near the extra-tropical tropopause. We present the results of a control simulation representing recent conditions (1990 and compare it to available observations. The focus is on investigations of stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. ECHAM4.L39(DLR/CHEM reproduces main features of stratospheric dynamics in the arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to earlier model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their inter-hemispheric differences are reproduced. Considering methane oxidation as part of the dynamic-chemistry feedback results in an improved representation of the spatial distribution of stratospheric water vapour concentrations. The current model constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic

  5. General circulation and climate changes in the Mid-European area

    International Nuclear Information System (INIS)

    Schubert, S.; Hupfer, P.

    1992-01-01

    The long-term changes in the frequency distribution of weather patterns ('Grosswetterlage') are closely related to recent climate variations in the investigation area. However, this simple recording of weather pattern frequency changes is not enough for the complete explanation of the climatic changes which took place in our century in central Europe. One of the causes is the large variability of the weather for identical flow directions. In the case of weather situations which are linked to a low cloudiness degree, especially the temperature is strongly dependent on the duration of the 'Grosswetterlage'. Also when viewed from a long-term view, the climatic characteristics of the GWL air masses are by no means constant. If one considers the course of climate elements under identical circulation conditions, it is found that the average weather sometimes varied considerably in the course of the century although the general flow direction was the same. (orig./KW) [de

  6. Hurricane-type vortices in a general circulation model. Pt. 1

    International Nuclear Information System (INIS)

    Bengtsson, L.; Botzet, M.; Esch, M.

    1994-01-01

    A very high resolution atmospheric general circulation model, T106-L19, has been used for the simulation of hurricanes in a multi-year numerical experiment. Individual storms as well as their geographical and seasonal distribution agree remarkably well with observations. In spite of the fact that only the thermal and dynamical structure of the storms have been used as criteria of their identification, practically all of them occur in areas where the sea surface temperature is higher or equal to 26 C. There are some variations from year to year in the number of storms in spite of the fact that there are no interannual variations in the SST pattern. It is found that the number of storms in particular areas depend on the intensity of the Hadley-Walker cell. The result is clearly resolution dependant. At lower horizonal resolution, T42, for example, the intensity of the storms is significantly reduced and their overall structure is less realistic, including their vertical form and extention. (orig.)

  7. Circulating alpha1-antitrypsin in the general population: Determinants and association with lung function

    Directory of Open Access Journals (Sweden)

    Berger Wolfgang

    2008-04-01

    Full Text Available Abstract Background Severe alpha1-antitrypsin (AAT deficiency associated with low AAT blood concentrations is an established genetic COPD risk factor. Less is known about the respiratory health impact of variation in AAT serum concentrations in the general population. We cross-sectionally investigated correlates of circulating AAT concentrations and its association with FEV1. Methods In 5187 adults (2669 females with high-sensitive c-reactive protein (CRP levels ≤ 10 mg/l from the population-based Swiss SAPALDIA cohort, blood was collected at the time of follow-up examination for measuring serum AAT and CRP. Results Female gender, hormone intake, systolic blood pressure, age in men and in postmenopausal women, as well as active and passive smoking were positively, whereas alcohol intake and BMI inversely correlated with serum AAT levels, independent of CRP adjustment. We observed an inverse association of AAT with FEV1 in the total study population (p Conclusion The results of this population-based study reflect a complex interrelationship between tobacco exposure, gender related factors, circulating AAT, systemic inflammatory status and lung function.

  8. The Surface Energy Balance at Local and Regional Scales-A Comparison of General Circulation Model Results with Observations.

    Science.gov (United States)

    Garratt, J. R.; Krummel, P. B.; Kowalczyk, E. A.

    1993-06-01

    Aspects of the mean monthly energy balance at continental surfaces are examined by appeal to the results of general circulation model (GCM) simulations, climatological maps of surface fluxes, and direct observations. Emphasis is placed on net radiation and evaporation for (i) five continental regions (each approximately 20°×150°) within Africa, Australia, Eurasia, South America, and the United States; (ii) a number of continental sites in both hemispheres. Both the mean monthly values of the local and regional fluxes and the mean monthly diurnal cycles of the local fluxes are described. Mostly, GCMs tend to overestimate the mean monthly levels of net radiation by about 15% -20% on an annual basis, for observed annual values in the range 50 to 100 Wm2. This is probably the result of several deficiencies, including (i) continental surface albedos being undervalued in a number of the models, resulting in overestimates of the net shortwave flux at the surface (though this deficiency is steadily being addressed by modelers); (ii) incoming shortwave fluxes being overestimated due to uncertainties in cloud schemes and clear-sky absorption; (iii) land-surface temperatures being under-estimated resulting in an underestimate of the outgoing longwave flux. In contrast, and even allowing for the poor observational base for evaporation, there is no obvious overall bias in mean monthly levels of evaporation determined in GCMS, with one or two exceptions. Rather, and far more so than with net radiation, there is a wide range in values of evaporation for all regions investigated. For continental regions and at times of the year of low to moderate rainfall, there is a tendency for the simulated evaporation to be closely related to the precipitation-this is not surprising. In contrast, for regions where there is sufficient or excessive rainfall, the evaporation tends to follow the behavior of the net radiation. Again, this is not surprising given the close relation between

  9. Magnetic Resonance Imaging-DRAGON score: 3-month outcome prediction after intravenous thrombolysis for anterior circulation stroke.

    Science.gov (United States)

    Turc, Guillaume; Apoil, Marion; Naggara, Olivier; Calvet, David; Lamy, Catherine; Tataru, Alina M; Méder, Jean-François; Mas, Jean-Louis; Baron, Jean-Claude; Oppenheim, Catherine; Touzé, Emmanuel

    2013-05-01

    The DRAGON score, which includes clinical and computed tomographic scan parameters, showed a high specificity to predict 3-month outcome in patients with acute ischemic stroke treated by intravenous tissue plasminogen activator. We adapted the score for patients undergoing MRI as the first-line diagnostic tool. We reviewed patients with consecutive anterior circulation ischemic stroke treated ≤ 4.5 hour by intravenous tissue plasminogen activator between 2003 and 2012 in our center, where MRI is systematically implemented as first-line diagnostic work-up. We derived the MRI-DRAGON score keeping all clinical parameters of computed tomography-DRAGON (age, initial National Institutes of Health Stroke Scale and glucose level, prestroke handicap, onset to treatment time), and considering the following radiological variables: proximal middle cerebral artery occlusion on MR angiography instead of hyperdense middle cerebral artery sign, and diffusion-weighted imaging Alberta Stroke Program Early Computed Tomography Score (DWI ASPECTS) ≤ 5 instead of early infarct signs on computed tomography. Poor 3-month outcome was defined as modified Rankin scale >2. We calculated c-statistics as a measure of predictive ability and performed an internal cross-validation. Two hundred twenty-eight patients were included. Poor outcome was observed in 98 (43%) patients and was significantly associated with all parameters of the MRI-DRAGON score in multivariate analysis, except for onset to treatment time (nonsignificant trend). The c-statistic was 0.83 (95% confidence interval, 0.78-0.88) for poor outcome prediction. All patients with a MRI-DRAGON score ≤ 2 (n=22) had a good outcome, whereas all patients with a score ≥ 8 (n=11) had a poor outcome. The MRI-DRAGON score is a simple tool to predict 3-month outcome in acute stroke patients screened by MRI then treated by intravenous tissue plasminogen activator and may help for therapeutic decision.

  10. Impact of cloud microphysics on cloud-radiation interactions in the CSU general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, L.D.; Randall, D.A.

    1995-04-01

    Our ability to study and quantify the impact of cloud-radiation interactions in studying global scale climate variations strongly relies upon the ability of general circulation models (GCMs) to simulate the coupling between the spatial and temporal variations of the model-generated cloudiness and atmospheric moisture budget components. In particular, the ability of GCMs to reproduce the geographical distribution of the sources and sinks of the planetary radiation balance depends upon their representation of the formation and dissipation of cloudiness in conjunction with cloud microphysics processes, and the fractional amount and optical characteristics of cloudiness in conjunction with the mass of condensate stored in the atmosphere. A cloud microphysics package which encompasses five prognostic variables for the mass of water vapor, cloud water, cloud ice, rain, and snow has been implemented in the Colorado State University General Circulation Model (CSU GCM) to simulate large-scale condensation processes. Convection interacts with the large-scale environment through the detrainment of cloud water and cloud ice at the top of cumulus towers. The cloud infrared emissivity and cloud optical depth of the model-generated cloudiness are interactive and depend upon the mass of cloud water and cloud ice suspended in the atmosphere. The global atmospheric moisture budget and planetary radiation budget of the CSU GCM obtained from a perpetual January simulation are discussed. Geographical distributions of the atmospheric moisture species are presented. Global maps of the top-of-atmosphere outgoing longwave radiation and planetary albedo are compared against Earth Radiation Budget Experiment (ERBE) satellite data.

  11. Prognostic cloud water in the Los Alamos general circulation model

    International Nuclear Information System (INIS)

    Kristjansson, J.E.; Kao, C.Y.J.

    1993-01-01

    Most of today's general circulation models (GCMS) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, there has arisen an urgent need for improvements in the treatment of clouds in GCMS, especially as the clouds relate to radiation. In the present paper, we investigate the effects of introducing pregnostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the long wave emissivity calculations. Results from several sensitivity simulations show that realistic cloud water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds become stronger, due to more realistic tropical convection

  12. Prognostic cloud water in the Los Alamos general circulation model

    International Nuclear Information System (INIS)

    Kristjansson, J.E.; Kao, C.Y.J.

    1994-01-01

    Most of today's general circulation models (GCMs) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, an urgent need for improvements in the treatment of clouds in GCMs has arisen, especially as the clouds relate to radiation. In this paper, we investigate the effects of introducing prognostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the longwave emissivity calculations. Results from several sensitivity simulations show that realistic water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds becomes stronger because of more realistic tropical convection

  13. The Mars thermosphere. 2. General circulation with coupled dynamics and composition

    International Nuclear Information System (INIS)

    Bougher, S.W.; Roble, R.G.; Ridley, E.C.; Dickinson, R.E.

    1990-01-01

    The National Center for Atmospheric Research thermospheric general circulation model (TGCM) for the Earth's thermosphere has been modified to examine the three-dimensional structure and circulation of the upper mesosphere and thermosphere of Mars (MTGCM). The computational framework and major processes unique to a CO 2 thermosphere are similar to those utilized in a recent Venus TGCM. Solar EUV, UV, and IR heating alone combine to drive the Martian winds above ∼100 km. An equinox version of the code is used to examine the Mars global dynamics and structure for two specific observational periods spanning a range of solar activity: Viking 1 (July 1976) and Mariner 6-7 (August-September 1969). The MTGCM is then modified to predict the state of the Mars thermosphere for various combinations of solar and orbital conditions. Calculations show that no nightside cryosphere of the type observed on Venus is obtained on the Mars nightside. Instead, planetary rotation significantly modifies the winds and the day-to-night contrast in densities and temperatures, giving a diurnal behavior similar to the Earth under quiet solar conditions. Maximum exospheric temperatures are calculated near 1,500 LT (≤ 305 K), with minimum values at 0500 LT (≤ 175 K). The global temperature distribution is strongly modified by nightside adiabatic heating (subsidence) and dayside cooling (upwelling). The global winds also affect vertical density distributions; vertical eddy diffusion much weaker than used in previous one-dimensional models is required to maintain observed Viking profiles. A solar cycle variation in dayside exospheric temperatures of ∼195-305 K is simulated by the Viking and Mariner runs

  14. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    Science.gov (United States)

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Köhl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.

  15. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-03-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  16. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-01-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  17. Circulation of the surface waters in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Sharma, G.S.

    The circulation pattern of the surface waters in the North Indian Ocean for different months of the year is discussed. In order to arrive at a reliable and detailed picture of the circulation pattern, streamlines are drawn using the isogon technique...

  18. Results from a 2 x CO2 simulation with the Canadian Climate Centre general circulation model

    International Nuclear Information System (INIS)

    Boer, G.J.

    1990-01-01

    The Canadian Climate Centre's general circulation model (GCM), GCMII, was used to simulate a doubling of atmospheric carbon dioxide concentration. The experiment was a standard greenhouse gas climate change study, using a three-dimensional atmospheric circulation model coupled to a simple 'slab' ocean and a thermodynamic ice model. This standard experiment retains the sophistication and generality of an atmospheric GCM, is straightforward in its use of simplified ocean and ice models, is comparatively economical of computer time, and permits comparison of results from different models. Features of the second generation GCMII include: higher resolution at T32L10 with a transform grid of 3.75 x 3.75 degree; full diurnal and annual cycles; ocean and sea ice treatment involving specification of ocean transports; modified treatment of land surface processes and hydrology; a parameterization of cloud optical feedback; and a retention of the special application data sets of surface parameters for North America and Europe. Results of the simulation were a globally averaged surface temperature increase of 3.5 degree C; a precipitation and evaporation increase of 3%; an average decrease in soil moisture of 6.6%; a decrease in cloud cover of 2.2%; a 66% decrease in mass of sea ice; and marked changes in other quantities in the polar region. 2 refs., 2 figs., 2 tabs

  19. Numerical simulation and analysis of impact of non-orographic gravity waves drag of middle atmosphere in framework of a general circulation model

    Science.gov (United States)

    Zhao, J.; Wang, S.

    2017-12-01

    Gravity wave drag (GWD) is among the drivers of meridional overturning in the middle atmosphere, also known as the Brewer-Dobson Circulation, and of the quasi-biennial oscillation (QBO). The small spatial scales and complications due to wave breaking require their effects to be parameterised. GWD parameterizations are usually divided into two parts, orographic and non-orographic. The basic dynamical and physical processes of the middle atmosphere and the mechanism of the interactions between the troposphere and the middle atmosphere were studied in the frame of a general circulation model. The model for the troposphere was expanded to a global model considering middle atmosphere with the capability of describing the basic processes in the middle atmosphere and the troposphere-middle atmosphere interactions. Currently, it is too costly to include full non-hydrostatic and rotational wave dynamics in an operational parameterization. The hydrostatic non-rotational wave dynamics which allow an efficient implementation that is suitably fast for operation. The simplified parameterization of non-orographic GWD follows from the WM96 scheme in which a framework is developed using conservative propagation of gravity waves, critical level filtering, and non-linear dissipation. In order to simulate and analysis the influence of non-orographic GWD on the stratospheric wind and temperature fields, experiments using Stratospheric Sudden Warming (SSW) event case occurred in January 2013 were carried out, and results of objective weather forecast verifications of the two months period were compared in detail. The verification of monthly mean of forecast anomaly correlation (ACC) and root mean square (RMS) errors shows consistently positive impact of non-orographic GWD on skill score of forecasting for the three to eight days, both in the stratosphere and troposphere, and visible positive impact on prediction of the stratospheric wind and temperature fields. Numerical simulation

  20. Simulations of the general circulation of the Martian atmosphere. I - Polar processes

    Science.gov (United States)

    Pollack, James B.; Haberle, Robert M.; Schaeffer, James; Lee, Hilda

    1990-01-01

    Numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation. A large number of numerical experiments were conducted for alternative choices of seasonal date and dust optical depth. It was found that, as the dust content of the winter polar region increased, the rate of atmospheric CO2 condensation increased sharply. It is shown that the strong seasonal variation in the atmospheric dust content observed might cause a number of hemispheric asymmetries. These asymmetries include the greater prevalence of polar hoods in the northern polar region during winter, the lower albedo of the northern polar cap during spring, and the total dissipation of the northern CO2 ice cap during the warmer seasons.

  1. Coronary collateral circulation and its effect on myocardial infarction

    International Nuclear Information System (INIS)

    Fukuyama, Takaya; Ashihara, Toshiaki; Ogata, Ikuo

    1995-01-01

    The purpose of this study was to examine the influence of coronary collateral circulation, which grows after acute myocardial infarction (MI), on infarct size and prognosis. Study subjects were 47 patients who had arteriographic evidence of 99-100% constricture of the infarct-related artery approximately one month after the onset of the first MI. Coronary collateral circulation was analyzed by a four-point scoring (grade 0-3). Furthermore, the patients underwent thallium-201 myocardial imaging one month and two years after the onset to evaluate infarct size. Infarct size was analyzed using extent score (ES) and severity score (SS). ES tended to be decreased during chronic MI stage. Coronary collateral circulation was judged as grade 1 (n=9), grade 2 (n=12), and grade 3 (n=26). There was no difference in infarct size among the three groups. In groups of grades 1 and 2, there was no difference in ES and SS between acute and chronic MI stages. In the group of grade 3, however, ES decreased from 41% to 27% and SS decreased from 68% to 38%, showing remarkable decrease during chronic MI stage. Although coronary collateral circulation one month after the onset is not always responsible for infarct size during acute MI stage, it is considered rsponsible for inhibiting the remodeling of infarction through the long term process. (N.K.)

  2. Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models

    Science.gov (United States)

    Xu, L.

    1994-01-01

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.

  3. Statistical analysis of simulated global soil moisture and its memory in an ensemble of CMIP5 general circulation models

    Science.gov (United States)

    Wiß, Felix; Stacke, Tobias; Hagemann, Stefan

    2014-05-01

    Soil moisture and its memory can have a strong impact on near surface temperature and precipitation and have the potential to promote severe heat waves, dry spells and floods. To analyze how soil moisture is simulated in recent general circulation models (GCMs), soil moisture data from a 23 model ensemble of Atmospheric Model Intercomparison Project (AMIP) type simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are examined for the period 1979 to 2008 with regard to parameterization and statistical characteristics. With respect to soil moisture processes, the models vary in their maximum soil and root depth, the number of soil layers, the water-holding capacity, and the ability to simulate freezing which all together leads to very different soil moisture characteristics. Differences in the water-holding capacity are resulting in deviations in the global median soil moisture of more than one order of magnitude between the models. In contrast, the variance shows similar absolute values when comparing the models to each other. Thus, the input and output rates by precipitation and evapotranspiration, which are computed by the atmospheric component of the models, have to be in the same range. Most models simulate great variances in the monsoon areas of the tropics and north western U.S., intermediate variances in Europe and eastern U.S., and low variances in the Sahara, continental Asia, and central and western Australia. In general, the variance decreases with latitude over the high northern latitudes. As soil moisture trends in the models were found to be negligible, the soil moisture anomalies were calculated by subtracting the 30 year monthly climatology from the data. The length of the memory is determined from the soil moisture anomalies by calculating the first insignificant autocorrelation for ascending monthly lags (insignificant autocorrelation folding time). The models show a great spread of autocorrelation length from a few months in

  4. Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model

    Science.gov (United States)

    Brix, H.; Menemenlis, D.; Hill, C.; Dutkiewicz, S.; Jahn, O.; Wang, D.; Bowman, K.; Zhang, H.

    2015-11-01

    The NASA Carbon Monitoring System (CMS) Flux Project aims to attribute changes in the atmospheric accumulation of carbon dioxide to spatially resolved fluxes by utilizing the full suite of NASA data, models, and assimilation capabilities. For the oceanic part of this project, we introduce ECCO2-Darwin, a new ocean biogeochemistry general circulation model based on combining the following pre-existing components: (i) a full-depth, eddying, global-ocean configuration of the Massachusetts Institute of Technology general circulation model (MITgcm), (ii) an adjoint-method-based estimate of ocean circulation from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, (iii) the MIT ecosystem model "Darwin", and (iv) a marine carbon chemistry model. Air-sea gas exchange coefficients and initial conditions of dissolved inorganic carbon, alkalinity, and oxygen are adjusted using a Green's Functions approach in order to optimize modeled air-sea CO2 fluxes. Data constraints include observations of carbon dioxide partial pressure (pCO2) for 2009-2010, global air-sea CO2 flux estimates, and the seasonal cycle of the Takahashi et al. (2009) Atlas. The model sensitivity experiments (or Green's Functions) include simulations that start from different initial conditions as well as experiments that perturb air-sea gas exchange parameters and the ratio of particulate inorganic to organic carbon. The Green's Functions approach yields a linear combination of these sensitivity experiments that minimizes model-data differences. The resulting initial conditions and gas exchange coefficients are then used to integrate the ECCO2-Darwin model forward. Despite the small number (six) of control parameters, the adjusted simulation is significantly closer to the data constraints (37% cost function reduction, i.e., reduction in the model-data difference, relative to the baseline simulation) and to independent observations (e.g., alkalinity). The adjusted air-sea gas

  5. Seasonal dependence of the predictable low-level circulation patterns over the tropical Indo-Pacific domain

    Science.gov (United States)

    Zhang, Tuantuan; Huang, Bohua; Yang, Song; Laohalertchai, Charoon

    2018-06-01

    The seasonal dependence of the prediction skill of 850-hPa monthly zonal wind over the tropical Indo-Pacific domain is examined using the ensemble reforecasts for 1983-2010 from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis and Reforecast (CFSRR) project. According to a maximum signal-to-noise empirical orthogonal function analysis, the most predictable patterns of atmospheric low-level circulation are associated with the developing and maturing phases of El Niño-Southern Oscillation (ENSO). The CFSv2 is capable of predicting these ENSO-related patterns up to 9-months in advance for all months, except for May-June when the effect of the spring barrier is strong. The other predictable climate processes associated with the low-level atmospheric circulation are more seasonally dependent. For winter and spring, the second most predictable patterns are associated with the ENSO decaying phase. Within these seasons, the monthly evolution of the predictable patterns is characterized by a southward shift of westerly wind anomalies, generated by the interaction between the annual cycle and the ENSO signals (i.e., the combination-mode). In general, the CFSv2 hindcast well predicts these patterns at least 5 months in advance for spring, while shows much lower skills for winter months. In summer, the second predictable patterns are associated with the western North Pacific (WNP) monsoon (i.e., the WNP anticyclone/cyclone) in short leads while associated with ENSO in longer leads (after 4-month lead). The second predictable patterns in fall are mainly associated with tropical Indian Ocean Dipole, which can be predicted 3 months in advance.

  6. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow. Key Points Sinking occurs in a narrow boundary layer along the eastern boundary Surface western boundary current switches into an eastern boundary current Water exchange in the Strait of Bab el Mandeb is not hydraulically controlled © 2014. American Geophysical Union. All Rights Reserved.

  7. Non-linear modelling of monthly mean vorticity time changes: an application to the western Mediterranean

    Directory of Open Access Journals (Sweden)

    M. Finizio

    Full Text Available Starting from a number of observables in the form of time-series of meteorological elements in various areas of the northern hemisphere, a model capable of fitting past records and predicting monthly vorticity time changes in the western Mediterranean is implemented. A new powerful statistical methodology is introduced (MARS in order to capture the non-linear dynamics of time-series representing the available 40-year history of the hemispheric circulation. The developed model is tested on a suitable independent data set. An ensemble forecast exercise is also carried out to check model stability in reference to the uncertainty of input quantities.

    Key words. Meteorology and atmospheric dynamics · General circulation ocean-atmosphere interactions · Synoptic-scale meteorology

  8. Results of an interactively coupled atmospheric chemistry - general circulation model. Comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Hein, R.; Dameris, M.; Schnadt, C. [and others

    2000-01-01

    An interactively coupled climate-chemistry model which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks is presented. This is the first model, which interactively combines a general circulation model based on primitive equations with a rather complex model of stratospheric and tropospheric chemistry, and which is computational efficient enough to allow long-term integrations with currently available computer resources. The applied model version extends from the Earth's surface up to 10 hPa with a relatively high number (39) of vertical levels. We present the results of a present-day (1990) simulation and compare it to available observations. We focus on stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. The current model version ECHAM4.L39(DLR)/CHEM can realistically reproduce stratospheric dynamics in the Arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to formerly applied model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their interhemispheric differences are reproduced. The consideration of the chemistry feedback on dynamics results in an improved representation of the spatial distribution of stratospheric water vapor concentrations, i.e., the simulated meriodional water vapor gradient in the stratosphere is realistic. The present model version constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic trace gas emissions, and the future evolution of the ozone layer. (orig.)

  9. Interannual modes of variability of Southern Hemisphere atmospheric circulation in CMIP3 models

    International Nuclear Information System (INIS)

    Grainger, S; Frederiksen, C S; Zheng, X

    2010-01-01

    The atmospheric circulation acts as a bridge between large-scale sources of climate variability, and climate variability on regional scales. Here a statistical method is applied to monthly mean Southern Hemisphere 500hPa geopotential height to separate the interannual variability of the seasonal mean into intraseasonal and slowly varying (time scales of a season or longer) components. Intraseasonal and slow modes of variability are estimated from realisations of models from the Coupled Model Intercomparison Project Phase 3 (CMIP3) twentieth century coupled climate simulation (20c3m) and are evaluated against those estimated from reanalysis data. The intraseasonal modes of variability are generally well reproduced across all CMIP3 20c3m models for both Southern Hemisphere summer and winter. The slow modes are in general less well reproduced than the intraseasonal modes, and there are larger differences between realisations than for the intraseasonal modes. New diagnostics are proposed to evaluate model variability. It is found that differences between realisations from each model are generally less than inter-model differences. Differences between model-mean diagnostics are found. The results obtained are applicable to assessing the reliability of changes in atmospheric circulation variability in CMIP3 models and for their suitability for further studies of regional climate variability.

  10. Forcing mechanisms of the Bay of Bengal circulation

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; Shetye, S.R.; Sengupta, D.; Gadgil, S.

    A state-of-the-art ocean general circulation model, set up for the North Indian Ocean and driven by climatological wind stress simulates most of the observed features of the near-surface circulation of the Bay of Bengal. The prominent features...

  11. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection

    Energy Technology Data Exchange (ETDEWEB)

    Hourdin, Frederic; Musat, Ionela; Bony, Sandrine; Codron, Francis; Dufresne, Jean-Louis; Fairhead, Laurent; Grandpeix, Jean-Yves; LeVan, Phu; Li, Zhao-Xin; Lott, Francois [CNRS/UPMC, Laboratoire de Meteorologie Dynamique (LMD/IPSL), Paris Cedex 05 (France); Braconnot, Pascale; Friedlingstein, Pierre [Laboratoire des Sciences du Climat et de l' Environnement (LSCE/IPSL), Saclay (France); Filiberti, Marie-Angele [Institut Pierre Simon Laplace (IPSL), Paris (France); Krinner, Gerhard [Laboratoire de Glaciologie et Geophysique de l' Environnement, Grenoble (France)

    2006-12-15

    The LMDZ4 general circulation model is the atmospheric component of the IPSL-CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley-Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke's convection scheme, used in previous versions, the Emanuel's scheme improves the representation of the Hadley-Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke's parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model. (orig.)

  12. Modelling raster-based monthly water balance components for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ulmen, C.

    2000-11-01

    The terrestrial runoff component is a comparatively small but sensitive and thus significant quantity in the global energy and water cycle at the interface between landmass and atmosphere. As opposed to soil moisture and evapotranspiration which critically determine water vapour fluxes and thus water and energy transport, it can be measured as an integrated quantity over a large area, i.e. the river basin. This peculiarity makes terrestrial runoff ideally suited for the calibration, verification and validation of general circulation models (GCMs). Gauging stations are not homogeneously distributed in space. Moreover, time series are not necessarily continuously measured nor do they in general have overlapping time periods. To overcome this problems with regard to regular grid spacing used in GCMs, different methods can be applied to transform irregular data to regular so called gridded runoff fields. The present work aims to directly compute the gridded components of the monthly water balance (including gridded runoff fields) for Europe by application of the well-established raster-based macro-scale water balance model WABIMON used at the Federal Institute of Hydrology, Germany. Model calibration and validation is performed by separated examination of 29 representative European catchments. Results indicate a general applicability of the model delivering reliable overall patterns and integrated quantities on a monthly basis. For time steps less then too weeks further research and structural improvements of the model are suggested. (orig.)

  13. Radionuclide analyses taken during primary coolant decontamination at Three Mile Island indicate general circulation

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Baston, V.F.; Hitz, C.G.; Malinauskas, A.P.

    1983-01-01

    Radionuclide concentration data taken during decontamination of the primary reactor coolant system at Three Mile Island by a feed-and-bleed process have provided information on future defueling operations. Analysis of the radiocesium concentrations in samples taken at the letdown point indicates general circulation within the primary system, including the reactor vessel and both steam generators. A standard dilution model with parameters consistent with engineering estimates (volume, flow rate, etc.) accurately predicts the radiocesium decontamination rates. Unlike cesium, the behavior of other principal soluble radionuclides ( 90 Sr and 3 H) cannot be readily described by dilution theory. A significant appearance rate is observed for 90 Sr suggesting a chemical solubility mechanism. The use of processed water containing high 3 H for makeup causes uncertainty in the interpretation of the 3 H analysis

  14. Modelling the Seasonal Overturning Circulation in the Red Sea

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry; Bower, Amy; Koehl, Armin; Gopalakrishnan, Ganesh

    2015-01-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using 50-year, high-resolution MIT general circulation model simulations. The seasonal water exchange in the Strait of Bab el Mandeb

  15. The annual cycle of stratospheric water vapor in a general circulation model

    Science.gov (United States)

    Mote, Philip W.

    1995-01-01

    The application of general circulation models (GCM's) to stratospheric chemistry and transport both permits and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the Community Climate Model (CCM2), to enable studies of the chemistry and transport of tracers including water vapor; the importance of water vapor to the climate and chemistry of the stratosphere requires that it be better understood in the atmosphere and well represented in the model. In this study, methane is carried as a tracer and converted to water; this simple chemistry provides an adequate representation of the upper stratospheric water vapor source. The cold temperature bias in the winter polar stratosphere, which the CCM2 shares with other GCM's, produces excessive dehydration in the southern hemisphere, but this dry bias can be ameliorated by setting a minimum vapor pressure. The CCM2's water vapor distribution and seasonality compare favorably with observations in many respects, though seasonal variations including the upper stratospheric semiannual oscillation are generally too small. Southern polar dehydration affects midlatitude water vapor mixing ratios by a few tenths of a part per million, mostly after the demise of the vortex. The annual cycle of water vapor in the tropical and northern midlatitude lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a longer adjustment time than methane and had not reached equilibrium at the end of the 9 years simulated here.

  16. Circulation in the Mediterranean Sea: evidences, debates and unanswered questions

    Directory of Open Access Journals (Sweden)

    Claude Millot

    2005-06-01

    Full Text Available The overall counterclockwise alongslope circulation of Atlantic Water (AW in the western basin of the Mediterranean Sea is now generally accepted. As the eastern basin displays similar general features, why is it generally assumed to function in a different way, and why is AW now said to circulate across the interior of the eastern basin? Relatively huge mesoscale anticyclonic eddies induced by the instability of the AW circulation in the south of the western basin have lifetimes up to several years. It is possible that they extend down to the sea bottom and play a major role in the distribution of all water masses. Why have apparently similar eddies generated in the eastern basin never received specific attention? Once formed, Mediterranean Waters (MWs must spread and circulate before outflowing. Why have simple dynamical arguments for understanding the circulation of AW, such as the Coriolis effect, rarely been considered for the circulation of MWs? In this paper we address these major aspects of water circulation in the Mediterranean Sea. In order to be as objective and convincing as possible, and to write a paper that can be understood by as broad a readership as possible, we have chosen to present only raw data sets that can be easily interpreted by the reader without any help from the author. Based on the evidence provided by these data sets, we specify the current debates and list what we think are the main unanswered questions.

  17. Late Posthemorrhagic Structural and Functional Changes in Pulmonary Circulation Arteries

    Directory of Open Access Journals (Sweden)

    S. A. Andreyeva

    2008-01-01

    Full Text Available Objective: to reveal the major regularities and mechanisms of morphological changes in the rat pulmonary circulation arteries in the late posthemorrhagic period and to compare them with age-related features of the vessels. Materials and methods: experiments to generate graduated hemorrhagic hypotension with the blood pressure being maintained at 40 mm Hg were carried out on young (5—6-month albino male Wistar rats. Throughout hypotension and 60 days after blood loss, the blood was tested to determine low and average molecular-weight substances by spectrophotometry and the pro- and antioxidative systems by chemiluminescence. Pulmonary circulation arteries were morphologically studied in young animals, rats in the late posthemorrhagic period and old (24—25-month rats. Results. Sixty-minute hemorrhagic hypotension leads to the development of endotoxemia and imbalance of the pro- and antioxidative systems, the signs of which are observed in the late periods (2 months after hypotension. At the same time, the posthemorrhagic period is marked by the significant pulmonary circulation arterial morphological changes comparable with their age-related alterations in old rat. This shows up mainly in the reorganization of a connective tissue component in the vascular wall: the elevated levels of individual collagen fibers, their structural changes, elastic medial membrane destruction and deformity. At the same time, there is a change in the morphometric parameters of vessels at all study stages while their lowered flow capacity is only characteristic for intraorgan arteries. Conclusion: The increased activity of free radical oxidation and endotoxemia may be believed to be one of the causes of morphological changes in pulmonary circulation arteries in the late posthemorrhagic period, which is similar to age-related vascular alterations. Key words: hemorrhagic hypotension, pulmonary circulation arteries, free radical oxidation, endotoxemia, remodeling, late

  18. Arctic Ocean surface geostrophic circulation 2003–2014

    Directory of Open Access Journals (Sweden)

    T. W. K. Armitage

    2017-07-01

    Full Text Available Monitoring the surface circulation of the ice-covered Arctic Ocean is generally limited in space, time or both. We present a new 12-year record of geostrophic currents at monthly resolution in the ice-covered and ice-free Arctic Ocean derived from satellite radar altimetry and characterise their seasonal to decadal variability from 2003 to 2014, a period of rapid environmental change in the Arctic. Geostrophic currents around the Arctic basin increased in the late 2000s, with the largest increases observed in summer. Currents in the southeastern Beaufort Gyre accelerated in late 2007 with higher current speeds sustained until 2011, after which they decreased to speeds representative of the period 2003–2006. The strength of the northwestward current in the southwest Beaufort Gyre more than doubled between 2003 and 2014. This pattern of changing currents is linked to shifting of the gyre circulation to the northwest during the time period. The Beaufort Gyre circulation and Fram Strait current are strongest in winter, modulated by the seasonal strength of the atmospheric circulation. We find high eddy kinetic energy (EKE congruent with features of the seafloor bathymetry that are greater in winter than summer, and estimates of EKE and eddy diffusivity in the Beaufort Sea are consistent with those predicted from theoretical considerations. The variability of Arctic Ocean geostrophic circulation highlights the interplay between seasonally variable atmospheric forcing and ice conditions, on a backdrop of long-term changes to the Arctic sea ice–ocean system. Studies point to various mechanisms influencing the observed increase in Arctic Ocean surface stress, and hence geostrophic currents, in the 2000s – e.g. decreased ice concentration/thickness, changing atmospheric forcing, changing ice pack morphology; however, more work is needed to refine the representation of atmosphere–ice–ocean coupling in models before we can fully

  19. Stable isotopes of fossil teeth corroborate key general circulation model predictions for the Last Glacial Maximum in North America

    Science.gov (United States)

    Kohn, Matthew J.; McKay, Moriah

    2010-11-01

    Oxygen isotope data provide a key test of general circulation models (GCMs) for the Last Glacial Maximum (LGM) in North America, which have otherwise proved difficult to validate. High δ18O pedogenic carbonates in central Wyoming have been interpreted to indicate increased summer precipitation sourced from the Gulf of Mexico. Here we show that tooth enamel δ18O of large mammals, which is strongly correlated with local water and precipitation δ18O, is lower during the LGM in Wyoming, not higher. Similar data from Texas, California, Florida and Arizona indicate higher δ18O values than in the Holocene, which is also predicted by GCMs. Tooth enamel data closely validate some recent models of atmospheric circulation and precipitation δ18O, including an increase in the proportion of winter precipitation for central North America, and summer precipitation in the southern US, but suggest aridity can bias pedogenic carbonate δ18O values significantly.

  20. Periodontitis and increase in circulating oxidative stress

    Directory of Open Access Journals (Sweden)

    Takaaki Tomofuji

    2009-05-01

    Full Text Available Reactive oxygen species (ROS are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress. Such oxidation may be detrimental to systemic health. For instance, previous animal studies suggested that experimental periodontitis induces oxidative damage of the liver and descending aorta by increasing circulating oxidative stress. In addition, it has been revealed that clinical parameters in chronic periodontitis patients showed a significant improvement 2 months after periodontal treatment, which was accompanied by a significant reduction of reactive oxygen metabolites in plasma. Improvement of periodontitis by periodontal treatment could reduce the occurrence of circulating oxidative stress. Furthermore, recent studies indicate that the increase in circulating oxidative stress following diabetes mellitus and inappropriate nutrition damages periodontal tissues. In such cases, therapeutic approaches to systemic oxidative stress might be necessary to improve periodontal health.

  1. The Hamburg large scale geostrophic ocean general circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Mikolajewicz, U.

    1992-02-01

    The rationale for the Large Scale Geostrophic ocean circulation model (LSG-OGCM) is based on the observations that for a large scale ocean circulation model designed for climate studies, the relevant characteristic spatial scales are large compared with the internal Rossby radius throughout most of the ocean, while the characteristic time scales are large compared with the periods of gravity modes and barotropic Rossby wave modes. In the present version of the model, the fast modes have been filtered out by a conventional technique of integrating the full primitive equations, including all terms except the nonlinear advection of momentum, by an implicit time integration method. The free surface is also treated prognostically, without invoking a rigid lid approximation. The numerical scheme is unconditionally stable and has the additional advantage that it can be applied uniformly to the entire globe, including the equatorial and coastal current regions. (orig.)

  2. Influence of various forcings on global climate in historical times using a coupled atmosphere-ocean general circulation model

    DEFF Research Database (Denmark)

    Stendel, Martin; Mogensen, Irene A.; Christensen, Jens H.

    2006-01-01

    The results of a simulation of the climate of the last five centuries with a state-of-the-art coupled atmosphere-ocean general circulation model are presented. The model has been driven with most relevant forcings, both natural (solar variability, volcanic aerosol) and anthropogenic (greenhouse...... gases, sulphate aerosol, land-use changes). In contrast to previous GCM studies, we have taken into account the latitudinal dependence of volcanic aerosol and the changing land cover for a period covering several centuries. We find a clear signature of large volcanic eruptions in the simulated...

  3. A Circulating microRNA Signature Predicts Age-Based Development of Lymphoma.

    Directory of Open Access Journals (Sweden)

    Afshin Beheshti

    Full Text Available Extensive epidemiological data have demonstrated an exponential rise in the incidence of non-Hodgkin lymphoma (NHL that is associated with increasing age. The molecular etiology of this remains largely unknown, which impacts the effectiveness of treatment for patients. We proposed that age-dependent circulating microRNA (miRNA signatures in the host influence diffuse large B cell lymphoma (DLBCL development. Our objective was to examine tumor development in an age-based DLBCL system using an inventive systems biology approach. We harnessed a novel murine model of spontaneous DLBCL initiation (Smurf2-deficient at two age groups: 3 and 15 months old. All Smurf2-deficient mice develop visible DLBCL tumor starting at 15 months of age. Total miRNA was isolated from serum, bone marrow and spleen and were collected for all age groups for Smurf2-deficient mice and age-matched wild-type C57BL/6 mice. Using systems biology techniques, we identified a list of 10 circulating miRNAs being regulated in both the spleen and bone marrow that were present in DLBCL forming mice starting at 3 months of age that were not present in the control mice. Furthermore, this miRNA signature was found to occur circulating in the blood and it strongly impacted JUN and MYC oncogenic signaling. In addition, quantification of the miRNA signature was performed via Droplet Digital PCR technology. It was discovered that a key miRNA signature circulates throughout a host prior to the formation of a tumor starting at 3 months old, which becomes further modulated by age and yielded calculation of a 'carcinogenic risk score'. This novel age-based circulating miRNA signature may potentially be leveraged as a DLBCL risk profile at a young age to predict future lymphoma development or disease progression as well as for potential innovative miRNA-based targeted therapeutic strategies in lymphoma.

  4. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings. Such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  5. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Zhai, Ping; Kö hl, Armin; Gopalakrishnan, Ganesh

    2014-01-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  6. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  7. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  8. A 1260-year control integration with the coupled ECHAM1/LSG general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Storch, J.S. von [Hamburg Univ. (Germany). Meteorologisches Inst.; Kharin, V [Canadian Climate Centre, Victoria, BC (Canada); Cubasch, U [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Hegerl, G C [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Schriever, D [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Storch, H von [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik; Zorita, E [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    1996-05-01

    A 1260-year integration generated by the ECHAM1/LSG coupled atmosphere-ocean general circulation model is analyzed in this paper. The analysis focuses on the time evolution of the model atmosphere and the model ocean, and on the variations of the final quasi-stationary atmosphere-ocean system. The evolution of the coupled system is affected by the globally integrated fluxes of heat and fresh water, the coupling shock induced by different types of fluxes prior to and after the coupling, and the insufficient spin-up of the deep ocean prior to the coupling. It is suggested that the flux correction with its unsatisfactory formulation over sea ice areas does not play the crucial role in causing the initial drift of the system. The main question concerning the atmospheric variations is whether the spatial structures of variations on short time scales are similar to those on long time scales. The answer to this question is yes. The questions concerning the oceanic variations are what are their dominant modes and to what extent are variations of different parts of the oceanic circulation related to each other. It is shown that the dominant oceanic variations are located in the North Pacific and at the southern flank of the mean position of the Antarctic Circumpolar Current and in the areas where deep water from three oceans meets the Antarctic Circumpolar Current. A correlation analysis indicates further that an anomalous outflow from (inflow into) the deep Atlantic is related to an anomalous outflow from (inflow into) the deep Indian Ocean and an anomalous eastward (westward) flow along the Antarctic coast. (orig.)

  9. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  10. Numerical simulation of the circulation of the atmosphere of Titan

    Science.gov (United States)

    Hourdin, F.; Levan, P.; Talagrand, O.; Courtin, Regis; Gautier, Daniel; Mckay, Christopher P.

    1992-01-01

    A three dimensional General Circulation Model (GCM) of Titan's atmosphere is described. Initial results obtained with an economical two dimensional (2D) axisymmetric version of the model presented a strong superrotation in the upper stratosphere. Because of this result, a more general numerical study of superrotation was started with a somewhat different version of the GCM. It appears that for a slowly rotating planet which strongly absorbs solar radiation, circulation is dominated by global equator to pole Hadley circulation and strong superrotation. The theoretical study of this superrotation is discussed. It is also shown that 2D simulations systemically lead to instabilities which make 2D models poorly adapted to numerical simulation of Titan's (or Venus) atmosphere.

  11. Grazing Affects Exosomal Circulating MicroRNAs in Cattle

    Science.gov (United States)

    Muroya, Susumu; Ogasawara, Hideki; Hojito, Masayuki

    2015-01-01

    Circulating microRNAs (c-miRNAs) are associated with physiological adaptation to acute and chronic aerobic exercise in humans. To investigate the potential effect of grazing movement on miRNA circulation in cattle, here we profiled miRNA expression in centrifugally prepared exosomes from the plasma of both grazing and housed Japanese Shorthorn cattle. Microarray analysis of the c-miRNAs resulted in detection of a total of 231 bovine exosomal miRNAs in the plasma, with a constant expression level of let-7g across the duration and cattle groups. Expression of muscle-specific miRNAs such as miR-1, miR-133a, miR-206, miR-208a/b, and miR-499 were undetectable, suggesting the mildness of grazing movement as exercise. According to validation by quantitative RT-PCR, the circulating miR-150 level in the grazing cattle normalized by the endogenous let-7g level was down-regulated after 2 and 4 months of grazing (P cattle equalized when the grazing cattle were returned to a housed situation. Likewise, the levels of miR-19b, miR-148a, miR-221, miR-223, miR-320a, miR-361, and miR-486 were temporarily lowered in the cattle at 1 and/or 2 month of grazing compared to those of the housed cattle (P cattle at 2 months of grazing (P = 0.044). The elevation of miR-451 level in the plasma was coincident with that in the biceps femoris muscle of the grazing cattle (P = 0.008), which suggests the secretion or intake of miR-451 between skeletal muscle cells and circulation during grazing. These results revealed that exosomal c-miRNAs in cattle were affected by grazing, suggesting their usefulness as molecular grazing markers and functions in physiological adaptation of grazing cattle associated with endocytosis, focal adhesion, axon guidance, and a variety of intracellular signaling, as predicted by bioinformatic analysis. PMID:26308447

  12. Spectrum Analysis of Inertial and Subinertial Motions Based on Analyzed Winds and Wind-Driven Currents from a Primitive Equation General Ocean Circulation Model.

    Science.gov (United States)

    1982-12-01

    1Muter.Te Motions Based on Ana lyzed Winds and wind-driven December 1982 Currents from. a Primitive Squat ion General a.OW -love"*..* Oean Circulation...mew se"$ (comeS.... do oISN..u am ae~ 00do OWaor NUN Fourier and Rotary Spc , Analysis Modeled Inertial and Subinrtial Motion 4 Primitive Equation

  13. Surface energy balances of three general circulation models: Current climate and response to increasing atmospheric CO2

    International Nuclear Information System (INIS)

    Gutowski, W.J.; Gutzler, D.S.; Portman, D.; Wang, W.C.

    1988-04-01

    The surface energy balance simulated by state-of-the-art general circulation models at GFDL, GISS and NCAR for climates with current levels of atmospheric CO 2 concentration (control climate) and with twice the current levels. The work is part of an effort sponsored by the US Department of Energy to assess climate simulations produced by these models. The surface energy balance enables us to diagnose differences between models in surface temperature climatology and sensitivity to doubling CO 2 in terms of the processes that control surface temperature. Our analysis compares the simulated balances by averaging the fields of interest over a hierarchy of spatial domains ranging from the entire globe down to regions a few hundred kilometers across

  14. On the intra-seasonal variability within the extratropics in a general circulation model and observational data

    International Nuclear Information System (INIS)

    May, W.; Bengtsson, L.

    1994-01-01

    There are various phenomena on different spatial and temporal scales contributing to the intra-seasonal variability within the extratropics. One may notice higher-frequency baroclinic disturbances affecting the day-to-day variability of the atmosphere. But one finds also low-frequency fluctuations on a typical time scale of a few weeks. Blocking anticyclones are probably the most prominent example of such features. These fluctuations on different scales, however, are influencing each other, in particular the temporal evolution and spatial distribution. There has been observational work on various phenomena contributing to the intra-seasonal variability for a long time. In the last decade or so, however, with the increasing importance of General Circulation Models there have been some studies dealing with the intra-seasonal variability as simulated by these models

  15. Development and implementation of a Variable Infiltration Capacity model of surface hydrology into the General Circulation Model

    International Nuclear Information System (INIS)

    Lettenmaier, D.P.; Stamm, J.F.; Wood, E.F.

    1993-04-01

    A Variable Infiltration Capacity (VIC) model is described for the representation of land surface hydrology in General Circulation Models (GCMs). The VIC model computes runoff as a function of the distribution of soil moisture capacity within a GCM grid cell. The major distinguishing feature of the VIC model relative to the bucket model currently used to represent the land surface in many GCMs is that it parameterizes the nonlinearity of the fraction of precipitation that infiltrates over a large area (hence the production of direct runoff) as a function of spatial average soil moisture storage, and that it models subsurface runoff between storms via a simple recession mechanism. The VIC model was incorporated into the Geophysical Fluid Dynamics Laboratory (GFDL) GCM at R15 resolution (roughly 4.5 degrees latitude by 7.5 degrees longitude). Ten-year simulations of global climate were produced using the GFDL GCM with both VIC land surface hydrology, and, for comparison purposes, the standard bucket representation. Comparison of the ten year runs using the VIC model with those using bucket hydrology showed that for the VIC run, global average runoff increased, soil moisture decreased, evaporation decreased, land surface temperature increased, and precipitation decreased. As expected, changes in precipitation occurred primarily over the continents, especially in the northern hemisphere. Changes in the surface water balance for Africa, Australia, and South America were much less than for North American and Eurasia. Both VIC and bucket simulations of surface air temperature and precipitation were compared with gridded monthly average observation fields. These comparisons indicated that the VIC hydrology reproduced winter temperatures better, and summer temperatures worse, than the bucket model. The VIC hydrology better represented global precipitation, primarily as a result of partially reducing the upward bias in precipitation associated with the GFDL R15 bucket runs

  16. The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, Kenneth R. [Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison, Livermore, CA (United States); Gualdi, Silvio [National Institute of Geophysics and Volcanology, Bologna (Italy); Legutke, Stephanie; Gayler, Veronika [Max Planck Institute of Meteorology, Models and Data Group, Hamburg (Germany)

    2005-08-01

    The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30-70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space-time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which 100 years of daily data is available, Monte Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of 0.5 C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air-sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat flux anomalies

  17. Effect of general anaesthesia on functional outcome in patients with anterior circulation ischaemic stroke having endovascular thrombectomy versus standard care: a meta-analysis of individual patient data

    NARCIS (Netherlands)

    Campbell, Bruce C. V.; van Zwam, Wim H.; Goyal, Mayank; Menon, Bijoy K.; Dippel, Diederik W. J.; Demchuk, Andrew M.; Bracard, Serge; White, Philip; Dávalos, Antoni; Majoie, Charles B. L. M.; van der Lugt, Aad; Ford, Gary A.; de la Ossa, Natalia Pérez; Kelly, Michael; Bourcier, Romain; Donnan, Geoffrey A.; Roos, Yvo B. W. E. M.; Bang, Oh Young; Nogueira, Raul G.; Devlin, Thomas G.; van den Berg, Lucie A.; Clarençon, Frédéric; Burns, Paul; Carpenter, Jeffrey; Berkhemer, Olvert A.; Yavagal, Dileep R.; Pereira, Vitor Mendes; Ducrocq, Xavier; Dixit, Anand; Quesada, Helena; Epstein, Jonathan; Davis, Stephen M.; Jansen, Olav; Rubiera, Marta; Urra, Xabier; Nederkoorn, Paul J.; Emmer, Bart J.; Bot, Joseph C. J.; Marquering, Henk A.; Sprengers, Marieke E. S.; Beenen, Ludo F. M.; van den Berg, René; Fleitour, Nadine; Santos, Emilie; Borst, Jordi; Jansen, Ivo; Kappelhof, Manon; Lucas, Marit; Barros, Renan Sales; Koch, S.

    2018-01-01

    Background General anaesthesia (GA) during endovascular thrombectomy has been associated with worse patient outcomes in observational studies compared with patients treated without GA. We assessed functional outcome in ischaemic stroke patients with large vessel anterior circulation occlusion

  18. Cloud-turbulence interactions: Sensitivity of a general circulation model to closure assumptions

    International Nuclear Information System (INIS)

    Brinkop, S.; Roeckner, E.

    1993-01-01

    Several approaches to parameterize the turbulent transport of momentum, heat, water vapour and cloud water for use in a general circulation model (GCM) have been tested in one-dimensional and three-dimensional model simulations. The schemes differ with respect to their closure assumptions (conventional eddy diffusivity model versus turbulent kinetic energy closure) and also regarding their treatment of cloud-turbulence interactions. The basis properties of these parameterizations are discussed first in column simulations of a stratocumulus-topped atmospheric boundary layer (ABL) under a strong subsidence inversion during the KONTROL experiment in the North Sea. It is found that the K-models tend to decouple the cloud layer from the adjacent layers because the turbulent activity is calculated from local variables. The higher-order scheme performs better in this respect because internally generated turbulence can be transported up and down through the action of turbulent diffusion. Thus, the TKE-scheme provides not only a better link between the cloud and the sub-cloud layer but also between the cloud and the inversion as a result of cloud-top entrainment. In the stratocumulus case study, where the cloud is confined by a pronounced subsidence inversion, increased entrainment favours cloud dilution through enhanced evaporation of cloud droplets. In the GCM study, however, additional cloud-top entrainment supports cloud formation because indirect cloud generating processes are promoted through efficient ventilation of the ABL, such as the enhanced moisture supply by surface evaporation and the increased depth of the ABL. As a result, tropical convection is more vigorous, the hydrological cycle is intensified, the whole troposphere becomes warmer and moister in general and the cloudiness in the upper part of the ABL is increased. (orig.)

  19. Dynamics and transport in the stratosphere : Simulations with a general circulation mode

    Science.gov (United States)

    van Aalst, Maarten Krispijn

    2005-01-01

    The middle atmosphere is strongly affected by two of the world's most important environmental problems: global climate change and stratospheric ozone depletion, caused by anthropogenic emissions of greenhouse gases and chlorofluorocarbons (CFCs), respectively. General circulation models with coupled chemistry are a key tool to advance our understanding of the complex interplay between dynamics, chemistry and radiation in the middle atmosphere. A key problem of such models is that they generate their own meteorology, and thus cannot be used for comparisons with instantaneous measurements. This thesis presents the first application of a simple data assimilation method, Newtonian relaxation, to reproduce realistic synoptical conditions in a state-of-the-art middle atmosphere general circulation model, MA-ECHAM. By nudging the model's meteorology slightly towards analyzed observations from a weather forecasting system (ECMWF), we have simulated specific atmospheric processes during particular meteorological episodes, such as the 1999/2000 Arctic winter. The nudging technique is intended to interfere as little as possible with the model's own dynamics. In fact, we found that we could even limit the nudging to the troposphere, leaving the middle atmosphere entirely free. In that setup, the model realistically reproduced many aspects of the instantaneous meteorology of the middle atmosphere, such as the unusually early major warming and breakup of the 2002 Antarctic vortex. However, we found that this required careful interpolation of the nudging data, and a correct choice of nudging parameters. We obtained the best results when we first projected the nudging data onto the model's normal modes so that we could filter out the (spurious) fast components. In a four-year simulation, for which we also introduced an additional nudging of the stratospheric quasi-biennial oscillation, we found that the model reproduced much of the interannual variability throughout the

  20. Dynamic Regulation of Circulating microRNAs During Acute Exercise and Long-Term Exercise Training in Basketball Athletes

    Directory of Open Access Journals (Sweden)

    Yongqin Li

    2018-03-01

    Full Text Available Emerging evidence indicates the beneficial effects of physical exercise on human health, which depends on the intensity, training time, exercise type, environmental factors, and the personal health status. Conventional biomarkers provide limited insight into the exercise-induced adaptive processes. Circulating microRNAs (miRNAs, miRs are dynamically regulated in response to acute exhaustive exercise and sustained rowing, running and cycling exercises. However, circulating miRNAs in response to long-term basketball exercise remains unknown. Here, we enrolled 10 basketball athletes who will attend a basketball season for 3 months. Specifically, circulating miRNAs which were involved in angiogenesis, inflammation and enriched in muscle and/or cardiac tissues were analyzed at baseline, immediately following acute exhaustive exercise and after 3-month basketball matches in competitive male basketball athletes. Circulating miR-208b was decreased and miR-221 was increased after 3-month basketball exercise, while circulating miR-221, miR-21, miR-146a, and miR-210 were reduced at post-acute exercise. The change of miR-146a (baseline vs. post-acute exercise showed linear correlations with baseline levels of cardiac marker CKMB and the changes of inflammation marker Hs-CRP (baseline vs. post-acute exercise. Besides, linear correlation was observed between miR-208b changes (baseline vs. after long-term exercise and AT VO2 (baseline. The changes of miR-221 (baseline vs. after long-term exercise were significantly correlated with AT VO2, peak work load and CK (after 3-month basketball matches. Although further studies are needed, present findings set the stage for defining circulating miRNAs as biomarkers and suggesting their physiological roles in long-term exercise training induced cardiovascular adaptation.

  1. Dynamic Regulation of Circulating microRNAs During Acute Exercise and Long-Term Exercise Training in Basketball Athletes.

    Science.gov (United States)

    Li, Yongqin; Yao, Mengchao; Zhou, Qiulian; Cheng, Yan; Che, Lin; Xu, Jiahong; Xiao, Junjie; Shen, Zhongming; Bei, Yihua

    2018-01-01

    Emerging evidence indicates the beneficial effects of physical exercise on human health, which depends on the intensity, training time, exercise type, environmental factors, and the personal health status. Conventional biomarkers provide limited insight into the exercise-induced adaptive processes. Circulating microRNAs (miRNAs, miRs) are dynamically regulated in response to acute exhaustive exercise and sustained rowing, running and cycling exercises. However, circulating miRNAs in response to long-term basketball exercise remains unknown. Here, we enrolled 10 basketball athletes who will attend a basketball season for 3 months. Specifically, circulating miRNAs which were involved in angiogenesis, inflammation and enriched in muscle and/or cardiac tissues were analyzed at baseline, immediately following acute exhaustive exercise and after 3-month basketball matches in competitive male basketball athletes. Circulating miR-208b was decreased and miR-221 was increased after 3-month basketball exercise, while circulating miR-221, miR-21, miR-146a, and miR-210 were reduced at post-acute exercise. The change of miR-146a (baseline vs. post-acute exercise) showed linear correlations with baseline levels of cardiac marker CKMB and the changes of inflammation marker Hs-CRP (baseline vs. post-acute exercise). Besides, linear correlation was observed between miR-208b changes (baseline vs. after long-term exercise) and AT VO 2 (baseline). The changes of miR-221 (baseline vs. after long-term exercise) were significantly correlated with AT VO 2 , peak work load and CK (after 3-month basketball matches). Although further studies are needed, present findings set the stage for defining circulating miRNAs as biomarkers and suggesting their physiological roles in long-term exercise training induced cardiovascular adaptation.

  2. Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model

    Science.gov (United States)

    2012-05-31

    paper aooo not violate: any Oisclosur~,;·of trade• secrets or suggestions of outside individuals on::oncams whiCh have· beE !n communicated 1.o...fully three- dimensional global ocean circulation model, we will provide an internal tide capability everywhere, and allow nested models to include

  3. Weather regimes in past climate atmospheric general circulation model simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kageyama, M.; Ramstein, G. [CEA Saclay, Gif-sur-Yvette (France). Lab. des Sci. du Climat et de l' Environnement; D' Andrea, F.; Vautard, R. [Laboratoire de Meteorologie Dynamique, Ecole Normale Superieure, Paris (France); Valdes, P.J. [Department of Meteorology, University of Reading (United Kingdom)

    1999-10-01

    We investigate the climates of the present-day, inception of the last glaciation (115000 y ago) and last glacial maximum (21000 y ago) in the extratropical north Atlantic and Europe, as simulated by the laboratoire de Meteorologie dynamique atmospheric general circulation model. We use these simulations to investigate the low-frequency variability of the model in different climates. The aim is to evaluate whether changes in the intraseasonal variability, which we characterize using weather regimes, can help describe the impact of different boundary conditions on climate and give a better understanding of climate change processes. Weather regimes are defined as the most recurrent patterns in the 500 hPa geopotential height, using a clustering algorithm method. The regimes found in the climate simulations of the present-day and inception of the last glaciation are similar in their number and their structure. It is the regimes' populations which are found to be different for these climates, with an increase of the model's blocked regime and a decrease in the zonal regime at the inception of the last glaciation. This description reinforces the conclusions from a study of the differences between the climatological averages of the different runs and confirms the northeastward shift to the tail of the Atlantic storm-track, which would favour more precipitation over the site of growth of the Fennoscandian ice-sheet. On the other hand, the last glacial maximum results over this sector are not found to be classifiable, showing that the change in boundary conditions can be responsible for severe changes in the weather regime and low-frequency dynamics. The LGM Atlantic low-frequency variability appears to be dominated by a large-scale retrogressing wave with a period 40 to 50 days. (orig.)

  4. Multi-year predictability in a coupled general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Power, Scott; Colman, Rob [Bureau of Meteorology Research Centre, Melbourne, VIC (Australia)

    2006-02-01

    Multi-year to decadal variability in a 100-year integration of a BMRC coupled atmosphere-ocean general circulation model (CGCM) is examined. The fractional contribution made by the decadal component generally increases with depth and latitude away from surface waters in the equatorial Indo-Pacific Ocean. The relative importance of decadal variability is enhanced in off-equatorial ''wings'' in the subtropical eastern Pacific. The model and observations exhibit ''ENSO-like'' decadal patterns. Analytic results are derived, which show that the patterns can, in theory, occur in the absence of any predictability beyond ENSO time-scales. In practice, however, modification to this stochastic view is needed to account for robust differences between ENSO-like decadal patterns and their interannual counterparts. An analysis of variability in the CGCM, a wind-forced shallow water model, and a simple mixed layer model together with existing and new theoretical results are used to improve upon this stochastic paradigm and to provide a new theory for the origin of decadal ENSO-like patterns like the Interdecadal Pacific Oscillation and Pacific Decadal Oscillation. In this theory, ENSO-driven wind-stress variability forces internal equatorially-trapped Kelvin waves that propagate towards the eastern boundary. Kelvin waves can excite reflected internal westward propagating equatorially-trapped Rossby waves (RWs) and coastally-trapped waves (CTWs). CTWs have no impact on the off-equatorial sub-surface ocean outside the coastal wave guide, whereas the RWs do. If the frequency of the incident wave is too high, then only CTWs are excited. At lower frequencies, both CTWs and RWs can be excited. The lower the frequency, the greater the fraction of energy transmitted to RWs. This lowers the characteristic frequency of variability off the equator relative to its equatorial counterpart. Both the eastern boundary interactions and the accumulation of

  5. Simulations of future climate with a coupled atmosphere-ocean general circulation model

    International Nuclear Information System (INIS)

    Stendel, M.; Schmith, T.; Hesselbjerg Christensen, J.

    2001-01-01

    A coupled atmosphere/ocean general circulation model to study the time-dependent climate response to changing concentrations of greenhouse gases, chlorofluorocarbons and aerosols according to the new IPCC SRES scenarios A2 and B2 has been used. The results of these experiments are compared to an unforced 300-year control experiment. The changes in the last three decades of the scenario simulations (2071-2100) are furthermore compared to the simulation of present-day climate (1961-1990). In accordance with previous experiments we find that greenhouse warming is reduced when aerosol effects are considered. Sulfur emissions, however, are lower than in the IS92a scenario. Consequently, the greenhouse warming effect, which leads to a bigger temperature increase than in the GSDIO experiment can outweigh the aerosol cooling effect. The result shows that there still are serious difficulties and uncertainties in this type of model simulation. Those are partially due to oversimplifications in the model, concerning the radiative properties of aerosols in particular, and therefore the indirect aerosol effect. Another inherent problem, however, is the uncertainty in the scenarios themselves. This is the case for short-lived substances with an inhomogeneous spatial and temporal distribution, such as aerosols. Therefore, on a decadal horizon, changes in the emissions of those substance can exert a significant effect on anthropogenic climate change. (LN)

  6. Secular trends and climate drift in coupled ocean-atmosphere general circulation models

    Science.gov (United States)

    Covey, Curt; Gleckler, Peter J.; Phillips, Thomas J.; Bader, David C.

    2006-02-01

    Coupled ocean-atmosphere general circulation models (coupled GCMs) with interactive sea ice are the primary tool for investigating possible future global warming and numerous other issues in climate science. A long-standing problem with such models is that when different components of the physical climate system are linked together, the simulated climate can drift away from observation unless constrained by ad hoc adjustments to interface fluxes. However, 11 modern coupled GCMs, including three that do not employ flux adjustments, behave much better in this respect than the older generation of models. Surface temperature trends in control run simulations (with external climate forcing such as solar brightness and atmospheric carbon dioxide held constant) are small compared with observed trends, which include 20th century climate change due to both anthropogenic and natural factors. Sea ice changes in the models are dominated by interannual variations. Deep ocean temperature and salinity trends are small enough for model control runs to extend over 1000 simulated years or more, but trends in some regions, most notably the Arctic, differ substantially among the models and may be problematic. Methods used to initialize coupled GCMs can mitigate climate drift but cannot eliminate it. Lengthy "spin-ups" of models, made possible by increasing computer power, are one reason for the improvements this paper documents.

  7. Serum fetuin-A levels are associated with serum triglycerides before and 6 months after bariatric surgery.

    Science.gov (United States)

    Verras, Christos G; Christou, Georgios A; Simos, Yannis V; Ayiomamitis, George D; Melidonis, Andreas J; Kiortsis, Dimitrios N

    2017-07-01

    The elucidation of the changes of fetuin-A in the context of bariatric surgery. Twenty obese patients (8 males, 12 females; body mass index = 42.5±3.4 kg/m2) were studied at baseline and 6 months after bariatric surgery. Serum fetuin-A levels did not differ with regard to the presence of each individual component of the Metabolic Syndrome (MetS) at baseline, except for hypertriglyceridaemia [increased serum fetuin-A levels (p=0.011)]. Circulating fetuin-A was positively correlated with serum triglycerides (TG) (r=0.461, p=0.047) and negatively correlated with serum globulins (r=-0.477, p=0.033) and C-reactive protein (CRP) (r=-0.604, p=0.010), while it independently predicted TG at baseline. Circulating fetuin-A did not change during the 6 months either in the whole population or in the subgroups of patients who were positive for each individual component of MetS at baseline and negative for this component at 6 months of follow-up, except for hypertriglyceridaemia [reduction of serum fetuin-A levels (p=0.046)]. The subgroup of patients with a decrease in circulating fetuin-A during the 6 months was characterized by a smaller reduction of serum globulins (p=0.003) and CRP (p=0.049). The change in serum fetuin-A levels over the 6 months was positively correlated with the change in TG (r=0.592, p=0.006) and negatively correlated with the change in serum globulins (r=-0.523, p=0.018) and CRP (r=-.494, p=0.037). Circulating fetuin-A predicted serum triglycerides before as well as 6 months after bariatric surgery.

  8. Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe

    Directory of Open Access Journals (Sweden)

    A. P. van Ulden

    2006-01-01

    Full Text Available The quality of global sea level pressure patterns has been assessed for simulations by 23 coupled climate models. Most models showed high pattern correlations. With respect to the explained spatial variance, many models showed serious large-scale deficiencies, especially at mid-latitudes. Five models performed well at all latitudes and for each month of the year. Three models had a reasonable skill. We selected the five models with the best pressure patterns for a more detailed assessment of their simulations of the climate in Central Europe. We analysed observations and simulations of monthly mean geostrophic flow indices and of monthly mean temperature and precipitation. We used three geostrophic flow indices: the west component and south component of the geostrophic wind at the surface and the geostrophic vorticity. We found that circulation biases were important, and affected precipitation in particular. Apart from these circulation biases, the models showed other biases in temperature and precipitation, which were for some models larger than the circulation induced biases. For the 21st century the five models simulated quite different changes in circulation, precipitation and temperature. Precipitation changes appear to be primarily caused by circulation changes. Since the models show widely different circulation changes, especially in late summer, precipitation changes vary widely between the models as well. Some models simulate severe drying in late summer, while one model simulates significant precipitation increases in late summer. With respect to the mean temperature the circulation changes were important, but not dominant. However, changes in the distribution of monthly mean temperatures, do show large indirect influences of circulation changes. Especially in late summer, two models simulate very strong warming of warm months, which can be attributed to severe summer drying in the simulations by these models. The models differ also

  9. Cooling Performance of Natural Circulation for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suki; Chun, J. H.; Yum, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This paper deals with the core cooling performance by natural circulation during normal operation and a flow channel blockage event in an open tank-in-pool type research reactor. The cooling performance is predicted by using the RELAP5/ MOD3.3 code. The core decay heat is usually removed by natural circulation to the reactor pool water in open tank-in-pool type research reactors with the thermal power less than several megawatts. Therefore, these reactors have generally no active core cooling system against a loss of normal forced flow. In reactors with the thermal power less than around one megawatt, the reactor core can be cooled down by natural circulation even during normal full power operation. The cooling performance of natural circulation in an open tank-in-pool type research reactor has been investigated during the normal natural circulation and a flow channel blockage event. It is found that the maximum powers without void generation at the hot channel are around 1.16 MW and 820 kW, respectively, for the normal natural circulation and the flow channel blockage event.

  10. Multiple states in the late Eocene ocean circulation

    Science.gov (United States)

    Baatsen, M. L. J.; von der Heydt, A. S.; Kliphuis, M.; Viebahn, J.; Dijkstra, H. A.

    2018-04-01

    The Eocene-Oligocene Transition (EOT) marks a major step within the Cenozoic climate in going from a greenhouse into an icehouse state, with the formation of a continental-scale Antarctic ice sheet. The roles of steadily decreasing CO2 concentrations versus changes in ocean circulation at the EOT are still debated and the threshold for Antarctic glaciation is obscured by uncertainties in global geometry. Here, a detailed study of the late Eocene ocean circulation is carried out using an ocean general circulation model under two slightly different geography reconstructions of the middle-to-late Eocene (38 Ma). Using the same atmospheric forcing, both geographies give a profoundly different equilibrium ocean circulation state. The underlying reason for this sensitivity is the presence of multiple equilibria characterised by either North or South Pacific deep water formation. A possible shift from a southern towards a northern overturning circulation would result in significant changes in the global heat distribution and consequently make the Southern Hemisphere climate more susceptible for significant cooling and ice sheet formation on Antarctica.

  11. Key Elements of the User-Friendly, GFDL SKYHI General Circulation Model

    Directory of Open Access Journals (Sweden)

    Richard S. Hemler

    2000-01-01

    Full Text Available Over the past seven years, the portability of the GFDL SKYHI general circulation model has greatly increased. Modifications to the source code have allowed SKYHI to be run on the GFDL Cray Research PVP machines, the TMC CM-5 machine at Los Alamos National Laboratory, and more recently on the GFDL 40-processor Cray Research T3E system. At the same time, changes have been made to the model to make it more usable and flexible. Because of the reduction of the human resources available to manage and analyze scientific experiments, it is no longer acceptable to consider only the optimization of computer resources when producing a research code; one must also consider the availability and cost of the people necessary to maintain, modify and use the model as an investigative tool, and include these factors in defining the form of the model code. The new SKYHI model attempts to strike a balance between the optimization of the use of machine resources (CPU time, memory, disc and the optimal use of human resources (ability to understand code, ability to modify code, ability to perturb code to do experiments, ability to run code on different platforms. Two of the key features that make the new SKYHI code more usable and flexible are the archiving package and the user variable block. The archiving package is used to manage the writing of all archive files, which contain data for later analysis. The model-supplied user variable block allows the easy inclusion of any new variables needed for particular experiments.

  12. The Invertibility, Explicit Determinants, and Inverses of Circulant and Left Circulant and g-Circulant Matrices Involving Any Continuous Fibonacci and Lucas Numbers

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available Circulant matrices play an important role in solving delay differential equations. In this paper, circulant type matrices including the circulant and left circulant and g-circulant matrices with any continuous Fibonacci and Lucas numbers are considered. Firstly, the invertibility of the circulant matrix is discussed and the explicit determinant and the inverse matrices by constructing the transformation matrices are presented. Furthermore, the invertibility of the left circulant and g-circulant matrices is also studied. We obtain the explicit determinants and the inverse matrices of the left circulant and g-circulant matrices by utilizing the relationship between left circulant, g-circulant matrices and circulant matrix, respectively.

  13. ENSO dynamics and seasonal cycle in the tropical Pacific as simulated by the ECHAM4/OPYC3 coupled general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Oberhuber, J.M. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Roeckner, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1996-07-01

    The new version of the atmospheric general circulation model, ECHAM4, at the Max Planck Institute for Meteorology, Hamburg, has been coupled to the OPYC3 isopycnic global ocean general circulation and sea ice model (Oberhuber 1993) in a multi-century present-day climate simulation. Nonseasonal constant flux adjustment for heat and freshwater was employed to ensure a long-term annual mean state close to present day climatology. This paper examines the simulated upper ocean seasonal cycle and interannual variability in the tropical Pacific for the first 100 years. The coupled model`s seasonal cycle of tropical Pacific SSTs is in good agreement with the observations with respect to both the warm pool variation and the Central and Eastern Pacific, with significant errors (up to -2 K) only in the cold tongue around April. The cold phase cold tongue extent and strength is as observed, and for this the heat flux adjustment does not play the decisive role; corrections beyond {+-}40 Wm{sup -2} are rare and only occupy small areas, such as near coasts. A well established south Pacific convergence zone is characteristic for the new AGCM version. Apart from extending the south-east trades seasonal maximum to midbasin, windstress pattern and strength are well captured. The subsurface structure is overall consistent with the observed, with a realistically sharp thermocline at about 150 m depth in the west and rising to the surface from 160 W to 100 W.

  14. Climate Simulations from Super-parameterized and Conventional General Circulation Models with a Third-order Turbulence Closure

    Science.gov (United States)

    Xu, Kuan-Man; Cheng, Anning

    2014-05-01

    A high-resolution cloud-resolving model (CRM) embedded in a general circulation model (GCM) is an attractive alternative for climate modeling because it replaces all traditional cloud parameterizations and explicitly simulates cloud physical processes in each grid column of the GCM. Such an approach is called "Multiscale Modeling Framework." MMF still needs to parameterize the subgrid-scale (SGS) processes associated with clouds and large turbulent eddies because circulations associated with planetary boundary layer (PBL) and in-cloud turbulence are unresolved by CRMs with horizontal grid sizes on the order of a few kilometers. A third-order turbulence closure (IPHOC) has been implemented in the CRM component of the super-parameterized Community Atmosphere Model (SPCAM). IPHOC is used to predict (or diagnose) fractional cloudiness and the variability of temperature and water vapor at scales that are not resolved on the CRM's grid. This model has produced promised results, especially for low-level cloud climatology, seasonal variations and diurnal variations (Cheng and Xu 2011, 2013a, b; Xu and Cheng 2013a, b). Because of the enormous computational cost of SPCAM-IPHOC, which is 400 times of a conventional CAM, we decided to bypass the CRM and implement the IPHOC directly to CAM version 5 (CAM5). IPHOC replaces the PBL/stratocumulus, shallow convection, and cloud macrophysics parameterizations in CAM5. Since there are large discrepancies in the spatial and temporal scales between CRM and CAM5, IPHOC used in CAM5 has to be modified from that used in SPCAM. In particular, we diagnose all second- and third-order moments except for the fluxes. These prognostic and diagnostic moments are used to select a double-Gaussian probability density function to describe the SGS variability. We also incorporate a diagnostic PBL height parameterization to represent the strong inversion above PBL. The goal of this study is to compare the simulation of the climatology from these three

  15. Circulating Total Bilirubin and Risk of Incident Cardiovascular Disease in the General Population

    NARCIS (Netherlands)

    Kunutsor, Setor K.; Bakker, Stephan J. L.; Gansevoort, Ronald T.; Chowdhury, Rajiv; Dullaart, Robin P. F.

    OBJECTIVE: To assess the association of circulating total bilirubin and cardiovascular disease (CVD) risk in a new prospective study and to determine whether adding information on total bilirubin values to established cardiovascular risk factors is associated with improvement in prediction of CVD

  16. Combating information overload: a six-month pilot evaluation of a knowledge management system in general practice.

    Science.gov (United States)

    O'Brien, C; Cambouropoulos, P

    2000-01-01

    A six-month prospective study was conducted on the usefulness and usability of a representative electronic knowledge management tool, the WAX Active Library, for 19 general practitioners (GPs) evaluated using questionnaires and audit trail data. The number of pages accessed was highest in the final two months, when over half of the access trails were completed within 40 seconds. Most GPs rated the system as easy to learn, fast to use, and preferable to paper for providing information during consultations. Such tools could provide a medium for the activities of knowledge officers, help demand management, and promote sharing of information within primary care groups and across NHSnet or the Internet. PMID:10962792

  17. Jupiter Thermospheric General Circulation Model (JTGCM): Global Structure and Dynamics Driven by Auroral and Joule Heating

    Science.gov (United States)

    Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.

    2005-01-01

    A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.

  18. Application of General Circulation Models to Assess the Potential Impact of Climate Change on Potential Distribution and Relative Abundance of Melanoplus sanguinipes (Fabricius (Orthoptera: Acrididae in North America

    Directory of Open Access Journals (Sweden)

    O. Olfert

    2011-01-01

    Full Text Available Climate is the dominant factor determining the distribution and abundance of most insect species. In recent years, the issue of climatic changes caused by human activities and the effects on agriculture has raised concern. General circulation model scenarios were applied to a bioclimatic model of Melanoplus sanguinipes to assess the potential impact of global warming on its distribution and relative abundance. Native to North America and widely distributed, M. sanguinipes is one of the grasshopper species of the continent most responsible for economic damage to grain, oilseed, pulse, and forage crops. Compared to predicted range and distribution under current climate conditions, model results indicated that M. sanguinipes would have increased range and relative abundance under the three general circulation model scenarios in more northern regions of North America. Conversely, model output predicted that the range of this crop pest could contract in regions where climate conditions became limiting.

  19. The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna

    Science.gov (United States)

    Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio; Song, In-Sun; Eichmann, Andrew

    2012-01-01

    This report is a documentation of the Fortuna version of the GEOS-5 Atmospheric General Circulation Model (AGCM). The GEOS-5 AGCM is currently in use in the NASA Goddard Modeling and Assimilation Office (GMAO) for simulations at a wide range of resolutions, in atmosphere only, coupled ocean-atmosphere, and data assimilation modes. The focus here is on the development subsequent to the version that was used as part of NASA s Modern-Era Retrospective Analysis for Research and Applications (MERRA). We present here the results of a series of 30-year atmosphere-only simulations at different resolutions, with focus on the behavior of the 1-degree resolution simulation. The details of the changes in parameterizations subsequent to the MERRA model version are outlined, and results of a series of 30-year, atmosphere-only climate simulations at 2-degree resolution are shown to demonstrate changes in simulated climate associated with specific changes in parameterizations. The GEOS-5 AGCM presented here is the model used for the GMAO s atmosphere-only and coupled CMIP-5 simulations.

  20. Changes in present and future circulation types frequency in northwest Iberian Peninsula.

    Directory of Open Access Journals (Sweden)

    María N Lorenzo

    Full Text Available The aim of the work described herein was to study projection scenarios in order to find changes in the synoptic variability of the northwest Iberian Peninsula in the 21st century. To this end, we investigated the changes in the frequency of the different circulation types computed for the study area using three different models used in the IPCC 4(th assessment report. The circulation types were computed using the procedure known as Lamb circulation types. The control simulation for the late 20th century was evaluated objectively from the results obtained using data from the NCEP/NCAR reanalysis, as to evaluate the ability of the model to reproduce the present climate. We have compared not only seasonal mean sea level pressure fields but also the mean seasonal frequency of circulation types. The results for the end of the 21st century show a decrease in the frequency of cyclonic, W, and SW circulation types in the spring and summer months. This trend also appears in the autumn, with a concomitant increase in the anticyclonic types.

  1. Changes in present and future circulation types frequency in northwest Iberian Peninsula.

    Science.gov (United States)

    Lorenzo, María N; Ramos, Alexandre M; Taboada, Juan J; Gimeno, Luis

    2011-01-21

    The aim of the work described herein was to study projection scenarios in order to find changes in the synoptic variability of the northwest Iberian Peninsula in the 21st century. To this end, we investigated the changes in the frequency of the different circulation types computed for the study area using three different models used in the IPCC 4(th) assessment report. The circulation types were computed using the procedure known as Lamb circulation types. The control simulation for the late 20th century was evaluated objectively from the results obtained using data from the NCEP/NCAR reanalysis, as to evaluate the ability of the model to reproduce the present climate. We have compared not only seasonal mean sea level pressure fields but also the mean seasonal frequency of circulation types. The results for the end of the 21st century show a decrease in the frequency of cyclonic, W, and SW circulation types in the spring and summer months. This trend also appears in the autumn, with a concomitant increase in the anticyclonic types.

  2. Performance of the general circulation models in simulating temperature and precipitation over Iran

    Science.gov (United States)

    Abbasian, Mohammadsadegh; Moghim, Sanaz; Abrishamchi, Ahmad

    2018-03-01

    General Circulation Models (GCMs) are advanced tools for impact assessment and climate change studies. Previous studies show that the performance of the GCMs in simulating climate variables varies significantly over different regions. This study intends to evaluate the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs in simulating temperature and precipitation over Iran. Simulations from 37 GCMs and observations from the Climatic Research Unit (CRU) were obtained for the period of 1901-2005. Six measures of performance including mean bias, root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), linear correlation coefficient (r), Kolmogorov-Smirnov statistic (KS), Sen's slope estimator, and the Taylor diagram are used for the evaluation. GCMs are ranked based on each statistic at seasonal and annual time scales. Results show that most GCMs perform reasonably well in simulating the annual and seasonal temperature over Iran. The majority of the GCMs have a poor skill to simulate precipitation, particularly at seasonal scale. Based on the results, the best GCMs to represent temperature and precipitation simulations over Iran are the CMCC-CMS (Euro-Mediterranean Center on Climate Change) and the MRI-CGCM3 (Meteorological Research Institute), respectively. The results are valuable for climate and hydrometeorological studies and can help water resources planners and managers to choose the proper GCM based on their criteria.

  3. Impact of absorbing aerosols on the simulation of climate over the Indian region in an atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    A. Chakraborty

    2004-04-01

    Full Text Available The impact of anthropogenic absorbing aerosols (such as soot on the climate over the Indian region has been studied using the NCMRWF general circulation model. The absorbing aerosols increase shortwave radiative heating of the lower troposphere and reduce the heating at the surface. These effects have been incorporated as heating of the lower troposphere (up to 700hPa and cooling over the continental surface based on INDOEX measurements. The heating effect is constant in the pre-monsoon season and reduces to zero during the monsoon season. It is shown that even in the monsoon season when the aerosol forcing is zero, there is an overall increase in rainfall and a reduction in surface temperature over the Indian region. The rainfall averaged over the Tropics shows a small reduction in most of the months during the January to September period. The impact of aerosol forcing, the model's sensitivity to this forcing and its interaction with model-physics has been studied by changing the cumulus parameterization from the Simplified Arakawa-Schubert (SAS scheme to the Kuo scheme. During the pre-monsoon season the major changes in precipitation occur in the oceanic Inter Tropical Convergence Zone (ITCZ, where both the schemes show an increase in precipitation. This result is similar to that reported in Chung2002. On the other hand, during the monsoon season the changes in precipitation in the continental region are different in the SAS and Kuo schemes. It is shown that the heating due to absorbing aerosols changes the vertical moist-static stability of the atmosphere. The difference in the precipitation changes in the two cumulus schemes is on account of the different responses in the two parameterization schemes to changes in vertical stability. Key words. Atmospheric composition and structure (aerosols and particles – Meteorology and atmospheric dynamics (tropical meteorology; precipitation

  4. Skills of General Circulation and Earth System Models in reproducing streamflow to the ocean: the case of Congo river

    Science.gov (United States)

    Santini, M.; Caporaso, L.

    2017-12-01

    Although the importance of water resources in the context of climate change, it is still difficult to correctly simulate the freshwater cycle over the land via General Circulation and Earth System Models (GCMs and ESMs). Existing efforts from the Climate Model Intercomparison Project 5 (CMIP5) were mainly devoted to the validation of atmospheric variables like temperature and precipitation, with low attention to discharge.Here we investigate the present-day performances of GCMs and ESMs participating to CMIP5 in simulating the discharge of the river Congo to the sea thanks to: i) the long-term availability of discharge data for the Kinshasa hydrological station representative of more than 95% of the water flowing in the whole catchment; and ii) the River's still low influence by human intervention, which enables comparison with the (mostly) natural streamflow simulated within CMIP5.Our findings suggest how most of models appear overestimating the streamflow in terms of seasonal cycle, especially in the late winter and spring, while overestimation and variability across models are lower in late summer. Weighted ensemble means are also calculated, based on simulations' performances given by several metrics, showing some improvements of results.Although simulated inter-monthly and inter-annual percent anomalies do not appear significantly different from those in observed data, when translated into well consolidated indicators of drought attributes (frequency, magnitude, timing, duration), usually adopted for more immediate communication to stakeholders and decision makers, such anomalies can be misleading.These inconsistencies produce incorrect assessments towards water management planning and infrastructures (e.g. dams or irrigated areas), especially if models are used instead of measurements, as in case of ungauged basins or for basins with insufficient data, as well as when relying on models for future estimates without a preliminary quantification of model biases.

  5. [Effect of dexmedetomidine and midazolam on respiration and circulation functions in patients undergoing open heart surgery under acupuncture-assisted general anesthesia].

    Science.gov (United States)

    Tang, Wei; Wang, Jian; Fu, Guo-Qiang; Yuan, Lan

    2014-06-01

    To evaluate the effect of Dexmedetomidine and Midazolam on respiratory and circulation in patients experiencing open heart surgery under acupuncture-assisted general anesthesia. Sixty patients undergoing open heart surgery (cardiac valve replacement surgery and aortic valve replacement surgery) were randomly and equally divided into Dexmedetomidine (D) and Midazolam (M) groups. Electroacupuncture (EA) was applied to bilateral Yunmen (LU 2), Zhongfu (LU1), Lieque (LU7) and Neiguan (PC6). For patients of group D, Dexmedetomidine (i.v., loading dose: 1 microg/kg, and succedent dose: 0.2-1 microg x kg(-1) x h(-1)) was given. For patients of group M, Midazolam (i.v., loading dose: 0.05 mg/kg, succedent dose: 0.01-0.03 mg x kg(-1) x h(-1)) was given. Arterial oxygen pressure (PaO2), arterial carbondioxide tension (PaCO2), O2 saturation (SPO2), mean arterial pressure (MAP), heart rate (HR), anesthetic effect, time of spontaneous breathing recovery, and time of resuscitation were recorded before operation (T0), immediately after skin incision (T1), immediately after sternotomy (T2), before suspension of cardiopulmonary bypass (CPB, T3), immediately after cardiac re-beating (T4), immediately after CPB cessation (T5), and at the end of surgery (T6). Before operation, no significant differences were found between the group D and M in the levels of PaO2, PaCO2 and SPO2 (P > 0.05). The PaO2 and SPO2 levels after skin incision, sternotomy, before suspension of CPB and at the end of surgery were significantly lower in group M than in group D (P heart re-beating,after CPB cessation and at the end of surgery in group M were considerably higher than those in group D (P 0.05). It suggested that the respiration and circulation states in group D were more smoothly than those in group M. There was no significant difference between the two groups in the time of resuscitation (P > 0.05). Dexmedetomidine is superior to Midazolam in analgesia, and improving respiration and circulation

  6. Invertibility and Explicit Inverses of Circulant-Type Matrices with k-Fibonacci and k-Lucas Numbers

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available Circulant matrices have important applications in solving ordinary differential equations. In this paper, we consider circulant-type matrices with the k-Fibonacci and k-Lucas numbers. We discuss the invertibility of these circulant matrices and present the explicit determinant and inverse matrix by constructing the transformation matrices, which generalizes the results in Shen et al. (2011.

  7. The linkage between geopotential height and monthly precipitation in Iran

    Science.gov (United States)

    Shirvani, Amin; Fadaei, Amir Sabetan; Landman, Willem A.

    2018-04-01

    This paper investigates the linkage between large-scale atmospheric circulation and monthly precipitation during November to April over Iran. Canonical correlation analysis (CCA) is used to set up the statistical linkage between the 850 hPa geopotential height large-scale circulation and monthly precipitation over Iran for the period 1968-2010. The monthly precipitation dataset for 50 synoptic stations distributed in different climate regions of Iran is considered as the response variable in the CCA. The monthly geopotential height reanalysis dataset over an area between 10° N and 60° N and from 20° E to 80° E is utilized as the explanatory variable in the CCA. Principal component analysis (PCA) as a pre-filter is used for data reduction for both explanatory and response variables before applying CCA. The optimal number of principal components and canonical variables to be retained in the CCA equations is determined using the highest average cross-validated Kendall's tau value. The 850 hPa geopotential height pattern over the Red Sea, Saudi Arabia, and Persian Gulf is found to be the major pattern related to Iranian monthly precipitation. The Pearson correlation between the area averaged of the observed and predicted precipitation over the study area for Jan, Feb, March, April, November, and December months are statistically significant at the 5% significance level and are 0.78, 0.80, 0.82, 0.74, 0.79, and 0.61, respectively. The relative operating characteristic (ROC) indicates that the highest scores for the above- and below-normal precipitation categories are, respectively, for February and April and the lowest scores found for December.

  8. State of the Art Report for a Bearing for VHTR Helium Circulator

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Song, Kee Nam; Kim, Yong Wan; Lee, Won Jae

    2008-10-01

    A helium circulator in a VHTR(Very High Temperature gas-cooled Reactor) plays a core role which translates thermal energy at high temperature from a nuclear core to a steam generator. Helium as a operating coolant circulates a primary circuit in high temperature and high pressure state, and controls thermal output of a nuclear core by controlling flow rate. A helium circulator is the only rotating machinery in a VHTR, and its reliability should be guaranteed for reliable operation of a reactor and stable production of hydrogen. Generally a main helium circulator is installed on the top of a steam generator vessel, and helium is circulated only by a main helium circulator in a normal operation state. An auxiliary or shutdown circulator is installed at the bottom of a reactor vessel, and it is an auxiliary circulator for shutting down a reactor in case of refueling or accelerating cooling down in case of fast cooling. Since a rotating shaft of a helium circulator is supported by bearings, bearings are the important machine elements which determines reliability of a helium circulator and a nuclear reactor. Various types of support bearings have been developed and applied for circulator bearings since 1960s, and it is still developing for developing VHTRs. So it is necessary to review and analyze the current technical state of helium circulator support bearings to develop bearings for Koran developing VHTR helium circulator

  9. Les aboutissements de la circulation à sens unique dans le discours médical [The Outcomes of one-way circulation in medical discourse

    Directory of Open Access Journals (Sweden)

    Mª Dolores Vivero García

    2010-12-01

    Full Text Available Ce travail concerne le discours médical sur la dépression. L'analyse de la mise en scène de la circulation des connaissancesdans notre corpus montre que ce discours se fonde sur une doxa scientifique construite comme le lieu d'une circulation. Il prend également appui sur une représentation de la maladie supposéepartagée par les destinataires (les médecins généralistes, si bien que l'énonciation se rattache implicitement à un discours doxique relatif à un certain modèle de la dépression.We analyse medical discourse about depressive disorder. Analyse of representation of knowledge circulation shows that this discourse is based on Doxa as a one-way circulation. It is based in the social representation of depressive disorder supposedly shared by interlocutors, that is to say the general practitioners. The enunciation appears as implicitly connected to discourse of one model of depressive disorder.

  10. Oxidative burst of circulating neutrophils following traumatic brain injury in human.

    Directory of Open Access Journals (Sweden)

    Yiliu Liao

    Full Text Available Besides secondary injury at the lesional site, Traumatic brain injury (TBI can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91(phox in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected

  11. The Dynamics of Hadley Circulation Variability and Change

    Science.gov (United States)

    Davis, Nicholas Alexander

    The Hadley circulation exerts a dominant control on the surface climate of earth's tropical belt. Its converging surface winds fuel the tropical rains, while subsidence in the subtropics dries and stabilizes the atmosphere, creating deserts on land and stratocumulus decks over the oceans. Because of the strong meridional gradients in temperature and precipitation in the subtropics, any shift in the Hadley circulation edge could project as major changes in surface climate. While climate model simulations predict an expansion of the Hadley cells in response to greenhouse gas forcings, the mechanisms remain elusive. An analysis of the climatology, variability, and response of the Hadley circulation to radiative forcings in climate models and reanalyses illuminates the broader landscape in which Hadley cell expansion is realized. The expansion is a fundamental response of the atmosphere to increasing greenhouse gas concentrations as it scales with other key climate system changes, including polar amplification, increasing static stability, stratospheric cooling, and increasing global-mean surface temperatures. Multiple measures of the Hadley circulation edge latitudes co-vary with the latitudes of the eddy-driven jets on all timescales, and both exhibit a robust poleward shift in response to forcings. Further, across models there is a robust coupling between the eddy-driving on the Hadley cells and their width. On the other hand, the subtropical jet and tropopause break latitudes, two common observational proxies for the tropical belt edges, lack a strong statistical relationship with the Hadley cell edges and have no coherent response to forcings. This undermines theories for the Hadley cell width predicated on angular momentum conservation and calls for a new framework for understanding Hadley cell expansion. A numerical framework is developed within an idealized general circulation model to isolate the mean flow and eddy responses of the global atmosphere to

  12. Response in atmospheric circulation and sources of Greenland precipitation to glacial boundary conditions

    DEFF Research Database (Denmark)

    Langen, Peter Lang; Vinther, Bo Møllesøe

    2009-01-01

    The response in northern hemisphere atmospheric circulation and the resulting changes in moisture sources for Greenland precipitation to glacial boundary conditions are studied in NCAR's CCM3 atmospheric general circulation model fitted with a moisture tracking functionality. We employ both...... seasonality, condensation temperatures and source temperatures are assessed. Udgivelsesdato: June 2009...

  13. Depth of origin of ocean-circulation-induced magnetic signals

    Science.gov (United States)

    Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik

    2018-01-01

    As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.

  14. Prognostic value of circulating VEGFR2+ bone marrow-derived progenitor cells in patients with advanced cancer.

    Science.gov (United States)

    Massard, Christophe; Borget, Isabelle; Le Deley, Marie Cécile; Taylor, Melissa; Gomez-Roca, Carlos; Soria, Jean Charles; Farace, Françoise

    2012-06-01

    We hypothesised that host-related markers, possibly reflecting tumour aggressiveness, such as circulating endothelial cells (CEC) and circulating VEGFR2(+) bone marrow-derived (BMD) progenitor cells, could have prognostic value in patients with advanced cancer enrolled in early anticancer drug development trials. Baseline CECs (CD45(-)CD31(+)CD146(+)7AAD(-) cells) and circulating VEGFR2(+)-BMD progenitor cells (defined as CD45(dim)CD34(+)VEGFR2(+)7AAD(-) cells) were measured by flow-cytometry in 71 and 58 patients included in phase 1 trials testing novel anti-vascular or anti-angiogenic agents. Correlations between levels of CECs, circulating VEGFR2(+)-BMD progenitor cells, clinical and biological prognostic factors (i.e. the Royal Marsden Hospital (RMH) score), and overall survival (OS) were studied. The median value of CECs was 12 CEC/ml (range 0-154/ml). The median level of VEGFR2(+)-BMD progenitor cells was 1.3% (range 0-32.5%) of circulating BMD-CD34(+) progenitors. While OS was not correlated with CEC levels, it was significantly worse in patients with high VEGFR2(+)-BMD progenitor levels (>1%) (median OS 9.0 versus 17.0 months), and with a RMH prognostic score >0 (median OS 9.0 versus 24.2 months). The prognostic value of VEGFR2(+)-BMD progenitor levels remained significant (hazard ratio (HR) = 2.3, 95% confidence interval (CI), 1.1-4.6, p = 0.02) after multivariate analysis. A composite VEGFR2(+)-BMD progenitor level/RHM score ≥ 2 was significantly associated with an increased risk of death compared to scores of 0 or 1 (median OS 9.0 versus 18.4 months, HR = 2.6 (95%CI, 1.2-5.8, p = 0.02)). High circulating VEGFR2(+)-BMD progenitor levels are associated with poor prognostics and when combined to classical clinical and biological parameters could provide a new tool for patient selection in early anticancer drug trials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Analysis of a general circulation model product. I - Frontal systems in the Brazil/Malvinas and Kuroshio/Oyashio regions

    Science.gov (United States)

    Garzoli, Silvia L.; Garraffo, Zulema; Podesta, Guillermo; Brown, Otis

    1992-01-01

    The general circulation model (GCM) of Semtner and Chervin (1992) is tested by comparing the fields produced by this model with available observations in two western boundary current regions, the Brazil/Malvinas and the Kuroshio/Oyashio confluences. The two sets of data used are the sea surface temperature from satellite observations and the temperature field product from the GCM at levels 1 (12.5 m), 2 (37.5 m), and 6 (160 m). It is shown that the model reproduces intense thermal fronts at the sea surface and in the upper layers (where they are induced by the internal dynamics of the model). The location of the fronts are reproduced in the model within 4 to 5 deg, compared with observations. However, the variability of these fronts was found to be less pronounced in the model than in the observations.

  16. An idealized radiative transfer scheme for use in a mechanistic general circulation model from the surface up to the mesopause region

    International Nuclear Information System (INIS)

    Knoepfel, Rahel; Becker, Erich

    2011-01-01

    A new and numerically efficient method to compute radiative flux densities and heating rates in a general atmospheric circulation model is presented. Our method accommodates the fundamental differences between the troposphere and middle atmosphere in the long-wave regime within a single parameterization that extends continuously from the surface up to the mesopause region and takes the deviations from the gray limit and from the local thermodynamic equilibrium into account. For this purpose, frequency-averaged Eddington-type transfer equations are derived for four broad absorber bands. The frequency variation inside each band is parameterized by application of the Elsasser band model extended by a slowly varying envelope function. This yields additional transfer equations for the perturbation amplitudes that are solved numerically along with the mean transfer equations. Deviations from local thermodynamic equilibrium are included in terms of isotropic scattering, calculating the single scattering albedo from the two-level model for each band. Solar radiative flux densities are computed for four energetically defined bands using the simple Beer-Bougert-Lambert relation for absorption within the atmosphere. The new scheme is implemented in a mechanistic general circulation model from the surface up to the mesopause region. A test simulation with prescribed concentrations of the radiatively active constituents shows quite reasonable results. In particular, since we take the full surface energy budget into account by means of a swamp ocean, and since the internal dynamics and turbulent diffusion of the model are formulated in accordance with the conservation laws, an equilibrated climatological radiation budget is obtained both at the top of the atmosphere and at the surface.

  17. Distribution of month of birth of individuals with autism spectrum disorder differs from the general population in the Netherlands

    NARCIS (Netherlands)

    Ciéslińska, Anna; Simmelink, Jannicke; Teodorowicz, M.; Verhoef, J.C.M.; Tobi, H.; Savelkoul, H.F.J.

    2017-01-01

    The prevalence of autism spectrum disorders (ASDs) is causally dependent on genetic and environmental influences. We investigated whether autism spectrum disorders are associated with month of birth compared to the general population using a retrospective study, comparing ASD cases (n = 3478) with

  18. Modelling the Seasonal Overturning Circulation in the Red Sea

    KAUST Repository

    Yao, Fengchao

    2015-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using 50-year, high-resolution MIT general circulation model simulations. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. For the winter overturning circulation, the climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation.

  19. Study on the water circulation system to improve a semi-enclosed water environment. Improvement effects of the water circulation system in a marine area; Heisasei suiiki no kyosei junkan ni yoru suishitsu kaizen. Kaiiki no jitsukoji ni okeru kaizen koka

    Energy Technology Data Exchange (ETDEWEB)

    Miyaoka, S.; Tsuji, H. [Obayashi Corp., Tokyo (Japan)

    1999-01-10

    In recent years, oxygen-deficient water is being formed in many semi-enclosed waters, such as canals and ports, due to the load from rivers in addition to oxygen consumption in bottom sediment and poor water circulation. In general, bottom sediments have been dredged in order to improve the water environment. But there is little space to dump it. An alternative method is to artificially promote water circulation in order to move the surface water that has a high dissolved oxygen concentration to the bottom. We applied the method in a port. The system consists of air compressors, rubber tubes and unique pipes. One end of a pipe was fixed on the bottom and the other end was kept in the water by floats. Air floated up through the pipe, so the bottom water flowed up to the surface. Two months after starting to run the system, the dissolved oxygen concentration of lower water was higher than 2 mg/l, which is the criterion of water quality standard grade V, thus showing the effectiveness of the system. (author)

  20. Role of Prefrontal Cortex in Learning and Generalizing Hierarchical Rules in 8-Month-Old Infants.

    Science.gov (United States)

    Werchan, Denise M; Collins, Anne G E; Frank, Michael J; Amso, Dima

    2016-10-05

    Recent research indicates that adults and infants spontaneously create and generalize hierarchical rule sets during incidental learning. Computational models and empirical data suggest that, in adults, this process is supported by circuits linking prefrontal cortex (PFC) with striatum and their modulation by dopamine, but the neural circuits supporting this form of learning in infants are largely unknown. We used near-infrared spectroscopy to record PFC activity in 8-month-old human infants during a simple audiovisual hierarchical-rule-learning task. Behavioral results confirmed that infants adopted hierarchical rule sets to learn and generalize spoken object-label mappings across different speaker contexts. Infants had increased activity over right dorsal lateral PFC when rule sets switched from one trial to the next, a neural marker related to updating rule sets into working memory in the adult literature. Infants' eye blink rate, a possible physiological correlate of striatal dopamine activity, also increased when rule sets switched from one trial to the next. Moreover, the increase in right dorsolateral PFC activity in conjunction with eye blink rate also predicted infants' generalization ability, providing exploratory evidence for frontostriatal involvement during learning. These findings provide evidence that PFC is involved in rudimentary hierarchical rule learning in 8-month-old infants, an ability that was previously thought to emerge later in life in concert with PFC maturation. Hierarchical rule learning is a powerful learning mechanism that allows rules to be selected in a context-appropriate fashion and transferred or reused in novel contexts. Data from computational models and adults suggests that this learning mechanism is supported by dopamine-innervated interactions between prefrontal cortex (PFC) and striatum. Here, we provide evidence that PFC also supports hierarchical rule learning during infancy, challenging the current dogma that PFC is an

  1. Glucose feeds the TCA cycle via circulating lactate.

    Science.gov (United States)

    Hui, Sheng; Ghergurovich, Jonathan M; Morscher, Raphael J; Jang, Cholsoon; Teng, Xin; Lu, Wenyun; Esparza, Lourdes A; Reya, Tannishtha; Le Zhan; Yanxiang Guo, Jessie; White, Eileen; Rabinowitz, Joshua D

    2017-11-02

    Mammalian tissues are fuelled by circulating nutrients, including glucose, amino acids, and various intermediary metabolites. Under aerobic conditions, glucose is generally assumed to be burned fully by tissues via the tricarboxylic acid cycle (TCA cycle) to carbon dioxide. Alternatively, glucose can be catabolized anaerobically via glycolysis to lactate, which is itself also a potential nutrient for tissues and tumours. The quantitative relevance of circulating lactate or other metabolic intermediates as fuels remains unclear. Here we systematically examine the fluxes of circulating metabolites in mice, and find that lactate can be a primary source of carbon for the TCA cycle and thus of energy. Intravenous infusions of 13 C-labelled nutrients reveal that, on a molar basis, the circulatory turnover flux of lactate is the highest of all metabolites and exceeds that of glucose by 1.1-fold in fed mice and 2.5-fold in fasting mice; lactate is made primarily from glucose but also from other sources. In both fed and fasted mice, 13 C-lactate extensively labels TCA cycle intermediates in all tissues. Quantitative analysis reveals that during the fasted state, the contribution of glucose to tissue TCA metabolism is primarily indirect (via circulating lactate) in all tissues except the brain. In genetically engineered lung and pancreatic cancer tumours in fasted mice, the contribution of circulating lactate to TCA cycle intermediates exceeds that of glucose, with glutamine making a larger contribution than lactate in pancreatic cancer. Thus, glycolysis and the TCA cycle are uncoupled at the level of lactate, which is a primary circulating TCA substrate in most tissues and tumours.

  2. Clinical significance of the molecular detection of melanoma cells circulating in the peripheral blood in melanoma patients.

    Science.gov (United States)

    Konstantopoulos, K; Psatha, M; Kalotychou, V; Frangia, N; Ioannovits, I; Meletis, I; Loukopoulos, D

    2001-06-01

    Blood circulating melanoma cells may be important for the spread of the disease. The current methods are not sensitive in detecting micro metastases. Tyrosinase mRNA can be detected in peripheral blood by a molecular test. As tyrosinase is expressed only in melanocytes and melanocytes normally do not circulate in the blood, the test may prove reliable in detecting circulating melanoma cells. we used a reverse-transcription polymerase chain reaction (RT-PCR) detecting tyrosinase mRNA in the blood. A prospective investigation in melanoma patients undergoing surgery was conducted; follow-up duration was 12 months. University Department Laboratory and Melanoma Clinic of a Tertiary Hospital. a total of 27 Greek patients with a diagnosis of malignant melanoma at different stages of the disease; 12 months follow-up after surgery. Samples form 12 healthy volunteers and 13 patients with chronic myelogenous leukemia served as controls. none. none. We detected mRNA tyrosinase in the peripheral blood in 16 out of 27 melanoma patients studied. No tyrosinase mRNA was detected in any of the 25 samples from the controls. Two of the 16 positive cases developed a metastasis within the next 12 months following testing. The other 14 positive cases remain metastasis free for this period, as also did the test negative cases. Detection of blood circulating melanoma cells by a RT-PCR technique, may be helpful in defining melanoma patients who are at risk for the spread of the disease.

  3. Prolonged effect of the stratospheric pathway in linking Barents-Kara Sea sea ice variability to the midlatitude circulation in a simplified model

    Science.gov (United States)

    Zhang, Pengfei; Wu, Yutian; Smith, Karen L.

    2018-01-01

    To better understand the dynamical mechanism that accounts for the observed lead-lag correlation between the early winter Barents-Kara Sea (BKS) sea ice variability and the later winter midlatitude circulation response, a series of experiments are conducted using a simplified atmospheric general circulation model with a prescribed idealized near-surface heating over the BKS. A prolonged effect is found in the idealized experiments following the near-surface heating and can be explicitly attributed to the stratospheric pathway and the long time scale in the stratosphere. The analysis of the Eliassen-Palm flux shows that, as a result of the imposed heating and linear constructive interference, anomalous upward propagating planetary-scale waves are excited and weaken the stratospheric polar vortex. This stratospheric response persists for approximately 1-2 months accompanied by downward migration to the troposphere and the surface. This downward migration largely amplifies and extends the low-level jet deceleration in the midlatitudes and cold air advection over central Asia. The idealized model experiments also suggest that the BKS region is the most effective in affecting the midlatitude circulation than other regions over the Arctic.

  4. Explicit prediction of ice clouds in general circulation models

    Science.gov (United States)

    Kohler, Martin

    1999-11-01

    Although clouds play extremely important roles in the radiation budget and hydrological cycle of the Earth, there are large quantitative uncertainties in our understanding of their generation, maintenance and decay mechanisms, representing major obstacles in the development of reliable prognostic cloud water schemes for General Circulation Models (GCMs). Recognizing their relative neglect in the past, both observationally and theoretically, this work places special focus on ice clouds. A recent version of the UCLA - University of Utah Cloud Resolving Model (CRM) that includes interactive radiation is used to perform idealized experiments to study ice cloud maintenance and decay mechanisms under various conditions in term of: (1) background static stability, (2) background relative humidity, (3) rate of cloud ice addition over a fixed initial time-period and (4) radiation: daytime, nighttime and no-radiation. Radiation is found to have major effects on the life-time of layer-clouds. Optically thick ice clouds decay significantly slower than expected from pure microphysical crystal fall-out (taucld = 0.9--1.4 h as opposed to no-motion taumicro = 0.5--0.7 h). This is explained by the upward turbulent fluxes of water induced by IR destabilization, which partially balance the downward transport of water by snowfall. Solar radiation further slows the ice-water decay by destruction of the inversion above cloud-top and the resulting upward transport of water. Optically thin ice clouds, on the other hand, may exhibit even longer life-times (>1 day) in the presence of radiational cooling. The resulting saturation mixing ratio reduction provides for a constant cloud ice source. These CRM results are used to develop a prognostic cloud water scheme for the UCLA-GCM. The framework is based on the bulk water phase model of Ose (1993). The model predicts cloud liquid water and cloud ice separately, and which is extended to split the ice phase into suspended cloud ice (predicted

  5. Circulation of a triaxial, charged ellipsoidal droplet

    International Nuclear Information System (INIS)

    Graber, J.L.; Rosensteel, G.

    2002-01-01

    The Kelvin circulation, which is the Casimir invariant of the general collective motion gcm(3) Lie algebra, is determined for a rapidly rotating triaxial nucleus in the classical domain. The potential energy is approximated by the sum of Coulomb repulsion and attractive surface energy terms, and the kinetic energy is adopted from the Riemann ellipsoidal model. An accurate approximation valid for both small and large deformations is reported for the potential energy. The Riemann ellipsoid theory allows for collective rotation in the continuum from rigid body motion to irrotational flow; the rigidity parametrizes this kinematical continuum. Analytic formulas are derived for the circulation, angular momentum, and energy as functions of the axis lengths, fissility, and rigidity. In particular, the bifurcation point to Jacobi triaxial shapes from noncollective oblate spheroids is given by a simple analytic formula. For a given fissility, the bifurcation point depends sensitive- ly on the rigidity. The Kelvin circulation remains approximately constant for triaxial ellipsoids as the angular momentum increases. This implies that gcm(3) is an approximate partial dynamical symmetry for rapidly rotating triaxial nuclei

  6. Decontamination of CAGR gas circulator components

    International Nuclear Information System (INIS)

    Rogers, L.N.; Hooper, A.J.

    1985-01-01

    This paper describes the development and full-scale trial of two methods for removal of radioactive contamination on the surfaces of CAGR gas circulator components. The two methods described are a particle impact cleaning (PIC) decontamination technique and an electrochemical technique, 'electro-swabbing', which is based on the principle of decontamination by electro-polishing. In developing these techniques it was necessary to take account of the physical and chemical nature of the surface deposits on the gas circulator components; these were shown to consist of magnetite-type oxide and carbonaceous material. In order to follow the progress of the decontamination it was also necessary to develop a surface sampling technique which was effective and precise under these conditions; an electrochemical technique, employing similar principles to the electro-swabbing process, was developed for this purpose. The full-scale trial of the PIC decontamination technique was carried out on an inlet guide vane (IGV) assembly, this having been identified as the component from the gas circulator which contributes most to the radiation dose accumulated during routine circulator maintenance. The technique was shown to be practically viable and some 99% of the radioactive contamination was readily removed from the treated surfaces with only negligible surface damage being caused. The full-scale trial of the electro-swabbing decontamination technique was carried out on a gas circulator impeller. High decontamination factors were again achieved with ≥ 99% of the radioactive contamination being removed from the treated surfaces. The technique has practical limitations in terms of handling and treatment of waste-arisings. However, the use of specially-designed swabbing electrodes may allow the treatment of constricted geometries inaccessible to techniques such as PIC. The technique is also highly suitable for the treatment of soft-finish materials and of components fabricated from a

  7. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  8. Generalization of learning from picture books to novel test conditions by 18- and 24-month-old children.

    Science.gov (United States)

    Simcock, Gabrielle; Dooley, Megan

    2007-11-01

    Researchers know little about whether very young children can recognize objects originally introduced to them in a picture book when they encounter similar looking objects in various real-world contexts. The present studies used an imitation procedure to explore young children's ability to generalize a novel action sequence from a picture book to novel test conditions. The authors found that 18-month-olds imitated the action sequence from a book only when the conditions at testing matched those at encoding; altering the test stimuli or context disrupted imitation (Experiment 1A). In contrast, the 24-month-olds imitated the action sequence with changes to both the test context and stimuli (Experiment 1B). Moreover, although the 24-month-olds exhibited deferred imitation with no changes to the test conditions, they did not defer imitation with changes to the context and stimuli (Experiment 2). Two factors may account for the pattern of results: age-related changes in children's ability to utilize novel retrieval cues as well as their emerging ability to understand the representational nature of pictures. (c) 2007 APA.

  9. Stability analysis on natural circulation boiling water reactors

    International Nuclear Information System (INIS)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au)

  10. Bivariate spatial analysis of temperature and precipitation from general circulation models and observation proxies

    KAUST Repository

    Philbin, R.

    2015-05-22

    This study validates the near-surface temperature and precipitation output from decadal runs of eight atmospheric ocean general circulation models (AOGCMs) against observational proxy data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis temperatures and Global Precipitation Climatology Project (GPCP) precipitation data. We model the joint distribution of these two fields with a parsimonious bivariate Matérn spatial covariance model, accounting for the two fields\\' spatial cross-correlation as well as their own smoothnesses. We fit output from each AOGCM (30-year seasonal averages from 1981 to 2010) to a statistical model on each of 21 land regions. Both variance and smoothness values agree for both fields over all latitude bands except southern mid-latitudes. Our results imply that temperature fields have smaller smoothness coefficients than precipitation fields, while both have decreasing smoothness coefficients with increasing latitude. Models predict fields with smaller smoothness coefficients than observational proxy data for the tropics. The estimated spatial cross-correlations of these two fields, however, are quite different for most GCMs in mid-latitudes. Model correlation estimates agree well with those for observational proxy data for Australia, at high northern latitudes across North America, Europe and Asia, as well as across the Sahara, India, and Southeast Asia, but elsewhere, little consistent agreement exists.

  11. Bivariate spatial analysis of temperature and precipitation from general circulation models and observation proxies

    KAUST Repository

    Philbin, R.; Jun, M.

    2015-01-01

    This study validates the near-surface temperature and precipitation output from decadal runs of eight atmospheric ocean general circulation models (AOGCMs) against observational proxy data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis temperatures and Global Precipitation Climatology Project (GPCP) precipitation data. We model the joint distribution of these two fields with a parsimonious bivariate Matérn spatial covariance model, accounting for the two fields' spatial cross-correlation as well as their own smoothnesses. We fit output from each AOGCM (30-year seasonal averages from 1981 to 2010) to a statistical model on each of 21 land regions. Both variance and smoothness values agree for both fields over all latitude bands except southern mid-latitudes. Our results imply that temperature fields have smaller smoothness coefficients than precipitation fields, while both have decreasing smoothness coefficients with increasing latitude. Models predict fields with smaller smoothness coefficients than observational proxy data for the tropics. The estimated spatial cross-correlations of these two fields, however, are quite different for most GCMs in mid-latitudes. Model correlation estimates agree well with those for observational proxy data for Australia, at high northern latitudes across North America, Europe and Asia, as well as across the Sahara, India, and Southeast Asia, but elsewhere, little consistent agreement exists.

  12. Self-rated health, symptoms of depression and general symptoms at 3 and 12 months after a first-ever stroke: a municipality-based study in Sweden

    Directory of Open Access Journals (Sweden)

    Hassler Ejda

    2007-10-01

    Full Text Available Abstract Background Self-rated health is an important indicator of quality of life as well as a good predictor of future health. The purpose of the study was to follow up the self-rated health and the prevalence of symptoms of depression and general symptoms in a population of first-ever stroke patients 3 and 12 months after stroke. Methods All patients surviving their first-ever stroke and residing in Nacka municipality in Stockholm County Council were included using a multiple overlapping search strategy during an 18-month period (n = 187. Our study group comprised the 145 patients who survived the first 3 months after stroke. Three and 12 months after their stroke, the patients were assessed regarding self-rated health and general symptoms using parts of the Göteborg Quality of Life Instrument (GQLI, and regarding symptoms of depression using the Montgomery Asberg Depression Scale (MADRS-S. Results Self-rated health was rated as very good or rather good by 62% at 3 months after stroke and by 78% at 12 months after stroke. More than half of the patients suffered from symptoms of depression, with no significant improvement at 12 months. The most common general symptoms at 3 months after stroke were fatigue, sadness, pain in the legs, dizziness and irritability. Fatigue and sadness were still common at 12 months. Twelve months after stroke the prevalences of crying easily, irritability, impaired concentration, nausea and loss of weight were significantly lower. Conclusion The majority of patients rated their health as rather good or very good at 3 and 12 months after stroke. However, the majority suffered from fatigue and from symptoms of depression after both 3 and 12 months. In continued care of stroke survivors, it is important to consider the fact that many patients who rate their health as good may nevertheless have symptoms of depression, and some of them may benefit from anti-depressive treatment.

  13. The GEM-Mars general circulation model for Mars: Description and evaluation

    Science.gov (United States)

    Neary, L.; Daerden, F.

    2018-01-01

    GEM-Mars is a gridpoint-based three-dimensional general circulation model (GCM) of the Mars atmosphere extending from the surface to approximately 150 km based on the GEM (Global Environmental Multiscale) model, part of the operational weather forecasting and data assimilation system for Canada. After the initial modification for Mars, the model has undergone considerable changes. GEM-Mars is now based on GEM 4.2.0 and many physical parameterizations have been added for Mars-specific atmospheric processes and surface-atmosphere exchange. The model simulates interactive carbon dioxide-, dust-, water- and atmospheric chemistry cycles. Dust and water ice clouds are radiatively active. Size distributed dust is lifted by saltation and dust devils. The model includes 16 chemical species (CO2, Argon, N2, O2, CO, H2O, CH4, O3, O(1D), O, H, H2, OH, HO2, H2O2 and O2(a1Δg)) and has fully interactive photochemistry (15 reactions) and gas-phase chemistry (31 reactions). GEM-Mars provides a good simulation of the water and ozone cycles. A variety of other passive tracers can be included for dedicated studies, such as the emission of methane. The model has both a hydrostatic and non-hydrostatic formulation, and together with a flexible grid definition provides a single platform for simulations on a variety of horizontal scales. The model code is fully parallelized using OMP and MPI. Model results are evaluated by comparison to a selection of observations from instruments on the surface and in orbit, relating to atmosphere and surface temperature and pressure, dust and ice content, polar ice mass, polar argon, and global water and ozone vertical columns. GEM-Mars will play an integral part in the analysis and interpretation of data that is received by the NOMAD spectrometer on the ESA-Roskosmos ExoMars Trace Gas Orbiter. The present paper provides an overview of the current status and capabilities of the GEM-Mars model and lays the foundations for more in-depth studies in support

  14. Seasonal circulation over the Catalan inner-shelf (northwest Mediterranean Sea)

    Science.gov (United States)

    Grifoll, Manel; Aretxabaleta, Alfredo L.; Pelegrí, Josep L.; Espino, Manuel; Warner, John C.; Sánchez-Arcilla, Agustín

    2013-01-01

    This study characterizes the seasonal cycle of the Catalan inner-shelf circulation using observations and complementary numerical results. The relation between seasonal circulation and forcing mechanisms is explored through the depth-averaged momentum balance, for the period between May 2010 and April 2011, when velocity observations were partially available. The monthly-mean along-shelf flow is mainly controlled by the along-shelf pressure gradient and by surface and bottom stresses. During summer, fall, and winter, the along-shelf momentum balance is dominated by the barotropic pressure gradient and local winds. During spring, both wind stress and pressure gradient act in the same direction and are compensated by bottom stress. In the cross-shelf direction the dominant forces are in geostrophic balance, consistent with dynamic altimetry data.

  15. The effects of future nationwide forest transition to discharge in the 21st century with regard to general circulation model climate change scenarios.

    Science.gov (United States)

    Mouri, Goro; Nakano, Katsuhiro; Tsuyama, Ikutaro; Tanaka, Nobuyuki

    2016-08-01

    Forest disturbance (or land-cover change) and climatic variability are commonly recognised as two major drivers interactively influencing hydrology in forested watersheds. Future climate changes and corresponding changes in forest type and distribution are expected to generate changes in rainfall runoff that pose a threat to river catchments. It is therefore important to understand how future climate changes will effect average rainfall distribution and temperature and what effect this will have upon forest types across Japan. Recent deforestation of the present-day coniferous forest and expected increases in evergreen forest are shown to influence runoff processes and, therefore, to influence future runoff conditions. We strongly recommend that variations in forest type be considered in future plans to ameliorate projected climate changes. This will help to improve water retention and storage capacities, enhance the flood protection function of forests, and improve human health. We qualitatively assessed future changes in runoff including the effects of variation in forest type across Japan. Four general circulation models (GCMs) were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM), and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble including multiple physics configurations and different reference concentration pathways (RCP2.6, 4.5, and 8.5), the results of which have produced monthly data sets for the whole of Japan. The impacts of future climate changes on forest type in Japan are based on the balance amongst changes in rainfall distribution, temperature and hydrological factors. Methods for assessing the impact of such changes include the

  16. A study into the effect of the diurnal tide on the structure of the background mesosphere and thermosphere using the new coupled middle atmosphere and thermosphere (CMAT general circulation model

    Directory of Open Access Journals (Sweden)

    M. J. Harris

    2002-02-01

    Full Text Available A new coupled middle atmosphere and thermosphere general circulation model has been developed, and some first results are presented. An investigation into the effects of the diurnal tide upon the mean composition, dynamics and energetics was carried out for equinox conditions. Previous studies have shown that tides deplete mean atomic oxygen in the upper mesosphere-lower thermosphere due to an increased recombination in the tidal displaced air parcels. The model runs presented suggest that the mean residual circulation associated with the tidal dissipation also plays an important role. Stronger lower boundary tidal forcing was seen to increase the equatorial local diurnal maximum of atomic oxygen and the associated 0(1S 557.7 nm green line volume emission rates. The changes in the mean background temperature structure were found to correspond to changes in the mean circulation and exothermic chemical heating.Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry Meterology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  17. Evaluation of North Eurasian snow-off dates in the ECHAM5.4 atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    P. Räisänen

    2014-12-01

    Full Text Available The timing of springtime end of snowmelt (snow-off date in northern Eurasia in version 5.4 of the ECHAM5 atmospheric general circulation model (GCM is evaluated through comparison with a snow-off date data set based on space-borne microwave radiometer measurements and with Russian snow course data. ECHAM5 reproduces well the observed gross geographical pattern of snow-off dates, with earliest snow-off (in March in the Baltic region and latest snow-off (in June in the Taymyr Peninsula and in northeastern parts of the Russian Far East. The primary biases are (1 a delayed snow-off in southeastern Siberia (associated with too low springtime temperature and too high surface albedo, in part due to insufficient shielding by canopy; and (2 an early bias in the western and northern parts of northern Eurasia. Several sensitivity experiments were conducted, where biases in simulated atmospheric circulation were corrected through nudging and/or the treatment of surface albedo was modified. While this alleviated some of the model biases in snow-off dates, 2 m temperature and surface albedo, especially the early bias in snow-off in the western parts of northern Eurasia proved very robust and was actually larger in the nudged runs. A key issue underlying the snow-off biases in ECHAM5 is that snowmelt occurs at too low temperatures. Very likely, this is related to the treatment of the surface energy budget. On one hand, the surface temperature Ts is not computed separately for the snow-covered and snow-free parts of the grid cells, which prevents Ts from rising above 0 °C before all snow has vanished. Consequently, too much of the surface net radiation is consumed in melting snow and too little in heating the air. On the other hand, ECHAM5 does not include a canopy layer. Thus, while the albedo reduction due to canopy is accounted for, the shielding of snow on ground by the overlying canopy is not considered, which leaves too much solar radiation available for

  18. VanderLaan Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Hongyan Pan

    2015-01-01

    Full Text Available Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, and g-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaan g-circulant matrix.

  19. Growth of the green mussel, Perna viridis L., in a sea water circulating system

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A.; Ansari, Z.A.; Ingole, B.S.; Parulekar, A.H.

    Growth of the green mussel, P. viridis L., was studied in a sea water circulating system for 12 months. The maximum growth rate was recorded during March - May, coinciding with the maximum abundance of phytoplankton. The other hydrological...

  20. Classification of hemispheric monthly mean stratospheric potential vorticity fields

    Directory of Open Access Journals (Sweden)

    R. Huth

    Full Text Available Monthly mean NCEP reanalysis potential vorticity fields at the 650 K isentropic level over the Northern and Southern Hemispheres between 1979 and 1997 were studied using multivariate analysis tools. Principal component analysis in the T-mode was applied to demonstrate the validity of such statistical techniques for the study of stratospheric dynamics and climatology. The method, complementarily applied to both the raw and anomaly fields, was useful in determining and classifying the characteristics of winter and summer PV fields on both hemispheres, in particular, the well-known differences in the behaviour and persistence of the polar vortices. It was possible to identify such features as sudden warming events in the Northern Hemisphere and final warming dates in both hemispheres. The stratospheric impact of other atmospheric processes, such as volcanic eruptions, also identified though the results, must be viewed at this stage as tentative. An interesting change in behaviour around 1990 was detected over both hemispheres.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; general circulation; climatology

  1. A new analytical model for conduction heating during the SAGD circulation phase

    Energy Technology Data Exchange (ETDEWEB)

    Duong, A.N. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[ConocoPhillips Canada Resources Corp., Calgary, AB (Canada); Tomberlin, T.A. [ConocoPhillips Canada Resources Corp., Calgary, AB (Canada); Cyrot, M. [Total E and P Canada Ltd., Calgary, AB (Canada)

    2008-10-15

    The steam assisted gravity drainage (SAGD) process has become the common procedure to recover bitumen from Alberta's oilsands. Inter-well communication must be initiated during the start-up phase of a SAGD process. The shape of an initial steam chamber that develops during the circulation phase influences the efficiency of bitumen recovery. As such, the heating conformance distributed along the horizontal wellbores must be well understood. The duration of the start-up phase varies with the characteristics of the oilsand formation and the distance between the wellbores, but it is typically a month to several months. This paper presented a newly developed analytical model that predicts the initial steam chamber. The model improves bitumen recovery efficiency by predicting the mid-point temperature front and heating efficiency of a wellpair during the SAGD circulation phase. The Excel-based model uses the exponential integral solution for radial heating in a long cylinder and superposition in space for multi-heating sources. It can predict the temperature profile if the steam temperatures or pressures are known during the circulation period. Wellbore modeling that includes any variation in distances between the wellbores is critical to both circulation time and heating conformance. This model has an advantage over numerical simulation in terms of reducing computational time and accurately modelling any variation in distance between wellbores. The results can be optimized under various operational conditions, wellbore profiles, tubing sizes and convection flow effects. This easy to use model is currently being used by ConocoPhillips Canada to optimize, predict and guide oilsands projects during the start-up phase of a SAGD process. 5 refs., 13 figs.

  2. Anomaly General Circulation Models.

    Science.gov (United States)

    Navarra, Antonio

    The feasibility of the anomaly model is assessed using barotropic and baroclinic models. In the barotropic case, both a stationary and a time-dependent model has been formulated and constructed, whereas only the stationary, linear case is considered in the baroclinic case. Results from the barotropic model indicate that a relation between the stationary solution and the time-averaged non-linear solution exists. The stationary linear baroclinic solution can therefore be considered with some confidence. The linear baroclinic anomaly model poses a formidable mathematical problem because it is necessary to solve a gigantic linear system to obtain the solution. A new method to find solution of large linear system, based on a projection on the Krylov subspace is shown to be successful when applied to the linearized baroclinic anomaly model. The scheme consists of projecting the original linear system on the Krylov subspace, thereby reducing the dimensionality of the matrix to be inverted to obtain the solution. With an appropriate setting of the damping parameters, the iterative Krylov method reaches a solution even using a Krylov subspace ten times smaller than the original space of the problem. This generality allows the treatment of the important problem of linear waves in the atmosphere. A larger class (nonzonally symmetric) of basic states can now be treated for the baroclinic primitive equations. These problem leads to large unsymmetrical linear systems of order 10000 and more which can now be successfully tackled by the Krylov method. The (R7) linear anomaly model is used to investigate extensively the linear response to equatorial and mid-latitude prescribed heating. The results indicate that the solution is deeply affected by the presence of the stationary waves in the basic state. The instability of the asymmetric flows, first pointed out by Simmons et al. (1983), is active also in the baroclinic case. However, the presence of baroclinic processes modifies the

  3. A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model

    DEFF Research Database (Denmark)

    Knudsen, Per; Bingham, R.; Andersen, Ole Baltazar

    2011-01-01

    The Gravity and steady-state Ocean Circulation Explorer (GOCE) satellite mission measures Earth’s gravity field with an unprecedented accuracy at short spatial scales. In doing so, it promises to significantly advance our ability to determine the ocean’s general circulation. In this study, an ini...

  4. Direct weakening of tropical circulations from masked CO2 radiative forcing.

    Science.gov (United States)

    Merlis, Timothy M

    2015-10-27

    Climate models robustly simulate weakened mean circulations of the tropical atmosphere in direct response to increased carbon dioxide (CO2). The direct response to CO2, defined by the response to radiative forcing in the absence of changes in sea surface temperature, affects tropical precipitation and tropical cyclone genesis, and these changes have been tied to the weakening of the mean tropical circulation. The mechanism underlying this direct CO2-forced circulation change has not been elucidated. Here, I demonstrate that this circulation weakening results from spatial structure in CO2's radiative forcing. In regions of ascending circulation, such as the intertropical convergence zone, the CO2 radiative forcing is reduced, or "masked," by deep-convective clouds and high humidity; in subsiding regions, such as the subtropics, the CO2 radiative forcing is larger because the atmosphere is drier and deep-convective clouds are infrequent. The spatial structure of the radiative forcing reduces the need for the atmosphere to transport energy. This, in turn, weakens the mass overturning of the tropical circulation. The previously unidentified mechanism is demonstrated in a hierarchy of atmospheric general circulation model simulations with altered radiative transfer to suppress the cloud masking of the radiative forcing. The mechanism depends on the climatological distribution of clouds and humidity, rather than uncertain changes in these quantities. Masked radiative forcing thereby offers an explanation for the robustness of the direct circulation weakening under increased CO2.

  5. On the dynamics of droughts in northeast Brazil - Observations, theory and numerical experiments with a general circulation model

    Science.gov (United States)

    Moura, A. D.; Shukla, J.

    1981-01-01

    The establishment of a thermally direct local circulation which has its ascending branch at about 10 deg N and its descending branch over northeast Brazil and the adjoining oceanic region is proposed as a possible mechanism for the occurrence of severe droughts over this Brazilian region. The driving for this anomalous circulation is provided by enhanced moist convection due to the effect of warmer sea surface anomalies over the northern tropical Atlantic and cooling associated with colder sea surface temperature anomalies in the southern tropical Atlantic. A simple primitive equation model is used to calculate the frictionally-controlled and thermally-driven circulation due to a prescribed heating function in a resting atmosphere, and a series of numerical experiments are carried out to test the sensitivity of the Goddard Laboratory's model to prescribed sea surface temperature anomalies over the tropical Atlantic.

  6. Daily Reservoir Inflow Forecasting using Deep Learning with Downscaled Multi-General Circulation Models (GCMs) Platform

    Science.gov (United States)

    Li, D.; Fang, N. Z.

    2017-12-01

    Dallas-Fort Worth Metroplex (DFW) has a population of over 7 million depending on many water supply reservoirs. The reservoir inflow plays a vital role in water supply decision making process and long-term strategic planning for the region. This paper demonstrates a method of utilizing deep learning algorithms and multi-general circulation model (GCM) platform to forecast reservoir inflow for three reservoirs within the DFW: Eagle Mountain Lake, Lake Benbrook and Lake Arlington. Ensemble empirical mode decomposition was firstly employed to extract the features, which were then represented by the deep belief networks (DBNs). The first 75 years of the historical data (1940 -2015) were used to train the model, while the last 2 years of the data (2016-2017) were used for the model validation. The weights of each DBN gained from the training process were then applied to establish a neural network (NN) that was able to forecast reservoir inflow. Feature predictors used for the forecasting model were generated from weather forecast results of the downscaled multi-GCM platform for the North Texas region. By comparing root mean square error (RMSE) and mean bias error (MBE) with the observed data, the authors found that the deep learning with downscaled multi-GCM platform is an effective approach in the reservoir inflow forecasting.

  7. Circulation pump mounting

    International Nuclear Information System (INIS)

    Skalicky, A.

    1976-01-01

    The suspension is described of nuclear reactor circulating pumps enabling their dilatation with a minimum reverse force consisting of spacing rods supported with one end in the anchor joints and provided with springs and screw joints engaging the circulating pump shoes. The spacing rods are equipped with side vibration dampers anchored in the shaft side wall and on the body of the circulating pump drive body. The negative reverse force F of the spacing rods is given by the relation F=Q/l.y, where Q is the weight of the circulating pump, l is the spatial distance between the shoe joints and anchor joints, and y is the deflection of the circulating pump vertical axis from the mean equilibrium position. The described suspension is advantageous in that that the reverse force for the deflection from the mean equilibrium position is minimal, dynamic behaviour is better, and construction costs are lower compared to suspension design used so far. (J.B.)

  8. Stressed lungs: unveiling the role of circulating stress ...

    Science.gov (United States)

    Ozone, a major component of smog generated through the interaction of light and anthropogenic emissions, induces adverse pulmonary, cardiovascular, and systemic health effects upon inhalation. It is generally accepted that ozone-induced lung injury is mediated by its interaction with lung lining components causing local oxidative changes, which then leads to cell damage and recruitment of inflammatory cells. It is postulated that the spillover of reactive intermediates and pro-inflammatory molecules from lung to systemic circulation mediates extra-pulmonary effects. However, recent work from our laboratory supports an alternative hypothesis that circulating stress hormones, such as epinephrine and corticosterone/cortisol, are involved in mediating ozone pulmonary effects. We have shown in rats and humans that ozone increases the levels of circulating stress hormones through activation of the hypothalamus- pituitary-adrenal (HPA) axis before any measurable effects are observed in the lung. The surgical removal of adrenals diminishes circulating stress hormones and at the same time, the pulmonary effects of ozone suggesting a significant contribution of these hormones in ozone-induced lung injury and inflammation. While ozone effects in the lung have been extensively studied, the contribution of central nervous system -mediated hormonal stress response has not been examined. In order to understand the signaling pathways that might be involved in ozone-induced lun

  9. Circulation policies in health science libraries.

    Science.gov (United States)

    Watkins, C; Coker, N C

    1970-10-01

    There is general agreement that library policies have considerable influence on the use of libraries. Medical school (health science) libraries of this country were surveyed as to their policies in respect to whether faculty and student use were regulated by a single policy, circulation regulations, hours library was accessible to users, accessibility of reserve material, interlibrary loan, policy on overdue material, and exit control. THE LIBRARIES WERE THEN DIVIDED INTO THREE GROUPS, HIGH, MIDDLE, AND LOW ACCORDING TO THE FOLLOWING CHARACTERISTICS: size of student body, size of faculty, size of holdings, size of library staff, annual budget, and annual circulation. Our findings would indicate that schools falling in a high category based upon these criteria tend to be more restrictive in their policies and to have different regulations for faculty and students than do schools in the low category.These findings warrant further study.

  10. Twentieth century Walker Circulation change: data analysis and model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingjia [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Chinese Research Academy of Environmental Sciences, River and Coastal Environment Research Center, Beijing (China); Chinese Academy of Sciences, Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Qingdao (China); Latif, Mojib; Park, Wonsun; Keenlyside, Noel S.; Martin, Thomas [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Semenov, Vladimir A. [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation)

    2012-05-15

    Recent studies indicate a weakening of the Walker Circulation during the twentieth century. Here, we present evidence from an atmospheric general circulation model (AGCM) forced by the history of observed sea surface temperature (SST) that the Walker Circulation may have intensified rather than weakened. Observed Equatorial Indo-Pacific Sector SST since 1870 exhibited a zonally asymmetric evolution: While the eastern part of the Equatorial Pacific showed only a weak warming, or even cooling in one SST dataset, the western part and the Equatorial Indian Ocean exhibited a rather strong warming. This has resulted in an increase of the SST gradient between the Maritime Continent and the eastern part of the Equatorial Pacific, one driving force of the Walker Circulation. The ensemble experiments with the AGCM, with and without time-varying external forcing, suggest that the enhancement of the SST gradient drove an anomalous atmospheric circulation, with an enhancement of both Walker and Hadley Circulation. Anomalously strong precipitation is simulated over the Indian Ocean and anomalously weak precipitation over the western Pacific, with corresponding changes in the surface wind pattern. Some sensitivity to the forcing SST, however, is noticed. The analysis of twentieth century integrations with global climate models driven with observed radiative forcing obtained from the Coupled Model Intercomparison Project (CMIP) database support the link between the SST gradient and Walker Circulation strength. Furthermore, control integrations with the CMIP models indicate the existence of strong internal variability on centennial timescales. The results suggest that a radiatively forced signal in the Walker Circulation during the twentieth century may have been too weak to be detectable. (orig.)

  11. Metabolic syndrome, circulating RBP4, testosterone, and SHBG predict weight regain at 6 months after weight loss in men

    DEFF Research Database (Denmark)

    Wang, Ping; Menheere, Paul P C A; Astrup, Arne

    2013-01-01

    OBJECTIVE: Weight loss helps reduce the symptoms of the metabolic syndrome (MetS) in the obese, but weight regain after active weight loss is common. We investigated the changes and predictive role of circulating adipokines and sex hormones for weight regain in men during dietary intervention...

  12. Circulating sCD36 is associated with unhealthy fat distribution and elevated circulating triglycerides in morbidly obese individuals

    DEFF Research Database (Denmark)

    Knøsgaard, L; Thomsen, S B; Støckel, M

    2014-01-01

    BACKGROUND: The recently identified circulating sCD36 has been proposed to reflect tissue CD36 expression, and is upregulated in case of obesity, insulin resistance and hepatic steatosis. The aim of this study was to explore the effect of weight loss secondary to bariatric surgery in relation to s......-en-Y gastric bypass were included. Anthropometric measurements and fasting blood samples were collected at a preoperative baseline visit and 3 months after surgery. sCD36 was measured by an in-house assay, whereas insulin sensitivity and the hepatic fat accumulation were estimated by the homeostasis model...

  13. Newly identified psychiatric illness in one general practice: 12-month outcome and the influence of patients' personality.

    Science.gov (United States)

    Wright, A F; Anderson, A J

    1995-01-01

    BACKGROUND. Relatively little is known about the natural history and outcome of psychological problems in patients who present to general practitioners. Only a small proportion of such patients are seen by specialists. Clinical experience suggests that patient personality is one of the factors influencing outcome in patients diagnosed as having psychiatric illness. AIM. This study set out to examine prospectively the progress and 12-month outcome of patients with newly identified psychiatric illness, and the association of patients' personality with outcome. METHOD. One hundred and seventy one patients with clinically significant psychiatric illness attending one practice in a Scottish new town were followed up prospectively (96 presented with psychological symptoms and 75 with somatic symptoms), and were compared with a group of 127 patients with chronic physical illness. Patients were assessed in terms of psychiatric state, social problems and personality using both computer-based and pencil and paper tests in addition to clinical assessments at each consultation during the follow-up year and structured interview one year after recruitment. RESULTS. Most of the improvement in psychiatric state scores on the 28-item general health questionnaire occurred in the first six months of the illness. Of the 171 patients with psychiatric illness 34% improved quickly and remained well, 54% had an intermittent course but had improved at 12-month follow up while 12% pursued a chronic course without improvement. The mean number of consultations in the follow-up year was 8.4 for patients presenting with psychological symptoms, 7.2 for those presenting with somatic symptoms and 6.6 for patients with chronic physical illness. The Eysenck N score proved a strong predictor of the outcome of new psychiatric illness. CONCLUSION. Only one in three patients with newly identified psychiatric illness improved quickly and and remained well, reflecting the importance of continuing care of

  14. Home care by general practitioners for cancer patients in the last 3 months of life: An epidemiological study of quality and associated factors

    Science.gov (United States)

    Pivodic, Lara; Harding, Richard; Calanzani, Natalia; McCrone, Paul; Hall, Sue; Deliens, Luc; Higginson, Irene J; Gomes, Barbara

    2016-01-01

    Background: Stronger generalist end-of-life care at home for people with cancer is called for but the quality of end-of-life care delivered by general practitioners has been questioned. Aim: To determine the degree of and factors associated with bereaved relatives’ satisfaction with home end-of-life care delivered by general practitioners to cancer patients. Design: Population-based mortality followback survey. Setting/participants: Bereaved relatives of people who died of cancer in London, United Kingdom (identified from death registrations in 2009–2010), were invited to complete a postal questionnaire surveying the deceased’s final 3 months of life. Results: Questionnaires were completed for 596 decedents of whom 548 spent at least 1 day at home in the last 3 months of life. Of the respondents, 55% (95% confidence interval: 51%–59%) reported excellent/very good home care by general practitioners, compared with 78% (95% confidence interval: 74%–82%) for specialist palliative care providers and 68% (95% confidence interval: 64%–73%) for district/community/private nurses. The odds of high satisfaction (excellent/very good) with end-of-life care by general practitioners doubled if general practitioners made three or more compared with one or no home visits in the patient’s last 3 months of life (adjusted odds ratio: 2.54 (95% confidence interval: 1.52–4.24)) and halved if the patient died at hospital rather than at home (adjusted odds ratio: 0.55 (95% confidence interval: 0.31–0.998)). Conclusion: There is considerable room for improvement in the satisfaction with home care provided by general practitioners to terminally ill cancer patients. Ensuring an adequate offer of home visits by general practitioners may help to achieve this goal. PMID:26036688

  15. The influence of cirrus cloud-radiative forcing on climate and climate sensitivity in a general circulation model

    International Nuclear Information System (INIS)

    Lohmann, U.; Roeckner, E.

    1994-01-01

    Six numerical experiments have been performed with a general circulation model (GCM) to study the influence of high-level cirrus clouds and global sea surface temperature (SST) perturbations on climate and climate sensitivity. The GCM used in this investigation is the third-generation ECHAM3 model developed jointly by the Max-Planck-Institute for Meteorology and the University of Hamburg. It is shown that the model is able to reproduce many features of the observed cloud-radiative forcing with considerable skill, such as the annual mean distribution, the response to seasonal forcing and the response to observed SST variations in the equatorial Pacific. In addition to a reference experiment where the cirrus emissivity is computed as a function of the cloud water content, two sensitivity experiments have been performed in which the cirrus emissivity is either set to zero everywhere above 400 hPa ('transparent cirrus') or set to one ('black cirrus'). These three experiments are repeated identically, except for prescribing a globally uniform SST warming of 4 K. (orig.)

  16. General Anesthesia Inhibits the Activity of the "Glymphatic System".

    Science.gov (United States)

    Gakuba, Clement; Gaberel, Thomas; Goursaud, Suzanne; Bourges, Jennifer; Di Palma, Camille; Quenault, Aurélien; de Lizarrondo, Sara Martinez; Vivien, Denis; Gauberti, Maxime

    2018-01-01

    INTRODUCTION: According to the "glymphatic system" hypothesis, brain waste clearance is mediated by a continuous replacement of the interstitial milieu by a bulk flow of cerebrospinal fluid (CSF). Previous reports suggested that this cerebral CSF circulation is only active during general anesthesia or sleep, an effect mediated by the dilatation of the extracellular space. Given the controversies regarding the plausibility of this phenomenon and the limitations of currently available methods to image the glymphatic system, we developed original whole-brain in vivo imaging methods to investigate the effects of general anesthesia on the brain CSF circulation. METHODS: We used magnetic resonance imaging (MRI) and near-infrared fluorescence imaging (NIRF) after injection of a paramagnetic contrast agent or a fluorescent dye in the cisterna magna, in order to investigate the impact of general anesthesia (isoflurane, ketamine or ketamine/xylazine) on the intracranial CSF circulation in mice. RESULTS: In vivo imaging allowed us to image CSF flow in awake and anesthetized mice and confirmed the existence of a brain-wide CSF circulation. Contrary to what was initially thought, we demonstrated that the parenchymal CSF circulation is mainly active during wakefulness and significantly impaired during general anesthesia. This effect was especially significant when high doses of anesthetic agent were used (3% isoflurane). These results were consistent across the different anesthesia regimens and imaging modalities. Moreover, we failed to detect a significant change in the brain extracellular water volume using diffusion weighted imaging in awake and anesthetized mice. CONCLUSION: The parenchymal diffusion of small molecular weight compounds from the CSF is active during wakefulness. General anesthesia has a negative impact on the intracranial CSF circulation, especially when using a high dose of anesthetic agent.

  17. Circulating CD147 predicts mortality in advanced hepatocellular carcinoma.

    Science.gov (United States)

    Lee, Aimei; Rode, Anthony; Nicoll, Amanda; Maczurek, Annette E; Lim, Lucy; Lim, Seok; Angus, Peter; Kronborg, Ian; Arachchi, Niranjan; Gorelik, Alexandra; Liew, Danny; Warner, Fiona J; McCaughan, Geoffrey W; McLennan, Susan V; Shackel, Nicholas A

    2016-02-01

    The glycoprotein CD147 has a role in tumor progression, is readily detectable in the circulation, and is abundantly expressed in hepatocellular carcinoma (HCC). Advanced HCC patients are a heterogeneous group with some individuals having dismal survival. The aim of this study was to examine circulating soluble CD147 levels as a prognostic marker in HCC patients. CD147 was measured in 277 patients (110 HCC, 115 chronic liver disease, and 52 non-liver disease). Clinical data included etiology, tumor progression, Barcelona Clinic Liver Cancer (BCLC) stage, and treatment response. Patients with HCC were stratified into two groups based upon the 75th percentile of CD147 levels (24 ng/mL). CD147 in HCC correlated inversely with poor survival (P = 0.031). Increased CD147 predicted poor survival in BCLC stages C and D (P = 0.045), and CD147 levels >24 ng/mL predicted a significantly diminished 90-day and 180-day survival time (hazard ratio [HR] = 6.1; 95% confidence interval [CI]: 2.1-63.2; P = 0.0045 and HR = 2.8; 95% CI: 1.2-12.6; P = 0.028, respectively). In BCLC stage C, CD147 predicted prognosis; levels >24 ng/mL were associated with a median survival of 1.5 months compared with 6.5 months with CD147 levels ≤24 ng/mL (P = 0.03). CD147 also identified patients with a poor prognosis independent from treatment frequency, modality, and tumor size. Circulating CD147 is an independent marker of survival in advanced HCC. CD147 requires further evaluation as a potential new prognostic measure in HCC to identify patients with advanced disease who have a poor prognosis. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  18. 25 CFR 700.81 - Monthly housing cost.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Monthly housing cost. 700.81 Section 700.81 Indians THE... Policies and Instructions Definitions § 700.81 Monthly housing cost. (a) General. The term monthly housing...) Computation of monthly housing cost for replacement dwelling. A person's monthly housing cost for a...

  19. Thermohaline circulation in the Central Indian Ocean Basin (CIB) during austral summer and winter periods of 1997

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Suryanarayana, A.; Murty, V.S.N.

    circulation. The dynamic topography field at 500 m relative to 2000 db surface in the central part of CIB, representing the abyssal circulation, was generally characterized by a southwestward weak flow around 10 degrees S flanked by cyclonic and anti...

  20. Stability analysis on natural circulation boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au) 26 tabs., 88 ills.

  1. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    Science.gov (United States)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  2. Statistical downscaling based on dynamically downscaled predictors: Application to monthly precipitation in Sweden

    Science.gov (United States)

    Hellström, Cecilia; Chen, Deliang

    2003-11-01

    A prerequisite of a successful statistical downscaling is that large-scale predictors simulated by the General Circulation Model (GCM) must be realistic. It is assumed here that features smaller than the GCM resolution are important in determining the realism of the large-scale predictors. It is tested whether a three-step method can improve conventional one-step statistical downscaling. The method uses predictors that are upscaled from a dynamical downscaling instead of predictors taken directly from a GCM simulation. The method is applied to downscaling of monthly precipitation in Sweden. The statistical model used is a multiple regression model that uses indices of large-scale atmospheric circulation and 850-hPa specific humidity as predictors. Data from two GCMs (HadCM2 and ECHAM4) and two RCM experiments of the Rossby Centre model (RCA1) driven by the GCMs are used. It is found that upscaled RCA1 predictors capture the seasonal cycle better than those from the GCMs, and hence increase the reliability of the downscaled precipitation. However, there are only slight improvements in the simulation of the seasonal cycle of downscaled precipitation. Due to the cost of the method and the limited improvements in the downscaling results, the three-step method is not justified to replace the one-step method for downscaling of Swedish precipitation.

  3. The balance of kinetic and total energy simulated by the OSU two-level atmospheric general circulation model for January and July

    Science.gov (United States)

    Wang, J.-T.; Gates, W. L.; Kim, J.-W.

    1984-01-01

    A three-year simulation which prescribes seasonally varying solar radiation and sea surface temperature is the basis of the present study of the horizontal structure of the balances of kinetic and total energy simulated by Oregon State University's two-level atmospheric general circulation model. Mechanisms responsible for the local energy changes are identified, and the energy balance requirement's fulfilment is examined. In January, the vertical integral of the total energy shows large amounts of external heating over the North Pacific and Atlantic, together with cooling over most of the land area of the Northern Hemisphere. In July, an overall seasonal reversal is found. Both seasons are also characterized by strong energy flux divergence in the tropics, in association with the poleward transport of heat and momentum.

  4. Atmospheric circulation associated with extreme generalized frosts persistence in central-southern South America

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Gabriela V. [Centro de Investigaciones Cientificas y Transferencia de Tecnologia a la Produccion, Diamante (CICYTTTP-CONICET), Diamante, Entre Rios (Argentina); Berri, Guillermo J. [Servicio Meteorologico Nacional - CONICET, Buenos Aires (Argentina)

    2012-03-15

    Generalized frosts (GF) in central-southern South America have a strong impact due to their spatial extension, and they are especially important when they become persistent. This paper aims at identifying the atmospheric circulation features that determine the extreme GF persistence, i.e. very persistent and without persistence, and the differences between them, during the 1961-1990 winters. Since the GF without persistence group outnumbers the other one, two subgroups are composed with events selected from winters with maximum and minimum frequency of GF occurrence, respectively. Additionally, the individual event of July 1988 within the very persistent GF group is analyzed due to its exceptional persistence. GF persistence is mainly conditioned by two large-scale dynamic factors. One is the Rossby wave train propagation across the Pacific Ocean, and the other one is the location with respect to the continent and the magnitude of the confluence in the jet entrance region in subtropical latitudes. A predominantly meridional Rossby wave train propagation with a confluence region to the west of the continent prior to the event favors GF with intermediate (null) persistence depending on the greater (lesser) jet acceleration. This is conditioned by the magnitude of the confluence, which, in turn, depends on the disposition of the wave train propagation pattern. Instead, an essentially zonal propagation with a confluence region to the east of the continent favors the GF persistence for several days, yet if there is no confluence the event does not persist. The greatest persistence of an event combines the confluence/diffluence of the jet entrance/exit region, which depends on the disposition with respect to the continent of the zonally propagating Rossby wave trains. (orig.)

  5. A study into the effect of the diurnal tide on the structure of the background mesosphere and thermosphere using the new coupled middle atmosphere and thermosphere (CMAT general circulation model

    Directory of Open Access Journals (Sweden)

    M. J. Harris

    Full Text Available A new coupled middle atmosphere and thermosphere general circulation model has been developed, and some first results are presented. An investigation into the effects of the diurnal tide upon the mean composition, dynamics and energetics was carried out for equinox conditions. Previous studies have shown that tides deplete mean atomic oxygen in the upper mesosphere-lower thermosphere due to an increased recombination in the tidal displaced air parcels. The model runs presented suggest that the mean residual circulation associated with the tidal dissipation also plays an important role. Stronger lower boundary tidal forcing was seen to increase the equatorial local diurnal maximum of atomic oxygen and the associated 0(1S 557.7 nm green line volume emission rates. The changes in the mean background temperature structure were found to correspond to changes in the mean circulation and exothermic chemical heating.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry Meterology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  6. Specific job anxiety in comparison to general psychosomatic symptoms at admission, discharge and six months after psychosomatic inpatient treatment.

    Science.gov (United States)

    Muschalla, Beate; Linden, Michael

    2012-01-01

    Job anxiety is a severe problem in many patients with chronic mental disorders, as it usually results in specific participation problems in the workplace and long-term sick leave. The aim of this study was to explore the development of sick leave in dependence on general psychosomatic complaints and job anxiety from admission to a psychosomatic inpatient treatment until 6 months after discharge. A convenience sample of 91 patients, suffering from multiple mental disorders, filled in self-rating questionnaires on job anxiety (Job Anxiety Scale) and on general psychosomatic symptom load (Symptom Checklist-90-Revised) at the beginning, the end, and 6 months after discharge from an inpatient psychosomatic treatment. Additionally, sick leave status and employment status were assessed before and 6 months after the treatment. 15.4% of 91 patients were on sick leave before inpatient treatment and at follow-up (SS group), 20.9% were fit for work at intake and follow-up (FF group), 6.6% were fit for work initially and on sick leave later (FS group), and 57.1% on sick leave first and working at follow-up (SF group). In regard to general psychosomatic complaints, there were initially high scores on the SCL, a marked reduction during inpatient treatment, and a bouncing back to initial levels at follow-up for all 4 patient groups. SS and FS patients showed the highest scores at intake and follow-up. Concerning job anxiety, SS patients had the highest scores at all three assessments, while FF patients had significantly lower scores, with only low variation between assessments. SF patients started with comparatively high scores of job anxiety, which even increased before reentering work, but decreased in the follow-up period when they were confronted with work again. FS patients started low (like the FF patients) at intake, reduced their job anxiety further till discharge, but increased to higher scores at follow-up. General psychosomatic symptom load and job anxiety show a

  7. The role of SST on the South American atmospheric circulation during January, February and March 2001

    Science.gov (United States)

    Drumond, Anita Rodrigues De Moraes; Ambrizzi, Tércio

    2005-06-01

    Precipitation deficits were observed over southeastern, northeastern and Central Brazil during the 2001 Austral Summer. They contributed to the worsening of the energy crisis that was occurring in the country. A low-level anomalous anticyclonic circulation observed over eastern Brazil enhanced the deviation of moisture transport that usually occurs from the Amazon Basin to southeastern Brazil and inhibited the occurrence of South Atlantic Convergence Zone events in that period. However, an anomalous low-level northerly moisture flux was observed over the La Plata Basin, and positive precipitation anomalies occurred over Bolivia, Paraguay, northeastern Argentina and southern Brazil. Using the ensemble technique, a numerical study was carried out to investigate the role of different sea surface temperature (SST) forcings observed over this anomalous South American atmospheric circulation. Reynolds SST monthly means were used as boundary conditions to study the influence of South Atlantic, South Indian, South Pacific and Equatorial Pacific oceans. The simulations were run from September 2000 to April 2001 using the Community Climate Model version 3.6 General Circulation Model. Ten integrations using different initial conditions were done to each experiment. Numerical experiments suggested that the combined influence of South Pacific and Equatorial Pacific oceans could be responsible for the drought observed over Central Brazil. These experiments simulated the low-level anticyclonic anomaly observed over eastern Brazil. However, both experiments have poorly reproduced the intensity of the anomalous low-level northerly moisture flux observed over the La Plata Basin. Therefore, the intensity of the simulated precipitation anomalies over the subtropical regions was much weaker than observed.

  8. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients

    DEFF Research Database (Denmark)

    Sausen, Mark; Phallen, Jillian; Adleff, Vilmos

    2015-01-01

    tumour-specific mutations in the circulation of these patients. These analyses reveal somatic mutations in chromatin-regulating genes MLL, MLL2, MLL3 and ARID1A in 20% of patients that are associated with improved survival. We observe alterations in genes with potential therapeutic utility in over...... a third of cases. Liquid biopsy analyses demonstrate that 43% of patients with localized disease have detectable circulating tumour DNA (ctDNA) at diagnosis. Detection of ctDNA after resection predicts clinical relapse and poor outcome, with recurrence by ctDNA detected 6.5 months earlier than with CT...

  9. Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models

    Science.gov (United States)

    Nagura, Motoki; Sasaki, Wataru; Tozuka, Tomoki; Luo, Jing-Jia; Behera, Swadhin K.; Yamagata, Toshio

    2013-02-01

    Seychelles Dome refers to the shallow climatological thermocline in the southwestern Indian Ocean, where ocean wave dynamics efficiently affect sea surface temperature, allowing sea surface temperature anomalies to be predicted up to 1-2 years in advance. Accurate reproduction of the dome by ocean-atmosphere coupled general circulation models (CGCMs) is essential for successful seasonal predictions in the Indian Ocean. This study examines the Seychelles Dome as simulated by 35 CGCMs, including models used in phase five of the Coupled Model Intercomparison Project (CMIP5). Among the 35 CGCMs, 14 models erroneously produce an upwelling dome in the eastern half of the basin whereas the observed Seychelles Dome is located in the southwestern tropical Indian Ocean. The annual mean Ekman pumping velocity in these models is found to be almost zero in the southern off-equatorial region. This result is inconsistent with observations, in which Ekman upwelling acts as the main cause of the Seychelles Dome. In the models reproducing an eastward-displaced dome, easterly biases are prominent along the equator in boreal summer and fall, which result in shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and a spurious upwelling dome in the region. Compared to the CMIP3 models, the CMIP5 models are even worse in simulating the dome longitudes.

  10. Influence of bariatric surgery on quality of life, body image, and general self-efficacy within 6 and 24 months-a prospective cohort study.

    Science.gov (United States)

    Nickel, Felix; Schmidt, Lukas; Bruckner, Thomas; Büchler, Markus W; Müller-Stich, Beat-Peter; Fischer, Lars

    2017-02-01

    It has been proven that bariatric surgery affects weight loss. Patients with morbid obesity have a significantly lower quality of life (QOL) and body image compared with the general population. To evaluate QOL, body image, and general self-efficacy (GSE) in patients with morbid obesity undergoing bariatric surgery within clinical parameters. Monocentric, prospective, longitudinal cohort study. Patients completed the short form 36 (SF-36) for QOL, body image questionnaire, and GSE scale 3 times: before surgery and within 6 months and 24 months after surgery. Influence of gender, age, and type of procedure, either laparoscopic sleeve gastrectomy (SG) or laparoscopic Roux-en-Y gastric bypass, were analyzed. Thirty patients completed the questionnaires before and within 6 and 24 months after surgery. SF-36 physical summary score improved significantly from 34.3±11.0 before surgery to 46.0±10.4 within 6 months (Psurgery. SF-36 mental summary score improved significantly from 42.1±14.7 before surgery to 52.3±8.4 within 6 months (Psurgery. There were no significant differences between gender, age, and type of operation. Body image and GSE improved significantly after bariatric surgery (Pbariatric surgery. Improvements were independent of gender, age, and type of operation. Mental QOL was influenced by body image and GSE. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  11. High resolution reconstruction of monthly autumn and winter precipitation of Iberian Peninsula for last 150 years.

    Science.gov (United States)

    Cortesi, N.; Trigo, R.; González-Hidalgo, J. C.; Ramos, A.

    2012-04-01

    Precipitation over Iberian Peninsula (IP) presents large values of interannual variability and large spatial contrasts between wet mountainous regions in the north and dry regions in the southern plains. Unlike other European regions, IP was poorly monitored for precipitation during 19th century. Here we present a new approach to fill this gap. A set of 26 atmospheric circulation weather types (Trigo R.M. and DaCamara C.C., 2000) derived from a recent SLP dataset, the EMULATE (European and North Atlantic daily to multidecadal climate variability) Project, was used to reconstruct Iberian monthly precipitation from October to March during 1851-1947. Principal Component Regression Analysis was chosen to develop monthly precipitation reconstruction back to 1851 and calibrated over 1948-2003 period for 3030 monthly precipitation series of high-density homogenized MOPREDAS (Monthly Precipitation Database for Spain and Portugal) database. Validation was conducted over 1920-1947 at 15 key site locations. Results show high model performance for selected months, with a mean coefficient of variation (CV) around 0.6 during validation period. Lower CV values were achieved in western area of IP. Trigo, R. M., and DaCamara, C.C., 2000: "Circulation weather types and their impact on the precipitation regime in Portugal". Int. J. Climatol., 20, 1559-1581.

  12. Correction of Excessive Precipitation over Steep Mountains in a General Circulation Model (GCM)

    Science.gov (United States)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and regional climate models even at a resolution as high as 19km. The affected regions include the Andes, the Himalayas, Sierra Madre, New Guinea and others. This problem also shows up in some data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime subgrid-scale upslope winds, which in turn is forced by heated boundary layer on the slopes. These upslope winds are associated with large subgrid-scale topographic variance, which is found over steep mountains. Without such subgrid-scale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvable-scale upslope flow in the boundary layer combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to excessive precipitation over the affected regions. We have parameterized the effects of subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in the layers higher up when topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-5 GCM have shown that the EPSM problem is largely solved.

  13. Biogeochemical proxies in Scleractinian corals used to reconstruct ocean circulation

    International Nuclear Information System (INIS)

    Guilderson, T.P.; Kashgarian, M.; Schrag, D.P.

    2002-01-01

    We utilize monthly 14 C data derived from coral archives in conjunction with ocean circulation models to address two questions: 1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and 2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variables several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon ( 14 C) in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral 14 C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution Δ 14 C time-series such as these, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment onetime surveys such as GEOSECS and WOCE. These data not only provide fundamental information about the shallow circulation of the Pacific, but can be used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate change. (author)

  14. FFTF operating experience with sodium natural circulation: slides included

    Energy Technology Data Exchange (ETDEWEB)

    Burke, T.M.; Additon, S.L.; Beaver, T.R.; Midgett, J.C.

    1981-01-01

    The Fast Flux Test Facility (FFTF) has been designed for passive, back-up, safety grade decay heat removal utilizing natural circulation of the sodium coolant. This paper discusses the process by which operator preparation for this emergency operating mode has been assured, in paralled with the design verification during the FFTF startup and acceptance testing program. Over the course of the test program, additional insights were gained through the testing program, through on-going plant analyses and through general safety evaluations performed throughout the nuclear industry. These insights led to development of improved operator training material for control of decay heat removal during both forced and natural circulation as well as improvements in the related plant operating procedures.

  15. FFTF operating experience with sodium natural circulation: slides included

    International Nuclear Information System (INIS)

    Burke, T.M.; Additon, S.L.; Beaver, T.R.; Midgett, J.C.

    1981-01-01

    The Fast Flux Test Facility (FFTF) has been designed for passive, back-up, safety grade decay heat removal utilizing natural circulation of the sodium coolant. This paper discusses the process by which operator preparation for this emergency operating mode has been assured, in paralled with the design verification during the FFTF startup and acceptance testing program. Over the course of the test program, additional insights were gained through the testing program, through on-going plant analyses and through general safety evaluations performed throughout the nuclear industry. These insights led to development of improved operator training material for control of decay heat removal during both forced and natural circulation as well as improvements in the related plant operating procedures

  16. Influence of reactor design on the establishment of natural circulation in pool-type LMFBR

    International Nuclear Information System (INIS)

    Durham, M.E.

    1976-01-01

    The general principles involved in establishing natural circulation in a pool-type liquid metal cooled fast breeder reactor following loss of a.c. supplies are elucidated and the effects of design features by use of the computer code MELANI are quantified. It is shown that natural circulation can provide a feasible means of emergency core cooling in addition to that provided by pony motors. The choice of primary pump rundown time has a significant effect in controlling peak core outlet temperatures in the hypothetical case of natural circulation alone being the core heat removal process. (author)

  17. Influence of landfast ice on the hydrography and circulation of the Baltic Sea coastal zone

    Directory of Open Access Journals (Sweden)

    Ioanna Merkouriadi

    2013-02-01

    Full Text Available The influence of landfast ice on hydrography and circulation is examined inSantala Bay, adjacent to the Hanko Peninsula, Gulf of Finland. Three-dimensionalelectromagnetic current meters and conductivity-temperature-depth (CTD sensorswere deployed in winters 1999-2000 and 2000-2001 during the Finnish-Japanese"Hanko 9012" experiment. In each winter, data collection started one month beforethe initial ice formation and lasted until one month after the ice had meltedcompletely. Temperature and salinity are compared with long-term data from theTvärminne Zoological Station, also located on the Hanko Peninsula. Thewater temperature was 2°C less than the long-term average. Iceformation and melting show up in the salinity evolution of the water body,which makes salinity a good indicator of ice formation and breakup in SantalaBay. The circulation under the ice became weaker by almost 1 cm s-1.

  18. General Anesthesia Inhibits the Activity of the “Glymphatic System”

    Science.gov (United States)

    Gakuba, Clement; Gaberel, Thomas; Goursaud, Suzanne; Bourges, Jennifer; Di Palma, Camille; Quenault, Aurélien; Martinez de Lizarrondo, Sara; Vivien, Denis; Gauberti, Maxime

    2018-01-01

    INTRODUCTION: According to the “glymphatic system” hypothesis, brain waste clearance is mediated by a continuous replacement of the interstitial milieu by a bulk flow of cerebrospinal fluid (CSF). Previous reports suggested that this cerebral CSF circulation is only active during general anesthesia or sleep, an effect mediated by the dilatation of the extracellular space. Given the controversies regarding the plausibility of this phenomenon and the limitations of currently available methods to image the glymphatic system, we developed original whole-brain in vivo imaging methods to investigate the effects of general anesthesia on the brain CSF circulation. METHODS: We used magnetic resonance imaging (MRI) and near-infrared fluorescence imaging (NIRF) after injection of a paramagnetic contrast agent or a fluorescent dye in the cisterna magna, in order to investigate the impact of general anesthesia (isoflurane, ketamine or ketamine/xylazine) on the intracranial CSF circulation in mice. RESULTS: In vivo imaging allowed us to image CSF flow in awake and anesthetized mice and confirmed the existence of a brain-wide CSF circulation. Contrary to what was initially thought, we demonstrated that the parenchymal CSF circulation is mainly active during wakefulness and significantly impaired during general anesthesia. This effect was especially significant when high doses of anesthetic agent were used (3% isoflurane). These results were consistent across the different anesthesia regimens and imaging modalities. Moreover, we failed to detect a significant change in the brain extracellular water volume using diffusion weighted imaging in awake and anesthetized mice. CONCLUSION: The parenchymal diffusion of small molecular weight compounds from the CSF is active during wakefulness. General anesthesia has a negative impact on the intracranial CSF circulation, especially when using a high dose of anesthetic agent. PMID:29344300

  19. Can we use Earth Observations to improve monthly water level forecasts?

    Science.gov (United States)

    Slater, L. J.; Villarini, G.

    2017-12-01

    Dynamical-statistical hydrologic forecasting approaches benefit from different strengths in comparison with traditional hydrologic forecasting systems: they are computationally efficient, can integrate and `learn' from a broad selection of input data (e.g., General Circulation Model (GCM) forecasts, Earth Observation time series, teleconnection patterns), and can take advantage of recent progress in machine learning (e.g. multi-model blending, post-processing and ensembling techniques). Recent efforts to develop a dynamical-statistical ensemble approach for forecasting seasonal streamflow using both GCM forecasts and changing land cover have shown promising results over the U.S. Midwest. Here, we use climate forecasts from several GCMs of the North American Multi Model Ensemble (NMME) alongside 15-minute stage time series from the National River Flow Archive (NRFA) and land cover classes extracted from the European Space Agency's Climate Change Initiative 300 m annual Global Land Cover time series. With these data, we conduct systematic long-range probabilistic forecasting of monthly water levels in UK catchments over timescales ranging from one to twelve months ahead. We evaluate the improvement in model fit and model forecasting skill that comes from using land cover classes as predictors in the models. This work opens up new possibilities for combining Earth Observation time series with GCM forecasts to predict a variety of hazards from space using data science techniques.

  20. Indian Summer Monsoon Sub-seasonal Low-Level Circulation Predictability and its Association with Rainfall in a Coupled Model

    KAUST Repository

    Sagalgile, Archana P.; Chowdary, Jasti S.; Srinivas, G.; Gnanaseelan, C.; Parekh, Anant; Attada, Raju; Singh, Prem

    2017-01-01

    This study investigates predictability of the sub-seasonal Indian summer monsoon (ISM) circulation and its relation with rainfall variations in the coupled model National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2). Hindcasts based on CFSv2 for the period of 1982–2009 are used for detailed analysis. Though the model is capable of predicting the seasonal ISM rainfall at long lead months, the predication skill of the model for sub-seasonal rainfall in general is poor for short and long lead except for September. Rainfall over the ISM region/Indian Subcontinent is highly correlated with the low-level jet (LLJ) or Somali jet both in the observations and the model. The model displays improved skill in predicting LLJ as compared to precipitation in seasonal mean and September, whereas the model skill is poor for June and August. Detailed analysis reveals that the model LLJ variations throughout the season are overdependent on the El Niño-Southern Oscillation (ENSO) unlike in the observations. This is mainly responsible for the model’s low skill in predicting LLJ especially in July and August, which is the primary cause for the poor rainfall skill. Though LLJ is weak in September, the model skill is reasonably good because of its ENSO dependency both in model and the observations and which is contributed to the seasonal mean skill. Thus, to improve the skill of seasonal mean monsoon forecast, it is essential to improve the skill of individual months/sub-seasonal circulation and rainfall skill.

  1. Indian Summer Monsoon Sub-seasonal Low-Level Circulation Predictability and its Association with Rainfall in a Coupled Model

    KAUST Repository

    Sagalgile, Archana P.

    2017-10-26

    This study investigates predictability of the sub-seasonal Indian summer monsoon (ISM) circulation and its relation with rainfall variations in the coupled model National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2). Hindcasts based on CFSv2 for the period of 1982–2009 are used for detailed analysis. Though the model is capable of predicting the seasonal ISM rainfall at long lead months, the predication skill of the model for sub-seasonal rainfall in general is poor for short and long lead except for September. Rainfall over the ISM region/Indian Subcontinent is highly correlated with the low-level jet (LLJ) or Somali jet both in the observations and the model. The model displays improved skill in predicting LLJ as compared to precipitation in seasonal mean and September, whereas the model skill is poor for June and August. Detailed analysis reveals that the model LLJ variations throughout the season are overdependent on the El Niño-Southern Oscillation (ENSO) unlike in the observations. This is mainly responsible for the model’s low skill in predicting LLJ especially in July and August, which is the primary cause for the poor rainfall skill. Though LLJ is weak in September, the model skill is reasonably good because of its ENSO dependency both in model and the observations and which is contributed to the seasonal mean skill. Thus, to improve the skill of seasonal mean monsoon forecast, it is essential to improve the skill of individual months/sub-seasonal circulation and rainfall skill.

  2. Assessment of a general methodology for the analysis of natural circulation stability with water at supercritical pressure

    International Nuclear Information System (INIS)

    Debrah, K. S.

    2014-07-01

    To advance nuclear energy to meet future energy needs, the concept of Super Critical Water-Cooled Reactor (SCWR) as part or Generation IV (Gen IV) reactors was introduced with plans to deploy by 2030. Supercritical water-cooled reactors pose new challenges in stability and natural circulation phenomena at supercritical pressures because of the strong variability of thermodynamic and thermo-physical properties. ln this research, included in the frame work of the International Atomic Energy Agency (lAEA) fellowship and Coordinated Research Project (CRP) on H eat transfer Behavior and Thermo hydraulics Codes Testing for SCWRs , the natural circulation H 2 O experimental data at supercritical pressures of 25 MPa obtained at the China Institute of Atomic Energy (CIAE) of China, was used to evaluate the predictions of different system codes: RELAP5/MOD3.3, STAR-CCM+ as well as three (3) different and independent developed in-house codes (Ishii-sup loop, NCLoop T ran and NCLoop L ine). Stability analyses of an idealized loop (loop equivalent to CIAE natural circulation loop) of uniform diameter equivalent to the CIAE natural circulation loop at 25 MPa was performed using RELAP5 and an in-house code (Ishii-sup Loop). It was found for both RELAP and Ishii-sup Loop that, when heat structures are accounted for in models equipped with heat transfer and friction correlations for 'normal' fluids, the comparison with experimental data is not completely satisfactory because the observed experimental oscillations were delayed in simulation. It has also been found that the stability margin was slightly earlier than the peak of the flow rate-power curve at a given inlet enthalpy. Results from STAR-CCM+ was also compared with results obtained with RELAP5 and the in-house code of NCLoop. Even though STAR-CCM+ predicted a lower flow rate than the in-house codes, all codes exhibited the ability to predict the instability and results from all codes compared favorably. Stability

  3. Analysis of a general circulation model. II - Distribution of kinetic energy in the South Atlantic and Kuroshio/Oyashio systems

    Science.gov (United States)

    Garraffo, Zulema; Garzoli, Silvia L.; Haxby, William; Olson, Donald

    1992-01-01

    It was found (Garzoli et al., 1992) that the general circulation model of Semtner and Chervin (1992) provides accurate descriptions of the Brazil-Malvinas and the Kuroshio/Oyashio confluence systems, except for the fact that the model prediction shows less variability than that present in observations. This paper investigates the problem of model variability by analyzing the mean and the eddy kinetic energy from the model and comparing the values with the Geosat altimeter observations for the South Atlantic Ocean and for the Kuroshio system. It is found that, while the model shows transient eddy activity in the areas that overlap the Geosat observations, the energy level of the model transient motions is considerably smaller following an arch along the bottom topography. The same was found from the comparisons made with values obtained from FGGE and surface drifters. It is suggested that the model is poorly resolving instabilities in the confluence front, and is not resolving other transients appearing in regions of marked topography.

  4. A generic pump/compressor design for circulation of cryogenic fluids

    International Nuclear Information System (INIS)

    Jasinski, T.; Honkonen, S.C.; Sixsmith, H.; Stacy, W.D.

    1986-01-01

    This paper describes the development of a second-generation centrifugal circulator for cryogenic fluids. The circulator is designed to operate over a wide range of flow rate and pressure rise and can be used for the pumping of liquid and compression of vapor at temperatures down to liquid helium (4 K). The machine incorporates self-acting gas journal bearings, a permanent magnet axial thrust bearing, and a variable speed induction motor drive to provide for reliable, maintenance-free operation. The paper provides design details of the pump. Calculated performance characteristics are also presented along with a general discussion regarding limitations of the present system

  5. Over-imaging in uncomplicated low back pain: a 12-month audit of a general medical unit.

    Science.gov (United States)

    Rego, M H; Nagiah, S

    2016-12-01

    Low back pain is frequently encountered in hospitals and is a leading cause of disability, often involving costly imaging that exposes a patient to radiation. A retrospective 12-month audit at a South Australian tertiary hospital aimed to evaluate the frequency, modality and appropriateness of imaging in patients with low back pain. Results showed that the general medical unit was unnecessarily ordering imaging in 40% of patients who exhibited no indications warranting such a procedure. A standardised protocol is required to preventing clinicians from requesting imaging solely for the purposes of self-reassurance, patient reassurance or fear of litigation. © 2016 Royal Australasian College of Physicians.

  6. Anti-cyclonic circulation driven by the estuarine circulation in a gulf type ROFI

    Science.gov (United States)

    Fujiwara, T.; Sanford, L. P.; Nakatsuji, K.; Sugiyama, Y.

    1997-08-01

    Baroclinic residual circulation processes are examined in gulf type Regions Of Freshwater Influence (ROFIs), which have large rivers discharging into a rounded head wider than the Rossby internal deformation radius. Theoretical and observational investigations concentrate on Ise Bay, Japan, with supporting data from Osaka Bay and Tokyo Bay. Simplified analytical solutions are derived to describe the primary features of the circulation. Three dimensional residual current data collected using moored current meters and shipboard acoustic doppler current profilers (ADCPs), satellite imagery and density structure data observed using STDs, are presented for comparison to the theoretical predictions. There are three key points to understanding the resulting circulation in gulf type ROFIs. First, there are likely to be three distinct water masses: the river plume, a brackish upper layer, and a higher salinity lower layer. Second, baroclinic processes in gulf type ROFIs are influenced by the Earth's rotation at first order. Residual currents are quasi-geostrophic and potential vorticity is approximately conserved. Third, the combined effects of a classical longitudinal estuarine circulation and the Earth's rotation are both necessary to produce the resulting circulation. Anti-cyclonic vorticity is generated in the upper layer by the horizontal divergence associated with upward entrainment, which is part of the estuarine circulation. The interaction between anti-cyclonic vorticity and horizontal divergence results in two regions of qualitatively different circulation, with gyre-like circulation near the bay head and uniformly seaward anti-cyclonicly sheared flow further towards the mouth. The stagnation point separating the two regions is closer to (further away from) the bay head for stronger (weaker) horizontal divergence, respectively. The vorticity and spin-up time of this circulation are-(ƒ-ω 1)/2 and h/2w 0, respectively, where ƒ is the Coriolis parameter, ω 1 is

  7. Impact of collateral circulation status on favorable outcomes in thrombolysis treatment: A systematic review and meta-analysis.

    Science.gov (United States)

    Wufuer, Alimu; Wubuli, Atikaimu; Mijiti, Peierdun; Zhou, Jun; Tuerxun, Shabier; Cai, Jian; Ma, Jianhua; Zhang, Xiaoning

    2018-01-01

    Collateral circulation affects the prognosis of patients with acute ischemic stroke (AIS) treated by thrombolysis. The present study performed a systematic assessment of the impact of the collateral circulation status on the outcomes of patients receiving thrombolysis treatment. Relevant full-text articles from the Cochrane Library, Ovid, Medline, Embase and PubMed databases published from January 1, 2000 to November 1, 2016 were retrieved. The quality of the studies was assessed and data were extracted by 2 independent investigators. The random-effects model was used to estimate the impact of good vs. poor collateral circulation, as well as baseline characteristics, on the outcome within the series presented as risk ratios. Subgroup analyses explored the potential factors that may interfere with the effects of the collateral circulation status on the outcome. A total of 29 studies comprising 4,053 patients were included in the present meta-analysis. A good collateral circulation status was revealed to have a beneficial effect on favorable functional outcome (modified Rankin scale, 0-3 at 3-6 months; Pcollateral circulation. Good collateral circulation was also associated with a lower rate of symptomatic intracranial hemorrhage (Pcollateral circulation was demonstrated to have a favorable prognostic value regarding the outcome for patients with AIS receiving thrombolysis treatment. Assessment of collateral circulation and penumbra area during pre-treatment imaging within an appropriate time-window prior to thrombolytic therapy will therefore improve the identification of AIS patients who may benefit from thrombolysis treatment.

  8. Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed

    Science.gov (United States)

    Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.

    2018-02-01

    Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.

  9. Can we determine what controls the spatio-temporal distribution of d-excess and 17O-excess in precipitation using the LMDZ general circulation model?

    Directory of Open Access Journals (Sweden)

    C. Risi

    2013-09-01

    Full Text Available Combined measurements of the H218O and HDO isotopic ratios in precipitation, leading to second-order parameter D-excess, have provided additional constraints on past climates compared to the H218O isotopic ratio alone. More recently, measurements of H217O have led to another second-order parameter: 17O-excess. Recent studies suggest that 17O-excess in polar ice may provide information on evaporative conditions at the moisture source. However, the processes controlling the spatio-temporal distribution of 17O-excess are still far from being fully understood. We use the isotopic general circulation model (GCM LMDZ to better understand what controls d-excess and 17O-excess in precipitation at present-day (PD and during the last glacial maximum (LGM. The simulation of D-excess and 17O-excess is evaluated against measurements in meteoric water, water vapor and polar ice cores. A set of sensitivity tests and diagnostics are used to quantify the relative effects of evaporative conditions (sea surface temperature and relative humidity, Rayleigh distillation, mixing between vapors from different origins, precipitation re-evaporation and supersaturation during condensation at low temperature. In LMDZ, simulations suggest that in the tropics convective processes and rain re-evaporation are important controls on precipitation D-excess and 17O-excess. In higher latitudes, the effect of distillation, mixing between vapors from different origins and supersaturation are the most important controls. For example, the lower d-excess and 17O-excess at LGM simulated at LGM are mainly due to the supersaturation effect. The effect of supersaturation is however very sensitive to a parameter whose tuning would require more measurements and laboratory experiments. Evaporative conditions had previously been suggested to be key controlling factors of d-excess and 17O-excess, but LMDZ underestimates their role. More generally, some shortcomings in the simulation of 17O

  10. Sino-Danish Brain Circulation

    DEFF Research Database (Denmark)

    Bertelsen, Rasmus Gjedssø; Du, Xiangyun; Søndergaard, Morten Karnøe

    2014-01-01

    China is faced with urgent needs to develop an economically and environmentally sustainable economy based on innovation and knowledge. Brain circulation and research and business investments from the outside are central for this development. Sino-American brain circulation and research...... and investment by overseas researchers and entrepreneurs are well described. In that case, the US is the center of global R&D and S&T. However, the brain circulation and research and investments between a small open Scandinavian economy, such as Denmark, and the huge developing economy of China are not well...... understood. In this case, Denmark is very highly developed, but a satellite in the global R&D and S&T system. With time and the growth of China as a R&D and S&T power house, both Denmark and China will benefit from brain circulation between them. Such brain circulation is likely to play a key role in flows...

  11. Fiscal Policy Impact on the State of Circulating Capital in the Corporate Sector

    Directory of Open Access Journals (Sweden)

    Paranchuk Stepan V.

    2014-02-01

    Full Text Available The goal of the article lies in identification of impact of the fiscal policy on the state of circulating capital in the corporate sector in Ukraine and in other countries. The article underlines conceptual approaches to improvement of the state tax policy with consideration of a necessity of formation of own financial resources for formation of circulating capital by subjects of the corporate sector. It justifies scientific and practical measures on reduction of the tax load on the production capital, that is, on that part of the fixed and circulating capital, which regularly and directly participates in creation of the added value. It offers a list of tax privileges for subjects of the corporate sector that direct profit into accumulation of the own capital base, including in the part of increase of the circulating capital. Realisation of the proposed recommendations should facilitate fast accumulation of financial resources for further formation of the circulating capital in the corporate sector, since this is an indispensable condition of high efficiency of corporate finance and economic activity in general.

  12. Functional evaluation of circulating hematopoietic progenitors in Noonan syndrome

    Science.gov (United States)

    TIMEUS, FABIO; CRESCENZIO, NICOLETTA; BALDASSARRE, GIUSEPPINA; DORIA, ALESSANDRA; VALLERO, STEFANO; FOGLIA, LUISELDA; PAGLIANO, SARA; ROSSI, CESARE; SILENGO, MARGHERITA CIRILLO; RAMENGHI, UGO; FAGIOLI, FRANCA; DI MONTEZEMOLO, LUCA CORDERO; FERRERO, GIOVANNI BATTISTA

    2013-01-01

    Noonan syndrome (NS) is an autosomal dominant disorder, characterized by short stature, multiple dysmorphisms and congenital heart defects. A myeloproliferative disorder (NS/MPD), resembling juvenile myelomonocytic leukemia (JMML), is occasionally diagnosed in infants with NS. In the present study, we performed a functional evaluation of the circulating hematopoietic progenitors in a series of NS, NS/MPD and JMML patients. The different functional patterns were compared with the aim to identify a possible NS subgroup worthy of stringent hematological follow-up for an increased risk of MPD development. We studied 27 NS and 5 JMML patients fulfilling EWOG-MDS criteria. The more frequent molecular defects observed in NS were mutations in the PTPN11 and SOS genes. The absolute count of monocytes, circulating CD34+ hematopoietic progenitors, their apoptotic rate and the number of circulating CFU-GMs cultured in the presence of decreasing concentrations or in the absence of granulocyte-macrophage colony-stimulating factor (GM-CSF) were evaluated. All JMML patients showed monocytosis >1,000/μl. Ten out of the 27 NS patients showed monocytosis >1,000/μl, which included the 3 NS/MPD patients. In JMML patients, circulating CD34+ cells were significantly increased (median, 109.8/μl; range, 44–232) with a low rate of apoptosis (median, 2.1%; range, 0.4–12.1%), and circulating CFU-GMs were hyper-responsive to GM-CSF. NS/MPD patients showed the same flow cytometric pattern as the JMML patients (median, CD34+ cells/μl, 205.7; range, 58–1374; median apoptotic rate, 1.4%; range, 0.2–2.4%) and their circulating CFU-GMs were hyper-responsive to GM-CSF. These functional alterations appeared 10 months before the typical clinical manifestations in 1 NS/MPD patient. In NS, the CD34+ absolute cell count and circulating CFU-GMs showed a normal pattern (median CD34+ cells/μl, 4.9; range, 1.3–17.5), whereas the CD34+ cell apoptotic rate was significantly decreased in

  13. Prevalence of abnormal general movements in three-month-old infants

    NARCIS (Netherlands)

    Bouwstra, Hylco; Dijk-Stigter, Geerteke R.; Grooten, Hedwig M. J.; Janssen-Plas, Femke E. M.; Koopmans, Alice J.; Mulder, Christien D.; van Belle, Ans; Hadders-Algra, Mijna

    Background: The quality of general movements (GMs) is a sensitive tool to measure neurodevelopmental condition in early infancy. No information is available on prevalence rates of abnormal GMs in the general population. Objective: To assess the prevalence of abnormal GMs in the general population of

  14. On testing the significance of atmospheric response to smoke from the Kuwaiti oil fires using the Los Alamos general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Kao, C.J.; Glatzmaier, G.A.; Malone, R.C. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    1994-07-01

    The response of the Los Alamos atmospheric general circulation model to the smoke from the Kuwaiti oil fires set in 1991 is examined. The model has an interactive soot transport module that uses a Lagrangian tracer particle scheme. The statistical significance of the results is evaluated using a methodology based on the classic Student`s t test. Among various estimated smoke emission rates and associated visible absorption coefficients, the worst- and best-case scenarios are selected. In each of the scenarios, an ensemble of 10 30-day June simulations are conducted with the smoke and are compared to the same 10 June simulations without the smoke. The results of the worst-case scneario show that a statistically significant wave train pattern propagates eastward-poleward downstream from the source. The signals favorably compare with the observed climate anomalies in summer 1991, albeit some possible El Nino-Southern Oscillation effects were involved in the actual climate. The results of the best-case (i.e., least-impact) scenario show that the significance is rather small but that its general pattern is quite similar to that in the worst-case scenario.

  15. On testing the significance of atmospheric response to smoke from the Kuwaiti oil fires using the Los Alamos general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Chih-Yue Jim Kao; Glatzmaier, G.A.; Malone, R.C. [Los Alamos National Lab., NM (United States)

    1994-07-20

    The response of the Los Alamos atmospheric general circulation model to the smoke from the Kuwaiti oil fires set in 1991 is examined. The model has an interactive soot transport module that uses a Lagrangian tracer particle scheme. The statistical significance of the results is evaluated using a methodology based on the classic Student`s t test. Among various estimated smoke emission rates and associated visible absorption coefficients, the worst- and best-case scenarios are selected. In each of the scenarios, an ensemble of 10, 30-day June simulations are conducted with the smoke, and are compared to the same 10 June simulations without the smoke. The results of the worst-case scenario show that a statistically significant wave train pattern propagates eastward-poleward downstream from the source. The signals favorably compare with the observed climate anomalies in summer 1991, albeit some possible El Nino-Southern Oscillation effects were involved in the actual climate. The results of the best-case (i.e., least-impact) scenario show that the significance is rather small but that its general pattern is quite similar to that in the worst-case scenario. 24 refs., 5 figs.

  16. Circulating MKRN3 Levels Decline During Puberty in Healthy Boys.

    Science.gov (United States)

    Busch, Alexander S; Hagen, Casper P; Almstrup, Kristian; Juul, Anders

    2016-06-01

    Initiation and progression of puberty requires concerted action of hypothalamic activating and inhibiting factors. Recently, cases of familial central precocious puberty have been linked to loss-of-function mutations of makorin RING-finger protein 3 (MKRN3) indicating a pivotal inhibitory role of the protein on GnRH secretion. To investigate peripubertal circulating MKRN3 levels in healthy boys. Population-based longitudinal study in healthy Danish boys. General community. Healthy boys (n = 60) aged (median [range]) 9.3 (5.8-11.8) years at baseline followed for 6.0 (0.5-7.6) years (2006-2014) with blood sampling every 6 months. None. Serum levels of MKRN3: 623 samples, median (range) 12 (2-14) per boy. MKRN3 levels declined before onset of puberty; the geometric mean (95% confidence interval) 5 years before onset of puberty vs last visit before onset of puberty was 216 (169-272) pg/mL vs 128 (118-139) pg/mL (P puberty progressed. MKRN3 levels were not associated with age at onset of puberty. Declining MKRN3 before pubertal onset support MKRN3 as an inhibitor of GnRH secretion during midchildhood.

  17. Impact of Dust on Mars Surface Albedo and Energy Flux with LMD General Circulation Model

    Science.gov (United States)

    Singh, D.; Flanner, M.; Millour, E.; Martinez, G.

    2015-12-01

    Mars, just like Earth experience different seasons because of its axial tilt (about 25°). This causes growth and retreat of snow cover (primarily CO2) in Martian Polar regions. The perennial caps are the only place on the planet where condensed H2O is available at surface. On Mars, as much as 30% atmospheric CO2 deposits in each hemisphere depending upon the season. This leads to a significant variation on planet's surface albedo and hence effecting the amount of solar flux absorbed or reflected at the surface. General Circulation Model (GCM) of Laboratoire de Météorologie Dynamique (LMD) currently uses observationally derived surface albedo from Thermal Emission Spectrometer (TES) instrument for the polar caps. These TES albedo values do not have any inter-annual variability, and are independent of presence of any dust/impurity on surface. Presence of dust or other surface impurities can significantly reduce the surface albedo especially during and right after a dust storm. This change will also be evident in the surface energy flux interactions. Our work focuses on combining earth based Snow, Ice, and Aerosol Radiation (SNICAR) model with current state of GCM to incorporate the impact of dust on Martian surface albedo, and hence the energy flux. Inter-annual variability of surface albedo and planet's top of atmosphere (TOA) energy budget along with their correlation with currently available mission data will be presented.

  18. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    Science.gov (United States)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional

  19. Sleeping like a baby: Examining relations between habitual infant sleep, recall memory, and generalization across cues at 10 months.

    Science.gov (United States)

    Lukowski, Angela F; Milojevich, Helen M

    2013-06-01

    Previous research suggests that sleep is related to cognitive functioning in infants and adults. In the present study, we examined whether individual differences in infant sleep habits over the seven days prior to elicited imitation testing were associated with variability in (a) the encoding of 2-step event sequences and (b) memory for the presented information and generalization across cues after a 2-h delay in 10-month-olds. Significant correlations indicated that both daytime napping and nighttime sleep were related to encoding and generalization across cues after the 2-h delay; significant findings were not found in relation to baseline or delayed recall performance. We suggest that individual differences in infant sleep habits may be one mechanism underlying the observed variability in recall memory and generalization as these abilities are coming online late in the first year of life. Published by Elsevier Inc.

  20. Dynamical Predictability of Monthly Means.

    Science.gov (United States)

    Shukla, J.

    1981-12-01

    We have attempted to determine the theoretical upper limit of dynamical predictability of monthly means for prescribed nonfluctuating external forcings. We have extended the concept of `classical' predictability, which primarily refers to the lack of predictability due mainly to the instabilities of synoptic-scale disturbances, to the predictability of time averages, which are determined by the predictability of low-frequency planetary waves. We have carded out 60-day integrations of a global general circulation model with nine different initial conditions but identical boundary conditions of sea surface temperature, snow, sea ice and soil moisture. Three of these initial conditions are the observed atmospheric conditions on 1 January of 1975, 1976 and 1977. The other six initial conditions are obtained by superimposing over the observed initial conditions a random perturbation comparable to the errors of observation. The root-mean-square (rms) error of random perturbations at all the grid points and all the model levels is 3 m s1 in u and v components of wind. The rms vector wind error between the observed initial conditions is >15 m s1.It is hypothesized that for a given averaging period, if the rms error among the time averages predicted from largely different initial conditions becomes comparable to the rms error among the time averages predicted from randomly perturbed initial conditions, the time averages are dynamically unpredictable. We have carried out the analysis of variance to compare the variability, among the three groups, due to largely different initial conditions, and within each group due to random perturbations.It is found that the variances among the first 30-day means, predicted from largely different initial conditions, are significantly different from the variances due to random perturbations in the initial conditions, whereas the variances among 30-day means for days 31-60 are not distinguishable from the variances due to random initial

  1. Assessment of CATHARE2 V1.5qR6 using the experimental data of BETHSY natural circulation tests

    International Nuclear Information System (INIS)

    Huang Yanping; Jia Dounan

    2003-01-01

    The assessment of CATHARE2 V1.5qR6 is carried out against the experimental data of BETHSY natural circulation test-4. 1a-TC. Results show that the experimental process under single phase natural circulation can be predicted very well by CATHARE2 V1.5qR6, the primary mass inventory at the transition points from single phase natural circulation to two-phase natural circulation and from two-phase natural circulation to reflux condensation mode are also predicted correctly. The predicted results for thermohydraulic parameters of two-phase natural circulation and reflux condensation mode are not so good. Generally speaking, the prediction capability of CATHARE2 V1.5 for strong and two-phase flow process should be improved further in future

  2. Some lessons and thoughts from development of an old-fashioned high-resolution atmospheric general circulation model

    Science.gov (United States)

    Ohfuchi, Wataru; Enomoto, Takeshi; Yoshioka, Mayumi K.; Takaya, Koutarou

    2014-05-01

    Some high-resolution simulations with a conventional atmospheric general circulation model (AGCM) were conducted right after the first Earth Simulator started operating in the spring of 2002. More simulations with various resolutions followed. The AGCM in this study, AFES (Agcm For the Earth Simulator), is a primitive equation spectral transform method model with a cumulus convection parameterization. In this presentation, some findings from comparisons between high and low-resolution simulations, and some future perspectives of old-fashioned AGCMs will be discussed. One obvious advantage of increasing resolution is capability of resolving the fine structures of topography and atmospheric flow. By increasing resolution from T39 (about 320 km horizontal grid interval) to T79 (160 km), to T159 (80 km) to T319 (40 km), topographic precipitation over Japan becomes increasingly realistic. This feature is necessary for climate and weather studies involving both global and local aspects. In order to resolve submesoscale (about 100 km horizontal scale) atmospheric circulation, about 10-km grid interval is necessary. Comparing T1279 (10 km) simulations with T319 ones, it is found that, for example, the intensity of heavy rain associated with Baiu front and the central pressure of typhoon become more realistic. These realistic submesoscale phenomena should have impact on larger-sale flow through dynamics and thermodynamics. An interesting finding by increasing horizontal resolution of a conventional AGCM is that some cumulus convection parameterizations, such as Arakawa-Schubert type scheme, gradually stop producing precipitation, while some others, such as Emanuel type, do not. With the former, the grid condensation increases with the model resolution to compensate. Which characteristics are more desirable is arguable but it is an important feature one has to consider when developing a high-resolution conventional AGCM. Many may think that conventional primitive equation

  3. Modes of North Atlantic Decadal Variability in the ECHAM1/LSG Coupled Ocean-Atmosphere General Circulation Model.

    Science.gov (United States)

    Zorita, Eduardo; Frankignoul, Claude

    1997-02-01

    The climate variability in the North Atlantic sector is investigated in a 325-yr integration of the ECHAM1/ LSG coupled ocean-atmosphere general circulation model. At the interannual timescale, the coupled model behaves realistically and sea surface temperature (SST) anomalies arise as a response of the oceanic surface layer to the stochastic forcing by the atmosphere, with the heat exchanges both generating and damping the SST anomalies. In the ocean interior, the temperature spectra are red up to a period of about 20 years, and substantial decadal fluctuations are found in the upper kilometer or so of the water column. Using extended empirical orthogonal function analysis, two distinct quasi-oscillatory modes of ocean-atmosphere variability are identified, with dominant periods of about 20 and 10 years, respectively. The oceanic changes in both modes reflect the direct forcing by the atmosphere through anomalous air-sea fluxes and Ekman pumping, which after some delay affects the intensity of the subtropical and subpolar gyres. The SST is also strongly modulated by the gyre currents. In the thermocline, the temperature and salinity fluctuations are in phase, as if caused by thermocline displacements, and they have no apparent connection with the thermohaline circulation. The 20-yr mode is the most energetic one; it is easily seen in the thermocline and can be found in SST data, but it is not detected in the atmosphere alone. As there is no evidence of positive ocean-atmosphere feedback, the 20-yr mode primarily reflects the passive response of the ocean to atmospheric fluctuations, which may be in part associated with climate anomalies appearing a few years earlier in the North Pacific. The 10-yr mode is more surface trapped in the ocean. Although the mode is most easily seen in the temperature variations of the upper few hundred meters of the ocean, it is also detected in the atmosphere alone and thus appears to be a coupled ocean-atmosphere mode. In both modes

  4. On the Planning and Design of Hospital Circulation Zones.

    Science.gov (United States)

    Jiang, Shan; Verderber, Stephen

    2017-01-01

    This present literature review explores current issues and research inconsistencies regarding the design of hospital circulation zones and the associated health-related outcomes. Large general hospitals are immense, highly sophisticated institutions. Empirical studies have indicated excessively institutional environments in large medical centers are a cause of negative effects to occupants, including stress, anxiety, wayfinding difficulties and spatial disorientation, lack of cognitional control, and stress associated with inadequate access to nature. The rise of patient-centered and evidence-based movements in healthcare planning and design has resulted in a general rise in the quality of hospital physical environments. However, as a core component of any healthcare delivery system, hospital circulation zones have tended to remain neglected within the comparatively broad palette of research conducted and reported to date. A systematic literature review was conducted based upon combinations of key words developed vis-à-vis a literature search in 11 major databases in the realm of the health sciences and the planning and design of built environments for healthcare. Eleven peer-reviewed articles were included in the analysis. Six research themes were identified according to associated health-related outcomes, including wayfinding difficulties and spatial disorientation, communication and socialization patterns, measures and control of excessive noise, patient fall incidents, and occupants' stress and satisfaction levels. Several knowledge gaps as well as commonalities in the pertinent research literature were identified. Perhaps the overriding finding is that occupants' meaningful exposure to views of nature from within hospital circulation zones can potentially enhance wayfinding and spatial navigation. Future research priories on this subject are discussed.

  5. Experimental investigation on natural circulation and air-injection enhanced circulation in a simple loop

    International Nuclear Information System (INIS)

    Walter Ambrosini; Nicola Forgione; Francesco Oriolo; Filippo Pellacani; Mariano Tarantino; Claudio Struckmann

    2005-01-01

    Full text of publication follows: Natural circulation represents an interesting phenomenon because of both the complex aspects characterising it and for the widespread application in industry. On the other hand, injection of a gas into a rising branch of a loop represents a means to establish or to enhance a circulation flow, as it occurs in the so-called 'air-lift' loops. Both natural circulation and gas-injection enhanced circulation are presently considered for cooling Accelerator Driven System (ADS) reactors. These are subcritical reactors in which the fission reaction chain is maintained by the injection of neutrons obtained by spallation reactions in a target through a high energy proton beam generated in an external accelerator. The capability of such reactors to be used as incinerators of long lived fission products makes them particularly interesting in the light of the closure of the nuclear fuel cycle. Some of the fluids proposed as coolants for these reactors are liquid metals, with main interest for lead and lead-bismuth eutectic (LBE). Experimental activities are being performed in support to the design of the reactor prototype by different organisations. The university of Pisa, in addition to provide cooperation in these large scale activities performed with LBE has set up a specific experimental program aimed at studying the fundamental mechanisms involved in natural circulation and gas-injection enhanced circulation. The adopted experimental facility consists in a simple loop, having a rectangular lay-out (roughly, 4 m tall and 1 m wide), equipped with a 5 kW, 1 m tall heater, a 2 m long pipe-in-pipe heat exchanger, an air injection device and a separator. The fluid adopted in the tests performed up to now is water, though studies for evaluating the feasibility of the adoption of different fluids have been undertaken. Experimental data reported in previous publications concerning this research were related to a relatively high range of gas

  6. Study of turbulent natural-circulation flow and low-Prandtl-number forced-convection flow

    International Nuclear Information System (INIS)

    Chung, K.S.; Thompson, D.H.

    1980-01-01

    Calculational methods and results are discussed for the coupled energy and momentum equations of turbulent natural circulation flow and low Prandtl number forced convection flow. The objective of this paper is to develop a calculational method for the study of the thermal-hydraulic behavior of coolant flowing in a liquid metal fast breeder reactor channel under natural circulation conditions. The two-equation turbulence model is used to evaluate the turbulent momentum transport property. Because the analogy between momentum transfer and heat transfer does not generally hold for low Prandtl number fluid and natural circulation flow conditions, the turbulent thermal conductivity is calculated independently using equations similar to the two-equation turbulence model. The numerical technique used in the calculation is the finite element method

  7. Seaglider surveys at Ocean Station Papa: Circulation and water mass properties in a meander of the North Pacific Current

    Science.gov (United States)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2016-09-01

    A Seaglider autonomous underwater vehicle augmented the Ocean Station Papa (OSP; 50°N, 145°W) surface mooring, measuring spatial structure on scales relevant to the monthly evolution of the moored time series. During each of three missions from June 2008 to January 2010, a Seaglider made biweekly 50 km × 50 km surveys in a bowtie-shaped survey track. Horizontal temperature and salinity gradients measured by these surveys were an order of magnitude stronger than climatological values and sometimes of opposite sign. Geostrophically inferred circulation was corroborated by moored acoustic Doppler current profiler measurements and AVISO satellite altimetry estimates of surface currents, confirming that glider surveys accurately resolved monthly scale mesoscale spatial structure. In contrast to climatological North Pacific Current circulation, upper-ocean flow was modestly northward during the first half of the 18 month survey period, and weakly westward during its latter half, with Rossby number O>(0.01>). This change in circulation coincided with a shift from cool and fresh to warm, saline, oxygen-rich water in the upper-ocean halocline, and an increase in vertical fine structure there and in the lower pycnocline. The anomalous flow and abrupt water mass transition were due to the slow growth of an anticyclonic meander within the North Pacific Current with radius comparable to the scale of the survey pattern, originating to the southeast of OSP.

  8. Autonomic Regulation of Splanchnic Circulation

    Directory of Open Access Journals (Sweden)

    Kathleen A Fraser

    1991-01-01

    Full Text Available The role of the autonomic nervous system in circulatory regulation of the splanchnic organs (stomach, small intestine, colon, liver, pancreas and spleen is reviewed. In general, the sympathetic nervous system is primarily involved in vasoconstriction, while the parasympathetic contributes to vasodilation. Vasoconstriction in the splanchnic circulation appears to be mediated by alpha-2 receptors and vasodilation by activation of primary afferent nerves with subsequent release of vasodilatory peptides, or by stimulation of beta-adrenergic receptors. As well, an important function of the autonomic nervous system is to provide a mechanism by which splanchnic vascular reserve can be mobilized during stress to maintain overall cardiovascular homeostasis.

  9. Natural circulation in reactor coolant system

    International Nuclear Information System (INIS)

    Han, J.T.

    1987-01-01

    Reactor coolant system (RCS) natural circulation in a PWR is the buoyancy-driven coolant circulation between the core and the upper-plenum region (in-vessel circulation) with or without a countercurrent flow in the hot leg piping between the vessel and steam generators (ex-vessel circulation). This kind of multidimensional bouyancy-driven flow circulation serves as a means of transferring the heat from the core to the structures in the upper plenum, hot legs, and possibly steam generators. As a result, the RCS piping and other pressure boundaries may be heated to high temperatures at which the structural integrity is challenged. RCS natural circulation is likely to occur during the core uncovery period of the TMLB' accident in a PWR when the vessel upper plenum and hot leg are already drained and filled with steam and possibly other gaseous species. RCS natural circulation is being studied for the Surry plant during the TMLB' accident in which station blackout coincides with the loss of auxiliary feedwater and no operator actions. The effects of the multidimensional RCS natural circulation during the TMLB' accident are discussed

  10. Simulation of mesoscale circulation in the Tatar Strait of the Japan Sea

    Science.gov (United States)

    Ponomarev, V. I.; Fayman, P. A.; Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2018-06-01

    The eddy-resolved ocean circulation model RIAMOM (Lee et al., 2003) is used to analyze seasonal variability of mesoscale circulation in the Tatar Strait of the Japan Sea. The model domain is a vast area including the northern Japan Sea, Okhotsk Sea and adjacent region in the Pacific Ocean. A numerical experiment with a horizontal 1/18° resolution has been carried out under realistic meteorological conditions from the ECMWF ERA-40 reanalysis with restoring of surface temperature and salinity. The simulated seasonal variability of both the current system and mesoscale eddy dynamics in the Tatar Strait is in a good agreement with temperature and salinity distributions of oceanographic observation data collected during various seasons and years. Two general circulation regimes in the Strait have been found. The circulation regime changes from summer to winter due to seasonal change of the North Asian Monsoon. On a synoptic time scale, the similar change of the circulation regime occurs due to change of the southeastern wind to the northwestern one when the meteorological situation with an anticyclone over the Okhotsk Sea changes to that with a strong cyclone. The Lagrangian maps illustrate seasonal changes in direction of the main currents and in polarity and location of mesoscale eddies in the Strait.

  11. 46 CFR 56.50-45 - Circulating pumps.

    Science.gov (United States)

    2010-10-01

    ... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-45 Circulating pumps. (a) A main circulating pump and emergency means for circulating water through the main condenser shall be provided. The... circulating pump and the condenser. (b) Independent sea suctions shall be provided for the main circulating...

  12. Arctic circulation regimes.

    Science.gov (United States)

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  13. A study of longwave radiation codes for climate studies: Validation with ARM observations and tests in general circulation models

    International Nuclear Information System (INIS)

    Ellingson, R.G.; Baer, F.

    1993-01-01

    This report summarizes the activities of our group to meet our stated objectives. The report is divided into sections entitled: Radiation Model Testing Activities, General Circulation Model Testing Activities, Science Team Activities, and Publications, Presentations and Meetings. The section on Science Team Activities summarizes our participation with the science team to further advance the observation and modeling programs. Appendix A lists graduate students supported, and post-doctoral appointments during the project. Reports on the activities during each of the first two years are included as Appendix B. Significant progress has been made in: determining the ability of line-by-line radiation models to calculate the downward longwave flux at the surface; determining the uncertainties in calculated the downwelling radiance and flux at the surface associated with the use of different proposed profiling techniques; intercomparing clear-sky radiance and flux observations with calculations from radiation codes from different climate models; determining the uncertainties associated with estimating N* from surface longwave flux observations; and determining the sensitivity of model calculations to different formulations of the effects of finite sized clouds

  14. A continuum model for pressure-flow relationship in human pulmonary circulation.

    Science.gov (United States)

    Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T

    2011-06-01

    A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.

  15. Effect of low-dose radiation on ocular circulation

    International Nuclear Information System (INIS)

    Baba, Keiko; Hiroishi, Goro; Honda, Masae; Yoshikawa, Hiroshi; Fujisawa, Kimihiko; Ishibashi, Tatsuro

    1999-01-01

    We treated 6 eyes of unilateral age-related macular degeneration by low-dose radiation. Each eye received daily dose of 2 Gy by 4MV lineac totalling 20 Gy over 2 weeks. Color doppler flowmetry was used to determine the mean blood flow velocity (Vmean) and vascular resistive index (RI) in the short posterior ciliary artery, central retinal artery and ophthalmic artery in the treated and fellow eyes before and up to 6 months of treatment. There were no significant differences in Vmean and RI before and after treatment. The findings show the absence of apparent influence of low-dose radiation on the ocular circulation in age-related macular degeneration. (author)

  16. Effect of low-dose radiation on ocular circulation

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Keiko; Hiroishi, Goro; Honda, Masae; Yoshikawa, Hiroshi; Fujisawa, Kimihiko; Ishibashi, Tatsuro [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1999-05-01

    We treated 6 eyes of unilateral age-related macular degeneration by low-dose radiation. Each eye received daily dose of 2 Gy by 4MV lineac totalling 20 Gy over 2 weeks. Color doppler flowmetry was used to determine the mean blood flow velocity (Vmean) and vascular resistive index (RI) in the short posterior ciliary artery, central retinal artery and ophthalmic artery in the treated and fellow eyes before and up to 6 months of treatment. There were no significant differences in Vmean and RI before and after treatment. The findings show the absence of apparent influence of low-dose radiation on the ocular circulation in age-related macular degeneration. (author)

  17. Numerical simulation of terrain-induced mesoscale circulation in the Chiang Mai area, Thailand

    Science.gov (United States)

    Sathitkunarat, Surachai; Wongwises, Prungchan; Pan-Aram, Rudklao; Zhang, Meigen

    2008-11-01

    The regional atmospheric modeling system (RAMS) was applied to Chiang Mai province, a mountainous area in Thailand, to study terrain-induced mesoscale circulations. Eight cases in wet and dry seasons under different weather conditions were analyzed to show thermal and dynamic impacts on local circulations. This is the first study of RAMS in Thailand especially investigating the effect of mountainous area on the simulated meteorological data. Analysis of model results indicates that the model can reproduce major features of local circulation and diurnal variations in temperatures. For evaluating the model performance, model results were compared with observed wind speed, wind direction, and temperature monitored at a meteorological tower. Comparison shows that the modeled values are generally in good agreement with observations and that the model captured many of the observed features.

  18. Dynamics of the water circulations in the southern South China Sea and its seasonal transports

    DEFF Research Database (Denmark)

    Daryabor, Farshid; Ooi, See Hai Ooi; Samah, Azizan Abu

    2016-01-01

    -analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast......A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re...... of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic...

  19. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukemia definition.

    Science.gov (United States)

    Granell, Miquel; Calvo, Xavier; Garcia-Guiñón, Antoni; Escoda, Lourdes; Abella, Eugènia; Martínez, Clara Mª; Teixidó, Montserrat; Gimenez, Mª Teresa; Senín, Alicia; Sanz, Patricia; Campoy, Desirée; Vicent, Ana; Arenillas, Leonor; Rosiñol, Laura; Sierra, Jorge; Bladé, Joan; de Larrea, Carlos Fernández

    2017-06-01

    The presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the study herein, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analyzed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukemia were reviewed and patients were classified into 4 categories according to the percentage of circulating plasma cells: 0%, 1-4%, 5-20%, and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%), respectively. Median overall survival according to the circulating plasma cells group was 47, 50, 6 and 14 months, respectively. At multivariate analysis, the presence of 5 to 20% circulating plasma cells was associated with a worse overall survival (relative risk 4.9, 95% CI 2.6-9.3) independently of age, creatinine, the Durie-Salmon system stage and the International Staging System (ISS) stage. Patients with ≥5% circulating plasma cells had lower platelet counts (median 86×10 9 /L vs 214×10 9 /L, P <0.0001) and higher bone marrow plasma cells (median 53% vs 36%, P =0.004). The presence of ≥5% circulating plasma cells in patients with multiple myeloma has a similar adverse prognostic impact as plasma cell leukemia. Copyright© Ferrata Storti Foundation.

  20. Circulating blocking factors of lymphoid-cell cytotoxicity in x-ray-induced rat small-bowel adenocarcinoma

    International Nuclear Information System (INIS)

    Stevens, R.H.; Brooks, G.P.; Osborne, J.W.

    1979-01-01

    Circulating blocking factors capable of abrogating cell-mediated immune responses measured by in vitro lymphoid-cell cytotoxicity were identified in the sera of Holtzman outbred rats 6 to 9 months after a single exposure of only the temporarily exteriorized, hypoxic ileum and jejunum to 1700 to 2000 R of X radiation. Such factors were found to exist in the serum of every animal exposed to the ionizing radiation regardless of whether a visibly identifiable small-bowel adenocarcinoma existed or subsequently would develop. Protection of cultured x-ray-induced rat small-bowel cancer cells from destruction by tumor-sensitized lymphoid cells as measured by the release of lactoperoxidase-catalyzed radioiodinated membrane proteins from the tumor target cells was conferred by the action of the blocking factors at both effector and target cell levels. The results of this study demonstrate that exposure of only the rat small intestine to ionizing radiation leads to elaboration of circulating factors identifiable several months postirradiation which will block cell-mediated immune responses directed against cancer cells developing in the exposed tissue

  1. A modular class of multisite monthly rainfall generators for water resource management and impact studies

    Science.gov (United States)

    Serinaldi, Francesco; Kilsby, Chris G.

    2012-09-01

    SummaryThis study introduces a class of stochastic multisite monthly rainfall generators devised for application in water resources management problems, such as the sensitivity analysis of droughts and extreme rainfall scenarios under external climatic and non-climatic forcing mechanisms. The modelling framework relies on three elements: (1) a classical deseasonalisation scheme based on log-transformed observations, (2) the nonparametric bootstrap resampling approach and (3) parametric Generalized Additive Models for Location, Scale and Shape (GAMLSS). As the bootstrap and GAMLSS modules are alternative techniques for simulating each month, the free choice between them makes the structure of the model modular and flexible, so that it can be easily adapted to different climatic conditions, and can be customized based on the specific water resource problem. The model was set up and calibrated to simulate monthly rainfall from six locations in England and Wales to produce a suitable input for drought analysis. The results of the case study point out that the model can capture several characteristics of the rainfall series. In particular, it enables the simulation of low and high rainfall scenarios more extreme than those observed as well as the reproduction of the distribution of the annual accumulated rainfall, and of the relationship between the rainfall and circulation indices such as North Atlantic Oscillation (NAO) and Sea Surface Temperature (SST), thus making the framework well-suited for sensitivity analysis under alternative climate scenarios and additional forcing variables.

  2. Simulations of the September 1987 lower thermospheric tides with the National Center for Atmospheric Research thermosphere-ionosphere general circulation model

    International Nuclear Information System (INIS)

    Fesen, C.G.; Roble, R.G.

    1991-01-01

    The National Center for Atmospheric Research thermosphere-ionosphere general circulation model (TIGCM) was used to simulate incoherent scatter radar observations of the lower thermosphere tides during the first Lower Thermosphere Coupling Study (LTCS) campaign, September 21-26, 1987. The TIGCM utilized time-varying histories of the model input fields obtained from the World Data Center for the LTCS period. These model inputs included solar flux, total hemispheric power, solar wind data from which the cross-polar-cap potential was derived, and geomagnetic K p index. Calculations were made for the semidiurnal ion temperatures and horizontal neutral winds at locations representative of Arecibo, Millstone Hill, and Sondrestrom. The diurnal tides at Sondrestrom were also simulated. Tidal inputs to the TIGCM lower boundary were obtained from the middle atmosphere model of Forbes and Vial (1989). The TIGCM tidal structures are in fair general agreement with the observations. The amplitudes tended to be better simulated than the phases, and the mid- and high-latitude locations are simulated better than the low-latitude thermosphere. This may indicate a need to incorporate coupling of the neutral atmosphere and ionosphere with the E region dynamo in the equatorial region to obtain a better representation of low-latitude thermospheric tides. The model simulations were used to investigate the daily variability of the tides due to the geomagnetic activity occurring during this period. In general, the ion temperatures were predicted to be affected more than the winds, and the diurnal components more than the semidiurnal. The effects are typically largest at high latitudes and higher altitudes, but discernible differences were produced at low latitudes

  3. Chemistry-Climate Interactions in the Goddard Institute for Space Studies General Circulation Model. 2; New Insights into Modeling the Pre-Industrial Atmosphere

    Science.gov (United States)

    Grenfell, J. Lee; Shindell, D. T.; Koch, D.; Rind, D.; Hansen, James E. (Technical Monitor)

    2002-01-01

    We investigate the chemical (hydroxyl and ozone) and dynamical response to changing from present day to pre-industrial conditions in the Goddard Institute for Space Studies General Circulation Model (GISS GMC). We identify three main improvements not included by many other works. Firstly, our model includes interactive cloud calculations. Secondly we reduce sulfate aerosol which impacts NOx partitioning hence Ox distributions. Thirdly we reduce sea surface temperatures and increase ocean ice coverage which impact water vapor and ground albedo respectively. Changing the ocean data (hence water vapor and ozone) produces a potentially important feedback between the Hadley circulation and convective cloud cover. Our present day run (run 1, control run) global mean OH value was 9.8 x 10(exp 5) molecules/cc. For our best estimate of pre-industrial conditions run (run 2) which featured modified chemical emissions, sulfate aerosol and sea surface temperatures/ocean ice, this value changed to 10.2 x 10(exp 5) molecules/cc. Reducing only the chemical emissions to pre-industrial levels in run 1 (run 3) resulted in this value increasing to 10.6 x 10(exp 5) molecules/cc. Reducing the sulfate in run 3 to pre-industrial levels (run 4) resulted in a small increase in global mean OH (10.7 x 10(exp 5) molecules/cc). Changing the ocean data in run 4 to pre-industrial levels (run 5) led to a reduction in this value to 10.3 x 10(exp 5) molecules/cc. Mean tropospheric ozone burdens were 262, 181, 180, 180, and 182 Tg for runs 1-5 respectively.

  4. Intercomparison of the seasonal cycle of tropical surface stress in 17 AMIP atmospheric general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Saji, N.H.; Goswami, B.N. [Indian Inst. of Sci., Bangalore (India). Centre for Atmos. and Oceanic Sci.

    1997-08-01

    The mean state of the tropical atmosphere is important as the nature of the coupling between the ocean and the atmosphere depends nonlinearly on the basic state of the coupled system. The simulation of the annual cycle of the tropical surface wind stress by 17 atmospheric general circulation models (AGCMs) is examined and intercompared. The models considered were part of the atmospheric model intercomparison project (AMIP) and were integrated with observed sea surface temperature (SST) for the decade 1979-1988. Several measures have been devised to intercompare the performance of the 17 models on global tropical as well as regional scales. Within the limits of observational uncertainties, the models under examination simulate realistic tropical area-averaged zonal and meridional annual mean stresses. This is a noteworthy improvement over older generation low resolution models which were noted for their simulation of surface stresses considerably weaker than the observations. The models also simulate realistic magnitudes of the spatial distribution of the annual mean surface stress field and are seen to reproduce realistically its observed spatial pattern. Similar features are observed in the simulations of the annual variance field. The models perform well over almost all the tropical regions apart from a few. Of these, the simulations over Somali are interesting. Over this region, the models are seen to underestimate the annual mean zonal and meridional stresses. There is also wide variance between the different models in simulating these quantities. 44 refs.

  5. Prognostic value of circulating microRNAs on heart failure-related morbidity and mortality in two large diverse cohorts of general heart failure patients

    NARCIS (Netherlands)

    Bayés-Genis, Antoni; Lanfear, David E.; de Ronde, Maurice W. J.; Lupón, Josep; Leenders, Joost J.; Liu, Zhen; Zuithoff, Nicolaas P. A.; Eijkemans, Marinus J. C.; Zamora, Elisabet; de Antonio, Marta; Zwinderman, Aeilko H.; Pinto-Sietsma, Sara-Joan; Pinto, Yigal M.

    2018-01-01

    Aims Small studies suggested circulating microRNAs (miRNAs) as biomarkers for heart failure (HF). However, standardized approaches and quality assessment for measuring circulating miRNAs are not uniformly established, and most studies have been small, so that results are inconsistent. We used a

  6. Adult language use and infant comprehension of English: associations with encoding and generalization across cues at 20 months.

    Science.gov (United States)

    Phung, Janice N; Milojevich, Helen M; Lukowski, Angela F

    2014-11-01

    Adult-provided language shapes event memory in children who are preverbal and in those who are able to discuss the past using language. The research conducted to date, however, has not yet established whether infant language comprehension abilities moderate the extent to which preverbal infants benefit from adult-provided supportive language. The present study was conducted to address this question by examining immediate imitation and 1-week delayed generalization across cues in 20-month-old infants as a function of (a) variability in adult-provided linguistic support at encoding and test, (b) infant language comprehension abilities, and (c) their interaction. The provision of supportive adult language at encoding and test was associated with delayed generalization across cues although supportive adult language at encoding did not influence performance at immediate imitation. Infant language comprehension abilities were associated with performance at immediate imitation and delayed generalization across cues. In addition, infant language comprehension abilities moderated the extent to which infants benefited from adult-provided supportive language at encoding and test. The findings contribute to the literature by demonstrating that adult language use and infant language comprehension are independently and differentially associated with immediate imitation and 1-week delayed generalization across cues but also serve to jointly structure event memory in the second year of life. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Evaluation of High-Pressure RCS Natural Circulations Under Severe Accident Conditions

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Bang, Young Suk; Suh, Nam Duk

    2006-01-01

    Since TMI-2 accident, the occurrence of severe accident natural circulations inside RCS during entire in-vessel core melt progressions before the reactor vessel breach had been emphasized and tried to clarify its thermal-hydraulic characteristics. As one of consolidated outcomes of these efforts, sophisticated models have been presented to explain the effects of a variety of engineering and phenomenological factors involved during severe accident mitigation on the integrity of RCS pressure boundaries, i.e. reactor pressure vessel(RPV), RCS coolant pipe and steam generator tubes. In general, natural circulation occurs due to density differences, which for single phase flow, is typically generated by temperature differences. Three natural circulation flows can be formed during severe accidents: in-vessel, hot leg countercurrent flow and flow through the coolant loops. Each of these flows may be present during high-pressure transients such as station blackout (SBO) and total loss of feedwater (TLOFW). As a part of research works in order to contribute on the completeness of severe accident management guidance (SAMG) in domestic plants by quantitatively assessing the RCS natural circulations on its integrity, this study presents basic approach for this work and some preliminary results of these efforts with development of appropriately detailed RCS model using MELCOR computer code

  8. Linking the South Atlantic Meridional Overturning Circulation and the Global Monsoons

    Science.gov (United States)

    Lopez, H.; Dong, S.; Goni, G. J.; Lee, S. K.

    2016-02-01

    This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.

  9. [Predictive value of qualitative assessment of general movements for adverse outcomes at 24 months of age in infants with asphyxia].

    Science.gov (United States)

    Chen, Nan; Wen, Xiao-Hong; Huang, Jin-Hua; Wang, Shui-Yun; Zhu, Yue-E

    2015-12-01

    To investigate the predictive value of the qualitative assessment of general movements (GMs) for adverse outcomes at 24 months of age in full-term infants with asphyxia. A total of 114 full-term asphyxiated infants, who were admitted to the neonatal intensive care unit between 2009 and 2012 and took part in follow-ups after discharge were included in the study. All of them received the qualitative assessment of GMs within 3 months after birth. The development quotient was determined with the Bayley Scales of Infant Development at 24 months of age. The results of the qualitative assessment of GMs within 3 months after birth showed that among 114 infants, 20 (17.5%) had poor repertoire movements and 7 (6.1%) had cramped-synchronized movements during the writhing movements period; 8 infants (7.0%) had the absence of fidgety movements during the fidgety movements period. The results of development quotient at 24 months of age showed that 7 infants (6.1%) had adverse developmental outcomes: 6 cases of cerebral palsy and mental retardation and 1 case of mental retardation. There was a poor consistency between poor repertoire movements during the writhing movements period and the developmental outcomes at 24 months of age (Kappa=-0.019; P>0.05). There was a high consistency between cramped-synchronized movements during the writhing movements period and the developmental outcomes at 24 months of age (Kappa=0.848; Ppredictive values of cramped-synchronized movements were shown as follows: predictive validity 98.2%, sensitivity 85.7%, specificity 99.1%, positive predictive value 85.7%, and negative predictive value 99.1%. There was a high consistency between the absence of fidgety movements during the fidgety movements period and the developmental outcomes at 24 months of age (Kappa=0.786; Ppredictive values were expressed as follows: predictive validity 97.4%, sensitivity 85.7%, specificity 98.1%, positive predictive value 75.0%, and negative predictive value 99.1%. Cramped

  10. Two regimes of the Arctic's circulation from ocean models with ice and contaminants.

    Science.gov (United States)

    Proshutinsky, A Y; Johnson, M

    2001-01-01

    A two-dimensional barotropic, coupled, ocean-ice model with a space resolution of 55.5 km and driven by atmospheric forces, river run-off, and sea-level slope between the Pacific and the Arctic Oceans, has been used to simulate the vertically averaged currents and ice drift in the Arctic Ocean. Results from 43 years of numerical simulations of water and ice motions demonstrate that two wind-driven circulation regimes are possible in the Arctic, a cyclonic and an anti-cyclonic circulation. These two regimes appear to alternate at 5-7 year intervals with the 10-15 year period. It is important to pollution studies to understand which circulation regime prevails at any time. It is anticipated that 1995 is a year with a cyclonic regime, and during this cyclonic phase and possibly during past cyclonic regimes as well, pollutants may reach the Alaskan shelf. The regime shifts demonstrated in this paper are fundamentally important to understanding the Arctic's general circulation and particularly important for estimating pollution transport.

  11. Monthly energy review, April 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. The MER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public.

  12. Steam generator of the forced circulation type

    International Nuclear Information System (INIS)

    Forestier, Jean; Leblanc, Bernard; Monteil, Marcel; Monteil, Pierre

    1977-01-01

    The steam generator described is of the forced circulation single passage type comprising an outer casing including a vertical generally cylindrical side ring, an internal skirt coaxial with the outer casing, the bottom of this skirt having a free edge separated from a bottom end closing the outer casing, a central tube plate extending horizontally near a top end, in opposition to the bottom end, a peripheral tube plate, parallel to the central plate and located in the annular space under this central plate, a bundle of J shaped tubes [fr

  13. Short ensembles: An Efficient Method for Discerning Climate-relevant Sensitivities in Atmospheric General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Hui; Rasch, Philip J.; Zhang, Kai; Qian, Yun; Yan, Huiping; Zhao, Chun

    2014-09-08

    This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models. The basic idea is to replace the traditional serial-in-time long-term climate integrations by representative ensembles of shorter simulations. The key advantage of the proposed method lies in its efficiency: since fewer days of simulation are needed, the computational cost is less, and because individual realizations are independent and can be integrated simultaneously, the new dimension of parallelism can dramatically reduce the turnaround time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy is not appropriate for exploring sensitivity of all model features, but it is very effective in many situations. Two examples are presented using the Community Atmosphere Model version 5. The first example demonstrates that the method is capable of characterizing the model cloud and precipitation sensitivity to time step length. A nudging technique is also applied to an additional set of simulations to help understand the contribution of physics-dynamics interaction to the detected time step sensitivity. In the second example, multiple empirical parameters related to cloud microphysics and aerosol lifecycle are perturbed simultaneously in order to explore which parameters have the largest impact on the simulated global mean top-of-atmosphere radiation balance. Results show that in both examples, short ensembles are able to correctly reproduce the main signals of model sensitivities revealed by traditional long-term climate simulations for fast processes in the climate system. The efficiency of the ensemble method makes it particularly useful for the development of high-resolution, costly and complex climate models.

  14. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  15. Monthly energy review, August 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. The MER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. 37 figs., 73 tabs.

  16. Circulation Systems Past and Present

    Directory of Open Access Journals (Sweden)

    Maurice J. Freedman

    1981-01-01

    Full Text Available A review of the development of circulation systems shows two areas of change. The librarian's perception of circulation control has shifted from a broad service orientation to a narrow record-keeping approach and recently back again. The technological development of circulation sys-tems has evolved from manual systems to the online systems of today. The trade-offs and deficiencies of earlier systems in relation to the comprehensive services made possible by the online computer are detailed.

  17. SpaceX Dragon Air Circulation System

    Science.gov (United States)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  18. Correction of Excessive Precipitation Over Steep and High Mountains in a General Circulation Model

    Science.gov (United States)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and meso-scale models. This problem impairs simulation and data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime upslope winds, which are forced by the heated boundary layer on subgrid-scale slopes. These upslope winds are associated with large subgrid-scale topographic variation, which is found over steep and high mountains. Without such subgridscale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvablescale upslope flow combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to EPSM. Other possible causes of EPSM that we have investigated include 1) a poorly-designed horizontal moisture flux in the terrain-following coordinates, 2) the condition for cumulus convection being too easily satisfied at mountaintops, 3) the presence of conditional instability of the computational kind, and 4) the absence of blocked flow drag. These are all minor or inconsequential. We have parameterized the ventilation effects of the subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in layers higher up when the topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-S GCM have shown that this largely solved the EPSM problem.

  19. Simulation of stationary and transient geopotential-height eddies in January and July with a spectral general circulation model

    International Nuclear Information System (INIS)

    Malone, R.C.; Pitcher, E.J.; Blackmon, M.L.; Puri, K.; Bourke, W.

    1984-01-01

    We examine the characteristics of stationary and transient eddies in the geopotential-height field as simulated by a spectral general circulation model. The model possessess a realistic, but smootheed, topography. Two simulations with perpetual January and July forcing by climatological sea surface temperatures, sea ice, and insolation were extended to 1200 days, of which the final 600 days were used for the results in this study. We find that the stationary waves are well simulated in both seasons in the Northern Hemisphere, where strong forcing by orography and land-sea thermal contrast exists. However, in the Southern Hemisphere, where no continents are present in midlatitudes, the stationary waves have smaller amplitude than that observed in both seasons. In both hemispheres, the transient eddies are well simulated in the winter season but are too weak in the summer season. The model fails to generate a sufficiently intense summertime midlatitude jet in either hemisphere, and this results in a low level of transient activity. The variance in the tropical troposphere is very well simulated. We examine the geographical distribution and vertical structure of the transient eddies. Fourier analysis in zonal wavenumber and temporal filtering are used to display the wavelength and frequency characteristics of the eddies

  20. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  1. Experimental study of the long-term effects of cephalic irradiation on local cerebral circulation. Preliminary results

    International Nuclear Information System (INIS)

    Dufour, R.

    1978-01-01

    The purpose of this experimental study was to follow the effects of fractionated cehalic irradiation (average dosee 100 rads) on local cerebral blood circulation. Observations were made on unanaesthetized rabbits in terms of two circulatory responses, one of which is associated with rapid eye movement sleep and the other produced by inhalation of a mixture of air and 5% carbon dioxide. Both responses take the form of a characteristic increase in cerebral flow. The method of measuring variations in local cerebral flow relies on changes in the thermal conduction of cerebral tissue associated with the changes in circulation. Placement of the measuring probes entails fixation of electrodes for deriving the cortical and hippocampal electroencephalographic activity. The prreliminary results refer to two animalswhich were subjected to three andd four cephalic irradiations off 1000 rads, spaced at least a month apart, at a dose rate of 70 rad min -1 . The increase and the rate of increase of cerebral flow during rapid eye movement sleep and COBinhalation proved significantly greater than the reference values from the third month on (after the second irradiation) in the case of one animal and from the sixth month on (after the third irradiation) in the case of the other. The response during rapid eye movement sleep was equal to 140% of the reference amplitude during the two observation periods in the first case, and to 110 and 150% respectively after the third and fourth irradiations in the second case. The CO 2 response was 140% of the reference value during the two observation periods in the first case, and 135% after the third and fourth irradiations in the second case. The functional significance of these changes in cerebral output is analysed in terms of the regulation of cerebral circulation. (author)

  2. A generalised correlation for the steady state flow in single-phase natural circulation loops

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Bade, M.H.; Saha, D.; Sinha, R.K.; Venkat Raj, V.

    2000-08-01

    To establish the heat transport capability of natural circulation loops, it is essential to know the flow rate. A generalized correlation for steady state flow valid for uniform and non-uniform diameter loops has been theoretically derived

  3. Estuarine circulation reversals and related rapid changes in winter near-bottom oxygen conditions in the Gulf of Finland, Baltic Sea

    Directory of Open Access Journals (Sweden)

    T. Liblik

    2013-10-01

    Full Text Available The reversal of estuarine circulation caused by southwesterly wind forcing may lead to vanishing of stratification and subsequently to oxygenation of deep layers during the winter in the Gulf of Finland. Six conductivity, temperature, depth (CTD+oxygen transects (130 km long, 10 stations were conducted along the thalweg from the western boundary to the central gulf (21 December 2011–8 May 2012. Two bottom-mounted ADCP were installed, one near the western border and the second in the central gulf. A CTD with a dissolved oxygen sensor was deployed close to the western ADCP. Periods of typical estuarine circulation were characterized by strong stratification, high salinity, hypoxic conditions and inflow to the gulf in the near-bottom layer. Two circulation reversals were observed: one in December–January and one in February. The first reversal event was well developed; it caused the disappearance of the stratification and an increase in the oxygen concentration from hypoxic values to 270 μmol L−1 (to 6 mL L−1 throughout the water column along the thalweg and lasted approximately 1.5 months. Shifts from estuarine circulation to reversed circulation and vice versa were both associated with strong longitudinal (east–west gulf currents (up to 40 cm s−1 in the deep layer. The change from oxygenated to hypoxic conditions in the western near-entrance area of the gulf occurred very rapidly, within less than a day, due to the intrusion of the hypoxic salt wedge from the NE Baltic Proper. In the eastern part of the gulf, good oxygen conditions caused by reversals remained for a few months.

  4. NPP Krsko natural circulation performance evaluation

    International Nuclear Information System (INIS)

    Segon, Velimir; Bajs, Tomislav; Frogheri, Monica

    1999-01-01

    The present document deals with an evaluation of the natural circulation performance of the Krsko nuclear power plant. Two calculation have been performed using the NPP Krsko nodalization (both similar to the LOBI A2-77 natural circulation experiment) - the first with the present steam generators at NPP Krsko (Westinghouse, 18% plugged), the second with the future steam generators (Siemens, 0% plugged). The results were evaluated using the natural circulation flow map derived in /1/, and were compared to evaluate the influence of the new steam generators on the natural circulation performance. (author)

  5. Basic natural circulation characteristics of SBWR

    International Nuclear Information System (INIS)

    Kuran, S.; Soekmen, C. N.

    2001-01-01

    Natural circulation is an important passive heat removal mechanism for both existing and next generation light water reactors. Simplified Boiling Water Reactor (SBWR) is one of the advanced light water reactors that rely on natural circulation for normal as well as emergency core cooling. In this study, basic natural circulation characteristics of this reactor are examined on a flow loop that simulates the operation of SBWR. On this model, effect of system operating parameters on the steady state natural circulation characteristics inside the loop is studied via solving the transcendental equation for loop flow rate

  6. Progress toward interrupting wild poliovirus circulation in countries with reestablished transmission--Africa, 2009-2010.

    Science.gov (United States)

    2011-03-18

    Through efforts of the Global Polio Eradication Initiative (GPEI), begun in 1988, indigenous transmission of wild poliovirus (WPV) had been interrupted in all but four countries (Afghanistan, Pakistan, India, and Nigeria) by 2006. Since 2002, a total of 39 previously polio-free countries experienced outbreaks following importation of WPV of Indian or Nigerian origin. Most outbreaks were stopped 12 months following importation before 2009. A key milestone of the GPEI 2010-2012 strategic plan was to interrupt WPV transmission in these African countries with reestablished transmission by the end of 2010. As of March 8, 2011, the milestone appeared to be on track only in Sudan. In Sudan, WPV type 1 (WPV1) was introduced in 2004, but no cases were detected for a 31-month period during 2005-2008. When resurgence occurred in 2008, surveillance and eradication efforts were enhanced, and no case has been detected since June 2009. In Chad, WPV type 3 (WPV3) transmission has persisted since 2007, although undetected for 7 months in 2010. In Angola, WPV1 circulation has persisted following importation in 2007, and became more widespread in 2010, with subsequent importations into DRC and Republic of the Congo (ROC). In DRC, WPV1 circulation has persisted since introduction in 2006. Achieving polio eradication depends on stopping WPV transmission in the four endemic countries and overcoming substantial, ongoing programmatic weaknesses in Chad, Angola, and DRC.

  7. Encoders for block-circulant LDPC codes

    Science.gov (United States)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2009-01-01

    Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.

  8. Circulating predictive and diagnostic biomarkers for hepatitis B virus-associated hepatocellular carcinoma

    Science.gov (United States)

    Van Hees, Stijn; Michielsen, Peter; Vanwolleghem, Thomas

    2016-01-01

    Chronic hepatitis B virus (HBV) infected patients have an almost 100-fold increased risk to develop hepatocellular carcinoma (HCC). HCC is the fifth most common and third most deadly cancer worldwide. Up to 50% of newly diagnosed HCC cases are attributed to HBV infection. Early detection improves survival and can be achieved through regular screening. Six-monthly abdominal ultrasound, either alone or in combination with alpha-fetoprotein serum levels, has been widely endorsed for this purpose. Both techniques however yield limited diagnostic accuracy, which is not improved when they are combined. Alternative circulating or histological markers to predict or diagnose HCC are therefore urgently needed. Recent advances in systems biology technologies have enabled the identification of several new putative circulating biomarkers. Although results from studies assessing combinations of these biomarkers are promising, evidence for their clinical utility remains low. In addition, most of the studies conducted so far show limitations in design. Attention must be paid for instance to different ethnicities and different etiologies when studying biomarkers for hepatocellular carcinoma. This review provides an overview on the current understandings and recent progress in the field of diagnostic and predictive circulating biomarkers for hepatocellular carcinoma in chronically infected HBV patients and discusses the future prospects. PMID:27729734

  9. Cerebral circulation and metabolism with recovery of chronic poststroke aphasia

    International Nuclear Information System (INIS)

    Yamada, Tomoyuki; Kabasawa, Hidehiro; Matsubara, Michitaka; Hibino, Hiroaki; Kamimoto, Kaoru; Fukagawa, Kazutoshi

    2004-01-01

    The recruitment of cerebral circulation and oxygen metabolism in the particular brain areas responsible for poststroke aphasia are necessary for recovery. This study was undertaken to investigate changes in cerebral circulation and oxygen metabolism corresponding to improvement of aphasia. Twenty-nine right-handed chronic aphasic patients with left hemispheric stroke were studied. Aphasia was evaluated as the score of fluency, comprehension, repetition and naming by the Western Aphasia Battery (Japanese version). Concurrent with the evaluation of aphasia, positron emission tomography (PET) scans were performed. After several months of speech therapy, PET scans and evaluation of aphasia were reperformed. Both regional cerebral blood flow and the cerebral metabolic rate for oxygen significantly increased in the left upper superior and middle temporal gyri, and in the left upper inferior frontal gyrus in the fair recovery group for comprehension, repetition and naming. In the fair recovery group for fluency, the cerebral metabolic rate for oxygen significantly increased in the left upper superior and middle temporal gyri, but regional cerebral blood flow increased insignificantly in these areas. In the lower white matter of the right parietal lobe, both the regional cerebral blood flow and the cerebral metabolic rate for oxygen were significantly increased in the fair recovery group for all aphasic features. The recruitment of cerebral circulation and oxygen metabolism in the left temporo-parietal area, in the left inferior frontal area, and in the right deep parietal area are essentially responsible for the recovery of aphasia. (author)

  10. Understanding variability of the Southern Ocean overturning circulation in CORE-II models

    Science.gov (United States)

    Downes, S. M.; Spence, P.; Hogg, A. M.

    2018-03-01

    The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.

  11. A statistical intercomparison of temperature and precipitation predicted by four general circulation models with historical data

    International Nuclear Information System (INIS)

    Grotch, S.L.

    1991-01-01

    This study is a detailed intercomparison of the results produced by four general circulation models (GCMs) that have been used to estimate the climatic consequences of a doubling of the CO 2 concentration. Two variables, surface air temperature and precipitation, annually and seasonally averaged, are compared for both the current climate and for the predicted equilibrium changes after a doubling of the atmospheric CO 2 concentration. The major question considered here is: how well do the predictions from different GCMs agree with each other and with historical climatology over different areal extents, from the global scale down to the range of only several gridpoints? Although the models often agree well when estimating averages over large areas, substantial disagreements become apparent as the spatial scale is reduced. At scales below continental, the correlations observed between different model predictions are often very poor. The implications of this work for investigation of climatic impacts on a regional scale are profound. For these two important variables, at least, the poor agreement between model simulations of the current climate on the regional scale calls into question the ability of these models to quantitatively estimate future climatic change on anything approaching the scale of a few (< 10) gridpoints, which is essential if these results are to be used in meaningful resource-assessment studies. A stronger cooperative effort among the different modeling groups will be necessary to assure that we are getting better agreement for the right reasons, a prerequisite for improving confidence in model projections. 11 refs.; 10 figs

  12. Atmospheric effects of nuclar war aerosols in general circulation model simulations: Influence of smoke optical properties

    International Nuclear Information System (INIS)

    Thompson, S.L.; Ramaswamy, V.; Covey, C.

    1987-01-01

    A global atmospheric general circulation model (GCM) is modified to include radiative transfer parameterizations for the absorption and scattering of solar radiation and the absorption of thermal infrared (IR) radiation by smoke aerosols. The solar scattering modifications include a parameterization for diagnosing smoke optical properties as a function of the time- and space-dependent smoke particle radii. The aerosol IR modifications allow for both the ''grey'' absorber approximation and a broadband approximation that resolves the aerosol absorption in four spectral intervals. We examine the sensitivity of some GCM-simulated atmospheric and climatic effects to the optical properties and radiative transfer parameterizations used in studies of massive injections of smoke. Specifically, we test the model response to solar scattering versus nonscattering smoke, variations in prescribed smoke single scattering albedo and IR specific absorption, and interactive versus fixed smoke optical properties. Hypothetical nuclear war created smoke scenarios assume the July injection of 60 or 180 Tg of smoke over portions of the mid-latitude land areas of the northern hemisphere. Atmospheric transport and scavenging of the smoke are included. Nonscattering smoke cases produce roughly 40 Wm/sup -2/ more Earth-atmosphere solar irradiance absorption over the northern hemisphere, when compared to scattering smoke cases having equivalent specific absorption efficiencies. Varying the elemental carbon content of smoke over a plausible range produces a 4 0 --6 0 C change in average mid-latitude land surface temperature, and a variation of about 0.1 in zonally averaged planetary albedo in the northern hemisphere

  13. A statistical intercomparison of temperature and precipitation predicted by four general circulation models with historical data

    International Nuclear Information System (INIS)

    Grotch, S.L.

    1990-01-01

    This study is a detailed intercomparison of the results produced by four general circulation models (GCMs) that have been used to estimate the climatic consequences of a doubling of the CO 2 concentration. Two variables, surface air temperature and precipitation, annually and seasonally averaged, are compared for both the current climate and for the predicted equilibrium changes after a doubling of the atmospheric CO 2 concentration. The major question considered here is: how well do the predictions from different GCMs agree with each other and with historical climatology over different areal extents, from the global scale down to the range of only several gridpoints? Although the models often agree well when estimating averages over large areas, substantial disagreements become apparent as the spatial scale is reduced. At scales below continental, the correlations observed between different model predictions are often very poor. The implications of this work for investigation of climatic impacts on a regional scale are profound. For these two important variables, at least, the poor agreement between model simulations of the current climate on the regional scale calls into question the ability of these models to quantitatively estimate future climatic change on anything approaching the scale of a few (< 10) gridpoints, which is essential if these results are to be used in meaningful resource-assessment studies. A stronger cooperative effort among the different modeling groups will be necessary to assure that we are getting better agreement for the right reasons, a prerequisite for improving confidence in model projections

  14. Ticagrelor Improves Endothelial Function by Decreasing Circulating Epidermal Growth Factor (EGF

    Directory of Open Access Journals (Sweden)

    Francesco Vieceli Dalla Sega

    2018-04-01

    Full Text Available Ticagrelor is one of the most powerful P2Y12 inhibitor. We have recently reported that, in patients with concomitant Stable Coronary Artery Disease (SCAD and Chronic Obstructive Pulmonary Disease (COPD undergoing percutaneous coronary intervention (PCI, treatment with ticagrelor, as compared to clopidogrel, is associated with an improvement of the endothelial function (Clinical Trial NCT02519608. In the present study, we showed that, in the same population, after 1 month treatment with ticagrelor, but not with clopidogrel, there is a decrease of the circulating levels of epidermal growth factor (EGF and that these changes in circulating levels of EGF correlate with on-treatment platelet reactivity. Furthermore, in human umbilical vein endothelial cells (HUVEC incubated with sera of the patients treated with ticagrelor, but not with clopidogrel there is an increase of p-eNOS levels. Finally, analyzing the changes in EGF and p-eNOS levels after treatment, we observed an inverse correlation between p-eNOS and EGF changes only in the ticagrelor group. Causality between EGF and eNOS activation was assessed in vitro in HUVEC where we showed that EGF decreases eNOS activity in a dose dependent manner. Taken together our data indicate that ticagrelor improves endothelial function by lowering circulating EGF that results in the activation of eNOS in the vascular endothelium.

  15. Pulmonary Circulation Transvascular Fluid Fluxes Do Not Change during General Anesthesia in Dogs

    Directory of Open Access Journals (Sweden)

    Olga Frlic

    2018-02-01

    Full Text Available General anesthesia (GA can cause abnormal lung fluid redistribution. Pulmonary circulation transvascular fluid fluxes (JVA are attributed to changes in hydrostatic forces and erythrocyte volume (EV regulation. Despite the very low hydraulic conductance of pulmonary microvasculature it is possible that GA may affect hydrostatic forces through changes in pulmonary vascular resistance (PVR, and EV through alteration of erythrocyte transmembrane ion fluxes (ionJVA. Furosemide (Fur was also used because of its potential to affect pulmonary hydrostatic forces and ionJVA. A hypothesis was tested that JVA, with or without furosemide treatment, will not change with time during GA. Twenty dogs that underwent castration/ovariectomy were randomly assigned to Fur (n = 10 (4 mg/kg IV or placebo treated group (Con, n = 10. Baseline arterial (BL and mixed venous blood were sampled during GA just before treatment with Fur or placebo and then at 15, 30 and 45 min post-treatment. Cardiac output (Q and pulmonary artery pressure (PAP were measured. JVA and ionJVA were calculated from changes in plasma protein, hemoglobin, hematocrit, plasma and whole blood ions, and Q. Variables were analyzed using random intercept mixed model (P < 0.05. Data are expressed as means ± SE. Furosemide caused a significant volume depletion as evident from changes in plasma protein and hematocrit (P < 0.001. However; Q, PAP, and JVA were not affected by time or Fur, whereas erythrocyte fluid flux was affected by Fur (P = 0.03. Furosemide also affected erythrocyte transmembrane K+ and Cl−, and transvascular Cl− metabolism (P ≤ 0.05. No other erythrocyte transmembrane or transvascular ion fluxes were affected by time of GA or Fur. Our hypothesis was verified as JVA was not affected by GA or ion metabolism changes due to Fur treatment. Furosemide and 45 min of GA did not cause significant hydrostatic changes based on Q and PAP. Inhibition of Na+/K+/2Cl− cotransport caused by Fur

  16. 20 CFR 404.221 - Computing your average monthly wage.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Computing your average monthly wage. 404.221... DISABILITY INSURANCE (1950- ) Computing Primary Insurance Amounts Average-Monthly-Wage Method of Computing Primary Insurance Amounts § 404.221 Computing your average monthly wage. (a) General. Under the average...

  17. Association between circulating fibroblast growth factor 21 and mortality in end-stage renal disease.

    Directory of Open Access Journals (Sweden)

    Marina Kohara

    Full Text Available Fibroblast growth factor 21 (FGF21 is an endocrine factor that regulates glucose and lipid metabolism. Circulating FGF21 predicts cardiovascular events and mortality in type 2 diabetes mellitus, including early-stage chronic kidney disease, but its impact on clinical outcomes in end-stage renal disease (ESRD patients remains unclear. This study enrolled 90 ESRD patients receiving chronic hemodialysis who were categorized into low- and high-FGF21 groups by the median value. We investigated the association between circulating FGF21 levels and the cardiovascular event and mortality during a median follow-up period of 64 months. A Kaplan-Meier analysis showed that the mortality rate was significantly higher in the high-FGF21 group than in the low-FGF21 group (28.3% vs. 9.1%, log-rank, P = 0.034, while the rate of cardiovascular events did not significantly differ between the two groups (30.4% vs. 22.7%, log-rank, P = 0.312. In multivariable Cox models adjusted a high FGF21 level was an independent predictor of all-cause mortality (hazard ratio: 3.98; 95% confidence interval: 1.39-14.27, P = 0.009. Higher circulating FGF21 levels were associated with a high mortality rate, but not cardiovascular events in patient with ESRD, suggesting that circulating FGF21 levels serve as a predictive marker for mortality in these subjects.

  18. Association between circulating fibroblast growth factor 21 and mortality in end-stage renal disease.

    Science.gov (United States)

    Kohara, Marina; Masuda, Takahiro; Shiizaki, Kazuhiro; Akimoto, Tetsu; Watanabe, Yuko; Honma, Sumiko; Sekiguchi, Chuji; Miyazawa, Yasuharu; Kusano, Eiji; Kanda, Yoshinobu; Asano, Yasushi; Kuro-O, Makoto; Nagata, Daisuke

    2017-01-01

    Fibroblast growth factor 21 (FGF21) is an endocrine factor that regulates glucose and lipid metabolism. Circulating FGF21 predicts cardiovascular events and mortality in type 2 diabetes mellitus, including early-stage chronic kidney disease, but its impact on clinical outcomes in end-stage renal disease (ESRD) patients remains unclear. This study enrolled 90 ESRD patients receiving chronic hemodialysis who were categorized into low- and high-FGF21 groups by the median value. We investigated the association between circulating FGF21 levels and the cardiovascular event and mortality during a median follow-up period of 64 months. A Kaplan-Meier analysis showed that the mortality rate was significantly higher in the high-FGF21 group than in the low-FGF21 group (28.3% vs. 9.1%, log-rank, P = 0.034), while the rate of cardiovascular events did not significantly differ between the two groups (30.4% vs. 22.7%, log-rank, P = 0.312). In multivariable Cox models adjusted a high FGF21 level was an independent predictor of all-cause mortality (hazard ratio: 3.98; 95% confidence interval: 1.39-14.27, P = 0.009). Higher circulating FGF21 levels were associated with a high mortality rate, but not cardiovascular events in patient with ESRD, suggesting that circulating FGF21 levels serve as a predictive marker for mortality in these subjects.

  19. The influence of sea- and land-breeze circulations on the diurnal variability in precipitation over a tropical island

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2017-11-01

    Full Text Available This study examines the diurnal variation in precipitation over Hainan Island in the South China Sea using gauge observations from 1951 to 2012 and Climate Prediction Center MORPHing technique (CMORPH satellite estimates from 2006 to 2015, as well as numerical simulations. The simulations are the first to use climatological mean initial and lateral boundary conditions to study the dynamic and thermodynamic processes (and the impacts of land–sea breeze circulations that control the rainfall distribution and climatology. Precipitation is most significant from April to October and exhibits a strong diurnal cycle resulting from land–sea breeze circulations. More than 60 % of the total annual precipitation over the island is attributable to the diurnal cycle with a significant monthly variability. The CMORPH and gauge datasets agree well, except that the CMORPH data underestimate precipitation and have a 1 h peak delay. The diurnal cycle of the rainfall and the related land–sea breeze circulations during May and June were well captured by convection-permitting numerical simulations with the Weather Research and Forecasting (WRF model, which were initiated from a 10-year average ERA-Interim reanalysis. The simulations have a slight overestimation of rainfall amounts and a 1 h delay in peak rainfall time. The diurnal cycle of precipitation is driven by the occurrence of moist convection around noontime owing to low-level convergence associated with the sea-breeze circulations. The precipitation intensifies rapidly thereafter and peaks in the afternoon with the collisions of sea-breeze fronts from different sides of the island. Cold pools of the convective storms contribute to the inland propagation of the sea breeze. Generally, precipitation dissipates quickly in the evening due to the cooling and stabilization of the lower troposphere and decrease of boundary layer moisture. Interestingly, the rather high island orography is not a

  20. Toroidal bubbles with circulation in ideal hydrodynamics: A variational approach

    DEFF Research Database (Denmark)

    Ruban, V.P.; Juul Rasmussen, J.

    2003-01-01

    Incompressible, inviscid, irrotational, unsteady flows with circulation Gamma around a distorted toroidal bubble are considered. A general variational principle that determines the evolution of the bubble shape is formulated. For a two-dimensional (2D) cavity with a constant area A, exact...... pseudodifferential equations of motion are derived, based on variables that determine a conformal mapping of the unit circle exterior into the region occupied by the fluid. A closed expression for the Hamiltonian of the 2D system in terms of canonical variables is obtained. Stability of a stationary drifting 2D...... hollow vortex is demonstrated, when the gravity is small, gA(3/2)/Gamma(2)circulation-dominated regime of three-dimensional flows a simplified Lagrangian is suggested, inasmuch as the bubble shape is well described by the center line R(xi,t) and by an approximately circular cross section...

  1. Perceived family functioning, adolescent psychopathology and quality of life in the general population: a 6-month follow-up study.

    Science.gov (United States)

    Jozefiak, Thomas; Wallander, Jan L

    2016-04-01

    The aim of the study was to investigate whether perceived family functioning of adolescent is moderating or mediating the longitudinal association of adolescent internalizing and externalizing psychopathology with quality of life (QoL) after 6 months in the general population. Using a cluster sampling technique in one Norwegian county 1331, 10- to 16-year-old students were included in the study (51 % girls). Parents completed the Child Behavior Checklist for the assessment of adolescent psychopathology at Time 1. The students completed the General Functioning Scale of the McMaster Family Assessment Device and the Inventory of Life Quality in Children and Adolescents at time 2 6 months later. Psychopathology, family functioning and QoL were treated as latent variables in a structural equation model adjusted for sex, age and parent education. The regression coefficients for paths from psychopathology decreased (β = .199 for the internalizing and β = .102 for the externalizing model) in each case when including the indirect path via family functioning compared with the direct path from psychopathology to QoL. The sum of indirect effects on QoL via family functioning was significant for internalizing β = 0.093 (95 % CI 0.054-0.133) and externalizing β = 0.119 (95 % CI 0.076-0.162) psychopathology. Family functioning significantly mediated the longitudinal association between psychopathology and QoL. Because the family remains an important social domain for adolescents, it must be an important consideration when attempting to reduce or alleviate psychopathology in youth and improve the quality of their life experience throughout this period.

  2. Longitudinal Biases in the Seychelles Dome Simulated by 34 Ocean-Atmosphere Coupled General Circulation Models

    Science.gov (United States)

    Nagura, M.; Sasaki, W.; Tozuka, T.; Luo, J.; Behera, S. K.; Yamagata, T.

    2012-12-01

    The upwelling dome of the southern tropical Indian Ocean is examined by using simulated results from 34 ocean-atmosphere coupled general circulation models (CGCMs) including those from the phase five of the Coupled Model Intercomparison Project (CMIP5). Among the current set of the 34 CGCMs, 12 models erroneously produce the upwelling dome in the eastern half of the basin while the observed Seychelles Dome is located in the southwestern tropical Indian Ocean (Figure 1). The annual mean Ekman pumping velocity is almost zero in the southern off-equatorial region in these models. This is in contrast with the observations that show Ekman upwelling as the cause of the Seychelles Dome. In the models that produce the dome in the eastern basin, the easterly biases are prominent along the equator in boreal summer and fall that cause shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and result in a spurious upwelling dome there. In addition, these models tend to overestimate (underestimate) the magnitude of annual (semiannual) cycle of thermocline depth variability in the dome region, which is another consequence of the easterly wind biases in boreal summer-fall. Compared to the CMIP3 models (Yokoi et al. 2009), the CMIP5 models are even worse in simulating the dome longitudes and magnitudes of annual and semiannual cycles of thermocline depth variability in the dome region. Considering the increasing need to understand regional impacts of climate modes, these results may give serious caveats to interpretation of model results and help in further model developments.; Figure 1: The longitudes of the shallowest annual-mean D20 in 5°S-12°S. The open and filled circles are for the observations and the CGCMs, respectively.

  3. Tracer simulation using a global general circulation model: Results from a midlatitude instantaneous source experiment

    International Nuclear Information System (INIS)

    Mahlman, J.D.; Moxim, W.J.

    1978-01-01

    An 11-level general circulation model with seasonal variation is used to perform an experiment on the dispersion of passive tracers. Specially constructed time-dependent winds from this model are used as input to a separate tracer model. The methodologies employed to construct the tracer model are described.The experiment presented is the evolution of a hypothetical instantaneous source of tracer on 1 Janaury with maximum initial concentration at 65 mb, 36 0 N, 180 0 E. The tracer is assumed to have no sources or sinks in the stratosphere, but is subject to removal processes in the lower troposphere.The experimental results reveal a number of similarities to observed tracer behavior, including the average poleward-downward slope of mixing ratio isopleths, strong tracer gradients across the tropopause, intrusion of tracer into the Southern Hemisphere lower stratosphere, and the long-term interhemispheric exchange rate. The model residence times show behavior intermediate to those exhibited for particulate radioactive debris and gaseous C 14 O 2 . This suggests that caution should be employed when either radioactive debris or C 14 O 2 data are used to develop empirical models for prediction of gaseous tracers which are efficiently removed in the troposphere.In this experiment, the tracer mixing ratio and potential vorticity evolve to very high correlations. Mechanisms for this correlation are discussed. The zonal mean tracer balances exhibit complex behavior among the various transport terms. At early stages, the tracer evolution is dominated by eddy effects. Later, a very large degree of self-cancellation between mean cell and eddy effects is observed. During seasonal transitions, however, this self-cancellation diminishes markedly, leading to significant changes in the zonal mean tracer distribution. A possible theoretical explanation is presented

  4. Improvement of Classification of Enterprise Circulating Funds

    OpenAIRE

    Rohanova Hanna O.

    2014-01-01

    The goal of the article lies in revelation of possibilities of increase of efficiency of managing enterprise circulating funds by means of improvement of their classification features. Having analysed approaches of many economists to classification of enterprise circulating funds, systemised and supplementing them, the article offers grouping classification features of enterprise circulating funds. In the result of the study the article offers an expanded classification of circulating funds, ...

  5. Time-scale and extent at which large-scale circulation modes determine the wind and solar potential in the Iberian Peninsula

    International Nuclear Information System (INIS)

    Jerez, Sonia; Trigo, Ricardo M

    2013-01-01

    The North Atlantic Oscillation (NAO), the East Atlantic (EA) and the Scandinavian (SCAND) modes are the three main large-scale circulation patterns driving the climate variability of the Iberian Peninsula. This study assesses their influence in terms of solar (photovoltaic) and wind power generation potential (SP and WP) and evaluates their skill as predictors. For that we use a hindcast regional climate simulation to retrieve the primary meteorological variables involved, surface solar radiation and wind speed. First we identify that the maximum influence of the various modes occurs on the interannual variations of the monthly mean SP and WP series, being generally more relevant in winter. Second we find that in this time-scale and season, SP (WP) varies up to 30% (40%) with respect to the mean climatology between years with opposite phases of the modes, although the strength and the spatial distribution of the signals differ from one month to another. Last, the skill of a multi-linear regression model (MLRM), built using the NAO, EA and SCAND indices, to reconstruct the original wintertime monthly series of SP and WP was investigated. The reconstructed series (when the MLRM is calibrated for each month individually) correlate with the original ones up to 0.8 at the interannual time-scale. Besides, when the modeled series for each individual month are merged to construct an October-to-March monthly series, and after removing the annual cycle in order to account for monthly anomalies, these correlate 0.65 (0.55) with the original SP (WP) series in average. These values remain fairly stable when the calibration and reconstruction periods differ, thus supporting up to a point the predictive potential of the method at the time-scale assessed here. (letter)

  6. The Global Monsoon as Seen through the Divergent Atmospheric Circulation.

    Science.gov (United States)

    Trenberth, Kevin E.; Stepaniak, David P.; Caron, Julie M.

    2000-11-01

    A comprehensive description is given of the global monsoon as seen through the large-scale overturning in the atmosphere that changes with the seasons, and it provides a basis for delimiting the monsoon regions of the world. The analysis focuses on the mean annual cycle of the divergent winds and associated vertical motions, as given by the monthly mean fields for 1979-93 reanalyses from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) and European Centre for Medium-Range Weather Forecasts (ECMWF), which are able to reproduce the dominant modes. A complex empirical orthogonal function analysis of the divergent circulation brings out two dominant modes with essentially the same vertical structures in all months of the year. The first mode, which depicts the global monsoon, has a simple vertical structure with a maximum in vertical motion at about 400 mb, divergence in the upper troposphere that is strongest at 150 mb and decays to zero amplitude above 70 mb, and convergence in the lower troposphere with a maximum at 925 mb (ECMWF) or 850 mb (NCEP). However, this mode has a rich three-dimensional spatial structure that evolves with the seasons. It accounts for 60% of the annual cycle variance of the divergent mass circulation and dominates the Hadley circulation as well as three overturning transverse cells. These include the Pacific Walker circulation; an Americas-Atlantic Walker circulation, both of which comprise rising motion in the west and sinking in the east; and a transverse cell over Asia, the Middle East, North Africa, and the Indian Ocean that has rising motion in the east and sinking toward the west. These exist year-round but migrate and evolve considerably with the seasons and have about a third to half of the mass flux of the peak Hadley cell. The annual cycle of the two Hadley cells reveals peak strength in early February and early August in both reanalyses.A second monsoon mode, which accounts for

  7. Formation of germline chimera Gaok chicken used circulation primordial germ cells (circulation PGCs fresh and thawed

    Directory of Open Access Journals (Sweden)

    Kostaman T

    2014-03-01

    Full Text Available Formation of germline chimeras by transfer of chicken primordial germ cells (PGCs is one of the effective techniques for preservation and regeneration of genetic resources in chickens. This study attempted to form germline chimeras of Gaok chicken buy purifying circulated PGCs of donor embryo before it is transferred to the recipient (White Leghorn chickens=WL and studied the ability of recipient embryo on survival in incubators, and hatchability. This study used 200 fertile eggs of Gaok and 90 fertile WL breed all of the eggs was incubated at 380C and 60% humidity in a portable incubator. PGCs-circulation of the blood collected Gaok embryos at stage 14-16 were taken from the dorsal aorta, and then purified by centrifugation method using nycodenz. PGCs-circulation results further purification frozen in liquid nitrogen before being transferred to the recipient embryo. The results showed that for the development of embryos transferred to the fresh circulation of PGCs-circulation as many as 25 cells can survive up to day 14, while one of the transferred of 50 and 100 cells into recipient embryos was hatched (10%. On the contrari recipient embryos that are transferred to the frozen PGCs-circulation the embryos development was shorter, and only survived until day 10th (treatment 25 cells, day 14th (treatment of 50 cells and day 17th (treatment of 100 cells. It is concluded that the amount of PGCs-circulation embryos transferred to the recipient is one factor that influence the success of the development germline chimeras.

  8. Effect of using ultrapure dialysate for hemodialysis on the level of circulating bacterial fragment in renal failure patients.

    Science.gov (United States)

    Kwan, Bonnie Ching-Ha; Chow, Kai-Ming; Ma, Terry King-Wing; Cheng, Phyllis Mei-Shan; Leung, Chi-Bon; Li, Philip Kam-Tao; Szeto, Cheuk-Chun

    2013-01-01

    Cardiovascular disease is the major cause of mortality and morbidity in dialysis patients. Recently, circulating endotoxin is found to associate with the systemic inflammatory state and cardiovascular disease of dialysis patients. Previous studies showed that the use of ultrapure dialysate for hemodialysis could reduce the exposure to exogenous endotoxin. We studied the effect of using ultrapure dialysate for hemodialysis on circulating endotoxin and bacterial DNA fragment levels and vascular stiffness. This is an open-labeled prospective study of 25 patients (14 male). Circulating endotoxin and bacterial DNA level, vascular stiffness as represented by arterial pulse wave velocity (PWV), nutrition and hydration status were monitored before and repeatedly throughout 12 months after the use of ultrapure dialysate for hemodialysis. The average age was 58.9 ± 10.2 years; 21 patients completed the study. Within 4 weeks of conversion to ultrapure dialysate for hemodialysis, the plasma endotoxin level fell from 0.302 ± 0.083 to 0.209 ± 0.044 EU/ml (p hemodialysis patients, circulating endotoxin level is associated with vascular stiffness and systemic inflammation. Using ultrapure dialysate for hemodialysis effectively reduces circulating endotoxin level in hemodialysis patients. The long-term benefit of using ultrapure dialysate for hemodialysis requires further study. © 2013 S. Karger AG, Basel.

  9. Geothermal heating, diapycnal mixing and the abyssal circulation

    Directory of Open Access Journals (Sweden)

    J. Emile-Geay

    2009-06-01

    Full Text Available The dynamical role of geothermal heating in abyssal circulation is reconsidered using three independent arguments. First, we show that a uniform geothermal heat flux close to the observed average (86.4 mW m−2 supplies as much heat to near-bottom water as a diapycnal mixing rate of ~10−4 m2 s−1 – the canonical value thought to be responsible for the magnitude of the present-day abyssal circulation. This parity raises the possibility that geothermal heating could have a dynamical impact of the same order. Second, we estimate the magnitude of geothermally-induced circulation with the density-binning method (Walin, 1982, applied to the observed thermohaline structure of Levitus (1998. The method also allows to investigate the effect of realistic spatial variations of the flux obtained from heatflow measurements and classical theories of lithospheric cooling. It is found that a uniform heatflow forces a transformation of ~6 Sv at σ4=45.90, which is of the same order as current best estimates of AABW circulation. This transformation can be thought of as the geothermal circulation in the absence of mixing and is very similar for a realistic heatflow, albeit shifted towards slightly lighter density classes. Third, we use a general ocean circulation model in global configuration to perform three sets of experiments: (1 a thermally homogenous abyssal ocean with and without uniform geothermal heating; (2 a more stratified abyssal ocean subject to (i no geothermal heating, (ii a constant heat flux of 86.4 mW m−2, (iii a realistic, spatially varying heat flux of identical global average; (3 experiments (i and (iii with enhanced vertical mixing at depth. Geothermal heating and diapycnal mixing are found to interact non-linearly through the density field, with geothermal heating eroding the deep stratification supporting a downward diffusive flux, while diapycnal mixing acts to map

  10. Mid- and long-term effects of family constellation seminars in a general population sample: 8- and 12-month follow-up.

    Science.gov (United States)

    Hunger, Christina; Weinhold, Jan; Bornhäuser, Annette; Link, Leoni; Schweitzer, Jochen

    2015-06-01

    In a previous randomized controlled trial (RCT), short-term efficacy of family constellation seminars (FCSs) in a general population sample was demonstrated. In this article, we examined mid- and long-term stability of these effects. Participants were 104 adults (M = 47 years; SD = 9; 84% female) who were part of the intervention group in the original RCT (3-day FCS; 64 active participants and 40 observing participants). FCSs were carried out according to manuals. It was predicted that FCSs would improve psychological functioning (Outcome Questionnaire OQ-45.2) at 8- and 12-month follow-up. Additionally, we assessed the effects of FCSs on psychological distress, motivational incongruence, individuals' experience in their personal social systems, and overall goal attainment. Participants yielded significant improvement in psychological functioning (d = 0.41 at 8-month follow-up, p = .000; d = 0.40 at 12-month follow-up, p = .000). Results were confirmed for psychological distress, motivational incongruence, the participants' experience in their personal social systems, and overall goal attainment. No adverse events were reported. This study provides first evidence for the mid- and long-term efficacy of FCSs in a nonclinical population. The implications of the findings are discussed. © 2014 Family Process Institute.

  11. Generalization of the ERIT Principle and Method

    International Nuclear Information System (INIS)

    Ruggiero, A.

    2008-01-01

    The paper describes the generalization of the method to produce secondary particles with a low-energy and low-intensity primary beam circulating in a Storage Ring with the Emittance-Recovery by Internal-Target (ERIT)

  12. Monthly paleostreamflow reconstruction from annual tree-ring chronologies

    Science.gov (United States)

    Stagge, J. H.; Rosenberg, D. E.; DeRose, R. J.; Rittenour, T. M.

    2018-02-01

    Paleoclimate reconstructions are increasingly used to characterize annual climate variability prior to the instrumental record, to improve estimates of climate extremes, and to provide a baseline for climate-change projections. To date, paleoclimate records have seen limited engineering use to estimate hydrologic risks because water systems models and managers usually require streamflow input at the monthly scale. This study explores the hypothesis that monthly streamflows can be adequately modeled by statistically decomposing annual flow reconstructions. To test this hypothesis, a multiple linear regression model for monthly streamflow reconstruction is presented that expands the set of predictors to include annual streamflow reconstructions, reconstructions of global circulation, and potential differences among regional tree-ring chronologies related to tree species and geographic location. This approach is used to reconstruct 600 years of monthly streamflows at two sites on the Bear and Logan rivers in northern Utah. Nash-Sutcliffe Efficiencies remain above zero (0.26-0.60) for all months except April and Pearson's correlation coefficients (R) are 0.94 and 0.88 for the Bear and Logan rivers, respectively, confirming that the model can adequately reproduce monthly flows during the reference period (10/1942 to 9/2015). Incorporating a flexible transition between the previous and concurrent annual reconstructed flows was the most important factor for model skill. Expanding the model to include global climate indices and regional tree-ring chronologies produced smaller, but still significant improvements in model fit. The model presented here is the only approach currently available to reconstruct monthly streamflows directly from tree-ring chronologies and climate reconstructions, rather than using resampling of the observed record. With reasonable estimates of monthly flow that extend back in time many centuries, water managers can challenge systems models with a

  13. Money circulation and debt circulation: A restatement of quantity theory of money

    OpenAIRE

    Xing, Xiaoyun; Xiong, Wanting; Chen, Liujun; Chen, Jiawei; Wang, Yougui; Stanley, H. Eugene

    2018-01-01

    Both money and debt are products of credit creation of banks. Money is always circulating among traders by facilitating commodity transactions. In contrast, debt is created by borrowing and annihilated by repayment as it is matured. However, when this creation- annihilation process is mediated by banks which are constrained by a credit capacity, there exists continuous transfer of debt among debtors, which can be defined as debt circulation. This paper presents a multi-agent model in which in...

  14. Transesophageal Echocardiographically-Confirmed Pulmonary Vein Thrombosis in Association with Posterior Circulation Infarction.

    LENUS (Irish Health Repository)

    Kinsella, Justin A

    2010-01-01

    Pulmonary venous thromboembolism has only been identified as a cause of stroke with pulmonary arteriovenous malformations\\/fistulae, pulmonary neoplasia, transplantation or lobectomy, and following percutaneous radiofrequency ablation of pulmonary vein ostia in patients with atrial fibrillation. A 59-year-old man presented with a posterior circulation ischemic stroke. \\'Unheralded\\' pulmonary vein thrombosis was identified on transesophageal echocardiography as the likely etiology. He had no further cerebrovascular events after intensifying antithrombotic therapy. Twenty-eight months after initial presentation, he was diagnosed with metastatic pancreatic adenocarcinoma and died 3 months later. This report illustrates the importance of doing transesophageal echocardiography in presumed \\'cardioembolic\\' stroke, and that potential \\'pulmonary venous thromboembolic\\' stroke may occur in patients without traditional risk factors for venous thromboembolism. Consideration should be given to screening such patients for occult malignancy.

  15. Electric power monthly, May 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Statistics by company and plant are published on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  16. Role of the Atmospheric General Circulation on the Temporal Variability of the Aerosol Distribution over Dakar (Senegal)

    Science.gov (United States)

    Senghor, Habib; Machu, Eric; Hourdin, Frederic; Thierno Gaye, Amadou; Gueye, Moussa; Simina Drame, Mamadou

    2016-04-01

    The natural or anthropogenic aerosols play an important role on the climate system and the human health through their optical and physical properties. To evaluate the potential impacts of these aerosols, it is necessary to better understand their temporal variability in relation with the atmospheric ciculation. Some previous case studies have pointed out the influence of the sea-breeze circulation on the vertical distribution of the aerosols along the Western African coast. In the present work, Lidar (Ceilometer CL31; located at Dakar) data are used for the period 2012-2014 together with Level-3 data from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) between 2007 and 2014 for studying the seasonal cycle of the vertical distribution of aerosols over Dakar (17.5°W, 14.74°N). Both instruments show strong seasonal variability with a maximum of aerosol occurrence in May over Dakar. The CL31 shows a crucial impact of sea-breeze circulation on the diurnal cycle of the Mixed Atmospheric Boundary Layer and a strong dust signal in spring in the nocturnal low-level jet (LLJ) located between 500 and 1000 m altitudes over Dakar.

  17. Electric power monthly, June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  18. Monthly energy review, June 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. The MER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the MER and in other EIA publications. 37 figs., 61 tabs.

  19. Monthly energy review, July 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. The MER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the MER and in other EIA publications. 37 figs., 75 tabs.

  20. Electric power monthly, August 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  1. Electric power monthly, July 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-29

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  2. Electric power monthly, November 1994

    International Nuclear Information System (INIS)

    1994-11-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended

  3. Fritz Schott's Contributions to the Understanding of the Ocean Circulation

    Science.gov (United States)

    Visbeck, M.

    2009-04-01

    The ocean circulation and its central significance for global climate lay at the heart of Fritz's research. In the context of hard-won data from his more than 30 research cruises to key regions of the Atlantic and Indian oceans, he made fundamental contributions to our understanding of the wind-driven and thermohaline ocean circulation. His insights and explorations of circulation and dynamics of the tropical Indian and Atlantic Oceans have led the field and provided a large part of the basis for planning large, international experiments. Fritz's work is also distinguished by his making exceptional use of modeling results, increasingly as the models have improved. His research has provided a much clearer correspondence between the observed ocean-structure and dynamical theory-noting both theoretical successes and limitations. Besides his general interest in the physical oceanography of the World Oceans, most of his research was devoted to the dynamics of tropical oceans with its intense and highly variable current systems. Concerning the Indian Ocean, Fritz's investigated the response of the Somali Current system to the variable monsoon winds in the early 1980's, obtaining high-quality, hydrographic surveys and the first long term direct measurement of ocean currents from moored arrays. His analyses and interpretations provided a synthesis of the complex circulations there. In the tropical Atlantic Ocean Fritz research focused on the western boundary circulation with important contributions to the understanding of the North Brazil Current retroflection, and the variability of the shallow and deep western boundary currents. Trying to solve the fundamental question ‘what is the role of the tropical ocean for climate variability', Fritz initiated large multinational research programs under the umbrella of the World Climate Research Projects WOCE (World Ocean Circulation Experiment) and CLIVAR (Climate Variability and Predictability). Fritz was the initiator and

  4. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd

  5. Polynomial Chaos–Based Bayesian Inference of K-Profile Parameterization in a General Circulation Model of the Tropical Pacific

    KAUST Repository

    Sraj, Ihab

    2016-08-26

    The authors present a polynomial chaos (PC)-based Bayesian inference method for quantifying the uncertainties of the K-profile parameterization (KPP) within the MIT general circulation model (MITgcm) of the tropical Pacific. The inference of the uncertain parameters is based on a Markov chain Monte Carlo (MCMC) scheme that utilizes a newly formulated test statistic taking into account the different components representing the structures of turbulent mixing on both daily and seasonal time scales in addition to the data quality, and filters for the effects of parameter perturbations over those as a result of changes in the wind. To avoid the prohibitive computational cost of integrating the MITgcm model at each MCMC iteration, a surrogate model for the test statistic using the PC method is built. Because of the noise in the model predictions, a basis-pursuit-denoising (BPDN) compressed sensing approach is employed to determine the PC coefficients of a representative surrogate model. The PC surrogate is then used to evaluate the test statistic in the MCMC step for sampling the posterior of the uncertain parameters. Results of the posteriors indicate good agreement with the default values for two parameters of the KPP model, namely the critical bulk and gradient Richardson numbers; while the posteriors of the remaining parameters were barely informative. © 2016 American Meteorological Society.

  6. Nutritional State of the Children from 6 to 24 Months Seen in Paediatric Consultation at the General Hospital of National Reference of N'Djamena (Chad)

    International Nuclear Information System (INIS)

    Morgaye, Aicha; Ag Iknane, Akory

    2014-01-01

    Full text: Summary: Objectives: Infantile malnutrition is a problem of public health major in the Development Countries. In Chad, it constitutes a real problem of public health in particular in the children of less than 24 months. The present study aims at evaluating the nutritional statute of the children from 6 to 24 months seen in pediatric consultation at the general hospital of reference of Djamena to Chad. We proposed to make a descriptive cross-sectional study allowing to make the photography of the situation at a given time. Methods: A descriptive exploratory study proceeded for two months and concerned 400 old children from 6 to 24 months, seen in pediatric consultation at the general hospital of national reference. Results: The nutritional statute of the children in hospital medium with the HGRN of Djamena is not alarming with a prevalence of 41,5% from emaciation, 33,3% of delay of growth and 52% of underweight according to NHCS. The fever was the most frequent sign having pushed the mother to consult, that is to say 40% of the children consulted for the fever, 25% for the acute respiratory infections, 24% for the diarrhoea. Our study found 56,8% of the mothers living in polygamies. 36% of the questioned women had a primary level but 37% were still illiterate. approximately 38% of the mothers of the children of 12 à17 month were illiterate and depended on their husband. 29,5% of the mothers were multipares and 6% were large multipares. 46% pauci avoid and 18,5% first calf cow. The level of knowledge of the mothers remains acceptable on the food diversification of the children because more the share began it between 6 and 24 months, are 65,5% had a liquid feeding, 89% had a semi-fluid feeding and 86% had a solid feeding between 6 and 24 months. The enriched pulp was the food more used by approximately 75% of the mothers. We noted 26,3% children separated before 24 months whose more share are those from 18 to 24 months. The reason for weaning according to

  7. Weather types in the South Shetlands (Antarctica) using a circulation type approach

    Science.gov (United States)

    Mora, Carla; João Rocha, Maria; Dutra, Emanuel; Trigo, Isabel; Vieira, Gonçalo; Fragoso, Marcelo; Ramos, Miguel

    2010-05-01

    . References: Goodess CM, Palutikof JP.1998. Development of daily rainfall scenarios for southeast Spain using a Circulation-type approach to downscaling. International Journal of Climatology. 10: 1051-1083. JonesPD, Hulme M, Briffa KR. 1993. A comparison of Lamb circulation types with an objective classification scheme. International Journal of Climatology, 13:655-663. Lorenzo M N, Iglesias I , Taboada JJ , Gómez-Gesteira M. 2009. Relationship between monthly rainfall in northwest Iberian Peninsula and North Atlantic sea surface temperature. International Journal of Climatology. Maheras P, Tolika K, Anagnostopoulou C, Vafiadis M, Patrikas I, Flocas H. 2004. On the relationship between circulation types and changes in rainfall variability in Grece. International Journal of Climatology 24: 1695-1712. Trigo RM, DaCamara C. 2000. Circulation weather types and their influence on the precipitation regime in Portugal. International Journal of Climatology. 20: 1559-1581.

  8. Role of sea surface temperature anomalies in the tropical Indo-Pacific region in the northeast Asia severe drought in summer 2014: month-to-month perspective

    Science.gov (United States)

    Xu, Zhiqing; Fan, Ke; Wang, HuiJun

    2017-09-01

    The severe drought over northeast Asia in summer 2014 and the contribution to it by sea surface temperature (SST) anomalies in the tropical Indo-Pacific region were investigated from the month-to-month perspective. The severe drought was accompanied by weak lower-level summer monsoon flow and featured an obvious northward movement during summer. The mid-latitude Asian summer (MAS) pattern and East Asia/Pacific teleconnection (EAP) pattern, induced by the Indian summer monsoon (ISM) and western North Pacific summer monsoon (WNPSM) rainfall anomalies respectively, were two main bridges between the SST anomalies in the tropical Indo-Pacific region and the severe drought. Warming in the Arabian Sea induced reduced rainfall over northeast India and then triggered a negative MAS pattern favoring the severe drought in June 2014. In July 2014, warming in the tropical western North Pacific led to a strong WNPSM and increased rainfall over the Philippine Sea, triggering a positive EAP pattern. The equatorial eastern Pacific and local warming resulted in increased rainfall over the off-equatorial western Pacific and triggered an EAP-like pattern. The EAP pattern and EAP-like pattern contributed to the severe drought in July 2014. A negative Indian Ocean dipole induced an anomalous meridional circulation, and warming in the equatorial eastern Pacific induced an anomalous zonal circulation, in August 2014. The two anomalous cells led to a weak ISM and WNPSM, triggering the negative MAS and EAP patterns responsible for the severe drought. Two possible reasons for the northward movement of the drought were also proposed.

  9. Surgical myocardial revascularization without extracorporeal circulation

    Directory of Open Access Journals (Sweden)

    Salomón Soriano Ordinola Rojas

    2003-05-01

    Full Text Available OBJECTIVE: To assess the immediate postoperative period of patients undergoing myocardial revascularization without extracorporeal circulation with different types of grafts. METHODS: One hundred and twelve patients, 89 (79.5% of whom were males, were revascularized without extracorporeal circulation. Their ages ranged from 39 to 85 years. The criteria for indicating myocardial revascularization without extracorporeal circulation were as follows: revascularized coronary artery caliber > 1.5 mm, lack of intramyocardial trajectory on coronary angiography, noncalcified coronary arteries, and tolerance of the heart to the different rotation maneuvers. RESULTS: Myocardial revascularization without extracorporeal circulation was performed in 112 patients. Three were converted to extracorporeal circulation, which required a longer hospital stay but did not impact mortality. During the procedure, the following events were observed: atrial fibrillation in 10 patients, ventricular fibrillation in 4, total transient atrioventricular block in 2, ventricular extrasystoles in 58, use of a device to retrieve red blood cells in 53, blood transfusion in 8, and arterial hypotension in 89 patients. Coronary angiography was performed in 20 patients on the seventh postoperative day when the grafts were patent. CONCLUSION: Myocardial revascularization without extracorporeal circulation is a reproducible technique that is an alternative for treating ischemic heart disease.

  10. Changes in equatorial zonal circulations and precipitation in the context of the global warming and natural modes

    Science.gov (United States)

    Kim, B. H.; Ha, K. J.

    2017-12-01

    The strengthening and westward shift of Pacific Walker Circulation (PWC) is observed during the recent decades. However, the relative roles of global warming and natural variability on the change in PWC unclearly remain. By conducting numerical atmospheric general circulation model (AGCM) experiments using the spatial SST patterns in the global warming and natural modes which are obtained by the multi-variate EOF analysis from three variables including precipitation, sea surface temperature (SST), and divergent zonal wind, we indicated that the westward shift and strengthening of PWC are caused by the global warming SST pattern in the global warming mode and the negative Interdecadal Pacific Oscillation-like SST pattern in the natural mode. The SST distribution of the Pacific Ocean (PO) has more influence on the changes in equatorial zonal circulations and tropical precipitation than that of the Indian Ocean (IO) and Atlantic Ocean (AO). The change in precipitation is also related to the equatorial zonal circulations variation through the upward and downward motions of the circulations. The IO and AO SST anomalies in the global warming mode can affect on the changes in equatorial zonal circulations, but the influence of PO SST disturbs the Indian Walker circulation and Atlantic Walker circulation changes by the IO and AO. The zonal shift of PWC is found to be highly associated with a zonal gradient of SST over the PO through the idealized numerical AGCM experiments and predictions of CMIP5 models.

  11. Explicit Determinants of the RFPrLrR Circulant and RLPrFrL Circulant Matrices Involving Some Famous Numbers

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    2014-01-01

    Full Text Available Circulant matrices may play a crucial role in solving various differential equations. In this paper, the techniques used herein are based on the inverse factorization of polynomial. We give the explicit determinants of the RFPrLrR circulant matrices and RLPrFrL circulant matrices involving Fibonacci, Lucas, Pell, and Pell-Lucas number, respectively.

  12. Hydrology and circulation in the North Aegean (eastern Mediterranean throughout 1997 and 1998

    Directory of Open Access Journals (Sweden)

    V. ZERVAKIS

    2002-06-01

    Full Text Available The combination of two research projects offered us the opportunity to perform a comprehensive study of the seasonal evolution of the hydrological structure and the circulation of the North Aegean Sea, at the northern extremes of the eastern Mediterranean. The combination of brackish water inflow from the Dardanelles and the sea-bottom relief dictate the significant differences between the North and South Aegean water columns. The relatively warm and highly saline South Aegean waters enter the North Aegean through the dominant cyclonic circulation of the basin. In the North Aegean, three layers of distinct water masses of very different properties are observed: The 20-50 m thick surface layer is occupied mainly by Black Sea Water, modified on its way through the Bosphorus, the Sea of Marmara and the Dardanelles. Below the surface layer there is warm and highly saline water originating in the South Aegean and the Levantine, extending down to 350-400 m depth. Below this layer, the deeper-than-400 m basins of the North Aegean contain locally formed, very dense water with different θ /S characteristics at each subbasin. The circulation is characterised by a series of permanent, semi-permanent and transient mesoscale features, overlaid on the general slow cyclonic circulation of the Aegean. The mesoscale activity, while not necessarily important in enhancing isopycnal mixing in the region, in combination with the very high stratification of the upper layers, however, increases the residence time of the water of the upper layers in the general area of the North Aegean. As a result, water having out-flowed from the Black Sea in the winter, forms a separate distinct layer in the region in spring (lying between “younger” BSW and the Levantine origin water, and is still traceable in the water column in late summer.

  13. Zonally resolved impact of ENSO on the stratospheric circulation and water vapor entry values

    Science.gov (United States)

    Konopka, Paul; Ploeger, Felix; Tao, Mengchu; Riese, Martin

    2016-10-01

    Based on simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the period 1979-2013, with model transport driven by the ECMWF ERA-Interim reanalysis, we discuss the impact of the El Niño Southern Oscillation (ENSO) on the variability of the dynamics, water vapor, ozone, and mean age of air (AoA) in the tropical lower stratosphere during boreal winter. Our zonally resolved analysis at the 390 K potential temperature level reveals that not only (deseasonalized) ENSO-related temperature anomalies are confined to the tropical Pacific (180-300°E) but also anomalous wave propagation and breaking, as quantified in terms of the Eliassen-Palm (EP) flux divergence, with strongest local contribution during the La Niña phase. This anomaly is coherent with respective anomalies of water vapor (±0.5 ppmv) and ozone (±100 ppbv) derived from CLaMS being in excellent agreement with the Aura Microwave Limb Sounder observations. Thus, during El Niño a more zonally symmetric wave forcing drives a deep branch of the Brewer-Dobson (BD) circulation. During La Niña this forcing increases at lower levels (≈390 K) over the tropical Pacific, likely influencing the shallow branch of the BD circulation. In agreement with previous studies, wet (dry) and young (old) tape recorder anomalies propagate upward in the subsequent months following El Niño (La Niña). Using CLaMS, these anomalies are found to be around +0.3 (-0.2) ppmv and -4 (+4) months for water vapor and AoA, respectively. The AoA ENSO anomaly is more strongly affected by the residual circulation (≈2/3) than by eddy mixing (≈1/3).

  14. The influence of orography on modern ocean circulation

    Science.gov (United States)

    Maffre, Pierre; Ladant, Jean-Baptiste; Donnadieu, Yannick; Sepulchre, Pierre; Goddéris, Yves

    2018-02-01

    The effects of orography on climate are investigated with a coupled ocean-atmosphere general circulation model (IPSL-CM5). Results are compared with previous investigations in order to dig out robust consequences of the lack of orography on the global scale. Emphasis is made on the thermohaline circulation whose sensitivity to orography has only been subject to a very limited number of studies using coupled models. The removal of the entire orography switches the Meridional Overturning Circulation from the Atlantic to the Pacific, following freshwater transfers from the latter to the former that reverse the salinity gradient between these oceans. This is in part due to the increased freshwater export from the Pacific to the Atlantic through North America in the absence of the Rocky Mountains and the consecutive decreased evaporation in the North Atlantic once the Atlantic MOC weakens, which cools the northern high-latitudes. In addition and unlike previous model studies, we find that tropical freshwater transfers are a major driver of this switch. More precisely, the collapse of the Asian summer monsoon, associated with westward freshwater transfer across Africa, is critical to the freshening of the Atlantic and the increased salt content in the Pacific. Specifically, precipitations are increasing over the Congo catchment area and induce a strong increase in runoff discharging into the tropical Atlantic. In addition, the removal of the Andes shifts the area of strong precipitation toward the Amazonian catchment area and results in a larger runoff discharging into the Tropical Atlantic.

  15. Tidal flushing and wind driven circulation of Ahe atoll lagoon (Tuamotu Archipelago, French Polynesia) from in situ observations and numerical modelling

    International Nuclear Information System (INIS)

    Dumas, F.; Le Gendre, R.; Thomas, Y.; Andréfouët, S.

    2012-01-01

    Hydrodynamic functioning and water circulation of the semi-closed deep lagoon of Ahe atoll (Tuamotu Archipelago, French Polynesia) were investigated using 1 year of field data and a 3D hydrodynamical model. Tidal amplitude averaged less than 30 cm, but tide generated very strong currents (2 m s −1 ) in the pass, creating a jet-like circulation that partitioned the lagoon into three residual circulation cells. The pass entirely flushed excess water brought by waves-induced radiation stress. Circulation patterns were computed for climatological meteorological conditions and summarized with stream function and flushing time. Lagoon hydrodynamics and general overturning circulation was driven by wind. Renewal time was 250 days, whereas the e-flushing time yielded a lagoon-wide 80-days average. Tide-driven flush through the pass and wind-driven overturning circulation designate Ahe as a wind-driven, tidally and weakly wave-flushed deep lagoon. The 3D model allows studying pearl oyster larvae dispersal in both realistic and climatological conditions for aquaculture applications.

  16. Northern South China Sea Surface Circulation and its Variability Derived by Combining Satellite Altimetry and Surface Drifter Data

    Directory of Open Access Journals (Sweden)

    N. Peter Benny

    2015-01-01

    Full Text Available The present study analyses the mean and seasonal mesoscale surface circulation of the Northern South China Sea (NSCS and determines the influence of El Niño/SouthernNiño/Southern Oscillation (ENSO. High resolution Eulerian velocity field is derived by combining the available satellite tracked surface drifter data with satellite altimetry during 1993 - 2012. The wind driven current is computed employing the weekly ocean surface mean wind fields derived from the scatterometers on board ERS 1/2, QuikSCAT and ASCAT. The derived mean velocity field exhibits strong boundary currents and broad zonal flow across NSCS. The anomalous field is quite strong in the southern part and the Seasonal circulation clearly depicts the monsoonal forcing. Eddy Kinetic Energy (EKE distribution and its spatial and temporal structures are determined employing Empirical Orthogonal Function (EOF analysis. The ENSO influence on NSCS surface circulation has been analyzed using monthly absolute geostrophic velocity fields during 1996 - 1999.

  17. Long-term stability and circadian variation in circulating levels of surfactant protein D

    DEFF Research Database (Denmark)

    Hoegh, Silje Vermedal; Sorensen, Grith Lykke; Tornoe, Ida

    2010-01-01

    Surfactant protein D (SP-D) is an oligomeric calcium-dependent lectin with important roles in innate host defence against infectious microorganisms. Several studies have shown that patients with inflammatory lung disease have elevated levels of circulating SP-D, and serum SP-D has been suggested...... to be used as a biomarker for disease e.g. in COPD. We aimed to investigate the variation of circulating SP-D in healthy individuals in and between days for 6 months. In addition, we studied the SP-D response to a standardized physical exercise programme. SP-D was measured in serum using a 5-layered ELISA...... pre-exercise level of SP-D was 746 ng/ml (95% CI: 384-2035), and immediately after cessation of physical activity the median SP-D level was 767 ng/ml (95% CI: 367-1885) (P=0.248). Our findings underscore the importance of standardized blood sampling conditions in future studies on the potential role...

  18. Modeling the Dynamics of the Atmospheric Boundary Layer Over the Antarctic Plateau With a General Circulation Model

    Science.gov (United States)

    Vignon, Etienne; Hourdin, Frédéric; Genthon, Christophe; Van de Wiel, Bas J. H.; Gallée, Hubert; Madeleine, Jean-Baptiste; Beaumet, Julien

    2018-01-01

    Observations evidence extremely stable boundary layers (SBL) over the Antarctic Plateau and sharp regime transitions between weakly and very stable conditions. Representing such features is a challenge for climate models. This study assesses the modeling of the dynamics of the boundary layer over the Antarctic Plateau in the LMDZ general circulation model. It uses 1 year simulations with a stretched-grid over Dome C. The model is nudged with reanalyses outside of the Dome C region such as simulations can be directly compared to in situ observations. We underline the critical role of the downward longwave radiation for modeling the surface temperature. LMDZ reasonably represents the near-surface seasonal profiles of wind and temperature but strong temperature inversions are degraded by enhanced turbulent mixing formulations. Unlike ERA-Interim reanalyses, LMDZ reproduces two SBL regimes and the regime transition, with a sudden increase in the near-surface inversion with decreasing wind speed. The sharpness of the transition depends on the stability function used for calculating the surface drag coefficient. Moreover, using a refined vertical grid leads to a better reversed "S-shaped" relationship between the inversion and the wind. Sudden warming events associated to synoptic advections of warm and moist air are also well reproduced. Near-surface supersaturation with respect to ice is not allowed in LMDZ but the impact on the SBL structure is moderate. Finally, climate simulations with the free model show that the recommended configuration leads to stronger inversions and winds over the ice-sheet. However, the near-surface wind remains underestimated over the slopes of East-Antarctica.

  19. DBSSP - A computer program for simulation of controlled circulation boiler and natural circulation boiler start up behavior

    International Nuclear Information System (INIS)

    Li Bin; Chen Tingkuan; Yang Dong

    2005-01-01

    In this paper, a computer program, Drum Boiler Start-up Simulation Program (DBSSP), is developed for simulating the start up behavior of controlled circulation and natural circulation boilers. The mathematical model developed here is based on the first principles of mass, energy and momentum conservations. In the boiler model, heat transfer in the waterwall, the superheater, the reheater and the economizer is simulated by the distributing parameter method, while heat transfer in the drum and the downcomer is simulated by lumped parameter analysis. The program can provide detailed flow and thermodynamic characteristics of the boiler components. The development of this program is based only on design data, so it can be used for any subcritical, controlled or natural circulation boiler. The simulation results were compared with experimental measurements, and good agreements between them were found. This program is expected to be useful for predicting the characteristics and the performance of controlled circulation and natural circulation boilers during the start up process. It also can be used to optimize a start up system for minimum start up time

  20. Electric power monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  1. Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation

    Energy Technology Data Exchange (ETDEWEB)

    Butchart, N. [Met Office, Exeter, Devon (United Kingdom); Scaife, A.A. [Met Office, Hadley Centre, Exeter (United Kingdom); Bourqui, M. [University of Reading, Department of Meteorology, Reading (United Kingdom); McGill University, Montreal (Canada); Grandpre, J. de [McGill University, Montreal (Canada); Hare, S.H.E. [University of Reading, Department of Meteorology, Reading (United Kingdom); Kettleborough, J. [British Atmospheric Data Centre, Rutherford Laboratory, Didcot (United Kingdom); Langematz, U. [Freie Universitaet of Berlin, Berlin (Germany); Manzini, E. [National Institute for Geophysics and Volcanology, Bologna (Italy); Sassi, F. [National Center for Atmospheric Research, Boulder, CO (United States); Shibata, K. [Meteorological Research Institute, Tsukuba (Japan); Shindell, D. [NASA-Goddard Institute for Space Studies, New York (United States); Sigmond, M. [University of Toronto, Toronto (Canada)

    2006-12-15

    The effect of climate change on the Brewer-Dobson circulation and, in particular, the large-scale seasonal-mean transport between the troposphere and stratosphere is compared in a number of middle atmosphere general circulation models. All the models reproduce the observed upwelling across the tropical tropopause balanced by downwelling in the extra tropics, though the seasonal cycle in upwelling in some models is more semi-annual than annual. All the models also consistently predict an increase in the mass exchange rate in response to growing greenhouse gas concentrations, irrespective of whether or not the model includes interactive ozone chemistry. The mean trend is 11 kt s{sup -1} year{sup -1} or about 2% per decade but varies considerably between models. In all but one of the models the increase in mass exchange occurs throughout the year though, generally, the trend is larger during the boreal winter. On average, more than 60% of the mean mass fluxes can be explained by the EP-flux divergence using the downward control principle. Trends in the annual mean mass fluxes derived from the EP-flux divergence also explain about 60% of the trend in the troposphere-to-stratosphere mass exchange rate when averaged over all the models. Apart from two models the interannual variability in the downward control derived and actual mass fluxes were generally well correlated, for the annual mean. (orig.)

  2. Association Between a Single General Anesthesia Exposure Before Age 36 Months and Neurocognitive Outcomes in Later Childhood.

    Science.gov (United States)

    Sun, Lena S; Li, Guohua; Miller, Tonya L K; Salorio, Cynthia; Byrne, Mary W; Bellinger, David C; Ing, Caleb; Park, Raymond; Radcliffe, Jerilynn; Hays, Stephen R; DiMaggio, Charles J; Cooper, Timothy J; Rauh, Virginia; Maxwell, Lynne G; Youn, Ahrim; McGowan, Francis X

    2016-06-07

    Exposure of young animals to commonly used anesthetics causes neurotoxicity including impaired neurocognitive function and abnormal behavior. The potential neurocognitive and behavioral effects of anesthesia exposure in young children are thus important to understand. To examine if a single anesthesia exposure in otherwise healthy young children was associated with impaired neurocognitive development and abnormal behavior in later childhood. Sibling-matched cohort study conducted between May 2009 and April 2015 at 4 university-based US pediatric tertiary care hospitals. The study cohort included sibling pairs within 36 months in age and currently 8 to 15 years old. The exposed siblings were healthy at surgery/anesthesia. Neurocognitive and behavior outcomes were prospectively assessed with retrospectively documented anesthesia exposure data. A single exposure to general anesthesia during inguinal hernia surgery in the exposed sibling and no anesthesia exposure in the unexposed sibling, before age 36 months. The primary outcome was global cognitive function (IQ). Secondary outcomes included domain-specific neurocognitive functions and behavior. A detailed neuropsychological battery assessed IQ and domain-specific neurocognitive functions. Parents completed validated, standardized reports of behavior. Among the 105 sibling pairs, the exposed siblings (mean age, 17.3 months at surgery/anesthesia; 9.5% female) and the unexposed siblings (44% female) had IQ testing at mean ages of 10.6 and 10.9 years, respectively. All exposed children received inhaled anesthetic agents, and anesthesia duration ranged from 20 to 240 minutes, with a median duration of 80 minutes. Mean IQ scores between exposed siblings (scores: full scale = 111; performance = 108; verbal = 111) and unexposed siblings (scores: full scale = 111; performance = 107; verbal = 111) were not statistically significantly different. Differences in mean IQ scores between sibling pairs were

  3. A multimodel comparison of centennial Atlantic meridional overturning circulation variability

    Energy Technology Data Exchange (ETDEWEB)

    Menary, Matthew B.; Vellinga, Michael; Palmer, Matthew D. [Met Office Hadley Centre, Exeter, Devon (United Kingdom); Park, Wonsun; Latif, Mojib [IFM-GEOMAR, Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Lohmann, Katja; Jungclaus, Johann H. [Max Planck Inst Meteorol, Hamburg (Germany)

    2012-06-15

    A mechanism contributing to centennial variability of the Atlantic Meridional Overturning Circulation (AMOC) is tested with multi-millennial control simulations of several coupled general circulation models (CGCMs). These are a substantially extended integration of the 3rd Hadley Centre Coupled Climate Model (HadCM3), the Kiel Climate Model (KCM), and the Max Plank Institute Earth System Model (MPI-ESM). Significant AMOC variability on time scales of around 100 years is simulated in these models. The centennial mechanism links changes in the strength of the AMOC with oceanic salinities and surface temperatures, and atmospheric phenomena such as the Intertropical Convergence Zone (ITCZ). 2 of the 3 models reproduce all aspects of the mechanism, with the third (MPI-ESM) reproducing most of them. A comparison with a high resolution paleo-proxy for Sea Surface Temperatures (SSTs) north of Iceland over the last 4,000 years, also linked to the ITCZ, suggests that elements of this mechanism may also be detectable in the real world. (orig.)

  4. About the seasonal variability of the Alboran Sea circulation

    Science.gov (United States)

    Vargas-Yáñez, M.; Plaza, F.; García-Lafuente, J.; Sarhan, T.; Vargas, J. M.; Vélez-Belchi, P.

    2002-07-01

    Data from a mooring line deployed midway between the Alboran Island and Cape Tres Forcas are used to study the time variability of the Alboran Sea from May 1997 to May 1998. The upper layer salinity and zonal velocity present annual and semiannual cycles characterised by a minimum in spring and autumn and a maximum in summer and winter. Temperature has the opposite behaviour to that of salinity indicating changes in the presence of the Atlantic water within the Alboran Passage. A large set of SST images is used to study these cycles. The decrease of salinity and velocity in our mooring location in spring and autumn seems to be related to the eastward drifting of the Western Alboran Gyre (WAG). The increase of salinity and velocity is caused by the Atlantic current flowing south of the Alboran Island and its associated thermohaline front. Conductivity-temperature-depth (CTD) data from two cruises along the 3°W are coherent with current meters and SST interpretations. During the period analysed, summer months are characterised by the stability of the two-gyre system, while in winter, the circulation is characterised by a coastal jet flowing close to the African shore. We use sea level differences across the Strait of Gibraltar for studying the variability of the Atlantic inflow. We discuss the changes in the Alboran Sea circulation and its relation with the variability of the inertial radius of the Atlantic inflow. Though our results are speculative, we find a possible relation between the disappearance of the two-gyre system and a reversal of the circulation in Gibraltar. Longer time series are needed to conclude, but comparison with previous works makes us think that the seasonal cycle described from May 1997 to May 1998 could be the most likely one for the Alboran Sea upper layer.

  5. Dynamics and developing of natural circulation cooling from vertical upflow and downflow conditions

    International Nuclear Information System (INIS)

    Yang, B.W.; Ouyang, W.

    2004-01-01

    Several research programs have been conducted to evaluate the capability of natural circulation cooling of reactors following a loss of cooling accident. Both experimental and RELAP5 simulation results were obtained for these studies in a facility with vertical heated tube(s) and a unheated bypass channel. The analytical results showed that, under a certain power level, a natural circulation pattern can be developed from both initial upflow and downflow conditions, and maintained for a significant cooling period. This power level, for the discussion of this paper, is defined as the natural circulation cooling (NCC) power limit. Two import factors, namely the pump coastdown rate and the initial flow direction, are examined in this paper. In the benchmark case, as compared to the experimental results, the RELAP5 simulation program accurately predicted the transient phenomena from forced convection through flow reversal, then, into natural circulation cooling. Generally, the two-phase NCC power limit is higher and also more stable for the cases with initial upflow forced convection than for the cases with initial downflow. The transient phenomena (dynamics) of the natural circulation cooling was examined by varying the pump coast down rate in approaching the flow reversal natural circulation. A significant pump coastdown effect on the NCC power limit was observed for the analytical tests with initial downflow forced convection. For the tests with initial downflow condition, the higher the coastdown rate (or the shorter the coastdown period), the higher the NCC power limit. For the case with initial upflow forced convection, there may be an optimal coastdown rate for a given subcooled condition. However, for the subcooled condition used in this study, the effect of pump coast down rate is not as significant as in the downward forced convection. (author)

  6. Neoclassical Drift of Circulating Orbits Due toToroidal Electric Field in Tokamaks

    International Nuclear Information System (INIS)

    Qin, Hong; Guan, Xiaoyin; Fisch, Nathaniel J.

    2011-01-01

    In tokamaks, Ware pinch is a well known neoclassical effect for trapped particles in response to a toroidal electric field. It is generally believed that there exists no similar neoclassical effect for circulating particles without collisions. However, this belief is erroneous, and misses an important effect. We show both analytically and numerically that under the influence of a toroidal electric field parallel to the current, the circulating orbits drift outward toward the outer wall with a characteristic velocity O ((var e psilon) -1 ) larger than the E x B velocity, where (var e psilon) is the inverse aspect-ratio of a tokamak. During a RF overdrive, the toroidal electric field is anti-parallel to the current. As a consequence, all charged particles, including backward runaway electrons, will drift inward towards the inner wall.

  7. Hypoxia, leukocytes, and the pulmonary circulation.

    Science.gov (United States)

    Stenmark, Kurt R; Davie, Neil J; Reeves, John T; Frid, Maria G

    2005-02-01

    Data are rapidly accumulating in support of the idea that circulating monocytes and/or mononuclear fibrocytes are recruited to the pulmonary circulation of chronically hypoxic animals and that these cells play an important role in the pulmonary hypertensive process. Hypoxic induction of monocyte chemoattractant protein-1, stromal cell-derived factor-1, vascular endothelial growth factor-A, endothelin-1, and tumor growth factor-beta(1) in pulmonary vessel wall cells, either directly or indirectly via signals from hypoxic lung epithelial cells, may be a critical first step in the recruitment of circulating leukocytes to the pulmonary circulation. In addition, hypoxic stress appears to induce release of increased numbers of monocytic progenitor cells from the bone marrow, and these cells may have upregulated expression of receptors for the chemokines produced by the lung circulation, which thus facilitates their specific recruitment to the pulmonary site. Once present, macrophages/fibrocytes may exert paracrine effects on resident pulmonary vessel wall cells stimulating proliferation, phenotypic modulation, and migration of resident fibroblasts and smooth muscle cells. They may also contribute directly to the remodeling process through increased production of collagen and/or differentiation into myofibroblasts. In addition, they could play a critical role in initiating and/or supporting neovascularization of the pulmonary artery vasa vasorum. The expanded vasa network may then act as a conduit for further delivery of circulating mononuclear cells to the pulmonary arterial wall, creating a feedforward loop of pathological remodeling. Future studies will need to determine the mechanisms that selectively induce leukocyte/fibrocyte recruitment to the lung circulation under hypoxic conditions, their direct role in the remodeling process via production of extracellular matrix and/or differentiation into myofibroblasts, their impact on the phenotype of resident smooth muscle

  8. Application of blocking diagnosis methods to general circulation models. Part I: a novel detection scheme

    Energy Technology Data Exchange (ETDEWEB)

    Barriopedro, D. [Universidade de Lisboa, CGUL-IDL, Faculdade de Ciencias, Ed. C-8, Lisbon (Portugal); Universidad de Extremadura, Departamento de Fisica, Facultad de Ciencias, Badajoz (Spain); Garcia-Herrera, R. [Universidad Complutense de Madrid, Departamento de Fisica de la Tierra II, Facultad de C.C. Fisicas, Madrid (Spain); Trigo, R.M. [Universidade de Lisboa, CGUL-IDL, Faculdade de Ciencias, Ed. C-8, Lisbon (Portugal)

    2010-12-15

    to General Circulation Models where observational thresholds may be unsuitable due to the presence of model bias. Part II of this study deals with a specific implementation of this novel method to simulations of the ECHO-G global climate model. (orig.)

  9. Short ensembles: an efficient method for discerning climate-relevant sensitivities in atmospheric general circulation models

    Directory of Open Access Journals (Sweden)

    H. Wan

    2014-09-01

    Full Text Available This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models. The basic idea is to replace the traditional serial-in-time long-term climate integrations by representative ensembles of shorter simulations. The key advantage of the proposed method lies in its efficiency: since fewer days of simulation are needed, the computational cost is less, and because individual realizations are independent and can be integrated simultaneously, the new dimension of parallelism can dramatically reduce the turnaround time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy is not appropriate for exploring sensitivity of all model features, but it is very effective in many situations. Two examples are presented using the Community Atmosphere Model, version 5. In the first example, the method is used to characterize sensitivities of the simulated clouds to time-step length. Results show that 3-day ensembles of 20 to 50 members are sufficient to reproduce the main signals revealed by traditional 5-year simulations. A nudging technique is applied to an additional set of simulations to help understand the contribution of physics–dynamics interaction to the detected time-step sensitivity. In the second example, multiple empirical parameters related to cloud microphysics and aerosol life cycle are perturbed simultaneously in order to find out which parameters have the largest impact on the simulated global mean top-of-atmosphere radiation balance. It turns out that 12-member ensembles of 10-day simulations are able to reveal the same sensitivities as seen in 4-year simulations performed in a previous study. In both cases, the ensemble method reduces the total computational time by a factor of about 15, and the turnaround time by a factor of several hundred. The efficiency of the method makes it particularly useful for the development of

  10. A blood circulation model for reference man

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, R.W.; Eckerman, K.F. [Oak Ridge National Lab., TN (United States); Williams, L.R. [Indiana Univ., South Bend, IN (United States). Div. of Liberal Arts and Sciences

    1996-12-31

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86.

  11. A blood circulation model for reference man

    International Nuclear Information System (INIS)

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    1996-01-01

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86

  12. Natural circulation in a scaled PWR integral test facility

    International Nuclear Information System (INIS)

    Kiang, R.L.; Jeuck, P.R. III

    1987-01-01

    Natural circulation is an important mechanism for cooling a nuclear power plant under abnormal operating conditions. To study natural circulation, we modeled a type of pressurized water reactor (PWR) that incorporates once-through steam generators. We conducted tests of single-phase natural circulations, two-phase natural circulations, and a boiler condenser mode. Because of complex geometry, the natural circulations observed in this facility exhibit some phenomena not commonly seen in a simple thermosyphon loop

  13. The role of meridional density differences for a wind-driven overturning circulation

    Energy Technology Data Exchange (ETDEWEB)

    Schewe, J.; Levermann, A. [Potsdam Institute for Climate Impact Research, Earth System Analysis, Potsdam (Germany); Potsdam University, Physics Institute, Potsdam (Germany)

    2010-03-15

    Experiments with the coupled climate model CLIMBER-3{alpha}, which contains an oceanic general circulation model, show deep upwelling in the Southern Ocean to be proportional to the surface wind stress in the latitudinal band of Drake Passage. At the same time, the distribution of the Southern Ocean upwelling onto the oceanic basins is controlled by buoyancy distribution; the inflow into each basin being proportional to the respective meridional density difference. We observe approximately the same constant of proportionality for all basins, and demonstrate that it can be directly related to the flow geometry. For increased wind stress in the Southern Ocean, the overturning increases both in the Atlantic and the Indo-Pacific basin. For strongly reduced wind stress, the circulation enters a regime where Atlantic overturning is maintained through Pacific upwelling, in order to satisfy the transports set by the density differences. Previous results on surface buoyancy and wind stress forcing, obtained with different models, are reproduced within one model in order to distill a consistent picture. We propose that both Southern Ocean upwelling and meridional density differences set up a system of conditions that determine the global meridional overturning circulation. (orig.)

  14. Circulation as Assessment: Collection Development Policies Evaluated in Terms of Circulation at a Small Academic Library.

    Science.gov (United States)

    Dinkins, Debbi

    2003-01-01

    Discusses the use of academic library circulation statistics to assess whether user needs are being met and describes a study at Stetson University that investigated collection development practices by comparing circulation statistics for books selected by faculty in support of departmental curricula with those of librarian selections. (Author/LRW)

  15. Monthly to seasonal low flow prediction: statistical versus dynamical models

    Science.gov (United States)

    Ionita-Scholz, Monica; Klein, Bastian; Meissner, Dennis; Rademacher, Silke

    2016-04-01

    While the societal and economical impacts of floods are well documented and assessable, the impacts of lows flows are less studied and sometimes overlooked. For example, over the western part of Europe, due to intense inland waterway transportation, the economical loses due to low flows are often similar compared to the ones due to floods. In general, the low flow aspect has the tendency to be underestimated by the scientific community. One of the best examples in this respect is the facts that at European level most of the countries have an (early) flood alert system, but in many cases no real information regarding the development, evolution and impacts of droughts. Low flows, occurring during dry periods, may result in several types of problems to society and economy: e.g. lack of water for drinking, irrigation, industrial use and power production, deterioration of water quality, inland waterway transport, agriculture, tourism, issuing and renewing waste disposal permits, and for assessing the impact of prolonged drought on aquatic ecosystems. As such, the ever-increasing demand on water resources calls for better a management, understanding and prediction of the water deficit situation and for more reliable and extended studies regarding the evolution of the low flow situations. In order to find an optimized monthly to seasonal forecast procedure for the German waterways, the Federal Institute of Hydrology (BfG) is exploring multiple approaches at the moment. On the one hand, based on the operational short- to medium-range forecasting chain, existing hydrological models are forced with two different hydro-meteorological inputs: (i) resampled historical meteorology generated by the Ensemble Streamflow Prediction approach and (ii) ensemble (re-) forecasts of ECMWF's global coupled ocean-atmosphere general circulation model, which have to be downscaled and bias corrected before feeding the hydrological models. As a second approach BfG evaluates in cooperation with

  16. Migration history of air-breathing fishes reveals Neogene atmospheric circulation patterns

    Science.gov (United States)

    Böhme, M.

    2004-05-01

    The migration history of an air-breathing fish group (Channidae; snakehead fishes) is used for reconstructing Neogene Eurasian precipitation and atmospheric circulation patterns. The study shows that snakeheads are sensitive indicators of summer precipitation maxima in subtropical and temperate regions, and are present regularly if the wettest month exceeds 150 mm precipitation and 20 °C mean temperature. The analysis of 515 fossil freshwater fish deposits of the past 50 m.y. from Africa and Eurasia shows two continental-scale migration events from the snakeheads' center of origin in the south Himalayan region, events that can be related to changes in the Northern Hemisphere circulation pattern. The first migration, ca. 17.5 Ma, into western and central Eurasia may have been caused by a northward shift of the Intertropical Convergence Zone that brought western Eurasia under the influence of trade winds that produced a zonal and meridional precipitation gradient in Europe. During the second migration, between 8 and 4 Ma, into Africa and East Asia, snakeheads reached their present-day distribution. This migration could have been related to the intensification of the Asian monsoon that brought summer precipitation to their migratory pathways in East Africa Arabia and East Asia.

  17. The Use of Convolutional Neural Network in Relating Precipitation to Circulation

    Science.gov (United States)

    Pan, B.; Hsu, K. L.; AghaKouchak, A.; Sorooshian, S.

    2017-12-01

    Precipitation prediction in dynamical weather and climate models depends on 1) the predictability of pressure or geopotential height for the forecasting period and 2) the successive work of interpreting the pressure field in terms of precipitation events. The later task is represented as parameterization schemes in numerical models, where detailed computing inevitably blurs the hidden cause-and-effect relationship in precipitation generation. The "big data" provided by numerical simulation, reanalysis and observation networks requires better causation analysis for people to digest and realize their use. While classic synoptical analysis methods are very-often insufficient for spatially distributed high dimensional data, a Convolutional Neural Network(CNN) is developed here to directly relate precipitation with circulation. Case study carried over west coast United States during boreal winter showed that CNN can locate and capture key pressure zones of different structures to project precipitation spatial distribution with high accuracy across hourly to monthly scales. This direct connection between atmospheric circulation and precipitation offers a probe for attributing precipitation to the coverage, location, intensity and spatial structure of characteristic pressure zones, which can be used for model diagnosis and improvement.

  18. Effective collateral circulation may indicate improved perfusion territory restoration after carotid endarterectomy.

    Science.gov (United States)

    Lin, Tianye; Lai, Zhichao; Lv, Yuelei; Qu, Jianxun; Zuo, Zhentao; You, Hui; Wu, Bing; Hou, Bo; Liu, Changwei; Feng, Feng

    2018-02-01

    To investigate the relationship between the level of collateral circulation and perfusion territory normalisation after carotid endarterectomy (CEA). This study enrolled 22 patients with severe carotid stenosis that underwent CEA and 54 volunteers without significant carotid stenosis. All patients were scanned with ASL and t-ASL within 1 month before and 1 week after CEA. Collateral circulation was assessed on preoperative ASL images based on the presence of ATA. The postoperative flow territories were considered as back to normal if they conformed to the perfusion territory map in a healthy population. Neuropsychological tests were performed on patients before and within 7 days after surgery. ATA-based collateral score assessed on preoperative ASL was significantly higher in the flow territory normalisation group (n=11, 50 %) after CEA (P mean differences+2SD among control (MMSE=1.35, MOCA=1.02)]. This study demonstrated that effective collateral flow in carotid stenosis patients was associated with normalisation of t-ASL perfusion territory after CEA. The perfusion territory normalisation group tends to have more cognitive improvement after CEA. • Evaluation of collaterals before CEA is helpful for avoiding ischaemia during clamping. • There was good agreement on ATA-based ASL collateral grading. • Perfusion territories in carotid stenosis patients are altered. • Patients have better collateral circulation with perfusion territory back to normal. • MMSE and MOCA test scores improved more in the territory normalisation group.

  19. How predictable is the northern hemisphere summer upper-tropospheric circulation?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, June-Yi; Wang, Bin [University of Hawaii/IPRC, International Pacific Research Center, Honolulu, HI (United States); Ding, Q. [University of Washington, Department of Earth and Space Sciences and Quaternary Research Center, Seattle, WA (United States); Ha, K.J.; Ahn, J.B. [Pusan National University, Division of Earth Environmental System, Busan (Korea, Republic of); Kumar, A. [NCEP/CPC, Camp Springs, MD (United States); Stern, B. [Princeton University, NOAA/GFDL, Princeton, NJ (United States); Alves, O. [Bureau of Meteorology, Centre for Australia Weather and Climate Research (CAWCR), Melbourne, VIC (Australia)

    2011-09-15

    The retrospective forecast skill of three coupled climate models (NCEP CFS, GFDL CM2.1, and CAWCR POAMA 1.5) and their multi-model ensemble (MME) is evaluated, focusing on the Northern Hemisphere (NH) summer upper-tropospheric circulation along with surface temperature and precipitation for the 25-year period of 1981-2005. The seasonal prediction skill for the NH 200-hPa geopotential height basically comes from the coupled models' ability in predicting the first two empirical orthogonal function (EOF) modes of interannual variability, because the models cannot replicate the residual higher modes. The first two leading EOF modes of the summer 200-hPa circulation account for about 84% (35.4%) of the total variability over the NH tropics (extratropics) and offer a hint of realizable potential predictability. The MME is able to predict both spatial and temporal characteristics of the first EOF mode (EOF1) even at a 5-month lead (January initial condition) with a pattern correlation coefficient (PCC) skill of 0.96 and a temporal correlation coefficient (TCC) skill of 0.62. This long-lead predictability of the EOF1 comes mainly from the prolonged impacts of El Nino-Southern Oscillation (ENSO) as the EOF1 tends to occur during the summer after the mature phase of ENSO. The second EOF mode (EOF2), on the other hand, is related to the developing ENSO and also the interdecadal variability of the sea surface temperature over the North Pacific and North Atlantic Ocean. The MME also captures the EOF2 at a 5-month lead with a PCC skill of 0.87 and a TCC skill of 0.67, but these skills are mainly obtained from the zonally symmetric component of the EOF2, not the prominent wavelike structure, the so-called circumglobal teleconnection (CGT) pattern. In both observation and the 1-month lead MME prediction, the first two leading modes are accompanied by significant rainfall and surface air temperature anomalies in the continental regions of the NH extratropics. The MME

  20. Circulating microRNAs in breast cancer

    DEFF Research Database (Denmark)

    Hamam, Rimi; Hamam, Dana; Alsaleh, Khalid A.

    2017-01-01

    Effective management of breast cancer depends on early diagnosis and proper monitoring of patients' response to therapy. However, these goals are difficult to achieve because of the lack of sensitive and specific biomarkers for early detection and for disease monitoring. Accumulating evidence...... in the past several years has highlighted the potential use of peripheral blood circulating nucleic acids such as DNA, mRNA and micro (mi)RNA in breast cancer diagnosis, prognosis and for monitoring response to anticancer therapy. Among these, circulating miRNA is increasingly recognized as a promising...... circulating miRNAs as diagnostic, prognostic or predictive biomarkers in breast cancer management....

  1. Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 2

    Science.gov (United States)

    Jones, Gregory S. (Editor); Joslin, Ronald D. (Editor)

    2005-01-01

    This conference proceeding is comprised of papers that were presented at the NASA/ONR Circulation Control Workshop held 16-17 March 2004 at the Radisson-Hampton in Hampton, VA. Over two full days, 30 papers and 4 posters were presented with 110 scientists and engineers in attendance, representing 3 countries. As technological advances influence the efficiency and effectiveness of aerodynamic and hydrodynamic applications, designs, and operations, this workshop was intended to address the technologies, systems, challenges and successes specific to Coanda driven circulation control in aerodynamics and hydrodynamics. A major goal of this workshop was to determine the state-of-the-art in circulation control and to assess the future directions and applications for circulation control. The 2004 workshop addressed applications, experiments, computations, and theories related to circulation control, emphasizing fundamental physics, systems analysis, and applied research. The workshop consisted of single session oral presentations, posters, and written papers that are documented in this unclassified conference proceeding. The format of this written proceeding follows the agenda of the workshop. Each paper is followed with the presentation given at the workshop. the editors compiled brief summaries for each effort that is at the end of this proceeding. These summaries include the paper, oral presentation, and questions or comments that occurred during the workshop. The 2004 Circulation Control Workshop focused on applications including Naval vehicles (Surface and Underwater vehicles), Fixed Wing Aviation (general aviation, commercial, cargo, and business aircraft); V/STOL platforms (helicopters, military aircraft, tilt rotors); propulsion systems (propellers, jet engines, gas turbines), and ground vehicles (automotive, trucks, and other); wind turbines, and other nontraditional applications (e.g., vacuum cleaner, ceiling fan). As part of the CFD focus area of the 2004 CC

  2. Maintenance of Minute Circulation Volume during Orthotopic Liver Transplantation

    Directory of Open Access Journals (Sweden)

    D. A. Levit

    2011-01-01

    Full Text Available Objective: to optimize procedures to maintain minute circulation volume at different stages of orthotopic liver transplantation. Subjects and methods. In the period 2005—2010, Sverdlovsk Regional Clinical Hospital One performed 32 orthotopic liver transplantations, including one retransplantation. The patients’ ASA class was (4—5. The operations were carried out under general anesthesia. The mean duration of surgery was 8.1 (range 5.8—10.5 hours. The investigators applied anesthesia based on iso-fluorane 0.6—0.9 MAC (by monitoring the anesthesia depth index with cerebral state index (CSI-40-60, as well as extended central hemodynamic monitoring (prepulmonary hemodilution. All the operations were made via portofemoroaxillary bypass, by using a centrifugal Biopump. Eight surgical stages were identified: 1 run-in (after tracheal intubation; 2 liver mobilization; 3 partial bypass; 4 complete bypass (hepatectomy, a liver-free period; 5 reperfusion; 6 a postreperfusion period (bypass end; 7 biliary repair; 8 the end of an operation. The concentrations of blood parameters, electrolytes, acid-base balance, and the levels of lactate and glucose were examined. The data were processed statistically. Central hemodynamics was monitored by prepulmonary thermodilution, by calculating cardiac index (CI, stroke index, and total peripheral vascular resistance index (TPVRI at the stages: liver mobilization, postreperfusion period (bypass end, and the end of surgery. Results. Even during partial bypass, there was a significant drop in mean blood pressure (MBP as compared to the baseline levels (p<0.05. Reperfusion was also accompanied by a significant decrease in MBP and an increase in heart rate. At the end of reperfusion and in the postreperfusion period, TPVRI was halved (689.2±68.0 as compared to the baseline levels. In the postreperfusion period, central venous and pulmonary artery pressures were significantly increased by 32 and 21%, respectively

  3. Circulating Histones Are Major Mediators of Cardiac Injury in Patients With Sepsis.

    Science.gov (United States)

    Alhamdi, Yasir; Abrams, Simon T; Cheng, Zhenxing; Jing, Shengjie; Su, Dunhao; Liu, Zhiyong; Lane, Steven; Welters, Ingeborg; Wang, Guozheng; Toh, Cheng-Hock

    2015-10-01

    To investigate the impact of circulating histones on cardiac injury and dysfunction in a murine model and patients with sepsis. Prospective, observational clinical study with in vivo and ex vivo translational laboratory investigations. General ICU and university research laboratory. Sixty-five septic patients and 27 healthy volunteers. Twelve-week-old male C57BL/6N mice. Serial blood samples from 65 patients with sepsis were analyzed, and left ventricular function was assessed by echocardiography. Patients' sera were incubated with cultured cardiomyocytes in the presence or absence of antihistone antibody, and cellular viability was assessed. Murine sepsis was initiated by intraperitoneal Escherichia coli injection (10(8) colony-forming unit/mouse) in 12-week-old male C57BL/6N mice, and the effect of antihistone antibody (10 mg/kg) was studied. Murine blood samples were collected serially, and left ventricular function was assessed by intraventricular catheters and electrocardiography. Circulating histones and cardiac troponins in human and murine plasma were quantified. In 65 patients with sepsis, circulating histones were significantly elevated compared with healthy controls (n = 27) and linearly correlated with cardiac troponin T levels (rs = 0.650; p histone levels were significantly associated with new-onset left ventricular dysfunction (p = 0.001) and arrhythmias (p = 0.01). Left ventricular dysfunction only predicted adverse outcomes when combined with elevated histones or cardiac troponin levels. Furthermore, patients' sera directly induced histone-specific cardiomyocyte death ex vivo, which was abrogated by antihistone antibodies. In vivo studies on septic mice confirmed the cause-effect relationship between circulating histones and the development of cardiac injury, arrhythmias, and left ventricular dysfunction. Circulating histones are novel and important mediators of septic cardiomyopathy, which can potentially be utilized for prognostic and therapeutic

  4. Electric power monthly, March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-20

    This report for March 1995, presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  5. Liquid Biopsy for Cancer: Circulating Tumor Cells, Circulating Free DNA or Exosomes?

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-02-01

    Full Text Available Precision medicine and personalized medicine are based on the development of biomarkers, and liquid biopsy has been reported to be able to detect biomarkers that carry information on tumor development and progression. Compared with traditional ‘solid biopsy’, which cannot always be performed to determine tumor dynamics, liquid biopsy has notable advantages in that it is a noninvasive modality that can provide diagnostic and prognostic information prior to treatment, during treatment and during progression. In this review, we describe the source, characteristics, technology for detection and current situation of circulating tumor cells, circulating free DNA and exosomes used for diagnosis, recurrence monitoring, prognosis assessment and medication planning.

  6. BIM-Enabled Conceptual Modelling and Representation of Building Circulation

    Directory of Open Access Journals (Sweden)

    Jin Kook Lee

    2014-08-01

    Full Text Available This paper describes how a building information modelling (BIM-based approach for building circulation enables us to change the process of building design in terms of its computational representation and processes, focusing on the conceptual modelling and representation of circulation within buildings. BIM has been designed for use by several BIM authoring tools, in particular with the widely known interoperable industry foundation classes (IFCs, which follow an object-oriented data modelling methodology. Advances in BIM authoring tools, using space objects and their relations defined in an IFC's schema, have made it possible to model, visualize and analyse circulation within buildings prior to their construction. Agent-based circulation has long been an interdisciplinary topic of research across several areas, including design computing, computer science, architectural morphology, human behaviour and environmental psychology. Such conventional approaches to building circulation are centred on navigational knowledge about built environments, and represent specific circulation paths and regulations. This paper, however, places emphasis on the use of ‘space objects’ in BIM-enabled design processes rather than on circulation agents, the latter of which are not defined in the IFCs' schemas. By introducing and reviewing some associated research and projects, this paper also surveys how such a circulation representation is applicable to the analysis of building circulation-related rules.

  7. Circulation of the polar thermosphere during geomagnetically quiet and active times as observed by Dynamics Explorer 2

    International Nuclear Information System (INIS)

    McCormac, F.G.; Killeen, T.L.; Thayer, J.P.; Hernandez, G.; Tschan, C.R.; Ponthieu, J.J.; Spencer, N.W.

    1987-01-01

    Neutral wind measurements obtained by instruments on board the Dynamics Explorer 2 (DE 2) spacecraft have been used to study the effects of geomagnetic activity on the circulation of the high-latitude neutral thermosphere for solar maximum conditions during the periods of November 1981 through January 1982 and November 1982 through January 1983. The data have been sorted and ordered according to the two geophysical indices Kp and (auroral electrojet) AE. Simple expressions have been derived which describe (1) the maximum antisunward wind speed in the geomagnetic polar cap, (2) the maximum sunward wind speeds in the dawn and dusk sectors of the auroral oval, and (3) the latitudinal extent of the polar cap antisunward neutral wind as functions of Kp and AE. The results show a positive correlation between the geomagnetic indices and the three characteristic features of the neutral circulation described above. Averaged vector wind fields in geomagnetic coordinates for Kp ≤ 2 and Kp ≥ 4 in both northern and southern hemispheres for the 6 months have been derived from the data. In doing this, a first-order invariance of the neutral wind circulation in geomagnetic coordinates as a function of universal time (UT) was assumed. The results show a two-cell circulation pattern in the northern winter hemisphere for both quiet and active geomagnetic periods. The cell sizes increase with increasing geomagnetic activity. The dusk cell is always dominant. The southern summer hemisphere averages show only the dusk circulation cell for both quiet and active geomagnetic periods. The cell sizes increase with increasing geomagnetic activity. The dusk cell is always dominant. The southern summer hemisphere averages show only the dusk circulation cell for both quiet and active geomagnetic periods. A diminution of this cell occurs for reduced levels of geomagnetic activity

  8. 19 CFR 207.63 - Circulation of draft questionnaires.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Circulation of draft questionnaires. 207.63... SUBSIDIZED EXPORTS TO THE UNITED STATES Five-Year Reviews § 207.63 Circulation of draft questionnaires. (a) The Director shall circulate draft questionnaires to the parties for comment in each full review. (b...

  9. Red Sea circulation during marine isotope stage 5e

    Science.gov (United States)

    Siccha, Michael; Biton, Eli; Gildor, Hezi

    2015-04-01

    We have employed a regional Massachusetts Institute of Technology oceanic general circulation model of the Red Sea to investigate its circulation during marine isotope stage (MIS) 5e, the peak of the last interglacial, approximately 125 ka before present. Compared to present-day conditions, MIS 5e was characterized by higher Northern Hemisphere summer insolation, accompanied by increases in air temperature of more than 2°C and global sea level approximately 8 m higher than today. As a consequence of the increased seasonality, intensified monsoonal conditions with increased winds, rainfall, and humidity in the Red Sea region are evident in speleothem records and supported by model simulations. To assess the dominant factors responsible for the observed changes, we conducted several sensitivity experiments in which the MIS 5 boundary conditions or forcing parameters were used individually. Overall, our model simulation for the last interglacial maximum reconstructs a Red Sea that is colder, less ventilated and probably more oligotrophic than at present day. The largest alteration in Red Sea circulation and properties was found for the simulation of the northward displacement and intensification of the African tropical rain belt during MIS 5e, leading to a notable increase in the fresh water flux into the Red Sea. Such an increase significantly reduced the Red Sea salinity and exchange volume of the Red Sea with the Gulf of Aden. The Red Sea reacted to the MIS 5e insolation forcing by the expected increase in seasonal sea surface temperature amplitude and overall cooling caused by lower temperatures during deep water formation in winter.

  10. Experimental study of natural circulation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (LASME/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Simulacao e Metodos Numericos; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (LTE/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2011-07-01

    This work presents an experimental study about fluid flows behavior in natural circulation, under conditions of single-phase flow. The experiment was performed through experimental thermal-hydraulic circuit built at IEN. This test equipment has performance similar to passive system of residual heat removal present in Advanced Pressurized Water Reactors (APWR). This experimental study aims to observing and analyzing the natural circulation phenomenon, using this experimental circuit that was dimensioned and built based on concepts of similarity and scale. This philosophy allows the analysis of natural circulation behavior in single-phase flow conditions proportionally to the functioning real conditions of a nuclear reactor. The experiment was performed through procedures to initialization of hydraulic feeding of primary and secondary circuits and electrical energizing of resistors installed inside heater. Power controller has availability to adjust values of electrical power to feeding resistors, in order to portray several conditions of energy decay of nuclear reactor in a steady state. Data acquisition system allows the measurement and monitoring of the evolution of the temperature in various points through thermocouples installed in strategic points along hydraulic circuit. The behavior of the natural circulation phenomenon was monitored by graphical interface on computer screen, showing the temperature evolutions of measuring points and results stored in digital spreadsheets. The results stored in digital spreadsheets allowed the getting of data to graphic construction and discussion about natural circulation phenomenon. Finally, the calculus of Reynolds number allowed the establishment for a correlation of friction in function of geometric scales of length, heights and cross section of tubing, considering a natural circulation flow throughout in the region of hot leg. (author)

  11. Experimental study of natural circulation circuit

    International Nuclear Information System (INIS)

    Lemos, Wanderley F.; Su, Jian; Faccini, Jose L.H.

    2011-01-01

    This work presents an experimental study about fluid flows behavior in natural circulation, under conditions of single-phase flow. The experiment was performed through experimental thermal-hydraulic circuit built at IEN. This test equipment has performance similar to passive system of residual heat removal present in Advanced Pressurized Water Reactors (APWR). This experimental study aims to observing and analyzing the natural circulation phenomenon, using this experimental circuit that was dimensioned and built based on concepts of similarity and scale. This philosophy allows the analysis of natural circulation behavior in single-phase flow conditions proportionally to the functioning real conditions of a nuclear reactor. The experiment was performed through procedures to initialization of hydraulic feeding of primary and secondary circuits and electrical energizing of resistors installed inside heater. Power controller has availability to adjust values of electrical power to feeding resistors, in order to portray several conditions of energy decay of nuclear reactor in a steady state. Data acquisition system allows the measurement and monitoring of the evolution of the temperature in various points through thermocouples installed in strategic points along hydraulic circuit. The behavior of the natural circulation phenomenon was monitored by graphical interface on computer screen, showing the temperature evolutions of measuring points and results stored in digital spreadsheets. The results stored in digital spreadsheets allowed the getting of data to graphic construction and discussion about natural circulation phenomenon. Finally, the calculus of Reynolds number allowed the establishment for a correlation of friction in function of geometric scales of length, heights and cross section of tubing, considering a natural circulation flow throughout in the region of hot leg. (author)

  12. Fort St. Vrain circulator operating experience

    International Nuclear Information System (INIS)

    Brey, H.L.

    1988-01-01

    Fort St. Vrain, on the system of Public Service Company of Colorado, is the only high-temperature gas-cooled power reactor in the United States. Four helium circulators are utilized in this plant to transfer heat from the reactor to the steam generators. These unique machines have a single stage axial flow helium compressor driven by a single stage steam turbine. A single stage water driven (pelton wheel) turbine is the back-up drive utilizing either feed water, condensate, or fire water as the driving fluid. Developmental testing of the circulators was accomplished prior to installation into Fort St. Vrain. A combined machine operating history of approximately 250,000 hours has shown these machines to be of conservative design and proven mechanical integrity. However, many problems have been encountered in operating the complex auxiliaries which are necessary for successful circulator and plant operation. It has been 15 years since initial installation of the circulators occurred at Fort St. Vrain. During this time, a number of significant issues had to be resolved dealing specifically with machine performance. These events include cavitation damage of the pelton wheels during the initial plant hot functional testing, cracks in the water turbine buckets and cervic coupling, static shutdown seal bellows failure, and, most recently, degradation of components within the steam drive assembly. Unreliable operation particularly with the circulator auxiliaries has been a focus of attention by Public Service Company of Colorado. Actions to replace or significantly modify the existing circulators and their auxiliaries are currently awaiting decisions concerning the long-term future of the Fort St. Vrain plant. (author). 10 refs, 7 figs, 2 tabs

  13. Fort St. Vrain circulator operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Brey, H. L.

    1988-08-15

    Fort St. Vrain, on the system of Public Service Company of Colorado, is the only high-temperature gas-cooled power reactor in the United States. Four helium circulators are utilized in this plant to transfer heat from the reactor to the steam generators. These unique machines have a single stage axial flow helium compressor driven by a single stage steam turbine. A single stage water driven (pelton wheel) turbine is the back-up drive utilizing either feed water, condensate, or fire water as the driving fluid. Developmental testing of the circulators was accomplished prior to installation into Fort St. Vrain. A combined machine operating history of approximately 250,000 hours has shown these machines to be of conservative design and proven mechanical integrity. However, many problems have been encountered in operating the complex auxiliaries which are necessary for successful circulator and plant operation. It has been 15 years since initial installation of the circulators occurred at Fort St. Vrain. During this time, a number of significant issues had to be resolved dealing specifically with machine performance. These events include cavitation damage of the pelton wheels during the initial plant hot functional testing, cracks in the water turbine buckets and cervic coupling, static shutdown seal bellows failure, and, most recently, degradation of components within the steam drive assembly. Unreliable operation particularly with the circulator auxiliaries has been a focus of attention by Public Service Company of Colorado. Actions to replace or significantly modify the existing circulators and their auxiliaries are currently awaiting decisions concerning the long-term future of the Fort St. Vrain plant. (author). 10 refs, 7 figs, 2 tabs.

  14. Power limit and quality limit of natural circulation reactor

    International Nuclear Information System (INIS)

    Zhao Guochang; Ma Changwen

    1997-01-01

    The circulation characteristics of natural circulation reactor in boiling regime are researched. It is found that, the circulation mass flow rate and the power have a peak value at a mass quality respectively. Therefore, the natural circulation reactor has a power limit under certain technological condition. It can not be increased steadily by continually increasing the mass quality. Corresponding to this, the mass quality of natural circulation reactor has a reasonable limit. The relations between the maximum power and the reactor parameters, such as the resistance coefficient, the working pressure and so on, are analyzed. It is pointed out that the power limit of natural circulation reactor is about 1000 MW at present technological condition. Taking the above result and low quality stability experimental result into account, the authors recommend that the reasonable mass quality of natural circulation reactor working in boiling regime is from 2% to 3% under the researched working pressure

  15. Multi-stage circulating fluidized bed syngas cooling

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang

    2016-10-11

    A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.

  16. SCDAP/RELAP5 applications to RCS natural circulation

    International Nuclear Information System (INIS)

    Bayless, P.D.

    1988-01-01

    The effects of natural circulation flows in the reactor coolant system during a TMLB' sequence were investigated. Both in-vessel circulation and hot leg countercurrent flow were modeled in the Surry nuclear power plant using the SCDAP/RELAP5 computer code. The transient was analyzed until after fuel rod relocation had begun. The delays in the onset of relocation resulting from the natural circulation flows were not significant compared to SCDAP/RELAP5 calculations without natural circulation modeled, but were large compared to the analyses presented in NUREG-1150. The most significant aspect of the natural circulations flows was the heating of ex-vessel structures. Surge line failure is likely to occur before the vessel is breached by the molten core, while steam generator tube failure is not expected

  17. Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation

    Science.gov (United States)

    Vuille, M.

    1999-11-01

    The atmospheric circulation over the Bolivian Altiplano during composite WET and DRY periods and during HIGH and LOW index phases of the Southern Oscillation was investigated using daily radiosonde data from Antofagasta (Chile), Salta (Argentina), Lima (Peru) and La Paz (Bolivia), daily precipitation data from the Bolivian/Chilean border between 18° and 19°S and monthly NCEP (National Centers for Environmental Prediction) reanalysis data between 1960 and 1998. In austral summer (DJF) the atmosphere during WET periods is characterized by easterly wind anomalies in the middle and upper troposphere over the Altiplano, resulting in increased moisture influx from the interior of the continent near the Altiplano surface. The Bolivian High is intensified and displaced southward. On the other hand, westerly winds usually prevail during DRY summer periods, preventing the moisture transport from the east from reaching the western Altiplano. Precipitation tends to be deficient over the western Bolivian Altiplano during LOW index summers and above average during HIGH and LOW+1 summers, but the relation is weak and statistically insignificant. LOW summers feature broadly similar atmospheric circulation anomalies as DRY periods and can be regarded as an extended DRY period or as a summer with increased occurrence of DRY episodes. HIGH summers, and to a lesser degree LOW+1 summers, are characterized by broadly opposite atmospheric characteristics, featuring a more pronounced Bolivian High located significantly further south, and easterly wind anomalies over the Altiplano. In winter (JJA) precipitation events are rare; these are associated with increased northerly and westerly wind components, reduced pressure and temperature, and increased specific humidity over the entire Altiplano. Atmospheric circulation anomalies during LOW periods are less pronounced in austral winter (JJA) than in summer, but generally feature similar changes (increased temperatures and a vertically

  18. Canine parvovirus (CPV-2) variants circulating in Nigerian dogs

    Science.gov (United States)

    Apaa, T. T.; Daly, J. M.; Tarlinton, R. E.

    2016-01-01

    Canine parvovirus type 2 (CPV-2) is a highly contagious viral disease with three variants (CPV-2a, CPV-2b and CPV-2c) currently circulating in dogs worldwide. The main aim of this study was to determine the prevalent CPV-2 variant in faecal samples from 53 dogs presenting with acute gastroenteritis suspected to be and consistent with CPV-2 to Nigerian Veterinary Clinics in 2013–2014. Seventy-five per cent of these dogs tested positive for CPV-2 in a commercial antigen test and/or by PCR. Partial sequencing of the VP2 gene of six of these demonstrated them to be CPV-2a. Most of the dogs (60 per cent) were vaccinated, with 74 per cent of them puppies less than six months old. PMID:27933190

  19. Circulating 25-Hydroxyvitamin D and Risk of Epithelial Ovarian Cancer

    Science.gov (United States)

    Zheng, Wei; Danforth, Kim N.; Tworoger, Shelley S.; Goodman, Marc T.; Arslan, Alan A.; Patel, Alpa V.; McCullough, Marjorie L.; Weinstein, Stephanie J.; Kolonel, Laurence N.; Purdue, Mark P.; Shu, Xiao-Ou; Snyder, Kirk; Steplowski, Emily; Visvanathan, Kala; Yu, Kai; Zeleniuch-Jacquotte, Anne; Gao, Yu-Tang; Hankinson, Susan E.; Harvey, Chinonye; Hayes, Richard B.; Henderson, Brian E.; Horst, Ronald L.; Helzlsouer, Kathy J.

    2010-01-01

    A role for vitamin D in ovarian cancer etiology is supported by ecologic studies of sunlight exposure, experimental mechanism studies, and some studies of dietary vitamin D intake and genetic polymorphisms in the vitamin D receptor. However, few studies have examined the association of circulating 25-hydroxyvitamin D (25(OH)D), an integrated measure of vitamin D status, with ovarian cancer risk. A nested case-control study was conducted among 7 prospective studies to evaluate the circulating 25(OH)D concentration in relation to epithelial ovarian cancer risk. Logistic regression models were used to estimate odds ratios and 95% confidence intervals among 516 cases and 770 matched controls. Compared with 25(OH)D concentrations of 50–<75 nmol/L, no statistically significant associations were observed for <37.5 (odds ratio (OR) = 1.21, 95% confidence interval (CI): 0.87, 1.70), 37.5–<50 (OR = 1.03, 95% CI: 0.75, 1.41), or ≥75 (OR = 1.11, 95% CI: 0.79, 1.55) nmol/L. Analyses stratified by tumor subtype, age, body mass index, and other variables were generally null but suggested an inverse association between 25(OH)D and ovarian cancer risk among women with a body mass index of ≥25 kg/m2 (Pinteraction < 0.01). In conclusion, this large pooled analysis did not support an overall association between circulating 25(OH)D and ovarian cancer risk, except possibly among overweight women. PMID:20562186

  20. Context-dependent social evaluation in 4.5-month-old human infants: the role of domain-general versus domain-specific processes in the development of social evaluation.

    Science.gov (United States)

    Hamlin, J K

    2014-01-01

    The ability to distinguish friends from foes allows humans to engage in mutually beneficial cooperative acts while avoiding the costs associated with cooperating with the wrong individuals. One way to do so effectively is to observe how unknown individuals behave toward third parties, and to selectively cooperate with those who help others while avoiding those who harm others. Recent research suggests that a preference for prosocial over antisocial individuals emerges by the time that infants are 3 months of age, and by 8 months, but not before, infants evaluate others' actions in context: they prefer those who harm, rather than help, individuals who have previously harmed others. Currently there are at least two reasons for younger infants' failure to show context-dependent social evaluations. First, this failure may reflect fundamental change in infants' social evaluation system over the first year of life, in which infants first prefer helpers in any situation and only later evaluate prosocial and antisocial actors in context. On the other hand, it is possible that this developmental change actually reflects domain-general limitations of younger infants, such as limited memory and processing capacities. To distinguish between these possibilities, 4.5-month-olds in the current studies were habituated, rather than familiarized as in previous work, to one individual helping and another harming a third party, greatly increasing infants' exposure to the characters' actions. Following habituation, 4.5-month-olds displayed context-dependent social preferences, selectively reaching for helpers of prosocial and hinderers of antisocial others. Such results suggest that younger infants' failure to display global social evaluation in previous work reflected domain-general rather than domain-specific limitations.

  1. Context-dependent social evaluation in 4.5-month-old human infants: The role of domain-general versus domain-specific processes in the development of social evaluation

    Directory of Open Access Journals (Sweden)

    J Kiley eHamlin

    2014-06-01

    Full Text Available The ability to distinguish friends from foes allows humans to engage in mutually beneficial cooperative acts while avoiding the costs associated with cooperating with the wrong individuals. One way to do so effectively is to observe how unknown individuals behave toward third parties, and to selectively cooperate with those who help others while avoiding those who harm others. Recent research suggests that a preference for prosocial over antisocial individuals emerges by the time that infants are 3 months of age, and by 8 months, but not before, infants evaluate others’ actions in context: they prefer those who harm, rather than help, individuals who have previously harmed others. Currently there are at least two reasons for younger infants’ failure to show context-dependent social evaluations. First, this failure may reflect fundamental change in infants’ social evaluation system over the first year of life, in which infants first prefer helpers in any situation and only later evaluate prosocial and antisocial actors in context. On the other hand, it is possible that this developmental change actually reflects domain-general limitations of younger infants, such as limited memory and processing capacities. To distinguish between these possibilities, 4.5-month-olds in the current studies were habituated, rather than familiarized as in previous work, to one individual helping and another harming a third party, greatly increasing infants’ exposure to the characters’ actions. Following habituation, 4.5-month-olds displayed context-dependent social preferences, selectively reaching for helpers of prosocial and hinderers of antisocial others. Such results suggest that younger infants’ failure to display global social evaluation in previous work reflected domain-general rather than domain-specific limitations.

  2. Circulating glucagon to ghrelin ratio as a determinant of insulin resistance in hyperthyroidism.

    Science.gov (United States)

    Ağbaht, Kemal; Erdogan, Murat Faik; Emral, Rifat; Baskal, Nilgun; Güllü, Sevim

    2014-02-01

    Due to stimulated overall metabolism, a state of nutritional inadequacy often ensues, during thyrotoxicosis. We aimed to investigate circulating levels of some major components of the system that regulates energy stores, glucose, and fat metabolism, during thyrotoxicosis compared to euthyroidism. Fasting serum ghrelin, leptin, adiponectin, insulin, glucagon, glucose, as well as body fat composition were analyzed during thyrotoxicosis in 40 hyperthyroid patients (50.5 ± 15.2 years old, 22 females, 31 with Graves disease, and 9 with toxic nodular goiter). The same measurements were repeated an average 3 months later, when all patients achieved euthyroidism. Compared to euthyroidism, in thyrotoxicosis, patients had lower ghrelin and fat mass; had comparable insulin, HOMA-IR, glucagon, and leptin levels; higher levels of circulating adiponectin. Fasting serum glucose tended to be higher during thyrotoxicosis. The unique correlation of HOMA-IR was with the-glucagon to ghrelin ratio-(r = 0.801, p hyperthyroidism. The fasting HOMA-IR tends to be higher, despite the decreased adiposity in hyperthyroidism. The-glucagon to ghrelin ratio-strongly correlates with fasting HOMA-IR in hyperthyroidism.

  3. Plurilingual reading practices in a global context: Circulation of books and linguistic inequalities

    Directory of Open Access Journals (Sweden)

    Marie Rivière

    2017-06-01

    Full Text Available Media consumption is commonly seen as a major way of appropriating languages and cultures. Availability and accessibility of material are essential conditions for developing plurilingual cultural practices. Transnational circulation of cultural goods has reached a particular intensity in today’s world but is still marked by deep language inequalities. Combining sociolinguistic, language education, cultural sociology, and multiliteracy approaches, this study examines how plurilingual readers access books in their different languages. This qualitative analysis is based on 24 in-depth interviews with both migrant and non-migrant adults living in Western Europe. The findings indicate that printed and digital books in dominant languages circulate more easily, and through more visible and formal channels than books in dominated languages. In addition, the local and online book supply in dominant languages is generally cheaper and more varied, thus being more attractive. However, a wider range of means of access to books, and the active participation of the readers themselves in the circulation of cultural goods enable book-reading practices in less disseminated languages. Pedagogical recommendations for language teachers to encourage autonomous cultural practices among learners according to global evolutions and local specificities are provided.

  4. Trends and variation in monthly rainfall and temperature in Suriname

    International Nuclear Information System (INIS)

    Raid, Nurmohamed

    2004-01-01

    As Surinam lies within the equatorial trough zone, climate is mainly influenced by the movement and intensity of the Inter-tropical Convergence Zone and the El Nino Southern Oscillation. Scientist predict that global climate change will directly effect the hydrological cycle such as rainfall and temperature, and extreme events such as a El Nino and La Nina. The aim of this study is to analyze historical changes in monthly rainfall and temperature and to predict future changes, with respect to climate change (doubling of carbon dioxide (CO 2 ) by 2100) and variability. Linear extrapolation and five Global Circulations Models (GCMS) (HadCM2, ECHAM4, GFDL-TR, CSIRO2-EQ, CCSR-NIES) will be used. Results of GCMs have showed that under global climate change by 2100, the monthly rainfall is predicted to change with -82 to 66 mm during January and August, and -36 to 47 mm during September and November. The monthly temperature is predicted to increase with 1.3 to 4.3 C by 2100. El Nino events have showed that along the coastal zone and in the center of Surinam, most months (>50%) during the year are drier than normal (88 to 316 mm), while in the west part of Surinam, most months (>50%) are wetter than normal (110 to 220 mm). La Nina events have showed that over entire Surinam, most of the months are wetter than normal (19 to 122 mm), with respect to the minimum rainfall. It can be concluded that the changes in rainfall due to El Nino and La Nina events may have significant impacts on the design, planning and management of water resources systems in Surinam and should therefore be incorporated in future water resources planning. (Author)

  5. Effect of general anaesthesia on functional outcome in patients with anterior circulation ischaemic stroke having endovascular thrombectomy versus standard care: a meta-analysis of individual patient data.

    Science.gov (United States)

    Campbell, Bruce C V; van Zwam, Wim H; Goyal, Mayank; Menon, Bijoy K; Dippel, Diederik W J; Demchuk, Andrew M; Bracard, Serge; White, Philip; Dávalos, Antoni; Majoie, Charles B L M; van der Lugt, Aad; Ford, Gary A; de la Ossa, Natalia Pérez; Kelly, Michael; Bourcier, Romain; Donnan, Geoffrey A; Roos, Yvo B W E M; Bang, Oh Young; Nogueira, Raul G; Devlin, Thomas G; van den Berg, Lucie A; Clarençon, Frédéric; Burns, Paul; Carpenter, Jeffrey; Berkhemer, Olvert A; Yavagal, Dileep R; Pereira, Vitor Mendes; Ducrocq, Xavier; Dixit, Anand; Quesada, Helena; Epstein, Jonathan; Davis, Stephen M; Jansen, Olav; Rubiera, Marta; Urra, Xabier; Micard, Emilien; Lingsma, Hester F; Naggara, Olivier; Brown, Scott; Guillemin, Francis; Muir, Keith W; van Oostenbrugge, Robert J; Saver, Jeffrey L; Jovin, Tudor G; Hill, Michael D; Mitchell, Peter J

    2018-01-01

    General anaesthesia (GA) during endovascular thrombectomy has been associated with worse patient outcomes in observational studies compared with patients treated without GA. We assessed functional outcome in ischaemic stroke patients with large vessel anterior circulation occlusion undergoing endovascular thrombectomy under GA, versus thrombectomy not under GA (with or without sedation) versus standard care (ie, no thrombectomy), stratified by the use of GA versus standard care. For this meta-analysis, patient-level data were pooled from all patients included in randomised trials in PuMed published between Jan 1, 2010, and May 31, 2017, that compared endovascular thrombectomy predominantly done with stent retrievers with standard care in anterior circulation ischaemic stroke patients (HERMES Collaboration). The primary outcome was functional outcome assessed by ordinal analysis of the modified Rankin scale (mRS) at 90 days in the GA and non-GA subgroups of patients treated with endovascular therapy versus those patients treated with standard care, adjusted for baseline prognostic variables. To account for between-trial variance we used mixed-effects modelling with a random effect for trials incorporated in all models. Bias was assessed using the Cochrane method. The meta-analysis was prospectively designed, but not registered. Seven trials were identified by our search; of 1764 patients included in these trials, 871 were allocated to endovascular thrombectomy and 893 were assigned standard care. After exclusion of 74 patients (72 did not undergo the procedure and two had missing data on anaesthetic strategy), 236 (30%) of 797 patients who had endovascular procedures were treated under GA. At baseline, patients receiving GA were younger and had a shorter delay between stroke onset and randomisation but they had similar pre-treatment clinical severity compared with patients who did not have GA. Endovascular thrombectomy improved functional outcome at 3 months both in

  6. The use of circulation weather types to predict upwelling activity along the Western Iberian Peninsula coast

    Science.gov (United States)

    Ramos, Alexandre M.; Cordeiro Pires, Ana; Sousa, Pedro M.; Trigo, Ricardo M.

    2013-04-01

    Coastal upwelling is a phenomenon that occurs in most western oceanic coasts due to the presence of mid-latitude high-pressure systems that generate equatorward winds along the coast and consequent offshore displacement of surface waters that in turn cause deeper, colder, nutrient-rich waters to arise. In western Iberian Peninsula (IP) the high-pressure system associated to northerly winds occurs mainly during spring and summer. Upwelling systems are economically relevant, being the most productive regions of the world ocean and crucial for fisheries. In this work, we evaluate the intra- and inter-annual variability of the Upwelling Index (UI) off the western coast of the IP considering four locations at various latitudes: Rias Baixas, Aveiro, Figueira da Foz and Cabo da Roca. In addition, the relationship between the variability of the occurrence of several circulation weather types (Ramos et al., 2011) and the UI variability along this coast was assessed in detail, allowing to discriminate which types are frequently associated with strong and weak upwelling activity. It is shown that upwelling activity is mostly driven by wind flow from the northern quadrant, for which the obtained correlation coefficients (for the N and NE types) are higher than 0.5 for the four considered test locations. Taking into account these significant relationships, we then developed statistical multi-linear regression models to hindcast upwelling series (April to September) at the four referred locations, using monthly frequencies of circulation weather types as predictors. Modelled monthly series reproduce quite accurately observational data, with correlation coefficients above 0.7 for all locations, and relatively small absolute errors. Ramos AM, Ramos R, Sousa P, Trigo RM, Janeira M, Prior V (2011) Cloud to ground lightning activity over Portugal and its association with Circulation Weather Types. Atmospheric Research 101:84-101. doi: 10.1016/j.atmosres.2011.01

  7. Moderator circulation in CANDU reactors

    International Nuclear Information System (INIS)

    Fath, H.E.S.; Hussein, M.A.

    1989-01-01

    A two-dimensional computer code that is capable of predicting the moderator flow and temperature distribution inside CANDU calandria is presented. The code uses a new approach to simulate the calandria tube matrix by blocking the cells containing the tubes in the finite difference mesh. A jet momentum-dominant flow pattern is predicted in the nonisothermal case, and the effect of the buoyancy force, resulting from nuclear heating, is found to enhance the speed of circulation. Hot spots are located in low-velocity areas at the top of the calandria and below the inlet jet level between the fuel channels. A parametric study is carried out to investigate the effect of moderator inlet velocity,moderator inlet nozzle location, and geometric scaling. The results indicate that decreasing the moderator inlet velocity has no significant influence on the general features of the flow pattern (i.e., momentum dominant); however, too many high-temperature hot spots appear within the fuel channels

  8. The development and study on passive natural circulation

    International Nuclear Information System (INIS)

    Zhou Tao; Li Jingjing; Ju Zhongyun; Huang Yanping; Xiao Zejun

    2013-01-01

    Passive natural circulation is getting more and more important in the field of nuclear power engineering. This article cited a passive natural circulation in the nuclear power system application, analyzed the potential problems during operation, described current mathematical research methods of the reliability of passive natural cycle analysis, briefly summarized the advantages and disadvantages of these methods, and finally got an outlook of the direction of passive natural circulation. Since the presence of passive natural circulation may get failure, sufficient attention and active research should be paid in response to the physical process failure of the running passive natural circulation system and its reliability. To ensure system security during the operation, the operation process should combine active with non-dynamic; while selecting an accurate model, perfect passive reliability analysis methods to achieve accurate theoretical calculations and experimental verification. (authors)

  9. Adequacy of power-to-volume scaling philosophy to simulate natural circulation in Integral Test Facilities

    International Nuclear Information System (INIS)

    Nayak, A.K.; Vijayan, P.K.; Saha, D.; Venkat Raj, V.; Aritomi, Masanori

    1998-01-01

    Theoretical and experimental investigations were carried out to study the adequacy of power-to-volume scaling philosophy for the simulation of natural circulation and to establish the scaling philosophy applicable for the design of the Integral Test Facility (ITF-AHWR) for the Indian Advanced Heavy Water Reactor (AHWR). The results indicate that a reduction in the flow channel diameter of the scaled facility as required by the power-to-volume scaling philosophy may affect the simulation of natural circulation behaviour of the prototype plants. This is caused by the distortions due to the inability to simulate the frictional resistance of the scaled facility. Hence, it is recommended that the flow channel diameter of the scaled facility should be as close as possible to the prototype. This was verified by comparing the natural circulation behaviour of a prototype 220 MWe Indian PHWR and its scaled facility (FISBE-1) designed based on power-to-volume scaling philosophy. It is suggested from examinations using a mathematical model and a computer code that the FISBE-1 simulates the steady state and the general trend of transient natural circulation behaviour of the prototype reactor adequately. Finally the proposed scaling method was applied for the design of the ITF-AHWR. (author)

  10. Natural circulation under severe accident conditions

    International Nuclear Information System (INIS)

    Pafford, D.J.; Hanson, D.J.; Tung, V.X.; Chmielewski, S.V.

    1992-01-01

    Research is being conducted to better understand natural circulation phenomena in mixtures of steam and noncondensibles and its influence on the temperature of the vessel internals and the hot leg, pressurizer surge line, and steam generator tubes. The temperature of these structures is important because their failure prior to reactor vessel lower head failure could reduce the likelihood of containment failure as a result of direct containment heating. Computer code calculations (MELPROG, SCDAP/RELAP5/MOD3) predict high fluid temperatures in the upper plenum resulting from in-vessel natural circulation. Using a simple model for the guide tube phenomena, high upper plenum temperatures are shown to be consistent with the relatively low temperatures that were deduced metallurgically from leadscrews removed from the TMI-2 upper plenum. Evaluation of the capabilities of the RELAP5/MOD3 computer code to predict natural circulation behavior was also performed. The code was used to model the Westinghouse natural circulation experimental facility. Comparisons between code calculations and results from experiments show good agreement

  11. Molecular characterization of circulating plasma cells in patients with active systemic lupus erythematosus.

    Directory of Open Access Journals (Sweden)

    Patricia L Lugar

    Full Text Available Systemic lupus erythematosus (SLE is a generalized autoimmune disease characterized by abnormal B cell activation and the occurrence of increased frequencies of circulating plasma cells (PC. The molecular characteristics and nature of circulating PC and B cells in SLE have not been completely characterized. Microarray analysis of gene expression was used to characterize circulating PC in subjects with active SLE. Flow cytometry was used to sort PC and comparator B cell populations from active SLE blood, normal blood and normal tonsil. The gene expression profiles of the sorted B cell populations were then compared. SLE PC exhibited a similar gene expression signature as tonsil PC. The differences in gene expression between SLE PC and normal tonsil PC and tonsil plasmablasts (PB suggest a mature Ig secreting cell phenotype in the former population. Despite this, SLE PC differed in expression of about half the genes from previously published gene expression profiles of normal bone marrow PC, indicating that these cells had not achieved a fully mature status. Abnormal expression of several genes, including CXCR4 and S1P(1, suggests a mechanism for the persistence of SLE PC in the circulation. All SLE B cell populations revealed an interferon (IFN gene signature previously only reported in unseparated SLE peripheral blood mononuclear cells. These data indicate that SLE PC are a unique population of Ig secreting cells with a gene expression profile indicative of a mature, but not fully differentiated phenotype.

  12. High-power circulator test results at 350 and 700 MHz

    International Nuclear Information System (INIS)

    Roybal, W.; Bradley, J.T.; Rees, D.E.

    2000-01-01

    The high-power RF systems for the Accelerator Production of Tritium (APT) program require high-power circulators at 350 MHz and 700 MHz to protect 1 MW Continuous Wave (CW) klystrons from reflected power. The 350 MHz circulator is based on the CERN, EXF, and APS designs and has performed very well. The 700 MHz circulator is a new design. Prototype 700 MHz circulators have been high-power tested at Los Alamos National Laboratory (LANL). The first of these circulators has satisfied performance requirements. The circulator requirements, results from the testing, and lessons learned from this development are presented and discussed

  13. Circulating 25-hydroxyvitamin D3 in pregnancy and infant neuropsychological development.

    Science.gov (United States)

    Morales, Eva; Guxens, Mònica; Llop, Sabrina; Rodríguez-Bernal, Clara L; Tardón, Adonina; Riaño, Isolina; Ibarluzea, Jesús; Lertxundi, Nerea; Espada, Mercedes; Rodriguez, Agueda; Sunyer, Jordi

    2012-10-01

    To investigate whether circulating 25-hydroxyvitamin D(3) [25(OH)D(3)] concentration in pregnancy is associated with neuropsychological development in infants. The Spanish population-based cohort study INfancia y Medio Ambiente Project recruited pregnant women during the first trimester of pregnancy between November 2003 and February 2008. Completed data on 1820 mother-infant pairs were used. Maternal plasma 25(OH)D(3) concentration was measured by high-performance liquid chromatography in pregnancy (mean 13.5 ± 2.1 weeks of gestation). Offspring mental and psychomotor scores were assessed by trained psychologists at age 14 months (range, 11-23) by using the Bayley Scales of Infant Development. β-Coefficients with 95% confidence intervals (CIs) of mental and psychomotor scores associated with continuous or categorical concentrations of maternal plasma 25(OH)D(3) were calculated by using linear regression analysis. The median plasma value of 25(OH)D(3) in pregnancy was 29.6 ng/mL (interquartile range, 21.8-37.3). A positive linear relationship was found between circulating concentrations of maternal 25(OH)D(3) concentrations in pregnancy and mental and psychomotor scores in the offspring. After adjustment for potential confounders, infants of mothers with 25(OH)D(3) concentrations in pregnancy >30 ng/mL showed higher mental score (β = 2.60; 95% CI 0.63-4.56) and higher psychomotor score (β = 2.32; 95% CI 0.36-4.28) in comparison with those of mothers with 25(OH)D(3) concentrations <20 ng/mL. Higher circulating concentration of maternal 25(OH)D(3) in pregnancy was associated with improved mental and psychomotor development in infants.

  14. Characteristic of onset of nucleate boiling in natural circulation

    International Nuclear Information System (INIS)

    Zhou Tao; Yang Ruichang; Liu Ruolei

    2006-01-01

    Two kinds of thermodynamics quality at onset of nucleate boiling with sub-cooled boiling were calculated for force circulation by using Bergles and Rohesenow method or Davis and Anderson method, and natural circulation by using Tsinghua University project group's empirical equations suggested in our natural circulation experiment at same condition. The characteristic of onset of nucleate boiling with subcooled boiling in natural circulation were pointed out. The research result indicates that the thermodynamics quality at onset of nucleate boiling with subcooled boiling in natural circulation is more sensitive for heat and inlet temperature and system pressure. Producing of onset of nucleate boiling with subcooled boiling is early at same condition. The research result also indicates more from microcosmic angle of statistical physics that the phenomena are caused by the effects of characteristic of dissipative structure of natural circulation in self organization, fluctuation force and momentum force of dynamics on thermodynamics equilibrium. these can lay good basis for study and application on sub-cooled boiling in natural circulation in future. (authors)

  15. A local-circulation model for Darrieus vertical-axis wind turbines

    Science.gov (United States)

    Masse, B.

    1986-04-01

    A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.

  16. Analysis and research on natural circulation capacity of HFETR

    International Nuclear Information System (INIS)

    Xu Taozhong; Duan Tianyuan

    2010-01-01

    For the operating characteristics of HFETR, the numerical model of HFETR was established by RELAP5/MOD3 to analysis the maximal natural circulation capacity. Combining with the reactor running condition, the influence of the system pressure was analyzed by ascending power in step method and the pool water temperature on natural circulation characteristics was analyzed by integral power method. The results show that the natural circulation capacity are 0.9 and 2.0 MW separately under low pressure and high pressure, the natural circulation capacity increases as the running pressure increases, however the natural circulation capacity decreases as the coolant temperature increases in the pressure vessel. Based on the computational result and the theoretical deduction, a correlation was proposed to predicate the relationship between the natural circulation mass flow and the core power under different coolant temperatures. (authors)

  17. Circulating interleukin-6 and high-sensitivity C-reactive protein decrease after periodontal therapy in otherwise healthy subjects.

    Science.gov (United States)

    Marcaccini, Andrea M; Meschiari, César A; Sorgi, Carlos A; Saraiva, Maria C P; de Souza, Ana M; Faccioli, Lúcia H; Tanus-Santos, José E; Novaes, Arthur B; Gerlach, Raquel F

    2009-04-01

    Periodontal disease has been associated with many chronic inflammatory systemic diseases, and a common chronic inflammation pathway has been suggested for these conditions. However, few studies have evaluated whether periodontal disease, in the absence of other known inflammatory conditions and smoking, affects circulating markers of chronic inflammation. This study compared chronic inflammation markers in control individuals and patients with periodontal disease and observed whether non-surgical periodontal therapy affected inflammatory disease markers after 3 months. Plasma and serum of 20 controls and 25 patients with periodontal disease were obtained prior to and 3 months after non-surgical periodontal therapy. All patients were non-smokers, they did not use any medication, and they had no history or detectable signs and symptoms of systemic diseases. Periodontal and systemic parameters included probing depth, bleeding on probing, clinical attachment level, hematologic parameters, as well as the following inflammatory markers: interleukin (IL)-6, high-sensitivity C-reactive protein (hs-CRP), CD40 ligand, monocyte chemoattractant protein (MCP)-1, soluble P-selectin (sP-selectin), soluble vascular adhesion molecule (sVCAM)-1, and soluble intercellular adhesion molecule (sICAM)-1. There were no differences in the hematologic parameters of the patients in the control and periodontal disease groups. Among the tested inflammatory markers, IL-6 concentrations were higher in the periodontal disease group at baseline compared to the controls (P = 0.006). Therapy was highly effective (P periodontal disease groups prior to the therapy (P = 0.009). In apparently otherwise healthy patients, periodontal disease is associated with increased circulating concentrations of IL-6 and hs-CRP, which decreased 3 months after non-surgical periodontal therapy. With regard to the CD40 ligand, MCP-1, sP-selectin, sVCAM-1, and sICAM-1, no changes were seen in the periodontal disease group

  18. Stroke admissions in Kubwa General Hospital: A 30-month review

    Directory of Open Access Journals (Sweden)

    Osaze Ojo

    2017-01-01

    Full Text Available >Background: Stroke is a common neurological disorder that contributes significantly to the morbidity and mortality of medical admissions.Objectives: To review the types, risk factors, hemispheric involvement, and outcomes of admitted stroke patients in Kubwa General Hospital, Abuja, Nigeria.Subjects and Methods: We carried out a retrospective study of patients who had a clinical diagnosis of stroke in Kubwa General Hospital, Abuja, Nigeria, between January 2013 and June 2015.Results: A total of 60 patients who had stroke were admitted during this period, accounting for 4.25% of medical admissions. Men and women accounted for 68.3% and 31.7%, respectively, with a male-to-female ratio of 2:1. Their mean age was 54.9 ± 13.5 years while the median age was 52.5 years. The mean hospital stay for these patients was 8.4 ± 5.5 days. Ischemic stroke occurred more frequently (65% compared with hemorrhagic stroke (35%. Hypertension (65%, alcohol (25%, previous stroke (18.3%, diabetes mellitus, and hypercholesterolemia (18.3% were the common identifiable risk factors for stroke. Ten patients (16.7% had two risk factors for stroke, whereas 8 patients (13.3% had three risk factors for stroke. The mean systolic and diastolic blood pressures on admission were 171.5 ± 41.6 mmHg and 103.3 ± 24.0 mmHg, respectively. The left hemisphere (53.3% was more often affected than the right hemisphere in these patients. Majority of the patients (48.3% were discharged following improvement while the case fatality was 11.7%.Conclusion: Stroke is not uncommon as a cause of medical admission in Kubwa General Hospital. Ischemic stroke occurred more commonly and the left hemisphere was more often involved compared with the right hemisphere. Hypertension was the most common risk factor for stroke in these patients.

  19. Assessing the Tangent Linear Behaviour of Common Tracer Transport Schemes and Their Use in a Linearised Atmospheric General Circulation Model

    Science.gov (United States)

    Holdaway, Daniel; Kent, James

    2015-01-01

    The linearity of a selection of common advection schemes is tested and examined with a view to their use in the tangent linear and adjoint versions of an atmospheric general circulation model. The schemes are tested within a simple offline one-dimensional periodic domain as well as using a simplified and complete configuration of the linearised version of NASA's Goddard Earth Observing System version 5 (GEOS-5). All schemes which prevent the development of negative values and preserve the shape of the solution are confirmed to have nonlinear behaviour. The piecewise parabolic method (PPM) with certain flux limiters, including that used by default in GEOS-5, is found to support linear growth near the shocks. This property can cause the rapid development of unrealistically large perturbations within the tangent linear and adjoint models. It is shown that these schemes with flux limiters should not be used within the linearised version of a transport scheme. The results from tests using GEOS-5 show that the current default scheme (a version of PPM) is not suitable for the tangent linear and adjoint model, and that using a linear third-order scheme for the linearised model produces better behaviour. Using the third-order scheme for the linearised model improves the correlations between the linear and non-linear perturbation trajectories for cloud liquid water and cloud liquid ice in GEOS-5.

  20. Assessment of two physical parameterization schemes for desert dust emissions in an atmospheric chemistry general circulation model

    Science.gov (United States)

    Astitha, M.; Abdel Kader, M.; Pozzer, A.; Lelieveld, J.

    2012-04-01

    Atmospheric particulate matter and more specific desert dust has been the topic of numerous research studies in the past due to the wide range of impacts in the environment and climate and the uncertainty of characterizing and quantifying these impacts in a global scale. In this work we present two physical parameterizations of the desert dust production that have been incorporated in the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). The scope of this work is to assess the impact of the two physical parameterizations in the global distribution of desert dust and highlight the advantages and disadvantages of using either technique. The dust concentration and deposition has been evaluated using the AEROCOM dust dataset for the year 2000 and data from the MODIS and MISR satellites as well as sun-photometer data from the AERONET network was used to compare the modelled aerosol optical depth with observations. The implementation of the two parameterizations and the simulations using relatively high spatial resolution (T106~1.1deg) has highlighted the large spatial heterogeneity of the dust emission sources as well as the importance of the input parameters (soil size and texture, vegetation, surface wind speed). Also, sensitivity simulations with the nudging option using reanalysis data from ECMWF and without nudging have showed remarkable differences for some areas. Both parameterizations have revealed the difficulty of simulating all arid regions with the same assumptions and mechanisms. Depending on the arid region, each emission scheme performs more or less satisfactorily which leads to the necessity of treating each desert differently. Even though this is a quite different task to accomplish in a global model, some recommendations are given and ideas for future improvements.

  1. Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model

    Directory of Open Access Journals (Sweden)

    A. Voigt

    2011-03-01

    Full Text Available We study the initiation of a Marinoan Snowball Earth (~635 million years before present with the state-of-the-art atmosphere-ocean general circulation model ECHAM5/MPI-OM. This is the most sophisticated model ever applied to Snowball initiation. A comparison with a pre-industrial control climate shows that the change of surface boundary conditions from present-day to Marinoan, including a shift of continents to low latitudes, induces a global-mean cooling of 4.6 K. Two thirds of this cooling can be attributed to increased planetary albedo, the remaining one third to a weaker greenhouse effect. The Marinoan Snowball Earth bifurcation point for pre-industrial atmospheric carbon dioxide is between 95.5 and 96% of the present-day total solar irradiance (TSI, whereas a previous study with the same model found that it was between 91 and 94% for present-day surface boundary conditions. A Snowball Earth for TSI set to its Marinoan value (94% of the present-day TSI is prevented by doubling carbon dioxide with respect to its pre-industrial level. A zero-dimensional energy balance model is used to predict the Snowball Earth bifurcation point from only the equilibrium global-mean ocean potential temperature for present-day TSI. We do not find stable states with sea-ice cover above 55%, and land conditions are such that glaciers could not grow with sea-ice cover of 55%. Therefore, none of our simulations qualifies as a "slushball" solution. While uncertainties in important processes and parameters such as clouds and sea-ice albedo suggest that the Snowball Earth bifurcation point differs between climate models, our results contradict previous findings that Snowball Earth initiation would require much stronger forcings.

  2. Study on the estimation of probabilistic effective dose. Committed effective dose from intake of marine products using Oceanic General Circulation Model

    International Nuclear Information System (INIS)

    Nakano, Masanao

    2007-01-01

    The worldwide environmental protection is required by the public. A long-term environmental assessment from nuclear fuel cycle facilities to the aquatic environment also becomes more important to utilize nuclear energy more efficiently. Evaluation of long-term risk including not only in Japan but also in neighboring countries is considered to be necessary in order to develop nuclear power industry. The author successfully simulated the distribution of radionuclides in seawater and seabed sediment produced by atmospheric nuclear tests using LAMER (Long-term Assessment ModEl for Radioactivity in the oceans). A part of the LAMER calculated the advection- diffusion-scavenging processes for radionuclides in the oceans and the Japan Sea in cooperate with Oceanic General Circulation Model (OGCM) and was validated. The author is challenging to calculate probabilistic effective dose suggested by ICRP from intake of marine products due to atmospheric nuclear tests using the Monte Carlo method in the other part of LAMER. Depending on the deviation of each parameter, the 95th percentile of the probabilistic effective dose was calculated about half of the 95th percentile of the deterministic effective dose in proforma calculation. The probabilistic assessment gives realistic value for the dose assessment of a nuclear fuel cycle facility. (author)

  3. Cascade of circulations in fluid turbulence.

    Science.gov (United States)

    Eyink, Gregory L

    2006-12-01

    Kelvin's theorem on conservation of circulations is an essential ingredient of Taylor's theory of turbulent energy dissipation by the process of vortex-line stretching. In previous work, we have proposed a nonlinear mechanism for the breakdown of Kelvin's theorem in ideal turbulence at infinite Reynolds number. We develop here a detailed physical theory of this cascade of circulations. Our analysis is based upon an effective equation for large-scale coarse-grained velocity, which contains a turbulent-induced vortex force that can violate Kelvin's theorem. We show that singularities of sufficient strength, which are observed to exist in turbulent flow, can lead to nonvanishing dissipation of circulation for an arbitrarily small coarse-graining length in the effective equations. This result is an analog for circulation of Onsager's theorem on energy dissipation for singular Euler solutions. The physical mechanism of the breakdown of Kelvin's theorem is diffusion of lines of large-scale vorticity out of the advected loop. This phenomenon can be viewed as a classical analog of the Josephson-Anderson phase-slip phenomenon in superfluids due to quantized vortex lines. We show that the circulation cascade is local in scale and use this locality to develop concrete expressions for the turbulent vortex force by a multiscale gradient expansion. We discuss implications for Taylor's theory of turbulent dissipation and we point out some related cascade phenomena, in particular for magnetic flux in magnetohydrodynamic turbulence.

  4. Atmospheric Circulations of Rocky Planets as Heat Engines

    Science.gov (United States)

    Koll, D. D. B.

    2017-12-01

    Rocky planets are extremely common in the galaxy and include Earth, Mars, Venus, and hundreds of exoplanets. To understand and compare the climates of these planets, we need theories that are general enough to accommodate drastically different atmospheric and planetary properties. Unfortunately, few such theories currently exist.For Earth, there is a well-known principle that its atmosphere resembles a heat engine - the atmosphere absorbs heat near the surface, at a hot temperature, and emits heat to space in the upper troposphere, at a cold temperature, which allows it to perform work and balance dissipative processes such as friction. However, previous studies also showed that Earth's hydrological cycle uses up a large fraction of the heat engine's work output, which makes it difficult to view other atmospheres as heat engines.In this work I extend the heat engine principle from Earth towards other rocky planets. I explore both dry and moist atmospheres in an idealized general circulation model (GCM), and quantify their work output using entropy budgets. First, I show that convection and turbulent heat diffusion are important entropy sources in dry atmospheres. I develop a scaling that accounts for its effects, which allows me to predict the strength of frictional dissipation in dry atmospheres. There are strong parallels between my scaling and so-called potential intensity theory, which is a seminal theory for understanding tropical cyclones on Earth. Second, I address how moisture affects atmospheric heat engines. Moisture modifies both the thermodynamic properties of air and releases latent heat when water vapor condenses. I explore the impact of both effects, and use numerical simulations to explore the difference between dry and moist atmospheric circulations across a wide range of climates.

  5. Black carbon ageing in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    B. Croft

    2005-01-01

    Full Text Available Black carbon (BC particles in the atmosphere have important impacts on climate. The amount of BC in the atmosphere must be carefully quantified to allow evaluation of the climate effects of this type of aerosol. In this study, we present the treatment of BC aerosol in the developmental version of the 4th generation Canadian Centre for Climate modelling and analysis (CCCma atmospheric general circulation model (AGCM. The focus of this work is on the conversion of insoluble BC to soluble/mixed BC by physical and chemical ageing. Physical processes include the condensation of sulphuric and nitric acid onto the BC aerosol, and coagulation with more soluble aerosols such as sulphates and nitrates. Chemical processes that may age the BC aerosol include the oxidation of organic coatings by ozone. Four separate parameterizations of the ageing process are compared to a control simulation that assumes no ageing occurs. These simulations use 1 an exponential decay with a fixed 24h half-life, 2 a condensation and coagulation scheme, 3 an oxidative scheme, and 4 a linear combination of the latter two ageing treatments. Global BC burdens are 2.15, 0.15, 0.11, 0.21, and 0.11TgC for the control run, and four ageing schemes, respectively. The BC lifetimes are 98.1, 6.6, 5.0, 9.5, and 4.9 days, respectively. The sensitivity of modelled BC burdens, and concentrations to the factor of two uncertainty in the emissions inventory is shown to be greater than the sensitivity to the parameterization used to represent the BC ageing, except for the oxidation based parameterization. A computationally efficient parameterization that represents the processes of condensation, coagulation, and oxidation is shown to simulate BC ageing well in the CCCma AGCM. As opposed to the globally fixed ageing time scale, this treatment of BC ageing is responsive to varying atmospheric composition.

  6. Leptin administration to overweight and obese subjects for 6 months increases free leptin concentrations but does not alter circulating hormones of the thyroid and IGF axes during weight loss induced by a mild hypocaloric diet.

    Science.gov (United States)

    Shetty, Greeshma K; Matarese, Giuseppe; Magkos, Faidon; Moon, Hyun-Seuk; Liu, Xiaowen; Brennan, Aoife M; Mylvaganam, Geetha; Sykoutri, Despina; Depaoli, Alex M; Mantzoros, Christos S

    2011-08-01

    Short-term energy deprivation reduces leptin concentrations and alters the levels of circulating hormones of the hypothalamic-pituitary-peripheral axis in lean subjects. Whether the reduction in leptin concentration during long-term weight loss in obese individuals is linked to the same neuroendocrine changes seen in lean, leptin-sensitive subjects remains to be fully clarified. In this study, 24 overweight and obese adults (16 women and eight men; body mass index (BMI): 27.5-38.0 kg/m(2)) were prescribed a hypocaloric diet (-500 kcal/day) and were randomized to receive recombinant methionyl leptin (n=18, metreleptin, 10 mg/day self-injected s.c.) or placebo (n=6, same volume and time as metreleptin) for 6 months. Metreleptin administration did not affect weight loss beyond that induced by hypocaloric diet alone (P for interaction=0.341) but increased the serum concentrations of total leptin by six- to eight-fold (Phypocaloric diet in overweight and obese subjects.

  7. A strategy for testing the impact of clouds on the shortwave radiation budge of general circulation models: A prototype for the Atmospheric Radiation Measurement Program

    International Nuclear Information System (INIS)

    Cess, R.D.

    1994-01-01

    Cloud-climate interactions are one of the greatest uncertainties in contemporary general circulation models (GCMs), and this study has focused on one aspect of this. Specifically, combined satellite and near-surface shortwave (SW) flux measurements have been used to test the impact of clouds on the SW radiation budgets of two GCMs. Concentration is initially on SW rather than longwave (LW) radiation because, in one of the GCMs used in this study an SW radiation inconsistency causes a LW inconsistency. The surface data consist of near-surface insolation measured by the upward facing pyranometer at the Boulder Atmospheric Observatory tower. The satellite data consist of top of the atmosphere (TOA) albedo data, collocated with the tower location, as determined from the GOES SW spin-scan radiometer. Measurements are made every half hour, with hourly means taken by averaging successive measurements. The combined data are for a 21-day period encompassing 28 June through 18 July 1987 and consist of 202 combined albedo/insolation measurements

  8. Evidence of the Lower Thermospheric Winter-to-Summer Circulation

    Science.gov (United States)

    Qian, L.; Burns, A. G.; Yue, J.

    2017-12-01

    Numerical studies showed that the lower thermospheric winter-to-summer circulation is driven by wave dissipation, and it plays a significant role in trace gas distributions in the mesosphere and lower thermosphere (MLT), and in the composition of the thermosphere. Direct observations of this circulation are difficult. However, it leaves clear signatures in tracer distributions. Recent analysis of CO2 observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite showed dynamically driven dense isolines of CO2 at summer high latitudes. We conduct modeling and observational studies to understand the CO2 distribution and circulation patterns in the MLT. We found that there exists maximum vertical gradient of CO2 at summer high latitudes, driven by the convergence of the upwelling of the mesospheric circulation and the downwelling of the lower thermospheric circulation; this maximum vertical gradient of CO2 is located at a higher altitude in the winter hemisphere, driven by the convergence of the upwelling of the lower thermospheric circulation and the downwelling of the solar-driven thermospheric circulation. Based on SABER CO2 distribution, the bottom of the lower thermospheric circulation is located between 95 km and 100 km, and it has a vertical extent of 10 km. Analysis of the SABER CO2 and temperature at summer high latitudes showed that the bottom of this circulation is consistently higher than the mesopause height by 10 km; and its location does not change much between solar maximum and solar minimum.

  9. Can preferred atmospheric circulation patterns over the North-Atlantic-Eurasian region be associated with arctic sea ice loss?

    Science.gov (United States)

    Crasemann, Berit; Handorf, Dörthe; Jaiser, Ralf; Dethloff, Klaus; Nakamura, Tetsu; Ukita, Jinro; Yamazaki, Koji

    2017-12-01

    In the framework of atmospheric circulation regimes, we study whether the recent Arctic sea ice loss and Arctic Amplification are associated with changes in the frequency of occurrence of preferred atmospheric circulation patterns during the extended winter season from December to March. To determine regimes we applied a cluster analysis to sea-level pressure fields from reanalysis data and output from an atmospheric general circulation model. The specific set up of the two analyzed model simulations for low and high ice conditions allows for attributing differences between the simulations to the prescribed sea ice changes only. The reanalysis data revealed two circulation patterns that occur more frequently for low Arctic sea ice conditions: a Scandinavian blocking in December and January and a negative North Atlantic Oscillation pattern in February and March. An analysis of related patterns of synoptic-scale activity and 2 m temperatures provides a synoptic interpretation of the corresponding large-scale regimes. The regimes that occur more frequently for low sea ice conditions are resembled reasonably well by the model simulations. Based on those results we conclude that the detected changes in the frequency of occurrence of large-scale circulation patterns can be associated with changes in Arctic sea ice conditions.

  10. Appraisal of circulation routine duties in academic libraries | Hassan ...

    African Journals Online (AJOL)

    ... of brown charging system, book reservation, keeping of reserved collection, circulation of reserved books, treatment of overdue, lost of books on loan and library statistics among other as duties perform in circulation department of libraries. Keywords: Library Service, Circulation Duties, Challenges, Academic Libraries ...

  11. Preformed and regenerated phosphate in ocean general circulation models: can right total concentrations be wrong?

    Directory of Open Access Journals (Sweden)

    O. Duteil

    2012-05-01

    Full Text Available Phosphate distributions simulated by seven state-of-the-art biogeochemical ocean circulation models are evaluated against observations of global ocean nutrient distributions. The biogeochemical models exhibit different structural complexities, ranging from simple nutrient-restoring to multi-nutrient NPZD type models. We evaluate the simulations using the observed volume distribution of phosphate. The errors in these simulated volume class distributions are significantly larger when preformed phosphate (or regenerated phosphate rather than total phosphate is considered. Our analysis reveals that models can achieve similarly good fits to observed total phosphate distributions for a~very different partitioning into preformed and regenerated nutrient components. This has implications for the strength and potential climate sensitivity of the simulated biological carbon pump. We suggest complementing the use of total nutrient distributions for assessing model skill by an evaluation of the respective preformed and regenerated nutrient components.

  12. Circulating CD34-positive cells, glomerular filtration rate and triglycerides in relation to hypertension.

    Science.gov (United States)

    Shimizu, Yuji; Sato, Shimpei; Koyamatsu, Jun; Yamanashi, Hirotomo; Nagayoshi, Mako; Kadota, Koichiro; Maeda, Takahiro

    2015-11-01

    Serum triglycerides have been reported to be independently associated with the development of chronic kidney disease (CKD), which is known to play a role in vascular disturbance. On the other hand, circulating CD34-positve cells, including endothelial progenitor cells, are reported to contribute to vascular repair. However, no studies have reported on the correlation between triglycerides and the number of CD34-positive cells. Since hypertension is well known factor for vascular impairment, the degree of correlation between serum triglycerides and circulating CD34-positve cells should account for hypertension status. We conducted a cross-sectional study of 274 elderly Japanese men aged ≥ 60 years (range 60-79 years) undergoing general health checkups. Multiple linear regression analysis of non-hypertensive subjects adjusting for classical cardiovascular risk factors showed that although triglyceride levels (1SD increments; 64 mg/dL) did not significantly correlate with glomerular filtration rate (GFR) (β = -2.06, p = 0.163), a significant positive correlation was seen between triglycerides and the number of circulating CD34-positive cells (β = 0.50, p = 0.004). In hypertensive subjects, a significant inverse correlation between triglycerides and GFR was observed (β = -2.66, p = 0.035), whereas no significant correlation between triglycerides and the number of circulating CD34-positive cells was noted (β = -0.004, p = 0.974). Since endothelial progenitor cells (CD34-positive cells) have been reported to contribute to vascular repair, our results indicate that in non-hypertensive subjects, triglycerides may stimulate an increase in circulating CD34-positive cells (vascular repair) by inducing vascular disturbance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is

  14. Circulating Regulatory T-Cells in Monoclonal Gammopathies of Uncertain Significance and Multiple Myeloma: In Search of a Role

    Directory of Open Access Journals (Sweden)

    Giovanni D’Arena

    2016-01-01

    Full Text Available The frequency and function of regulatory T-cells (Tregs in multiple myeloma (MM are still matter of debate. The percentage and absolute number of circulating Tregs (CD4+CD25+high  densityCD127-/low  density from 39 patients with untreated MM and 44 patients with monoclonal gammopathies of uncertain significance (MGUS were tested and compared with 20 healthy subjects as controls. The mean percentage number of circulating Tregs was 2.1%  ± 1.0 (range 0.75–6.1% in MM patients; 2.1%  ± 0.9 (range 0.3–4.4% in MGUS; and 1.5%  ± 0.4 (range 0.9–2.1% in controls (p ns. Mean absolute number of Tregs was 36.3/μL ± 23.7 (range 6.7–149/μL in MM; 38.8/μL ± 19.1 (range 4.3–87/μL in MGUS; and 39.4/μL ± 12.5 (range 18–63/μL in controls (p ns. After a median follow-up of 38 months, 5 MGUS and 2 smoldering MM (SMM transformed into overt MM; however Tregs number did not predict this evolution. With respect to MM patients and after a median follow-up of 33 months, Tregs did not show any significant correlation with main clinical and laboratory characteristics. Finally, from a functional point of view, Tregs displayed an effective suppressor function, irrespective of disease status. This study indicates that the number of circulating Tregs does not differ in different monoclonal gammopathies and normal subjects and do not correlate with clinical features of MM.

  15. A stepwise model to predict monthly streamflow

    Science.gov (United States)

    Mahmood Al-Juboori, Anas; Guven, Aytac

    2016-12-01

    In this study, a stepwise model empowered with genetic programming is developed to predict the monthly flows of Hurman River in Turkey and Diyalah and Lesser Zab Rivers in Iraq. The model divides the monthly flow data to twelve intervals representing the number of months in a year. The flow of a month, t is considered as a function of the antecedent month's flow (t - 1) and it is predicted by multiplying the antecedent monthly flow by a constant value called K. The optimum value of K is obtained by a stepwise procedure which employs Gene Expression Programming (GEP) and Nonlinear Generalized Reduced Gradient Optimization (NGRGO) as alternative to traditional nonlinear regression technique. The degree of determination and root mean squared error are used to evaluate the performance of the proposed models. The results of the proposed model are compared with the conventional Markovian and Auto Regressive Integrated Moving Average (ARIMA) models based on observed monthly flow data. The comparison results based on five different statistic measures show that the proposed stepwise model performed better than Markovian model and ARIMA model. The R2 values of the proposed model range between 0.81 and 0.92 for the three rivers in this study.

  16. Study of the behaviour of artificial radioactive aerosols. Applications to some problems of atmospheric circulation (1963); Etude du comportement dcs aerosols radioactifs artificiels. Applications a quelques problemes de circulation atmospherique (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-11-15

    The aim of this work, consists in the examination of the behaviour of radioactive aerosols produced in the atmosphere by nuclear explosions, in order to deduce the most general laws governing atmospheric circulation and diffusion. After having given a general table of the radioactive aerosols present the authors consider the validity and the precision of the measurement methods and the concentration of the aerosols at ground level and in the upper atmosphere, as well as their deposition on the ground. The existence is thus demonstrated of a tropospheric equatorial barrier and of discontinuous and seasonal aspects of stratosphere-troposphere transfers. The role is shown of precipitations and dry auto-filtration in the lower atmosphere cleaning processes. This work makes it possible to describe the general behaviour of dust from the stratosphere, and to improve the total radioactive contamination of the globe. (author) [French] L'objectif de ce travail consiste a examiner le comportement des aerosols radioactifs introduits dans l'atmosphere par les explosions nucleaires, pour en deduire les lois les plus generals de la circulation et diffusion atmospheriques. Apres avoir dresse un tableau d'ensemble des aerosols radioactifs presents, on examine la validite et la precision des methodes de mesure de leur concentration, au niveau du sol et en haute atmosphere, ainsi que de leur depot a la surface du sol. On met ainsi en evidence l'existence d'une barriere equatoriale tropospherique; l'aspect discontinu et saisonnier des transferts stratosphere-troposphere; le role des precipitations et de l'auto-filtration seche, dans les processus de nettoyage de la basse atmosphere. Ces etudes permettent de decrire le comportement general des poussieres d'origine stratospherique et d'ameliorer le bilan de la contamination radioactive du globe. (auteur)

  17. Study of the behaviour of artificial radioactive aerosols. Applications to some problems of atmospheric circulation (1963); Etude du comportement dcs aerosols radioactifs artificiels. Applications a quelques problemes de circulation atmospherique (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-11-15

    The aim of this work, consists in the examination of the behaviour of radioactive aerosols produced in the atmosphere by nuclear explosions, in order to deduce the most general laws governing atmospheric circulation and diffusion. After having given a general table of the radioactive aerosols present the authors consider the validity and the precision of the measurement methods and the concentration of the aerosols at ground level and in the upper atmosphere, as well as their deposition on the ground. The existence is thus demonstrated of a tropospheric equatorial barrier and of discontinuous and seasonal aspects of stratosphere-troposphere transfers. The role is shown of precipitations and dry auto-filtration in the lower atmosphere cleaning processes. This work makes it possible to describe the general behaviour of dust from the stratosphere, and to improve the total radioactive contamination of the globe. (author) [French] L'objectif de ce travail consiste a examiner le comportement des aerosols radioactifs introduits dans l'atmosphere par les explosions nucleaires, pour en deduire les lois les plus generals de la circulation et diffusion atmospheriques. Apres avoir dresse un tableau d'ensemble des aerosols radioactifs presents, on examine la validite et la precision des methodes de mesure de leur concentration, au niveau du sol et en haute atmosphere, ainsi que de leur depot a la surface du sol. On met ainsi en evidence l'existence d'une barriere equatoriale tropospherique; l'aspect discontinu et saisonnier des transferts stratosphere-troposphere; le role des precipitations et de l'auto-filtration seche, dans les processus de nettoyage de la basse atmosphere. Ces etudes permettent de decrire le comportement general des poussieres d'origine stratospherique et d'ameliorer le bilan de la contamination radioactive du globe. (auteur)

  18. Responder Technology Alert Monthly (January 2015)

    Energy Technology Data Exchange (ETDEWEB)

    Upton, Jaki F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stein, Steven L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-01

    As part of technology foraging for the Responder Technology Alliance, established by the Department of Homeland Science and Technologies First Responders Group, this report summarizes technologies that are relevant in the area of “wearables,” with the potential for use by first responders. The content was collected over the previous month(s) and reproduced from a general Internet search using the term wearables. Additional information is available at the websites provided. This report is not meant to be an exhaustive list nor an endorsement of any technology described herein. Rather, it is meant to provide useful information about current developments in the areas wearable technology.

  19. Responder Technology Alert Monthly (December 2014)

    Energy Technology Data Exchange (ETDEWEB)

    Upton, Jaki F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stein, Steven L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-13

    As part of technology foraging for the Responder Technology Alliance, established by the Department of Homeland Science and Technologies First Responders Group, this report summarizes technologies that are relevant in the area of “wearables,” with the potential for use by first responders. The content was collected over the previous month(s) and reproduced from a general Internet search using the term wearables. Additional information is available at the websites provided. This report is not meant to be an exhaustive list nor an endorsement of any technology described herein. Rather, it is meant to provide useful information about current developments in the areas wearable technology.

  20. Effect of Loop Diameter on the Steady State and Stability Behaviour of Single-Phase and Two-Phase Natural Circulation Loops

    Directory of Open Access Journals (Sweden)

    P. K. Vijayan

    2008-01-01

    Full Text Available In natural circulation loops, the driving force is usually low as it depends on the riser height which is generally of the order of a few meters. The heat transport capability of natural circulation loops (NCLs is directly proportional to the flow rate it can generate. With low driving force, the straightforward way to enhance the flow is to reduce the frictional losses. A simple way to do this is to increase the loop diameter which can be easily adopted in pressure tube designs such as the AHWR and the natural circulation boilers employed in fossil-fuelled power plants. Further, the loop diameter also plays an important role on the stability behavior. An extensive experimental and theoretical investigation of the effect of loop diameter on the steady state and stability behavior of single- and two-phase natural circulation loops have been carried out and the results of this study are presented in this paper.

  1. Recent changes in the summer monsoon circulation and their impact on dynamics and thermodynamics of the Arabian Sea

    Science.gov (United States)

    Pratik, Kad; Parekh, Anant; Karmakar, Ananya; Chowdary, Jasti S.; Gnanaseelan, C.

    2018-05-01

    The present study examines changes in the low-level summer monsoon circulation over the Arabian Sea and their impact on the ocean dynamics using reanalysis data. The study confirms intensification and northward migration of low-level jet during 1979 to 2015. Further during the study period, an increase in the Arabian Sea upper ocean heat content is found in spite of a decreasing trend in the net surface heat flux, indicating the possible role of ocean dynamics in the upper ocean warming. Increase in the anti-cyclonic wind stress curl associated with the change in the monsoon circulation induces downwelling over the central Arabian Sea, favoring upper ocean warming. The decreasing trend of southward Ekman transport, a mechanism transporting heat from the land-locked north Indian Ocean to southern latitudes, also supports increasing trend of the upper ocean heat content. To reinstate and quantify the role of changing monsoon circulation in increasing the heat content over the Arabian Sea, sensitivity experiment is carried out using ocean general circulation model. In this experiment, the model is forced by inter-annual momentum forcing while rest of the forcing is climatological. Experiment reveals that the changing monsoon circulation increases the upper ocean heat content, effectively by enhancing downwelling processes and reducing southward heat transport, which strongly endorses our hypothesis that changing ocean dynamics associated with low-level monsoon circulation is causing the increasing trend in the heat content of the Arabian Sea.

  2. Circulating follistatin in relation to energy metabolism

    DEFF Research Database (Denmark)

    Hansen, Jakob Schiøler; Plomgaard, Peter

    2016-01-01

    a relation to energy metabolism. In this narrative review, we attempt to reconcile the existing findings on circulating follistatin with the novel concept that circulating follistatin is a liver-derived molecule regulated by the glucagon-to-insulin ratio. The picture emerging is that conditions associated...

  3. Effect of AMOC collapse on ENSO in a high resolution general circulation model

    Science.gov (United States)

    Williamson, Mark S.; Collins, Mat; Drijfhout, Sybren S.; Kahana, Ron; Mecking, Jennifer V.; Lenton, Timothy M.

    2018-04-01

    We look at changes in the El Niño Southern Oscillation (ENSO) in a high-resolution eddy-permitting climate model experiment in which the Atlantic Meridional Circulation (AMOC) is switched off using freshwater hosing. The ENSO mode is shifted eastward and its period becomes longer and more regular when the AMOC is off. The eastward shift can be attributed to an anomalous eastern Ekman transport in the mean equatorial Pacific ocean state. Convergence of this transport deepens the thermocline in the eastern tropical Pacific and increases the temperature anomaly relaxation time, causing increased ENSO period. The anomalous Ekman transport is caused by a surface northerly wind anomaly in response to the meridional sea surface temperature dipole that results from switching the AMOC off. In contrast to a previous study with an earlier version of the model, which showed an increase in ENSO amplitude in an AMOC off experiment, here the amplitude remains the same as in the AMOC on control state. We attribute this difference to variations in the response of decreased stochastic forcing in the different models, which competes with the reduced damping of temperature anomalies. In the new high-resolution model, these effects approximately cancel resulting in no change in amplitude.

  4. The Impact of Stratospheric Circulation Extremes on Minimum Arctic Sea Ice Extent

    Science.gov (United States)

    Smith, K. L.; Polvani, L. M.; Tremblay, B.

    2017-12-01

    The interannual variability of summertime Arctic sea ice extent (SIE) is anti-correlated with the leading mode of extratropical atmospheric variability in preceding winter, the Arctic Oscillation (AO). Given this relationship and the need for better seasonal predictions of Arctic SIE, we here examine the role of stratospheric circulation extremes and stratosphere-troposphere coupling in linking the AO and Arctic SIE variability. We show that extremes in the stratospheric circulation during the winter season, namely stratospheric sudden warming (SSW) and strong polar vortex (SPV) events, are associated with significant anomalies in sea ice concentration in the Bering Straight and the Sea of Okhotsk in winter, the Barents Sea in spring and along the Eurasian coastline in summer in both observations and a fully-coupled, stratosphere-resolving general circulation model. The accompanying figure shows the composite mean sea ice concentration anomalies from the Whole Atmosphere Community Climate Model (WACCM) for SSWs (N = 126, top row) and SPVs (N = 99, bottom row) for winter (a,d), spring (b,e) and summer (c,f). Consistent with previous work on the AO, we find that SSWs, which are followed by the negative phase of the AO at the surface, result in sea ice growth, whereas SPVs, which are followed by the positive phase of the AO at the surface, result in sea ice loss, although the dynamic and thermodynamic processes driving these sea ice anomalies in the three Arctic regions, noted above, are different. Our analysis suggests that the presence or absence of stratospheric circulation extremes in winter may play a non-trivial role in determining total September Arctic SIE when combined with other factors.

  5. Simulating Mars' Dust Cycle with a Mars General Circulation Model: Effects of Water Ice Cloud Formation on Dust Lifting Strength and Seasonality

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.

    2012-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.

  6. A molecular epidemiology survey of respiratory adenoviruses circulating in children residing in Southern Palestine.

    Directory of Open Access Journals (Sweden)

    Lina Qurei

    Full Text Available A molecular epidemiology survey was performed in order to establish and document the respiratory adenovirus pathogen profiles among children in Southern Palestine. Three hundred and thirty-eight hospitalized pediatric cases with adenovirus-associated respiratory tract infections were analyzed. Forty four cases out of the 338 were evaluated in more detail for the adenoviruses types present. All of the children resided in Southern Palestine, that is, in city, village and refugee camp environments within the districts of Hebron and Bethlehem. Human adenoviruses circulated throughout 2005-2010, with major outbreaks occurring in the spring months. A larger percent of the children diagnosed with adenoviral infections were male infants. DNA sequence analysis of the hexon genes from 44 samples revealed that several distinct adenovirus types circulated in the region; these were HAdV-C1, HAdV-C2, HAdV-B3 and HAdV-C5. However, not all of these types were detected within each year. This is the first study ever conducted in Palestine of the genetic epidemiology of respiratory adenovirus infections.

  7. Exact Inverse Matrices of Fermat and Mersenne Circulant Matrix

    Directory of Open Access Journals (Sweden)

    Yanpeng Zheng

    2015-01-01

    Full Text Available The well known circulant matrices are applied to solve networked systems. In this paper, circulant and left circulant matrices with the Fermat and Mersenne numbers are considered. The nonsingularity of these special matrices is discussed. Meanwhile, the exact determinants and inverse matrices of these special matrices are presented.

  8. New Designs in Circulation Areas And Museums the Case of the Quai Branly Museum

    Directory of Open Access Journals (Sweden)

    Nihan CANBAKAL ATAOĞLU

    2016-05-01

    Full Text Available During the Pre-Modern Era of 1970s; new buildings questioning general typologies and offering advances in terms of design and function are started to be built. Architects not only looked for unattempted block structures but also their quest for unattempted block structures were continued for internal places, too and internal implicit setups were designed using ortographic tools like plans and sections. In today’s museums; new and multiple circulation routes are designed; in which visitors do not read books from beginning to end but choose their own paths and walk through the exhibition as if in a labyrinth on their own. These radical perceptional, spatial changes and spatial scenarios are particularly emphasized in museum buildings. These new spatial arrangements in circulation areas are offering new spatial experiences with irregular gaps in sections, regular but non-geometric floor plans, vagueness of the borders, striking colors, patterns and materials, differentiated circulation parts (stairs, moving stairways, elevators, platforms, bridges. In the study; Jean Nouvel’s Quai Branly Museum (2006 which is a recent example of this striking change will be analyzed thorough spatial experiences, observations, syntactic analysis technique and semantic examinations.   

  9. 3D Visualization of Global Ocean Circulation

    Science.gov (United States)

    Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.

    2015-12-01

    Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.

  10. Early primary repair of tetralogy of fallot in neonates and infants less than four months of age.

    Science.gov (United States)

    Tamesberger, Melanie I; Lechner, Evelyn; Mair, Rudolf; Hofer, Anna; Sames-Dolzer, Eva; Tulzer, Gerald

    2008-12-01

    The ideal age for correction of tetralogy of Fallot is still under discussion. The aim of this study was to analyze morbidity and mortality in patients who underwent early primary repair of tetralogy of Fallot at the age of less than 4 months and to assess whether neonates, who needed early repair within the first 4 weeks of life, faced an increased risk. From 1995 to 2006, 90 consecutive patients with tetralogy of Fallot and pulmonary stenosis underwent early primary repair. Patient charts were analyzed retrospectively for two groups: group A, 25 neonates younger than 28 days who needed early operation owing to duct-dependent pulmonary circulation or severe hypoxemia; and group B, 65 infants younger than 4 months of age who underwent elective early repair. There was no 30-day mortality; late mortality was 2% after a median follow-up time of 4.7 years. Seven of 88 patients (8%) needed reoperation and twelve of 88 patients (14%) needed reintervention. Groups A and B did not differ significantly in terms of intensive care unit stay, days of mechanical ventilation, overall hospital stay, major or minor complications, or reoperation. Significant differences were found in a more frequent use of a transannular patch (p = 0.045) and more reinterventions (p = 0.046) in group A. Early primary repair of tetralogy of Fallot can be performed safely and effectively in infants younger than 4 months of age and even in neonates younger than 28 days with duct-dependent pulmonary circulation or severe hypoxemia.

  11. Increased circulating interleukin-8 in patients with resistance to thyroid hormone receptor α

    Directory of Open Access Journals (Sweden)

    Anne H van der Spek

    2017-11-01

    Full Text Available Innate immune cells have recently been identified as novel thyroid hormone (TH target cells in which intracellular TH levels appear to play an important functional role. The possible involvement of TH receptor alpha (TRα, which is the predominant TR in these cells, has not been studied to date. Studies in TRα0/0 mice suggest a role for this receptor in innate immune function. The aim of this study was to determine whether TRα affects the human innate immune response. We assessed circulating interleukin-8 concentrations in a cohort of 8 patients with resistance to TH due to a mutation of TRα (RTHα and compared these results to healthy controls. In addition, we measured neutrophil and macrophage function in one of these RTHα patients (mutation D211G. Circulating interleukin-8 levels were elevated in 7 out of 8 RTHα patients compared to controls. These patients harbor different mutations, suggesting that this is a general feature of the syndrome of RTHα. Neutrophil spontaneous apoptosis, bacterial killing, NAPDH oxidase activity and chemotaxis were unaltered in cells derived from the RTHαD211G patient. RTHα macrophage phagocytosis and cytokine induction after LPS treatment were similar to results from control cells. The D211G mutation did not result in clinically relevant impairment of neutrophil or pro-inflammatory macrophage function. As elevated circulating IL-8 is also observed in hyperthyroidism, this observation could be due to the high-normal to high levels of circulating T3 found in patients with RTHα.

  12. Assessing the Impact of GODAE Boundary Conditions on the Estimate and Prediction of the Monterey Bay and California Central Coast Circulation

    National Research Council Canada - National Science Library

    Edwards, Christopher A; Moore, Andrew M; Wunsch, Carl; Doyle, James D; Schwing, Franklin B; Foley, David

    2006-01-01

    ... coastline of this region also leave it exposed to the energetic circulation of the California Current System offshore and more generally to the stratification and transports of the eastern Pacific ocean...

  13. Natural Circulation Characteristics of a Symmetric Loop under Inclined Conditions

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2014-01-01

    Full Text Available Natural circulation is an important process for primary loops of some marine integrated reactors. The reactor works under inclined conditions when severe accidents happen to the ship. In this paper, to investigate the characteristics of natural circulation, experiments were conducted in a symmetric loop under the inclined angle of 0~45°. A CFD model was also set up to predict the behaviors of the loop beyond the experimental scope. Total circulation flow rate decreases with the increase of inclined angle. Meanwhile one circulation is depressed while the other is enhanced, and accordingly the disparity between the branch circulations arises and increases with the increase of inclined angle. Circulation only takes place in one branch circuit at large inclined angle. Also based on the CFD model, the influences of flow resistance distribution and loop configuration on natural circulation are predicted. The numerical results show that to design the loop with the configuration of big altitude difference and small width, it is favorable to reduce the influence of inclination; however too small loop width will cause severe reduction of circulation ability at large angle inclination.

  14. The effect of non-zero radial velocity on the impulse and circulation of starting jets

    Science.gov (United States)

    Krieg, Michael; Mohseni, Kamran

    2011-11-01

    Vortex ring formation dynamics are generally studied using two basic types of vortex generators. Piston cylinder vortex generators eject fluid through a long tube which ensures a purely axial jet; whereas, vortex ring generators which expel fluid through a flat plate with a circular orifice produce 2-D jets (non-zero radial velocity). At the nozzle exit plane of the orifice type vortex generator the radial component of velocity is linearly proportional to the radial distance from the axis of symmetry, reaching a maximum at the edge of the orifice with a magnitude around 10 % of the piston velocity (the ratio of the volume flux and the nozzle area). As the jet advances downstream the radial velocity quickly dissipates, and becomes purely axial less than a diameter away from the nozzle exit plane. The radial velocity gradient in the axial direction plays a key role in the rate at which circulation and impulse are ejected from the vortex generator. Though the radial component of velocity is small compared to the axial velocity, it has a significant effect on both the circulation and impulse of the starting jet because of this gradient. The extent of circulation and impulse enhancement is investigated through experimental DPIV data showing that the orifice device produces nearly double both circulation and energy (with identical piston velocity and stroke ratios).

  15. Estuarine turbidity, flushing, salinity, and circulation

    Science.gov (United States)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  16. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    Directory of Open Access Journals (Sweden)

    P. Jöckel

    2006-01-01

    Full Text Available The new Modular Earth Submodel System (MESSy describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy

  17. Active and Passive Microwave Determination of the Circulation and Characteristics of Weddell and Ross Sea Ice

    Science.gov (United States)

    Drinkwater, Mark R.; Liu, Xiang

    2000-01-01

    A combination of satellite microwave data sets are used in conjunction with ECMWF (Medium Range Weather Forecasts) and NCEP (National Center for Environment Prediction) meteorological analysis fields to investigate seasonal variability in the circulation and sea-ice dynamics of the Weddell and Ross Seas. Results of sea-ice tracking using SSM/I (Special Sensor Microwave Imager), Scatterometer and SAR images are combined with in-situ data derived from Argos buoys and GPS drifters to validate observed drift patterns. Seasonal 3-month climatologies of ice motion and drift speed variance illustrate the response of the sea-ice system to seasonal forcing. A melt-detection algorithm is used to track the onset of seasonal melt, and to determine the extent and duration of atmospherically-led surface melting during austral summer. Results show that wind-driven drift regulates the seasonal distribution and characteristics of sea-ice and the intensity of the cyclonic Gyre circulation in these two regions.

  18. Nine-Month-Old Infants Generalize Object Labels, but Not Object Preferences across Individuals

    Science.gov (United States)

    Henderson, Annette M. E.; Woodward, Amanda L.

    2012-01-01

    As with all culturally relevant human behaviours, words are meaningful because they are shared by the members of a community. This research investigates whether 9-month-old infants understand this fundamental fact about language. Experiment 1 examined whether infants who are trained on, and subsequently habituated to, a new word-referent link…

  19. Operating experience of natural circulation core cooling in boiling water reactors

    International Nuclear Information System (INIS)

    Kullberg, C.; Jones, K.; Heath, C.

    1993-01-01

    General Electric (GE) has proposed an advanced boiling water reactor, the Simplified Boiling Water Reactor (SBWR), which will utilize passive, gravity-driven safety systems for emergency core coolant injection. The SBWR design includes no recirculation loops or recirculation pumps. Therefore the SBWR will operate in a natural circulation (NC) mode at full power conditions. This design poses some concerns relative to stability during startup, shutdown, and at power conditions. As a consequence, the NRC has directed personnel at several national labs to help investigate SBWR stability issues. This paper will focus on some of the preliminary findings made at the INEL. Because of the broad range of stability issues this paper will mainly focus on potential geysering instabilities during startup. The two NC designs examined in detail are the US Humboldt Bay Unit 3 BWR-1 plant and Dodewaard plant in the Netherlands. The objective of this paper will be to review operating experience of these two plants and evaluate their relevance to planned SBWR operational procedures. For completeness, experimental work with early natural circulation GE test facilities will also be briefly discussed

  20. Supercritical water natural circulation flow stability experiment research

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongliang; Zhou, Tao; Li, Bing [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; North China Electric Power Univ., Beijing (China). Inst. of Nuclear Thermalhydraulic Safety and Standardization; North China Electric Power Univ., Beijing (China). Beijing Key Lab. of Passive Safety Technology for Nuclear Energy; Huang, Yanping [Nuclear Power Institute of China, Chengdu (China). Science and Technology on Reactor System Design Technology Lab.

    2017-12-15

    The Thermal hydraulic characteristics of supercritical water natural circulation plays an important role in the safety of the Generation-IV supercritical water-cooled reactors. Hence it is crucial to conduct the natural circulation heat transfer experiment of supercritical water. The heat transfer characteristics have been studied under different system pressures in the natural circulation systems. Results show that the fluctuations in the subcritical flow rate (for natural circulation) is relatively small, as compared to the supercritical flow rate. By increasing the heating power, it is observed that the amplitude (and time period) of the fluctuation tends to become larger for the natural circulation of supercritical water. This tends to show the presence of flow instability in the supercritical water. It is possible to observe the flow instability phenomenon when the system pressure is suddenly reduced from the supercritical pressure state to the subcritical state. At the test outlet section, the temperature is prone to increase suddenly, whereas the blocking effect may be observed in the inlet section of the experiment.

  1. Helium compressor aerodynamic design considerations for MHTGR circulators

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1988-01-01

    Compressor aerodynamic design considerations for both the main and shutdown cooling circulators in the Modular High-Temperature Gas-Cooled Reactor (MHTGR) plant are addressed in this paper. A major selection topic relates to the impeller type (i.e., axial or radial flow), and the aerothermal studies leading to the selection of optimum parameters are discussed. For the conceptual designs of the main and shutdown cooling circulators, compressor blading geometries were established and helium gas flow paths defined. Both circulators are conservative by industrial standards in terms of aerodynamic and structural loading, and the blade tip speeds are particularly modest. Performance characteristics are presented, and the designs embody margin to ensure that pressure-rise growth potential can be accomodated should the circuit resistance possibly increase as the plant design advances. The axial flow impeller for the main circulator is very similar to the Fort St. Vrain (FSV) helium compressor which performs well. A significant technology base exists for the MHTGR plant circulators, and this is highlighted in the paper. (author). 15 refs, 16 figs, 12 tabs

  2. Main pulmonary artery cross-section ratio is low in fetuses with tetralogy of Fallot and ductus arteriosus-dependent pulmonary circulation.

    Science.gov (United States)

    Ebishima, Hironori; Kurosaki, Kenichi; Yoshimatsu, Jun; Shiraishi, Isao

    2017-08-01

    This study aimed to determine fetal echocardiographic features of tetralogy of Fallot in association with postnatal outcomes. The Z-scores of the main and bilateral pulmonary arteries and the aorta were measured, and the following variables were calculated in 13 fetuses with tetralogy of Fallot: pulmonary artery-to-aorta ratio and main pulmonary artery cross-section ratio - the main pulmonary artery diameter squared divided by the sum of the diameter squared of the left and right pulmonary arteries. Fetuses were classified as having ductus arteriosus-dependent or ductus arteriosus-independent pulmonary circulation. We included two infants with pulmonary atresia and six infants with ductus-dependent pulmonary circulation, who underwent systemic-to-pulmonary shunt surgeries at ⩽1 month of age. The Z-scores of the main pulmonary artery and the pulmonary artery-to-aorta ratio in fetuses with ductus-dependent pulmonary circulation were lesser than those in fetuses with ductus independence, but not significantly. The main pulmonary artery cross-section ratio in fetuses with ductus dependence was significantly lesser (0.65±0.44 versus 1.56±0.48, ptetralogy of Fallot.

  3. Circulating cell-free DNA and circulating tumor cells, the "liquid biopsies" in ovarian cancer.

    Science.gov (United States)

    Cheng, Xianliang; Zhang, Lei; Chen, Yajuan; Qing, Chen

    2017-11-13

    Limited understanding of ovarian cancer (OC) genome portrait has hindered the therapeutic advances. The serial monitoring of tumor genotypes is becoming increasingly attainable with circulating cell-free DNA (cf-DNA) and circulating tumor cells (CTCs) emerging as "liquid biopsies". They represent non-invasive biomarkers and are viable, as they can be isolated from human plasma, serum and other body fluids. Molecular characterization of circulating tumor DNA (ct-DNA) and CTCs offer unique potentials to better understand the biology of metastasis and resistance to therapies. The liquid biopsies may also give innovative insights into the process of rapid and accurate identification, resistant genetic alterations and a real time monitoring of treatment responses. In addition, liquid biopsies are shedding light on elucidating signal pathways involved in invasiveness and metastasis competence; but the detection and molecular characterization of ct-DNA and CTCs are still challenging, since they are rare, and the amount of available samples are very limited. This review will focus on the clinical potential of ct-DNA and CTCs in both the early and advanced diagnosis, prognosis, and in the identification of resistance mutations in OC.

  4. Massively Parallel Assimilation of TOGA/TAO and Topex/Poseidon Measurements into a Quasi Isopycnal Ocean General Circulation Model Using an Ensemble Kalman Filter

    Science.gov (United States)

    Keppenne, Christian L.; Rienecker, Michele; Borovikov, Anna Y.; Suarez, Max

    1999-01-01

    A massively parallel ensemble Kalman filter (EnKF)is used to assimilate temperature data from the TOGA/TAO array and altimetry from TOPEX/POSEIDON into a Pacific basin version of the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. The EnKF is an approximate Kalman filter in which the error-covariance propagation step is modeled by the integration of multiple instances of a numerical model. An estimate of the true error covariances is then inferred from the distribution of the ensemble of model state vectors. This inplementation of the filter takes advantage of the inherent parallelism in the EnKF algorithm by running all the model instances concurrently. The Kalman filter update step also occurs in parallel by having each processor process the observations that occur in the region of physical space for which it is responsible. The massively parallel data assimilation system is validated by withholding some of the data and then quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The distributions of the forecast and analysis error covariances predicted by the ENKF are also examined.

  5. Influence of glacial ice sheets on the Atlantic meridional overturning circulation through surface wind change

    Science.gov (United States)

    Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le

    2018-04-01

    Coupled modeling studies have recently shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). However, most models show a strong AMOC in their simulations of the Last Glacial Maximum (LGM), which is biased compared to reconstructions that indicate both a weaker and stronger AMOC during the LGM. Therefore, a detailed investigation of the mechanism behind this intensification of the AMOC is important for a better understanding of the glacial climate and the LGM AMOC. Here, various numerical simulations are conducted to focus on the effect of wind changes due to glacial ice sheets on the AMOC and the crucial region where the wind modifies the AMOC. First, from atmospheric general circulation model experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model experiments, the influence of the wind stress change on the AMOC is evaluated by applying wind stress anomalies regionally or at different magnitudes as a boundary condition. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress at the North Atlantic mid-latitudes, which is induced by the North American ice sheet. This intensification of the AMOC is caused by the increased oceanic horizontal and vertical transport of salt, while the change in sea ice transport has an opposite, though minor, effect. Experiments further show that the Eurasian ice sheet intensifies the AMOC by directly affecting the deep-water formation in the Norwegian Sea.

  6. Non linear stability analysis of parallel channels with natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Ashish Mani; Singh, Suneet, E-mail: suneet.singh@iitb.ac.in

    2016-12-01

    Highlights: • Nonlinear instabilities in natural circulation loop are studied. • Generalized Hopf points, Sub and Supercritical Hopf bifurcations are identified. • Bogdanov–Taken Point (BT Point) is observed by nonlinear stability analysis. • Effect of parameters on stability of system is studied. - Abstract: Linear stability analysis of two-phase flow in natural circulation loop is quite extensively studied by many researchers in past few years. It can be noted that linear stability analysis is limited to the small perturbations only. It is pointed out that such systems typically undergo Hopf bifurcation. If the Hopf bifurcation is subcritical, then for relatively large perturbation, the system has unstable limit cycles in the (linearly) stable region in the parameter space. Hence, linear stability analysis capturing only infinitesimally small perturbations is not sufficient. In this paper, bifurcation analysis is carried out to capture the non-linear instability of the dynamical system and both subcritical and supercritical bifurcations are observed. The regions in the parameter space for which subcritical and supercritical bifurcations exist are identified. These regions are verified by numerical simulation of the time-dependent, nonlinear ODEs for the selected points in the operating parameter space using MATLAB ODE solver.

  7. Circulating nucleic acids and evolution.

    Science.gov (United States)

    Anker, Philippe; Stroun, Maurice

    2012-06-01

    J.B. Lamarck in 1809 was the first to present a theory of evolution. He proposed it was due to the adaptation of species to environmental changes, this adaptation being acquired by the offspring. In 1868, Darwin suggested that cells excrete gemmules, which circulate through the body and reach the gonads where they are transmitted to the next generation. His main argument came from graft hybrids. In the fifties and sixties, Russian geneticists, rejecting neo-Darwinism, said that acquired characteristics were the basis of evolution. The main experiments on which they based their theory were the transmission of hereditary characteristics by a special technique of grafting between two varieties of plants. We repeated this kind of experiment and also succeeded in obtaining hereditary modifications of the pupil plants that acquired some characteristics of the mentor variety. Rather than adopting the views of the Russian scientists, we suggested that DNA was circulating between the mentor and pupil plants. Hirata's group have shown recently, by using molecular techniques such as cloning, RFLP PCR and sequencing some genes of their graft hybrids of pepper plants, that transfer of informative molecules from the mentor to the pupil plant does exist. Nucleic acids are actively released by cells; they circulate in the body. They can transform oncogenically or trigger antibody response but the only genetic transformation showing that DNA can go from the soma to the germen comes from graft hybrids. This suggests that circulating nucleic acids, in this case DNA, like Darwin's gemmules, play a role in the mechanism of evolution.

  8. Electric power monthly, May 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This publication presents monthly electricity statistics for a wide audience including Congress, Federal and Stage agencies, the electric utility industry, and the general public. Purpose is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. EIA collected the information to fulfill its data collection and dissemination responsibilities in Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  9. Circulating water pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Satoh, Hiroshi; Ohmori, Tsuneaki

    1979-01-01

    Shortly, the nuclear power station with unit power output of 1100 MW will begin the operation, and the circulating water pumps manufactured recently are those of 2.4 to 4 m bore, 840 to 2170 m 3 /min discharge and 2100 to 5100 kW driving power. The circulating water pumps are one of important auxiliary machines, because if they fail, power generation capacity lowers immediately. Enormous quantity of cooling water is required to cool condensers, therefore in Japan, sea water is usually used. As siphon is formed in circulating water pipes, the total head of the pumps is not very high. The discharge of the pumps is determined so as to keep the temperature rise of discharged water lower than 7 deg. C. The quantity of cooling water for nuclear power generation is about 50% more as compared with thermal power generation because of the difference in steam conditions. The total head of the pumps is normally from 8 to 15 m. The circulating water pumps rarely stop after they started the operation, therefore it is economical to determine the motor power so that it can withstand 10% overload for a short period, instead of large power. At present, vertical shaft, oblique flow circulating water pumps are usually employed. Recently, movable blade pumps are adopted. The installation, construction and materials of the pumps and the problems are described. (Kako, I.)

  10. Iron and obesity status-associated insulin resistance influence circulating fibroblast-growth factor-23 concentrations.

    Directory of Open Access Journals (Sweden)

    José Manuel Fernández-Real

    Full Text Available Fibroblast growth factor 23 (FGF-23 is known to be produced by the bone and linked to metabolic risk. We aimed to explore circulating FGF-23 in association with fatness and insulin sensitivity, atherosclerosis and bone mineral density (BMD. Circulating intact FGF-23 (iFGF-23 and C-terminal (CtFGF-23 concentrations (ELISA were measured in 133 middle aged men from the general population in association with insulin sensitivity (Cohort 1; and in association with fat mass and bone mineral density (DEXA and atherosclerosis (intima media thickness, IMT in 78 subjects (52 women with a wide range of adiposity (Cohort 2. Circulating iFGF-23 was also measured before and after weight loss. In all subjects as a whole, serum intact and C-terminal concentrations were linearly and positively associated with BMI. In cohort 1, both serum iFGF-23 and CtFGF-23 concentrations increased with insulin resistance. Serum creatinine contributed to iFGF-23 variance, while serum ferritin and insulin sensitivity (but not BMI, age or serum creatinine contributed to 17% of CtFGF-23 variance. In cohort 2, CtFGF-23 levels were higher in women vs. men, and increased with BMI, fat mass, fasting and post-load serum glucose, insulin, HOMA-IR and PTH, being negatively associated with circulating vitamin D and ferritin levels. The associations of CtFGF-23 with bone density in the radius, lumbar spine and carotid IMT were no longer significant after controlling for BMI. Weight loss led to decreased iFGF-23 concentrations. In summary, the associations of circulating FGF-23 concentration with parameters of glucose metabolism, bone density and atherosclerosis are dependent on iron and obesity status-associated insulin resistance.

  11. An Atmospheric General Circulation Model with Chemistry for the CRAY T3E: Design, Performance Optimization and Coupling to an Ocean Model

    Science.gov (United States)

    Farrara, John D.; Drummond, Leroy A.; Mechoso, Carlos R.; Spahr, Joseph A.

    1998-01-01

    The design, implementation and performance optimization on the CRAY T3E of an atmospheric general circulation model (AGCM) which includes the transport of, and chemical reactions among, an arbitrary number of constituents is reviewed. The parallel implementation is based on a two-dimensional (longitude and latitude) data domain decomposition. Initial optimization efforts centered on minimizing the impact of substantial static and weakly-dynamic load imbalances among processors through load redistribution schemes. Recent optimization efforts have centered on single-node optimization. Strategies employed include loop unrolling, both manually and through the compiler, the use of an optimized assembler-code library for special function calls, and restructuring of parts of the code to improve data locality. Data exchanges and synchronizations involved in coupling different data-distributed models can account for a significant fraction of the running time. Therefore, the required scattering and gathering of data must be optimized. In systems such as the T3E, there is much more aggregate bandwidth in the total system than in any particular processor. This suggests a distributed design. The design and implementation of a such distributed 'Data Broker' as a means to efficiently couple the components of our climate system model is described.

  12. Genetic determinants of circulating sphingolipid concentrations in European populations.

    Directory of Open Access Journals (Sweden)

    Andrew A Hicks

    2009-10-01

    Full Text Available Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI, cardiomyopathy, pancreatic beta-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS between 318,237 single-nucleotide polymorphisms (SNPs and levels of circulating sphingomyelin (SM, dihydrosphingomyelin (Dih-SM, ceramide (Cer, and glucosylceramide (GluCer single lipid species (33 traits; and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32 in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08x10(-66. The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1-3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3 associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10(-4 or less. Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be

  13. The Dichromatic Number of Infinite Families of Circulant Tournaments

    Directory of Open Access Journals (Sweden)

    Javier Nahid

    2017-02-01

    Full Text Available The dichromatic number dc(D of a digraph D is defined to be the minimum number of colors such that the vertices of D can be colored in such a way that every chromatic class induces an acyclic subdigraph in D. The cyclic circulant tournament is denoted by T=C→2n+1(1,2,…,n$T = \\overrightarrow C _{2n + 1} (1,2, \\ldots ,n$, where V (T = ℤ2n+1 and for every jump j ∈ {1, 2, . . . , n} there exist the arcs (a, a + j for every a ∈ ℤ2n+1. Consider the circulant tournament C→2n+1〈k〉$\\overrightarrow C _{2n + 1} \\left\\langle k \\right\\rangle $ obtained from the cyclic tournament by reversing one of its jumps, that is, C→2n+1 〈k〉$\\overrightarrow C _{2n + 1} \\left\\langle k \\right\\rangle $ has the same arc set as C→2n+1(1,2,…,n$\\overrightarrow C _{2n + 1} (1,2, \\ldots ,n$ except for j = k in which case, the arcs are (a, a − k for every a ∈ ℤ2n+1. In this paper, we prove that dc(C→2n+1 〈k〉∈{2,3,4}$dc ( {\\overrightarrow C _{2n + 1} \\left\\langle k \\right\\rangle } \\in \\{ 2,3,4\\}$ for every k ∈ {1, 2, . . . , n}. Moreover, we classify which circulant tournaments C→2n+1 〈k〉$\\overrightarrow C _{2n + 1} \\left\\langle k \\right\\rangle$ are vertex-critical r-dichromatic for every k ∈ {1, 2, . . . , n} and r ∈ {2, 3, 4}. Some previous results by Neumann-Lara are generalized.

  14. Natural Circulation Characteristics of an Integral Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Junli Gou; Suizheng Qiu; Guanghui Su; Dounan Jia

    2006-01-01

    Natural circulation potential is of great importance to the inherent safety of a nuclear reactor. This paper presents a theoretical investigation on the natural circulation characteristics of an integrated pressurized water reactor. Through numerically solved the one-dimensional model, the steady-state single phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the once-through steam generator, the natural circulation characteristics are studied. Based on the preliminary calculation analysis, it is found that natural circulation mass flow rate is proportional to the exponential function of the power, and the value of the exponent is related to working conditions of the steam generator secondary side. The higher height difference between the core center and the steam generator center is favorable to the heat removal capacity of the natural circulation. (authors)

  15. Natural Circulation Phenomena and Modelling for Advanced Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-03-01

    The role of natural circulation in advanced water cooled reactor design has been extended with the adoption of passive safety systems. Some designs utilize natural circulation to remove core heat during normal operation. Most passive safety systems used in evolutionary and innovative water cooled reactor designs are driven by natural circulation. The use of passive systems based on natural circulation can eliminate the costs associated with the installation, maintenance and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. Several IAEA Member States with advanced reactor development programmes are actively conducting investigations of natural circulation to support the development of advanced water cooled reactor designs with passive safety systems. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, in 2004 the IAEA initiated a coordinated research project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation. Three reports were published within the framework of this CRP. The first report (IAEA-TECDOC-1474) contains the material developed for the first IAEA training course on natural circulation in water cooled nuclear power plants. The second report (IAEA-TECDOC-1624) describes passive safety systems in a wide range of advanced water cooled nuclear power plant designs, with the goal of gaining insights into system design, operation and reliability. This third, and last, report summarizes the research studies completed by participating institutes during the CRP period.

  16. Proper Sizing of Circulation Pumps

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Nørgaard, Jørgen

    2007-01-01

    The paper describes the preliminary results from field tests of replacing various types of old pumps used for circulating water in heating systems in single- and double-family houses with new types of pumps. The tests were carried out in Denmark for the Danish Electricity Savings Trust, but the r......The paper describes the preliminary results from field tests of replacing various types of old pumps used for circulating water in heating systems in single- and double-family houses with new types of pumps. The tests were carried out in Denmark for the Danish Electricity Savings Trust...

  17. Electric power monthly, July 1997 with data for April 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. 57 tabs.

  18. Electric power monthly, June 1997 with data for March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. 63 tabs.

  19. Vertical mixing by Langmuir circulations

    International Nuclear Information System (INIS)

    McWilliams, James C.; Sullivan, Peter P.

    2001-01-01

    Wind and surface wave frequently induce Langmuir circulations (LC) in the upper ocean, and the LC contribute to mixing materials down from the surface. In this paper we analyze large-eddy simulation (LES) cases based on surface-wave-averaged, dynamical equations and show that the effect of the LC is a great increase in the vertical mixing efficiency for both material properties and momentum. We provide new confirmation that the previously proposed K-profile parameterization (KPP) model accurately characterizes the turbulent transport in a weakly convective, wind-driven boundary layer with stable interior stratification. We also propose a modest generalization of KPP for the regime of weakly convective Langmuir turbulence. This makes the KPP turbulent flux profiles match those in the LES case with LC present fairly well, especially so for material properties being transported downwards from the ocean surface. However, some open issues remain about how well the present LES and KPP formulations represent Langmuir turbulence, in part because wave-breaking effects are not yet included. (Author)

  20. Isomorphic Operators and Functional Equations for the Skew-Circulant Algebra

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available The skew-circulant matrix has been used in solving ordinary differential equations. We prove that the set of skew-circulants with complex entries has an idempotent basis. On that basis, a skew-cyclic group of automorphisms and functional equations on the skew-circulant algebra is introduced. And different operators on linear vector space that are isomorphic to the algebra of n×n complex skew-circulant matrices are displayed in this paper.

  1. Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports.

    Science.gov (United States)

    Daryabor, Farshid; Ooi, See Hai; Samah, Azizan Abu; Akbari, Abolghasem

    2016-01-01

    A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation) controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea.

  2. Analysis of the relationship between the monthly temperatures and weather types in Iberian Peninsula

    Science.gov (United States)

    Peña Angulo, Dhais; Trigo, Ricardo; Nicola, Cortesi; José Carlos, González-Hidalgo

    2016-04-01

    In this study, the relationship between the atmospheric circulation and weather types and the monthly average maximum and minimum temperatures in the Iberian Peninsula is modeled (period 1950-2010). The temperature data used were obtained from a high spatial resolution (10km x 10km) dataset (MOTEDAS dataset, Gonzalez-Hidalgo et al., 2015a). In addition, a dataset of Portuguese temperatures was used (obtained from the Portuguese Institute of Sea and Atmosphere). The weather type classification used was the one developed by Jenkinson and Collison, which was adapted for the Iberian Peninsula by Trigo and DaCamara (2000), using Sea Level Pressure data from NCAR/NCEP Reanalysis dataset (period 1951-2010). The analysis of the behaviour of monthly temperatures based on the weather types was carried out using a stepwise regression procedure of type forward to estimate temperatures in each cell of the considered grid, for each month, and for both maximum and minimum monthly average temperatures. The model selects the weather types that best estimate the temperatures. From the validation model it was obtained the error distribution in the time (months) and space (Iberian Peninsula). The results show that best estimations are obtained for minimum temperatures, during the winter months and in coastal areas. González-Hidalgo J.C., Peña-Angulo D., Brunetti M., Cortesi, C. (2015a): MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951-2010). International Journal of Climatology 31, 715-731. DOI: 10.1002/joc.4298

  3. Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data

    Energy Technology Data Exchange (ETDEWEB)

    Plavcova, Eva [Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague 4 (Czech Republic); Technical University, Department of Applied Mathematics, Liberec (Czech Republic); Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Kysely, Jan [Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague 4 (Czech Republic); Technical University, Department of Applied Mathematics, Liberec (Czech Republic)

    2012-10-15

    The study examines simulation of atmospheric circulation, represented by circulation indices (flow direction, strength and vorticity), and links between circulation and daily surface air temperatures in regional climate models (RCMs) over Central Europe. We explore control simulations of five high-resolution RCMs from the ENSEMBLES project driven by re-analysis (ERA-40) and the same global climate model (ECHAM5 GCM) plus of one RCM (RCA) driven by different GCMs. The aims are to (1) identify errors in RCM-simulated distributions of circulation indices in individual seasons, (2) identify errors in simulated temperatures under particular circulation indices, and (3) compare performance of individual RCMs with respect to the driving data. Although most of the RCMs qualitatively reflect observed distributions of the airflow indices, each produces distributions significantly different from the observations. General biases include overestimation of the frequency of strong flow days and of strong cyclonic vorticity. Some circulation biases obviously propagate from the driving data. ECHAM5 and all simulations driven by ECHAM5 underestimate frequency of easterly flow, mainly in summer. Except for HIRHAM, however, all RCMs driven by ECHAM5 improve on the driving GCM in simulating atmospheric circulation. The influence on circulation characteristics in the nested RCM differs between GCMs, as demonstrated in a set of RCA simulations with different driving data. The driving data control on circulation in RCA is particularly weak for the BCM GCM, in which case RCA substantially modifies (but does not improve) the circulation from the driving data in both winter and summer. Those RCMs with the most distorted atmospheric circulation are HIRHAM driven by ECHAM5 and RCA driven by BCM. Relatively strong relationships between circulation indices and surface air temperatures were found in the observed data for Central Europe. The links differ by season and are usually stronger for

  4. Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data

    International Nuclear Information System (INIS)

    Plavcova, Eva; Kysely, Jan

    2012-01-01

    The study examines simulation of atmospheric circulation, represented by circulation indices (flow direction, strength and vorticity), and links between circulation and daily surface air temperatures in regional climate models (RCMs) over Central Europe. We explore control simulations of five high-resolution RCMs from the ENSEMBLES project driven by re-analysis (ERA-40) and the same global climate model (ECHAM5 GCM) plus of one RCM (RCA) driven by different GCMs. The aims are to (1) identify errors in RCM-simulated distributions of circulation indices in individual seasons, (2) identify errors in simulated temperatures under particular circulation indices, and (3) compare performance of individual RCMs with respect to the driving data. Although most of the RCMs qualitatively reflect observed distributions of the airflow indices, each produces distributions significantly different from the observations. General biases include overestimation of the frequency of strong flow days and of strong cyclonic vorticity. Some circulation biases obviously propagate from the driving data. ECHAM5 and all simulations driven by ECHAM5 underestimate frequency of easterly flow, mainly in summer. Except for HIRHAM, however, all RCMs driven by ECHAM5 improve on the driving GCM in simulating atmospheric circulation. The influence on circulation characteristics in the nested RCM differs between GCMs, as demonstrated in a set of RCA simulations with different driving data. The driving data control on circulation in RCA is particularly weak for the BCM GCM, in which case RCA substantially modifies (but does not improve) the circulation from the driving data in both winter and summer. Those RCMs with the most distorted atmospheric circulation are HIRHAM driven by ECHAM5 and RCA driven by BCM. Relatively strong relationships between circulation indices and surface air temperatures were found in the observed data for Central Europe. The links differ by season and are usually stronger for

  5. Clozapine usage increases the incidence of pneumonia compared with risperidone and the general population: a retrospective comparison of clozapine, risperidone, and the general population in a single hospital over 25 months.

    Science.gov (United States)

    Stoecker, Zachary R; George, Wales T; O'Brien, Jeffrey B; Jancik, Jon; Colon, Eduardo; Rasimas, Joseph J

    2017-05-01

    The aim of this study was to determine whether the incidence of pneumonia in patients taking clozapine was more frequent compared with those taking risperidone or no atypical antipsychotics at all before admission to a tertiary care medical center. This was a retrospective, case-matched study of 465 general medicine patients over a 25 month period from 1 July 2010 to 31 July 2012. Detailed electronic medical records were analyzed to explore the association between the use of two atypical antipsychotics and incidence of pneumonia. Of the 155 patients in the clozapine group, 54 (34.8%) had documented pneumonia compared with 22 (14.2%) in the risperidone group and 18 (11.6%) in the general population group. Clozapine, when compared with the untreated general population, was associated with an increased risk of pneumonia (odds ratio=4.07; 95% confidence interval=2.25-7.36). There was, however, no significant increase in the risk of pneumonia associated with the use of risperidone (odds ratio=1.26; 95% confidence interval=0.65-2.45). Clozapine use is associated with increased risk of pneumonia that may be related to immunologic factors or side effects of sedation and drooling that make aspiration more likely, although causative mechanisms require further investigation. These findings suggest that providers should use added caution in choosing candidates for clozapine therapy.

  6. Kinematic vorticity number – a tool for estimating vortex sizes and circulations

    Directory of Open Access Journals (Sweden)

    Lisa Schielicke

    2016-02-01

    Full Text Available The influence of extratropical vortices on a global scale is mainly characterised by their size and by the magnitude of their circulation. However, the determination of these properties is still a great challenge since a vortex has no clear delimitations but is part of the flow field itself. In this work, we introduce a kinematic vortex size determination method based on the kinematic vorticity number Wk to atmospheric flows. Wk relates the local rate-of-rotation to the local rate-of-deformation at every point in the field and a vortex core is identified as a simply connected region where the rotation prevails over the deformation. Additionally, considering the sign of vorticity in the extended Wk-method allows to identify highs and lows in different vertical layers of the atmosphere and to study vertical as well as horizontal vortex interactions. We will test the Wk-method in different idealised -D (superposition of two lows/low and jet and real -D flow situations (winter storm affecting Europe and compare the results with traditional methods based on the pressure and the vorticity fields. In comparison to these traditional methods, the Wk-method is able to extract vortex core sizes even in shear-dominated regions that occur frequently in the upper troposphere. Furthermore, statistics of the size and circulation distributions of cyclones will be given. Since the Wk-method identifies vortex cores, the identified radii are subsynoptic with a broad peak around 300–500 km at the 1000 hPa level. However, the total circulating area is not only restricted to the core. In general, circulations are in the order of 107 m2/s with only a few cyclones in the order of 108 m2/s.

  7. Methods of quantifying circulating IgE

    International Nuclear Information System (INIS)

    Merrett, T.G.; Merrett, J.

    1978-01-01

    Four radioimmunoassay techniques, two conventional and two sandwich, have been used to measure circulating IgE levels in 100 sera. The test sera had IgE levels ranging from 1.0 to 20,000 u/ml, and each was measured at five dilutions, ranging from three-fold to 400-fold. The same IgE standards were used throughout, and the optimal range for each assay was determined by assessing data for quality control sera and the WHO standard 69/204. To be of general use in the United Kingdom an IgE test must measure accurately levels as low as 20-30 u IgE/ml. The Phadebas RIST method failed to meet this criterion, and of the remaining tests the double antibody method had the most useful operating range and produced the most reliable results. However, the double antibody method is not available commercially and so, for the majority of laboratories, the Phadebas PRIST technique should be the method chosen. (author)

  8. Abstract rule learning in 11- and 14-month-old infants.

    Science.gov (United States)

    Koulaguina, Elena; Shi, Rushen

    2013-02-01

    This study tests the hypothesis that distributional information can guide infants in the generalization of word order movement rules at the initial stage of language acquisition. Participants were 11- and 14-month-old infants. Stimuli were sentences in Russian, a language that was unknown to our infants. During training the word order of each sentence was transformed following a consistent pattern (e.g., ABC-BAC). During the test phase infants heard novel sentences that respected the trained rule and ones that violated the trained rule (i.e., a different transformation such as ABC-ACB). Stimuli words had highly variable phonological and morphological shapes. The cue available was the positional information of words and their non-adjacent relations across sentences. We found that 14-month-olds, but not 11-month-olds, showed evidence of abstract rule generalization to novel instances. The implications of this finding to early syntactic acquisition are discussed.

  9. Circulating microRNAs in breast cancer

    DEFF Research Database (Denmark)

    Hamam, Rimi; Hamam, Dana; Alsaleh, Khalid A

    2017-01-01

    Effective management of breast cancer depends on early diagnosis and proper monitoring of patients' response to therapy. However, these goals are difficult to achieve because of the lack of sensitive and specific biomarkers for early detection and for disease monitoring. Accumulating evidence in ...... circulating miRNAs as diagnostic, prognostic or predictive biomarkers in breast cancer management.......Effective management of breast cancer depends on early diagnosis and proper monitoring of patients' response to therapy. However, these goals are difficult to achieve because of the lack of sensitive and specific biomarkers for early detection and for disease monitoring. Accumulating evidence...... in the past several years has highlighted the potential use of peripheral blood circulating nucleic acids such as DNA, mRNA and micro (mi)RNA in breast cancer diagnosis, prognosis and for monitoring response to anticancer therapy. Among these, circulating miRNA is increasingly recognized as a promising...

  10. Testing for seasonal unit roots in monthly panels of time series

    NARCIS (Netherlands)

    R.M. Kunst (Robert); Ph.H.B.F. Franses (Philip Hans)

    2009-01-01

    textabstractWe consider the problem of testing for seasonal unit roots in monthly panel data. To this aim, we generalize the quarterly CHEGY test to the monthly case. This parametric test is contrasted with a new nonparametric test, which is the panel counterpart to the univariate RURS test that

  11. Influence of Seasonality and Circulating Cytokines on Serial QuantiFERON Discordances

    Directory of Open Access Journals (Sweden)

    Marsha L. Griffin

    2018-01-01

    Full Text Available Objectives. An 18-month prospective study serially tested healthcare workers (HCWs for tuberculosis infection (TBI and reported discordant QuantiFERON Gold In-Tube® (QFT results in some participants. The purpose of the current study was to investigate whether the interferon-gamma (IFN-γ measured by QFT in discordant individuals could be influenced by other circulating cytokines that vary seasonally at the time of phlebotomy. Methods. The CDC funded TBESC Task Order 18 (TO18 project to assess the use of Interferon Gamma Release Assays (IGRAs, T-SPOT.TB® and QFT, compared to the tuberculin skin test (TST for the serial testing of TBI in HCW at 4 US sites. Unstimulated plasma from 9 discordant TO18 participants at 4 different time points from the Houston site was multiplexed to determine the association between circulating cytokines and antigen stimulated IFN-γ levels. Results. IL-12, IL-1β, IL-3, GCSF, and IL-7 were associated with the amount of IFN-γ measured in response to antigen stimulation. In addition to these cytokines, a significant relationship was found between a positive QFT result and the spring season. Conclusions. Allergens during the spring season can result in the upregulation of IL-1β and IL-3, and this upregulation was observed with the amount of IFN-γ measured in discordant results.

  12. Electric power monthly, February 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-16

    The Electric Power Monthly (EMP) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  13. Electric power monthly, January 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels

  14. Electric power monthly, January 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-26

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  15. Electric power monthly, October 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-20

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  16. Investigations On Water Circulation in Animal Sea-Water Basins – On the Example of Seals′ Breeding Pools

    Directory of Open Access Journals (Sweden)

    Zima Piotr

    2017-04-01

    Full Text Available This paper presents general comments concerning investigations on water circulation in animal breeding pools containing sea water. As an example are given results of computer simulation of water circulation in seals′ breeding pools situated in Marine Station at Hel, belonging to Oceanographic Institute , Gdansk University. A mathematical model of three main pools was prepared with taking into account their inflow and outflow water supply points. Next, the object indication ( tracer tests were done with the use of mathematical modelling as well as in-situ measurements. For description of flow field in steady conditions a simplified model of 2D flow in the form of Helmholtz biharmonic equation of stream function , recalculated then into velocity vector components, was used. The equation , supplemented with appropriate boundary conditions , was solved numerically by using the finite differences method. The spreading of a substance dissolved in water (tracer was analyzed by solving 2D equation of transient advecting - dispersing transport. To solve it the finite volumes method was applied. The applied model was verified by conducting the indication tests with the use of the rhodamine WT as a tracer. The obtained results made it possible to reconstruct water circulation within the seals′ pools and identify stagnation zones in which water circulation may be made difficult.

  17. Analysis of the hydrodynamic stability of natural circulation

    International Nuclear Information System (INIS)

    Olive, J.; Baby, J.P.

    1980-01-01

    A mathematical model (EOLE) for the analysis of the stability of boilers with natural circulation is discussed. The method employed consists in linearizing one-dimensional flow equations and in integrating them while employing the Laplace transformation. The properties of a two-phase fluid are schematized by a homogeneous model with slip. The computation results in the circulation loop transfer functions and its natural modes of oscillation (frequency and damping). A discussion follows which compares results obtained with this method to those of other existing models in the case of a straight pipe with forced circulation. Agreement proved to be satisfactory. The results are then given of a parametric study involving the stability of a PWR natural circulation steam generator. These results show that the model can satisfy, at least qualitatively, trends observed empirically or obtained with other more complex theoretical models. (author)

  18. Circulating mesenchymal stem cells and their clinical implications

    Directory of Open Access Journals (Sweden)

    Liangliang Xu

    2014-01-01

    Full Text Available Circulating mesenchymal stem cells (MSCs is a new cell source for tissue regeneration and tissue engineering. The characteristics of circulating MSCs are similar to those of bone marrow-derived MSCs (BM-MSCs, but they exist at a very low level in healthy individuals. It has been demonstrated that MSCs are able to migrate to the sites of injury and that they have some distinct genetic profiles compared to BM-MSCs. The current review summaries the basic knowledge of circulating MSCs and their potential clinical applications, such as mobilizing the BM-MSCs into circulation for therapy. The application of MSCs to cure a broad spectrum of diseases is promising, such as spinal cord injury, cardiovascular repair, bone and cartilage repair. The current review also discusses the issues of using of allogeneic MSCs for clinical therapy.

  19. Monthly energy review, December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-21

    This publication presents an overview of EIA`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. An energy preview of alternative fuel providers vehicle fleet surveys is included. The publication is intended for use by members of Congress, Federal and State agencies, energy analysts, and the general public.

  20. SAVANNAH RIVER TECHNOLOGY CENTER MONTHLY REPORT AUGUST 1992

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M.

    1999-06-21

    'This monthly report summarizes Programs and Accomplishments of the Savannah River Technology Center in support of activities at the Savannah River Site. The following categories are addressed: Reactor, Tritium, Separations, Environmental, Waste Management, General, and Items of Interest.'