WorldWideScience

Sample records for montane coniferous forests

  1. Successional dynamics and restoration implications of a montane coniferous forest in the central Appalachians, USA

    Science.gov (United States)

    Thomas M. Schuler; Rachel J. Collins

    2002-01-01

    Central Appalachian montane red spruce (Picea rubens Sarg.) communities have been greatly reduced in extent and functional quality over the past century. This community decline has put several plant and animal species, such as the endangered Virginia northern flying squirrel (Glaucomys sabrinus fuscus Shaw), at risk from habitat...

  2. Fire history of coniferous riparian forests in the Sierra Nevada

    Science.gov (United States)

    K. Van de Water; M. North

    2010-01-01

    Fire is an important ecological process in many western U.S. coniferous forests, yet high fuel loads, rural home construction and other factors have encouraged the suppression of most wildfires. Using mechanical thinning and prescribed burning, land managers often try to reduce fuels in strategic areas with the highest fuel loads. Riparian forests, however, are often...

  3. Factors affecting the remotely sensed response of coniferous forest plantations

    International Nuclear Information System (INIS)

    Danson, F.M.; Curran, P.J.

    1993-01-01

    Remote sensing of forest biophysical properties has concentrated upon forest sites with a wide range of green vegetation amount and thereby leaf area index and canopy cover. However, coniferous forest plantations, an important forest type in Europe, are managed to maintain a large amount of green vegetation with little spatial variation. Therefore, the strength of the remotely sensed signal will, it is hypothesized, be determined more by the structure of this forest than by its cover. Airborne Thematic Mapper (ATM) and SPOT-1 HRV data were used to determine the effects of this structural variation on the remotely sensed response of a coniferous forest plantation in the United Kingdom. Red and near infrared radiance were strongly and negatively correlated with a range of structural properties and with the age of the stands but weakly correlated with canopy cover. A composite variable, related to the volume of the canopy, accounted for over 75% of the variation in near infrared radiance. A simple model that related forest structural variables to the remotely sensed response was used to understand and explain this response from a coniferous forest plantation

  4. Forest health in Canada, Montane cordillera ecozone 2003

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.; Garbutt, R.; Hirvonen, H.; Pinnell, H.

    2004-07-01

    This paper describes the key forest health issues affecting the 6 main forest types in Canada's Montane Cordillera ecozone in the central interior of British Columbia and the Alberta Foothills. In order to protect and conserve biological diversity, the Canadian Council of Forest Ministers adopted national criteria to measure sustainable forest management. This report describes the Montane Cordillera landscape conditions, pre-industrial ecological influences, current ecological influences, and the impact of invasive alien insects and diseases on the diversity of tree species. Pine forests in the Montane Cordillera ecozone are threatened by the mountain pine beetle. Fire suppression has also resulted in ecological changes to forests in the Montane Cordillera, including an increase in Douglas-firs, gradual replacement of Lodgepole pine forests, and reduced health of Ponderosa pine ecosystems. Alien insects are being monitored by provincial forestry agencies through annual surveys. They are also being controlled through localized treatment programs. The impact of land use practices such as forest harvesting on forest structure and composition was also addressed. It was noted that the unrestricted movement of wood and forestry products also increases the threat of invasive alien diseases and insects. The trees in this ecozone have not been damaged by air pollution. refs., tabs., figs.

  5. The montane forest associated amphibian species of the Taita Hills ...

    African Journals Online (AJOL)

    The montane forest associated amphibian species of the Taita Hills, Kenya. ... They are surrounded by the dry Tsavo plains. ... The biodiversity importance of the Taita Hills lies with the number of endemics per unit of area of remaining forest, ...

  6. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C.J.; Ilvesniemi, H.; Liski, J.; Mecke, M. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H.; Helmisaari, H.S.; Pietikaeinen, J.; Smolander, A. [Finnish Forest Research Inst., Vantaa (Finland)

    1996-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  7. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C J; Ilvesniemi, H; Liski, J; Mecke, M [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H; Helmisaari, H S; Pietikaeinen, J; Smolander, A [Finnish Forest Research Inst., Vantaa (Finland)

    1997-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  8. Effects of air pollution and simulated acid rain on the ground vegetation of coniferous forests

    International Nuclear Information System (INIS)

    Rodenkirchen, H.

    1993-01-01

    Descriptive and experimental studies on the ground vegetation of coniferous forests in Bavaria indicated the following phenomena: a. In N-limited pine forests recent eutrophication effects occur. b. The structure of the moss layer in coniferous forests sensitively reacts to very acid throughfall water (pH [de

  9. Carbon sequestration in managed temperate coniferous forests under climate change

    Science.gov (United States)

    Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.

    2016-03-01

    Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.

  10. BIOGEOGRAPHICAL IMPLICATIONS OF SOME PLANT SPECIES FROM A TROPICAL MONTANE RAIN FOREST IN SOUTHERN YUNNAN

    Institute of Scientific and Technical Information of China (English)

    ZHU Hua

    2004-01-01

    A pristine montane rain forest was recently discovered from Mengsong of Xishuangbanna in the southern Yunnan.It attracts botanists that many primitive plant taxa across various life forms were co-existed in the montane rain forest.In order to know the biogeography of the montane rain forest,distribution patterns of some species of biogeographical importance from the montane forest were enumerated and their biogeographical implications were discussed with geological explanation.It was concluded that the montane rain forest in the southern Yunnan has strong affinity to montane rain forests in Sumatra or Southeast Asia in broad sense.It was tentatively suggested that Sumatra could be once connected to Myanmar and drifted away due to northward movement of continental Asia by bumping of India plate.

  11. Radio-ecological conditions of band coniferous forests

    International Nuclear Information System (INIS)

    Strilchuk, Yu.G.; Osintsev, A.Yu.; Kuzin, D.E.; Bryantseva, N.V.; Tonevitskaya, O.V.; Zhadyranova, A.A.; Kashirskij, V.V.; Korovina, O.Yu.; Lukashenko, S.N.

    2008-01-01

    Full text: Band coniferous forests are located at the right bank of Irtysh river in two oblasts of Kazakhstan - East Kazakhstan and Pavlodar.This is a unique and only forest of this type. Something similar to this natural treasure with climate-regulating, sanitary, soil-protective, water-preserving functions can be found in Canada only. Total area of the band forest comprises 870500 hectares. The forest is mainly presented by pines (Pinus silvestris). These forests are of relict nature and are of great environmental, social and economic value. The band forests located in northern, north-western and western parts of SNTS were subjected several time to radioactive impacts from atmospheric nuclear tests performed at SNTS. Nuclear clouds from 12 ground and 28 atmospheric explosions passed over these territories. Four nuclear tests performed on 29th of August 1949, 29th of July 1955, 7th of August 1962 and 26th of November 1962 resulted in higher radiation dose rates registered on land there. It seems that this particular tests stipulated radioactive contamination of the forests. The first nuclear test performed on 29th of August 1949 resulted in considerable radioactive contamination of the band forests. Contamination was registerd in Novopokrovskij and Beskaragajskij districts of Semipalatinsk oblast as well as in several districts of Altai Territory. The second test that could bring radioactive contamination to the forests was performed on 7th of August 1962 when instead of planned atmospheric explosion, there was achieved surface explosion with comparatively high radioactive contamination of the lands towards Altai Territory. Within the State program ''Forest preservation and expansion of forest in the Republic of Kazakhstan'' there was performed in 2006 a radiological surveying of the lands in pipe forest of near-Irtysh region. There were studied soil and vegetation as well as woods of the band coniferous forests. Part of territory, wherethrough nuclear clouds went

  12. Birds, Montane forest, State of Rio de Janeiro, Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Foster, A.

    2009-01-01

    Full Text Available Field surveys in montane Atlantic forest of Rio de Janeiro state, Brazil, provided a list of 82 bird species in four sitesvisited. Our protocol relied on standardized use of mist nets and observations. The birds recorded include 40 Atlanticforest endemics, three globally and two nationally Vulnerable species, and two regionally Endangered species. Data onspecies elevation are included and discussed. This work enhances baseline knowledge of these species to assist futurestudies in these poorly understood, but biologically important areas.

  13. Effects of tropical montane forest disturbance on epiphytic macrolichens

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Angel [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Prieto, Maria, E-mail: maria.prieto@urjc.es [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain); Gonzalez, Yadira [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Aragon, Gregorio [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain)

    2012-12-15

    The high diversity of epiphytes typical of undisturbed montane tropical forests has been negatively affected by continuous deforestation and forest conversion to secondary vegetation. Macrolichens are an important component of these epiphytes. Because their physiology is strongly coupled to humidity and solar radiation, we hypothesized that microclimatic changes derived from forest clearing and logging can affect the diversity of these poikilohydric organisms. In southern Ecuador, we examined three types of forests according to a disturbance gradient (primary forests, secondary forests, and monospecific forests of Alnus acuminata) for the presence/absence and coverage of epiphytic macrolichens that we identified on 240 trees. We found that total richness tended to decrease when the range of the disturbance increased. The impoverishment was particularly drastic for 'shade-adapted lichens', while the richness of 'heliophytic lichens' increased in the drier conditions of secondary growth. Epiphytic composition also differed significantly among the three types of forests, and the similarity decreased when the range of the disturbance was greater. We concluded that a span of 40 years of recovery by secondary vegetation was not enough to regenerate the diversity of epiphytic macrolichens that was lost due to forest disturbances. -- Highlights: Black-Right-Pointing-Pointer Tropical montane forest disturbance drastically reduced macrolichen diversity. Black-Right-Pointing-Pointer Species loss was most severe for the 'shade-adapted lichens' because high radiation is harmful to them. Black-Right-Pointing-Pointer In secondary forests lichen diversity of native forests was not regenerated. Black-Right-Pointing-Pointer The protection of remnants of primary tropical forest might help to preserve a diverse community of epiphytic macrolichens.

  14. Effects of tropical montane forest disturbance on epiphytic macrolichens

    International Nuclear Information System (INIS)

    Benítez, Ángel; Prieto, María; González, Yadira; Aragón, Gregorio

    2012-01-01

    The high diversity of epiphytes typical of undisturbed montane tropical forests has been negatively affected by continuous deforestation and forest conversion to secondary vegetation. Macrolichens are an important component of these epiphytes. Because their physiology is strongly coupled to humidity and solar radiation, we hypothesized that microclimatic changes derived from forest clearing and logging can affect the diversity of these poikilohydric organisms. In southern Ecuador, we examined three types of forests according to a disturbance gradient (primary forests, secondary forests, and monospecific forests of Alnus acuminata) for the presence/absence and coverage of epiphytic macrolichens that we identified on 240 trees. We found that total richness tended to decrease when the range of the disturbance increased. The impoverishment was particularly drastic for “shade-adapted lichens”, while the richness of “heliophytic lichens” increased in the drier conditions of secondary growth. Epiphytic composition also differed significantly among the three types of forests, and the similarity decreased when the range of the disturbance was greater. We concluded that a span of 40 years of recovery by secondary vegetation was not enough to regenerate the diversity of epiphytic macrolichens that was lost due to forest disturbances. -- Highlights: ► Tropical montane forest disturbance drastically reduced macrolichen diversity. ► Species loss was most severe for the “shade-adapted lichens” because high radiation is harmful to them. ► In secondary forests lichen diversity of native forests was not regenerated. ► The protection of remnants of primary tropical forest might help to preserve a diverse community of epiphytic macrolichens.

  15. Root hydraulic vulnerability regulation of whole-plant conductance along hillslope gradients within subalpine and montane forests

    Science.gov (United States)

    Beverly, D.; Speckman, H. N.; Ewers, B. E.

    2017-12-01

    Ecosystem-scale models often rely on root vulnerability or whole-plant conductance for simulating seasonal evapotranspiration declines via constraints of water uptake and vegetation mortality. Further, many of these ecosystem models rely on single, unvarying, hydraulic parameter estimates for modeling large areas. Ring-porous species have shown seasonal variability in root vulnerability (percent loss of conductivity; PLC) and whole-plant conductance (Kw) but simulations of coniferous forest typically rely on point measurements. This assumption for coniferous forest is not likely true because of seasonal variability caused by phenology and environmental stresses and the potential for cavitation fatigue is not considered. Moreover, many of these dynamics have only been considered for stems even though roots are often the most vulnerable segments of the pathway for conifers. We hypothesized that seasonally dynamic whole-plant conductance along hillslope gradients in coniferous forests are regulated by cavitation fatigue within the roots resulting in seasonal increases in vulnerability. To test the hypothesis, a subalpine mixed forest (3000 m.a.s.l) and montane forest (2550 m.a.s.l.) were monitored between 2015-2017 to quantify PLC and Kw along the hillslope gradients of 300 m and 50 m, respectively. Forest plots were instrumented with 35 Granier-type sapflow sensors. Seasonal sampling campaigns occurred to quantify PLC through centrifuge techniques and Kw through Darcy's law approximations with pre-dawn and diurnal leaf water potentials. Downslope roots exhibit a 33% decrease in maximal conductivity corresponding to the approximately 50% decrease in whole-plant conductance suggesting seasonal soil dry-down limitations within the downslope stands. Upslope stands had no to little change in root vulnerability or decrease in whole-plant conductance as soil water limitations occur immediately following snowmelt, thus limiting hydraulic conductance throughout the growing

  16. Transfer of 137Cs from soil to plants in a wet montane forest in subtropical Taiwan

    International Nuclear Information System (INIS)

    Chih-Yu Chiu

    1999-01-01

    The distribution of 137 Cs in an undisturbed, multistoried, subtropical wet montane forest ecosystem surrounding Yuanyang Lake (lake surface level ca. 1670 m, in northeastern Taiwan), was investigated. The mossy forest here represents a currently-rare perhumid temperate environment in subtropical region. The radioactivity concentration of 137 Cs was determined by γ-spectroscopy with a Ge(Li) detector. Although the soil is extremely acidic (pH 3.3 to 3.6) and the rainfall is high, 137 Cs is evidently retained in the organic layer. The radioactivity concentration of 137 Cs in surface soil ranges from 28 to 71 Bq x kg -1 . The concentrations of 137 Cs in the ground moss layer and litter were much lower than that in the soil organic layer; this suggests that 137 Cs detected is not from the newly deposited radioactive fallout. The radioactivity concentration and transfer factor (TF) of 137 Cs varied with plant species. Shrubs and ferns have higher values than a coniferous tree (Taiwan cedar). The TF in this ecosystem is as high as 0.21 to 1.88. The high values of TF is attributed to the abundance of the organic matter in the forest soils. The rapid recycling of 137 Cs through the soil-plant system of this undisturbed multistoried ecosystem suggests the existence of an internal cycling that help the accumulation of 137 Cs in this ecosystem. (author)

  17. Estimation of canopy water interception of a near-tropical montane cloud forest in Taiwan

    Science.gov (United States)

    Apurva, B.; Huang, C. Y.; Zhang, J.

    2017-12-01

    Tropical and subtropical montane cloud forests are some of the rarest and least studied ecosystems. Due to the frequent immersion of fog water with high humidity, these zones are major water sources for lowland environments and habitats for many fauna and flora. Their dependence on cloud water leaves them highly susceptible to the effects of climate change. Studies have been conducted to quantify the characteristics of the low altitude clouds such as spatial dynamics, cloud top and base heights, occurrence frequency or immersion duration. In this study, we carried out a field measurement to estimate canopy water interception (CWI), which is directly utilized by the ecosystems. The study site was a 61 ha near-tropical hinoki cypress montane cloud forest plantation in northern Taiwan at 1705 m asl. Leaves of CHOB were clipped, air-dried and attached to trees at three different canopy depths from the top to the base of canopies along a high tower. The samples were weighed before and after the occurrence of a fog event. In addition, a cylinder shaped fog gauge was installed at the ground level next to the tower to assess amount of fog water penetrating the canopy layer. After afternoon fog events with the duration of 60 minutes, we found that there was an apparent trend of decline of CWI from top (mean ± standard deviation = 0.023 g ± 0.0015 g), middle (0.021 g ± 0.0015 g) to the bottom (0.013 g ± 0.0015 g) of the canopies. Since the study site is a coniferous evergreen forest plantation with a relatively homogenous surface through seasons, with the background knowledge of the average leaf area index of 4.4, we estimated that this 61 ha site harvested 28.2 Mg of CWI for a daily fog event. We also found that no clear evidence of CWI was observed below the canopies by referring to bi-weekly records from the cylinder shaded fog gauge. Therefore, we can assume that the majority fog water was intercepted by the hinoki cypress canopy layer. This study demonstrates that a

  18. Structure and floristic similarities of upper montane forests in Serra Fina mountain range, southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Leonardo Dias Meireles

    2015-03-01

    Full Text Available The upper montane forests in the southern and southeastern regions of Brazil have an unusual and discontinuous geographic distribution at the top of the Atlantic coastal mountain ranges. To describe the floristic composition and structure of the Atlantic Forest near its upper altitudinal limit in southeastern Brazil, 30 plots with 10 × 10 m were installed in three forest sites between 2,200 and 2,300 m.a.s.l. at Serra Fina. The floristic composition and phytosociological structure of this forest were compared with other montane and upper montane forests. In total, 704 individuals were included, belonging to 24 species, 15 families, and 19 genera. Myrsinaceae, Myrtaceae, Symplocaceae, and Cunoniaceae were the most important families, and Myrsine gardneriana, Myrceugenia alpigena, Weinmannia humilis, and Symplocos corymboclados were the most important species. The three forest sites revealed differences in the abundance of species, density, canopy height, and number of stems per individual. The upper montane forests showed structural similarities, such as lower richness, diversity, and effective number of species, and they tended to have higher total densities and total dominance per hectare to montane forests. The most important species in these upper montane forests belong to Austral-Antartic genera or neotropical and pantropical genera that are typical of montane areas. The high number of species shared by these forests suggests past connections between the vegetation in southern Brazilian high-altitude areas.

  19. Carbon stocks of three secondary coniferous forests along an altitudinal gradient on Loess Plateau in inland China

    Science.gov (United States)

    Liu, Ning; Nan, Hongwei

    2018-01-01

    Natural forests in inland China are generally distributed in montane area and secondary due to a semi-arid climate and past anthropogenic disturbances. However, quantification of carbon (C) stock in these forests and the role of altitude in determining C storage and its partition among ecosystem components are unclear. We sampled 54 stands of three secondary coniferous forests (Larix principis-rupprechtii (LP) forest, Picea meyerii (PM) forest and Pinus tabulaeformis (PT) forest) on Loess Plateau in an altitudinal range of 1200-2700m a.s.l. C stocks of tree layer, shrub layer, herb layer, coarse wood debris, forest floor and soil were estimated. We found these forests had relatively high total C stocks. Driven by both higher vegetation and soil C stocks, total C stocks of LP and PM forests in the high altitudinal range were 375.0 and 368.4 t C ha-1 respectively, significantly higher than that of PT forest in the low altitudinal range (230.2 t C ha-1). In addition, understory shrubs accounted for about 20% of total biomass in PT forest. The proportions of vegetation to total C stock were similar among in the three forests (below 45%), so were the proportions of soil C stock (over 54%). Necromass C stocks were also similar among these forests, but their proportions to total C stock were significantly lower in LP and PM forests (1.4% and 1.6%) than in PT forest (3.0%). Across forest types, vegetation biomass and soil C stock simultaneously increased with increasing altitude, causing fairly unchanged C partitioning among ecosystem components along the altitudinal gradient. Soil C stock also increased with altitude in LP and PT forests. Forest floor necromass decreased with increasing altitude across the three forests. Our results suggest the important role of the altitudinal gradient in C sequestration and floor necromass of these three forests in terms of alleviated water conditions and in soil C storage of LP and PM forests in terms of temperature change. PMID

  20. Photo series for quantifying forest fuels in Mexico: montane subtropical forests of the Sierra Madre del Sur and temperate forests and montane shrubland of the northern Sierra Madre Oriental

    Science.gov (United States)

    Jorge E. Morfin-Rios; Ernesto Alvarado-Celestino; Enrique J. Jardel-Pelaez; Robert E. Vihnanek; David K. Wright; Jose M. Michel-Fuentes; Clinton S. Wright; Roger D. Ottmar; David V. Sandberg; Andres Najera-Diaz

    2008-01-01

    Single wide-angle and stereo photographs display a range of forest ecosystems conditions and fuel loadings in montane subtropical forests of the Sierra Madre del Sur and temperate forests and montane shrubland of the northern Sierra Madre Oriental of Mexico. Each group of photographs includes inventory information summarizing overstory vegetation composition and...

  1. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry

    OpenAIRE

    A. K. Y. Lee; J. P. D. Abbatt; W. R. Leaitch; S.-M. Li; S. J. Sjostedt; S. J. Sjostedt; J. J. B. Wentzell; J. Liggio; A. M. Macdonald

    2016-01-01

    Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region at Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identifie...

  2. Temporal and spatial variation of nitrogen transformations in a coniferous forest soils.

    NARCIS (Netherlands)

    Laverman, A.M.; Zoomer, H.R.; van Verseveld, H.W.; Verhoef, H.A.

    2000-01-01

    Forest soils show a great degree of temporal and spatial variation of nitrogen mineralization. The aim of the present study was to explain temporal variation in nitrate leaching from a nitrogen-saturated coniferous forest soil by potential nitrification, mineralization rates and nitrate uptake by

  3. Chemical ecology and management of bark beetles in western coniferous forests

    Science.gov (United States)

    Christopher J. Fettig

    2013-01-01

    The future looks bright for the development and use of semiochemical-based tools in forests, particularly in remote and sensitive areas where other management techniques (e.g., the use of insecticides) may not be appropriate. This editorial provides an concise overview of chemical ecology and management of bark beetles in western coniferous forests.

  4. Measurement of the dry deposition flux of NH3 on to coniferous forest

    NARCIS (Netherlands)

    Duyzer, J.H.; Verhagen, H.L.M.; Weststrate, J.H.; Bosveld, F.C.

    1992-01-01

    The dry deposition flux of NH3 to coniferous forest was determined by the micrometeorological gradient method using a 36m high tower. Aerodynamic characteristics of the site were studied, using a second tower erected in the forest 100m from the first. Fluxes and gradients of heat and momentum

  5. Unveiling the Hidden Bat Diversity of a Neotropical Montane Forest.

    Directory of Open Access Journals (Sweden)

    Gloriana Chaverri

    Full Text Available Mountain environments, characterized by high levels of endemism, are at risk of experiencing significant biodiversity loss due to current trends in global warming. While many acknowledge their importance and vulnerability, these ecosystems still remain poorly studied, particularly for taxa that are difficult to sample such as bats. Aiming to estimate the amount of cryptic diversity among bats of a Neotropical montane cloud forest in Talamanca Range-south-east Central America-, we performed a 15-night sampling campaign, which resulted in 90 captured bats belonging to 8 species. We sequenced their mitochondrial cytochrome c oxidase subunit I (COI and screened their inter- and intraspecific genetic variation. Phylogenetic relations with conspecifics and closely related species from other geographic regions were established using Maximum Likelihood and Bayesian inference methods, as well as median-joining haplotype networks. Mitochondrial lineages highly divergent from hitherto characterized populations (> 9% COI dissimilarity were found in Myotis oxyotus and Hylonycteris underwoodi. Sturnira burtonlimi and M. keaysi also showed distinct mitochondrial structure with sibling species and/or populations. These results suggest that mountains in the region hold a high degree of endemicity potential that has previously been ignored in bats. They also warn of the high extinction risk montane bats may be facing due to climatic change, particularly in isolated mountain systems like Talamanca Range.

  6. Input of trace substances to coniferous forests by fog interception at high elevations of Black Forest

    International Nuclear Information System (INIS)

    Winkler, P.; Pahl, S.

    1993-10-01

    The deposition of trace substances to a coniferous forest has been estimated by means of a one-dimensional cloud droplet deposition model. For a period of 21 months the liquid water content has been measured and 89 samples of cloud water from the weather station Feldberg have been analysed for chemical composition. These data and meteorological routine observations have been used as input parameters for the deposition model. Deposition calculations to a 40 years old coniferous forest for the period 1982-1991 showed that the cloud water deposition amounts to 33% of the precipitation amount on the average and varies between 23 and 43% in single years. The highest cloud water deposition rates occur during fall and winter. The trace substance concentration in cloud water has been found to be higher than in precipitation, by a factor between 6 and 12, depending on the type of ions. Typically seasonal variations of normalized ion concentrations could be shown to exist as well as dependencies on wind direction. Air mass transport from the industries of the Stuttgart area resulted in higher trace substance concentrations in cloud water. The deposition of trace substances via fog interception during the summer months is as high and in the winter months higher than that by wet deposition. The forests at high elevations of Black Forest are charged appreciably by fog interception. (orig.). 31 figs., 5 tabs., 39 refs [de

  7. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests

    Science.gov (United States)

    James W. Dalling; Katherine Heineman; Grizelle Gonzalez; Rebecca Ostertag

    2016-01-01

    Tropicalmontane forests (TMF) are associated with a widely observed suite of characteristics encompassing forest structure, plant traits and biogeochemistry.With respect to nutrient relations, montane forests are characterized by slow decomposition of organic matter, high investment in below-ground biomass and poor litter quality, relative to tropical lowland forests....

  8. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    Science.gov (United States)

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-08-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  9. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    Science.gov (United States)

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-01-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  10. Calibration of the L-MEB model over a coniferous and a deciduous forest

    DEFF Research Database (Denmark)

    Grant, Jennifer P.; Saleh-Contell, Kauzar; Wigneron, Jean-Pierre

    2008-01-01

    In this paper, the L-band Microwave Emission of the Biosphere (L-MEB) model used in the Soil Moisture and Ocean Salinity (SMOS) Level 2 Soil Moisture algorithm is calibrated using L-band (1.4 GHz) microwave measurements over a coniferous (Pine) and a deciduous (mixed/Beech) forest. This resulted...

  11. Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model

    NARCIS (Netherlands)

    Churkina, G.; Tenhunen, J.; Thornton, P.; Falge, E.; Elbers, J.A.; Erhard, M.; Grünwald, T.; Kowalski, A.; Rannik, Ü.; Sprinz, D.

    2003-01-01

    This paper provides the first steps toward a regional-scale analysis of carbon (C) budgets. We explore the ability of the ecosystem model BIOME-BGC to estimate the daily and annual C dynamics of four European coniferous forests and shifts in these dynamics in response to changing environmental

  12. Private and public incomes in dehesas and coniferous forests in Andalusia, Spain

    Science.gov (United States)

    Paola Ovando; Pablo Campos; Jose L. Oviedo; Alejandro Caparrós

    2015-01-01

    We apply an ecosystem accounting system to estimate the total social income accrued from private and public products in a group of agroforestry farms in Andalusia (Spain). We provide bio-physical and economic indicators for two contrasting farm types, a sub-group of 15 publicly owned coniferous forests and a sub-group of 24 privately owned dehesa farms. Total social...

  13. The role of litterfall in transferring Fukushima-derived radiocesium to a coniferous forest floor

    Energy Technology Data Exchange (ETDEWEB)

    Teramage, Mengistu T., E-mail: teramaget@yahoo.com [Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, Tennodai 1-1-1, Tsukuba shi, Ibaraki 305-8572 (Japan); Onda, Yuichi; Kato, Hiroaki [Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, Tennodai 1-1-1, Tsukuba shi, Ibaraki 305-8572 (Japan); Gomi, Takashi [Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Fuchuu, Tokyo 183-8509 (Japan)

    2014-08-15

    The deposition of Fukushima-derived radiocesium via falling litter in a coniferous forest 180 km downwind immediately following the nuclear power plant accident was investigated. The litterfall contribution to the transfer of radiocesium from the forest canopy to the forest floor was determined, and this pathway was compared with hydrological pathways. The results demonstrated that during the observation period, a total of approximately 5.5 kBq m{sup −2} of Fukushima-derived radiocesium was deposited on the forest floor through throughfall (53%), stemflow (2.3%) and litterfall (45%) routes. The data revealed that the contributions of hydrological pathways became less important as time passed. However, the litterfall route, which transferred approximately 31% (2.5 ± 0.6 kBq m{sup −2}) of the local fallout within the observation period, continued depositing radiocesium onto the forest floor. - Graphical abstract: Schematic diagram summarizing the depositional routes of radiocesium in the cypress forest during the observation period (March to October, 2011). - Highlights: • Fukushima-derived radiocesium deposition in a coniferous forest was explored. • Approximately 68% of the radiocesium was deposited onto the forest floor. • The ecological half-life of the radiocesium in the forest canopy was 180 days. • The roles of hydrological pathways decreased over time. • The litterfall route continued to deposit radiocesium onto the forest floor.

  14. Drivers of methane uptake by montane forest soils in the Peruvian Andes

    Science.gov (United States)

    Jones, Sam; Diem, Torsten; Huaraca Quispe, Lidia; Cahuana, Adan; Meir, Patrick; Teh, Yit

    2016-04-01

    The exchange of methane between the soils of humid tropical forests and the atmosphere is relatively poorly documented. This is particularly true of montane settings where variations between uptake and emission of atmospheric methane have been observed. Whilst most of these ecosystems appear to function as net sinks for atmospheric methane, some act as considerable sources. In regions like the Andes, humid montane forests are extensive and a better understanding of the magnitude and controls on soil-atmosphere methane exchange is required. We report methane fluxes from upper montane cloud forest (2811 - 2962 m asl), lower montane cloud forest (1532 - 1786 m asl), and premontane forest (1070 - 1088 m asl) soils in south-eastern Peru. Between 1000 and 3000 m asl, mean annual air temperature and total annual precipitation decrease from 24 ° C and 5000 mm to 12 ° C and 1700 mm. The study region experiences a pronounced wet season between October and April. Monthly measurements of soil-atmosphere gas exchange, soil moisture, soil temperature, soil oxygen concentration, available ammonium and available nitrate were made from February 2011 in the upper and lower montane cloud forests and July 2011 in the premontane forest to June 2013. These soils acted as sinks for atmospheric methane with mean net fluxes for wet and dry season, respectively, of -2.1 (0.2) and -1.5 (0.1) mg CH4 m-2 d-1 in the upper montane forest; -1.5 (0.2) and -1.4 (0.1) mg CH4 m-2 d-1in the lower montane forest; and -0.3 (0.2) and -0.2 (0.2) mg CH4 m-2 d-1 in the premontane forest. Spatial variations among forest types were related to available nitrate and water-filled pore space suggesting that nitrate inhibition of oxidation or constraints on the diffusional supply of methane to methanotrophic communities may be important controls on methane cycling in these soils. Seasonality in methane exchange, with weaker uptake related to increased water-filled pore space and soil temperature during the wet

  15. Scenario Modeling of Thermal Influence from Forest Fire Front on a Coniferous Tree Trunk

    Directory of Open Access Journals (Sweden)

    Baranovskiy Nikolay V.

    2016-01-01

    Full Text Available Scenario research results of heat transfer and tissue damage in three-layered tree trunk influenced by heat flux from forest fire are presented. The problem is solved in two-dimensional statement in polar coordinates. The typical range of influence parameters (heat flux from forest fire front, trunk radius, coniferous species, air temperature, duration of exposure and distance from fire line is considered. Temperature distributions in different moments of time are obtained. Condition of tree damage by forest fire influence is under consideration in this research. Information summarized using tables with scenario and fire consequences results.

  16. The extent of immission damage to coniferous forests in the GDR around the year 1985

    International Nuclear Information System (INIS)

    Schuster, E.

    1991-01-01

    The economic effects of air pollution extend to the economic result of forestry and also directly to the state of forests; the latter damage includes loss of supplies, growth and unsuitability for felling and the adverse effect on forests as a place for rest and recreation. In this publication, results of calculations on the extent of this damage to the coniferous forests of the former DDR (differentiated according to spruce and pine and to the degree of damage) are submitted. The knowledge of the amount of this damage is of economic and forestry policy interest and it is gaining increasing trade importance. (orig.) [de

  17. Management Effectiveness of a Secondary Coniferous Forest for Landscape Appreciation and Psychological Restoration.

    Science.gov (United States)

    Takayama, Norimasa; Fujiwara, Akio; Saito, Haruo; Horiuchi, Masahiro

    2017-07-18

    We investigated the influence of forest management on landscape appreciation and psychological restoration in on-site settings by exposing respondents to an unmanaged, dense coniferous (crowding) forest and a managed (thinned) coniferous forest; we set the two experimental settings in the forests of the Fuji Iyashinomoroi Woodland Study Center. The respondents were individually exposed to both settings while sitting for 15 min and were required to answer three questionnaires to analyze the psychological restorative effects before and after the experiment (feeling (the Profile of Mood States), affect (the Positive and Negative Affect Schedule), and subjective restorativeness (the Restorative Outcome Scale). To compare landscape appreciation, they were required to answer another two questionnaires only after the experiment, for scene appreciation (the semantic differential scale) and for the restorative properties of each environment (the Perceived Restorativeness Scale). Finally, we obtained these findings: (1) the respondents evaluated each forest environment highly differently and evaluated the thinned forest setting more positively; (2) the respondents' impressions of the two physical environments did not appear to be accurately reflected in their evaluations; (3) forest environments have potential restorative effects whether or not they are managed, but these effects can be partially enhanced by managing the forests.

  18. Influence of meteorological parameters on interception of cloud droplets in a coniferous forest

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, G; Winkler, P [Deutscher Wetterdienst, Meteorologisches Observatorium Hamburg (Germany, F.R.)

    1989-11-01

    The deposition of trace substances in a high elevated coniferous forest by interception of cloud droplets depends on numerous meteorological parameters. Sensitivity studies with a deposition model show that the variation of the vertical wind profile in the stand and the capture efficiency have a large influence on the deposition flux. Different drop size distributions with equal LWC's lead to changes of only 10% in the deposition flux. A higher ion concentration in small droplets has only a small influence on the trace substance deposition. A realistic estimate of the deposition is most likely achieved by using hourly observed meteorological parameters as model input values. The deposition of trace substances into a high elevated coniferous forest by interception of cloud droplets can be as high as the deposition via rain. (orig.).

  19. The influence of coniferous canopies on understorey vegetation and soils in mountain forests of the northern Calcareous Alps

    International Nuclear Information System (INIS)

    Ewald, Joerg

    2000-01-01

    Compositional and edaphic gradients were studied in montane forests of the Bavarian Alps (Germany), in which natural mixed deciduous-coniferous tree layers have been altered by past management in favour of Picea abies. Data on species composition and ecological factors were collected in a stratified random sample of 84 quadrats comprising a gradient from pure Picea to pure Fagus sylvatica stands. Data about the understorey composition were subjected to indirect (DCA) and direct gradient analysis (RDA) with the proportion of Picea in the canopy as a constraining variable. Three principal components of a matrix containing seven descriptors of mineral soil, relief and tree layer cover were included as covariables describing the variability of primary ecological factors. Gradients of organic topsoil morphology and chemistry were extracted correspondingly. Responses of individual species, species group and topsoil attributes were studied by simple and partial correlation analysis. Mosses were significantly more abundant and diverse under Picea stands. Few graminoid and herb species were partially associated with Picea, and total understorey richness and cover did not differ systematically by stand type. No relationship between tree layer and understorey diversity was detected at the studied scale. Juvenile Fagus sylvatica was the only woody species significantly less abundant under Picea. In the topsoil lower base saturation, lower pH and larger C/N ratios in the litter layer were partially attributable to the proportion of Picea, only for base saturation a relationship was detected in greater soil depth also. The frequency of broad humus form types did not differ by tree species, nor was overall depth of organic forest floor attributable to canopy composition

  20. Acidification-induced chemical changes in coniferous forest soils in southern Sweden 1988-1999

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, U.; Rosengren, U.; Thelin, G.; Nihlgaard, B

    2003-05-01

    Acidification of south-Swedish coniferous forest soils continues and soil nutrient status is no longer sustainable in a long-term perspective. - Thirty-two Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) stands in southern Sweden were studied for a period of 12 years to evaluate acidification-induced chemical changes in the soil. Soil, at 20-30 cm depth in the mineral layer, was sampled three times during this period (1988, 1993 and 1999). The results show that pH(BaCl{sub 2}) in mineral soil decreased by, on average, 0.17 units between 1988 and 1999, accompanied by an increase in aluminium (Al) concentration and a decrease in base saturation in the soil. In 1999, the base saturation was below 5% in 58% of the 32 sites compared with 16% in 1988 and 7% in 1993. Concentrations of calcium (Ca), potassium (K) and magnesium (Mg) are low and decreasing. Based on C/N ratios in humus, 45% of the sites may be subjected to leaching of considerable amounts of nitrate. The results show that the acidification of coniferous forest soils in southern Sweden is continuing, and that the negative effects on the nutrient status in soil are extensive. The results are compared with reference values for productive, long-term sustainably managed boreal coniferous or mixed forest soils and implications for long-term sustainability are discussed.

  1. Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline

    NARCIS (Netherlands)

    Oliveras Menor, I.; Malhi, Y.; Salinas, N.; Huaman, V.; Urquiaga-Flores, E.; Kala-Mamani, J.; Quintano-Loaiza, J.A.; Cuba-Torres, I.; Lizarraga-Morales, N.; Roman-Cuesta, R.M.

    2014-01-01

    Background: In tropical montane cloud forests (TMCFs) fires can be a frequent source of disturbance near the treeline. Aims: To identify how forest structure and tree species composition change in response to fire and to identify fire-tolerant species, and determine which traits or characteristics

  2. Adaptive genetic potential of coniferous forest tree species under climate change: implications for sustainable forest management

    Science.gov (United States)

    Mihai, Georgeta; Birsan, Marius-Victor; Teodosiu, Maria; Dumitrescu, Alexandru; Daia, Mihai; Mirancea, Ionel; Ivanov, Paula; Alin, Alexandru

    2017-04-01

    coniferous species for a sustainable forest management in the context of climate change), financed by the Executive Agency for Higher Education, Research, Development and Innovation Funding, grant number PN-II-PC-PCCA-2013-4-0695.

  3. Climate change moisture stresses on northern coniferous forests

    International Nuclear Information System (INIS)

    Wein, R.W.; Hogg, E.H.

    1990-01-01

    The predictions of general circulation models suggest major climatic changes for high latitude tundra ecosystems and lower latitude forested ecosystems. Of particular interest to Canadians is the predicted shift in the boreal forest climate northward, with a considerable northern expansion of the grasslands of western Canada. Reductions in soil moisture would have both direct and indirect effects on forest composition and productivity. The most important likely physical factors subject to alteration are permafrost, hydrological regimes and fire. Under warmer and drier conditions, potential fire burn frequency will increase, and might lead to greater proportions of jack pine than previously present. It is anticipated that permafrost will disappear from the extensive discontinuous permafrost zone where soil permafrost temperatures are presently -3 degree C or higher. In wet sites, melting of the permafrost could lead to drowning of forests as soils subside and become temporarily waterlogged. In more northerly areas, forest growth may increase in drier areas as the depth of the active layer increases. Fire may be a significant feed-back mechanism that could enhance the greenhouse effect. The estimated proportion of carbon in Canadian peatlands is in the order of 170 gigatonnes, whereas one-tenth of a gigatonne of carbon is released annually by fossil fuel combustion in Canada. 11 refs

  4. Management of western coniferous forest habitat for nesting accipiter hawks

    Science.gov (United States)

    Richard T. Reynolds

    1983-01-01

    Availability of nesting sites can limit accipiter populations. Because accipiters nest in dense forest stands, any alteration that opens these stands is likely to lessen their desirability as nest sites. Tree growth and the associated changes in the vegetative structure of aging nest sites limit the number of years sites will be suitable. Therefore, prospective...

  5. Exchange processes between a coniferous forest and the atmosphere

    NARCIS (Netherlands)

    Bosveld, F.C.

    1999-01-01

    This thesis deals with the research question: which processes are relevant in controlling the exchange fluxes between the forest and the atmosphere and how can this control be quantified? Answering this question is relevant for research in the fields of air pollution, weather and climate

  6. Radiation and water use efficiencies of two coniferous forest canopies

    Science.gov (United States)

    Lamaud, E.; Brunet, Y.; Berbigier, P.

    1996-12-01

    Two experiments were performed in a confierous forest (maritime pine) in the southwest of France, one in 1994 and the other in 1995. Two sites were chosen, differing by age, height and structure of the trees, as well as the nature of the understorey. In both cases measurements of turbulent fluxes were made at two levels above and within the forest canopy, using sonic anemometers and open-path infrared CO 2-H 2O analysers. The flux differences derived from the two measurement levels allowed the Radiation and Water Use Efficiencies (RUE and WUE, respectively) to be evaluated for both canopy crowns. The results are based on the analysis of about ten days from each experiment. For both campaigns RUE is significantly larger during cloudy conditions when the fraction of diffuse radiation ( {Q id}/{Q i}) increases. An empirical linear relation between RUE and {Q id}/{Q i} is established for each site, with a smaller intercept and a larger slope for the older forest. In clear conditions ( {Q id}/{Q i} < 0.4 ), RUE is about 30 % lower for this forest. Tree photosynthesis, estimated as the net CO 2 flux of the foliated layer F c, appears poorly correlated (r 2 < 0.4) with transpiration (net water vapour flux E). This is shown to result from strong variations in the atmospheric saturation deficit D during both campaigns. At both sites WUE turns out to be a hyperbolic function of D ( {Fc}/{E} = {-k}/{D}). The coefficient k is 50 % larger for the younger forest. This is in agreement with the values obtained for RUE, and indicates that photosynthetic rates decrease with the age of the trees.

  7. The effect of slight thinning of managed coniferous forest on landscape appreciation and psychological restoration

    Science.gov (United States)

    Takayama, Norimasa; Saito, Haruo; Fujiwara, Akio; Horiuchi, Masahiro

    2017-12-01

    We investigated the influence of slight thinning (percentage of woods: 16.6%, basal area: 9.3%) on landscape appreciation and the psychological restorative effect of an on-site setting by exposing respondents to an ordinarily managed coniferous woodland. The experiments were conducted in an experimental plot in the same coniferous woodland in May (unthinned) and October 2013 (thinned). The respondents were the same 15 individuals for both experiments. Respondents were individually exposed to the enclosed plot and the forest-view plot within the same tent for 15 min. In both sessions, respondents were required to answer three questionnaires measuring their mood (Profile of Mood States), emotion (Positive and Negative Affect Schedule), and feeling of restoration (Restorative Outcome Scale) to investigate the psychological restorative effect before and after the experiment. They completed two other questionnaires measuring appreciation for the environment (Semantic Differential) and the restorative properties of the environment (Perceived Restorativeness Scale) following the experiments. We first analyzed the difference in landscape appreciation between the unthinned and thinned conditions. We did not find any statistical difference in appreciation for the environment (Semantic Differential) or the restorative properties of the environment (Perceived Restorativeness Scale); rather, we found that weather conditions had a primary influence on landscape appreciation. With respect to the psychological restorative effect, a two-way repeated analysis of valiance (ANOVA) revealed significant main effects for a selection of indices, depending on the presence or absence of thinning. However, multiple comparison analyses revealed that these effects seemed to be due to the difference in the experimental experience rather than the presence or absence of thinning. In conclusion, the effect of the slight thinning of the managed coniferous forest was too weak to be reflected in the

  8. Influences of climate on fire regimes in montane forests of north-western Mexico

    Science.gov (United States)

    Carl N. Skinner; Jack H. Burk; Michael G. Barbour; Ernesto Franco-Vizcaino; Scott L. Stephens

    2008-01-01

    Aim To identify the influence of interannual and interdecadal climate variation on the occurrence and extent of fires in montane conifer forests of north-western Mexico. Location This study was conducted in Jeffrey pine (Pinus jeffreyi Grev. & Balf.)- dominated mixed-conifer...

  9. Fagus dominance in Chinese montane forests : natural regeneration of Fagus lucida and Fagus hayatae var. pashanica

    NARCIS (Netherlands)

    Cao, K.F.

    1995-01-01


    Fagus species are important components of certain mesic temperate forests in the Northern Hemisphere. Of eleven Fagus species distinguished, five are found in China. Chinese beeches are restricted to the mountains of southern China. In the montane

  10. Habitat preferences of birds in a montane forest mosaic in the ...

    African Journals Online (AJOL)

    Endemic species are most closely dependent on continuous forest cover. However, some montane species did not show any clear habitat associations and thus can be viewed as local habitat generalists. This study shows that many restricted-range species (including endangered endemics) are able to live in fragmented ...

  11. Landscape-scale drivers of glacial ecosystem change in the montane forests of the eastern Andean flank, Ecuador

    NARCIS (Netherlands)

    Loughlin, N.J.D.; Gosling, W.D.; Coe, A.L.; Gulliver, P.; Mothes, P.; Montoya, E.

    2018-01-01

    Understanding the impact of landscape-scale disturbance events during the last glacial period is vital in accurately reconstructing the ecosystem dynamics of montane environments. Here, a sedimentary succession from the tropical montane cloud forest of the eastern Andean flank of Ecuador provides

  12. Interannual Variations in Ecosystem Oxidative Ratio in Croplands, Deciduous Forest, Coniferous Forest, and Early Successional Forest Ecosystems

    Science.gov (United States)

    Masiello, C. A.; Hockaday, W. C.; Gallagher, M. E.; Calligan, L.

    2009-12-01

    Ecosystem net primary productivity (NPP) can vary significantly with annual variations in precipitation and temperature. These climate variations can also drive changes in plant carbon allocation patterns. Shifting allocation patterns can lead to variation in net ecosystem biochemical stocks (e.g. kg cellulose, lignin, protein, and lipid/ha), which can in turn lead to shifts in ecosystem oxidative ratio (OR). OR is the molar ratio of O2 released : CO2 fixed during biosynthesis. Major plant biochemicals vary substantially in oxidative ratio, ranging from average organic acid OR values of 0.75 to average lipid OR values of 1.37 (Masiello et al., 2008). OR is a basic property of ecosystem biochemistry, and is also an essential variable needed to constrain the size of the terrestrial biospheric carbon sink (Keeling et al., 1996). OR is commonly assumed to be 1.10 (e.g. Prentice et al., 2001), but small variations in net ecosystem OR can drive large errors in estimates of the size of the terrestrial carbon sink (Randerson et al., 2006). We hypothesized that interannual changes in climate may drive interannual variation in ecosystem OR values. Working at Kellogg Biological Station NSF LTER, we measured the annual average OR of coniferous and deciduous forests, an early successional forest, and croplands under both corn and soy. There are clear distinctions between individual ecosystems (e.g., the soy crops have a higher OR than the corn crops, and the coniferous forests have a higher OR than the deciduous forests), but the ecosystems themselves retained remarkably constant annual OR values between 1998 and 2008.

  13. Dry coniferous forest restoration and understory plant diversity: The importance of community heterogeneity and the scale of observation

    Science.gov (United States)

    Erich Kyle Dodson; David W. Peterson

    2010-01-01

    Maintaining understory plant species diversity is an important management goal as forest restoration and fuel reduction treatments are applied extensively to dry coniferous forests of western North America. However, understory diversity is a function of both local species richness (number of species in a sample unit) and community heterogeneity (beta diversity) at...

  14. Susceptible conditions for debarking by deer in subalpine coniferous forests in central Japan

    Directory of Open Access Journals (Sweden)

    Hayato Iijima

    2015-12-01

    Full Text Available Background: Recently, deer have expanded their distribution to higher altitude ranges including subalpine forests. However, culling deer and construction of deer fence in subalpine forests are difficult because of steep slopes and complex topography. Thus it is necessary to clarify the factors which are associated with debarking by deer for the effective protection of subalpine forests. In this study, we examined which factors are associated with debarking by sika deer (Cervus nippon in subalpine coniferous forests. Methods: We conducted our survey in Minami-Alps National Park, central Japan. We established 24 10 m× 40 m plots and surveyed the occurrence of debarking on saplings >30 cm in height and 3 cm in DBH, as well as sapling density within each plot. Minimum distances to nearest grassland of plots were calculated (tentatively assuming grassland would attract deer and would cause high debarking pressure in the surrounding subalpine forests. Results: The mean percentage of debarked live saplings was higher than that of live trees. The mean percentage of debarked saplings which had already died was 81.6 %. Debarking of saplings increased with lower elevation, taller sapling size, and marginally increased near grassland. Sapling density was lower in plots with low basal area of conspecific trees near grassland and differed among species. Sapling density marginally decreased with decreasing elevation and increasing stand tree density. Debarking of trees was positively related to small DBH and low elevation, and marginally increased near grassland and differed among species. Conclusions: Our results suggest that tall saplings in subalpine forests of low elevation or near subalpine grassland were susceptible to debarking by deer and monitoring of these areas may permit the early detection of the impacts of deer in subalpine coniferous forests. Keywords: Abies, Cervus nippon, Debarking, Grassland, Picea, Sapling density, Subalpine region

  15. The importance of micrometeorological variations for photosynthesis and transpiration in a boreal coniferous forest

    DEFF Research Database (Denmark)

    Schurgers, Guy; Lagergren, F.; Molder, M.

    2015-01-01

    the importance of vertical variations in light, temperature, CO2 concentration and humidity within the canopy for fluxes of photosynthesis and transpiration of a boreal coniferous forest in central Sweden. A leaf-level photosynthesis-stomatal conductance model was used for aggregating these processes to canopy...... abovecanopy and within-canopy humidity, and despite large gradients in CO2 concentration during early morning hours after nights with stable conditions, neither humidity nor CO2 played an important role for vertical heterogeneity of photosynthesis and transpiration....

  16. Culvert flow in small drainages in montane tropical forests: observations from the Luquillo Experimental Forest of Puerto Rico.

    Science.gov (United States)

    F. N. Scatena

    1990-01-01

    This paper describe the hydraulics of unsubmerged flow for 5 culverts in the Luiquillo Esperimental Forest of Puerto Rico. A General equation based on empirical data is presented to estimate culvert discharge during unsubmerged conditions. Large culverts are needed in humid tropical montane areas than in humid temperatute watersheds and are usually appropriate only...

  17. Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs.

    Science.gov (United States)

    Stevens, Jens T; Latimer, Andrew M

    2015-06-01

    Montane regions worldwide have experienced relatively low plant invasion rates, a trend attributed to increased climatic severity, low rates of disturbance, and reduced propagule pressure relative to lowlands. Manipulative experiments at elevations above the invasive range of non-native species can clarify the relative contributions of these mechanisms to montane invasion resistance, yet such experiments are rare. Furthermore, global climate change and land use changes are expected to cause decreases in snowpack and increases in disturbance by fire and forest thinning in montane forests. We examined the importance of these factors in limiting montane invasions using a field transplant experiment above the invasive range of two non-native lowland shrubs, Scotch broom (Cytisus scoparius) and Spanish broom (Spartium junceum), in the rain-snow transition zone of the Sierra Nevada of California. We tested the effects of canopy closure, prescribed fire, and winter snow depth on demographic transitions of each species. Establishment of both species was most likely at intermediate levels of canopy disturbance, but at this intermediate canopy level, snow depth had negative effects on winter survival of seedlings. We used matrix population models to show that an 86% reduction in winter snowfall would cause a 2.8-fold increase in population growth rates in Scotch broom and a 3.5-fold increase in Spanish broom. Fall prescribed fire increased germination rates, but decreased overall population growth rates by reducing plant survival. However, at longer fire return intervals, population recovery between fires is likely to keep growth rates high, especially under low snowpack conditions. Many treatment combinations had positive growth rates despite being above the current invasive range, indicating that propagule pressure, disturbance, and climate can all strongly affect plant invasions in montane regions. We conclude that projected reductions in winter snowpack and increases in

  18. Soil CO2 efflux among four coniferous forest types of Kashmir Himalaya, India.

    Science.gov (United States)

    Dar, Javid Ahmad; Ganie, Khursheed Ahmad; Sundarapandian, Somaiah

    2015-11-01

    Soil CO2 efflux was measured in four different coniferous forest types (Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), and Abies pindrow (AP)) for a period of 2 years (April 2012 to December 2013). The monthly soil CO2 efflux ranged from 0.8 to 4.1 μmoles CO2 m(-2) s(-1) in 2012 and 1.01 to 5.48 μmoles CO2 m(-2) s(-1) in 2013. The soil CO2 efflux rate was highest in PW forest type in both the years, while it was lowest in MC and CD forest types during 2012 and 2013, respectively. Soil temperature (TS) at a depth of 10 cm ranged from 3.8 to 19.4 °C in 2012 and 3.5 to 19.1 °C in 2013 in all the four forest types. Soil moisture (MS) ranged from 19.8 to 58.6% in 2012 and 18.5 to 58.6% in 2013. Soil CO2 efflux rate was found to be significantly higher in summer than the other seasons and least during winter. Soil CO2 efflux showed a significant positive relationship with TS (R2=0.52 to 0.74), SOC% (R2=0.67), pH (R2=0.68), and shrub biomass (R2=0.51), whereas, only a weak positive relationship was found with soil moisture (R2=0.16 to 0.41), tree density (R2=0.25), tree basal area (R2=0.01), tree biomass (R2=0.07), herb biomass (R2=0.01), and forest floor litter (R2=0.02). Thus, the study indicates that soil CO2 efflux in high mountainous areas is greatly influenced by seasons, soil temperature, and other environmental factors.

  19. Historical, observed, and modeled wildfire severity in montane forests of the Colorado Front Range.

    Science.gov (United States)

    Sherriff, Rosemary L; Platt, Rutherford V; Veblen, Thomas T; Schoennagel, Tania L; Gartner, Meredith H

    2014-01-01

    Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions.

  20. Species turnover in tropical montane forest avifauna links to climatic correlates

    Directory of Open Access Journals (Sweden)

    Chi-Feng Tsai

    2015-01-01

    Full Text Available We examined avifauna richness and composition in Taiwan’s tropical montane forests, and compared to historical records dated 22 years ago. A richness attrition of 44 species caused a discrepancy of 30.2%, and an estimated yearly turnover of 2.2%. More resident species that were narrower or lower in elevation distribution, insectivores/omnivores, small to medium-sized, forest/open-field dwelling, and canopy/ground foragers, vanished; whereas piscivores, carnivores, riparian- and shrub-dwellers, ground and mid-layer foragers, and migrants suffered by higher proportions. Occurrence frequencies of persistent species remained constant but varied among ecological groups, indicating an increased homogeneity for smaller-sized insectivores/omnivores dwelling in the forest canopy, shrub, or understory. While the overall annual temperature slightly increased, a relatively stable mean temperature was replaced by an ascending trend from the mid-1990s until 2002, followed by a cooling down. Mean maximum temperatures increased but minimums decreased gradually over years, resulting in increasing temperature differences up to over 16 °C. This accompanied an increase of extreme typhoons affecting Taiwan or directly striking these montane forests during the last decade. These results, given no direct human disturbances were noted, suggest a link between the species turnover and recent climate change, and convey warning signs of conservation concerns for tropical montane assemblages.

  1. Fire Regime along Latitudinal Gradients of Continuous to Discontinuous Coniferous Boreal Forests in Eastern Canada

    Directory of Open Access Journals (Sweden)

    Jeanne Portier

    2016-09-01

    Full Text Available Fire is the main disturbance in North American coniferous boreal forests. In Northern Quebec, Canada, where forest management is not allowed, the landscape is gradually constituted of more opened lichen woodlands. Those forests are discontinuous and show a low regeneration potential resulting from the cumulative effects of harsh climatic conditions and very short fire intervals. In a climate change context, and because the forest industry is interested in opening new territories to forest management in the north, it is crucial to better understand how and why fire risk varies from the north to the south at the transition between the discontinuous and continuous boreal forest. We used time-since-fire (TSF data from fire archives as well as a broad field campaign in Quebec’s coniferous boreal forests along four north-south transects in order to reconstruct the fire history of the past 150 to 300 years. We performed survival analyses in each transect in order to (1 determine if climate influences the fire risk along the latitudinal gradient; (2 fractionate the transects into different fire risk zones; and (3 quantify the fire cycle—defined as the time required to burn an area equivalent to the size of the study area—of each zone and compare its estimated value with current fire activity. Results suggest that drought conditions are moderately to highly responsible for the increasing fire risk from south to north in the three westernmost transects. No climate influence was observed in the last one, possibly because of its complex physical environment. Fire cycles are shortening from south to north, and from east to west. Limits between high and low fire risk zones are consistent with the limit between discontinuous and continuous forests, established based on recent fire activity. Compared to the last 40 years, fire cycles of the last 150–300 years are shorter. Our results suggest that as drought episodes are expected to become more frequent

  2. Belowground ectomycorrhizal fungal communities respond to liming in three southern Swedish coniferous forest stands

    DEFF Research Database (Denmark)

    Kjøller, Rasmus; Clemmensen, Karina

    2009-01-01

    In this study we report on changes in the belowground ectomycorrhizal fungal communities in southern Swedish coniferous forests as a consequence of liming with 3-7 ton limestone per hectare 16 years prior to the study. A total of 107 ectomycorrhizal fungi were identified from 969 independently...... sampled root tips by sequencing the internal transcribed spacer region of the ribosomal DNA. Forty, 59 and 51 species were identified in three pine and spruce forests. Within all sites only about 25% of the species overlapped between the limed and the reference areas. However, the most abundant species...... were often found in both limed and reference plots and 60-70% of the root tips at each site were colonised by species occurring in both limed and reference plots. Across all three sites, fungal species belonging to the genus Tylospora and the order Pezizales became significantly more frequent in limed...

  3. Topographic and spatial controls of palm species distributions in a montane rain forest, southern Ecuador

    DEFF Research Database (Denmark)

    Svenning, J.-C.; Harlev, D.; Sørensen, M.M.

    2009-01-01

    The northern Andes harbour a flora that is as species-rich or even richer than the 18-times larger lowland Amazon basin. Gaining an understanding of how the high species richness of the Andean region is generated and maintained is therefore of particular interest. Environmental sorting due......). Mantel tests and indicator species analysis showed that both topography and spatial location imposed strong controls on palm species distributions at the study site. Our results suggest that species distributions in the studied montane forest landscape were partly determined by the species' habitat...... distributions at the study site. Other factors must also be involved, notably wind-exposure and hydrology, as discussed for lowland palm communities. Our results show that to understand plant community assembly in the tropical montane forests of the Andes it is too simple to focus just on environmental sorting...

  4. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Directory of Open Access Journals (Sweden)

    Lori D. Bothwell

    2014-12-01

    Full Text Available Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5 across a broad range of ecosystems. The percentage of leaf litter nitrogen (N remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.

  5. Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica

    NARCIS (Netherlands)

    Koehler, L.; Tobon, C.; Frumau, K.F.A.; Bruijnzeel, L.A.

    2007-01-01

    Epiphytic biomass, canopy humus and associated canopy water storage capacity are known to vary greatly between old-growth tropical montane cloud forests but for regenerating forests such data are virtually absent. The present study was conducted in an old-growth cloud forest and in a 30-year-old

  6. Long-term fragmentation effects on the distribution and dynamics of canopy gaps in a tropical montane forest

    Science.gov (United States)

    Nicholas R. Vaughn; Gregory P. Asner; Christian P. Giardina

    2015-01-01

    Fragmentation alters forest canopy structure through various mechanisms, which in turn drive subsequent changes to biogeochemical processes and biological diversity. Using repeated airborne LiDAR (Light Detection and Ranging) mappings, we investigated the size distribution and dynamics of forest canopy gaps across a topical montane forest landscape in Hawaii naturally...

  7. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

    Science.gov (United States)

    Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.

    2018-02-01

    Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.

  8. Effects of ground fires on element dynamics in mountainous coniferous forest in Germany

    Directory of Open Access Journals (Sweden)

    Kerstin Näthe

    2012-09-01

    Full Text Available Disturbances such as fires are a natural phenomenon of forested ecosystems, having a different impact on (micro- climate (e.g. emissions of gases and aerosols, ecology (destruction of flora and fauna and nutrient cycles especially in the soils. Forest fires alter the spatial distribution (forest floor vs. mineral soil, binding forms (organic vs. inorganic and availability (water solubility of organic substances and nutrients. The effects of fires on chemical, biological and physical soil properties in forested ecosystems have been intensively studied in the last decades, especially in the Mediterranean area and North America. However, differences in fire intensity, forest type (species, age and location (climate, geological substrate, nutrient status lead to divergent results. Furthermore, only a few case studies focused on the effects of ground fires in hilly landscapes, on the vertical and lateral water-driven fluxes of elements (C, N, nutrients, as well as on the input of fire-released terrestrial nutrients into aquatic ecosystems. Thus, this study will evaluate the effects of low-severity fires on nutrient cycling in a coniferous forest in a hilly landscape connected to an aquatic system. At three spatially independent sites three paired plots (control and manipulated were chosen at a forested site in Thuringia, Germany. All plots are similar in the vegetation cover and pedogenetic properties.In relation to control sites, this study will examine the effects of low-severity fires on:a the mobilization of organic carbon and nutrients (released from ash material and the forest floor via leachate and erosion paths,b the binding form (inorganic/organic of elements and organic compounds, and c the particle size fraction (DOM/POM of elements and organic compounds.The goal of this study is a better understanding of the impact of forest fires on element cycling and release in a hilly landscape connected to an aquatic system, supposedly driven by

  9. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China.

    Science.gov (United States)

    He, Huaijiang; Zhang, Chunyu; Zhao, Xiuhai; Fousseni, Folega; Wang, Jinsong; Dai, Haijun; Yang, Song; Zuo, Qiang

    2018-01-01

    Understanding forest carbon budget and dynamics for sustainable resource management and ecosystem functions requires quantification of above- and below-ground biomass at individual tree species and stand levels. In this study, a total of 122 trees (9-12 per species) were destructively sampled to determine above- and below-ground biomass of 12 tree species (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis and Ulmus japonica) in coniferous and broadleaved mixed forests of Northeastern China, an area of the largest natural forest in the country. Biomass allocation was examined and biomass models were developed using diameter as independent variable for individual tree species and all species combined. The results showed that the largest biomass allocation of all species combined was on stems (57.1%), followed by coarse root (21.3%), branch (18.7%), and foliage (2.9%). The log-transformed model was statistically significant for all biomass components, although predicting power was higher for species-specific models than for all species combined, general biomass models, and higher for stems, roots, above-ground biomass, and total tree biomass than for branch and foliage biomass. These findings supplement the previous studies on this forest type by additional sample trees, species and locations, and support biomass research on forest carbon budget and dynamics by management activities such as thinning and harvesting in the northeastern part of China.

  10. Water migration of macroelements in coniferous-broad-leaved forests of Sikhote-Alin

    Directory of Open Access Journals (Sweden)

    N. K. Kozhevnikova

    2017-06-01

    Full Text Available In the paper, the natural water chemical composition spatial variability studies results in the mountain forest catchment are presented. It’s shown that the catchment biotic components’ impact upon water chemical composition is detected even at input as atmospheric precipitation. The input fluxes are acid, sulfate ones with high ratio of hydrogen, potassium and dissolved organic matter. Diversity of ecotopic conditions determines the further transformation of natural water chemical composition. The role of tree crowns in the transformation increases while the crown closure and stands’ age increase. According to macrocomponents transformation and rain acidity neutralization, forest associations form the sequence: mixed > coniferous > young deciduous ones. Dissolved organic carbon (DOC, potassium and calcium become the main components of water chemical composition, while sulfates dominate among anions. For vegetation period, 9–11 kg/ha of sulfates come below tree crown. Biogenic elements transport is gradually limited in soil profile at the migration stage. Sulfate-potassium composition throughfall in spruce-fir and secondary forests community transforms into sulfate-sodium-calcium. Hydrocarbonates predominate in soil water in broad-leaved-pine type of forest, and potassium output decreases 10 times. Geochemical type of river water keeps features of chemical composition of soil drained by river section. Negligible output of sulfates, hydrocarbonates and calcium from ecosystem is established for the headwaters. Negative balance of hydrocarbonates and calcium is compensated by significant input of these components with throughfall at catchments with predominantly pine-broad-leaved forest types.

  11. Evaluation of meteorological parameters over a coniferous forest in a single-column chemistry-climate model

    NARCIS (Netherlands)

    Ganzeveld, L.N.; Klemm, O.; Rappenglück, B.; Valverde-Canossa, J.

    2006-01-01

    The simulated micrometerology by a single-column chemistry-climate model (SCM) has been evaluated by comparison with BEWA2000 field campaign measurements over a coniferous forest, July-August 2001. This comparison indicates the limitations in the representation of the SCM's micrometeorological

  12. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition

    NARCIS (Netherlands)

    Saari, A.; Martikainen, P.J.; Ferm, A.; Ruuskanen, J.; Boer, W. de; Troelstra, S.R.; Laanbroek, H.J.

    1997-01-01

    We studied methane oxidation capacity in soil profiles of Dutch and Finnish coniferous forests. The Finnish sites (n = 9) had nitrogen depositions from 3 to 36 kg N ha⁻¹ a⁻¹. The deposition of N on the Dutch sites (n = 13) was higher ranging from 50 to 92 kg N ha⁻¹ a⁻¹. The Dutch sites had also

  13. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition

    NARCIS (Netherlands)

    Saari, A.; Martikainen, P.J.; Ferm, A.; Ruuskanen, J.; De Boer, W.; Troelstra, S.R.; Laanbroek, H.J.

    1997-01-01

    We studied methane oxidation capacity in soil profiles of Dutch and Finnish coniferous forests. The Finnish sites (n = 9) had nitrogen depositions from 3 to 36 kg N ha(-1) a(-1). The deposition of N on the Dutch sites (n = 13) was higher ranging from 50 to 92 kg N ha(-1) a(-1). The Dutch sites had

  14. Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral data

    Science.gov (United States)

    Andrew T. Hudak; Nicholas L. Crookston; Jeffrey S. Evans; Michael K. Falkowski; Alistair M. S. Smith; Paul E. Gessler; Penelope Morgan

    2006-01-01

    We compared the utility of discrete-return light detection and ranging (lidar) data and multispectral satellite imagery, and their integration, for modeling and mapping basal area and tree density across two diverse coniferous forest landscapes in north-central Idaho. We applied multiple linear regression models subset from a suite of 26 predictor variables derived...

  15. Classification of Snowfall Events and Their Effect on Canopy Interception Efficiency in a Temperate Montane Forest.

    Science.gov (United States)

    Roth, T. R.; Nolin, A. W.

    2015-12-01

    Forest canopies intercept as much as 60% of snowfall in maritime environments, while processes of sublimation and melt can reduce the amount of snow transferred from the canopy to the ground. This research examines canopy interception efficiency (CIE) as a function of forest and event-scale snowfall characteristics. We use a 4-year dataset of continuous meteorological measurements and monthly snow surveys from the Forest Elevation Snow Transect (ForEST) network that has forested and open sites at three elevations spanning the rain-snow transition zone to the upper seasonal snow zone. Over 150 individual storms were classified by forest and storm type characteristics (e.g. forest density, vegetation type, air temperature, snowfall amount, storm duration, wind speed, and storm direction). The between-site comparisons showed that, as expected, CIE was highest for the lower elevation (warmer) sites with higher forest density compared with the higher elevation sites where storm temperatures were colder, trees were smaller and forests were less dense. Within-site comparisons based on storm type show that this classification system can be used to predict CIE.Our results suggest that the coupling of forest type and storm type information can improve estimates of canopy interception. Understanding the effects of temperature and storm type in temperate montane forests is also valuable for future estimates of canopy interception under a warming climate.

  16. Instream wood loads in montane forest streams of the Colorado Front Range, USA

    Science.gov (United States)

    Jackson, Karen J.; Wohl, Ellen

    2015-04-01

    Although several studies examine instream wood loads and associated geomorphic effects in streams of subalpine forests in the U.S. Southern Rocky Mountains, little is known of instream wood loads in lower elevation, montane forests of the region. We compare instream wood loads and geomorphic effects between streams draining montane forest stands of differing age (old growth versus younger) and disturbance history (healthy versus infested by mountain pine beetles). We examined forest stand characteristics, instream wood load, channel geometry, pool volume, and sediment storage in 33 pool-riffle or plane-bed stream reaches with objectives of determining whether (i) instream wood and geomorphic effects differed significantly among old-growth, younger, healthy, and beetle-infested forest stands and (ii) wood loads correlated with valley and channel characteristics. Wood loads were standardized to drainage area, stream gradient, reach length, bankfull width, and floodplain area. Streams flowing through old-growth forests had significantly larger wood loads and logjam volumes (pairwise t-tests), as well as logjam frequencies (Kruskal-Wallis test), residual pool volume, and fine sediment storage around wood than streams flowing through younger forests. Wood loads in streams draining beetle-infested forest did not differ significantly from those in healthy forest stands, but best subset regression models indicated that elevation, stand age, and beetle infestation were the best predictors of wood loads in channels and on floodplains, suggesting that beetle infestation is affecting instream wood characteristics. Wood loads are larger than values from subalpine streams in the same region and jams are larger and more closely spaced. We interpret these differences to reflect greater wood piece mobility in subalpine zone streams. Stand age appears to exert the dominant influence on instream wood characteristics within pool-riffle streams in the study area rather than beetle

  17. Long-term changes in structure and composition following hurricanes in a primary lower montane rain forest in Puerto Rico

    Science.gov (United States)

    P.L. Weaver

    2013-01-01

    Ridges within the lower montane rain forests (sensu Beard) of the Caribbean Basin are dominated by Dacryodes excelsa, a tree species known as tabonuco in Puerto Rico and gommier in the Lesser Antilles. Periodially, hurricanes traverse the islands causing changes in structure, species composition, and dynamics of forests. The chronology of post-hurricane vegetation...

  18. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change

    Science.gov (United States)

    Ashley E. Van Beusekom; Grizelle Gonzalez; Martha A. Scholl

    2017-01-01

    The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline...

  19. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry

    Directory of Open Access Journals (Sweden)

    A. K. Y. Lee

    2016-06-01

    Full Text Available Substantial biogenic secondary organic aerosol (BSOA formation was investigated in a coniferous forest mountain region in Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS measurement identified two types of BSOA (BSOA-1 and BSOA-2, which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas–particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 arises from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is likely less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22–33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91 compared to the background organic aerosol. Using f91 to evaluate BSOA formation pathways in this unpolluted, forested region, heterogeneous oxidation of BSOA-1 is a minor production pathway of BSOA-2.

  20. Woody biomass production lags stem-girth increase by over one month in coniferous forests.

    Science.gov (United States)

    Cuny, Henri E; Rathgeber, Cyrille B K; Frank, David; Fonti, Patrick; Mäkinen, Harri; Prislan, Peter; Rossi, Sergio; Del Castillo, Edurne Martinez; Campelo, Filipe; Vavrčík, Hanuš; Camarero, Jesus Julio; Bryukhanova, Marina V; Jyske, Tuula; Gričar, Jožica; Gryc, Vladimír; De Luis, Martin; Vieira, Joana; Čufar, Katarina; Kirdyanov, Alexander V; Oberhuber, Walter; Treml, Vaclav; Huang, Jian-Guo; Li, Xiaoxia; Swidrak, Irene; Deslauriers, Annie; Liang, Eryuan; Nöjd, Pekka; Gruber, Andreas; Nabais, Cristina; Morin, Hubert; Krause, Cornelia; King, Gregory; Fournier, Meriem

    2015-10-26

    Wood is the main terrestrial biotic reservoir for long-term carbon sequestration(1), and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year(2). However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales(3, 4, 5, 6). They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the well-watered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors(7) may shift the phase timing of stem size increase and woody biomass production in the future.

  1. Influence of soil fungi (basidiomycetes) on the migration of Cs 134 + 137 and Sr 90 in coniferous forest soils

    International Nuclear Information System (INIS)

    Roemmelt, R.; Hiersche, L.; Schaller, G.; Wirth, E.

    1990-01-01

    During the first three years after the Chernobyl event high Cs 134 + 137 activities in fruitbodies of basidiomycetes have been measured. A decline of activities with time has not yet been observed. The activities are considerably higher compared to agricultural products from the same area. In order to study the movement of radiocesium in coniferous forest sites, the activities in soil, fungi, and plants have been measured. Based on these results a model to describe the cesium cycling in coniferous forest ecosystems is proposed with special emphasis on the influence of soil fungi and plants on the migration of cesium. As measurements of Sr 90 in forest ecosystems are rare this nuclide has been included in the investigations. (author)

  2. Influence of Microclimate on Semi-Arid Montane Conifer Forest Sapflux Velocity in Complex Terrain

    Science.gov (United States)

    Thirouin, K. R.; Barnard, D. M.; Barnard, H. R.

    2016-12-01

    Microclimate variation in complex terrain is key to our understanding of large-scale climate change effects on montane ecosystems. Modern climate models forecast that semi-arid montane ecosystems in the western United States are to experience increases in temperature, number of extreme drought events, and decreases in annual snowpack, all of which will potentially influence ecosystem water, carbon, and energy balances. In this study, we developed response curves that describe the relationships between stem sapflux velocity, air temperature (Tair), incoming solar radiation (SWin), soil temperature (Tsoil), and soil moisture content (VWC) in sites of Pinus contorta and Pinus ponderosa distributed along an elevation and aspect gradient in the montane zone of the Central Rocky Mountains, Colorado, USA. Among sites we found sapflux velocity to be significantly correlated with all four environmental factors (p physiological differences, the highest elevation south-facing P. contorta site behaved similarly to the south-facing P. ponderosa, suggesting that environmental drivers may dominate the response. In response to Tair, peak sapflux velocity occurred at 12-13 degrees C at all sites except the mid-slope north-facing P. contorta site, which also had the lowest Tsoil. The responses of stem sapflux velocity to climate drivers indicate that forest transpiration is regulated by microclimate gradients across small spatial scales in complex terrain, which need to be characterized in order to understand broader ecosystem dynamics and the role that large-scale climate change will play in these systems.

  3. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover

    Science.gov (United States)

    Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-09-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response

  4. Behavior of 7Be and 210Pb deposited via rainwater on a coniferous forest, a broad-leaved forest, and grassland

    International Nuclear Information System (INIS)

    Osaki, S.; Sugihara, S.; Maeda, Y.; Osaki, T.

    2007-01-01

    Fall water, stem flow water and falling litter in a coniferous forest (C. japonica) and a broad-leaved forest (L. edulis), and rainwater on a grassland near the forests were collected, and their 7 Be and 210 Pb contents were measured. The average residence times of 7 Be and 210 Pb in the forest crowns were calculated from the balances of their radionuclides, those in the forest crown of C. japonica were 88 days for 7 Be and 9.2 years for 210 Pb, and those in the forest crown of L. edulis were 52 days and <1 year, respectively. (author)

  5. Draft genome sequence of Burkholderia sordidicola S170, a potential plant growth promoter isolated from coniferous forest soil in the Czech Republic

    DEFF Research Database (Denmark)

    Lladó, Salvador; Xu, Zhuofei; Sørensen, Søren Johannes

    2014-01-01

    Burkholderia species are key players in the accumulation of carbon from cellulose decomposition in coniferous forest ecosystems. We report here the draft genome of Burkholderia sordidicola strain S170, containing features associated with known genes involved in plant growth promotion...

  6. Growth rates of important East African montane forest trees, with ...

    African Journals Online (AJOL)

    These trees showed growth rates at least twice as high as those of the primary species. Juniperus procera was found to be the fastest growing species in the cedar forest, underlining its success in forming dense stands after a fire. Only young Podocarpus latifolius showed a similar fast growth. Olea europaea ssp. cuspidata, ...

  7. Historical patterns in lichen communities of montane quaking aspen forests

    Science.gov (United States)

    Paul C. Rogers; Dale L. Bartos; Ronald J. Ryel

    2011-01-01

    Climate shifts and resource exploitation in Rocky Mountain forests have caused profound changes in quaking aspen (Populus tremuloides Michx.) structure and function since Euro-American settlement. It therefore seems likely that commensurate shifts in dependent epiphytes would follow major ecological transitions. In the current study, we merge several lines of inquiry...

  8. Fungal mycelium and decomposition of needle litter in three contrasting coniferous forests

    Science.gov (United States)

    Virzo De Santo, Amalia; Rutigliano, Flora Angela; Berg, Björn; Fioretto, Antonietta; Puppi, Gigliola; Alfani, Anna

    2002-08-01

    The fungal mycelium ingrowth and the rates of mass loss and respiration of needle litter of Pinus pinea, Pinus laricio, Pinus sylvestris, and Abies alba were investigated, in three coniferous forests, over a 3-year period by means of a composite set of incubations. In the early stages, the fungal flora of the decomposing needles was dominated by dematiaceous hyphomycetes and coelomycetes. Basidiomycetes reached a peak after 6 months on pine needles, but were absent from the N-rich needles of A. alba. Soil fungi ( Penicillium, Trichoderma, Absidia, Mucor sp. pl.) became most frequent in later stages. At the end of the study period, the total mycelium amount showed the lowest values in all pine needles incubated in the P. laricio forest and the highest ones in P. pinea needles incubated in the P. pinea forest. In all data sets, as in data for boreal forests examined for comparison, the concentration of litter fungal mycelium versus litter mass loss followed a common exponential model. However, in later stages, the amount of litter fungal mycelium was very close to that of the humus at the incubation site, thus supporting the hypothesis of a logistic growth pattern. Respiration rates of decomposing litters varied with season and decreased with litter age to values close to those of the humus at the incubation site. Respiration of water-saturated litter was negatively correlated with the total mycelium concentration, and this was consistent with the observation that in far-decomposed litter only a minor fraction of the total mycelium is alive.

  9. Agaricomycetes in low land and montane Atlantic Rain Forest in Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Tatiana Gibertoni

    2014-10-01

    Full Text Available The Atlantic Rain Forest represents a group of extra-amazonic forests, among which the coastal and montane (“brejos de altitude” are the most common in Northeast Brazil. Between 2011 and 2013, 110 field trips were performed in nine reserves in the domain of the Atlantic Rain Forest. Two thousand two hundred sixty three Agaricomycetes were collected and represented 271 species, among which several new species to science, new occurrences to the continent, country, region, biome and States were found. Besides recently collected material, 309 exsiccates of Agaricomycetes deposited in the Herbarium URM were revised and represented 38 species, among which several new occurrences to the region and States. The results indicate the importance of the constant inventories and also of revisions of material deposited in herbaria as tools to improve the knowledge about the Brazilian micota.

  10. The carbon fluxes in different successional stages: modelling the dynamics of tropical montane forests in South Ecuador

    Directory of Open Access Journals (Sweden)

    Sebastian Paulick

    2017-05-01

    Full Text Available Background Tropical forests play an important role in the global carbon (C cycle. However, tropical montane forests have been studied less than tropical lowland forests, and their role in carbon storage is not well understood. Montane forests are highly endangered due to logging, land-use and climate change. Our objective was to analyse how the carbon balance changes during forest succession. Methods In this study, we used a method to estimate local carbon balances that combined forest inventory data with process-based forest models. We utilised such a forest model to study the carbon balance of a tropical montane forest in South Ecuador, comparing two topographical slope positions (ravines and lower slopes vs upper slopes and ridges. Results The simulation results showed that the forest acts as a carbon sink with a maximum net ecosystem exchange (NEE of 9.3 Mg C∙(ha∙yr−1 during its early successional stage (0–100 years. In the late successional stage, the simulated NEE fluctuated around zero and had a variation of 0.77 Mg C∙(ha∙yr –1. The simulated variability of the NEE was within the range of the field data. We discovered several forest attributes (e.g., basal area or the relative amount of pioneer trees that can serve as predictors for NEE for young forest stands (0–100 years but not for those in the late successional stage (500–1,000 years. In case of young forest stands these correlations are high, especially between stand basal area and NEE. Conclusion In this study, we used an Ecuadorian study site as an example of how to successfully link a forest model with forest inventory data, for estimating stem-diameter distributions, biomass and aboveground net primary productivity. To conclude, this study shows that process-based forest models can be used to investigate the carbon balance of tropical montane forests. With this model it is possible to find hidden relationships between forest attributes and forest carbon fluxes

  11. Plantation-Seeding Forest Plantations – the New Method for Regeneration of Coniferous Forests at Large Clearings on Burned Lands

    Directory of Open Access Journals (Sweden)

    V. V. Tarakanov

    2014-02-01

    Full Text Available The new method of restoration of coniferous stands on large felling areas on burnt lands that lack seed trees is discussed. It involves limited planting of big grafted seedlings of quality wood, that have a high level of seed production, with the purpose of the subsequent natural sowing on these territories. Results of two-year-old research on approbation of the method on cuttings on large felling areas on burnt lands in conditions of the mid-Ob' river pine forests are stated. A good viability of «seed cultures» is noted. There is damage of the grafting pines by elk. Therefore there is a problem of protecting plantations against elk. For preservation of a high level of genetic variability of pine stands it is desirable to use in «seed cultures» the best trees from local plantings.

  12. Carbon budget of Nyungwe Tropical Montane Rain Forest in Central Africa

    Science.gov (United States)

    Nyirambangutse, B.; Zibera, E.; Uwizeye, F. K.; Hansson, L.; Nsabimana, D.; Pleijel, H.; Uddling, J.; Wallin, G.

    2015-12-01

    African tropical rainforests host rich biodiversity and play many roles at different scales such as local, regional and global, in the functioning of the earth system. Despite that the African tropical forests are the world's second largest, it has been neglected in terms of understanding the storage and fluxes of carbon and other nutrients. The question of whether this biome is a net sink or source of atmospheric CO2 is still not answered, and little is known concerning the climate change response. Tropical montane forests are even more poorly sampled compared with their importance. Deeper understanding of these ecosystems is required to provide insights on how they might react under global change. To answer questions related to these issues for African tropical montane forests, 15 permanent 0.5 ha plots were established in 2011 in Nyungwe tropical montane rainforest gazetted as a National Park to protect its extensive floral and faunal diversity. The plots are arranged along an east-westerly transect and includes both primary and secondary forest communities. The study is connected to the global ecosystem monitoring network (GEM, http://gem.tropicalforests.ox.ac.uk/). The aim is to characterize spatial and temporal heterogeneity of carbon and nutrient dynamics processes. The role of microclimate, topography, human disturbances, and plant species to the variability of these pools and processes will be explored. We compare stocks and fluxes of carbon and nutrients of the secondary and primary forest communities. The carbon stock are determined by an inventory of height and diameter at breast height (dbh) of all trees with a dbh above 5 cm, wood density, biomass of understory vegetation, leaf area index, standing and fallen dead wood, fine root biomass and organic content of various soil layers (litter, organic and mineral soil down to 45 cm depth). The carbon fluxes are determined by measurements of photosynthesis and respiration of leaves, above and below ground

  13. Productivity and diversity of morel mushrooms in healthy, burned, and insect damaged forests of northeastern Oregon.

    Science.gov (United States)

    David Pilz; Nancy S. Weber; M. Carol Carter; Catherine G. Parks; Randy. Molina

    2004-01-01

    Large commercial crops of morels are harvested annually from montane coniferous forests of the Northwestern United States. Although some morels fruit annually in nondisturbed forests, others fruit copiously in areas experiencing fire, insect infestations, tree mortality, and soil disturbance. Many forest managers currently use thinning and prescribed fire to re-create...

  14. Evaluating UAV and LiDAR Retrieval of Snow Depth in a Coniferous Forest in Arizona

    Science.gov (United States)

    Van Leeuwen, W. J. D.; Broxton, P.; Biederman, J. A.

    2017-12-01

    Remote sensing of snow depth and cover in forested environments is challenging. Trees interfere with the remote sensing of snowpack below the canopy and cause large variations in the spatial distribution of the snowpack itself (e.g. between below canopy environments to shaded gaps to open clearings). The distribution of trees and topographic variation make it challenging to monitor the snowpack with in-situ observations. Airborne LiDAR has improved our ability to monitor snowpack over large areas in montane and forested environments because of its high sampling rate and ability to penetrate the canopy. However, these LiDAR flights can be too expensive and time-consuming to process, making it hard to use them for real-time snow monitoring. In this research, we evaluate Structure from Motion (SfM) as an alternative to Airborne LiDAR to generate high-resolution snow depth data in forested environments. This past winter, we conducted a snow field campaign over Arizona's Mogollon Rim where we acquired aerial LiDAR, multi-angle aerial photography from a UAV, and extensive field observations of snow depth at two sites. LiDAR and SFM derived snow depth maps were generated by comparing "snow-on" and "snow-off" LiDAR and SfM data. The SfM- and LiDAR-generated snow depth maps were similar at a site with fewer trees, though there were more discrepancies at a site with more trees. Both compared reasonably well with the field observations at the sparser forested site, with poorer agreement at the denser forested site. Finally, although the SfM produced point clouds with much higher point densities than the aerial LiDAR, the SfM was not able to produce meaningful snow depth estimates directly underneath trees and had trouble in areas with deep shadows. Based on these findings, we are optimizing our UAV data acquisition strategies for this upcoming field season. We are using these data, along with high-resolution hydrological modeling, to gain a better understanding of how

  15. [Distribution characteristics of heavy metals along an elevation gradient of montane forest].

    Science.gov (United States)

    Wan, Jia-rong; Nie, Ming; Zou, Qin; Hu, Shao-chang; Chen, Jia-kuan

    2011-12-01

    In the present paper, the concentrations of fourteen heavy metals (Fe, Al, Ti, Cu, Cr, Mn, V, Zn, Ni, Co, Pb, Se, Cd and As) were determined by ICP-AES and atomic absorption spectroscopy along an elevation gradient of montane forest. The results show that the elevation gradient had significant effects on the concentrations of Fe, Al, Ti, V, Pb and As. And the concentrations of Cu, Cr, Mn, Zn, Ni, Co, Se and Cd were not significantly affected by the elevation gradient. Because the studying area is red soil, the elevation gradient had significant effects on the concentrations of Fe, Al and Ti which are characteristic heavy metals of red soil, suggesting that the red soil at different elevations has different intensities of weathering desilication and bioaccumulation. Other heavy metals have different relationships with the elevation gradient, such as the concentrations of Cr, Zn and Cd were high at relatively high elevation and Pb and As were high at relatively low elevation. These results suggest that the different elevations of montane forest soils were polluted by differently types of heavy metals.

  16. Phytossociology of wood community in Seasonal Dry Montane Forest in Paraiba, Brazil

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Learth Cunha

    2013-06-01

    Full Text Available The Pico do Jabre Seasonally Dry Montane Forest in Paraiba state, Brazil, the highest regional elevation, 1197 m, distant 360 km the sea was assessed aiming to survey its phytosociology and woody structure. In 36 systematic sampling plots, 10x50m, individuals, Dbh > 4.8cm, had their diameters and height measured. Botanical samples were collected during five years and vouchers were deposited at the Paraiba Federal University Herbaria (JPB. It was found 2050 trees distributed in 64 species of 51 genera of 31 families, which accounted for 1138 ind.ha-1 and 22.45 m2.ha -1. Diversity and equability were assessed as H' = 3.17 nats.ind-1 and J' = 0.76 similar to some others regional seasonally dry montane forest communities. Malpighiaceae, Myrtaceae, Erythroxylaceae, Vochysiaceae, Celastraceae, Rutaceae, Sapindaceae e Fabaceae-Faboideae stood out and summed 66.72% of the total VI. Byrsonima nitidifolia, Eugenia ligustrina, Calisthene microphylla, Maytenus distichophylla and Erythroxylum mucronatum species accounted for 120.79 (40.3% of the total VI. B. nitidifolia ecological dominance is firstly reported in the Brazilian northeast region.

  17. Surface runoff fluxes of nutrients in montane forests in Piedras Blancas region, Antioquia (Colombia)

    International Nuclear Information System (INIS)

    Ruiz Suescun, Oscar Andres; Acosta Jaramillo, Juan Jose; Leon Pelaez, Juan Diego

    2005-01-01

    In natural montane oak forests (Quercus humboldtii Bonpl.), pine (Pinus patula Schltdl and cham.) and cypress (Cupressus lusitanica Mill.) plantations in the region of Piedras Blancas, Antioquia, surface runoff flows (SRF) were measured over 16 months. Runoff was measured using 2 m wide x 10 m long runoff bounded plots, collector tanks and a volumetric counter system. Nutrient flows for the oak forest, pine and cypress plantations were, respectively: P total (0,51, 0,08 and 0,42 kg ha-y), Ca (0,13, 0,21 and 1,27 kg ha- y); Mg (0,07, 0,07 and 0,34 kg ha-y); K (0,89, 0,71 and 2,60 kg ha-y); Fe (0,04, 0,04 and 0,47 kg ha-y) and Mn (0,01, 0,01 and 0,08 kg ha-y)

  18. Dawn chorus variation in East-Asian tropical montane forest birds and its ecological and morphological correlates

    NARCIS (Netherlands)

    Chen, W.-M.; Lee, Y.-F.; Tsai, C.-F.; Yao, C.-T.; Chen, Y.-H.; Li, S.-H.; Kuo, Y.-M.

    2015-01-01

    Many birds in breeding seasons engage in vigorous dawn singing that often turns to a prominent chorus. We examined dawn chorus variation of avian assemblages in a tropical montane forest in Taiwan and tested the hypothesis that onset sequence is affected by eye sizes, foraging heights, and diet of

  19. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    Science.gov (United States)

    Miesel, Jessica R.; Hockaday, William C.; Kolka, Randall K.; Townsend, Philip A.

    2015-06-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition of postfire SOM. We sampled the forest floor layer (i.e., full organic horizon) and 0-10 cm mineral soil from stands dominated by coniferous (Pinus banksiana Lamb.) or deciduous (Populus tremuloides Michx.) species 1-2 months after the 2011 Pagami Creek wildfire in northern Minnesota. We used solid-state 13C NMR to characterize SOM composition across a gradient of fire severity in both forest cover types. SOM composition was affected by fire, even when no statistically significant losses of total C stocks were evident. The most pronounced differences in SOM composition between burned and unburned reference areas occurred in the forest floor for both cover types. Carbohydrate stocks in forest floor and mineral horizons decreased with severity level in both cover types, whereas pyrogenic C stocks increased with severity in the coniferous forest floor and decreased in only the highest severity level in the deciduous forest floor. Loss of carbohydrate and lignin pools contributed to a decreased SOM stability index and increased decomposition index. Our results suggest that increases in fire severity expected to occur under future climate scenarios may lead to changes in SOM composition and dynamics with consequences for postfire forest recovery and C uptake.

  20. Analysis of the temporal variation of the structure of a montane forest with historical of fire

    Directory of Open Access Journals (Sweden)

    Fernando Bonillo Fernandes

    2012-06-01

    Full Text Available The aim of this study was to evaluate the structural dynamic rates of an shrubs-tree component of a seasonal semideciduous upper montane forest, in Mantiqueira Mountain between 2002 and 2008. We calculated the rates of dynamic according to the number of surviving, dead individuals and recruits, as well as the rates of dynamic for gain and loss of basal area. We verified the spatial differences among the rates along the vegetation gradient parallel to ground elevation. We also studied the correlations between the rates and biotic (initial numbers of trees and initial basal area and abiotic parameters (altimetric quota. We verified that recruitment was higher than mortality, and the gain of basal area was higher than the loses. This result suggests that the forest is expanding, with gain in number of individuals and in basal area. Normally, this result characterizes forests in recuperation after some disturbance. The community sectors (basis, middle and top of hillside didn’t show any differences in terms of dynamic rates. In general, there were few significant correlations between biotic and abiotic parameters and the dynamic rates. The increase of density and basal area, the similarity of dynamic rates among the sectors and the low correlation between parameters and the dynamic of forest’s structure point out that the forest burning occurred in 90’s could be, nowadays, interfering directly in dynamic rates of forest.

  1. Micrometeorological measurement of the dry deposition flux of sulphate and nitrate aerosols to coniferous forest

    NARCIS (Netherlands)

    Wyers, G.P.; Duyzer, J.H.

    1997-01-01

    Dry deposition fluxes of sulphate and nitrate have been determined over a coniferous canopy using the aerodynamic gradient technique. Vertical concentration gradients of sulphate and nitrate were measured with filters; the gradient of ammonium bisulphate was measured with thermodenuders. Filter

  2. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya

    Directory of Open Access Journals (Sweden)

    Kumar Munesh

    2009-08-01

    Full Text Available Abstract Background The Himalayan zones, with dense forest vegetation, cover a fifth part of India and store a third part of the country reserves of soil organic carbon (SOC. However, the details of altitudinal distribution of these carbon stocks, which are vulnerable to forest management and climate change impacts, are not well known. Results This article reports the results of measuring the stocks of SOC along altitudinal gradients. The study was carried out in the coniferous subtropical and broadleaf temperate forests of Garhwal Himalaya. The stocks of SOC were found to be decreasing with altitude: from 185.6 to 160.8 t C ha-1 and from 141.6 to 124.8 t C ha-1 in temperature (Quercus leucotrichophora and subtropical (Pinus roxburghii forests, respectively. Conclusion The results of this study lead to conclusion that the ability of soil to stabilize soil organic matter depends negatively on altitude and call for comprehensive theoretical explanation

  3. Small scale temporal distribution of radiocesium in undisturbed coniferous forest soil: Radiocesium depth distribution profiles.

    Science.gov (United States)

    Teramage, Mengistu T; Onda, Yuichi; Kato, Hiroaki

    2016-04-01

    The depth distribution of pre-Fukushima and Fukushima-derived (137)Cs in undisturbed coniferous forest soil was investigated at four sampling dates from nine months to 18 months after the Fukushima nuclear power plant accident. The migration rate and short-term temporal variability among the sampling profiles were evaluated. Taking the time elapsed since the peak deposition of pre-Fukushima (137)Cs and the median depth of the peaks, its downward displacement rates ranged from 0.15 to 0.67 mm yr(-1) with a mean of 0.46 ± 0.25 mm yr(-1). On the other hand, in each examined profile considerable amount of the Fukushima-derived (137)Cs was found in the organic layer (51%-92%). At this moment, the effect of time-distance on the downward distribution of Fukushima-derived (137)Cs seems invisible as its large portion is still found in layers where organic matter is maximal. This indicates that organic matter seems the primary and preferential sorbent of radiocesium that could be associated with the physical blockage of the exchanging sites by organic-rich dusts that act as a buffer against downward propagation of radiocesium, implying radiocesium to be remained in the root zone for considerable time period. As a result, this soil section can be a potential source of radiation dose largely due to high radiocesium concentration coupled with its low density. Generally, such kind of information will be useful to establish a dynamic safety-focused decision support system to ease and assist management actions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Structure of the epiphyte community in a tropical montane forest in SW China.

    Directory of Open Access Journals (Sweden)

    Mingxu Zhao

    Full Text Available Vascular epiphytes are an understudied and particularly important component of tropical forest ecosystems. However, owing to the difficulties of access, little is known about the properties of epiphyte-host tree communities and the factors structuring them, especially in Asia. We investigated factors structuring the vascular epiphyte-host community and its network properties in a tropical montane forest in Xishuangbanna, SW China. Vascular epiphytes were surveyed in six plots located in mature forests. Six host and four micro-site environmental factors were investigated. Epiphyte diversity was strongly correlated with host size (DBH, diameter at breast height, while within hosts the highest epiphyte diversity was in the middle canopy and epiphyte diversity was significantly higher in sites with canopy soil or a moss mat than on bare bark. DBH, elevation and stem height explained 22% of the total variation in the epiphyte species assemblage among hosts, and DBH was the most important factor which alone explained 6% of the variation. Within hosts, 51% of the variation in epiphyte assemblage composition was explained by canopy position and substrate, and the most important single factor was substrate which accounted for 16% of the variation. Analysis of network properties indicated that the epiphyte host community was highly nested, with a low level of epiphyte specialization, and an almost even interaction strength between epiphytes and host trees. Together, these results indicate that large trees harbor a substantial proportion of the epiphyte community in this forest.

  5. Structure of the epiphyte community in a tropical montane forest in SW China.

    Science.gov (United States)

    Zhao, Mingxu; Geekiyanage, Nalaka; Xu, Jianchu; Khin, Myo Myo; Nurdiana, Dian Ridwan; Paudel, Ekananda; Harrison, Rhett Daniel

    2015-01-01

    Vascular epiphytes are an understudied and particularly important component of tropical forest ecosystems. However, owing to the difficulties of access, little is known about the properties of epiphyte-host tree communities and the factors structuring them, especially in Asia. We investigated factors structuring the vascular epiphyte-host community and its network properties in a tropical montane forest in Xishuangbanna, SW China. Vascular epiphytes were surveyed in six plots located in mature forests. Six host and four micro-site environmental factors were investigated. Epiphyte diversity was strongly correlated with host size (DBH, diameter at breast height), while within hosts the highest epiphyte diversity was in the middle canopy and epiphyte diversity was significantly higher in sites with canopy soil or a moss mat than on bare bark. DBH, elevation and stem height explained 22% of the total variation in the epiphyte species assemblage among hosts, and DBH was the most important factor which alone explained 6% of the variation. Within hosts, 51% of the variation in epiphyte assemblage composition was explained by canopy position and substrate, and the most important single factor was substrate which accounted for 16% of the variation. Analysis of network properties indicated that the epiphyte host community was highly nested, with a low level of epiphyte specialization, and an almost even interaction strength between epiphytes and host trees. Together, these results indicate that large trees harbor a substantial proportion of the epiphyte community in this forest.

  6. Nutrient cycling and nutrient losses in Andean montane forests from Antioquia, Colombia

    International Nuclear Information System (INIS)

    Londono Alvarez, Adriana; Montoya Gomez, Diana Cristina; Leon Pelaez, Juan Diego; Gonzalez Hernandez, Maria Isabel

    2007-01-01

    Gravitational flow and its chemical composition were measured in montane oak forests (Quercus humboldtii), in pine (Pinus patula) and cypress (Cupressus lusitanica) plantations in Piedras Blancas, Antioquia (Colombia), over two years. Zero tension lysimeters were used at different depth soil levels, the highest gravitational flow value at highest depth (50-80 cm) was obtained in cypress plot (492-7 mm), followed by pine (14,2 mm) and oak forest (2,0 mm). A similar behavior was encountered for nutrient losses, following the same pattern as gravitational flow. thus, for oak, pine and cypress, nutrient losses were respective/y: ca: 0,004, 0,084 and 2,270 kg ha -1 Y 1 ; P 0,008, 0,052 and 1,234 kg ha -1 Y 1 , mg: 0,004, 0,022 and 0,667 kg ha -1 y 1. K losses were 0,08 and 7,092 kg ha -1 Y 1 for oak forest and cypress plantation respectively. Nutrient losses followed the next order for each type of forest: oak: K ≥ P ≥Ca≥Mg, pine: Ca≥Fe≥P>Mg≥Zn≥Mn and cypress: K≥Mn≥Ca≥P≥Fe≥Zn≥Mg

  7. Balligratus, new genus of wingless ground beetles from equatorial Andean montane forest (Coleoptera: Carabidae: Lachnophorini).

    Science.gov (United States)

    Moret, Pierre; Ortuño, Vicente M

    2017-04-27

    A new carabid beetle genus, Balligratus gen. nov., belonging to the tribe Lachnophorini, is described. It is geographically restricted to the equatorial Andes, and ecologically linked to the montane pluvial forest ecosystem, at elevations ranging from 1,200 to 3,600 m. As other carabid lineages that have radiated in such environments, Balligratus gen. nov. is a wingless clade, characterized by the loss of flight wings associated with metathoracic reduction, constriction of the elytral base, and reduced eye size. This evolution is unique among Lachnophorini. Four new species are described, all of them from Ecuador: Balligratus brevis sp. nov., Balligratus globosus sp. nov., Balligratus gracilis sp. nov. and Balligratus humerangulus sp. nov.

  8. Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents

    Energy Technology Data Exchange (ETDEWEB)

    Calmon, P.; Gonze, M.-A.; Mourlon, Ch.

    2015-10-01

    Following the Chernobyl accident, the scientific community gained numerous data on the transfer of radiocesium in European forest ecosystems, including information regarding the short-term redistribution of atmospheric fallout onto forest canopies. In the course of international programs, the French Institute for Radiological Protection and Nuclear Safety (IRSN) developed a forest model, named TREE4 (Transfer of Radionuclides and External Exposure in FORest systems), 15 years ago. Recently published papers on a Japanese evergreen coniferous forest contaminated by Fukushima radiocesium fallout provide interesting and quantitative data on radioactive mass fluxes measured within the forest in the months following the accident. The present study determined whether the approach adopted in the TREE4 model provides satisfactory results for Japanese forests or whether it requires adjustments. This study focused on the interception of airborne radiocesium by forest canopy, and the subsequent transfer to the forest floor through processes such as litterfall, throughfall, and stemflow, in the months following the accident. We demonstrated that TREE4 quite satisfactorily predicted the interception fraction (20%) and the canopy-to-soil transfer (70% of the total deposit in 5 months) in the Tochigi forest. This dynamics was similar to that observed in the Höglwald spruce forest. However, the unexpectedly high contribution of litterfall (31% in 5 months) in the Tochigi forest could not be reproduced in our simulations (2.5%). Possible reasons for this discrepancy are discussed; and sensitivity of the results to uncertainty in deposition conditions was analyzed. - Highlights: • Transfer of radiocesium atmospheric fallout in evergreen forests was modeled. • The model was tested using observations from Chernobyl and Fukushima accidents. • Model predictions of canopy interception and depuration agree with measurements. • Unexpectedly high contribution of litterfall for the

  9. A stand-replacing fire history in upper montane forests of the southern Rocky Mountains

    Science.gov (United States)

    Margolis, E.Q.; Swetnam, T.W.; Allen, Craig D.

    2007-01-01

    Dendroecological techniques were applied to reconstruct stand-replacing fire history in upper montane forests in northern New Mexico and southern Colorado. Fourteen stand-replacing fires were dated to 8 unique fire years (1842–1901) using four lines of evidence at each of 12 sites within the upper Rio Grande Basin. The four lines of evidence were (i) quaking aspen (Populus tremuloides Michx.) inner-ring dates, (ii) fire-killed conifer bark-ring dates, (iii) tree-ring width changes or other morphological indicators of injury, and (iv) fire scars. The annual precision of dating allowed the identification of synchronous stand-replacing fire years among the sites, and co-occurrence with regional surface fire events previously reconstructed from a network of fire scar collections in lower elevation pine forests across the southwestern United States. Nearly all of the synchronous stand-replacing and surface fire years coincided with severe droughts, because climate variability created regional conditions where stand-replacing fires and surface fires burned across ecosystems. Reconstructed stand-replacing fires that predate substantial Anglo-American settlement in this region provide direct evidence that stand-replacing fires were a feature of high-elevation forests before extensive and intensive land-use practices (e.g., logging, railroad, and mining) began in the late 19th century.

  10. The potential negative impacts of global climate change on tropical montane cloud forests

    Science.gov (United States)

    Foster, Pru

    2001-10-01

    Nearly every aspect of the cloud forest is affected by regular cloud immersion, from the hydrological cycle to the species of plants and animals within the forest. Since the altitude band of cloud formation on tropical mountains is limited, the tropical montane cloud forest occurs in fragmented strips and has been likened to island archipelagoes. This isolation and uniqueness promotes explosive speciation, exceptionally high endemism, and a great sensitivity to climate. Global climate change threatens all ecosystems through temperature and rainfall changes, with a typical estimate for altitude shifts in the climatic optimum for mountain ecotones of hundreds of meters by the time of CO 2 doubling. This alone suggests complete replacement of many of the narrow altitude range cloud forests by lower altitude ecosystems, as well as the expulsion of peak residing cloud forests into extinction. However, the cloud forest will also be affected by other climate changes, in particular changes in cloud formation. A number of global climate models suggest a reduction in low level cloudiness with the coming climate changes, and one site in particular, Monteverde, Costa Rica, appears to already be experiencing a reduction in cloud immersion. The coming climate changes appear very likely to upset the current dynamic equilibrium of the cloud forest. Results will include biodiversity loss, altitude shifts in species' ranges and subsequent community reshuffling, and possibly forest death. Difficulties for cloud forest species to survive in climate-induced migrations include no remaining location with a suitable climate, no pristine location to colonize, migration rates or establishment rates that cannot keep up with climate change rates and new species interactions. We review previous cloud forest species redistributions in the paleo-record in light of the coming changes. The characteristic epiphytes of the cloud forest play an important role in the light, hydrological and nutrient

  11. Using field data to assess model predictions of surface and ground fuel consumption by wildfire in coniferous forests of California

    Science.gov (United States)

    Lydersen, Jamie M.; Collins, Brandon M.; Ewell, Carol M.; Reiner, Alicia L.; Fites, Jo Ann; Dow, Christopher B.; Gonzalez, Patrick; Saah, David S.; Battles, John J.

    2014-03-01

    Inventories of greenhouse gas (GHG) emissions from wildfire provide essential information to the state of California, USA, and other governments that have enacted emission reductions. Wildfires can release a substantial amount of GHGs and other compounds to the atmosphere, so recent increases in fire activity may be increasing GHG emissions. Quantifying wildfire emissions however can be difficult due to inherent variability in fuel loads and consumption and a lack of field data of fuel consumption by wildfire. We compare a unique set of fuel data collected immediately before and after six wildfires in coniferous forests of California to fuel consumption predictions of the first-order fire effects model (FOFEM), based on two different available fuel characterizations. We found strong regional differences in the performance of different fuel characterizations, with FOFEM overestimating the fuel consumption to a greater extent in the Klamath Mountains than in the Sierra Nevada. Inaccurate fuel load inputs caused the largest differences between predicted and observed fuel consumption. Fuel classifications tended to overestimate duff load and underestimate litter load, leading to differences in predicted emissions for some pollutants. When considering total ground and surface fuels, modeled consumption was fairly accurate on average, although the range of error in estimates of plot level consumption was very large. These results highlight the importance of fuel load input to the accuracy of modeled fuel consumption and GHG emissions from wildfires in coniferous forests.

  12. A comparison of alpha and beta diversity patterns of ferns, bryophytes and macrolichens in tropical montane forests of southern Ecuador

    OpenAIRE

    Mandl, N A; Lehnert, M; Kessler, M; Gradstein, S R

    2010-01-01

    We present a first comparison of patterns of alpha and beta diversity of ferns, mosses, liverworts and macrolichens in neotropical montane rainforests, and explore the question whether specific taxa may be used as surrogates for others. In three localities in southern Ecuador, we surveyed terrestrial and epiphytic species assemblages in ridge and slope forests in 28 plots of 400 m² each. The epiphytic habitat was significantly richer in ferns, liverworts, and macrolichens than the terrestrial...

  13. Medicinal and Environmental Indicator Species of Utricularia from Montane Forest of Peninsular Malaysia

    Science.gov (United States)

    Haron, Noorma Wati; Chew, Ming Yee

    2012-01-01

    The carnivorous Utricularia (Lentibulariaceae) is a small herb of multifarious wet habitats worldwide. Eleven of the 14 Peninsular Malaysian species range into the mountains. Distribution, disturbance adaptability and collection frequency were used to formulate their commonness category. Common (U. aurea, U. bifida, and U. minutissima) and fairly common (U. gibba and U. uliginosa) species are mostly lowland plants that ascend to open montane microhabitats, while the fairly common (U. striatula), narrow-range (U. caerulea pink form and U. involvens), rare (U. furcellata and U. scandens), and endemic (U. vitellina) species are restricted to mountainous sites. Common species that colonise dystrophic to oligotrophic man-made sites in late succession could serve as predictors for general health and recovery of wet habitats. Rarer species are often locally abundant, their niches situated around pristine forest edges. When in decline, they indicate the beginning of problems affecting the forest. Utricularia is reportedly nutritious, mildly astringent, and diuretic. Preadapted to nutrient-poor, waterlogged soils, U. bifida is suitable as an alternative for small-scale herb cultivation on low pH, wet poor soils usually deemed not suitable for any crops. PMID:22619629

  14. Forest structure, stand composition, and climate-growth response in montane forests of Jiuzhaigou National Nature Reserve, China.

    Directory of Open Access Journals (Sweden)

    Mark W Schwartz

    Full Text Available Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1 whether the forest appears in transition toward increased hardwood composition; 2 if conifers appear stressed by recent climate change relative to hardwoods; and 3 how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20(th century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth.

  15. Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa.

    Science.gov (United States)

    Imani, Gérard; Boyemba, Faustin; Lewis, Simon; Nabahungu, Nsharwasi Léon; Calders, Kim; Zapfack, Louis; Riera, Bernard; Balegamire, Clarisse; Cuni-Sanchez, Aida

    2017-01-01

    Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies.

  16. Tropical montane forest conversion affects spatial and temporal nitrogen dynamics in Kenyan headwater catchment

    Science.gov (United States)

    Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana

    2017-04-01

    Deforestation and land use change (LUC) are often stated as major contributors to changes in water quality, although other catchment characteristics such as topography, geology and climate can also play a role. Understanding how stream water chemistry is affected by LUC is essential for sustainable water management and land use planning. However, there is often a lack of reliable data, especially in less studied regions such as East Africa. This study focuses on three sub-catchments (27-36 km2) with different land use types (natural forest, smallholder agriculture and tea/tree plantations) nested in a 1023 km2 headwater catchment in the Mau Forest Complex, Kenya's largest closed-canopy indigenous tropical montane forest. In the past decades approx. 25% of the natural forest was lost due to land use change. We studied seasonal, diurnal and spatial patterns of total dissolved nitrogen (TDN), nitrate (NO3-N) and dissolved organic nitrogen (DON) using a combination of high-resolution in-situ measurements, bi-weekly stream water samples and spatial sampling campaigns. Multiple linear regression analysis of the spatial data indicates that land use shows a strong influence on TDN and nitrate, while DON is more influenced by precipitation. Highest TDN and nitrate concentrations are found in tea plantations, followed by smallholder agriculture and natural forest. This ranking does not change throughout the year, though concentrations of TDN and nitrate are respectively 27.6 and 25.4% lower in all catchments during the dry season. Maximum Overlap Discrete Wavelet Transform (MODWT) analysis of the high resolution nitrate data revealed a seasonal effect on diurnal patterns in the natural forest catchment, where the daily peak shifts from early morning in the wet season to mid-afternoon in the dry season. The smallholder and tea catchment do not exhibit clear diurnal patterns. The results suggest that land use affects dissolved nitrogen concentrations, leading to higher N

  17. [Comparison of heavy metal elements between natural and plantation forests in a subtropical Montane forest].

    Science.gov (United States)

    Nie, Ming; Wan, Jia-Rong; Chen, Xiao-Feng; Wang, Li; Li, Bo; Chen, Jia-Kuan

    2011-11-01

    Heavy metals as one of major pollutants is harmful to the health of forest ecosystems. In the present paper, the concentrations of thirteen heavy metals (Fe, Al, Ti, Cr, Cu, Mn, V, Zn, Ni, Co, Pb, Se and Cd) were compared between natural and plantation forests in the Mt. Lushan by ICP-AES and atomic absorption spectroscopy. The results suggest that the soil of natural forest had higher concentrations of Fe, Al, Ti, Cu, Mn, V, Zn, Ni, Co, Pb, Se, and Cd than the plantation forest except for Cr. The soil of natural forest had a higher level of heavy metals than that of the plantation forest as a whole. This might be due to that the natural forest has longer age than the plantation forest, and fixed soil heavy metals take a longer period of time than the plantation forest.

  18. Monitoring coniferous forest biomass change using a Landsat trajectory-based approach

    Science.gov (United States)

    Magdalena Main-Knorn; Warren B. Cohen; Robert E. Kennedy; Wojciech Grodzki; Dirk Pflugmacher; Patrick Griffiths; Patrick Hostert

    2013-01-01

    Forest biomass is a major store of carbon and thus plays an important role in the regional and global carbon cycle. Accurate forest carbon sequestration assessment requires estimation of both forest biomass and forest biomass dynamics over time. Forest dynamics are characterized by disturbances and recovery, key processes affecting site productivity and the forest...

  19. Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry in the identification of organic compounds in atmospheric aerosols from coniferous forest

    NARCIS (Netherlands)

    Kallio, M.; Jussila, M.; Rissanen, T.; Anttila, P.; Hartonen, K.; Reissell, A.; Vreuls, R.J.J.; Adahchour, M.; Hyotylainen, T.

    2006-01-01

    Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOF-MS) was applied in the identification of organic compounds in atmospheric aerosols from coniferous forest. The samples were collected at Hyytiälä, Finland, as part of the QUEST campaign, in

  20. Indirect estimations and spatial variation in leaf area index of coniferous, deciduous and mixed forest stands in Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2006-12-01

    Two sites in Sweden are investigated for a potential deep repository of the nuclear waste, the Laxemar investigation area (57 deg 5 min N, 16 deg 7 min E) and the Forsmark investigation area (60 deg 4 min N, 18 deg 2 min E). In the characterisation of these sites, development of site descriptive models is an important part. Leaves are the main surface were an exchange of matter and energy between the atmosphere and the biosphere takes place, and leaf area index (LAI) of the vegetation cover is an important variable correlated to a number of ecophysiological parameters and hereby an important parameter in ecosystem models. In the investigation areas, LAI of boreal and temperate ecosystems were therefore estimated indirectly through optical measurements using the LAI-2000 (LI-COR, Cambridge UK) and TRAC (Tracing Radiation and Architecture of Canopies). On average, measured maximum LAI was 3.40 in Laxemar and 3.43 in Forsmark; minimum LAI was 1.65 in Laxemar and 1.97 in Forsmark. Forest inventory data showed that LAI is positively correlated with basal area, stand height, stand volume and breast height tree diameter. For the coniferous stands, there was also a linearly negative relationship with age. In the Laxemar investigation area, there were no significant relationships for LAI with a satellite derived kNN (kNearest Neighbor) data set with stand height, stand volume and stand age. The kNN data set can therefore not be used to extrapolate measured LAI over the Laxemar investigation area. There were significant relationships between LAI and the normalized difference vegetation index (NDVI) for coniferous, deciduous and mixed forest stands in the Laxemar investigation area. A NDVI image could be used to extrapolate LAI over the entire investigation area. For the Forsmark investigation area, effective LAI for all stands were correlated to NDVI and this relationship could then be used for extrapolation. The effective LAI image was afterwards corrected for average

  1. Indirect estimations and spatial variation in leaf area index of coniferous, deciduous and mixed forest stands in Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Analysis, Lund Univ., Lund (Sweden)

    2006-12-15

    Two sites in Sweden are investigated for a potential deep repository of the nuclear waste, the Laxemar investigation area (57 deg 5 min N, 16 deg 7 min E) and the Forsmark investigation area (60 deg 4 min N, 18 deg 2 min E). In the characterisation of these sites, development of site descriptive models is an important part. Leaves are the main surface were an exchange of matter and energy between the atmosphere and the biosphere takes place, and leaf area index (LAI) of the vegetation cover is an important variable correlated to a number of ecophysiological parameters and hereby an important parameter in ecosystem models. In the investigation areas, LAI of boreal and temperate ecosystems were therefore estimated indirectly through optical measurements using the LAI-2000 (LI-COR, Cambridge UK) and TRAC (Tracing Radiation and Architecture of Canopies). On average, measured maximum LAI was 3.40 in Laxemar and 3.43 in Forsmark; minimum LAI was 1.65 in Laxemar and 1.97 in Forsmark. Forest inventory data showed that LAI is positively correlated with basal area, stand height, stand volume and breast height tree diameter. For the coniferous stands, there was also a linearly negative relationship with age. In the Laxemar investigation area, there were no significant relationships for LAI with a satellite derived kNN (kNearest Neighbor) data set with stand height, stand volume and stand age. The kNN data set can therefore not be used to extrapolate measured LAI over the Laxemar investigation area. There were significant relationships between LAI and the normalized difference vegetation index (NDVI) for coniferous, deciduous and mixed forest stands in the Laxemar investigation area. A NDVI image could be used to extrapolate LAI over the entire investigation area. For the Forsmark investigation area, effective LAI for all stands were correlated to NDVI and this relationship could then be used for extrapolation. The effective LAI image was afterwards corrected for average

  2. Three new species of Pristimantis (Lissamphibia, Anura from montane forests of the Cordillera Yanachaga in Central Peru

    Directory of Open Access Journals (Sweden)

    William E. Duellman

    2007-12-01

    Full Text Available We describe three additional new species of Pristimantis from the Cordillera Yanachaga, a part of the Andes in central Peru. Analyses of DNA sequences of the mitochondrial rRNA genes show that onespecies is a close relative of P. bipunctatus (P. conspicillatus Group, another is a close relative of P. stictogaster (P. peruvianus Group, and the third is related to several species in the P. unistrigatus Group. The first two species are morphologically similar to their closest relatives but occur at lower elevations. Twenty-nine species of Pristimantis and Phrynopus are known from the vicinity of the Cordillera Yanachaga. The number of species, especially of Pristimantis, is high in the humid montane forestin comparison with other sites in humid montane forests in Peru, but the number is lower than on the western slopes of the Andes in Ecuador.

  3. Life in the clouds: are tropical montane cloud forests responding to changes in climate?

    Science.gov (United States)

    Hu, Jia; Riveros-Iregui, Diego A

    2016-04-01

    The humid tropics represent only one example of the many places worldwide where anthropogenic disturbance and climate change are quickly affecting the feedbacks between water and trees. In this article, we address the need for a more long-term perspective on the effects of climate change on tropical montane cloud forests (TMCF) in order to fully assess the combined vulnerability and long-term response of tropical trees to changes in precipitation regimes, including cloud immersion. We first review the ecophysiological benefits that cloud water interception offers to trees in TMCF and then examine current climatological evidence that suggests changes in cloud base height and impending changes in cloud immersion for TMCF. Finally, we propose an experimental approach to examine the long-term dynamics of tropical trees in TMCF in response to environmental conditions on decade-to-century time scales. This information is important to assess the vulnerability and long-term response of TMCF to changes in cloud cover and fog frequency and duration.

  4. Species association in tropical montane rain forest at two successional stages in Diaoluo Mountain, Hainan

    Institute of Scientific and Technical Information of China (English)

    Fude LIU; Wenjin WANG; Ming ZHANG; Jianwei ZHENG; Zhongsheng WANG; Shiting ZHANG; Wenjie YANG; Shuqing AN

    2008-01-01

    Species association is one of the basic concepts in community succession. There are different viewpoints on how species interaction changes with the progress of succession. In order to assess these relationships, we examined species associations in the tropical montane rain forest at early and late successional stages in Diaoluo Mountain, Hainan Island. Based on data from a 2 × 2 contingency table of species presence or absence, statist-ical methods including analysis of species association and χ2 tests were applied. The results show that: 1) an overall positive association was present among tree species in the communities during the two successional stages and were statistically significant at the late stage. The number of species pairs with positive and negative associations decreased throughout the process of succession, while the number with null associations was greatly increased. The same trend existed among the dominant and compan-ion species. The results indicate that the communities are developing towards a stable stage where the woody species coexist in harmony. 2) In the early-established and later invading species, all positive associations were not signifi-cant. Compared with positive and null associations, fewer negative associations were found. This implies that these species are inclined to coexist independently through por-tioning of resources. 3) Among the later invading species, positive associations were significant and no negative associations were found which suggest that these species have similar adaptive ability in the habitat and occupied overlapping niches in the community.

  5. Assessment of Soil Water Composition in the Northern Taiga Coniferous Forests of Background Territories in the Industrially Developed Region

    Science.gov (United States)

    Lukina, N. V.; Ershov, V. V.; Gorbacheva, T. T.; Orlova, M. A.; Isaeva, L. G.; Teben'kova, D. N.

    2018-03-01

    The composition of soil water under coniferous forests of Murmansk oblast—an industrially developed region of northern Russia—was investigated. The studied objects were dwarf-shrub-green-moss spruce forests and dwarf-shrub-lichen pine forests on Al-Fe-humus podzols ( Albic Rustic Podzols) that are widespread in the boreal zone. The concentrations and removal of organic carbon performing the most important biogeochemical and pedogenic functions were estimated. The results proved significant intra- and inter-biogeocenotic variability in the composition of atmospheric depositions and soil water. Carbon removal with soil water from organic and mineral horizons within elementary biogeoareas (EBGA) under tree crowns was 2-5 and 2-3 times (in some cases, up to 10 times) greater than that in the intercrown areas, respectively. The lowest critical level of mineral nitrogen (0.2 mg/L) was, as a rule, exceeded in tree EBGAs contrary to intercrown areas. Concentrations of sulfates and heavy metals in water of tree EBGA were 3-5 times greater than those in inter-crown areas. Significant inter-biogeocenotic variations related to differences in the height of trees and tree stand density were found. It is argued that adequate characterization of biochemical cycles and assessment of critical levels of components in soil water of forest ecosystems should be performed with due account for the intra- and inter-biogeocenotic variability.

  6. Ranging behavior of eastern hoolock gibbon (Hoolock leuconedys) in a northern montane forest in Gaoligongshan, Yunnan, China.

    Science.gov (United States)

    Zhang, Dao; Fei, Han-Lan; Yuan, Sheng-Dong; Sun, Wen-Mo; Ni, Qing-Yong; Cui, Liang-Wei; Fan, Peng-Fei

    2014-04-01

    Generally, food abundance and distribution exert important influence on primate ranging behavior. Hoolock gibbons (genus Hoolock) live in lowland and montane forests in India, Bangladesh, Myanmar and China. All information about hoolock gibbons comes from studies on western hoolock gibbons (Hoolock hoolock) living in lowland forest. Between August 2010 and September 2011, we studied the ranging behavior of one habituated group of eastern hoolock gibbon (H. leuconedys) living in a seasonal montane forest in Gaoligongshan, Yunnan, China. Results show that the study group did not increase foraging effort, calculated in this study as the daily path length, when fruit was less available. Instead, the gibbons fed more on leaves and decreased traveling to conserve energy. They relied heavily on a single food species in most study months which was patchily distributed within their total (14-month) home range, and during most months they used only a small portion of their total home range. In order to find enough food, the group shifted its monthly home range according to the seasonal availability of food species. To satisfy their annual food requirements, they occupied a total home range of 93 ha. The absence of neighboring groups of gibbons and the presence of tsaoko cardamom (Amomum tsaoko) plantations may also have influenced the ranging behavior of the group. Further long-term studies of neighboring groups living in intact forests are required to assess these effects.

  7. Seed-deposition and recruitment patterns of Clusia species in a disturbed tropical montane forest in Bolivia

    Science.gov (United States)

    Saavedra, Francisco; Hensen, Isabell; Apaza Quevedo, Amira; Neuschulz, Eike Lena; Schleuning, Matthias

    2017-11-01

    Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.

  8. Root diseases in coniferous forests of the Inland West: potential implications of fuels treatments

    Science.gov (United States)

    Raini C. Rippy; Jane E. Stewart; Paul J. Zambino; Ned B. Klopfenstein; Joanne M. Tirocke; Mee-Sook Kim; Walter G. Thies

    2005-01-01

    After nearly 100 years of fire exclusion, introduced pests, and selective harvesting, a change in forest composition has occurred in many Inland West forests of North America. This change in forest structure has frequently been accompanied by increases in root diseases and/or an unprecedented buildup of fuels. Consequently, many forest managers are implementing plans...

  9. Assessment of variations in taxonomic diversity, forest structure, and aboveground biomass using remote sensing along an altitudinal gradient in tropical montane forest of Costa Rica

    Science.gov (United States)

    Robinson, C. M.; Saatchi, S. S.; Clark, D.; Fricker, G. A.; Wolf, J.; Gillespie, T. W.; Rovzar, C. M.; Andelman, S.

    2012-12-01

    This research sought to understand how alpha and beta diversity of plants vary and relate to the three-dimensional vegetation structure and aboveground biomass along environmental gradients in the tropical montane forests of Braulio Carrillo National Park in Costa Rica. There is growing evidence that ecosystem structure plays an important role in defining patterns of species diversity and along with abiotic factors (climate and edaphic) control the phenotypic and functional variations across landscapes. It is well documented that strong subdivisions at local and regional scales are found mainly on geologic or climate gradients. These general determinants of biodiversity are best demonstrated in regions with natural gradients such as tropical montane forests. Altitudinal gradients provide a landscape scale changes through variations in topography, climate, and edaphic conditions on which we tested several theoretical and biological hypotheses regarding drivers of biodiversity. The study was performed by using forest inventory and botanical data from nine 1-ha plots ranging from 100 m to 2800 m above sea level and remote sensing data from airborne lidar and radar sensors to quantify variations in forest structure. In this study we report on the effectiveness of relating patterns of tree taxonomic alpha diversity to three-dimensional structure of a tropical montane forest using lidar and radar observations of forest structure and biomass. We assessed alpha and beta diversity at the species, genus, and family levels utilizing datasets provided by the Terrestrial Ecology Assessment and Monitoring (TEAM) Network. Through the comparison to active remote sensing imagery, our results show that there is a strong relationship between forest 3D-structure, and alpha and beta diversity controlled by variations in abiotic factors along the altitudinal gradient. Using spatial analysis with the aid of remote sensing data, we find distinct patterns along the environmental gradients

  10. Assessing seasonality of biochemical CO2 exchange model parameters from micrometeorological flux observations at boreal coniferous forest

    Directory of Open Access Journals (Sweden)

    T. Vesala

    2008-12-01

    Full Text Available The seasonality of the NEE of the northern boreal coniferous forests was investigated by means of inversion modelling using eddy covariance data. Eddy covariance data was used to optimize the biochemical model parameters. Our study sites consisted of three Scots pine (l. Pinus sylvestris forests and one Norway spruce (l. Picea abies forest that were located in Finland and Sweden. We obtained temperature and seasonal dependence for the biochemical model parameters: the maximum rate of carboxylation (Vc(max and the maximum rate of electron transport (Jmax. Both of the parameters were optimized without assumptions about their mutual magnitude. The values obtained for the biochemical model parameters were similar at all the sites during summer time. To describe seasonality, different temperature fits were made for the spring, summer and autumn periods. During summer, average Jmax across the sites was 54.0 μmol m−2 s−1 (variance 31.2 μmol m−2 s−1 and Vc(max was 12.0 μmol m−2 s−1 (variance 6.6 μmol m−2 s−1 at 17°C. The sensitivity of the model to LAI and atmospheric soil water stress was also studied. The impact of seasonality on annual GPP was 17% when only summertime parameterization was used throughout the year compared to seasonally changing parameterizations.

  11. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China.

    Science.gov (United States)

    Tang, Jingchao; Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, -29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest.

  12. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China

    Science.gov (United States)

    Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, –29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest. PMID:29390007

  13. Response of epiphytic bryophytes to simulated N deposition in a subtropical montane cloud forest in southwestern China.

    Science.gov (United States)

    Song, Liang; Liu, Wen-Yao; Ma, Wen-Zhang; Qi, Jin-Hua

    2012-11-01

    A field manipulation experiment was conducted in a subtropical montane cloud forest in southwestern China to determine the possible responses of epiphytic bryophytes to increasing nitrogen (N) deposition from community to physiology level, and to find sensitive epiphytic bryophytes that may be used as indicators for assessing the degree of N pollution. N addition had significantly negative effects on species richness and cover of the epiphytic bryophyte community. Harmful effects of high N loads were recorded for chlorophyll, growth, and vitality of the species tested. The decline of some epiphytic bryophytes may result from detrimental effects on degradation to photosynthetic pigments. Bazzania himalayana (Mitt.) Schiffn., Bazzania ovistipula (Steph.) Mizut., and Homaliodendron flabellatum (Sm.) Fleisch. are candidates in atmospheric nitrogen monitoring. Epiphytic bryophytes in the montane cloud forest are very sensitive to increasing N deposition and often difficult to recover once they have been destroyed, providing early detection of enhanced N pollution for trees or even the whole forest ecosystem. The inference that increasing N pollution may lead to loss of biodiversity is a concern to the developing economy in western China, and should alert the government to the adverse impacts caused by increased industrial pollution during the process of China's West Development.

  14. Transfer equations for cesium-137 for coniferous forest understorey plant species

    International Nuclear Information System (INIS)

    Wirth, E.; Hiersche, L.; Kammerer, L.; Krajewska, G.; Krestel, R.; Mahler, S.; Roemmelt, R.

    1994-01-01

    The transfer of cesium-137 from organic soil horizons to understorey vegetation has been studied on two coniferous tree sites. In total, 14 different plants preferably taking up their nutrients from organic soil layers were taken into account. A relatively good correlation was found to exist between the transfer factor (Bq/kg plant dry wt./Bq/kg O-horizons dry wt.) for dicotyledons (r=0.51) and berry plants (r=0.63), but there was no correlation for monocotyledons (r= 0 .15). The correlations could not be improved by additionally taking potassium in plant and soil into account. These results are discussed in respect to different parameters influencing the amount of cesium-137 uptake, including plants supported by mycorrhizal fungi

  15. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica

    OpenAIRE

    Zaidett Barrientos

    2012-01-01

    Little is known about how restoration strategies affect aspects like leaf litter’s quantity, depth and humidity. I analyzed leaf litter’s quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration) and a 40 year old Cupressus lusitanica plantation (natural understory). The three habitats are located in the Río Macho Forest Reserve, Costa Rica. Twenty litter samples were ...

  16. Factor contribution to fire occurrence, size, and burn probability in a subtropical coniferous forest in East China.

    Science.gov (United States)

    Ye, Tao; Wang, Yao; Guo, Zhixing; Li, Yijia

    2017-01-01

    The contribution of factors including fuel type, fire-weather conditions, topography and human activity to fire regime attributes (e.g. fire occurrence, size distribution and severity) has been intensively discussed. The relative importance of those factors in explaining the burn probability (BP), which is critical in terms of fire risk management, has been insufficiently addressed. Focusing on a subtropical coniferous forest with strong human disturbance in East China, our main objective was to evaluate and compare the relative importance of fuel composition, topography, and human activity for fire occurrence, size and BP. Local BP distribution was derived with stochastic fire simulation approach using detailed historical fire data (1990-2010) and forest-resource survey results, based on which our factor contribution analysis was carried out. Our results indicated that fuel composition had the greatest relative importance in explaining fire occurrence and size, but human activity explained most of the variance in BP. This implies that the influence of human activity is amplified through the process of overlapping repeated ignition and spreading events. This result emphasizes the status of strong human disturbance in local fire processes. It further confirms the need for a holistic perspective on factor contribution to fire likelihood, rather than focusing on individual fire regime attributes, for the purpose of fire risk management.

  17. Comparison of carbon uptake estimates from forest inventory and Eddy-Covariance for a montane rainforest in central Sulawesi

    Science.gov (United States)

    Heimsch, Florian; Kreilein, Heiner; Rauf, Abdul; Knohl, Alexander

    2016-04-01

    Rainforests in general and montane rainforests in particular have rarely been studied over longer time periods. We aim to provide baseline information of a montane tropical forest's carbon uptake over time in order to quantify possible losses through land-use change. Thus we conducted a re-inventory of 22 10-year old forest inventory plots, giving us a rare opportunity to quantify carbon uptake over such a long time period by traditional methods. We discuss shortfalls of such techniques and why our estimate of 1.5 Mg/ha/a should be considered as the lower boundary and not the mean carbon uptake per year. At the same location as the inventory, CO2 fluxes were measured with the Eddy-Covariance technique. Measurements were conducted at 48m height with an LI 7500 open-path infrared gas analyser. We will compare carbon uptake estimates from these measurements to those of the more conventional inventory method and discuss, which factors are probably responsible for differences.

  18. Retreating or standing: Responses of forest species and steppe species to climate change in arid eastern central Asia

    Science.gov (United States)

    Hong-Xiang Zhang; Ming-Li Zhang; Stewart C. Sanderson

    2013-01-01

    The temperature in arid Eastern Central Asia is projected to increase in the future, accompanied by increased variability of precipitation. To investigate the impacts of climate change on plant species in this area, we selected two widespread species as candidates, Clematis sibirica and C. songorica, from montane coniferous forest and arid steppe habitats respectively...

  19. Effects of land use and fine-scale environmental heterogeneity on net ecosystem production over a temperate coniferous forest landscape

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David P.; Guzy, Michael; Lefsky, Michael A.; Tuyl, Steve van; Sun, Osbert; Law, Beverly E. [Oregon State Univ. Corvallis, OR (United States). Dept. of Forest Science; Daly, Chris [Oregon State Univ., Corvallis, OR (United States). Dept. of Geosciences

    2003-04-01

    In temperate coniferous forests, spatial variation in net ecosystem production (NEP) is often associated with variation in stand age and heterogeneity in environmental factors such as soil depth. However, coarse spatial resolution analyses used to evaluate the terrestrial contribution to global NEP do not generally incorporate these effects. In this study, a fine-scale (25 m grid) analysis of NEP over a 164-km{sup 2} area of productive coniferous forests in the Pacific Northwest region of the United States was made to evaluate the effects of including fine scale information in landscape-scale NEP assessments. The Enhanced Thematic Mapper (ETM+) sensor resolved five cover classes in the study area and further differentiated between young, mature and old-growth conifer stands. ETM+ was also used to map current leaf area index (LAI) based on an empirical relationship of observed LAI to spectral vegetation indices. A daily time step climatology, based on 18 years of meteorological observations, was distributed (1 km resolution) over the mountainous terrain of the study area using the DAYMET model. Estimates of carbon pools and flux associated with soil, litter, coarse woody debris and live trees were then generated by running a carbon cycle model (Biome-BGC) to a state that reflected the current successional status and LAI of each grid cell, as indicated by the remote sensing observations. Estimated annual NEP for 1997 over the complete study area averaged 230 g C m{sup 2}, with most of the area acting as a carbon sink. The area-wide NEP is strongly positive because of reduced harvesting in the last decade and the recovery of areas harvested between 1940 and 1990. The average value was greater than would be indicated if the entire area was assumed to be a mature conifer stand, as in a coarse-scale analysis. The mean NEP varied interannually by over a factor of two. This variation was 38% less than the interannual variation for a single point. The integration of process

  20. Effects of land use and fine-scale environmental heterogeneity on net ecosystem production over a temperate coniferous forest landscape

    International Nuclear Information System (INIS)

    Turner, David P.; Guzy, Michael; Lefsky, Michael A.; Tuyl, Steve van; Sun, Osbert; Law, Beverly E.; Daly, Chris

    2003-01-01

    In temperate coniferous forests, spatial variation in net ecosystem production (NEP) is often associated with variation in stand age and heterogeneity in environmental factors such as soil depth. However, coarse spatial resolution analyses used to evaluate the terrestrial contribution to global NEP do not generally incorporate these effects. In this study, a fine-scale (25 m grid) analysis of NEP over a 164-km 2 area of productive coniferous forests in the Pacific Northwest region of the United States was made to evaluate the effects of including fine scale information in landscape-scale NEP assessments. The Enhanced Thematic Mapper (ETM+) sensor resolved five cover classes in the study area and further differentiated between young, mature and old-growth conifer stands. ETM+ was also used to map current leaf area index (LAI) based on an empirical relationship of observed LAI to spectral vegetation indices. A daily time step climatology, based on 18 years of meteorological observations, was distributed (1 km resolution) over the mountainous terrain of the study area using the DAYMET model. Estimates of carbon pools and flux associated with soil, litter, coarse woody debris and live trees were then generated by running a carbon cycle model (Biome-BGC) to a state that reflected the current successional status and LAI of each grid cell, as indicated by the remote sensing observations. Estimated annual NEP for 1997 over the complete study area averaged 230 g C m 2 , with most of the area acting as a carbon sink. The area-wide NEP is strongly positive because of reduced harvesting in the last decade and the recovery of areas harvested between 1940 and 1990. The average value was greater than would be indicated if the entire area was assumed to be a mature conifer stand, as in a coarse-scale analysis. The mean NEP varied interannually by over a factor of two. This variation was 38% less than the interannual variation for a single point. The integration of process models

  1. Lidar-derived canopy architecture predicts Brown Creeper occupancy of two western coniferous forests

    Science.gov (United States)

    Jody C. Vogeler; Andrew T. Hudak; Lee A. Vierling; Kerri T. Vierling

    2013-01-01

    In western conifer-dominated forests where the abundance of old-growth stands is decreasing, species such as the Brown Creeper (Certhia americana) may be useful as indicator species for monitoring the health of old-growth systems because they are strongly associated with habitat characteristics associated with old growth and are especially sensitive to forest...

  2. Spatial and Temporal Variabilities of Solar and Longwave Radiation Fluxes below a Coniferous Forest in the French Alps

    Science.gov (United States)

    Sicart, J. E.; Ramseyer, V.; Lejeune, Y.; Essery, R.; Webster, C.; Rutter, N.

    2017-12-01

    At high altitudes and latitudes, snow has a large influence on hydrological processes. Large fractions of these regions are covered by forests, which have a strong influence on snow accumulation and melting processes. Trees absorb a large part of the incoming shortwave radiation and this heat load is mostly dissipated as longwave radiation. Trees shelter the snow surface from wind, so sub-canopy snowmelt depends mainly on the radiative fluxes: vegetation attenuates the transmission of shortwave radiation but enhances longwave irradiance to the surface. An array of 13 pyranometers and 11 pyrgeometers was deployed on the snow surface below a coniferous forest at the CEN-MeteoFrance Col de Porte station in the French Alps (1325 m asl) during the 2017 winter in order to investigate spatial and temporal variabilities of solar and infrared irradiances in different meteorological conditions. Sky view factors measured with hemispherical photographs at each radiometer location were in a narrow range from 0.2 to 0.3. The temperature of the vegetation was measured with IR thermocouples and an IR camera. In clear sky conditions, the attenuation of solar radiation by the canopy reached 96% and its spatial variability exceeded 100 W m-2. Longwave irradiance varied by 30 W m-2 from dense canopy to gap areas. In overcast conditions, the spatial variabilities of solar and infrared irradiances were reduced and remained closely related to the sky view factor. A simple radiative model taking into account the penetration through the canopy of the direct and diffuse solar radiation, and isotropic infrared emission of the vegetation as a blackbody emitter, accurately reproduced the dynamics of the radiation fluxes at the snow surface. Model results show that solar transmissivity of the canopy in overcast conditions is an excellent proxy of the sky view factor and the emitting temperature of the vegetation remained close to the air temperature in this typically dense Alpine forest.

  3. Spatial requirements of free-ranging Huon tree kangaroos, Dendrolagus matschiei (Macropodidae, in upper montane forest.

    Directory of Open Access Journals (Sweden)

    Gabriel Porolak

    Full Text Available Tree kangaroos (Macropodidae, Dendrolagus are some of Australasia's least known mammals. However, there is sufficient evidence of population decline and local extinctions that all New Guinea tree kangaroos are considered threatened. Understanding spatial requirements is important in conservation and management. Expectations from studies of Australian tree kangaroos and other rainforest macropodids suggest that tree kangaroos should have small discrete home ranges with the potential for high population densities, but there are no published estimates of spatial requirements of any New Guinea tree kangaroo species. Home ranges of 15 Huon tree kangaroos, Dendrolagus matschiei, were measured in upper montane forest on the Huon Peninsula, Papua New Guinea. The home range area was an average of 139.6±26.5 ha (100% MCP; n = 15 or 81.8±28.3 ha (90% harmonic mean; n = 15, and did not differ between males and females. Home ranges of D. matschiei were 40-100 times larger than those of Australian tree kangaroos or other rainforest macropods, possibly due to the impact of hunting reducing density, or low productivity of their high altitude habitat. Huon tree kangaroos had cores of activity within their range at 45% (20.9±4.1 ha and 70% (36.6±7.5 ha harmonic mean isopleths, with little overlap (4.8±2.9%; n = 15 pairs between neighbouring females at the 45% isopleth, but, unlike the Australian species, extensive overlap between females (20.8±5.5%; n = 15 pairs at the complete range (90% harmonic mean. Males overlapped each other and females to a greater extent than did pairs of females. From core areas and overlap, the density of female D. matschiei was one per 19.4 ha. Understanding the cause of this low density is crucial in gaining greater understanding of variations in density of tree kangaroos across the landscape. We consider the potential role of habitat fragmentation, productivity and hunting pressure in limiting tree kangaroo

  4. Recovery of goat·damaged vegetation in an insular tropical montane forest

    Science.gov (United States)

    Paul G. Scowcroft; Robert. Hobdy

    1987-01-01

    The feral goat (Capra hircus) is an alien herbivore that has wreaked havoc in island ecosystems, including the dry, rugged, and relatively inaccessible montane koa parkland on the islands of Maui and Hawai'i. The objective of the present work was to evaluate the ability of koa parkland on Maui to recover naturally from browsing damage if...

  5. A comparison of point counts with a new acoustic sampling method: a case study of a bird community from the montane forests of Mount Cameroon

    Czech Academy of Sciences Publication Activity Database

    Sedláček, O.; Vokurková, J.; Ferenc, M.; Djomo Nana, E.; Albrecht, Tomáš; Hořák, D.

    2015-01-01

    Roč. 86, č. 3 (2015), s. 213-220 ISSN 0030-6525 R&D Projects: GA ČR(CZ) GAP505/11/1617 Institutional support: RVO:68081766 Keywords : abundance * automatic recording units * montane forest * point count * species richness * species turnover Subject RIV: EG - Zoology Impact factor: 0.418, year: 2015

  6. Energy balance of a sparse coniferous high-latitude forest under winter conditions

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.; Bruin, H.A.R. de

    2001-01-01

    was simulated for a three month period. For conditions with a cloud cover of less than 7 oktas good agreement between model predictions and measurements were found. For cloud cover 7 and 8 oktas a considerable spread can be observed. To apply the proposed energy balance model, the global radiation must......Measurements carried out in Northern Finland on radiation and turbulent fluxes over a sparse, sub-arctic boreal forest with snow covered ground were analysed. The measurements represent late winter conditions characterised by low solar elevation angles. During the experiment (12-24 March 1997) day...... and night were about equally long. At low solar elevation angles the forest shades most of the snow surface. Therefore an important part of the radiation never reaches the snow surface but is absorbed by the forest. The sensible heat flux above the forest was fairly large, reaching more than 100 W m(-2...

  7. Arthropods and passerine birds in coniferous forest. The impact of acidification and needle-loss

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, B. [Goeteborg Univ., Dept. of Zoology, Sect. of Animal Ecology, Goeteborg (Sweden)

    1995-12-31

    The micro-habitat structure on coniferous trees changes as a result of needle-loss. This structural change in the vegetation may affect arthropods living in spruce Picea abies by indirect mechanisms, e.g. altered relations between prey and predators. The impact of acidification and needle-loss on some tree-living arthropods and passerine birds is reviewed. New information about the taxonomic composition of spiders in relation to needle density in a field experiments is reported. The main combined findings from the review and field experiments are: 1) Acid precipitation may be toxic because of high H{sup +} concentrations. However, simulated acid rain (pH 4.0) did not reduce the growth rate of a spruce-living spider. There is a present no evidence of toxic effect on arthropods at this level of pH. 2) Experiments in the field and laboratory and data from natural populations suggested that spruce-living arthropods are affected by the needle density of branches. These data showed a positive correlation between needle density and spider abundance. However, a large-scale field experiment could not confirm this relationship. 3) The interaction between bird predation and needle density was examined in a large-scale field experiment. There were strong negative effects of bird predation on arthropod abundance. Moreover, the taxonomic composition among spiders changed as a result of bird predation: raptorial spiders increased their relative abundance whereas sheetweb spiders decreased their relative abundance when bird predation was excluded. There were also some cases of bird predation/needle density interactions. In the absence of bird predation, the needle density affected the spider size distribution: large spiders were more common on needle-sparse branches than on needle-dens ones. The species composition was affected by similar interactions, e.g. bird predation effects on crab spiders (Thomisidae) were found on needle-sparse branches only. (Abstract Truncated)

  8. Assessment of Soil Organic Carbon Stock of Temperate Coniferous Forests in Northern Kashmir

    Directory of Open Access Journals (Sweden)

    Davood A. Dar

    2015-02-01

    Full Text Available  Soil organic carbon (SOC estimation in temperate forests of the Himalaya is important to estimate their contribution to regional, national and global carbon stocks. Physico chemical properties of soil were quantified to assess soil organic carbon density (SOC and SOC CO2 mitigation density at two soil depths (0-10 and 10-20 cms under temperate forest in the Northern region of Kashmir Himalayas India. The results indicate that conductance, moisture content, organic carbon and organic matter were significantly higher while as pH and bulk density were lower at Gulmarg forest site. SOC % was ranging from 2.31± 0.96 at Gulmarg meadow site to 2.31 ± 0.26 in Gulmarg forest site. SOC stocks in these temperate forests were from 36.39 ±15.40 to 50.09 ± 15.51 Mg C ha-1. The present study reveals that natural vegetation is the main contributor of soil quality as it maintained the soil organic carbon stock. In addition, organic matter is an important indicator of soil quality and environmental parameters such as soil moisture and soil biological activity change soil carbon sequestration potential in temperate forest ecosystems.DOI: http://dx.doi.org/10.3126/ije.v4i1.12186International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15; page: 161-178

  9. Fluxes of oxidised and reduced nitrogen above a mixed coniferous forest exposed to various nitrogen emission sources

    Energy Technology Data Exchange (ETDEWEB)

    Neirynck, J. [Research Institute for Nature and Forest, Gaverstraat 4, B-9500 Geraardsbergen (Belgium)]. E-mail: johan.neirynck@inbo.be; Kowalski, A.S. [Departamento de Fisica Aplicida, Facultad de Ciencias, Universidad de Granada, Calle Fuentenueva, SP-18071 Granada (Spain); Carrara, A. [Fundacion CEAM, Parque Technologico, Calle Charles H. Darwin 14, SP-46980 Paterna (Valencia) (Spain); Genouw, G. [Research Institute for Nature and Forest, Gaverstraat 4, B-9500 Geraardsbergen (Belgium); Berghmans, P. [Flemish Institute for Technological Research, Boeretang 200, B-2400 Mol (Belgium); Ceulemans, R. [Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp) (Belgium)

    2007-09-15

    Concentrations of nitrogen gases (NH{sub 3}, NO{sub 2}, NO, HONO and HNO{sub 3}) and particles (pNH{sub 4} and pNO{sub 3}) were measured over a mixed coniferous forest impacted by high nitrogen loads. Nitrogen dioxide (NO{sub 2}) represented the main nitrogen form, followed by nitric oxide (NO) and ammonia (NH{sub 3}). A combination of gradient method (NH{sub 3} and NO {sub x} ) and resistance modelling techniques (HNO{sub 3}, HONO, pNH{sub 4} and pNO{sub 3}) was used to calculate dry deposition of nitrogen compounds. Net flux of NH{sub 3} amounted to -64 ng N m{sup -2} s{sup -1} over the measuring period. Net fluxes of NO {sub x} were upward (8.5 ng N m{sup -2} s{sup -1}) with highest emission in the morning. Fluxes of other gases or aerosols substantially contributed to dry deposition. Total nitrogen deposition was estimated at -48 kg N ha{sup -1} yr{sup -1} and consisted for almost 80% of NH {sub x} . Comparison of throughfall nitrogen with total deposition suggested substantial uptake of reduced N ({+-}15 kg N ha{sup -1} yr{sup -1}) within the canopy. - Reduced nitrogen was found to be the main contributor to total deposition which was predominantly governed by dry deposition.

  10. Fluxes of oxidised and reduced nitrogen above a mixed coniferous forest exposed to various nitrogen emission sources

    International Nuclear Information System (INIS)

    Neirynck, J.; Kowalski, A.S.; Carrara, A.; Genouw, G.; Berghmans, P.; Ceulemans, R.

    2007-01-01

    Concentrations of nitrogen gases (NH 3 , NO 2 , NO, HONO and HNO 3 ) and particles (pNH 4 and pNO 3 ) were measured over a mixed coniferous forest impacted by high nitrogen loads. Nitrogen dioxide (NO 2 ) represented the main nitrogen form, followed by nitric oxide (NO) and ammonia (NH 3 ). A combination of gradient method (NH 3 and NO x ) and resistance modelling techniques (HNO 3 , HONO, pNH 4 and pNO 3 ) was used to calculate dry deposition of nitrogen compounds. Net flux of NH 3 amounted to -64 ng N m -2 s -1 over the measuring period. Net fluxes of NO x were upward (8.5 ng N m -2 s -1 ) with highest emission in the morning. Fluxes of other gases or aerosols substantially contributed to dry deposition. Total nitrogen deposition was estimated at -48 kg N ha -1 yr -1 and consisted for almost 80% of NH x . Comparison of throughfall nitrogen with total deposition suggested substantial uptake of reduced N (±15 kg N ha -1 yr -1 ) within the canopy. - Reduced nitrogen was found to be the main contributor to total deposition which was predominantly governed by dry deposition

  11. The genetic structure of the mountain forest butterfly Erebia euryale unravels the late Pleistocene and postglacial history of the mountain coniferous forest biome in Europe.

    Science.gov (United States)

    Schmitt, Thomas; Haubrich, Karola

    2008-05-01

    The distribution of the mountain coniferous forest biome in Europe throughout time is not sufficiently understood. One character species of this habitat type is the large ringlet, Erebia euryale well reflecting the extension of this biome today, and the genetic differentiation of this species among and within mountain systems may unravel the late Pleistocene history of this habitat type. We therefore analysed the allozyme pattern of 381 E. euryale individuals from 11 populations in four different European mountain systems (Pyrenees, Alps, Carpathians, Rila). All loci analysed were polymorphic. The mean F(ST) over all samples was high (20%). Furthermore, the mean genetic distance among samples was quite high (0.049). We found four different groups well supported by cluster analyses, bootstraps and hierarchical variance analyses: Pyrenees, western Alps, eastern Alps and southeastern Europe (Carpathians and Rila). The genetic diversity of the populations was highest in the southeastern European group and stepwise decreased westwards. Interestingly, the populations from Bulgaria and Romania were almost identical; therefore, we assume that they were not separated by the Danube Valley, at least during the last ice age. On the contrary, the differentiation among the three western Alps populations was considerable. For all these reasons, we assume that (i) the most important refugial area for the coniferous mountain forest biome in Europe has been located in southeastern Europe including at least parts of the Carpathians and the Bulgarian mountains; (ii) important refugial areas for this biome existed at the southeastern edge of the Alps; (iii) fragments of this habitat types survived along the southwestern Alps, but in a more scattered distribution; and (iv) relatively small relicts have persisted somewhere at the foothills of the Pyrenees.

  12. Mercury concentrations and pools in four adjacent coniferous and deciduous upland forests in Beijing, China

    Science.gov (United States)

    Zhou, Jun; Wang, Zhangwei; Zhang, Xiaoshan; Gao, Yu

    2017-05-01

    Understanding of forest mercury (Hg) pools is important for quantifying the global atmospheric Hg removal. We studied gaseous elemental Hg (GEM) concentrations, litterfall Hg depositions, and pool sizes in four adjacent stands at Mount Dongling to assess Hg dynamics in the forested catchment and the potential of Hg release during wildfires. The average GEM concentration was 2.5 ± 0.5 ng m-3, about 1.5 times of the background levels in the Northern Hemisphere. In all four stands, Hg concentrations increase in the following order: bole wood mineral soil litter < Oe soil < Oa organic soil. The Hg pools of aboveground biomass were comparable in the forests of larch, oak, and Chinese pine, which were much greater than that of mixed broadleaf stands due to lower biomass. The total Hg pools in ecosystems were similar in the four stands, because of the comparable Hg pool in the soil horizons (0-40 cm), which accounted for over 97% of the total ecosystem Hg storage in the four stands. Although Hg pools of the forest ecosystem in north China were comparable to North America and North Europe, Hg storage in forests constituted a high threat for large Hg emission pulses to the atmosphere by wildfires. The potential Hg emissions from the combustion at the four stands were ranged from 0.675 to 1.696 mg m-2.

  13. Soil and vegetation changes after clear-felling coniferous forests: effects of varying removal of logging residues

    International Nuclear Information System (INIS)

    Olsson, Bengt.

    1995-01-01

    Effects of the intensity of logging residue harvesting on soil nutrient status and ground vegetation cover were examined over a 16-year period in two series of field experiments in Sweden. Short-term effects of slash harvesting and stump removal on soil water chemistry were studied after clear-felling a Norway spruce (Picea abies (L.) Karst.) stand in SW Sweden. Soil water concentrations of NH4 + , and NO 3 - and K + were lower shortly after whole-tree harvesting (i.e. stem and slash harvesting) than shortly after conventional stem-only harvesting or complete tree harvesting (i.e. stem, slash and stump removal). However, 5 years later there were no longer differences in nutrient concentrations detected between treatments, and nutrient levels approached those normally found in drainage water from forest land. Similar studies focussed on long-term (16 years) effects were conducted on four coniferous forest sites in Sweden, two in north and the other two in the south. In each region one site was situated in a pure Scots pine stand (Pinus sylvestris L.) and the other in a pure Norway spruce stand. In general, the intensity of slash harvesting had no effect on the total pools of nitrogen or carbon in the soil. Furthermore, this study showed experimentally that the harvesting of logging residues results in long-term soil acidification and depletions of exchangeable base cations, manganese and zinc pools, which lead in turn to a reduction in base saturation levels. A major implication for practical forestry was that guidelines and recommendations concerning the large-scale utilization of logging residues should be based more on the nutritional and soil acidifying consequences of this practice than on its potential effect on soil organic matter storage. It would also be possible to mitigate the detrimental effects that slash harvesting has on site conditions by applying wood-ash or other nutrients in inorganic form. 53 refs, 4 figs, 4 tabs

  14. Soil and vegetation changes after clear-felling coniferous forests: effects of varying removal of logging residues

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Bengt

    1995-11-01

    Effects of the intensity of logging residue harvesting on soil nutrient status and ground vegetation cover were examined over a 16-year period in two series of field experiments in Sweden. Short-term effects of slash harvesting and stump removal on soil water chemistry were studied after clear-felling a Norway spruce (Picea abies (L.) Karst.) stand in SW Sweden. Soil water concentrations of NH4{sup +}, and NO{sub 3}{sup -} and K{sup +} were lower shortly after whole-tree harvesting (i.e. stem and slash harvesting) than shortly after conventional stem-only harvesting or complete tree harvesting (i.e. stem, slash and stump removal). However, 5 years later there were no longer differences in nutrient concentrations detected between treatments, and nutrient levels approached those normally found in drainage water from forest land. Similar studies focussed on long-term (16 years) effects were conducted on four coniferous forest sites in Sweden, two in north and the other two in the south. In each region one site was situated in a pure Scots pine stand (Pinus sylvestris L.) and the other in a pure Norway spruce stand. In general, the intensity of slash harvesting had no effect on the total pools of nitrogen or carbon in the soil. Furthermore, this study showed experimentally that the harvesting of logging residues results in long-term soil acidification and depletions of exchangeable base cations, manganese and zinc pools, which lead in turn to a reduction in base saturation levels. A major implication for practical forestry was that guidelines and recommendations concerning the large-scale utilization of logging residues should be based more on the nutritional and soil acidifying consequences of this practice than on its potential effect on soil organic matter storage. It would also be possible to mitigate the detrimental effects that slash harvesting has on site conditions by applying wood-ash or other nutrients in inorganic form. 53 refs, 4 figs, 4 tabs

  15. The contribution of competition to tree mortality in old-growth coniferous forests

    Science.gov (United States)

    Das, A.; Battles, J.; Stephenson, N.L.; van Mantgem, P.J.

    2011-01-01

    Competition is a well-documented contributor to tree mortality in temperate forests, with numerous studies documenting a relationship between tree death and the competitive environment. Models frequently rely on competition as the only non-random mechanism affecting tree mortality. However, for mature forests, competition may cease to be the primary driver of mortality.We use a large, long-term dataset to study the importance of competition in determining tree mortality in old-growth forests on the western slope of the Sierra Nevada of California, U.S.A. We make use of the comparative spatial configuration of dead and live trees, changes in tree spatial pattern through time, and field assessments of contributors to an individual tree's death to quantify competitive effects.Competition was apparently a significant contributor to tree mortality in these forests. Trees that died tended to be in more competitive environments than trees that survived, and suppression frequently appeared as a factor contributing to mortality. On the other hand, based on spatial pattern analyses, only three of 14 plots demonstrated compelling evidence that competition was dominating mortality. Most of the rest of the plots fell within the expectation for random mortality, and three fit neither the random nor the competition model. These results suggest that while competition is often playing a significant role in tree mortality processes in these forests it only infrequently governs those processes. In addition, the field assessments indicated a substantial presence of biotic mortality agents in trees that died.While competition is almost certainly important, demographics in these forests cannot accurately be characterized without a better grasp of other mortality processes. In particular, we likely need a better understanding of biotic agents and their interactions with one another and with competition. ?? 2011.

  16. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties

    Directory of Open Access Journals (Sweden)

    C. Bastianelli

    2017-07-01

    Full Text Available At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW are spreading southward at the expense of more productive closed-canopy black spruce–moss forests (MF. The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation

  17. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties

    Science.gov (United States)

    Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David

    2017-07-01

    At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW) are spreading southward at the expense of more productive closed-canopy black spruce-moss forests (MF). The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer) showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg) than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart) than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation structure (stand density

  18. Energy balance of a sparse coniferous high-latitude forest under winter conditions

    NARCIS (Netherlands)

    Gryning, S.E.; Batchvarova, E.; DeBruin, H.A.R.

    2001-01-01

    Measurements carried out in Northern Finland on radiation and turbulent fluxes over a sparse, sub-arctic boreal forest with snow covered ground were analysed. The measurements represent late winter conditions characterised by low solar elevation angles. During the experiment (12-24 March 1997) day

  19. [Syntaxonomic analysis of restorative successions after cutting down light coniferous forests of South Ural Region].

    Science.gov (United States)

    Martynenko, V B; Shirokhikh, P S; Mirkin, B M; Naumova, L G

    2014-01-01

    Discussed are the possibilities of using syntaxa from floristic classification for the analysis of secondary restorative successions after forest cutting in South Ural Region. Peculiarities of secondary forest communities classification that may be viewed as subjects of indigenous vegetation syntaxa forming, sub-associations or could be systematized according to 'deductive' classification introduced by K. Kopecky and S. Heiny are considered. An example is presented of an analysis of communities succession system formed after cutting down hemiboreal pine and birch-pine herbaceous forests of Bupleuro-Pinetum association. Within this system the processes of divergence and convergence of succession series take place. Divergence occur as a result of lifting of the influence caused by dominants edificating role and manifestation of differences in soil humidification, also as a consequence of soil enrichment by mineral elements after burning down the felling debris. The reason behind convergence is grading influence of renewed forest stand. Trends in species richness changes during restorative successions may differ depending on ecotope features. In course of a succession, models of tolerance and inhibition become apparent.

  20. Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests.

    Science.gov (United States)

    J.M. Warren; F.C. Meinzer; J.R. Brooks; J.C. Domec

    2005-01-01

    We characterized vertical variation in the seasonal release of stored soil moisture in old-growth ponderosa pine (OG-PP, xeric), and young and old-growth Douglas-fir (Y-DF, OG-DF, mesic) forests to evaluate changes in water availability for root uptake. Soil water potential (ψ) and volumetric water content (θ...

  1. Thinning and riparian buffer configuration effects on down wood abundance in headwater streams in coniferous forests

    Science.gov (United States)

    Adrian Ares; Deanna H. Olson; Klaus J. Puettmann

    2013-01-01

    Down wood is associated with the function, structure, and diversity of riparian systems. Considerable knowledge has been generated regarding down wood stocks and dynamics in temperate forests, but there are few studies on effects of silvicultural practices and riparian buffer design on down wood, particularly in headwater streams. We analyzed interactive eff ects of...

  2. Growth dynamics of fine roots in a coniferous fern forest site close to Forsmark in the central part of Sweden

    International Nuclear Information System (INIS)

    Persson, Hans; Stadenberg, Ingela

    2007-12-01

    The seasonal growth dynamics of live and dead roots for trees and the field layer species (g/m 2 , varying diameter fractions) and live/dead ratios were analysed at a fresh/moist coniferous fern forest site close to the nuclear power plant at Forsmark in the central eastern parts of Sweden. The changes in depth distribution of fine roots were observed at depth intervals of the top humus horizon down to 40 cm in the mineral soil profile. The bulk of living fine roots of trees ( 2 . The total quantity of fine roots (live + dead) amounted to 543, 434, 314 and 546 g/m 2 . Considerable quantities of fine roots (< 1 mm in diameter) were attributed to field-layer species (about 18% of the total biomass during the whole period of investigation). The turnover rate (the rate of construction of new roots) for tree fine roots < 1 mm in diameter amounted to at least the size of the average fine-root biomass. Our methods of estimating fine-root production and mortality, involved periodic measurements of live and dead dry weight of the fine roots from sequential core samples of the forest soil. The collected data give a proper and instant measure of the spatial and temporal distribution of fine roots in the undisturbed soil-profile. Data from other fine-root investigations suggest turnover rates in agreement with our present findings. Differences between root growth and turnover should be expected between trees of different age, tree species and different forest sites, but also between different years. Substantial variations in fine-root biomass, necromass and live/dead ratios are found in different forest sites. Correct methods for estimating the amount of live and dead fine-roots in the soil at regular time intervals are essential for any calculation of fine-root turnover. Definition of root vitality differs in literature, making it difficult to compare results from different root investigators. Our investigation clarifies the importance of using distinct morphological criteria

  3. Woodland: dynamics of average diameters of coniferous tree stands of the principal forest types

    Directory of Open Access Journals (Sweden)

    R. A. Ziganshin

    2016-08-01

    Full Text Available The analysis of age dynamics of average diameters of deciduous tree stands of different forest types at Highland Khamar-Daban (natural woodland in South-East Baikal Lake region has been done. The aggregate data of average tree, the analysis of age dynamics of average diameters of a deciduous tree stands of stand diameters by age classes, as well as tree stand current periodic and overall average increment are presented and discussed in the paper. Forest management appraisal is done. The most representative forest types have been selected to be analyzed. There were nine of them including three Siberian stone pine Pinus sibirica Du Tour stands, three Siberian fir Abies sibirica Ledeb. stands, one Siberian spruce Picea obovata Ledeb. stand, and two dwarf Siberian pine Pinus pumila (Pallas Regel stands. The whole high-altitude range of mountain taiga has been evaluated. Mathematical and statistic indicators have been calculated for every forest type. Stone pine stands are the largest. Dynamics of mean diameters of forest stands have been examined by dominant species for every forest type. Quite a number of interesting facts have been elicited. Generally, all species have maximal values of periodic annual increment that is typical for young stands, but further decrease of increment is going on differently and connects to the different lifetime of wood species. It is curious that annual increment of the dwarf Siberian pine stands almost does not decrease with aging. As for mean annual increment, it is more stable than periodic annual increment. From the fifth age class (age of stand approaching maturity mean annual increment of cedar stands varies from 0.20 to 0.24 cm per year; from 0.12–0.15 to 0.18–0.21 cm per year – in fir stands; from 0.18 to 0.24 cm per year – in spruce stands; and from 0.02–0.03 to 0.05–0.06 cm per year – in draft pine stands. Mean annual increment of dwarf Siberian pine increases with aging and increment of other

  4. Integrating effects of species composition and soil properties to predict shifts in montane forest carbon-water relations.

    Science.gov (United States)

    Maxwell, Toby M; Silva, Lucas C R; Horwath, William R

    2018-05-01

    This study was designed to address a major source of uncertainty pertaining to coupled carbon-water cycles in montane forest ecosystems. The Sierra Nevada of California was used as a model system to investigate connections between the physiological performance of trees and landscape patterns of forest carbon and water use. The intrinsic water-use efficiency (iWUE)-an index of CO 2 fixed per unit of potential water lost via transpiration-of nine dominant species was determined in replicated transects along an ∼1,500-m elevation gradient, spanning a broad range of climatic conditions and soils derived from three different parent materials. Stable isotope ratios of carbon and oxygen measured at the leaf level were combined with field-based and remotely sensed metrics of stand productivity, revealing that variation in iWUE depends primarily on leaf traits (∼24% of the variability), followed by stand productivity (∼16% of the variability), climatic regime (∼13% of the variability), and soil development (∼12% of the variability). Significant interactions between species composition and soil properties proved useful to predict changes in forest carbon-water relations. On the basis of observed shifts in tree species composition, ongoing since the 1950s and intensified in recent years, an increase in water loss through transpiration (ranging from 10 to 60% depending on parent material) is now expected in mixed conifer forests throughout the region. Copyright © 2018 the Author(s). Published by PNAS.

  5. Complex Spatial Structure in a Population of Didymopanax pittieri, A Tree of Wind-Exposed Lower Montane Rain Forest

    Science.gov (United States)

    Lawton, Robert M.; Lawton, Robert O.

    2010-01-01

    Didymopanax pittieri is a common shade-intolerant tree colonizing treefall gaps in the elfin forests on windswept ridgecrests in the lower montane rain forests of the Cordillera de Tilarain, Costa Rica. All D. pittieri taller than > 0.5 m in a 5.2-ha elfin forested portion of a gridded study watershed in the Monteverde Cloud Forest Preserve were located, mapped, and measured. This local population of D. pittieri is spatially inhomogeneous, in that density increases with increasing wind exposure; D. pittieri are more abundant near ridge crests than lower on windward slopes. The important and ubiquitous phenomenon of spatial inhomogeneity in population density is addressed and corrected for in spatial analyses by the application of the inhomogeneous version of Ripley's K. The spatial patterns of four size classes of D. pittieri ( 20 cm dbh) were investigated. Within the large-scale trend in density driven by wind exposure, D. pittieri saplings are clumped at the scale of treefall gaps and at the scale of patches of aggregated gaps. D. pittieri 5-10 cm dbh are randomly distributed, apparently due to competitive thinning of sapling clumps during the early stages of gap-phase regeneration. D. pittieri larger than 10 cm dbh are overdispersed at a scale larger than that of patches of gaps. Natural disturbance can influence the distribution of shade intolerant tree populations at several different spatial scales, and can have discordant effects at different life history stages.

  6. Water migration of macroelements in coniferous-broad-leaved forests of Sikhote-Alin

    OpenAIRE

    N. K. Kozhevnikova; T. N. Lutsenko; A. G. Boldeskul; S. Yu. Lupakov; V. V. Shamov

    2017-01-01

    In the paper, the natural water chemical composition spatial variability studies results in the mountain forest catchment are presented. It’s shown that the catchment biotic components’ impact upon water chemical composition is detected even at input as atmospheric precipitation. The input fluxes are acid, sulfate ones with high ratio of hydrogen, potassium and dissolved organic matter. Diversity of ecotopic conditions determines the further transformation of natural water chemical composit...

  7. Manganese availability is negatively associated with carbon storage in northern coniferous forest humus layers.

    Science.gov (United States)

    Stendahl, Johan; Berg, Björn; Lindahl, Björn D

    2017-11-14

    Carbon sequestration below ground depends on organic matter input and decomposition, but regulatory bottlenecks remain unclear. The relative importance of plant production, climate and edaphic factors has to be elucidated to better predict carbon storage in forests. In Swedish forest soil inventory data from across the entire boreal latitudinal range (n = 2378), the concentration of exchangeable manganese was singled out as the strongest predictor (R 2  = 0.26) of carbon storage in the extensive organic horizon (mor layer), which accounts for one third of the total below ground carbon. In comparison, established ecosystem models applied on the same data have failed to predict carbon stocks (R 2  < 0.05), and in our study manganese availability overshadowed both litter production and climatic factors. We also identified exchangeable potassium as an additional strong predictor, however strongly correlated with manganese. The negative correlation between manganese and carbon highlights the importance of Mn-peroxidases in oxidative decomposition of recalcitrant organic matter. The results support the idea that the fungus-driven decomposition could be a critical factor regulating humus carbon accumulation in boreal forests, as Mn-peroxidases are specifically produced by basidiomycetes.

  8. Tropical Andean Forests Are Highly Susceptible to Nutrient Inputs—Rapid Effects of Experimental N and P Addition to an Ecuadorian Montane Forest

    Science.gov (United States)

    Homeier, Jürgen; Hertel, Dietrich; Camenzind, Tessa; Cumbicus, Nixon L.; Maraun, Mark; Martinson, Guntars O.; Poma, L. Nohemy; Rillig, Matthias C.; Sandmann, Dorothee; Scheu, Stefan; Veldkamp, Edzo; Wilcke, Wolfgang; Wullaert, Hans; Leuschner, Christoph

    2012-01-01

    Tropical regions are facing increasing atmospheric inputs of nutrients, which will have unknown consequences for the structure and functioning of these systems. Here, we show that Neotropical montane rainforests respond rapidly to moderate additions of N (50 kg ha−1 yr−1) and P (10 kg ha−1 yr−1). Monitoring of nutrient fluxes demonstrated that the majority of added nutrients remained in the system, in either soil or vegetation. N and P additions led to not only an increase in foliar N and P concentrations, but also altered soil microbial biomass, standing fine root biomass, stem growth, and litterfall. The different effects suggest that trees are primarily limited by P, whereas some processes—notably aboveground productivity—are limited by both N and P. Highly variable and partly contrasting responses of different tree species suggest marked changes in species composition and diversity of these forests by nutrient inputs in the long term. The unexpectedly fast response of the ecosystem to moderate nutrient additions suggests high vulnerability of tropical montane forests to the expected increase in nutrient inputs. PMID:23071734

  9. Combined community ecology and floristics, a synthetic study on the upper montane evergreen broad-leaved forests in Yunnan, southwestern China

    Institute of Scientific and Technical Information of China (English)

    Hua Zhu; Yong Chai; Shisun Zhou; Lichun Yan; Jipu Shi; Guoping Yang

    2016-01-01

    The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous, island-like, distribution. It is diverse, rich in endemic species, and likely to be sensitive to climate change. Six 1-ha sampling plots were established across the main distribution area of the upper montane evergreen broad-leaved forest in Yunnan. All trees with d.b.h.>1 cm in each plot were identified. Patterns of seed plant distributions were quantified at the specific, generic and family levels. The forests are dominated by the families Fagaceae, Lauraceae, Theaceae and Magnoliaceae, but are very diverse with only a few species shared between sites. Floristic similarities at the family and generic level were high, but they were low at the specific level, with species complementarity between plots. Diversity varied greatly among sites, with greater species richness and more rare species in western Yunnan than central Yunnan. The flora is dominated by tropical biogeographical elements, mainly the pantropic and the tropical Asian distributions at the family and genus levels. In contrast, at the species level, the flora is dominated by the southwest or the southeast China distributions, including Yunnan endemics. This suggests that the flora of the upper montane forest in Yunnan could have a tropical floristic origin, and has adapted to cooler temperatures with the uplift of the Himalayas. Due to great sensitivity to climate, high endemism and species complementarity, as well as the discontinuous, island-like, distribution patterns of the upper montane forest in Yunnan, the regional conservation of the forest is especially needed.

  10. [Dynamics of total organic carbon (TOC) in hydrological processes in coniferous and broad-leaved mixed forest of Dinghushan].

    Science.gov (United States)

    Yin, Guangcai; Zhou, Guoyi; Zhang, Deqiang; Wang, Xu; Chu, Guowei; Liu, Yan

    2005-09-01

    The total flux and concentration of total organic carbon (TOC) in hydrological processes in coniferous and broad-leaved mixed forest of Dinghushan were measured from July 2002 to July 2003. The results showed that the TOC input by precipitation was 41.80 kg x hm(-2) x yr(-1), while its output by surface runoff and groundwater (soil solution at 50 cm depth) was 17.54 and 1.80 kg x hm(-2) x yr(-1), respectively. The difference between input and output was 22.46 kg x hm(-2) x yr(-1), indicating that the ecosystem TOC was in positive balance. The monthly variation of TOC flux in hydrological processes was very similar to that in precipitation. The mean TOC concentration in precipitation was 3.64 mg x L(-1), while that in throughfall and stemflow increased 6.10 and 7.39 times after rain passed through the tree canopies and barks. The mean TOC concentration in surface runoff and in soil solution at 25 and 50 cm depths was 12.72, 7.905 and 3.06 mg x L(-1), respectively. The monthly TOC concentration in throughfall and stemflow had a similar changing tendency, showing an increase at the beginning of growth season (March), a decrease after September, and a little increase in December. The TOC concentration in runoff was much higher during high precipitation months. No obvious monthly variation was observed in soil solution TOC concentration (25 and 50 cm below the surface). Stemflow TOC concentration differed greatly between different tree species. The TOC concentration in precipitation, throughfall, and soil solution (25 and 50 cm depths) decreased with increasing precipitation, and no significant relationship existed between the TOC concentrations in stemflow, surface runoff and precipitation. The TOC concentrations in the hydrological processes fluctuated with precipitation intensity, except for that in stemflow and soil solutions.

  11. Improving winter leaf area index estimation in evergreen coniferous forests and its significance in carbon and water fluxes modeling

    Science.gov (United States)

    Wang, R.; Chen, J. M.; Luo, X.

    2016-12-01

    Modeling of carbon and water fluxes at the continental and global scales requires remotely sensed LAI as inputs. For evergreen coniferous forests (ENF), severely underestimated winter LAI has been one of the issues for mostly available remote sensing products, which could cause negative bias in the modeling of Gross Primary Productivity (GPP) and evapotranspiration (ET). Unlike deciduous trees which shed all the leaves in winter, conifers retains part of their needles and the proportion of the retained needles depends on the needle longevity. In this work, the Boreal Ecosystem Productivity Simulator (BEPS) was used to model GPP and ET at eight FLUXNET Canada ENF sites. Two sets of LAI were used as the model inputs: the 250m 10-day University of Toronto (U of T) LAI product Version 2 and the corrected LAI based on the U of T LAI product and the needle longevity of the corresponding tree species at individual sites. Validating model daily GPP (gC/m2) against site measurements, the mean RMSE over eight sites decreases from 1.85 to 1.15, and the bias changes from -0.99 to -0.19. For daily ET (mm), mean RMSE decreases from 0.63 to 0.33, and the bias changes from -0.31 to -0.16. Most of the improvements occur in the beginning and at the end of the growing season when there is large correction of LAI and meanwhile temperature is still suitable for photosynthesis and transpiration. For the dormant season, the improvement in ET simulation mostly comes from the increased interception of precipitation brought by the elevated LAI during that time. The results indicate that model performance can be improved by the application the corrected LAI. Improving the winter RS LAI can make a large impact on land surface carbon and energy budget.

  12. The effect of size and competition on tree growth rate in old-growth coniferous forests

    Science.gov (United States)

    Das, Adrian

    2012-01-01

    Tree growth and competition play central roles in forest dynamics. Yet models of competition often neglect important variation in species-specific responses. Furthermore, functions used to model changes in growth rate with size do not always allow for potential complexity. Using a large data set from old-growth forests in California, models were parameterized relating growth rate to tree size and competition for four common species. Several functions relating growth rate to size were tested. Competition models included parameters for tree size, competitor size, and competitor distance. Competitive strength was allowed to vary by species. The best ranked models (using Akaike’s information criterion) explained between 18% and 40% of the variance in growth rate, with each species showing a strong response to competition. Models indicated that relationships between competition and growth varied substantially among species. The results also suggested that the relationship between growth rate and tree size can be complex and that how we model it can affect not only our ability to detect that complexity but also whether we obtain misleading results. In this case, for three of four species, the best model captured an apparent and unexpected decline in potential growth rate for the smallest trees in the data set.

  13. Seasonal changes in camera-based indices from an open canopy black spruce forest in Alaska, and comparison with indices from a closed canopy evergreen coniferous forest in Japan

    Science.gov (United States)

    Nagai, Shin; Nakai, Taro; Saitoh, Taku M.; Busey, Robert C.; Kobayashi, Hideki; Suzuki, Rikie; Muraoka, Hiroyuki; Kim, Yongwon

    2013-06-01

    Evaluation of the carbon, water, and energy balances in evergreen coniferous forests requires accurate in situ and satellite data regarding their spatio-temporal dynamics. Daily digital camera images can be used to determine the relationships among phenology, gross primary productivity (GPP), and meteorological parameters, and to ground-truth satellite observations. In this study, we examine the relationship between seasonal variations in camera-based canopy surface indices and eddy-covariance-based GPP derived from field studies in an Alaskan open canopy black spruce forest and in a Japanese closed canopy cedar forest. The ratio of the green digital number to the total digital number, hue, and GPP showed a bell-shaped seasonal profile at both sites. Canopy surface images for the black spruce forest and cedar forest mainly detected seasonal changes in vegetation on the floor of the forest and in the tree canopy, respectively. In contrast, the seasonal cycles of the ratios of the red and blue digital numbers to the total digital numbers differed between the two sites, possibly due to differences in forest structure and leaf color. These results suggest that forest structural characteristics, such as canopy openness and seasonal forest-floor changes, should be considered during continuous observations of phenology in evergreen coniferous forests.

  14. Disturbance Alters the Relative Importance of Topographic and Biogeochemical Controls on Microbial Activity in Temperate Montane Forests

    Directory of Open Access Journals (Sweden)

    Rebecca A. Lybrand

    2018-02-01

    Full Text Available Fire and pathogen-induced tree mortality are the two dominant forms of disturbance in Western U.S. montane forests. We investigated the consequences of both disturbance types on the controls of microbial activity in soils from 56 plots across a topographic gradient one year after the 2012 High Park wildfire in Colorado. Topsoil biogeochemistry, soil CO2 efflux, potential exoenzyme activities, and microbial biomass were quantified in plots that experienced fire disturbance, beetle disturbance, or both fire and beetle disturbance, and in plots where there was no recent evidence of disturbance. Soil CO2 efflux, N-, and P-degrading exoenzyme activities in undisturbed plots were positively correlated with soil moisture, estimated from a topographic wetness index; coefficient of determinations ranged from 0.5 to 0.65. Conversely, the same estimates of microbial activities from fire-disturbed and beetle-disturbed soils showed little correspondence to topographically inferred wetness, but demonstrated mostly negative relationships with soil pH (fire only and mostly positive relationships with DOC/TDN (dissolved organic carbon/total dissolved nitrogen ratios for both disturbance types. The coefficient of determination for regressions of microbial activity with soil pH and DOC/TDN reached 0.8 and 0.63 in fire- and beetle-disturbed forests, respectively. Drivers of soil microbial activity change as a function of disturbance type, suggesting simple mathematical models are insufficient in capturing the impact of disturbance in forests.

  15. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow.

    Science.gov (United States)

    Bart, Ryan R; Tague, Christina L; Moritz, Max A

    2016-01-01

    Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.

  16. Multi-scale predictions of coniferous forest mortality in the northern hemisphere

    Science.gov (United States)

    McDowell, N. G.

    2015-12-01

    Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our incomplete understanding of the fundamental physiological thresholds of vegetation mortality during drought limits our ability to accurately simulate future vegetation distributions and associated climate feedbacks. Here we integrate experimental evidence with models to show potential widespread loss of needleleaf evergreen trees (NET; ~ conifers) within the Southwest USA by 2100; with rising temperature being the primary cause of mortality. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ypd) thresholds (April-August mean) beyond which photosynthesis, stomatal and hydraulic conductance, and carbohydrate availability approached zero. Empirical and mechanistic models accurately predicted NET Ypd, and 91% of predictions (10/11) exceeded mortality thresholds within the 21st century due to temperature rise. Completely independent global models predicted >50% loss of northern hemisphere NET by 2100, consistent with the findings for Southwest USA. The global models disagreed with the ecosystem process models in regards to future mortality in Southwest USA, however, highlighting the potential underestimates of future NET mortality as simulated by the global models and signifying the importance of improving regional predictions. Taken together, these results from the validated regional predictions and the global simulations predict global-scale conifer loss in coming decades under projected global warming.

  17. Uptake of 137Cs from coniferous forest soil by sheep's fescue in pot experiment

    International Nuclear Information System (INIS)

    Fawaris, B. H.; Johanson, K. J.

    1994-01-01

    The uptake of Chernobyl fallout radiocaesium ( 137 Cs) from forest soils with low nutrients, high organic matter content, and acidic pH were examined in pot experiments. Results of sheep's fescue (Festuca ovina) two harvests after growing period of 13 weeks each, showed a slight variation in the 137 Cs uptake. Transfer factor (TF) for 137 Cs based upon soil-to-plant relationships calculated, (Bqkg -1 plant DW/Bqkg -1 soil DW). The ranges were from 0.03 to 3.43 with a mean of 0.34 ± 0.31 for first cut and from 0.03 to 2.28 with a mean of 0.36 ± 0.33 for second cut. Variation in the uptake of 137 Cs by sheep's fescue grass might be due to the influence of soil pH and OM % in conjunction with soil moisture. The effect of potassium (K + ), stable caesium (Cs + ), and ammonium (NH 4 + ) that were added as chlorides on 137 Cs uptake by sheep's fescue were also tested in pot experiment under the same conditions of previous set-up. Results from three harvests after growing period of 13 weeks each, demonstrated that K + reduced the uptake of 137 Cs. In contrast the addition of both stable Cs + and NH 4 + found to enhance 137 Cs uptake by sheep's fescue. (author)

  18. Head balance of coniferous forest in years with extreme precipitation and its long-term changes in the regions of Bydgoszcz and Wroclaw

    International Nuclear Information System (INIS)

    Bubnowska, J.; Gąsiorek, E.; Łabędzki, L.; Musiał, E.

    2005-01-01

    Climate changes, particularly visible in the last decades of the 20th century have paramount influence on human economic activity. Heat balance is one of the factors affecting the climate. That impact is noticeable when variations in heat balance components are examined e.g. in coniferous forest. This paper presents analyses of these variations during the growing season (III-X) in the years with maximal and minimal precipitation sums. The study shows also the changes in heat balance components in Wroclaw-Swojec in the years 1964-2000 and in Bydgoszcz in the years 1945-2003 [pl

  19. Nutrient addition modifies phosphatase activities along an altitudinal gradient in a tropical montane forest in Southern Ecuador

    Directory of Open Access Journals (Sweden)

    Karla eDietrich

    2016-02-01

    Full Text Available Atmospheric nutrient deposition and climate change are expected to endanger the diversity of tropical forest ecosystems. Nitrogen (N deposition might influence nutrient fluxes beyond the N cycle by a concomitant increased demand for other nutritional elements such as phosphorus (P. Organisms might respond to the increased P demand by enhanced activity of enzymes involved in releasing inorganic P from organic matter (OM. Our aims were to assess the effect of i climate shifts (approximated by an altitudinal gradient, and ii nutrient addition (N, P, N+P on phosphatase activity (PA in organic layer and mineral soil of a tropical montane rainforest in Southern Ecuador. A nutrient manipulation experiment (NUMEX was set up along an altitudinal gradient (1000, 2000, and 3000 m a.s.l.. We determined PA and inorganic and total P concentrations. PA at 1000 m was significantly lower (mean ± standard error: 48 ± 20 µmol p-NP g-1 dm h-1 as compared to 2000 m and 3000 m (119 ± 11 and 137 ± 19, respectively. One explanation might be that very rapid decomposition of OM at 1000 m results in very thin organic layers reducing the stabilization of enzymes and thus, resulting in leaching loss of enzymes under the humid tropical climate. We found no effect of N addition on PA neither in the organic layer nor in mineral soil, probably because of the low nutrient addition rates that showed ambiguous results so far on productivity measures as a proxy for P demand. In the organic layers of P and N+P treatments, we found decreased PA and increased concentrations of inorganic P. This indicates that the surplus of inorganic P reduced the biosynthesis of phosphatase enzymes. PA in megadiverse montane rainforests is likely to be unaffected by increased atmospheric N deposition but reduced upon atmospheric P deposition.

  20. Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests

    Science.gov (United States)

    Arkle, Robert S.; Pilliod, David S.; Welty, Justin L.

    2012-01-01

    We examined the effects of three early season (spring) prescribed fires on burn severity patterns of summer wildfires that occurred 1–3 years post-treatment in a mixed conifer forest in central Idaho. Wildfire and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR) using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate models predicting the wildfire burn severity of 1286–5500 30-m pixels within and around treated areas. We found that wildfire severity was significantly lower in treated areas than in untreated areas and significantly lower than the potential wildfire severity of the treated areas had treatments not been implemented. At the pixel level, wildfire severity was best predicted by an interaction between prescribed fire severity, topographic moisture, heat load, and pre-fire vegetation volume. Prescribed fire severity and vegetation volume were the most influential predictors. Prescribed fire severity, and its influence on wildfire severity, was highest in relatively warm and dry locations, which were able to burn under spring conditions. In contrast, wildfire severity peaked in cooler, more mesic locations that dried later in the summer and supported greater vegetation volume. We found considerable evidence that prescribed fires have landscape-level influences within treatment boundaries; most notable was an interaction between distance from the prescribed fire perimeter and distance from treated patch edges, which explained up to 66% of the variation in wildfire severity. Early season prescribed fires may not directly target the locations most at risk of high severity wildfire, but proximity of these areas to treated patches and the discontinuity of fuels following treatment may influence wildfire severity and explain how even low severity treatments can be effective management tools in fire-prone landscapes.

  1. Response of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences

    International Nuclear Information System (INIS)

    Nohrstedt, H.Oe.

    2001-01-01

    Nitrogen (N) is the only nutrient that promotes forest growth when given individually. An extra stem growth of 15 m 3 /ha is obtained during a 10 yr period following an application of 150 kg N/ha. Larger growth increases have often been the result of more intensive N fertilization. Lime or wood ash give a minor growth stimulation on sites with a carbon (C) to N ratio below 30 in the humus layer, while the opposite effect prevails on N-poor sites. Nutrients given as soluble fertilizers are readily taken up by trees. Boron deficiency may be induced in northern Sweden after N fertilization or liming. The ground vegetation may be altered by single-shot N fertilization, but long-term effects occur only for intensive regimes. Lime or wood ash may modify the flora if soil pH is significantly altered: the change will be in response to N availability. Fruit-body production of mycorrhizal fungi is disfavoured by chronic N input, but also by lime or ash. However, the mycorrhizal structures on root tips are less affected. Faunistic studies are not common and those present are mostly devoted to soil fauna. A practical N dose of 150 kg N/ha has no clear effect, but higher doses may reduce the abundance in some groups. Hardened wood ash does not significantly affect the soil fauna. Lime favours snails and earthworms, while other groups are often disfavoured. The response of aquatic fauna to terrestrial treatments has hardly been studied. N fertilization generally results in insignificant effects on fish and benthic fauna. Lime and wood ash reduce the acidity of the topsoil, but practical doses (2-3 t/ha) are too low to raise the alkalinity of runoff unless outflow areas are treated. N fertilizer use in forestry and N-free fertilizers lack effects on acidification. N fertilization may, however, be strongly acidifying if nitrification is induced and followed by nitrate leaching. N fertilization often results in increased long-term C retention in trees and soil, but does not promote

  2. The Roll of Canopy on Interception and Redistribution of Anthropogenic Radionuclides Derived from Fukushima Daiichi Nuclear Power Plant Accident in Coniferous Forest Plantations

    Science.gov (United States)

    Kato, H.; Onda, Y.; Kawaguchi, S.; Gomi, T.

    2011-12-01

    Soil, vegetation and other ecological compartments are expected to be highly contaminated by the deposited radionuclides after the Fukushima Daiichi nuclear power plant (NPP) accident triggered by a magnitude 9.1 earthquake and the resulting tsunami on Marchi 11, 2011. A large proportion of radionuclides which deposited on forest area are trapped by canopies, throughfall and stemflow are the most important pathways for the input of radionuclides into the soil of forest floor. In this study, to investigate the roll of forest canopy on interception and redistribution of the deposited radionuclides, a series of field monitoring experiment of throughfall and stemflow were conducted in coniferous forest plantations in Tochigi prefecture, 170 km southwest from the NPP. A set of 20 throughfall collectors with latticelike distribution and 5 stemflow collectors were located in the 10m × 10m interception plot, and the activities of caesium (137Cs, 134Cs) and radioiodine (131I) in throughfall and stemflow were quantified by using a high purity n-type germanium coaxial gamma ray detectors. Rainfall, throughfall, and stemflow samples were collected from 10 rainfall events, which includes first rainfall event after the NPP accident. The cumulative fallout of radionuclides in the study site was 3400 Bq m-2 for 137Cs, 3300 Bq m-2 for 134Cs, and 26000 Bq m-2 for 131I, respectively. The 137Cs in rainfall decreased exponentially with time since the NPP accident. For the rainfall event of 28 March, which is first rainfall event after the NPP accident, both the amount and concentration of caesium clearly increased with throughfall, whereas the concentration of radioiodine decreased with throughfall. For the subsequent rainfall events, the concentration of caesium decreased with throughfall, whereas radioiodine was not detected as a result of decay due to short half-life. At the end of May, approximately 30% and 60% of total caesium deposited after the NPP accident remained on the

  3. The effect of climate and soil conditions on tree species turnover in a Tropical Montane Cloud Forest in Costa Rica.

    Science.gov (United States)

    Häger, Achim

    2010-12-01

    On a global level, Tropical Montane Cloud Forests constitute important centers of vascular plant diversity. Tree species turnover along environmental gradients plays an important role in larger scale diversity patterns in tropical mountains. This study aims to estimate the magnitude of beta diversity across the Tilardn mountain range in North-Western Costa Rica, and to elucidate the impact of climate and soil conditions on tree species turnover at a local scale. Seven climate stations measuring rainfall, horizontal precipitation (clouds and wind-driven rain) and temperatures were installed along a 2.5km transect ranging from 1200 m.a.s.l. on the Atlantic to 1200 m.a.s.l. on the Pacific slope. The ridge top climate station was located at 1500 m.a.s.l. Climate data were recorded from March through December 2003. Additionally, seven 0.05 ha plots were established. On all plots soil moisture was monitored for one year, furthermore soil type and soil chemistry were assessed. Woody plants with a diameter at breast height (dbh) > or = 5 cm were identified to species. Species' distributions were explored by feeding pairwise Serensen measures between plots into a Principal Component Analysis. Relationships between floristic similarity and environmental variables were analyzed using Mantel tests. Pronounced gradients in horizontal precipitation, temperatures and soil conditions were found across the transect. In total, 483 woody plants were identified, belonging to 132 species. Environmental gradients were paralleled by tree species turnover; the plots could be divided in three distinctive floristic units which reflected different topographic positions on the transect (lower slopes, mid slopes and ridge). Most notably there was a complete species turnover between the ridge and the lower Pacific slope. Floristic similarity was negatively correlated with differences in elevation, horizontal precipitation, temperatures and soil conditions between plots. It is suggested that

  4. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA on Streamflow.

    Directory of Open Access Journals (Sweden)

    Ryan R Bart

    Full Text Available Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm, with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.

  5. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow

    Science.gov (United States)

    Tague, Christina L.; Moritz, Max A.

    2016-01-01

    Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada. PMID:27575592

  6. Forest impacts on snow accumulation and ablation across an elevation gradient in a temperate montane environment

    Science.gov (United States)

    Roth, Travis R.; Nolin, Anne W.

    2017-11-01

    Forest cover modifies snow accumulation and ablation rates via canopy interception and changes in sub-canopy energy balance processes. However, the ways in which snowpacks are affected by forest canopy processes vary depending on climatic, topographic and forest characteristics. Here we present results from a 4-year study of snow-forest interactions in the Oregon Cascades. We continuously monitored snow and meteorological variables at paired forested and open sites at three elevations representing the Low, Mid, and High seasonal snow zones in the study region. On a monthly to bi-weekly basis, we surveyed snow depth and snow water equivalent across 900 m transects connecting the forested and open pairs of sites. Our results show that relative to nearby open areas, the dense, relatively warm forests at Low and Mid sites impede snow accumulation via canopy snow interception and increase sub-canopy snowpack energy inputs via longwave radiation. Compared with the Forest sites, snowpacks are deeper and last longer in the Open site at the Low and Mid sites (4-26 and 11-33 days, respectively). However, we see the opposite relationship at the relatively colder High sites, with the Forest site maintaining snow longer into the spring by 15-29 days relative to the nearby Open site. Canopy interception efficiency (CIE) values at the Low and Mid Forest sites averaged 79 and 76 % of the total event snowfall, whereas CIE was 31 % at the lower density High Forest site. At all elevations, longwave radiation in forested environments appears to be the primary energy component due to the maritime climate and forest presence, accounting for 93, 92, and 47 % of total energy inputs to the snowpack at the Low, Mid, and High Forest sites, respectively. Higher wind speeds in the High Open site significantly increase turbulent energy exchanges and snow sublimation. Lower wind speeds in the High Forest site create preferential snowfall deposition. These results show the importance of

  7. Plutonium in coniferous forests

    International Nuclear Information System (INIS)

    Rantavaara, A.; Kostiainen, E.

    2002-01-01

    Our aim was to study the uptake of plutonium by trees, undervegetation and some wild foods. The ratio of 238 Pu/ 239,240 Pu in soil samples was determined for comparisons of the fallout origin. In twelve years the Chernobyl derived plutonium has not reached the mineral soil. This refers to a very slow downward migration in podsolic soil. The study confirmed also the low Pu uptake by vegetation and an insignificant contribution to human doses through wild foods. (au)

  8. The Influence of DEM Quality on Mapping Accuracy of Coniferous- and Deciduous-Dominated Forest Using TerraSAR‑X Images

    Directory of Open Access Journals (Sweden)

    Gerald Kändler

    2012-03-01

    Full Text Available Climate change is a factor that largely contributes to the increase of forest areas affected by natural damages. Therefore, the development of methodologies for forest monitoring and rapid assessment of affected areas is required. Space-borne synthetic aperture radar (SAR imagery with high resolution is now available for large-scale forest mapping and forest monitoring applications. However, a correct interpretation of SAR images requires an adequate preprocessing of the data consisting of orthorectification and radiometric calibration. The resolution and quality of the digital elevation model (DEM used as reference is crucial for this purpose. Therefore, the primary aim of this study was to analyze the influence of the DEM quality used in the preprocessing of the SAR data on the mapping accuracy of forest types. In order to examine TerraSAR-X images to map forest dominated by deciduous and coniferous trees, High Resolution SpotLight images were acquired for two study sites in southern Germany. The SAR images were preprocessed with a Shuttle Radar Topography Mission (SRTM DEM (resolution approximately 90 m, an airborne laser scanning (ALS digital terrain model (DTM (5 m resolution, and an ALS digital surface model (DSM (5 m resolution. The orthorectification of the SAR images using high resolution ALS DEMs was found to be important for the reduction of errors in pixel location and to increase the classification accuracy of forest types. SAR images preprocessed with ALS DTMs resulted in the highest classification accuracies, with kappa coefficients of 0.49 and 0.41, respectively. SAR images preprocessed with ALS DTMs resulted in greater accuracy than those preprocessed with ALS DSMs in most cases. The classification accuracy of forest types using SAR images preprocessed with the SRTM DEM was fair, with kappa coefficients of 0.23 and 0.32, respectively.Analysis of the radar backscatter indicated that sample plots dominated by coniferous trees

  9. Topographic and Bioclimatic Determinants of the Occurrence of Forest and Grassland in Tropical Montane Forest-Grassland Mosaics of the Western Ghats, India.

    Directory of Open Access Journals (Sweden)

    Arundhati Das

    Full Text Available The objective of this analysis was to identify topographic and bioclimatic factors that predict occurrence of forest and grassland patches within tropical montane forest-grassland mosaics. We further investigated whether interactions between topography and bioclimate are important in determining vegetation pattern, and assessed the role of spatial scale in determining the relative importance of specific topographic features. Finally, we assessed the role of elevation in determining the relative importance of diverse explanatory factors. The study area consists of the central and southern regions of the Western Ghats of Southern India, a global biodiversity hotspot. Random forests were used to assess prediction accuracy and predictor importance. Conditional inference classification trees were used to interpret predictor effects and examine potential interactions between predictors. GLMs were used to confirm predictor importance and assess the strength of interaction terms. Overall, topographic and bioclimatic predictors classified vegetation pattern with approximately 70% accuracy. Prediction accuracy was higher for grassland than forest, and for mosaics at higher elevations. Elevation was the most important predictor, with mosaics above 2000 m dominated largely by grassland. Relative topographic position measured at a local scale (within a 300 m neighbourhood was another important predictor of vegetation pattern. In high elevation mosaics, northness and concave land surface curvature were important predictors of forest occurrence. Important bioclimatic predictors were: dry quarter precipitation, annual temperature range and the interaction between the two. The results indicate complex interactions between topography and bioclimate and among topographic variables. Elevation and topography have a strong influence on vegetation pattern in these mosaics. There were marked regional differences in the roles of various topographic and bioclimatic

  10. Topographic and Bioclimatic Determinants of the Occurrence of Forest and Grassland in Tropical Montane Forest-Grassland Mosaics of the Western Ghats, India.

    Science.gov (United States)

    Das, Arundhati; Nagendra, Harini; Anand, Madhur; Bunyan, Milind

    2015-01-01

    The objective of this analysis was to identify topographic and bioclimatic factors that predict occurrence of forest and grassland patches within tropical montane forest-grassland mosaics. We further investigated whether interactions between topography and bioclimate are important in determining vegetation pattern, and assessed the role of spatial scale in determining the relative importance of specific topographic features. Finally, we assessed the role of elevation in determining the relative importance of diverse explanatory factors. The study area consists of the central and southern regions of the Western Ghats of Southern India, a global biodiversity hotspot. Random forests were used to assess prediction accuracy and predictor importance. Conditional inference classification trees were used to interpret predictor effects and examine potential interactions between predictors. GLMs were used to confirm predictor importance and assess the strength of interaction terms. Overall, topographic and bioclimatic predictors classified vegetation pattern with approximately 70% accuracy. Prediction accuracy was higher for grassland than forest, and for mosaics at higher elevations. Elevation was the most important predictor, with mosaics above 2000 m dominated largely by grassland. Relative topographic position measured at a local scale (within a 300 m neighbourhood) was another important predictor of vegetation pattern. In high elevation mosaics, northness and concave land surface curvature were important predictors of forest occurrence. Important bioclimatic predictors were: dry quarter precipitation, annual temperature range and the interaction between the two. The results indicate complex interactions between topography and bioclimate and among topographic variables. Elevation and topography have a strong influence on vegetation pattern in these mosaics. There were marked regional differences in the roles of various topographic and bioclimatic predictors across the

  11. Fog in a marginal agricultural area surrounded by montane Andean cloud forest during El Niño climate

    Science.gov (United States)

    García-Santos, G.

    2010-07-01

    The aim of the present study was to evaluate temporal variations of water inputs, rainfall and fog (cloud water), and its contribution to the water balance in a marginal agricultural area of potato surrounded by tropical montane cloud forest in Colombia. Fog in the air boundary layer was estimated using a cylindrical fog collector. Liquid water content of fog events were evaluated before and during natural climate event of El Niño. Our study shows the temporal variation of these two water inputs in both daily and monthly cycles on Boyacá at 2900 m a.s.l. Rainfall was the most frequently observed atmospheric phenomenon, being present on average 62% of the days per year, whereas fog was 45% of the time. Reflected on the lower frequency, annual amount of fog was 11% of precipitation. However during the anomalous dry climate of El Niño, total amount of rainfall was negligible and the few fog events were the only water source for plant growth. Estimated water crop requirements were higher than the water inputs. The survival of the crops was explained by meteorological conditions during dew and fog events. High relative humidity might have eased the plant’s water stress by decreasing transpiration and temperature in leaves and soil, affecting the water balance and the heat exchange between the atmosphere-land interfaces in the marginal agricultural areas during exceptional dry climate.

  12. Comparative Drought Responses of Quercus ilex L. and Pinus sylvestris L. in a Montane Forest Undergoing a Vegetation Shift

    Directory of Open Access Journals (Sweden)

    David Aguadé

    2015-07-01

    Full Text Available Different functional and structural strategies to cope with water shortage exist both within and across plant communities. The current trend towards increasing drought in many regions could drive some species to their physiological limits of drought tolerance, potentially leading to mortality episodes and vegetation shifts. In this paper, we study the drought responses of Quercus ilex and Pinus sylvestris in a montane Mediterranean forest where the former species is replacing the latter in association with recent episodes of drought-induced mortality. Our aim was to compare the physiological responses to variations in soil water content (SWC and vapor pressure deficit (VPD of the two species when living together in a mixed stand or separately in pure stands, where the canopies of both species are completely exposed to high radiation and VPD. P. sylvestris showed typical isohydric behavior, with greater losses of stomatal conductance with declining SWC and greater reductions of stored non-structural carbohydrates during drought, consistent with carbon starvation being an important factor in the mortality of this species. On the other hand, Q. ilex trees showed a more anisohydric behavior, experiencing more negative water potentials and higher levels of xylem embolism under extreme drought, presumably putting them at higher risk of hydraulic failure. In addition, our results show relatively small changes in the physiological responses of Q. ilex in mixed vs. pure stands, suggesting that the current replacement of P. sylvestris by Q. ilex will continue.

  13. Foggy days and dry nights determine crown-level water balance in a seasonal tropical Montane cloud forest.

    Science.gov (United States)

    Gotsch, Sybil G; Asbjornsen, Heidi; Holwerda, Friso; Goldsmith, Gregory R; Weintraub, Alexis E; Dawson, Todd E

    2014-01-01

    The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown-level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch-level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day- and night-time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure-volume relations were obtained in Quercus lanceifolia, a canopy-dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry-season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry-season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night-time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia. © 2013 John Wiley & Sons Ltd.

  14. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    Directory of Open Access Journals (Sweden)

    Brad Seely

    Full Text Available Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine for established stands due to increased moisture stress mortality.

  15. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    Science.gov (United States)

    Seely, Brad; Welham, Clive; Scoullar, Kim

    2015-01-01

    Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality.

  16. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Lori D. Bothwell; Paul C. Selmants; Christian P. Giardina; Creighton M. Litton

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivityof leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical...

  17. Understanding the role of fog in forest hydrology: Stable isotopes as tools for determining input and partitioning of cloud water in montane forests

    Science.gov (United States)

    Scholl, M.; Eugster, W.; Burkard, R.

    2011-01-01

    Understanding the hydrology of tropical montane cloud forests (TMCF) has become essential as deforestation of mountain areas proceeds at an increased rate worldwide. Passive and active cloud-water collectors, throughfall and stemflow collectors, visibility or droplet size measurements, and micrometeorological sensors are typically used to measure the fog water inputs to ecosystems. In addition, stable isotopes may be used as a natural tracer for fog and rain. Previous studies have shown that the isotopic signature of fog tends to be more enriched in the heavier isotopes 2H and 18O than that of rain, due to differences in condensation temperature and history. Differences between fog and rain isotopes are largest when rain is from synoptic-scale storms, and fog or orographic cloud water is generated locally. Smaller isotopic differences have been observed between rain and fog on mountains with orographic clouds, but only a few studies have been conducted. Quantifying fog deposition using isotope methods is more difficult in forests receiving mixed precipitation, because of limitations in the ability of sampling equipment to separate fog from rain, and because fog and rain may, under some conditions, have similar isotopic composition. This article describes the various types of fog most relevant to montane cloud forests and the importance of fog water deposition in the hydrologic budget. A brief overview of isotope hydrology provides the background needed to understand isotope applications in cloud forests. A summary of previous work explains isotopic differences between rain and fog in different environments, and how monitoring the isotopic signature of surface water, soil water and tree xylem water can yield estimates of the contribution of fog water to streamflow, groundwater recharge and transpiration. Next, instrumentation to measure fog and rain, and methods to determine isotopic concentrations in plant and soil water are discussed. The article concludes with

  18. Growth dynamics of fine roots in a coniferous fern forest site close to Forsmark in the central part of Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Hans; Stadenberg, Ingela (SLU, Dept. of Ecology and Environmental Research, Uppsala (Sweden))

    2007-12-15

    The seasonal growth dynamics of live and dead roots for trees and the field layer species (g/m2, varying diameter fractions) and live/dead ratios were analysed at a fresh/moist coniferous fern forest site close to the nuclear power plant at Forsmark in the central eastern parts of Sweden. The changes in depth distribution of fine roots were observed at depth intervals of the top humus horizon down to 40 cm in the mineral soil profile. The bulk of living fine roots of trees (< 1 mm in diameter) were found in the mineral soil horizon the total profile down to 40 cm of the mineral soil, where 89, 82, 83 and 89% of the total amount in the whole profile were found. The upper 2.5 cm part of the humus layer contained 83, 81, 100 and 100% of all roots of the humus layer on the four different sampling occasions. High amounts of living fine roots were found in the upper 10 cm of the mineral soil horizon viz. 84, 76, 91 and 69% of the total mineral soil layer. Consequently, both the top soil horizons of the humus and the mineral soil layers were heavily penetrated by living fine roots. The highest proportion of living fine roots was found in the top 2.5 cm of the humus layer. Accordingly, the live/dead ratio of fine roots (< 1 mm in diameter) decreased from the top of the humus layer to the lower part of mineral soil horizon from 8.0-0.3, 0.8-0.2, 4.4-0.4 and 3.3-0.7 (g g-1) for the four sampling occasions, respectively. We concluded that the decrease in the live/ dead ratio was related to decreased vitality with depth of the fine roots in the soil profile. The highest live/dead ratio was found in the upper 2.5 cm of the humus layer for both the tree and field-layer species. This distribution pattern was most evident for tree fine roots < 1 mm in diameter. The mean fine-root biomass (live tissue < 1 mm in diameter) of tree species for the total profile varied on the four sampling occasions between 317, 113, 139 and 248 g m-2. The related fine root necromass (dead tissue

  19. Transpiration of montane Pinus sylvestris L. and Quercus pubescens Willd. forest stands measured with sap flow sensors in NE Spain

    Directory of Open Access Journals (Sweden)

    R. Poyatos

    2005-01-01

    Full Text Available Stand transpiration was measured during the 2003 and 2004 growing seasons using heat dissipation sap flow sensors in a Scots pine (Pinus sylvestris L. and a pubescent oak (Quercus pubescens Willd. forests located in a montane area of the Eastern Pyrenees (NE Spain. The first aim of the study was to assess the differences in quantitative estimates of transpiration (Ec and the response to evaporative demand of the two stands. Over the studied period of 2003, characterised by a severe drought episode during the summer, the oak stand (Ec was only 110 mm compared to the 239 mm transpired by the Scots pine stand, although the ratio of transpiration to reference evapotranspiration (Ec/ET0 in the oak stand compares well with the expected values predicted for low leaf area index (LAI oak forests in southern Europe. Scots pine showed a strong reduction in (Ec/ET0 as the drought developed, whereas pubescent oak was less affected by soil moisture deficits in the upper soil. As a second objective, and given the contrasting meteorological conditions between 2003 and 2004 summer periods, the interannual variability of transpiration was studied in the Scots pine plot. Rainfall during the summer months (June-September in 2003 was almost 40% less than in the same interval in 2004. Accordingly, transpiration was also reduced about 25% in 2003. Finally, Scots pine data from 2003 and 2004 was used to calibrate a simple transpiration model using ET0 and soil moisture deficit (SMD as input variables, and implicitly including stomatal responses to high vapour pressure deficits (Dd and soil water status.

  20. Organo-mineral interactions promote greater soil organic carbon stability under aspen in semi-arid montane forests in Utah

    Science.gov (United States)

    Van Miegroet, H.; Roman Dobarco, M.

    2014-12-01

    Forest species influence soil organic carbon (SOC) storage through litter input, which in interaction with soil microclimate, texture and mineralogy, lead to different SOC stabilization and storage patterns. We sampled mineral soil (0-15 cm) across the ecotone between aspen (Populus tremuloides) and mixed conifers stands (Abies lasiocarpa and Pseudotsuga menziesii) in semi-arid montane forests from Utah, to investigate the influence of vegetation vs. site characteristics on SOC stabilization, storage and chemistry. SOC was divided into light fraction (LF), mineral-associated SOC in the silt and clay fraction (MoM), and a dense subfraction > 53 μm (SMoM) using wet sieving and electrostatic attraction. SOC decomposability and solubility was derived from long term laboratory incubations and hot water extractions (HWE). Fourier transform infrared spectroscopy (FTIR) was used to study differences in chemical functional groups in LF and MoM. Vegetation cover did not affect SOC storage (47.0 ± 16.5 Mg C ha-1), SOC decomposability (cumulative CO2-C release of 93.2 ± 65.4 g C g-1 C), or SOC solubility (9.8 ± 7.2 mg C g-1 C), but MoM content increased with presence of aspen [pure aspen (31.2 ± 15.1 Mg C ha-1) > mixed (25.7 ± 8.8 Mg C ha-1) > conifer (22.8 ± 9.0 Mg C ha-1)]. Organo-mineral complexes reduced biological availability of SOC, indicated by the negative correlation between silt+clay (%) and decomposable SOC per gram of C (r = -0.48, p = 0.001) or soluble SOC (r = -0.59, p plant or microbial origin. FTIR spectra clustered by sites with similar parent material rather than by vegetation cover. This suggests that initial differences in litter chemistry between aspen and conifers converged into similar MoM chemistry within sites.

  1. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change

    Science.gov (United States)

    Van Beusekom, Ashley E.; González, Grizelle; Scholl, Martha A.

    2017-01-01

    The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline for quantifying future changes in cloud base, we installed a ceilometer at 100 m altitude in the forest upwind of the TMCF that occupies an altitude range from ∼ 600 m to the peaks at 1100 m in the Luquillo Mountains of eastern Puerto Rico. Airport Automated Surface Observing System (ASOS) ceilometer data, radiosonde data, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data were obtained to investigate seasonal cloud base dynamics, altitude of the trade-wind inversion (TWI), and typical cloud thickness for the surrounding Caribbean region. Cloud base is rarely quantified near mountains, so these results represent a first look at seasonal and diurnal cloud base dynamics for the TMCF. From May 2013 to August 2016, cloud base was lowest during the midsummer dry season, and cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons. The lowest cloud bases most frequently occurred at higher elevation than 600 m, from 740 to 964 m. The Luquillo forest low cloud base altitudes were higher than six other sites in the Caribbean by ∼ 200–600 m, highlighting the importance of site selection to measure topographic influence on cloud height. Proximity to the oceanic cloud system where shallow cumulus clouds are seasonally invariant in altitude and cover, along with local trade-wind orographic lifting and cloud formation, may explain the dry season low clouds. The results indicate that climate change threats to low-elevation TMCFs are not limited to the dry season; changes in synoptic-scale weather patterns

  2. Influence of hiking trails on montane birds

    Science.gov (United States)

    William V. Deluca; David I. King

    2014-01-01

    Montane forests contribute significantly to regional biodiversity. Long-term monitoring data, often located along hiking trails, suggests that several indicator species of this ecosystem have declined in recent decades. Declining montane bird populations have been attributed to anthropogenic stressors such as climate change and atmospheric deposition. Several studies...

  3. Lizard activity and abundance greater in burned habitat of a xeric montane forest

    Science.gov (United States)

    Fouts, Kevin L.; Moore, Clinton; Johnson, Kristine D.; Maerz, John C.

    2017-01-01

    Restoring the natural or historical state of ecosystems is a common objective among resource managers, but determining whether desired system responses to management actions are occurring is often protracted and challenging. For wildlife, the integration of mechanistic habitat modeling with population monitoring may provide expedited measures of management effectiveness and improve understanding of how management actions succeed or fail to recover populations. Southern Appalachia is a region of high biodiversity that has undergone dramatic change as a result of human activities such as historic logging, exotic invasions, and alteration of disturbance regimes—including reduction in application of fire. Contemporary efforts to restore fire-maintained ecosystems within southern Appalachian forests require tools to assess the effects of fire management practices on individual animal fitness and relate them to corresponding influences on species abundance. Using automated sensing equipment, we investigated the effects of burned forests on reptile habitat suitability within the western portion of Great Smoky Mountains National Park, Tennessee. Specifically, we used microclimate measurements to model northern fence lizard Sceloporus undulatus hyacinthinus diurnal activity budgets in unburned and variable burn age (3–27-y) forest stands. We estimated northern fence lizard occurrence and abundance along transects through burned and unburned forests. Burned forest stands had microclimates that resulted in longer modeled daily activity periods under most conditions during summer. S. undulatus abundance was 4.75 times greater on burned stands compared to paired unburned stands, although the relationship between burn age and abundance was not well determined. Results suggest the more open habitat structure of burned areas within these xeric pine–oak forests may benefit S. undulatus.

  4. Vascular epiphytic flora of a high montane environment of Brazilian Atlantic Forest: composition and floristic relationships with other ombrophilous forests

    OpenAIRE

    Furtado,Samyra Gomes; Menini Neto,Luiz

    2016-01-01

    ABSTRACT Only a few studies regarding vascular epiphytes have been conducted in mixed ombrophilous forests (MOF) in Serra da Mantiqueira, a mountainous environment in the Brazilian Atlantic Forest, where the relationships of epiphytic flora with other physiognomies are unknown. This study aimed to survey the epiphytes of a MOF remnant located in Serra da Mantiqueira, and to analyze the floristic relationships with ombrophilous forests of the Southern and Southeastern regions of Brazil. The ch...

  5. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Science.gov (United States)

    Velescu, Andre; Valarezo, Carlos; Wilcke, Wolfgang

    2016-05-01

    In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM) by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth. In 2007, we established a nutrient manipulation experiment (NUMEX) to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N), 10 kg ha-1 a-1 of phosphorus (P), 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca) in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes. Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC) and dissolved organic nitrogen (DON) concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments. Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N and P

  6. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Directory of Open Access Journals (Sweden)

    Andre eVelescu

    2016-05-01

    Full Text Available In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth.In 2007, we established a nutrient manipulation experiment (NUMEX to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N, 10 kg ha-1 a-1 of phosphorus (P, 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes.Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC and dissolved organic nitrogen (DON concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments.Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N

  7. Coarse woody debris carbon storage across a mean annual temperature gradient in tropical montane wet forest

    Science.gov (United States)

    Darcey K. Iwashita; Creighton M. Litton; Christian P. Giardina

    2013-01-01

    Coarse woody debris (CWD; defined here as fallen and standing dead trees and tree ferns) is a critical structural and functional component of forest ecosystems that typically comprises a large proportion of total aboveground carbon (C) storage. However, CWD estimates for the tropics are uncommon, and little is known about how C storage in CWD will respond to climate...

  8. Spatiotemporal variation of mosquito diversity (Diptera: Culicidae) at places with different land-use types within a neotropical montane cloud forest matrix.

    Science.gov (United States)

    Abella-Medrano, Carlos Antonio; Ibáñez-Bernal, Sergio; MacGregor-Fors, Ian; Santiago-Alarcon, Diego

    2015-09-24

    Land-use change has led to a dramatic decrease in total forest cover, contributing to biodiversity loss and changes of ecosystems' functions. Insect communities of medical importance can be favored by anthropogenic alterations, increasing the risk of novel zoonotic diseases. The response of mosquito (Diptera: Culicidae) abundance and richness to five land-use types (shade coffee plantation, cattle field, urban forest, peri-urban forest, well-preserved montane cloud forest) and three seasons ("dry", "rainy" and "cold") embedded in a neotropical montane cloud forest landscape was evaluated. Standardized collections were performed using 8 CDC miniature black-light traps, baited with CO2 throughout the year. Generalized additive mixed models were used to describe the seasonal and spatial trends of both species richness and abundance. Rank abundance curves and ANCOVAs were used to detect changes in the spatial and temporal structure of the mosquito assemblage. Two cluster analyses were conducted, using 1-βsim and the Morisita-Horn index to evaluate species composition shifts based on incidences and abundances. A total of 2536 adult mosquitoes were collected, belonging to 9 genera and 10 species; the dominant species in the study were: Aedes quadrivittatus, Wyeomyia adelpha, Wy. arthrostigma, and Culex restuans. Highest richness was recorded in the dry season, whereas higher abundance was detected during the rainy season. The urban forest had the highest species richness (n = 7) when compared to all other sites. Species composition cluster analyses show that there is a high degree of similarity in species numbers across sites and seasons throughout the year. However, when considering the abundance of such species, the well-preserved montane cloud forest showed significantly higher abundance. Moreover, the urban forest is only 30 % similar to other sites in terms of species abundances, indicating a possible isolating role of the urban environment. Mosquito

  9. Responses of Montane Forest to Climate Variability in the Central Himalayas of Nepal

    Directory of Open Access Journals (Sweden)

    Janardan Mainali

    2015-02-01

    Full Text Available Climate changes are having dramatic ecological impacts in mid- to high-latitude mountain ranges where growth conditions are limited by climatic variables such as duration of growing season, moisture, and ambient temperature. We document patterns of forest vegetative response for 5 major alpine forest communities to current climate variability in the central Himalayas of Nepal to provide a baseline for assessment of future changes, as well as offer some insight into the trajectory of these changes over time. We used mean monthly surface air temperature and rainfall and the monthly averaged normalized difference vegetation index (NDVI to compare relative vegetation productivity among forest types and in relation to both climatic variables. Because changes in temperature and precipitation are directly manifested as changes in phenology, we examined current vegetative responses to climate variability in an effort to determine which climate variable is most critical for different alpine forest types. Our results show that correlations differ according to vegetation type and confirm that both precipitation and temperature affect monthly NDVI values, though more significant correlations were found with temperature data. The temperature response was more consistent because at the maximum increased temperatures, there was still an ongoing increase in vegetative vigor. This indicates that temperature is still the major limiting factor for plant growth at higher-elevation sites. This part of the Himalayas has abundant moisture, and some forest types are already saturated in terms of growth in relation to precipitation. Clear increases in productivity are documented on the upper treeline ecotones, and these systems are likely to continue to have increasing growth rates.

  10. Water relations and gas exchange of fan bryophytes and their adaptations to microhabitats in an Asian subtropical montane cloud forest.

    Science.gov (United States)

    Song, Liang; Zhang, Yong-Jiang; Chen, Xi; Li, Su; Lu, Hua-Zheng; Wu, Chuan-Sheng; Tan, Zheng-Hong; Liu, Wen-Yao; Shi, Xian-Meng

    2015-07-01

    Fan life forms are bryophytes with shoots rising from vertical substratum that branch repeatedly in the horizontal plane to form flattened photosynthetic surfaces, which are well suited for intercepting water from moving air. However, detailed water relations, gas exchange characteristics of fan bryophytes and their adaptations to particular microhabitats remain poorly understood. In this study, we measured and analyzed microclimatic data, as well as water release curves, pressure-volume relationships and photosynthetic water and light response curves for three common fan bryophytes in an Asian subtropical montane cloud forest (SMCF). Results demonstrate high relative humidity but low light levels and temperatures in the understory, and a strong effect of fog on water availability for bryophytes in the SMCF. The facts that fan bryophytes in dry air lose most of their free water within 1 h, and a strong dependence of net photosynthesis rates on water content, imply that the transition from a hydrated, photosynthetically active state to a dry, inactive state is rapid. In addition, fan bryophytes developed relatively high cell wall elasticity and the osmoregulatory capacity to tolerate desiccation. These fan bryophytes had low light saturation and compensation point of photosynthesis, indicating shade tolerance. It is likely that fan bryophytes can flourish on tree trunks in the SMCF because of substantial annual precipitation, average relative humidity, and frequent and persistent fog, which can provide continual water sources for them to intercept. Nevertheless, the low water retention capacity and strong dependence of net photosynthesis on water content of fan bryophytes indicate a high risk of unbalanced carbon budget if the frequency and severity of drought increase in the future as predicted.

  11. Effect of canopy position on germination and seedling survival of epiphytic bromeliads in a Mexican humid montane forest.

    Science.gov (United States)

    Winkler, Manuela; Hülber, Karl; Hietz, Peter

    2005-05-01

    Seeds of epiphytes must land on branches with suitable substrates and microclimates to germinate and for the resulting seedlings to survive. It is important to understand the fate of seeds and seedlings in order to model populations, but this is often neglected when only established plants are included in analyses. The seeds of five bromeliad species were exposed to different canopy positions in a Mexican montane forest, and germination and early seedling survival were recorded. Additionally, the survival of naturally dispersed seedlings was monitored in a census over 2.5 years. Survival analysis, a procedure rarely used in plant ecology, was used to study the influence of branch characteristics and light on germination and seedling survival in natural and experimental populations. Experimental germination percentages ranged from 7.2 % in Tillandsia deppeana to 33.7 % in T. juncea, but the seeds of T. multicaulis largely failed to germinate. Twenty months after exposure between 3.5 and 9.4 % of the seedlings were still alive. There was no evidence that canopy position affected the probability of germination, but time to germination was shorter in less exposed canopy positions indicating that higher humidity accelerates germination. More experimental seedlings survived when canopy openness was high, whereas survival in census-seedlings was influenced by moss cover. While mortality decreased steadily with age in juveniles of the atmospheric Tillandsia, in the more mesomorphic Catopsis sessiliflora mortality increased dramatically in the dry season. Seedling mortality, rather than the failure to germinate, accounts for the differential distribution of epiphytes within the canopy studied. With few safe sites to germinate and high seedling mortality, changes of local climate may affect epiphyte populations primarily through their seedling stage.

  12. Soil Organic Carbon Storage and Stability in the Aspen-Conifer Ecotone in Montane Forests in Utah, USA

    Directory of Open Access Journals (Sweden)

    Mercedes Román Dobarco

    2014-04-01

    Full Text Available To assess the potential impact of conifer encroachment on soil organic carbon (SOC dynamics and storage in montane aspen-conifer forests from the interior western US, we sampled mineral soils (0–15 cm across the aspen-conifer ecotones in southern and northern Utah and quantified total SOC stocks, stable SOC (i.e., mineral-associated SOC (MoM, labile SOC (i.e., light fraction (LF, decomposable (CO2 release during long-term aerobic incubations and soluble SOC (hot water extractable organic carbon (HWEOC. Total SOC storage (47.0 ± 16.5 Mg C ha−1 and labile SOC as LF (14.0 ± 7.10 Mg C ha−1, SOC decomposability (cumulative released CO2-C of 5.6 ± 3.8 g C g−1 soil or HWEOC (0.6 ± 0.6 mg C g−1 soil did not differ substantially with vegetation type, although a slight increase in HWEOC was observed with increasing conifer in the overstory. There were statistically significant differences (p = 0.035 in stable MoM storage, which was higher under aspen (31.2 ± 15.1 Mg C ha−1 than under conifer (22.8 ± 9.0 Mg C ha−1, with intermediate values under mixed (25.7 ± 8.8 Mg C ha−1. Texture had the greatest impact on SOC distribution among labile and stable fractions, with increasing stabilization in MoM and decreasing bio-availability of SOC with increasing silt + clay content. Only at lower silt + clay contents (40%–70% could we discern the influence of vegetation on MoM content. This highlights the importance of chemical protection mechanisms for long-term C sequestration.

  13. Water dynamics in a laurel montane cloud forest in the Garajonay National Park (Canary Islands, Spain)

    Science.gov (United States)

    García-Santos, G.; Marzol, M. V.; Aschan, G.

    Field measurements from February 2003 to January 2004 in a humid (but dry in summer) crest heath wood-land (degraded laurel forest) in the National Park of Garajonay, Canary Islands (Spain), were combined to calculate water balance components. The water balance domain is at the surface of the catchment and is controlled by atmospheric processes and vegetation. This study found that annual water income (rainfall plus fog water) was 1440 mm year-1, half of which was occult (or fog) precipitation, while stand transpiration estimated from measurements of sap flow amounted, annually, to 40% of potential evapotranspiration calculated from measurements of meteorological variables. The positive role of crest laurel forests, which transpire less water than is incoming from rain and fog is emphasised.

  14. Management intensity affects traits of soil microarthropod community in montane spruce forest

    Czech Academy of Sciences Publication Activity Database

    Farská, Jitka; Prejzková, Kristýna; Rusek, Josef

    2014-01-01

    Roč. 75, March (2014), s. 71-79 ISSN 0929-1393 R&D Projects: GA ČR GA526/03/1259; GA ČR GAP504/12/1218; GA MŠk LC06066 Grant - others:GAJU(CZ) 143/2010/P Institutional support: RVO:60077344 Keywords : Oribatida * Collembola * spruce forest * trait * management intensity Subject RIV: EH - Ecology, Behaviour Impact factor: 2.644, year: 2014

  15. A new species of Phrynopus (Amphibia, Anura, Craugastoridae) from upper montane forests and high Andean grasslands of the Pui Pui Protected Forest in central Peru.

    Science.gov (United States)

    Lehr, Edgar; von May, Rudolf; Moravec, Jiří; Cusi, Juan Carlos

    2017-01-01

    We describe a new species of Phrynopus from the upper montane forests and high Andean grasslands (puna) of the Pui Pui Protected Forest and its close surroundings (Región Junín, central Peru) and compare it morphologically and genetically with other species of Phrynopus . Phrynopus inti sp. n. is known from four localities outside and two localities inside the Pui Pui Protected Forest between 3350 and 3890 m a.s.l. Studied specimens of the new species are characterized by a snout-vent length of 27.2-35.2 mm in males (n = 6), and 40.4 mm in a single female, by having the skin on dorsum and flanks smooth with scattered tubercles, venter smooth, by lacking a tympanum, and males without vocal slits and nuptial pads. In life, the dorsum is pale grayish brown with or without dark brown blotches, or dorsum blackish brown with small yellow flecks, throat, chest and venter are pale grayish brown with salmon mottling, groin is pale grayish brown with salmon colored flecks, and the iris is golden orange with fine dark brown reticulations. The new species is morphologically most similar to Phrynopus kauneorum and P. juninensis . For the latter we describe the coloration in life for a specimen obtained at the type locality. A molecular phylogenetic analysis based on mitochondrial and nuclear DNA sequences inferred that the new species is most closely related to Phrynopus kauneorum , P. miroslawae , P. tautzorum , and an undescribed species distributed at high elevation in Región Pasco, central Peru.

  16. A new species of Phrynopus (Amphibia, Anura, Craugastoridae from upper montane forests and high Andean grasslands of the Pui Pui Protected Forest in central Peru

    Directory of Open Access Journals (Sweden)

    Edgar Lehr

    2017-11-01

    Full Text Available We describe a new species of Phrynopus from the upper montane forests and high Andean grasslands (puna of the Pui Pui Protected Forest and its close surroundings (Región Junín, central Peru and compare it morphologically and genetically with other species of Phrynopus. Phrynopus inti sp. n. is known from four localities outside and two localities inside the Pui Pui Protected Forest between 3350 and 3890 m a.s.l. Studied specimens of the new species are characterized by a snout-vent length of 27.2–35.2 mm in males (n = 6, and 40.4 mm in a single female, by having the skin on dorsum and flanks smooth with scattered tubercles, venter smooth, by lacking a tympanum, and males without vocal slits and nuptial pads. In life, the dorsum is pale grayish brown with or without dark brown blotches, or dorsum blackish brown with small yellow flecks, throat, chest and venter are pale grayish brown with salmon mottling, groin is pale grayish brown with salmon colored flecks, and the iris is golden orange with fine dark brown reticulations. The new species is morphologically most similar to Phrynopus kauneorum and P. juninensis. For the latter we describe the coloration in life for a specimen obtained at the type locality. A molecular phylogenetic analysis based on mitochondrial and nuclear DNA sequences inferred that the new species is most closely related to Phrynopus kauneorum, P. miroslawae, P. tautzorum, and an undescribed species distributed at high elevation in Región Pasco, central Peru.

  17. Do Reductions in Dry Season Transpiration Allow Shallow Soil Water Uptake to Persist in a Tropical Lower Montane Cloud Forest?

    Science.gov (United States)

    Munoz Villers, L. E.; Holwerda, F.; Alvarado-Barrientos, M. S.; Goldsmith, G. R.; Geissert Kientz, D. R.; González Martínez, T. M.; Dawson, T. E.

    2016-12-01

    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF water cycling remain poorly understood. To investigate the plant functional response to reduced water availability, we conducted a study during the mid to late dry season (2014) in the lower limit (1,325 m asl) of the TMCF belt (1200-2500 m asl) in central Veracruz, Mexico. The temporal variation of transpiration rates of dominant upper canopy and mid-story tree species, depth of water uptake, as well as tree water sources were examined using micrometeorological, sapflow and soil moisture measurements, in combination with data on stable isotope (δ18O and δ2H) composition of rain, tree xylem, soil (bulk and low suction-lysimeter) and stream water. The sapflow data suggest that crown conductances decreased as temperature and vapor pressure deficit increased, and soil moisture decreased from the mid to late dry season. Across all samplings (January 21, April 12 and 26), upper canopy species (Quercus spp.) showed more depleted (negative) isotope values compared to mid-story trees (Carpinus tropicalis). Overall, we found that the evaporated soil water pool was the main source for the trees. Furthermore, our MixSIAR Bayesian mixing model results showed that the depth of tree water uptake changed over the course of the dry season. Unexpectedly, a shift in water uptake from deeper (60-120 cm depth) to shallower soil water (0-30 cm) sources was observed, coinciding with the decreases in transpiration rates towards the end of the dry season. A larger reduction in deep soil water contributions was observed for upper canopy trees (from 70±14 to 22±15%) than for mid-story species (from 10±13 to 7±10%). The use of shallow soil water by trees during the dry season seems consistent with the greater root biomass and higher macronutrient concentrations found in the first 10 cm of the soil profiles. These findings are an

  18. Breeding biology of passerines in a subtropical montane forest in northwestern Argentina

    Science.gov (United States)

    Auer, S.K.; Bassar, R.D.; Fontaine, J.J.; Martin, T.E.

    2007-01-01

    The breeding ecology of south temperate bird species is less widely known than that of north temperate species, yet because they comprise a large portion of the world's avian diversity, knowledge of their breeding ecology can contribute to a more comprehensive understanding of the geographic diversity of avian reproductive traits and life history strategies. We provide the first detailed examination of the reproductive strategies of 18 forest passerines of subtropical, northwestern Argentina. Mean clutch sizes were smaller and egg mass was greater than for north temperate birds, but differed among species and nest types, with cavity-nesters having larger clutches than species with open-cup and enclosed nests. Across all species, the average breeding season duration was 50 days; thus, the common perception that southern species have smaller clutch sizes because of longer breeding seasons is not supported in this community. Daily nest predation rates were influenced by nest type, cavity nests suffering the least from predation, as found in north temperate systems. Only females incubated eggs in all but one species, whereas both parents fed and cared for nestlings in all species. Mean nest attentiveness was low compared to north temperate passerines. Mean hourly nestling feeding rates differed among species and were negatively related to nest predation risk. In short, coexisting species in this subtropical forest varied in their life history strategies, in part correlated with variation in nest predation risk, but also differing from north temperate species. ?? The Cooper Ornithological Society 2007.

  19. Effects of past logging and grazing on understory plant communities in a montane Colorado forest

    Science.gov (United States)

    Fornwalt, P.J.; Kaufmann, M.R.; Huckaby, L.S.; Stohlgren, T.J.

    2009-01-01

    Throughout Pinus ponderosa-Pseudotsuga menziesii forests of the southern Colorado Front Range, USA, intense logging and domestic grazing began at the time of Euro-American settlement in the late 1800s and continued until the early 1900s. We investigated the long-term impacts of these settlement-era activities on understory plant communities by comparing understory composition at a historically logged and grazed site to that of an environmentally similar site which was protected from past use. We found that species richness and cover within functional groups rarely differed between sites in either upland or riparian areas. Multivariate analyses revealed little difference in species composition between sites on uplands, though compositional differences were apparent in riparian zones. Our findings suggest that settlement-era logging and grazing have had only minor long-term impacts on understories of upland Front Range P. ponderosa-P. menziesii forests, though they have had a greater long-term influence on riparian understories, where these activities were likely the most intense. ?? 2008 Springer Science+Business Media B.V.

  20. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    Science.gov (United States)

    Jessica R. Miesel; William C. Hockaday; Randy Kolka; Philip A. Townsend

    2015-01-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition...

  1. Vascular epiphytic flora of a high montane environment of Brazilian Atlantic Forest: composition and floristic relationships with other ombrophilous forests

    Directory of Open Access Journals (Sweden)

    Samyra Gomes Furtado

    2016-01-01

    Full Text Available ABSTRACT Only a few studies regarding vascular epiphytes have been conducted in mixed ombrophilous forests (MOF in Serra da Mantiqueira, a mountainous environment in the Brazilian Atlantic Forest, where the relationships of epiphytic flora with other physiognomies are unknown. This study aimed to survey the epiphytes of a MOF remnant located in Serra da Mantiqueira, and to analyze the floristic relationships with ombrophilous forests of the Southern and Southeastern regions of Brazil. The checklist was compared with 51 other areas composed of ombrophilous forests and/or ecotones with other physiognomies using UPGMA (with Sørensen index, and canonical correspondence analysis (CCA. We recorded 138 species, and Orchidaceae and Polypodiaceae were the richest families (51 and 23 species, respectively. The UPGMA showed the importance of physiognomy and elevation in the floristic relationships, and CCA reinforced the influence of elevation, in addition to the shortest distance to the ocean and minimum annual temperature; however, in this analysis, the physiognomies showed little influence on the relationships. The epiphytic flora of MOF of Southern and Southeastern regions of Brazil has different relationships compared with the data available for shrubs and trees, suggesting a greater importance of phorophytic species than geographical distance and, to some extent, environmental variables.

  2. Use of 15N-labelled nitrogen deposition to quantify the source of nitrogen in runoff at a coniferous-forested catchment at Gardsjoen, Sweden

    International Nuclear Information System (INIS)

    Kjonaas, O. Janne; Wright, Richard F.

    2007-01-01

    To determine the source of dissolved inorganic nitrogen (N) in runoff, approx. 35 kg N enriched with the stable isotope 15 N (2110 per mille δ 15 N) was added to a mature coniferous forested catchment for one whole year. The total N input was approx. 50 kg ha -1 year -1 . The enrichment study was part of a long-term whole-catchment ammonium nitrate addition experiment at Gardsjoen, Sweden. The 15 N concentrations in precipitation, throughfall, runoff and upper forest floor were measured prior to, during, and 3-9 years following the 15 N addition. During the year of the 15 N addition the δ 15 N level in runoff largely reflected the level in incoming N, indicating that the leached NO 3 - came predominantly from precipitation. Only 1.1% of the incoming N was lost during the year of the tracer addition. The cumulative loss of tracer N over a 10-year period was only 3.9% as DIN and 1.1% as DON. - 15 N tracer addition showed that initially the main source of NO 3 - in runoff was N from atmospheric deposition

  3. Duration of fuels reduction following prescribed fire in coniferous forests of U.S. national parks in California and the Colorado Plateau

    Science.gov (United States)

    van Mantgem, Phillip J.; Lalemand, Laura; Keifer, MaryBeth; Kane, Jeffrey M.

    2016-01-01

    Prescribed fire is a widely used forest management tool, yet the long-term effectiveness of prescribed fire in reducing fuels and fire hazards in many vegetation types is not well documented. We assessed the magnitude and duration of reductions in surface fuels and modeled fire hazards in coniferous forests across nine U.S. national parks in California and the Colorado Plateau. We used observations from a prescribed fire effects monitoring program that feature standard forest and surface fuels inventories conducted pre-fire, immediately following an initial (first-entry) prescribed fire and at varying intervals up to >20 years post-fire. A subset of these plots was subjected to prescribed fire again (second-entry) with continued monitoring. Prescribed fire effects were highly variable among plots, but we found on average first-entry fires resulted in a significant post-fire reduction in surface fuels, with litter and duff fuels not returning to pre-fire levels over the length of our observations. Fine and coarse woody fuels often took a decade or longer to return to pre-fire levels. For second-entry fires we found continued fuels reductions, without strong evidence of fuel loads returning to levels observed immediately prior to second-entry fire. Following both first- and second-entry fire there were increases in estimated canopy base heights, along with reductions in estimated canopy bulk density and modeled flame lengths. We did not find evidence of return to pre-fire conditions during our observation intervals for these measures of fire hazard. Our results show that prescribed fire can be a valuable tool to reduce fire hazards and, depending on forest conditions and the measurement used, reductions in fire hazard can last for decades. Second-entry prescribed fire appeared to reinforce the reduction in fuels and fire hazard from first-entry fires.

  4. Rain chemistry and cloud composition and microphysics in a Caribbean tropical montane cloud forest under the influence of African dust

    Science.gov (United States)

    Torres-Delgado, Elvis; Valle-Diaz, Carlos J.; Baumgardner, Darrel; McDowell, William H.; González, Grizelle; Mayol-Bracero, Olga L.

    2015-04-01

    It is known that huge amounts of mineral dust travels thousands of kilometers from the Sahara and Sahel regions in Africa over the Atlantic Ocean reaching the Caribbean, northern South America and southern North America; however, not much is understood about how the aging process that takes place during transport changes dust properties, and how the presence of this dust affects cloud's composition and microphysics. This African dust reaches the Caribbean region mostly in the summer time. In order to improve our understanding of the role of long-range transported African dust (LRTAD) in cloud formation processes in a tropical montane cloud forest (TMCF) in the Caribbean region we had field campaigns measuring dust physical and chemical properties in summer 2013, as part of the Puerto Rico African Dust and Cloud Study (PRADACS), and in summer 2014, as a part of the Luquillo Critical Zone Observatory (LCZO) and in collaboration with the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE). Measurements were performed at the TMCF of Pico del Este (PE, 1051 masl) and at the nature reserve of Cabezas de San Juan (CSJ, 60 masl). In both stations we monitored meteorological parameters (e.g., temperature, wind speed, wind direction). At CSJ, we measured light absorption and scattering at three wavelengths (467, 528 and 652 nm). At PE we collected cloud and rainwater and monitored cloud microphysical properties (e.g., liquid water content, droplet size distribution, droplet number concentration, effective diameter and median volume diameter). Data from aerosol models, satellites, and back-trajectories were used together with CSJ measurements to classify air masses and samples collected at PE in the presence or absence of dust. Soluble ions, insoluble trace metals, pH and conductivity were measured for cloud and rainwater. Preliminary results for summer 2013 showed that in the presence of LRTAD (1) the average conductivity of cloud water

  5. The Role of African Dust Particles on Cloud Chemistry and Microphysics in a Tropical Montane Cloud Forest in the Caribbean

    Science.gov (United States)

    Torres-Delgado, E.; Valle-Diaz, C. J.; Baumgardner, D.; McDowell, W. H.; Gonzalez, G.; Mayol-Bracero, O. L.

    2015-12-01

    Huge amounts of African dust travels thousands of kilometers from the Sahara and Sahel regions to the Caribbean, northern South America and southern North America. However, not much is understood about how the aging process that takes place during transport changes dust properties, and how it affects cloud's composition and microphysics. In order to improve our understanding of the role of long-range transported African dust (LRTAD) in cloud formation processes we had field campaigns measuring dust physical and chemical properties in summers of 2013, 2014 and 2015, as part of the Puerto Rico African Dust and Cloud Study (PRADACS), and of the Luquillo Critical Zone Observatory (LCZO). Measurements were performed at the tropical montane cloud forest (TMCF) of Pico del Este (PE, 1051 masl) and at the nature reserve of Cabezas de San Juan (CSJ, 60 masl). In both ground stations we monitored meteorological parameters (e.g., temperature, wind speed, wind direction). At CSJ, we measured light absorption and scattering at three wavelengths (467, 528 and 652 nm). At PE we collected cloud and rainwater for chemical analyses and monitored cloud microphysical properties (e.g., liquid water content, droplet size distribution, droplet number concentration, effective diameter and median volume diameter). Summer 2015 was the first attempt to characterize microphysical properties of the summer period (June to August) at PE, where dust is in its higher concentrations of the year. Samples were classified using data from models and satellites together with CSJ measurements as low or high dust influenced. Soluble ions, insoluble trace metals, pH, conductivity, total and dissolved organic carbon and total and dissolved nitrogen were measured for cloud and rainwater. Enrichment factor analysis was used to determine sea and crustal contribution of species by sample, as well as the neutralization factor and fractional acidity. Some preliminary results show cloud water conductivity for low

  6. Increases in mean annual temperature do not alter soil bacterial community structure in tropical montane wet forests

    Science.gov (United States)

    Paul C. Selmants; Karen L. Adair; Creighton M. Litton; Christian P. Giardina; Egbert Schwartz

    2016-01-01

    Soil bacteria play a key role in regulating terrestrial biogeochemical cycling and greenhouse gas fluxes across the soil-atmosphere continuum. Despite their importance to ecosystem functioning, we lack a general understanding of how bacterial communities respond to climate change, especially in relatively understudied ecosystems like tropical montane wet...

  7. Diversity of the ground-dwelling ant fauna (Hymenoptera: Formicidae) of a moist, Montane forest of the semi-arid Brazilian "Nordeste".

    Science.gov (United States)

    Hites, N L; Mourão, M A N; Araújo, F O; Melo, M V C; de Biseau, J C; Quinet, Y

    2005-01-01

    Although the so called "green islands" of the semi-arid Brazilian "Nordeste" are economically, socially, and ecologically important. relatively little is known about their biodiversity. We present the results of the first survey of the ground-dwelling ant fauna of a secondary forest in the Serra de Baturité (4 degrees 05'-4 degrees 40' S / 38 degrees 30'-39 degrees 10' W), among the biggest of the moist, montane forests of the state of Ceará, Brazil. From February to March 2001, samples were taken every 50 m along twelve 200 m transects, each separated from the others by at least 50 m and cut on either side of a recreational trail. Where possible, two transects were cut from the same starting point on the trail, one on either side. At each sample site two methods were used, as recommended in the ALL. protocol: a pitfall trap and the treatment of 1 m2 of leaf litter with the Winkler extractor. The myrmecofauna of the Serra de Baturité is quite diverse: individuals from 72 species, 23 genera, and six subfamilies were collected. The observed patterns of specific richness show the same tendencies noted in other tropical regions, particularly the frequency of capture distribution with many rare and few abundant species. Differences with the Atlantic and Amazonian forests were also observed, especially the relative importance of the Ponerinac and Formicinae subfamilies, indicating a possible influence of the surrounding "caatinga" (savanna-like ecosystem) on the myrmecofauna of the moist, montane forest.

  8. Rising Mean Annual Temperature Increases Carbon Flux and Alters Partitioning, but Does Not Change Ecosystem Carbon Storage in Hawaiian Tropical Montane Wet Forest

    Science.gov (United States)

    Litton, C. M.; Giardina, C. P.; Selmants, P.

    2014-12-01

    Terrestrial ecosystem carbon (C) storage exceeds that in the atmosphere by a factor of four, and represents a dynamic balance among C input, allocation, and loss. This balance is likely being altered by climate change, but the response of terrestrial C cycling to warming remains poorly quantified, particularly in tropical forests which play a disproportionately large role in the global C cycle. Over the past five years, we have quantified above- and belowground C pools and fluxes in nine permanent plots spanning a 5.2°C mean annual temperature (MAT) gradient (13-18.2°C) in Hawaiian tropical montane wet forest. This elevation gradient is unique in that substrate type and age, soil type, soil water balance, canopy vegetation, and disturbance history are constant, allowing us to isolate the impact of long-term, whole ecosystem warming on C input, allocation, loss and storage. Across the gradient, soil respiration, litterfall, litter decomposition, total belowground C flux, aboveground net primary productivity, and estimates of gross primary production (GPP) all increase linearly and positively with MAT. Carbon partitioning is dynamic, shifting from below- to aboveground with warming, likely in response to a warming-induced increase in the cycling and availability of soil nutrients. In contrast to observed patterns in C flux, live biomass C, soil C, and total ecosystem C pools remained remarkably constant with MAT. There was also no difference in soil bacterial taxon richness, phylogenetic diversity, or community composition with MAT. Taken together these results indicate that in tropical montane wet forests, increased temperatures in the absence of water limitation or disturbance will accelerate C cycling, will not alter ecosystem C storage, and will shift the products of photosynthesis from below- to aboveground. These results agree with an increasing number of studies, and collectively provide a unique insight into anticipated warming-induced changes in tropical

  9. THE ROLE OF TREEFALL COMPLEXES IN REGENERATION OF TREE SPECIES AND IN MAINTAINING OF BIOLOGICAL DIVERSITY OF NATURAL BEECH AND DARK CONIFEROUS-BEECH FORESTS OF THE UKRAINIAN CARPATHIANS

    Directory of Open Access Journals (Sweden)

    S. I. Ripa

    2017-06-01

    Full Text Available Understanding of maintaining biological diversity mechanisms is important for elaborating methods for the restoration of natural forests that most fully implement ecosystem functions. The objectives of work are: to identify intact beech and dark coniferous-beech forests of the Carpathians on the basis of analyzing history of nature management and field studies; to characterize the population structure of the main tree species in the intact forests of the Carpathians; to determine the renewal of various species of trees, shrubs, herbs and bryophytes to treefall microsites in the forest types studied. The objects of the research are monodominant beech forests and mixed (dark coniferous-beech forests of the Ukrainian Carpathians, in which beech (Fagus sylvatica, white fir (Abies alba and European spruce (Picea abies are the main dominant of tree sinusia. Monodominant beech forests (the age of stands 250–350 years were studied on 9 sample plots (from 1 to 1.05 ha laid in the Ugolsky forest range of the Carpathian Biosphere Reserve at an altitude of 600 to 1000 m above sea level, and also on the 2 sample plots (from 1 to 1.09 hectares laid in the Lower Volovets forestry at an altitude of 600–800 meters above sea level. Uneven-aged dark coniferous-beech forest (the age of forest stands is 250–300 years old was explored on one sample plot (1.2 ha laid in the Podlisnivsky forestry of the Carpathian National Park at an altitude of 750 m above sea level. Population analysis of the main tree and shrub species as well as geobotanical releves was made on the sample plots. Treefall microsite complexes were investigated to identify the peculiarities in the location of tree undergrowth, herb and moss species in beech and mixed forests. The following elements of treefall microsite complex were singled out: treefall pit, treefall mound and tree trunk. At each treefall microsite complex the research was carried out according to the following scheme: an

  10. Diet of a sigmodontine rodent assemblage in a Peruvian montane forest.

    Science.gov (United States)

    Sahley, Catherine Teresa; Cervantes, Klauss; Pacheco, Victor; Salas, Edith; Paredes, Diego; Alonso, Alfonso

    2015-09-29

    Knowledge of feeding habits of small rodents is necessary for understanding food webs, trophic structure, and plant-animal interactions in Neotropical forests. Despite several studies that have investigated community structure and feeding behavior of rodents, large gaps remain in our understanding of their guild occupancy. Our objective was to investigate the diets of 7 species of small (de los hábitos alimenticios de roedores pequeños es necesario para comprender cadenas alimenticias, estructura trófica, e interacciones planta-animal en los bosques neotropicales. A pesar de que numerosos estudios han investigado la estructura de comunidades y el comportamiento de forrajeo en roedores, aún existen grandes vacíos en nuestra comprensión de sus gremios tróficos. Nuestro objetivo fue investigar las dietas de siete especies de pequeños (de roedores capturados entre el 2009 y el 2012. Datos de frecuencia para cuatro categorías de dieta indicaron que las siete especies de roedores consumieron cuatro categorías de dieta: artrópodos (88%), pedazos de hojas y fibras de plantas (61%), semillas intactas (con o sin pulpa de frutos; 50%), y esporas de micorrizas (45%). Omnivoría fue la estrategia utilizada por todas las especies, aunque el análisis con tablas de contingencia reveló diferencias significativas entre y dentro de especies en categorías de dieta. El análisis de agrupación presentó 2 grupos principales: el grupo Thomasomys spp. y Calomys sorellus , que incluye una gran proporción de semillas intactas, y partes de plantas en las muestras fecales y el grupo que incluye los géneros Akodon , Microryzomys y Oligoryzomys , el cual incluyó una proporción mayor de artrópodos en sus muestras fecales, pero con niveles altos de semillas intactas. Semillas intactas de al menos 17 especies de plantas (9 familias) fueron encontradas en las muestras fecales. Concluimos que este ensamble de roedores sigmodontinos es omnívoro y que probablemente las especies

  11. The effect of climate and soil conditions on tree species turnover in a Tropical Montane Cloud Forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Achim Häger

    2010-12-01

    Full Text Available On a global level, Tropical Montane Cloud Forests constitute important centers of vascular plant diversity. Tree species turnover along environmental gradients plays an important role in larger scale diversity patterns in tropical mountains. This study aims to estimate the magnitude of beta diversity across the Tilarán mountain range in North-Western Costa Rica, and to elucidate the impact of climate and soil conditions on tree species turnover at a local scale. Seven climate stations measuring rainfall, horizontal precipitation (clouds and wind-driven rain and temperatures were installed along a 2.5km transect ranging from 1 200m.a.s.l. on the Atlantic to 1 200m.a.s.l. on the Pacific slope. The ridge top climate station was located at 1 500m.a.s.l. Climate data were recorded from March through December 2003. Additionally, seven 0.05ha plots were established. On all plots soil moisture was monitored for one year, furthermore soil type and soil chemistry were assessed. Woody plants with a diameter at breast height (dbh ≥5cm were identified to species. Species’ distributions were explored by feeding pairwise Sørensen measures between plots into a Principal Component Analysis. Relationships between floristic similarity and environmental variables were analyzed using Mantel tests. Pronounced gradients in horizontal precipitation, temperatures and soil conditions were found across the transect. In total, 483 woody plants were identified, belonging to 132 species. Environmental gradients were paralleled by tree species turnover; the plots could be divided in three distinctive floristic units which reflected different topographic positions on the transect (lower slopes, mid slopes and ridge. Most notably there was a complete species turnover between the ridge and the lower Pacific slope. Floristic similarity was negatively correlated with differences in elevation, horizontal precipitation, temperatures and soil conditions between plots. It is

  12. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode.

    Science.gov (United States)

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-04-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.

  13. Remote detection of canopy water stress in coniferous forests using the NS001 Thematic Mapper Simulator and the thermal infrared multispectral scanner

    Science.gov (United States)

    Pierce, Lars L.; Running, Steven W.; Riggs, George A.

    1990-01-01

    Water stress was induced in two coniferous forest stands in West Germany by severing tree sapwood. Leaf water potential, Psi(L), measurements indicated that maximum, naturally occurring levels of water stress developed in the stressed plots while control plots exhibited natural diurnal trends. Images of each site were obtained with the Thematic Mapper Simulator (NS001) and the Thermal Infrared Multispectral Scanner (TIMS) 12 to 15 days after stress induction. NS001 bands 2 to 6, NS001 indices combining bands 4 and 6, and NS001 and TIMS thermal bands showed significant radiance differences between stressed and control plots when large differences in Psi(L) and relative water content (RWC) existed during the morning overflights at Munich. However, the NS001 and TIMS sensors could not detect the slightly smaller differences in Psi(L) and RWC during the Munich afternoon and Frankfurt overflights. The results suggest that routine detection of canopy water stress under operational conditions is difficult utilizing current sensor technology.

  14. Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan.

    Science.gov (United States)

    Jia, Shuzheng; Nakano, Takashi; Hattori, Masahira; Nara, Kazuhide

    2017-11-01

    Pyroleae species are perennial understory shrubs, many of which are partial mycoheterotrophs. Most fungi colonizing Pyroleae roots are ectomycorrhizal (ECM) and share common mycobionts with their Pyroleae hosts. However, such mycobiont sharing has neither been examined in depth before nor has the interspecific variation in sharing among Pyroleae species. Here, we examined root-associated fungal communities in three co-existing Pyroleae species, including Pyrola alpina, Pyrola incarnata, and Orthilia secunda, with reference to co-existing ECM fungi on the surrounding trees in the same soil blocks in subalpine coniferous forests. We identified 42, 75, and 18 fungal molecular operational taxonomic units in P. alpina, P. incarnata, and O. secunda roots, respectively. Mycobiont sharing with surrounding trees, which was defined as the occurrence of the same mycobiont between Pyroleae and surrounding trees in each soil block, was most frequent among P. incarnata (31 of 44 plants). In P. alpina, sharing was confirmed in 12 of 37 plants, and the fungal community was similar to that of P. incarnata. Mycobiont sharing was least common in O. secunda, found in only 5 of 32 plants. Root-associated fungi of O. secunda were dominated by Wilcoxina species, which were absent from the surrounding ECM roots in the same soil blocks. These results indicate that mycobiont sharing with surrounding trees does not equally occur among Pyroleae plants, some of which may develop independent mycorrhizal associations with ECM fungi, as suggested in O. secunda at our research sites.

  15. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Zaidett Barrientos

    2012-09-01

    Full Text Available Little is known about how restoration strategies affect aspects like leaf litter’s quantity, depth and humidity. I analyzed leaf litter’s quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration and a 40 year old Cupressus lusitanica plantation (natural understory. The three habitats are located in the Río Macho Forest Reserve, Costa Rica. Twenty litter samples were taken every three months (April 2009-April 2010 in each habitat; humidity was measured in 439g samples (average, depth and quantity were measured in five points inside 50x50cm plots. None of the restoration strategies reproduced the primary forest leaf litter humidity, depth and quantity yearly patterns. Primary forest leaf litter humidity was higher and more stable (x=73.2, followed by secondary forest (x=63.3 and cypress plantation (x=52.9 (Kruskall-Wallis=77.93, n=232, p=0.00. In the primary (Kruskal-Wallis=31.63, n=78, p<0.001 and secondary (Kruskal-Wallis=11.79, n=75, p=0.008 forest litter accumulation was higher during April due to strong winds. In the primary forest (Kruskal-wallis=21.83, n=78, p<0.001 and the cypress plantation (Kruskal-wallis=39.99, n=80, p<0.001 leaf litter depth was shallow in October because heavy rains compacted it. Depth patterns were different from quantity patterns and described the leaf litter’s structure in different ecosystems though the year.

  16. ESCORRENTÍA SUPERFICIAL EN BOSQUES MONTANOS NATURALES Y PLANTADOS DE PIEDRAS BLANCAS, ANTIOQUIA (COLOMBIA SURFACE RUNOFF IN NATURAL MONTANE FORESTS AND FOREST PLANTATIONS IN ANTIOQUIA, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Oscar Andrés Ruiz Suescún

    2005-06-01

    Full Text Available En bosques montanos naturales de roble (Quercus humboldtii Bonpl. y plantados de pino pátula (Pinus patula Schltdl. & Cham. y ciprés (Cupressus lusitanica Mill. de la región de Piedras Blancas, Antioquia (Colombia, fueron medidos los flujos de escorrentía superficial (ES por un periodo de tiempo de 16 meses. Se implementaron parcelas cerradas de escorrentía superficial de 10 m de largo x 2 m de ancho, tanques colectores y sistemas de registro volumétrico. Los flujos fueron de 23,19 mm año-1 (1,07 % de la precipitación para la cobertura de roble; 35,13 mm año-1 (1,61 % de la precipitación para la cobertura de pino pátula y 230,64 mm año-1 (11,05 % de la precipitación para la cobertura de ciprés. Mediante análisis de componentes principales (ACP se identificaron las relaciones existentes entre las variables hidrológicas y los flujos de ES, y por medio de análisis de regresión lineal múltiple se ajustaron modelos para los flujos de ES por cobertura en función de la precipitación, la precipitación en el bosque y la intensidad de lluvia promedio, variables que mostraron alta relación con la ES según el ACP.In natural montane oak forests (Quercus humboldtii Bonpl., in pine (Pinus patula Schltdl. & Cham. and cypress (Cupressus lusitanica Mill. plantations in Piedras Blancas, Antioquia (Colombia, surface runoff flows (SRF were measured over 16 months. Runoff was measured using 10 m long x 2 m wide runoff bounded plots, collector tanks and a volumetric counter system. SRF were 23,19 mm year -1 (1,07 % of rainfall for oak forest; 35,13 mm year -1 (1,61 % of rainfall for pine and 230,64 mm year-1 (11,05 % of rainfall for cypress plantations. Relationships between hydrological variables and SRF were identified by a principal components analysis (PCA. For each one of the stands, multiple regression analysis was used to fit models of SRF on rainfall, throughfall and mean intensity of rainfall, variables that, according to the PCA

  17. Assessment of the radiation field from radioactive elements in a wood-ash-treated coniferous forest in southwest Sweden

    International Nuclear Information System (INIS)

    Ravila, A.; Holm, E.

    1996-01-01

    The distribution of natural and antrophogenic radioactive elements in soil and wood was investigated in a 30-year-old forest stand of Norway spruce. Forest plots treated with a single dose of granulated wood ash in 1989 were compared with untreated control plots. It was observed that the retention of radiocesium and radiostrontium by the forest soil is rather strong in spite of the high annual precipitation (1100 mm a -1 ) and the relatively acidic conditions of the soil. Most of the deposited nuclear weapon fall-out of radiocesium and radiostrontium is still residing in the forest soil. Radiostrontium, but not radiocesium, was found in the intrasoil water collected with lysimeters at soil depths of 20 and 50 cm. Wood xylem radial distributions of radiostrontium indicated a decreased bioavailability with time after deposition of nuclear weapons fall-out, and no major differences could be observed on comparison of wood from ash-treated plots with wood from untreated plots. The activity concentration of radiocesium in tree rings formed prior to 1986 and grown at the ash-treated plot was about two to three times that found in wood from the untreated control plot. (author)

  18. Analysis of Coniferous Forest Damage: Effects of Trichloroacetic Acid, Sulphur, Fluorine and Chlorine on Needle Loss of Norway Spruce

    Czech Academy of Sciences Publication Activity Database

    Coufal, D.; Matucha, Miroslav; Uhlířová, H.; Lomský, B.; Forczek, Sándor

    2003-01-01

    Roč. 13, - (2003), s. 89-102 ISSN 1210-0552 R&D Projects: GA ČR GA522/02/0874 Institutional research plan: CEZ:AV0Z5038910 Keywords : Forest decline * polyfactorial problem * dose/response relationship Subject RIV: EF - Botanics

  19. Fuel treatment effects on soil chemistry and foliar physiology of three coniferous species at the Teakettle Experimental Forest, California, USA

    Science.gov (United States)

    Rakesh Minocha; Swathi A. Turlapati; Stephanie Long; Malcolm. North

    2013-01-01

    A full factorial design crossing overstory (O) and understory (U) thinning and prescribed burning (B) was started at Teakettle Experimental Forest, California, in 2001 with the aim of achieving shifts in species composition to favor fire-resistant pines over fir. The goal of the present study was to evaluate the use of metabolic changes as early indicators for...

  20. Seasonal variation and distribution of total and active microbial community of beta-glucosidase encoding genes in coniferous forest soil

    Czech Academy of Sciences Publication Activity Database

    Pathan, S.I.; Žifčáková, Lucia; Ceccherini, M.T.; Pantani, O.L.; Větrovský, Tomáš; Baldrian, Petr

    2017-01-01

    Roč. 105, February (2017), s. 71-80 ISSN 0038-0717 R&D Projects: GA ČR(CZ) GA16-08916S Grant - others:Transbiodiverse(CZ) 7. RP Marie Curie ITN FP7/2007e2013 project 289949 Institutional support: RVO:61388971 Keywords : Beta-Glucosidases * Forest soil * Bacteria Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.857, year: 2016

  1. Silvibacterium bohemicum gen. nov sp nov., an acidobacterium isolated from coniferous soil in the Bohemian Forest National Park

    Czech Academy of Sciences Publication Activity Database

    Lladó, Salvador; Benada, Oldřich; Cajthaml, Tomáš; Baldrian, Petr; García-Fraile, Paula

    2016-01-01

    Roč. 39, FEB (2016), s. 14-19 ISSN 0723-2020 R&D Projects: GA ČR(CZ) GP14-09040P; GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) LO1509 Institutional support: RVO:61388971 Keywords : Acidobacteria * Taxonomy * Bohemian Forest National Park Subject RIV: EE - Microbiology, Virology Impact factor: 3.931, year: 2016

  2. Analysis of Coniferous Forest Damage: Effects of Trichloroacetic Acid, Sulphur, Fluorine and Chlorine on Needle Loss of Norway Spruce

    Czech Academy of Sciences Publication Activity Database

    Coufal, David; Matucha, P.; Uhlířová, H.; Lomský, B.; Forczek, Sándor; Matucha, Miroslav

    2003-01-01

    Roč. 13, č. 1 (2003), s. 89-102 ISSN 1210-0552 R&D Projects: GA ČR GA522/99/1465; GA MŠk OC 274.001 Grant - others:COST(XE) Action 274 TARSKI Institutional research plan: AV0Z1030915 Keywords : forest decline * polyfactorial problem * monitoring * stress factors * dose/response-relationship Subject RIV: BA - General Mathematics

  3. Long-Term Vegetation Dynamics in a Megadiverse Hotspot: The Ice-Age Record of a Pre-montane Forest of Central Ecuador

    Directory of Open Access Journals (Sweden)

    Encarni Montoya

    2018-02-01

    Full Text Available Tropical ecosystems play a key role in many aspects of Earth system dynamics currently of global concern, including carbon sequestration and biodiversity. To accurately understand complex tropical systems it is necessary to parameterise key ecological aspects, such as rates of change (RoC, species turnover, dynamism, resilience, or stability. To obtain a long-term (>50 years perspective on these ecological aspects we must turn to the fossil record. However, compared to temperate zones, collecting continuous sedimentary archives in the lowland tropics is often difficult due to the active landscape processes, with potentially frequent volcanic, tectonic, and/or fluvial events confounding sediment deposition, preservation, and recovery. Consequently, the nature, and drivers, of vegetation dynamics during the last glacial are barely known from many non-montane tropical landscapes. One of the first lowland Amazonian locations from which palaeoecological data were obtained was an outcrop near Mera (Ecuador. Mera was discovered, and analysed, by Paul Colinvaux in the 1980s, but his interpretation of the data as indicative of a forested glacial period were criticised based on the ecology and age control. Here we present new palaeoecological data from a lake located less than 10 km away from Mera. Sediment cores raised from Laguna Pindo (1250 masl; 1°27′S, 78°05′W have been shown to span the late last glacial period [50–13 cal kyr BP (calibrated kiloyears before present]. The palaeoecological information obtained from Laguna Pindo indicate that the region was characterised by a relatively stable plant community, formed by taxa nowadays common at both mid and high elevations. Miconia was the dominant taxon until around 30 cal kyr BP, when it was replaced by Hedyosmum, Asteraceae and Ilex among other taxa. Heat intolerant taxa including Podocarpus, Alnus, and Myrica peaked around the onset of the Last Glacial Maximum (c. 21 cal kyr BP. The results

  4. Assessing Ecosystem Drought Response in CLM 4.5 Using Site-Level Flux and Carbon-Isotope Measurements: Results From a Pacific Northwest Coniferous Forest

    Science.gov (United States)

    Duarte, H.; Raczka, B. M.; Koven, C. D.; Ricciuto, D. M.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.

    2015-12-01

    The frequency, extent, and severity of droughts are expected to increase in the western United States as climate changes occur. The combination of warmer temperature, larger vapor pressure deficit, reduced snowfall and snow pack, earlier snow melt, and extended growing seasons is expected to lead to an intensification of summer droughts, with a direct impact on ecosystem productivity and therefore on the carbon budget of the region. In this scenario, an accurate representation of ecosystem drought response in land models becomes fundamental, but the task is challenging, especially in regards to stomatal response to drought. In this study we used the most recent release of the Community Land Model (CLM 4.5), which now includes photosynthetic carbon isotope discrimination and revised photosynthesis and hydrology schemes, among an extensive list of updates. We evaluated the model's performance at a coniferous forest site in the Pacific northwest (Wind River AmeriFlux Site), characterized by a climate that has a strong winter precipitation component followed by a summer drought. We ran the model in offline mode (i.e., decoupled from an atmospheric model), forced by observed meteorological data, and used site observations (e.g., surface fluxes, biomass values, and carbon isotope data) to assess the model. Previous field observations indicated a significant negative correlation between soil water content and the carbon isotope ratio of ecosystem respiration (δ13CR), suggesting that δ13CR was closely related to the photosynthetic discrimination against 13CO2 as controlled by stomatal conductance. We used these observations and latent-heat flux measurements to assess the modeled stomatal conductance values and their responses to extended summer drought. We first present the model results, followed by a discussion of potential CLM model improvements in stomatal conductance responses and in the representation of soil water stress (parameter βt) that would more precisely

  5. Native and exotic plant cover vary inversely along a climate gradient 11 years following stand-replacing wildfire in a dry coniferous forest, Oregon, USA.

    Science.gov (United States)

    Dodson, Erich K; Root, Heather T

    2015-02-01

    Community re-assembly following future disturbances will often occur under warmer and more moisture-limited conditions than when current communities assembled. Because the establishment stage is regularly the most sensitive to climate and competition, the trajectory of recovery from disturbance in a changing environment is uncertain, but has important consequences for future ecosystem functioning. To better understand how ongoing warming and rising moisture limitation may affect recovery, we studied native and exotic plant composition 11 years following complete stand-replacing wildfire in a dry coniferous forest spanning a large gradient in climatic moisture deficit (CMD) from warm and dry low elevation sites to relatively cool and moist higher elevations sites. We then projected future precipitation, temperature and CMD at our study locations for four scenarios selected to encompass a broad range of possible future conditions for the region. Native perennials dominated relatively cool and moist sites 11 years after wildfire, but were very sparse at the warmest and driest (high CMD) sites, particularly when combined with high topographic sun exposure. In contrast, exotic species (primarily annual grasses) were dominant or co-dominant at the warmest and driest sites, especially with high topographic sun exposure. All future scenarios projected increasing temperature and CMD in coming decades (e.g., from 4.5% to 29.5% higher CMD by the 2080's compared to the 1971-2000 average), even in scenarios where growing season (May-September) precipitation increased. These results suggest increasing temperatures and moisture limitation could facilitate longer term (over a decade) transitions toward exotic-dominated communities after severe wildfire when a suitable exotic seed source is present. © 2014 John Wiley & Sons Ltd.

  6. Biogeographic links between southern Atlantic Forest and western South America: Rediscovery, re-description, and phylogenetic relationships of two rare montane anole lizards from Brazil.

    Science.gov (United States)

    Prates, Ivan; Melo-Sampaio, Paulo Roberto; Drummond, Leandro de Oliveira; Teixeira, Mauro; Rodrigues, Miguel Trefaut; Carnaval, Ana Carolina

    2017-08-01

    Data on species ranges and phylogenetic relationships are key in historical biogeographical inference. In South America, our understanding of the evolutionary processes that underlie biodiversity patterns varies greatly across regions. Little is known, for instance, about the drivers of high endemism in the southern montane region of the Atlantic Rainforest. In this region, former biogeographic connections with other South American ecosystems have been invoked to explain the phylogenetic affinities of a number of endemic taxa. This may also be the case of the montane anole lizards Anolis nasofrontalis and A. pseudotigrinus, known from few specimens collected more than 40years ago. We combine new genetic data with published sequences of species in the Dactyloa clade of Anolis to investigate the phylogenetic relationships of A. nasofrontalis and A. pseudotigrinus, as well as estimate divergence times from their closest relatives. Based on newly sampled and previously overlooked specimens, we provide a taxonomic re-description of those two taxa. Our phylogenetic analysis recovered six main clades within Dactyloa, five of which were previously referred to as species series (aequatorialis, heterodermus, latifrons, punctatus, roquet). A sixth clade clustered A. nasofrontalis and A. pseudotigrinus with A. dissimilis from western Amazonia, A. calimae from the Andes, A. neblininus from the Guiana Shield, and two undescribed Andean taxa. We therefore define a sixth species series within Dactyloa: the neblininus series. Close phylogenetic relationships between highly disjunct, narrowly-distributed anoles suggest that patches of suitable habitat connected the southern Atlantic Forest to western South America during the Miocene, in agreement with the age of former connections between the central Andes and the Brazilian Shield as a result of Andean orogeny. The data also support the view of recurrent evolution (or loss) of a twig anole-like phenotype in mainland anoles, in

  7. Growth and nutrition of coniferous forests on acidic mineral soils - status and effects of liming and fertilization

    International Nuclear Information System (INIS)

    Sikstroem, Ulf

    2001-01-01

    Deposited air-borne S- and N- containing pollutants acidify forest soils in southern Sweden. It has been suggested that this may severely affect forest yield. Liming and/or application of specific nutrients, e.g. phosphorus (P) and potassium (K), have been proposed as countermeasures. The influence of such measures, and of nitrogen (N) addition, was investigated in two experimental series over 5-10 years. Stem growth and needle element concentrations were assessed, predominantly in high-yielding Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) stands, 30-60 years old, growing on acidic mineral soils in southern Sweden. The effect on crown transparency was also evaluated in some of the Norway spruce stands. The treatments included liming (500-6,000 kg ha -1 ), and N addition at low annual doses (2x10 kg N ha -1 ) and in single shots (150 kg N ha -1 ). Combinations of lime+N, lime+PK and lime+PKN were also tested. The effects were generally weak or negligible, except that growth was significantly increased by N fertilization in the Scots pine stands, and by lime+PKN in some of the Norway spruce stands. In another study, the survival and growth of Norway spruce seedlings were found to be more or less unaffected when planted in pre-harvest acidified, limed or N fertilized soil, although the Ca and Zn concentrations in their needles rose after liming, while those of Mn and Al declined. In closed-canopy stands of Norway spruce and Scots pine with N concentrations of more than 15-16 mg (g DM) -1 in current-year needles, N fertilization was indicated to not necessarily stimulate increased growth. Other indicators of highly N-rich forests (e.g. elevated arginine levels) also start to appear above this level. The closed-canopy stands growing on the most acidic soils showed no signs of severe damage or nutrient deficiencies. These findings, together with the small or negligible effects of the tested countermeasures against soil acidification

  8. Medicinal Plants in the Broad-Leaf Mixed Coniferous Forest of Tshothang Chiwog, Bhutan: Floristic Attributes, Vegetation Structure, Ethnobotany, and Socioeconomic Aspects

    Directory of Open Access Journals (Sweden)

    Ngawang Jamba

    2018-01-01

    Full Text Available The Himalayan Kingdom of Bhutan, located in one of the global biodiversity hotspots, is endowed with abundant floral wealth, including a wide array of medicinal plants (MPs. However, over-exploitation of these resources is widespread, and only a few studies have assessed the richness and diversity of Bhutanese forests and in particular about the MP resources. A vegetation survey was conducted in Tshothang Chiwog, south-eastern Bhutan to characterize the floristic structure of the broad-leaf mixed coniferous forests with a special focus on MPs. A questionnaire survey involving 40 farmers was also conducted to assess the ethnobotanical and socioeconomic aspects of MP extraction. A total of 157 plant species (38 trees, 19 shrubs, 85 herbs and ferns, and 15 climbers, representing 74 families and 137 genera were identified from the study area, of which 69 species (14 trees, 10 shrubs, 38 herbs and ferns, and seven climbers, belonging to 41 families and 69 genera were medicinally important. The most species-rich families of medicinal plants were: Asteraceae (eight spp., Apiaceae (four spp., Polygonaceae, Brassicaceae, Zingiberaceae, and Urticaceae (three species each. Herbaceous flora exhibited the highest diversity (Simpson diversity index, D = 0.97 and Shannon-Weiner index, H′ = 5.82, followed by trees and shrubs (D = 0.95 and 0.92 and H′ = 4.86 and 3.97, respectively. All but one herb showed abundance-to-frequency ratio (A/F ≥0.05, signifying a contagious distribution pattern (large aggregated distribution. Girth class distribution of trees followed an inverse J-shaped pattern. Results of the ethnobotanic study documented 55 MPs. MP collection, as reported by the interviewees, generally improved the socioeconomic status of the people of Tshothang Chiwog. Apart from improving the livelihood security of the local people, aspects relating to health care and culture are also important. Respondents were also concerned about the declining MP wealth

  9. Evaluating the Community Land Model (CLM4.5) at a coniferous forest site in northwestern United States using flux and carbon-isotope measurements

    Science.gov (United States)

    Duarte, Henrique F.; Raczka, Brett M.; Ricciuto, Daniel M.; Lin, John C.; Koven, Charles D.; Thornton, Peter E.; Bowling, David R.; Lai, Chun-Ta; Bible, Kenneth J.; Ehleringer, James R.

    2017-09-01

    Droughts in the western United States are expected to intensify with climate change. Thus, an adequate representation of ecosystem response to water stress in land models is critical for predicting carbon dynamics. The goal of this study was to evaluate the performance of the Community Land Model (CLM) version 4.5 against observations at an old-growth coniferous forest site in the Pacific Northwest region of the United States (Wind River AmeriFlux site), characterized by a Mediterranean climate that subjects trees to water stress each summer. CLM was driven by site-observed meteorology and calibrated primarily using parameter values observed at the site or at similar stands in the region. Key model adjustments included parameters controlling specific leaf area and stomatal conductance. Default values of these parameters led to significant underestimation of gross primary production, overestimation of evapotranspiration, and consequently overestimation of photosynthetic 13C discrimination, reflected in reduced 13C : 12C ratios of carbon fluxes and pools. Adjustments in soil hydraulic parameters within CLM were also critical, preventing significant underestimation of soil water content and unrealistic soil moisture stress during summer. After calibration, CLM was able to simulate energy and carbon fluxes, leaf area index, biomass stocks, and carbon isotope ratios of carbon fluxes and pools in reasonable agreement with site observations. Overall, the calibrated CLM was able to simulate the observed response of canopy conductance to atmospheric vapor pressure deficit (VPD) and soil water content, reasonably capturing the impact of water stress on ecosystem functioning. Both simulations and observations indicate that stomatal response from water stress at Wind River was primarily driven by VPD and not soil moisture. The calibration of the Ball-Berry stomatal conductance slope (mbb) at Wind River aligned with findings from recent CLM experiments at sites characterized by

  10. Evaluating the Community Land Model (CLM4.5 at a coniferous forest site in northwestern United States using flux and carbon-isotope measurements

    Directory of Open Access Journals (Sweden)

    H. F. Duarte

    2017-09-01

    Full Text Available Droughts in the western United States are expected to intensify with climate change. Thus, an adequate representation of ecosystem response to water stress in land models is critical for predicting carbon dynamics. The goal of this study was to evaluate the performance of the Community Land Model (CLM version 4.5 against observations at an old-growth coniferous forest site in the Pacific Northwest region of the United States (Wind River AmeriFlux site, characterized by a Mediterranean climate that subjects trees to water stress each summer. CLM was driven by site-observed meteorology and calibrated primarily using parameter values observed at the site or at similar stands in the region. Key model adjustments included parameters controlling specific leaf area and stomatal conductance. Default values of these parameters led to significant underestimation of gross primary production, overestimation of evapotranspiration, and consequently overestimation of photosynthetic 13C discrimination, reflected in reduced 13C : 12C ratios of carbon fluxes and pools. Adjustments in soil hydraulic parameters within CLM were also critical, preventing significant underestimation of soil water content and unrealistic soil moisture stress during summer. After calibration, CLM was able to simulate energy and carbon fluxes, leaf area index, biomass stocks, and carbon isotope ratios of carbon fluxes and pools in reasonable agreement with site observations. Overall, the calibrated CLM was able to simulate the observed response of canopy conductance to atmospheric vapor pressure deficit (VPD and soil water content, reasonably capturing the impact of water stress on ecosystem functioning. Both simulations and observations indicate that stomatal response from water stress at Wind River was primarily driven by VPD and not soil moisture. The calibration of the Ball–Berry stomatal conductance slope (mbb at Wind River aligned with findings from recent CLM experiments at

  11. Contribution of Soil Fauna to Foliar Litter-Mass Loss in Winter in an Ecotone between Dry Valley and Montane Forest in the Upper Reaches of the Minjiang River.

    Science.gov (United States)

    Peng, Yan; Yang, Wanqin; Li, Jun; Wang, Bin; Zhang, Chuan; Yue, Kai; Wu, Fuzhong

    2015-01-01

    Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm) was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana) and oak (Quercus baronii) in ecotone; cypress (Cupressus chengiana) and clovershrub (Campylotropis macrocarpa) in dry valley; and fir (Abies faxoniana) and birch (Betula albosinensis) in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8%) was observed in the ecotone, and the lowest contribution (0.4%-25.8%) was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter decomposition and

  12. Contribution of Soil Fauna to Foliar Litter-Mass Loss in Winter in an Ecotone between Dry Valley and Montane Forest in the Upper Reaches of the Minjiang River.

    Directory of Open Access Journals (Sweden)

    Yan Peng

    Full Text Available Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana and oak (Quercus baronii in ecotone; cypress (Cupressus chengiana and clovershrub (Campylotropis macrocarpa in dry valley; and fir (Abies faxoniana and birch (Betula albosinensis in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8% was observed in the ecotone, and the lowest contribution (0.4%-25.8% was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter

  13. Coniferous tree plantations in forest conditions-economic analysis of dedicated and semi-dedicated pathways to increase wood production

    International Nuclear Information System (INIS)

    Rakotoarison, Hanitra; Richter, Claudine; Cailly, Priscilla; Deleuze, Christine; Berthelot, Alain

    2015-01-01

    To meet growing demand for wood, particularly softwoods, the authors study a number of new silvicultural pathways for planting 3 species: Douglas fir, spruce and maritime pine. The goal of these pathways is to achieve specialised production of either industrial and workable timber, or a mixture of industrial and workable timber with medium-diameter workable timber. Pathways of this type have already been standardised for hardwoods, generally on fertile farmland. In a less fertile forest context, softwoods have a significant potential for woody production but specialized pathways and their profitability have yet to be studied. This article describes the innovative work being done to construct and simulate profitable production, new potential pathways, where plantation density, rotation time, the level of fertility are made to vary using the data from the FCBA test network in conjunction with the FCBA growth models (Oasis for spruce and Douglas fir, Sylveco for maritime pine). Economic data is derived from auction sales statistics and the ONF management and forestry work costs for the period 2012-2015. The Economics module developed by FCBA and ONF on the Capsis platform in the framework of the ICI project (Futurol) was used for the economic simulations. The analyses show that compared to conventional pathways, these pathways generally increase productivity but are nonetheless less profitable than current economic assumptions, although results vary according to species, fertility and the particular pathway. The sensitivity study shows that variations in the price of wood could alter the performance ratings as between conventional and specialised pathways. (authors)

  14. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    Science.gov (United States)

    van Huysen, Tiff L.; Harmon, Mark E.; Perakis, Steven S.; Chen, Hua

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  15. Decomposition and nitrogen dynamics of (15)N-labeled leaf, root, and twig litter in temperate coniferous forests.

    Science.gov (United States)

    van Huysen, Tiff L; Harmon, Mark E; Perakis, Steven S; Chen, Hua

    2013-12-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using (15)N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7-20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  16. A new species of Psychrophrynella (Amphibia, Anura, Craugastoridae from the humid montane forests of Cusco, eastern slopes of the Peruvian Andes

    Directory of Open Access Journals (Sweden)

    Alessandro Catenazzi

    2016-03-01

    Full Text Available We describe a new species of Psychrophrynella from the humid montane forest of the Department Cusco in Peru. Specimens were collected at 2,670–3,165 m elevation in the Área de Conservación Privada Ukumari Llakta, Japumayo valley, near Comunidad Campesina de Japu, in the province of Paucartambo. The new species is readily distinguished from all other species of Psychrophrynella but P. bagrecito and P. usurpator by possessing a tubercle on the inner edge of the tarsus, and from these two species by its yellow ventral coloration on abdomen and limbs. Furthermore, the new species is like P. bagrecito and P. usurpator in having an advertisement call composed of multiple notes, whereas other species of Psychrophrynella whose calls are known have a pulsed call (P. teqta or a short, tonal call composed of a single note. The new species has a snout-vent length of 16.1–24.1 mm in males and 23.3–27.7 mm in females. Like other recently described species in the genus, this new Psychrophrynella inhabits high-elevation forests in the tropical Andes and likely has a restricted geographic distribution.

  17. A Comparison of the Pitfall Trap, Winkler Extractor and Berlese Funnel for Sampling Ground-Dwelling Arthropods in Tropical Montane Cloud Forests

    Science.gov (United States)

    Sabu, Thomas K.; Shiju, Raj T.; Vinod, KV.; Nithya, S.

    2011-01-01

    Little is known about the ground-dwelling arthropod diversity in tropical montane cloud forests (TMCF). Due to unique habitat conditions in TMCFs with continuously wet substrates and a waterlogged forest floor along with the innate biases of the pitfall trap, Berlese funnel and Winkler extractor are certain to make it difficult to choose the most appropriate method to sample the ground-dwelling arthropods in TMCFs. Among the three methods, the Winkler extractor was the most efficient method for quantitative data and pitfall trapping for qualitative data for most groups. Inclusion of floatation method as a complementary method along with the Winkler extractor would enable a comprehensive quantitative survey of ground-dwelling arthropods. Pitfall trapping is essential for both quantitative and qualitative sampling of Diplopoda, Opiliones, Orthoptera, and Diptera. The Winkler extractor was the best quantitative method for Psocoptera, Araneae, Isopoda, and Formicidae; and the Berlese funnel was best for Collembola and Chilopoda. For larval forms of different insect orders and the Acari, all the three methods were equally effective. PMID:21529148

  18. Ozone, OH and NO3 sink terms at a coniferous forest site in Central Germany: Role of biogenic VOCs

    Science.gov (United States)

    Bonn, B.; Bourtsoukidis, S.; Haunold, W.; Sitals, R.; Jacobi, S.

    2012-04-01

    Oxidation capacities of ecosystems are important to facilitate an ecosystem feedback on oxidation stress and in order to survive. We have conducted seasonal ambient measurements of a series of biogenic VOCs using a plant enclosure technique and determined the ambient levels of ozone, NOx as well as basic meteorological parameters at a managed spruce forest site in Central Germany (Mt. Kleiner Feldberg). The site is 810 m a.s.l. and faces distinct anthropogenic contributions from the Rhine-Main-area including the airport and major traffic routes in from the southeast. The opposite direction is moderately polluted and can be classified as Central German background condition. Since atmospheric chemistry and pollutants become very important especially for this site, which is the most polluted one in Germany with respect to ozone we approximated the sink terms for the atmospheric oxidation agents of interest at this site, i.e ozone, OH and NO3 using the measurements and box model steady state calculations for intermediate species not measured directly between the first of April and the start of November 2011. BVOC measurements were obtained with PTR-MS every 36 s and averaged for 30 min intervals afterwards to facilitate the inclusion of the monitoring data of the Hessian Agency for the Environment and Geology (HLUG) in Wiesbaden, Germany: temperature, humidity, global radiation, ozone and NOx. Analysis was performed with Matlab (Mathworks Inc.) and included the gas-phase chemistry set-up described by the Master Chemical Mechanism (MCM, v3, [1]). This resulted in the following outcome for sinks of oxidants: Ozone: Significant contributions were found for mono- and sesquiterpenes as well as for NOx. The individual contributions vary notably with the time of the day and the year and the emission strength of biogenic VOCs. Especially for the early season in April sesquiterpene reactions dominated the sink by up to 80% during nighttime, while NOx reactions dominated the

  19. Influence of liming substances and temperature on microbial activity and leaching of soil organic matter in coniferous forest ecosystems

    International Nuclear Information System (INIS)

    Andersson, Stefan

    1999-01-01

    Liming has been proposed as a means to counteract the anthropogenic acidification of forest soils in Sweden. The increased pH caused by liming may affect the production and leaching of dissolved organic matter (DOM) from the mor humus layer. The aim of this thesis was to assess changes in leaching of dissolved organic carbon (DOC) and nitrogen (DON) and microbial activity in relation to liming. Leaching experiments were carried out in the laboratory with incubated field-limed soils and by monitoring of dissolved components in lysimeter water collected in a field liming experiment in southern Sweden from 1992-1997. Liming increased the leaching of DOC and DON from the mor humus layer but in the B horizon there were indications of different adsorption properties of DON compared to DOC, which affected the leaching of DOC and DON from the B horizon. DOC leaching was mainly regulated by temperature in mor humus from a site in southern Sweden, while pH had a greater effect in mor humus from a site in northern Sweden. This may have been due to relatively higher bacterial growth in the limed mor humus from southern Sweden. The experiments indicated that bacteria had a decisive role in the microbial production of DOM and bacterial activity was stimulated more by the increase in pH than by the change in the chemical composition of DOM after liming. Field data indicated that increasedCO 2 respiration in the limed treatment decreased carbon storage in the mor humus layer. There may have been an increase in carbon and nitrogen storage in the B horizon due to an increased adsorption caused by the higher leaching of DOM from the mor humus layer. The changes in storage could not be confirmed statistically, but there was a significant decline in the C/N ratio in the mor humus layer in the limed treatment. The adsorption patterns of DOC and DON indicated in the field were confirmed in a laboratory experiment

  20. Changes in Biomass Carbon and Soil Organic Carbon Stocks following the Conversion from a Secondary Coniferous Forest to a Pine Plantation.

    Directory of Open Access Journals (Sweden)

    Shuaifeng Li

    Full Text Available The objectives of this study were to estimate changes of tree carbon (C and soil organic carbon (SOC stock following a conversion in land use, an issue that has been only insufficiently addressed. For this study, we examined a chronosequence of 2 to 54-year-old Pinus kesiya var. langbianensis plantations that replaced the original secondary coniferous forest (SCF in Southwest China due to clearing. C stocks considered here consisted of tree, understory, litter, and SOC (0-1 m. The results showed that tree C stocks ranged from 0.02±0.001 Mg C ha-1 to 141.43±5.29 Mg C ha-1, and increased gradually with the stand age. Accumulation of tree C stocks occurred in 20 years after reforestaion and C stock level recoverd to SCF. The maximum of understory C stock was found in a 5-year-old stand (6.74±0.7 Mg C ha-1 with 5.8 times that of SCF, thereafter, understory C stock decreased with the growth of plantation. Litter C stock had no difference excluding effects of prescribed burning. Tree C stock exhibited a significant decline in the 2, 5-year-old stand following the conversion to plantation, but later, increased until a steady state-level in the 20, 26-year-old stand. The SOC stocks ranged from 81.08±10.13 Mg C ha-1 to 160.38±17.96 Mg C ha-1. Reforestation significantly decreased SOC stocks of plantation in the 2-year-old stand which lost 42.29 Mg C ha-1 in the 1 m soil depth compared with SCF by reason of soil disturbance from sites preparation, but then subsequently recovered to SCF level. SOC stocks of SCF had no significant difference with other plantation. The surface profile (0-0.1 m contained s higher SOC stocks than deeper soil depth. C stock associated with tree biomass represented a higher proportion than SOC stocks as stand development proceeded.

  1. Forest impacts on snow accumulation and ablation across an elevation gradient in a temperate montane environment

    Directory of Open Access Journals (Sweden)

    T. R. Roth

    2017-11-01

    Full Text Available Forest cover modifies snow accumulation and ablation rates via canopy interception and changes in sub-canopy energy balance processes. However, the ways in which snowpacks are affected by forest canopy processes vary depending on climatic, topographic and forest characteristics. Here we present results from a 4-year study of snow–forest interactions in the Oregon Cascades. We continuously monitored snow and meteorological variables at paired forested and open sites at three elevations representing the Low, Mid, and High seasonal snow zones in the study region. On a monthly to bi-weekly basis, we surveyed snow depth and snow water equivalent across 900 m transects connecting the forested and open pairs of sites. Our results show that relative to nearby open areas, the dense, relatively warm forests at Low and Mid sites impede snow accumulation via canopy snow interception and increase sub-canopy snowpack energy inputs via longwave radiation. Compared with the Forest sites, snowpacks are deeper and last longer in the Open site at the Low and Mid sites (4–26 and 11–33 days, respectively. However, we see the opposite relationship at the relatively colder High sites, with the Forest site maintaining snow longer into the spring by 15–29 days relative to the nearby Open site. Canopy interception efficiency (CIE values at the Low and Mid Forest sites averaged 79 and 76 % of the total event snowfall, whereas CIE was 31 % at the lower density High Forest site. At all elevations, longwave radiation in forested environments appears to be the primary energy component due to the maritime climate and forest presence, accounting for 93, 92, and 47 % of total energy inputs to the snowpack at the Low, Mid, and High Forest sites, respectively. Higher wind speeds in the High Open site significantly increase turbulent energy exchanges and snow sublimation. Lower wind speeds in the High Forest site create preferential snowfall deposition. These

  2. Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests

    Science.gov (United States)

    Katherine McCulloh; John S. Sperry; Barbara Lachenbruch; Frederick D. Meinzer; Peter B. Reich; Steven Voelker

    2010-01-01

    Coniferous, diffuse-porous and ring-porous trees vary in their xylem anatomy, but the functional consequences of these differences are not well understood from the scale of the conduit to the individual. Hydraulic and anatomical measurements were made on branches and trunks from 16 species from temperate and tropical areas, representing all three wood types. Scaling of...

  3. Temporal and spatial patterns in the emigrations of the army ant Dorylus (Anomma) molestus in the montane forest of Mt Kenya

    DEFF Research Database (Denmark)

    Schöning, Caspar; Njagi, Washington M.; Franks, Nigel R.

    2005-01-01

    1. The emigration behaviour of the army ant Dorylus (Anomma) molestus was studied in the montane forest of Mt Kenya. This species forages by massive swarm raids (mean width 10.3 m ± 4.6 m SD), which are assumed to have a strong negative impact on the densities of prey populations. 2. For non......, the emigration direction is influenced by the location of the nearest neighbour. Colonies typically emigrate directly away from their nearest neighbour. 5. Local food depletion is likely to be the ultimate cause for emigrations in this species, because emigration distance is larger than foraging range...... and colonies move away from their nearest neighbour. A small percentage of emigrations may be triggered by pangolin attacks on nests. 6. Contrary to the prediction of a recently developed mathematical model for epigaeic swarm-raiding Dorylus (Anomma) species, D. (A.) molestus colonies do not engage...

  4. Response of protozoan and microbial communities in various coniferous forest soils after transfer to forests with different levels of atmospheric pollution.

    NARCIS (Netherlands)

    Couteaux, M.-M.; Raubuch, M.; Berg, M.P.

    1998-01-01

    During recent decades, forest ecosystems have been exposed to high levels of atmospheric pollution, and it has been argued that this affects the composition and activity of decomposer communities and, subsequently, ecosystem functioning. To investigate the effects of atmospheric pollution on

  5. Diversity of the ground-dwelling ant fauna (Hymenoptera:Formicidae of a moist,montane forest of the semi-arid Brazilian "Nordeste "

    Directory of Open Access Journals (Sweden)

    N. L Hites

    2005-06-01

    Full Text Available Although the so called "green islands" of the semi-arid Brazilian "Nordeste" are economically, socially, and ecologically important, relatively little is known about their biodiversity. We present the results of the first survey of the ground-dwelling ant fauna of a secondary forest in the Serra de Baturité (4° 05’ - 4° 40’ S / 38° 30’ - 39° 10’ W, among the biggest of the moist, montane forests of the state of Ceará, Brazil. From February to March 2001, samples were taken every 50 m along twelve 200 m transects, each separated from the others by at least 50 m and cut on either side of a recreational trail. Where possible, two transects were cut from the same starting point on the trail, one on either side. At each sample site two methods were used, as recommended in the ALL protocol: a pitfall trap and the treatment of 1 m² of leaf litter with the Winkler extractor. The myrmecofauna of the Serra de Baturité is quite diverse: individuals from 72 species, 23 genera, and six subfamilies were collected. The observed patterns of specific richness show the same tendencies noted in other tropical regions, particularly the frequency of capture distribution with many rare and few abundant species. Differences with the Atlantic and Amazonian forests were also observed, especially the relative importance of the Ponerinae and Formicinae subfamilies, indicating a possible influence of the surrounding "caatinga" (savanna-like ecosystem on the myrmecofauna of the moist,montane forest. Rev. Biol. Trop. 53(1-2:165-173. Epub 2005 Jun 24Se presentan los resultados del primer inventario de la mirmecofauna del suelo en un parche de bosque montano húmedo del "Nordeste" semi-árido brasileño. Aunque estos parches o "islas verdes" son importantes económica, social, y ecológicamente, se conoce relativamente poco acerca de su biodiversidad. La investigación fue llevada a cabo en un bosque secundario en la Serra de Baturité, uno de los mayores del

  6. Diversidade arbórea das florestas alto montanas no Sul da Chapada Diamantina, Bahia, Brasil Tree diversity of high montane forests in Southern Chapada Diamantina, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Francisco Haroldo Feitosa do Nascimento

    2010-09-01

    Full Text Available A região do extremo Sul da Chapada Diamantina abriga as maiores altitudes do Nordeste brasileiro. Situam-se nessas serras as maiores elevações da região Nordeste, entre elas, o Pico do Barbado (2.033 m.s.n.m.. Dois dos rios mais importantes da Bahia nascem nestas serras: o Rio de Contas e o Rio Paramirim. A região é bem conhecida botanicamente, porém, este foi o primeiro inventário quantitativo realizado enfocando as formações florestais. Comparou-se a composição florística de 12 fragmentos de floresta montana, entre 1.350 e 1.750 m.s.n.m., tendo sido amostrados os indivíduos com PAP> 8 cm. Registrou-se a presença de 116 espécies em 84 gêneros de 48 famílias. As famílias com maior número de espécies foram Myrtaceae (N=20 e Lauraceae (N=10. Os gêneros com maior número de espécies foram Ocotea (N=7, Myrcia (N=5, Eugenia (N=4 e Miconia (N=4. A maioria das espécies apresentou padrão de distribuição amplo, mas foram encontradas espécies comuns a formações florestais de altitude do Sudeste e Sul do Brasil, como Drimys brasiliensis Miers (Winteraceae e Weinmannia paulliniifolia Pohl (Cunnoniacae. A flora dos fragmentos estudados compartilha baixo número de espécies com as formações estacionais deciduais do entorno da Chapada Diamantina, indicando que estas florestas são únicas e merecem atenção especial, para sua conservação.The southernmost region of Chapada Diamantina, nearest to Rio de Contas harbours the highest peaks of the Brazilian northeastern region, including Pico do Barbado (2,033 m.a.s.l. and the source of the two important rivers in Bahia state (Rio de Contas and Rio Paramirim. The region is well known botanically. This was the first quantitative study to survey the floristic composition of 12 fragments of montane forests (1,350 m.a.s.l. to 1750 m.a.s.l. including trees > 8 cbh. A total of 117 species, 84 genera and 48 families were found. The richest families were Myrtaceae (N=20 and Lauraceae (N

  7. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Zaidett Barrientos

    2012-09-01

    Full Text Available Little is known about how restoration strategies affect aspects like leaf litter’s quantity, depth and humidity. I analyzed leaf litter’s quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration and a 40 year old Cupressus lusitanica plantation (natural understory. The three habitats are located in the Río Macho Forest Reserve, Costa Rica. Twenty litter samples were taken every three months (April 2009-April 2010 in each habitat; humidity was measured in 439g samples (average, depth and quantity were measured in five points inside 50x50cm plots. None of the restoration strategies reproduced the primary forest leaf litter humidity, depth and quantity yearly patterns. Primary forest leaf litter humidity was higher and more stable (x=73.2, followed by secondary forest (x=63.3 and cypress plantation (x=52.9 (Kruskall-Wallis=77.93, n=232, p=0.00. In the primary (Kruskal-Wallis=31.63, n=78, pPoco se sabe acerca de cómo las estrategias de restauración afectan aspectos como la cantidad, profundidad y humedad de la hojarasca. Se analizaron estas variables en un bosque tropical húmedo montano bajo, considerado bosque primario y dos áreas restauradas: un bosque secundario de 15 años (restauración natural y una plantación de Cupressus lusitanica de 40 años con sotobosque restaurado naturalmente. Los sitios estudiados se ubican en la reserva forestal Río Macho, Costa Rica. Los muestreos se realizaron cada tres meses (abril 2009-abril 2010. En cada ocasión se escogieron al azar 20 cuadrículas de 50x50cm de las que se recogió 439g en promedio de hojarasca para medir la humedad por diferencia entre peso seco y húmedo. En cada cuadrícula se midió la profundidad y cantidad de hojarasca haciendo un promedio de cinco puntos. La cantidad se midió con el número de hojas ensartadas en un picahielos. La profundidad se midió con una

  8. Genetic Diversity and Spatial Genetic Structure of an Epiphytic Bromeliad in Costa Rican Montane Secondary Forest Patches

    NARCIS (Netherlands)

    Cascante-Marín, A.; Oostermeijer, G.; Wolf, J.; Fuchs, E.J.

    2014-01-01

    Information on genetic variation and its distribution in tropical plant populations relies mainly on studies of ground-rooted species, while genetic information of epiphytic plants is still limited. Particularly, the effect of forest successional condition on genetic diversity and structure of

  9. Role of decaying logs and other organic seedbeds in natural regeneration of Hawaiian forest species on abandoned montane pasture

    Science.gov (United States)

    Paul G. Scowcroft

    1992-01-01

    Natural regeneration is one mechanism by which native mixed-species forests become reestablished on abandoned pasture. This study was done to determine patterns of and requirement for natural regeneration of native species in an open woodland after removal of cattle. Ten 50- by 50-m quadrats were randomly selected within a 16-ha exclosure located at 1,700-m elevation...

  10. Rill erosion in burned and salvage logged western montane forests: Effects of logging equipment type, traffic level, and slash treatment

    Science.gov (United States)

    J. W. Wagenbrenner; P. R. Robichaud; R. E. Brown

    2016-01-01

    Following wildfires, forest managers often consider salvage logging burned trees to recover monetary value of timber, reduce fuel loads, or to meet other objectives. Relatively little is known about the cumulative hydrologic effects of wildfire and subsequent timber harvest using logging equipment. We used controlled rill experiments in logged and unlogged (control)...

  11. Coniferous Canopy BRF Simulation Based on 3-D Realistic Scene

    Science.gov (United States)

    Wang, Xin-yun; Guo, Zhi-feng; Qin, Wen-han; Sun, Guo-qing

    2011-01-01

    It is difficulties for the computer simulation method to study radiation regime at large-scale. Simplified coniferous model was investigate d in the present study. It makes the computer simulation methods such as L-systems and radiosity-graphics combined method (RGM) more powerf ul in remote sensing of heterogeneous coniferous forests over a large -scale region. L-systems is applied to render 3-D coniferous forest scenarios: and RGM model was used to calculate BRF (bidirectional refle ctance factor) in visible and near-infrared regions. Results in this study show that in most cases both agreed well. Meanwhiie at a tree and forest level. the results are also good.

  12. Plant effects on soil carbon storage and turnover in montane beech (Nothofagus) forest and adjacent tussock grassland in New Zealand

    International Nuclear Information System (INIS)

    Tate, K.R.; Scott, N.A.; Ross, D.J.; Parshotam, A.; Claydon, J.J.

    2000-01-01

    Land cover is a critical factor that influences, and is influenced by, atmospheric chemistry and potential climate changes. As considerable uncertainty exists about the effects of differences in land cover on below-ground carbon (C) storage, we have compared soil C contents and turnover at adjacent, unmanaged, indigenous forest (Nothofagus solandri var. cliffortiodes) and grassland (Chionochloa pallens) sites near the timberline in the same climo-edaphic environment in Craigieburn Forest Park, Canterbury, New Zealand. Total soil profile C was 13% higher in the grassland than in the forest ( 19.9 v. 16.7 kg/m 2 ), and based on bomb 14 C measurements, the differences mainly resulted from more recalcitrant soil C in the grassland (5.3 v. 3.0 kg/m 2 ). Estimated annual net primary production was about 0.4 kg C/m 2 for the forest and 0.5 kg C/m 2 for the grassland; estimated annual root production was about 0.2 and 0.4 kg C/m 2 , respectively. In situ soil surface CO 2 -C production was similar in the grassland and the forest. The accumulation of recalcitrant soil C was unrelated to differences in mineral weathering or soil texture, but was apparently enhanced by greater soil water retention in the grassland ecosystem. Thus, contrary to model (ROTHC) predictions, this soil C fraction could be expected to respond to the effects of climate change on precipitation patterns. Overall, our results suggest that the different patterns of soil C accumulation in these ecosystems have resulted from differences in plant C inputs, soil aluminium, and soil physical characteristics, rather than from differences in soil mineral weathering or texture. Copyright (2000) CSIRO Australia

  13. Are species photosynthetic characteristics good predictors of seedling post-hurricane demographic patterns and species spatiotemporal distribution in a hurricane impacted wet montane forest?

    Science.gov (United States)

    Luke, Denneko; McLaren, Kurt

    2018-05-01

    In situ measurements of leaf level photosynthetic response to light were collected from seedlings of ten tree species from a tropical montane wet forest, the John Crow Mountains, Jamaica. A model-based recursive partitioning ('mob') algorithm was then used to identify species associations based on their fitted photosynthetic response curves. Leaf area dark respiration (RD) and light saturated maximum photosynthetic (Amax) rates were also used as 'mob' partitioning variables, to identify species associations based on seedling demographic patterns (from June 2007 to May 2010) following a hurricane (Aug. 2007) and the spatiotemporal distribution patterns of stems in 2006 and 2012. RD and Amax rates ranged from 1.14 to 2.02 μmol (CO2) m-2s-1 and 2.97-5.87 μmol (CO2) m-2s-1, respectively, placing the ten species in the range of intermediate shade tolerance. Several parsimonious species 'mob' groups were formed based on 1) interspecific differences among species response curves, 2) variations in post-hurricane seedling demographic trends and 3) RD rates and species spatiotemporal distribution patterns at aspects that are more or less exposed to hurricanes. The composition of parsimonious groupings based on photosynthetic curves was not concordant with the groups based on demographic trends but was partially concordant with the RD - species spatiotemporal distribution groups. Our results indicated that the influence of photosynthetic characteristics on demographic traits and species distributions was not straightforward. Rather, there was a complex pattern of interaction between ecophysiological and demographic traits, which determined species successional status, post-hurricane response and ultimately, species distribution at our study site.

  14. Do Cloud Properties in a Puerto Rican Tropical Montane Cloud Forest Depend on Occurrence of Long-Range Transported African Dust?

    Science.gov (United States)

    Spiegel, Johanna K.; Buchmann, Nina; Mayol-Bracero, Olga L.; Cuadra-Rodriguez, Luis A.; Valle Díaz, Carlos J.; Prather, Kimberly A.; Mertes, Stephan; Eugster, Werner

    2014-09-01

    We investigated cloud properties of warm clouds in a tropical montane cloud forest at Pico del Este (1,051 m a.s.l.) in the northeastern part of Puerto Rico to address the question of whether cloud properties in the Caribbean could potentially be affected by African dust transported across the Atlantic Ocean. We analyzed data collected during 12 days in July 2011. Cloud droplet size spectra were measured using the FM-100 fog droplet spectrometer that measured droplet size distributions in the range from 2 to 49 µm, primarily during fog events. The droplet size spectra revealed a bimodal structure, with the first peak ( D < 6 µm) being more pronounced in terms of droplet number concentrations, whereas the second peak (10 µm < D < 20 µm) was found to be the one relevant for total liquid water content (LWC) of the cloud. We identified three major clusters of characteristic droplet size spectra by means of hierarchical clustering. All clusters differed significantly from each other in droplet number concentration (), effective diameter (ED), and median volume diameter (MVD). For the cluster comprising the largest droplets and the lowest droplet number concentrations, we found evidence of inhomogeneous mixing in the cloud. Contrastingly, the other two clusters revealed microphysical behavior, which could be expected under homogeneous mixing conditions. For those conditions, an increase in cloud condensation nuclei—e.g., from processed African dust transported to the site—is supposed to lead to an increased droplet concentration. In fact, one of these two clusters showed a clear shift of cloud droplet size spectra towards smaller droplet diameters. Since this cluster occurred during periods with strong evidence for the presence of long-range transported African dust, we hypothesize a link between the observed dust episodes and cloud characteristics in the Caribbean at our site, which is similar to the anthropogenic aerosol indirect effect.

  15. Wet canopy evaporation from a Puerto Rican lower montane rain forest: the importance of realistically estimated aerodynamic conductance

    Science.gov (United States)

    F. Holwerda; L.A. Bruijnzeel; F.N. Scatena; H.F. Vugts; A.G.C.A. Meesters

    2012-01-01

    Rainfall interception (I) was measured in 20 m tall Puerto Rican tropical forest with complex topography for a 1-year period using totalizing throughfall (TF) and stemflow (SF) gauges that were measured every 2–3 days. Measured values were then compared to evaporation under saturated canopy conditions (E) determined with the Penman–Monteith (P–M) equation, using (i)...

  16. Soil Moisture/ Tree Water Status Dynamics in Mid-Latitude Montane Forest, Southern Sierra Critical Zone Observatory, CA

    Science.gov (United States)

    Hartsough, P. C.; Malazian, A.; Meadows, M. W.; Roudneva, K.; Storch, J.; Bales, R. C.; Hopmans, J. W.

    2010-12-01

    As part of an effort to understand the root-water-nutrient interactions in the multi-dimensional soil/vegetation system surrounding large trees, in August 2008 we instrumented a mature white fir (Abies concolor) and the surrounding soil to better define the water balance in a single tree. In July 2010, we instrumented a second tree, a Ponderosa pine (Pinus ponderosa) in shallower soils on a drier, exposed slope. The trees are located in a mixed-conifer forest at an elevation of 2000m in the Southern Sierra Critical Zone Observatory. The deployment of more than 250 sensors to measure temperature, volumetric water content, matric potential, and snow depth surrounding the two trees complements sap-flow measurements in the trunk and stem-water-potential measurements in the canopy to capture the seasonal cycles of soil wetting and drying. We show here the results of a multi-year deployment of soil moisture sensors as critical integrators of hydrologic/ biotic interaction in a forested catchment. Sensor networks such as deployed here are a valuable tool in closing the water budget in dynamic forested catchments. While the exchange of energy, water and carbon is continuous, the pertinent fluxes are strongly heterogeneous in both space and time. Thus, the prediction of the behavior of the system across multiple scales constitutes a major challenge.

  17. Using EO-1 Hyperion to Simulate HyspIRI Products for a Coniferous Forest: The Fraction of PAR Absorbed by Chlorophyll (fAPAR(sub chl)) and Leaf Water Content(LWC)

    Science.gov (United States)

    Zhang, Qingyuan; Middleton, Elizabeth M.; Gao, Bo-Cai; Cheng, Yen-Ben

    2012-01-01

    This paper presents development of prototype products for terrestrial ecosystems in preparation for the future imaging spectrometer planned for the Hyperspectral Infrared Imager (HyspIRI) mission. We present a successful demonstration example in a coniferous forest of two product prototypes: fraction of photosynthetically active radiation (PAR) absorbed by chlorophyll of a canopy (fAPARchl) and leaf water content (LWC), for future HyspIRI implementation at 60-m spatial resolution. For this, we used existing 30-m resolution imaging spectrometer data available from the Earth Observing One (EO-1) Hyperion satellite to simulate and prototype the level one radiometrically corrected radiance (L1R) images expected from the HyspIRI visible through shortwave infrared spectrometer. The HyspIRIlike images were atmospherically corrected to obtain surface reflectance and spectrally resampled to produce 60-m reflectance images for wavelength regions that were comparable to all seven of the MODerate resolution Imaging Spectroradiometer (MODIS) land bands. Thus, we developed MODIS-like surface reflectance in seven spectral bands at the HyspIRI-like spatial scale, which was utilized to derive fAPARchl and LWC with a coupled canopy-leaf radiative transfer model (PROSAIL2) for the coniferous forest. With this paper, we provide additional evidence that the fAPARchl product is more realistic in describing the physiologically active canopy than the traditional fAPAR parameter for the whole canopy (fAPARcanopy), and thus, it should replace it in ecosystem process models to reduce uncertainties in terrestrial carbon cycle and ecosystem studies.

  18. Using EO-1 Hyperion to Simulate HyspIRI Products for a Coniferous Forest: The Fraction of PAR Absorbed by Chlorophyll (fAPAR(sub chl)) and Leaf Water Content (LWC)

    Science.gov (United States)

    Zhang, Qingyuan; Middleton, Elizabeth M.; Gao, Bo-Cai; Cheng, Yen-Ben

    2011-01-01

    This study presents development of prototype products for terrestrial ecosystems in preparation for the future imaging spectrometer planned for the Hyperspectral Infrared Imager (HyspIRI) mission. We present a successful demonstration example in a coniferous forest of two product prototypes: fraction of photosynthetic active radiation (PAR) absorbed by chlorophyll of a canopy (fAPAR(sub chl)) and leaf water content (LWC), for future HyspIRI implementation at 60 m spatial resolution. For this, we used existing 30 m resolution imaging spectrometer data available from the Earth Observing One (EO-1) Hyperion satellite to simulate and prototype the level one radiometrically corrected radiance (L1R) images expected from the HyspIRI visible through shortwave infrared spectrometer. The HyspIRI-like images were atmospherically corrected to obtain surface reflectance, and spectrally resampled to produce 60 m reflectance images for wavelength regions that were comparable to all seven of the MODerate resolution Imaging Spectroradiometer (MODIS) land bands. Thus, we developed MODIS-like surface reflectance in seven spectral bands at the HyspIRI-like spatial scale, which was utilized to derive fAPARchl and LWC with a coupled canopy-leaf radiative transfer model (PROSAIL2) for the coniferous forest[1]. With this study, we provide additional evidence that the fAPARchl product is more realistic for describing the physiologically active canopy than the traditional fAPAR parameter for the whole canopy (fAPAR(sub canopy)), and thus should replace it in ecosystem process models to reduce uncertainties in terrestrial carbon cycle studies and ecosystem studies.

  19. Transpiration and stomatal conductance in a young secondary tropical montane forest: contrasts between native trees and invasive understorey shrubs.

    Science.gov (United States)

    Ghimire, Chandra Prasad; Bruijnzeel, L Adrian; Lubczynski, Maciek W; Zwartendijk, Bob W; Odongo, Vincent Omondi; Ravelona, Maafaka; van Meerveld, H J Ilja

    2018-04-21

    It has been suggested that vigorous secondary tropical forests can have very high transpiration rates, but sap flow and stomatal conductance dynamics of trees and shrubs in these forests are understudied. In an effort to address this knowledge gap, sap flow (thermal dissipation method, 12 trees) and stomatal conductance (porometry, six trees) were measured for young (5-7 years) Psiadia altissima (DC.) Drake trees, a widely occurring species dominating young regrowth following abandonment of swidden agriculture in upland eastern Madagascar. In addition, stomatal conductance (gs) was determined for three individuals of two locally common invasive shrubs (Lantana camara L. and Rubus moluccanus L.) during three periods with contrasting soil moisture conditions. Values of gs for the three investigated species were significantly higher and more sensitive to climatic conditions during the wet period compared with the dry period. Further, gs of the understorey shrubs was much more sensitive to soil moisture content than that of the trees. Tree transpiration rates (Ec) were relatively stable during the dry season and were only affected somewhat by soil water content at the end of the dry season, suggesting the trees had continued access to soil water despite drying out of the topsoil. The Ec exhibited a plateau-shaped relation with vapour pressure deficit (VPD), which was attributed to stomatal closure at high VPD. Vapour pressure deficit was the major driver of variation in Ec, during both the wet and the dry season. Overall water use of the trees was modest, possibly reflecting low site fertility after three swidden cultivation cycles. The observed contrast in gs response to soil water and climatic conditions for the trees and shrubs underscores the need to take root distributions into account when modelling transpiration from regenerating tropical forests.

  20. Fatty acid profiles of great tit ( Parus major) eggs differ between urban and rural habitats, but not between coniferous and deciduous forests

    Science.gov (United States)

    Toledo, Alejandra; Andersson, Martin N.; Wang, Hong-Lei; Salmón, Pablo; Watson, Hannah; Burdge, Graham C.; Isaksson, Caroline

    2016-08-01

    Early-life nutrition is an important determinant of both short- and long-term performance and fitness. The avian embryo develops within an enclosed package of nutrients, of which fatty acids (FA) are essential for many aspects of development. The FA composition of yolk depends on maternal nutrition and condition prior to egg formation, which may be affected by the external environment. To test if maternal environment affects yolk FA composition, we investigated whether the FA composition of great tit ( Parus major) egg yolks differed between urban and rural habitats, and between deciduous and coniferous habitats. The results reveal differences in FA composition between eggs laid in urban and rural habitats, but not between eggs from the coniferous and deciduous habitats. To a large extent, this difference likely reflects dietary differences associated with urban habitats rather than dominating vegetation type. Specifically, urban yolks contained lower proportions of both ω-3 and ω-6 polyunsaturated FAs (PUFA), which are important for chick development. We also found a positive association between the proportion of saturated fatty acids and laying date, and a negative association between the proportion of ω-6 PUFA and clutch size. Given that urbanization is expanding rapidly, future studies should investigate whether factors such as anthropogenic food in the urban environment underlie these differences and whether they impair chick development.

  1. Mean Annual Temperature Drives Microbial Nitrogen Cycling and Fine Root Nutrient Foraging Across a Tropical Montane Wet Forest Elevation Gradient

    Science.gov (United States)

    Pierre, S.; Litton, C. L. M.; Giardina, C. P.; Sparks, J. P.; Groffman, P. M.; Hewson, I.; Fahey, T. J.

    2017-12-01

    Mean annual temperature (MAT) is positively correlated with rates of primary production and carbon (C) turnover in forests globally, but the underlying biotic drivers of these relationships remain poorly resolved. We hypothesized that (1) MAT increases nitrifier abundance and thereby nitrate (NO-) bioavailability in soils and (2) increased NO- bioavailability reduces fine root nitrogen (N) demand. We used an ecologically well-constrained natural elevation gradient (13˚C -18˚C) in a tropical wet motane forest on the Island of Hawaii to study to role of MAT in situ. Our previous work showed that MAT drives increased soil NO- bioavailability in situ (r²=0.79, P=0.003), and indicated that the abundance of ammonia oxidizing archaea is strongly and positively correlated with MAT in situ (r²=0.34, Preduce fine root foraging effort. Further, higher MAT and greater N fertility in soils may reduce the C limitation of AM fungal colonization. We conclude that MAT drives N-rich conditions, which allow for lower N foraging effort, but greater C investment in P acquisition through AM fine root colonization.

  2. CICLAJE Y PÉRDIDA DE NUTRIENTES DEL SUELO EN BOSQUES ALTOANDINOS DE ANTIOQUIA, COLOMBIA NUTRIENT CYCLING AND NUTRIENT LOSSES IN ANDEAN MONTANE FORESTS FROM ANTIOQUIA, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Adriana Londoño Álvarez

    2007-06-01

    Full Text Available El agua gravitacional y su composición química fueron medidos en bosques montanos de Quercus humboldtii y reforestados (Pinus patula y Cupressus lusitanica de la región de Piedras Blancas, Antioquia (Colombia, por un período de tiempo de dos años. Se utilizaron lisímetros sin tensión con el fin de estimar el agua gravitacional y los flujos de nutrientes a diferentes profundidades en el perfil del suelo. El mayor valor anual de agua gravitacional en el nivel más profundo (50- 80 cm, fue hallado en la cobertura de ciprés ( 492,7 mm, seguido por pino pátula ( 14,2 mm y roble ( 2,0 mm. De manera similar ocurrió con la pérdida de nutrientes, mostrando el mismo patrón hallado para el agua gravitacional. Así, para roble, pátula y ciprés, en su orden, se presentaron los siguientes valores de pérdida: Ca: 0,004, 0,084 y 2,270 kg ha-1 año-1; P: 0,008, 0,052 y 1,234 kg ha-1 año-1; Mg: 0,004, 0,022 y 0,667 kg ha-1 año-1. De K se registraron 0,08 y 7,092 kg ha-1 año-1 para roble y ciprés respectivamente. Estos flujos siguieron el siguiente orden según cobertura, roble: K>P>Ca>Mg, pátula: Ca>Fe>P>Mg>Zn>Mn, y ciprés: K>Mn>Ca>P>Fe>Zn>Mg.Gravitational flow and its chemical composition were measured in montane oak forests (Quercus humboldtii, in pine (Pinus patula and cypress (Cupressus lusitanica plantations in Piedras Blancas, Antioquia ( Colombia , over two years. Zero tension lysimeters were used at different depth soil levels. The highest gravitational flow value at highest depth (50- 80 cm was obtained in cypress plot ( 492,7 mm, followed by pine ( 14,2 mm and oak forest ( 2,0 mm. A similar behavior was encountered for nutrient losses, following the same pattern as gravitational flow. Thus, for oak, pine and cypress, nutrient losses were respectively: Ca: 0,004, 0,084 and 2,270 kg ha-1 y-1; P: 0,008, 0,052 and 1,234 kg ha-1 y -1; Mg: 0,004, 0,022 and 0,667 kg ha-1 y-1. K losses were 0,08 and 7,092 kg ha-1 y-1 for oak forest and

  3. The contribution of large trees to total transpiration rates in a pre-montane tropical forest and its implications for selective logging practices

    Science.gov (United States)

    Orozco, G.; Moore, G. W.; Miller, G. R.

    2012-12-01

    In the humid tropics, conservationists generally prefer selective logging practices over clearcutting. Large valuable timber is removed while the remaining forest is left relatively undisturbed. However, little is known about the impact of selective logging on site water balance. Because large trees have very deep sapwood and exposed canopies, they tend to have high transpiration. The first objective was to evaluate the methods used for scaling sap flow measurements to the watershed with particular emphasis on large trees. The second objective of this study was to determine the relative contribution of large trees to site water balance. Our study was conducted in a pre-montane transitional forest at the Texas A&M University Soltis Center in north-central Costa Rica. During the period between January and July 2012, sap flux was monitored in a 30-m diameter plot within a 10-ha watershed. Two pairs of heat dissipation sensors were installed in the outer 0-20 mm of each of 15 trees selected to represent the full range of tree sizes. In six of the largest trees, depth profiles were recorded at 10-mm intervals to a depth of 60 mm using compensation heat pulse sensors. To estimate sapwood basal area of the entire watershed, a stand survey was conducted in three 30-m-diameter plots. In each plot, we measured basal area of all trees and estimated sapwood basal area from sapwood depth measured in nearly half of the trees. An estimated 36.5% of the total sapwood area in this watershed comes from the outer 20 mm of sapwood, with the remaining 63.5% of sapwood from depths deeper than 20 mm. Nearly 13% of sapwood is from depths beyond 60 mm. Sap velocity profiles indicate the highest flow rates occurred in the 0-2 cm depths, with declines of 17% and 25% in the 20-40 mm and 40-60 mm ranges, respectively. Our results demonstrate the need to measure sap velocity profiles in large tropical trees. If total transpiration had been estimated solely from the 0-20 mm heat dissipation

  4. Rill erosion in burned and salvage logged western montane forests: Effects of logging equipment type, traffic level, and slash treatment

    Science.gov (United States)

    Wagenbrenner, J. W.; Robichaud, P. R.; Brown, R. E.

    2016-10-01

    Following wildfires, forest managers often consider salvage logging burned trees to recover monetary value of timber, reduce fuel loads, or to meet other objectives. Relatively little is known about the cumulative hydrologic effects of wildfire and subsequent timber harvest using logging equipment. We used controlled rill experiments in logged and unlogged (control) forests burned at high severity in northern Montana, eastern Washington, and southern British Columbia to quantify rill overland flow and sediment production rates (fluxes) after ground-based salvage logging. We tested different types of logging equipment-feller-bunchers, tracked and wheeled skidders, and wheeled forwarders-as well as traffic levels and the addition of slash to skid trails as a best management practice. Rill experiments were done at each location in the first year after the fire and repeated in subsequent years. Logging was completed in the first or second post-fire year. We found that ground-based logging using heavy equipment compacted soil, reduced soil water repellency, and reduced vegetation cover. Vegetation recovery rates were slower in most logged areas than the controls. Runoff rates were higher in the skidder and forwarder plots than their respective controls in the Montana and Washington sites in the year that logging occurred, and the difference in runoff between the skidder and control plots at the British Columbia site was nearly significant (p = 0.089). Most of the significant increases in runoff in the logged plots persisted for subsequent years. The type of skidder, the addition of slash, and the amount of forwarder traffic did not significantly affect the runoff rates. Across the three sites, rill sediment fluxes were 5-1900% greater in logged plots than the controls in the year of logging, and the increases were significant for all logging treatments except the low use forwarder trails. There was no difference in the first-year sediment fluxes between the feller

  5. The Late Holocene upper montane cloud forest and high altitude grassland mosaic in the Serra da Igreja, Southern Brazil

    Directory of Open Access Journals (Sweden)

    MAURÍCIO B. SCHEER

    2013-06-01

    Full Text Available Many soils of the highlands of Serra do Mar, as in other mountain ranges, have thick histic horizons that preserve high amounts of carbon. However, the age and constitution of the organic matter of these soils remain doubtful, with possible late Pleistocene or Holocene ages. This study was conducted in three profiles (two in grassland and one in forest in Serra da Igreja highlands in the state of Paraná. We performed δ13C isotope analysis of organic matter in soil horizons to detect whether C3 or C4 plants dominated the past communities and 14C dating of the humin fraction to obtain the age of the studied horizons. C3 plants seem to have dominated the mountain ridges of Serra da Igreja since at least 3,000 years BP. Even though the Serra da Igreja may represents a landscape of high altitude grasslands in soils containing organic matter from the late Pleistocene, as reported elsewhere in Southern and Southeastern Brazil, our results indicate that the sites studied are at least from the beginning of the Late Holocene, when conditions of high moisture enabled the colonization/recolonization of the Serra da Igreja ridges by C3 plants. This is the period, often reported in the literature, when forests advanced onto grasslands and savannas.Muitos solos dos picos da Serra do Mar, como em muitas outras serras, apresentam horizontes hísticos espessos com elevados estoques de carbono. No entanto, a idade e constituição da matéria orgânica destes solos ainda é pouco conhecida e não se sabe se é predominantemente proveniente de comunidades de plantas do final do Pleistoceno ou do Holoceno. Este estudo foi realizado em três perfis, dois em campos altomontanos sobre Organossolos (1.335 m s.n.m e um em um colo (ponto de sela, onde a floresta altomontana sobre Gleissolos alcança seu patamar mais alto (1.325 m s.n.m. Foram realizadas análises isotópicas (δ13C da matéria orgânica de horizontes do solo para saber se plantas C3 ou C4 dominaram

  6. Structure and Regeneration Status of Gedo Dry Evergreen Montane ...

    African Journals Online (AJOL)

    This study was conducted on Gedo Dry Evergreen Montane Forest in West Shewa Zone of Oromia National Regional State, 182-196 km west of Addis Ababa (Finfinne). The objective of the study was to determine structure and regeneration status of Gedo Forest. All trees and shrubs with Diameter at Breast Height (DBH) ...

  7. Effects of long-range transported pollutants on vegetation in boreal coniferous forests: Results from an five year investigation in the Solholmfjell area, Gjerstad, Aust-Agder; Effekter av langtransporterte luftforurensninger i boreal barskog: resultater av fem aars undersoekelser i Solhomfjell-omraadet, Gjerstad, Aust-Agder

    Energy Technology Data Exchange (ETDEWEB)

    Oekland, R H

    1996-01-01

    The conference paper relates to a project on investigating the effects of long-range transported pollutants in Norway. The paper gives a brief description of the more important results obtained in the project. The aim of the project was to investigate the pollution load in vegetation, soils and trees in Norwegian forest areas of the coniferous type. The project included the collection of samples from 200 test areas in a period of five years. 11 refs.

  8. The lichen flora of declining coniferous trees in the northern Black Forest: Ecological studies aiming at a differentiated assessment of air pollution effects and epidemic disease

    International Nuclear Information System (INIS)

    Gliemeroth, A.K.

    1990-01-01

    For the forest region of Klosterreichenbach, a map of the state of the lichen flora has been drawn up, based on investigations of lichens on trees in different states of decline and of various age categories, and covering various species of trees, growing in areas showing the typical signs of the novel types of forest damage, and in areas subjected to pollutant emissions of a nearby, heavily polluting emission source. In the close-in area of this emission source, forest decline has been found to be strongly correlated with a heavily depleted lichen flora. Beyond the area affected by the emission source, the degree of decline of the trees has been found to increase with tree hight and age, but the quality and quantity data taken of lichen flora on these trees showed an improving trend, which however is superimposed by climatic and biological factors. The final analysis of the data indicates that the novel types of forest damage can no longer be explained by air pollution alone. (VHE) With many figs. and tabs [de

  9. The conversion of evenaged into unevenaged mixed conifer forests in southern British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Eichel, G.H.

    1995-12-31

    A detailed description of the conditions and history leading to the establishment and continuity of all-aged mixed coniferous forests in the montane south central region of British Columbia, Canada. Also described are the attempts by one forest products company to perpetuate and proportionally increase this type of forest cover through the selective removal necessitated by bark beetle depredation of the component, Pinus contorta. The report concludes with a description of and recommendations for the post-harvest management employing treatments which imitate natural conditions leading to a gradual and lasting conversion of natural multi-species stands into unevenaged or all-aged stands of mixed conifers which are conducive to single tree or group selection harvests at more or less regular intervals. 10 figs, 1 tab

  10. The conversion of evenaged into unevenaged mixed conifer forests in southern British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Eichel, G H

    1996-12-31

    A detailed description of the conditions and history leading to the establishment and continuity of all-aged mixed coniferous forests in the montane south central region of British Columbia, Canada. Also described are the attempts by one forest products company to perpetuate and proportionally increase this type of forest cover through the selective removal necessitated by bark beetle depredation of the component, Pinus contorta. The report concludes with a description of and recommendations for the post-harvest management employing treatments which imitate natural conditions leading to a gradual and lasting conversion of natural multi-species stands into unevenaged or all-aged stands of mixed conifers which are conducive to single tree or group selection harvests at more or less regular intervals. 10 figs, 1 tab

  11. Influence of primitive Biłgoraj horses on the glossy buckthorn (Frangula alnus)-dominated understory in a mixed coniferous forest

    Science.gov (United States)

    Klich, Daniel

    2018-02-01

    Changes in the understory dominated by glossy buckthorn Frangula alnus via the influence of primitive horses were analyzed in a 28-year-old enclosure in the village of Szklarnia at the Biłgoraj Horse-Breeding Centre near Janów Lubelski (eastern Poland). The analysis was conducted in 20 circular plots (30 m2) defined in adjacent, similar forest stands (enclosed and control). Disturbance by the horses, mainly through trampling, caused numerous paths to form within the glossy buckthorn-dominated understory and led to a decrease in density of stems of lower height classes (30-80 and 81-130 cm, respectively). An increase in species diversity at the expense of glossy buckthorn density was also observed. The horses' trampling caused an increase in Padus avium density and the encroachment of other woody plant species that were less shade-tolerant and grew well in soils rich in nutrients. An increase in the density of woody plants over 180 cm above ground was observed within the enclosure, which was probably the result of the horses' excretion of feces. The results presented here provide new insight into the ecological role that horses play in forest-meadow landscape mosaics, which, via altering the development of vegetation, may contribute to an increase in biodiversity within forest habitats.

  12. Review of the sanitary state of coniferous forests in windfall places in the Ile-Alatau National park (Kazakhstan in 2011–2015

    Directory of Open Access Journals (Sweden)

    Vladimir L. Kazenas

    2016-05-01

    Full Text Available The article presents the results of a study on the species composition of stem pests- insects and limitation of their number, carried out in the Ile-Alatau State National Park (Kazakhstan in 2011–2015. The reason for this study was a windfall, which occurred in 2011 in the National Park and followed a few years later by forest fires. These emergencies created a favourable environment for the reproduction of stem pests. The management of the Ile-Alatau National Park, together with the Institute of Zoology of the MES, has taken the necessary measures to investigate the species composition of the pests, their natural regulators and to conduct protective measures in the hotbeds of xylophages mass production. At the same time consultations and joint research with scientists from Kazakhstan, Russia, Kyrgyzstan and the Czech Republic were held. The monitoring of the state of forests started in 2011. The composition of species and number of xylophagous pests has been carried out. In the 2011–2015-surveys 48 species of stem pests, belonging to three orders of the class of insects, were found: Hemiptera, or Bugs (1 species, 1 family, Coleoptera, or Beetles (42 species, 5 families, Hymenoptera (5 species, 1 family. During all the years of research the Hauzer bark beetle Ips hauseri and the longhorn beetle ribbed ragy Rhagium inquisitor dominated numerically. Slightly less Orthotomicus suturalis and the kyrgyzstan micrograph Pityophthorus kirgisicus were found. Besides, the study of diseases of stem pests and their entomophages (predators and parasites was carried out, which is a prerequisite for carrying out forest-pathological examinations. In total 53 species, from five classes, eleven orders and 27 families of invertebrates have been revealed. Most of them belong to the class of insects, others to spiders and centipedes. On several species of bark beetles and longhorn beetles an entomopathogenic fungus – white muscardine Beauveria bassiana was

  13. Ecological transition in Arizona's subalpine and montane grasslands

    Science.gov (United States)

    Michael R. White

    2000-01-01

    Important components of Southwest forest ecosystem are subalpine and montane grassland communities, Grassland communities provide habitat diversity for wildlife, forage for domestic livestock and wildlife, and contribute to the visual quality of an area. The objectives of this research were to determine if: 1) vegetation attributes and soil-surface cover variables of...

  14. Temporal and spatial variation of nitrogen transformations in a coniferous soil.

    NARCIS (Netherlands)

    Laverman, A.M.; Zoomer, H.R.; van Verseveld, H.W.; Verhoef, H.A.

    2000-01-01

    Forest soils show a great degree of temporal and spatial variation of nitrogen mineralization. The aim of the present study was to explain temporal variation in nitrate leaching from a nitrogen-saturated coniferous forest soil by potential nitrification, mineralization rates and nitrate uptake by

  15. Nitrogen leaching and acidification during 19 years of NH4NO3 additions to a coniferous-forested catchment at Gardsjoen, Sweden (NITREX)

    International Nuclear Information System (INIS)

    Moldan, Filip; Wright, Richard F.

    2011-01-01

    The role of nitrogen (N) in acidification of soil and water has become relatively more important as the deposition of sulphur has decreased. Starting in 1991, we have conducted a whole-catchment experiment with N addition at Gardsjoen, Sweden, to investigate the risk of N saturation. We have added 41 kg N ha -1 yr -1 as NH 4 NO 3 to the ambient 9 kg N ha -1 yr -1 in fortnightly doses by means of sprinkling system. The fraction of input N lost to runoff has increased from 0% to 10%. Increased concentrations of NO 3 in runoff partially offset the decreasing concentrations of SO 4 and slowed ecosystem recovery from acid deposition. From 1990-2002, about 5% of the total N input went to runoff, 44% to biomass, and the remaining 51% to soil. The soil N pool increased by 5%. N deposition enhanced carbon (C) sequestration at a mean C/N ratio of 42-59 g g -1 . - Research highlights: → The fraction of input N lost to runoff has increased from 0% to 10%. → Increased concentrations of NO 3 in runoff slowed ecosystem recovery from acid deposition. → About 5% of the total N input went to runoff, 44% to biomass, and the remaining 51% to soil. → N deposition enhanced carbon (C) sequestration at a mean C/N ratio of 42-59 g g -1 . - N addition has led to increased flux of N and increased C sequestration at a forested catchment in Sweden; the NO 3 released has partially offset recovery from acidification.

  16. The potential of detecting intermediate-scale biomass and canopy interception in a coniferous forest using cosmic-ray neutron intensity measurements and neutron transport modeling

    Science.gov (United States)

    Andreasen, M.; Looms, M. C.; Bogena, H. R.; Desilets, D.; Zreda, M. G.; Sonnenborg, T. O.; Jensen, K. H.

    2014-12-01

    The water stored in the various compartments of the terrestrial ecosystem (in snow, canopy interception, soil and litter) controls the exchange of the water and energy between the land surface and the atmosphere. Therefore, measurements of the water stored within these pools are critical for the prediction of e.g. evapotranspiration and groundwater recharge. The detection of cosmic-ray neutron intensity is a novel non-invasive method for the quantification of continuous intermediate-scale soil moisture. The footprint of the cosmic-ray neutron probe is a hemisphere of a few hectometers and subsurface depths of 10-70 cm depending on wetness. The cosmic-ray neutron method offers measurements at a scale between the point-scale measurements and large-scale satellite retrievals. The cosmic-ray neutron intensity is inversely correlated to the hydrogen stored within the footprint. Overall soil moisture represents the largest pool of hydrogen and changes in the soil moisture clearly affect the cosmic-ray neutron signal. However, the neutron intensity is also sensitive to variations of hydrogen in snow, canopy interception and biomass offering the potential to determine water content in such pools from the signal. In this study we tested the potential of determining canopy interception and biomass using cosmic-ray neutron intensity measurements within the framework of the Danish Hydrologic Observatory (HOBE) and the Terrestrial Environmental Observatories (TERENO). Continuous measurements at the ground and the canopy level, along with profile measurements were conducted at towers at forest field sites. Field experiments, including shielding the cosmic-ray neutron probes with cadmium foil (to remove lower-energy neutrons) and measuring reference intensity rates at complete water saturated conditions (on the sea close to the HOBE site), were further conducted to obtain an increased understanding of the physics controlling the cosmic-ray neutron transport and the equipment used

  17. Contributions to the herpetofauna of the Albertine Rift: Two new species of chameleon (Sauria: Chamaeleonidae) from an isolated montane forest, south eastern Democratic Republic of Congo.

    Science.gov (United States)

    Tilbury, Colin R; Tolley, Krystal A

    2015-01-13

    Two new species of chameleons from the genera Rhampholeon and Kinyongia are described from an isolated montane forest remnant situated toward the southern end of the Albertine Rift bordering Lake Tanganyika. The closest known localities of species from these genera are 200km and 400km to the north respectively, separated by large intervening tracts of lowland savannah and Brachystegia (Miombo) woodland - habitats not normally inhabited by species of these genera. Rhampholeon hattinghi sp. nov. and Kinyongia mulyai sp. nov. bear superficial resemblances to previously described species (Rh. boulengeri Steindachner and K. adolfifriderici  (Sternfeld)). Rhampholeon hattinghi sp. nov. has a relatively smooth supra-orbital ridge, deep axillary but absent inguinal mite pockets, prominent white spots on the base of the tail and a uniquely derived hemipenal morphology with billowing parasulcal evaginations. Like K. adolfifriderici, Kinyongia mulyai sp. nov. is devoid of a rostral appendage but differs in having a longer and narrower head, a higher upper labial scale count and by the absence of a dorsal crest in the male. To place these new chameleons within the context of their respective genera, Bayesian and maximum likelihood phylogenetic analyses were carried out utilising two mitochondrial (ND2 and 16S) and one nuclear marker (RAG1).  Both chameleons were found to have morphological features that distinguish them from other congeners. Based on phylogenetic analysis they are clearly separate evolutionary lineages and are described as new species. 

  18. Water uptake of trees in a montane forest catchment and the geomorphological potential of root growth in Boulder Creek Critical Zone Observatory, Rocky Mountains, Colorado

    Science.gov (United States)

    Skeets, B.; Barnard, H. R.; Byers, A.

    2011-12-01

    The influence of vegetation on the hydrological cycle and the possible effect of roots in geomorphological processes are poorly understood. Gordon Gulch watershed in the Front Range of the Rocky Mountains, Colorado, is a montane climate ecosystem of the Boulder Creek Critical Zone Observatory whose study adds to the database of ecohydrological work in different climates. This work sought to identify the sources of water used by different tree species and to determine how trees growing in rock outcrops may contribute to the fracturing and weathering of rock. Stable isotopes (18O and 2H) were analyzed from water extracted from soil and xylem samples. Pinus ponderosa on the south-facing slope consumes water from deeper depths during dry periods and uses newly rain-saturated soils, after rainfall events. Pinus contorta on the north -facing slope shows a similar, expected response in water consumption, before and after rain. Two trees (Pinus ponderosa) growing within rock outcrops demonstrate water use from cracks replenished by new rains. An underexplored question in geomorphology is whether tree roots growing in rock outcrops contribute to long-term geomorphological processes by physically deteriorating the bedrock. The dominant roots of measured trees contributed approximately 30 - 80% of total water use, seen especially after rainfall events. Preliminary analysis of root growth rings indicates that root growth is capable of expanding rock outcrop fractures at an approximate rate of 0.6 - 1.0 mm per year. These results demonstrate the significant role roots play in tree physiological processes and in bedrock deterioration.

  19. Communities of oribatid mites (Acari: Oribatida) of naturally regenerating and salvage-logged montane spruce forests of Šumava Mountains

    Czech Academy of Sciences Publication Activity Database

    Kokořová, Petra; Starý, Josef

    2017-01-01

    Roč. 72, č. 4 (2017), s. 445-451 ISSN 0006-3088 R&D Projects: GA ČR(CZ) GAP504/12/1218 Institutional research plan: CEZ:AV0Z60660521 Institutional support: RVO:60077344 Keywords : oribatid mites * spruce forest * community * bark beetle gradation * forest management Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 0.759, year: 2016

  20. Impact of fire in two old-growth montane longleaf pine stands

    Science.gov (United States)

    John S. Kush; John C. Gilbert; Crystal Lupo; Na Zhou; Becky Barlow

    2013-01-01

    The structure of longleaf pine (Pinus palustris Mill.) forests of the Southeastern United States Coastal Plains has been the focus of numerous studies. By comparison, the forests in the mountains of Alabama and Georgia are not well understood. Less than 1 percent of longleaf pine stands found in the montane portion of longleaf’s range are considered...

  1. Influences of previous wildfires on change, resistance, and resilience to reburning in a montane southwestern landscape

    Science.gov (United States)

    Jonathan D. Coop; Lisa Holsinger; Sarah McClernan; Sean A. Parks

    2015-01-01

    Land use legacies and climate have altered fire regimes across montane forests of much of the southwestern US (Allen and others 2002), and several recent wildfires have been extremely large and severe (Dennison and others 2014). Large openings resulting from high-severity fire in former ponderosa pine (Pinus ponderosa) and mixed conifer forests may be persistent given...

  2. Estrutura arbórea da Floresta Ombrófila Densa Altomontana de serras do Sul do Brasil Tree component structure of tropical upper montane rain forests in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Maurício Bergamini Scheer

    2011-12-01

    Full Text Available O presente trabalho teve os objetivos de agrupar informações sobre a estrutura arbórea da floresta altomontana da Serra do Mar paranaense e de compará-las com as de florestas altomontanas de outras serras do Sul e Sudeste do Brasil. Foram realizados levantamentos fitossociológicos em diversas montanhas de quatro importantes serras (ou subserras do Paraná. Nas quatro subserras foram amostrados 2294 indivíduos (PAP > 10 cm pertencentes a 28 famílias, 43 gêneros e 78 espécies. Foi observada maior riqueza de espécies na amostragem da Serra Gigante (41 espécies, seguida pelas serras da Prata (37, da Igreja (34 e do Ibitiraquire (26. A altura média obtida para os indivíduos foi de 4,8 m, o PAP médio de 22,9 cm, a densidade média de 4779 ind/ha, a área basal média de 33,5 m²/ha e o índice de diversidade de Shannon total de 2,68 nat/ind. Agrupando informações de estudos realizados em outras subserras paranaenses, totalizando 11 levantamentos e 204 parcelas (10200 m², obteve-se uma matriz com 75 espécies determinadas, onde as cinco com maior porcentagem de importância estrutural foram Ilex microdonta, Siphoneugena reitzii, Drimys angustifolia, Ocotea porosa e Ilex chamaedrifolia. Os trechos amostrados na Serra do Mar do Paraná, apresentaram menor riqueza e diversidade que os da Serra da Mantiqueira (MG e maior que os dos Aparados da Serra Geral (SC. Tais diferenças, possivelmente, estão relacionadas às influências antrópicas, das distâncias geográficas, dos diferentes centros de endemismo, dos entornos tropicais ou subtropicais dominantes, das feições geomorfológicas, entre outros fatores.The aims of this study were: (1 to group information about the tree structure of the upper montane rain forest of Serra do Mar in the state of Paraná (PR, Southern Brazil; and (2 to compare this information with available data from other mountain ranges in Southern and Southeastern Brazil. In the four mountain ranges studied, 2294

  3. Rehabilitation of monotonous exotic coniferous plantations: a case study of spontaneous establishment of different tree species

    Czech Academy of Sciences Publication Activity Database

    Jonášová, Magda; van Hees, A.; Prach, Karel

    -, č. 28 (2006), s. 141-148 ISSN 0925-8574 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z60050516 Keywords : restoration of coniferous plantations * natural regeneration * forest management Subject RIV: GK - Forestry Impact factor: 1.331, year: 2006

  4. Elevational Distribution of Adult Trees and Seedlings in a Tropical Montane Transect, Southwest China

    Directory of Open Access Journals (Sweden)

    Xiaoyang Song

    2016-08-01

    Full Text Available Montane habitats are characterized by high variation of environmental factors within small geographic ranges, which offers opportunities to explore how forest assemblages respond to changes in environmental conditions. Understanding the distributional transition of adult trees and seedlings will provide insight into the fate of forest biodiversity in response to future climate change. We investigated the elevational distribution of 156 species of adult trees and 152 species of seedlings in a tropical montane forest in Xishuangbanna, southwest China. Adult trees and seedlings were surveyed within 5 replicate plots established at each of 4 elevational bands (800, 1000, 1200, and 1400 m above sea level. We found that species richness of both adult trees and seedlings changed with elevation, showing a notable decline in diversity values from 1000 to 1200 m. Tree species composition also demonstrated distinct differences between 1000 and 1200 m, marking the division between tropical seasonal rain forest (800 and 1000 m and tropical montane evergreen broad-leaved forest (1200 and 1400 m. The results suggested that soil moisture and temperature regimes were associated with elevational distribution of tree species in this region. We also observed that seedlings from certain species found at high elevations were also distributed in low-elevation zones, but no seedlings of species from low elevations were distributed in high-elevation zones. The increase in temperature and droughts predicted for this region may result in the contraction of tropical seasonal rain forest at lower elevations and a downhill shift of higher tropical montane tree species.

  5. Effects of the Trophobiont Herbivore Calloconophora pugionata (Hemiptera on Ant Fauna Associated with Myrcia obovata (Myrtaceae in a Montane Tropical Forest

    Directory of Open Access Journals (Sweden)

    Roberth Fagundes

    2012-01-01

    Full Text Available Many studies have investigated the mechanisms behind the structure of arboreal ant assemblages. In this study, the objective was to evaluate the effect of availability of honeydew-producing colonies of Calloconophora pugionata (Membracidae on the structure of ant assemblages associated with the host plant Myrcia obovata (Myrtaceae in an Atlantic forest of Minas Gerais (Brazil. Our experiment consisted in a gradual exclusion of hemipteran colonies out of the host plant crown and further record of the ant assemblage response (species richness, composition, and occurrence to the presence and density of treehopper colonies. The hypothesis was that an increase in the number of trophobiont herbivores results in an increase in tending ant occurrence but a reduction in ant species diversity. Results corroborated our main hypothesis: membracids had a positive effect on the occurrence of ants but negative on species richness. Overall insect occurrence was also reduced with increasing in C. pugionata colonies, probably due to strengthening dominant ant species territory sizes and intensification of patrolling.

  6. Altitudinal patterns in breeding bird species richness and density in relation to climate, habitat heterogeneity, and migration influence in a temperate montane forest (South Korea).

    Science.gov (United States)

    Kim, Jin-Yong; Lee, Sanghun; Shin, Man-Seok; Lee, Chang-Hoon; Seo, Changwan; Eo, Soo Hyung

    2018-01-01

    Altitudinal patterns in the population ecology of mountain bird species are useful for predicting species occurrence and behavior. Numerous hypotheses about the complex interactions among environmental factors have been proposed; however, these still remain controversial. This study aimed to identify the altitudinal patterns in breeding bird species richness or density and to test the hypotheses that climate, habitat heterogeneity (horizontal and vertical), and heterospecific attraction in a temperate forest, South Korea. We conducted a field survey of 142 plots at altitudes between 200 and 1,400 m a.s.l in the breeding season. A total of 2,771 individuals from 53 breeding bird species were recorded. Altitudinal patterns of species richness and density showed a hump-shaped pattern, indicating that the highest richness and density could be observed at moderate altitudes. Models constructed with 13 combinations of six variables demonstrated that species richness was positively correlated with vertical and horizontal habitat heterogeneity. Density was positively correlated with vertical, but not horizontal habitat heterogeneity, and negatively correlated with migratory bird ratio. No significant relationships were found between spring temperature and species richness or density. Therefore, the observed patterns in species richness support the hypothesis that habitat heterogeneity, rather than climate, is the main driver of species richness. Also, neither habitat heterogeneity nor climate hypotheses fully explains the observed patterns in density. However, vertical habitat heterogeneity does likely help explain observed patterns in density. The heterospecific attraction hypothesis did not apply to the distribution of birds along the altitudinal gradient. Appropriate management of vertical habitat heterogeneity, such as vegetation cover, should be maintained for the conservation of bird diversity in this area.

  7. Contribution of forest floor fractions to carbon storage and ...

    African Journals Online (AJOL)

    Forest floor carbon stocks, which include different components of litter, hemic and sapric materials, have not been empirically quantified in tropical montane forest, although they influence soil carbon (C) pools. To date, the contribution of arbuscular mycorrhizae in C sequestration potentials in tropical montane forests have ...

  8. Forest structure in low diversity tropical forests: a study of Hawaiian wet and dry forests

    Science.gov (United States)

    R. Ostertag; F. Inman-Narahari; S. Cordell; C.P. Giardina; L. Sack

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species...

  9. Plantas medicinais de um remascente de Floresta Ombrófila Mista Altomontana, Urupema, Santa Catarina, Brasil Medicinal plants in a remnant of High Montane Araucaria Moist Forest, Urupema Municipality, Santa Catarina State, Brazil

    Directory of Open Access Journals (Sweden)

    D. Martins-Ramos

    2010-09-01

    Full Text Available O objetivo deste trabalho foi pesquisar dados químicos, biológicos e etnobotânicos na literatura científica de espécies medicinais de um remanescente de Floresta Ombrófila Mista Altomontana. A base para este estudo foi um levantamento florístico realizado na Fazenda das Nascentes, Urupema-SC entre agosto de 2007 e setembro de 2008. A partir da lista de espécies que resultou deste levantamento, foi realizada uma revisão bibliográfica sobre o potencial medicinal das espécies inventariadas. Para as espécies com dados de ação medicinal, foi elaborada chave de identificação vegetativa. Das 64 espécies listadas foram encontradas informações na bibliografia consultada sobre o potencial medicinal de 29. As principais familias foram Asteraceae (oito espécies e Myrtaceae (três espécies. O hábito que mais se destacou entre as plantas com potencial medicinal foi o arbóreo (13 espécies. O componente químico de maior ocorrência entre as espécies foi o óleo essencial (60% das espécies. As atividades terapêuticas mais citadas na literatura consultadas foram antimicrobiana, anti-oxidante, anti-inflamatória, antiviral, antifúngica e anestésica. Os resultados encontrados indicam o imenso potencial econômico da Floresta Ombrófila Mista e ambientes associados como fonte de recursos naturais que fazem parte da cultura e do patrimônio catarinense.The aim of this work was to search for chemical, biological and ethnobotanical data in the scientific literature on medicinal species from a remnant of High Montane Araucaria Moist Forest. This study was based on the floristics performed in "Fazenda das Nascentes", Urupema Municipality, Santa Catarina State, Brazil between August 2007 and September 2008. From the list of species obtained in this survey, a review on the medicinal potential of these recorded species was done. A vegetative identification key was elaborated for species with medicinal action Information about medicinal

  10. Cold tolerance and photosystem function in a montane red spruce population: physiological relationships with foliar carbohydrates

    Science.gov (United States)

    P.G. Shaberg; G.R. Strimbeck; G.J. Hawley; D.H. DeHayes; J.B. Shane; P.F. Murakami; T.D. Perkins; J.R. Donnelly; B.L. Wong

    2000-01-01

    Red spruce (Picea rubens Sarg.) growing in northern montane forests of eastern North America appears to be distinctive with respect to at least two aspects of winter physiology. First, red spruce attains only a modest level of midwinter cold tolerance compared to other north temperate conifers and appears barely capable of avoiding freezing injury at...

  11. Composição florística de uma floresta estacional semidecidual montana no município de Viçosa-MG Floristic composition of a montane seasonal semideciduous tropical forest in Viçosa, MG, Brasil

    Directory of Open Access Journals (Sweden)

    João Augusto Alves Meira-Neto

    2002-08-01

    Full Text Available O objetivo do presente estudo foi investigar a composição florística arbórea da Mata da Silvicultura (20º45'S e 42º55'W, município de Viçosa, Zona da Mata de Minas Gerais, com o intuito de avaliar sua similaridade com outras florestas. Para comparação florística foi utilizada a análise de agrupamentos pelo método de médias aritméticas não-ponderadas (UPGMA, a partir dos índices binários de similaridade de Sørensen entre as florestas comparadas. Foram relacionadas 154 espécies de 47 famílias botânicas para a Mata da Silvicultura. Esta mata mostrou-se mais similar às florestas semideciduais de altitude de Lavras (MG e de Atibaia (SP e menos similar às florestas submontanas e litorâneas. Estes resultados evidenciam uma importante influência das temperaturas na determinação do tipo florístico das florestas do Sudeste e Sul brasileiros.This study aims to investigate the floristic composition of the Silvicultura forest (20º45`S and 42º55´W by comparing it to other forest compositions. Thus, the cluster analysis method of unweighted pair-group using arithmetic averages (UPGMA was used, applying the Sørensen binary similarity index found among compared forests. A list of 154 species of 47 families was recorded. The Silvicultura forest is more similar to the montane semideciduous forests of Lavras and Atibaia, but less similar to submontane and coastal forests. These results show that temperature plays an important role in the floristic differentiation of the southern and southeastern Brazilian forest types.

  12. Impacts of participatory forest management on species composition and forest structure in Ethiopia

    DEFF Research Database (Denmark)

    Yietagesu, Aklilu Ameha; Meilby, Henrik; Feyisa, Gudina Legese

    2016-01-01

    The present study assesses the impacts of decentralized forest management on forest conditions in Ethiopian Montane forests. We compared observed densities of different tree species and size categories in forests managed by local forest user groups (FUGs) and the government. We used forest...

  13. Atmospheric deposition in coniferous and deciduous tree stands in Poland

    Science.gov (United States)

    Kowalska, Anna; Astel, Aleksander; Boczoń, Andrzej; Polkowska, Żaneta

    2016-05-01

    The objective of this study was to assess the transformation of precipitation in terms of quantity and chemical composition following contact with the crown layer in tree stands with varied species composition, to investigate the effect of four predominant forest-forming species (pine, spruce, beech, and oak) on the amount and composition of precipitation reaching forest soils, and to determine the sources of pollution in atmospheric precipitation in forest areas in Poland. The amount and chemical composition (pH, electric conductivity, alkalinity, and chloride, nitrate, sulfate, phosphate, ammonium, calcium, magnesium, sodium, potassium, iron aluminum, manganese, zinc, copper, total nitrogen, and dissolved organic carbon contents) of atmospheric (bulk, BP) and throughfall (TF) precipitation were studied from January to December 2010 on twelve forest monitoring plots representative of Polish conditions. The study results provided the basis for the determination of the fluxes of pollutants in the forest areas of Poland and allowed the comparison of such fluxes with values provided in the literature for European forest areas. The transformation of precipitation in the canopy was compared for different tree stands. The fluxes of substances in an open field and under canopy were influenced by the location of the plot, including the regional meteorological conditions (precipitation amounts), vicinity of the sea (effect of marine aerosols), and local level of anthropogenic pollution. Differences between the plots were higher in TF than in BP. The impact of the vegetation cover on the chemical composition of precipitation depended on the region of the country and dominant species in a given tree stand. Coniferous species tended to cause acidification of precipitation, whereas deciduous species increased the pH of TF. Pine and oak stands enriched precipitation with components that leached from the canopy (potassium, manganese, magnesium) to a higher degree than spruce and

  14. Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region.

    Science.gov (United States)

    Hofmann, Katrin; Praeg, Nadine; Mutschlechner, Mira; Wagner, Andreas O; Illmer, Paul

    2016-02-01

    Although methanogens were recently discovered to occur in aerated soils, alpine regions have not been extensively studied for their presence so far. Here, the abundance of archaea and the methanogenic guilds Methanosarcinales, Methanococcales, Methanobacteriales, Methanomicrobiales and Methanocella spp. was studied at 16 coniferous forest and 14 grassland sites located at the montane and subalpine belts of the Northern Limestone Alps (calcareous) and the Austrian Central Alps (siliceous) using quantitative real-time PCR. Abundance of archaea, methanogens and the methanogenic potentials were significantly higher in grasslands than in forests. Furthermore, methanogenic potentials of calcareous soils were higher due to pH. Methanococcales, Methanomicrobiales and Methanocella spp. were detected in all collected samples, which indicates that they are autochthonous, while Methanobacteriales were absent from 4 out of 16 forest soils. Methanosarcinales were absent from 10 out of 16 forest soils and 2 out of 14 grassland soils. Nevertheless, together with Methanococcales they represented the majority of the 16S rRNA gene copies quantified from the grassland soils. Contrarily, forest soils were clearly dominated by Methanococcales. Our results indicate a higher diversity of methanogens in well-aerated soils than previously believed and that pH mainly influences their abundances and activities. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Reallocation and nutrient use efficiency in Antioquia central forests

    International Nuclear Information System (INIS)

    Leon Pelaez, Juan; Gonzalez Hernandez, Maria; Gallardo Lancho, Juan

    2009-01-01

    We have studied nutrient related variables such as reallocation, nutrient use efficiency (NUE) and fine litter fall for three years in an oak forest Quercus humboldtii Bonpl. and also in some other forest plantations like pine, Pinus patula, and cypress, Cupressus lusitanica, in Antioquia, Colombia. Leaf litter quantities returned to the soil followed a falling sequence: oak (5313.3 kg ha-1 year-1) > pine (4866.5 kg ha-1 year-1) > cypress (2460.3 kg ha-1 year-1). The coniferous species showed the highest NUE for the majority of elements that were examined, except for P, which reached its absolute maximum in the oak forest -where a clear reallocation of this nutrient was also recorded-, probably because of its reduced availability in these volcanic ash-derived soils. Nutrient reallocation allows the conservation of the nutrients by reducing its loss from leaching and litter-fall, thereby closing the nutrient cycle in this native forest. In fact, P gains from net deposition were found there -this includes foliar leaching and atmospheric deposition-, which indicates that the species absorbs the P contained in rainfall from the leaves before it reaches the forest ground. N slow-efficiency use was probably due to its low availability in soil, given its low mineralization rates in these montane forests. K showed the highest reallocation values. Such figures are influenced by its clearly mobile character, according to the highest net deposition levels also verified for this element. With the exception of Mg, there was no clear relationship between the reallocation process and NUE.

  16. Experimental study of liquid evaporation rate from coniferous biomass

    Directory of Open Access Journals (Sweden)

    Bulba E.E.

    2017-01-01

    Full Text Available The results of experimental studies of moisture evaporation from coniferous wood (spruce, pine are presented. The dependences of the mass evaporation rate on temperature and time are obtained. The calculation of the accommodation coefficient for the corresponding temperature ranges has been performed. The analysis of temperature regimes of drying of two typical coniferous wood species is carried out.

  17. OZONE AND SULFUR DIOXIDE DRY DEPOSITION TO FORESTS: OBSERVATIONS AND MODEL EVALUATION

    Science.gov (United States)

    Fluxes and deposition velocities of O3 and SO2 were measured over both a deciduous and a mixed coniferous-deciduous forest for full growing seasons. Fluxes and deposition velocities of O3 were measured over a coniferous forest for a month. Mean deposition velocities of 0.35 t...

  18. Forest influences on snow accumulation and snowmelt at the Hubbard Brook Experimental Forest, New Hampshire, USA

    Science.gov (United States)

    Colin A. Penn; Beverley C. Wemple; John L. Campbell

    2012-01-01

    Many factors influence snow depth, water content and duration in forest ecosystems. The effects of forest cover and canopy gap geometry on snow accumulation has been well documented in coniferous forests of western North America and other regions; however, few studies have evaluated these effects on snowpack dynamics in mixed deciduous forests of the northeastern USA....

  19. Forests

    Science.gov (United States)

    Louis R. Iverson; Mark W. Schwartz

    1994-01-01

    Originally diminished by development, forests are coming back: forest biomass is accumulating. Forests are repositories for many threatened species. Even with increased standing timber, however, biodiversity is threatened by increased forest fragmentation and by exotic species.

  20. Assessment of the impact of anthropic activities on carbon storage in soils of high montane ecosystems in Colombia

    Directory of Open Access Journals (Sweden)

    Orlando Zúñiga-Escobar

    2013-04-01

    Full Text Available The organic carbon in the soil was quantified to assess the impact of anthropic activities on montane ecosystems in Colombia in Chingaza Parque Nacional Natural (PNN and Los Nevados Parque Nacional Natural (PNN . For the development of the soil samples, a detailed in situ description of the edaphological profile of four ecosystems of paramo and high Andean forest areas, of both disturbed and undisturbed zones, was taken as the base. The calculation of the amount of total carbon stored by the soil profile shows that, in Colombia, undisturbed high montane ecosystems (520.9 t ha-1 in paramos and 323.6 t ha-1 in high Andean forests of Chingaza PNN , and 373.0 t ha-1 in paramos and 254.6 t ha-1 in high Andean forests of Los Nevados PNN currently have more carbon than disturbed ecosystems (135.1 t ha-1 in paramos and 141.5 t ha-1 in high Andean forests of Chingaza PNN , and 356.3 t ha-1 in paramos and 217.1 t ha-1 in high Andean forests of Los Nevados PNN . It is clear that the disturbance of high montane ecosystems decreases the amount of carbon in the soil, a situation that is more concerning in Chingaza PNN where the difference between the disturbed and undisturbed ecosystems is much more marked than in Los Nevados PNN

  1. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Science.gov (United States)

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for

  2. Incubation of air-pollution-control residues from secondary Pb smelter in deciduous and coniferous organic soil horizons: Leachability of lead, cadmium and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Chrastny, Vladislav, E-mail: vladislavchrastny@seznam.cz [University of South Bohemia, Faculty of Science, Studentska 13, 370 05 Ceske Budejovice (Czech Republic); Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamycka 129, 165 21 Prague 6 (Czech Republic); Vanek, Ales [Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Kamycka 129, 165 21 Praha 6 (Czech Republic); Komarek, Michael [Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamycka 129, 165 21 Prague 6 (Czech Republic); Farkas, Juraj [Czech Geological Survey, Geologicka 6, 152 00 Praha 5 (Czech Republic); Drabek, Ondrej; Vokurkova, Petra [Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Kamycka 129, 165 21 Praha 6 (Czech Republic); Nemcova, Jana [University of South Bohemia, Faculty of Agriculture, Studentska 13, 370 05 Ceske Budejovice (Czech Republic)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Pb smelter fly ash was incubated in forest soil horizons to assess metal mobility. Black-Right-Pointing-Pointer The metal mobilization depends on pH and the ratio of humic/fulvic acids to SOM. Black-Right-Pointing-Pointer The lowest mobilization of Pb, Zn and Cd took place in horizon H (coniferous forest). Black-Right-Pointing-Pointer A huge amount of Cd was found to have leached in the horizon F (deciduous forest). Black-Right-Pointing-Pointer More vulnerable to metal leaching from APC residues is soil from deciduous forest. - Abstract: The leachability of air-pollution-control (APC) residues from a secondary lead smelter in organic soil horizons (F and H) from a deciduous and a coniferous forest during incubation periods of 0, 3 and 6 months were compared in this work. While the concentration of Pb, Zn and Cd associated with the exchangeable/acid extractable fraction in the horizon F from the coniferous forest was higher compared to the deciduous, significantly lower concentrations in the humified horizon H was found. It is suggested that lower pH and a higher share of fulvic acids fraction (FAs) of solid phase soil organic matter (SOM) in the humified soil horizon H from the coniferous compared to the deciduous forest is responsible for a higher metal association with solid phase SOM and therefore a lower metal leaching in a soil system. From this point of view, the humified soil horizon H from the deciduous forest represents a soil system more vulnerable to Pb, Zn and Cd leaching from APC residues.

  3. Desirable forest structures for a restored Front Range

    Science.gov (United States)

    Yvette L. Dickinson; Rob Addington; Greg Aplet; Mike Babler; Mike Battaglia; Peter Brown; Tony Cheng; Casey Cooley; Dick Edwards; Jonas Feinstein; Paula Fornwalt; Hal Gibbs; Megan Matonis; Kristen Pelz; Claudia Regan

    2014-01-01

    As part of the federal Collaborative Forest Landscape Restoration Program administered by the US Forest Service, the Colorado Front Range Collaborative Forest Landscape Restoration Project (FR-CFLRP, a collaborative effort of the Front Range Roundtable1 and the US Forest Service) is required to define desired conditions for lower montane ponderosa pine (Pinus ponderosa...

  4. Guide to testing insecticides on coniferous forest defoliators

    Science.gov (United States)

    Carroll B Jr. Williams; David A. Sharpnack; Liz Maxwell; Patrick J. Shea; Mark D. McGregor

    1985-01-01

    This report provides a guide to techniques for designing field tests of candidate insecticides, and for carrying out pilot tests and control projects. It describes experimental designs for testing hypotheses, and for sampling trees to estimate insect population densities and percent reduction after treatments. Directions for applying insecticides by aircraft and for...

  5. Ecophysiological behaviour of hardwood species in renaturalization processes of coniferous plantations [Campania

    International Nuclear Information System (INIS)

    Borghetti, M.; Saracino, A.; D'Alessandro, C.M.

    2005-01-01

    Coniferous plantations may play a nurse effect for natural regeneration of native hardwood species, which would otherwise be conditioned by intraspecific competition due to trees of the upper layers or be prevented by high radiation load of open environments. Regulation of canopy cover by means of thinning generates temporary or permanent variations of levels of irradiance in lower forest layers. These affect the capability of recruitment and establishment and the ecophysiological behaviour of natural regeneration. Here we present a review of the notions on effects of relative irradiance variations on ecophysiological behaviour of native tree species in lower layers of mesophile and meso-xerophile forests, giving some specific examples produced during the national project PRIN 2003 FOR BIO [it

  6. Forest vegetation of Xishuangbanna, south China

    Institute of Scientific and Technical Information of China (English)

    Zhu Hua

    2006-01-01

    Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical southeast (SE) Asia to subtropical east Asia and is at the junction of the Indian and Burmese plates of Gondwana and the Eurasian plate of Laurasia. The region, though surprisingly far from the equator and at a relatively high altitude, has a rich tropical flora and a typical tropical rain forest in the lowland areas. Based on physiognomic and ecological characteristics, floristic composition and habitats combined, the primary vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes, i.e. a tropical seasonal rain forest in the lowlands and a tropical montane rain forest at higher elevations. The tropical seasonal rain forest has almost the same forest profile and physiognomic characteristics as equatorial lowland rain forests and is a type of truly tropical rain forest. Because of conspicuous similarity on ecological and floristic characteristics, the tropical rain forest in Xishuangbanna is a type of tropical Asian rain forest. However, since the tropical rain forest of Xishuangbanna occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in having some deciduous trees in the canopy layer, fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll. It is a type of semi-evergreen rain forest at the northern edge of the tropical zone. The tropical montane rain forest occurs at wet montane habitats and is similar to the lower montane rain forest in equatorial Asia in floristic composition and physiognomy. It is a type of lower montane rain forests within the broader category of tropical rain forests. The tropical seasonal moist forest occurs on middle and upper

  7. Avifauna del bosque mesófilo de montaña del noreste de Hidalgo, México Avifauna of the tropical montane cloud forest of northeastern Hidalgo, Mexico

    Directory of Open Access Journals (Sweden)

    Miguel Angel Martínez-Morales

    2007-06-01

    Full Text Available Este trabajo presenta los resultados de un inventario avifaunístico realizado de 1997 a 1999 en fragmentos de bosque mesófilo de montaña del noreste de Hidalgo, México. Se registraron 41 familias y 181 especies de aves mediante observaciones visuales y auditivas en 2 057 puntos de conteo, lo que representó el 98% de las especies esperadas en el área de estudio, para el período y método de muestreo utilizado. Se detectaron 16 especies restringidas al bosque mesófilo, 11 endémicas de México y 3 de distribución restringida. Adicionalmente, con base en la legislación mexicana vigente, 28 de las especies registradas están incluidas dentro de alguna categoría de riesgo de conservación. Esta comunidad de aves estuvo dominada por especies de aves pequeñas, raras (poco abundantes y residentes. Es probable que las más vulnerables de sufrir extinciones locales sean las especies raras y restringidas al bosque mesófilo, donde están incluidas las 3 especies de distribución restringida (Dendrortyx barbatus, Glaucidium sanchezi y Cyanolyca nana. La avifauna del bosque mesófilo de esta región incluye al 40% de la avifauna estatal, lo que destaca la relevancia de este tipo de vegetación y una urgente necesidad de establecer estrategias de manejo para su conservación.This study shows the results of bird census carried out from 1997 to 1999 in cloud forest fragments of northeastern Hidalgo, Mexico. Forty-one bird families and 181 species were recorded through visual and acoustic detections in 2 057 point counts. This represents 98% of the expected species richness for the sampling period and method used. Sixteen species restricted to the cloud forest were detected, 11 Mexican endemic species, and 3 restricted-range species were recorded. Additionally, 28 species are included within some category of conservation concern according to the present Mexican legislation. This bird community was dominated by small, rare (low in abundance, and

  8. Tertiary montane origin of the Central Asian flora, evidence inferred from cpDNA sequences of Atraphaxis (Polygonaceae)

    Science.gov (United States)

    Ming-Li Zhang; Stewart C. Sanderson; Yan-Xia Sun; Byalt V. Vyacheslav; Xiao-Li Hao

    2014-01-01

    Atraphaxis has approximately 25 species and a distribution center in Central Asia. It has been previously used to hypothesize an origin from montane forest. We sampled 18 species covering three sections within the genus and sequenced five cpDNA spacers, atpB-rbcL, psbK-psbI, psbAtrnH, rbcL, and trnL-trnF. BEAST was used to reconstruct phylogenetic relationship and time...

  9. Bulgarian Rila mountain forest ecosystems study site: site description and SO42-, NO3- deposition

    Science.gov (United States)

    Karl Zeller; Christo Bojinov; Evgeny Donev; Nedialko Nikolov

    1998-01-01

    Bulgaria's forest ecosystems (31 percent of the country's area) are considered vulnerable to dry and wet pollution deposition. Coniferous forests that cover one-third of the total forest land are particularly sensitive to pollution loads. The USDA Forest Service, Sofia University, and the Bulgarian Forest Research Institute (FRI) established a cooperative...

  10. Modelling three-dimensional distribution of photosynthetically active radiation in sloping coniferous stands

    International Nuclear Information System (INIS)

    Knyazikhin, Yu.; Kranigk, J.; Miessen, G.; Panfyorov, O.; Vygodskaya, N.; Gravenhorst, G.

    1996-01-01

    Solar irradiance is a major environmental factor governing biological and physiological processes in a vegetation canopy. Solar radiation distribution in a canopy and its effect are three-dimensional in nature. However, most of the radiation models up to now have been one-dimensional. They can be successfully applied to large-scale studies of forest functioning. The one-dimensional modelling technique, however, does not provide adequate interpretation of small scale processes leading to forest growth. In this article we discuss a modelling strategy for the simulation of three-dimensional radiation distribution in a vegetation canopy of a small area (about 0.25–0.3 ha). We demonstrate its realisation to predict the three-dimensional radiative regime of phytosynthetically active radiation in a real coniferous stand located on hilly surroundings. Our model can be used to investigate the influence of different climatic conditions, forest management methods and field sites on the solar energy available for forest growth in small heterogeneous areas. Further, a three-dimensional process-oriented model helps to derive global variables affecting bio-physiological processes in a vegetation canopy shifting from small scale studies of the functioning of forests to regional, continental, and global scale problems. (author)

  11. A new montane species of Philautus (Amphibia: Anura: Rhacophoridae) from western Sarawak, Malaysia, Borneo.

    Science.gov (United States)

    Dehling, J Maximilian; Dehling, Matthias

    2013-01-01

    A new species of Philautus is described from western Sarawak. The new species was collected in lower montane forest in two national parks in Sarawak and recorded from another park. It differs from its congeners by a unique combination of morphological characters, including a long, acuminate snout, long legs, and comparatively extensive toe webbing. The advertisement call of the new species differs from all calls of other species that have been analyzed so far. Comparison of the mitochondrial 16S rRNA gene sequence corroborates its distinct specific status.

  12. Diet of two sympatric felids (Leopardus tigrinus and Leopardus wiedii in a remnant of Atlantic forest, in the montane region of Espírito Santo, southeastern Brazil (English

    Directory of Open Access Journals (Sweden)

    Jardel Brandão Seibert

    2015-06-01

    Full Text Available We analyzed the diet of two sympatric felids, the oncilla and the margay, in the Brazilian Atlantic Forest. Fecal samples were collected from 2003 to 2005. Of the 52 fecal samples examined, 34 were confirmed to be from the oncilla and 18 of them from the margay. Small mammals (Rodentia and Didelphimorphia were the most important food item, followed by insects and birds. The food habit of the oncilla and the margay in the area were classified as a specialist carnivore, feeding in a variety of prey, which mammals were the most consumed item. The coexistence between those species may involve spatial and temporal segregation and the use of complementary items in the diet. (English

  13. Western forests and air pollution

    International Nuclear Information System (INIS)

    Olson, R.K.; Binkley, D.; Boehm, M.

    1992-01-01

    The book addresses the relationships between air pollution in the western United States and trends in the growth and condition of Western coniferous forests. The major atmospheric pollutants to which forest in the region are exposed are sulfur and nitrogen compounds and ozone. The potential effects of atmospheric pollution on these forests include foliar injury, alteration of growth rates and patterns, soil acidification, shifts in species composition, and modification of the effects of natural stresses

  14. Incubation of air-pollution-control residues from secondary Pb smelter in deciduous and coniferous organic soil horizons: leachability of lead, cadmium and zinc.

    Science.gov (United States)

    Chrastný, Vladislav; Vaněk, Aleš; Komárek, Michael; Farkaš, Juraj; Drábek, Ondřej; Vokurková, Petra; Němcová, Jana

    2012-03-30

    The leachability of air-pollution-control (APC) residues from a secondary lead smelter in organic soil horizons (F and H) from a deciduous and a coniferous forest during incubation periods of 0, 3 and 6 months were compared in this work. While the concentration of Pb, Zn and Cd associated with the exchangeable/acid extractable fraction in the horizon F from the coniferous forest was higher compared to the deciduous, significantly lower concentrations in the humified horizon H was found. It is suggested that lower pH and a higher share of fulvic acids fraction (FAs) of solid phase soil organic matter (SOM) in the humified soil horizon H from the coniferous compared to the deciduous forest is responsible for a higher metal association with solid phase SOM and therefore a lower metal leaching in a soil system. From this point of view, the humified soil horizon H from the deciduous forest represents a soil system more vulnerable to Pb, Zn and Cd leaching from APC residues. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Elevational Ranges of Montane Birds and Deforestation in the Western Andes of Colombia.

    Directory of Open Access Journals (Sweden)

    Natalia Ocampo-Peñuela

    Full Text Available Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species' ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800 m. Three transects were forested from 2200 to 2800 m, and three were partially deforested with forest cover only above 2400 m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species' elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species' elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.

  16. Elevational Ranges of Montane Birds and Deforestation in the Western Andes of Colombia.

    Science.gov (United States)

    Ocampo-Peñuela, Natalia; Pimm, Stuart L

    2015-01-01

    Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species' ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800 m. Three transects were forested from 2200 to 2800 m, and three were partially deforested with forest cover only above 2400 m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species' elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species' elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.

  17. Comparative seasonal variations of spectral signatures of broad-leaved and coniferous stands from Landsat data. Comparison with other perennial environments

    International Nuclear Information System (INIS)

    Chaume, R.; Combeau, A.

    1984-01-01

    Spectral signatures of two distinct forest test areas were identified from digital data including 15 LANDSAT scenes covering the same geographical area: a broad-leaved forest (oak and beech) and a coniferous forest (scotch pine). Seasonal variations of the signatures were examined and were expressed in terms of various data: date, solar height and phenological state of vegetation cover. Results were compared to these obtained from other perennial surface conditions (grassland, bare soils) . Range of the seasonal variations of radiance is noted, as well as evolutionary peculiarities on each band and between themes. Rationing of spectral bands (particularly MSS 5 and 7) and their variation with time are specified [fr

  18. Maturação e morfometria dos frutos de miconia Albicans (Swartz triana (melastomataceae em um remanescente de floresta estacional semidecídua montana em Lavras, MG Maturation and morphometrics of the fruits of Miconia albicans (Swartz triana (melastomataceae in a remnant of montane seasonal semideciduous forest in Lavras, MG

    Directory of Open Access Journals (Sweden)

    Fábio de Almeida Vieira

    2009-12-01

    Full Text Available Os objetivos deste trabalho foram analisar a dinâmica da maturação dos frutos e avaliar quantitativamente algumas características físicas dos frutos de Miconia albicans (Swartz Triana em um remanescente de Floresta Estacional Semidecídua Montana. A atividade, intensidade e sincronia de 20 indivíduos foram analisadas em relação aos eventos de frutificação, correlacionando-os com as variáveis climáticas. Analisou-se a morfometria (comprimento, largura e massa de 130 frutos de 10 indivíduos. A intensidade da fenofase de frutos maduros nas plantas correlacionou-se significativamente com a precipitação média do período (rS = 0,611; P The aim of this study was to examine the dynamics of fruit maturation and quantitatively assess some physical characteristics of the fruits of Miconia albicans (Swartz Triana in a remnant of Montane Seasonal Semideciduous Forest. The activity and synchrony of 20 individuals were analyzed in regard to the proportion of fruiting events, and to help to determine their correlation to abiotic factors. Morphometric traits (fruit length, diameter and mass of 130 fruits from ten individuals were analyzed. The number of fruits maturing showed a significant correlation with the mean precipitation (rS = 0.611; P < 0.05. M. albicans presented a high number of small seeds per fruit ( = 28.05 ± 1.45 s.d.. The fresh mass of the fruit was approximately equal to the pulp mass (rS = 0.988; P < 0.05. Thepulp contributed with 94% of the total mass, demonstrating the potential importance of this species for frugivores. The results indicate the period of high intrapopulation synchrony of the studied phenophases, which can be a useful guide in the collection of seeds for germoplasm banks and recovery of degraded areas.

  19. Effects of model choice and forest structure on inventory-based estimations of Puerto Rican forest biomass

    Science.gov (United States)

    Thomas J. Brandeis; Maria Del Rocio; Suarez Rozo

    2005-01-01

    Total aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing...

  20. Isotope studies to determine dry deposition of sulfate to deciduous and coniferous trees: Final draft

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.

    1988-01-01

    Experiments have been conducted at two locations near Oak Ridge, Tennessee, with radioactive 35 S (87 day half-life) to examine the cycling behavior of sulfur in yellow poplar (Liriodendron tulipifera), red maple (Acer rubrum), and loblolly pine (Pinus taeda) trees. Some findings pertain to methods development for estimating dry deposition of sulfur to forest canopies and the magnitude of sulfur emissions from natural sources (Task II). We will determine through field studies, the internal cycling, storage, and biogenic emission of sulfur, as traced by 35 SO 4 2- , in environments impacted by atmospheric sulfate deposition; and will determine through isotope dilution studies, the contribution of foliar leaching and dry deposition to net throughfall (NTF) sulfate concentrations beneath deciduous and coniferous trees in such environments. 3 refs., 2 figs., 1 tab

  1. HS-SPME analysis of volatile organic compounds of coniferous needle litter

    Science.gov (United States)

    Isidorov, V. A.; Vinogorova, V. T.; Rafałowski, K.

    The composition of volatile emission of Scots pine ( Pinus sylvestris) and spruce ( Picea exelsa) litter was studied by gas chromatography-mass spectrometry (GC-MS) and samples were collected by solid-phase microextraction (SPME) method. The list of identified compounds includes over 60 organic substances of different classes. It was established that volatile emission contain not only components of essential oils of pine and spruce needles but also a large number of organic compounds which are probably secondary metabolites of litter-decomposing fungi. They include lower carbonyl compounds and alcohols as well as products of terpene dehydration and oxidation. These data show that the processes of litter decomposition are an important source of reactive organic compounds under canopy of coniferous forests.

  2. Forests

    International Nuclear Information System (INIS)

    Melin, J.

    1997-01-01

    Forests have the capacity to trap and retain radionuclides for a substantial period of time. The dynamic behaviour of nutrients, pollution and radionuclides in forests is complex. The rotation period of a forest stand in the Nordic countries is about 100 years, whilst the time for decomposition of organic material in a forest environment can be several hundred years. This means that any countermeasure applied in the forest environment must have an effect for several decades, or be reapplied continuously for long periods of time. To mitigate the detrimental effect of a contaminated forest environment on man, and to minimise the economic loss in trade of contaminated forest products, it is necessary to understand the mechanisms of transfer of radionuclides through the forest environment. It must also be stressed that any countermeasure applied in the forest environment must be evaluated with respect to long, as well as short term, negative effects, before any decision about remedial action is taken. Of the radionuclides studied in forests in the past, radiocaesium has been the main contributor to dose to man. In this document, only radiocaesium will be discussed since data on the impact of other radionuclides on man are too scarce for a proper evaluation. (EG)

  3. Using digital photography to examine grazing in montane meadows

    Science.gov (United States)

    McIlroy, Susan K.; Allen-Diaz, Barbara H.; Berg, Alexander C.

    2011-01-01

    Cattle (Bos taurus) numbers on national forests are allocated based on allotment grazing capacity, but spatial patterns of timing and density at smaller scales are difficult to assess. However, it is often in meadows or riparian areas that grazing may affect hydrology, biodiversity, and other important ecosystem characteristics. To explore real-time animal presence in montane meadows we distributed 18 digital cameras across nine sites in the Sierra National Forest, California. Our objectives were to document seasonal and diurnal presence of both cattle and mule deer (Odocoileus hemionus), identify the effects of three fencing treatments on animal distribution, and test digital photography as a tool for documenting cattle presence. We recorded 409 399 images during daylight hours for two grazing seasons, and we identified 5 084 and 24 482 cattle "marks" (instances of animal occurrence) in 2006 and 2007, respectively. Deer presence was much lower, with 331 marks in 2006 and 598 in 2007. Morning cattle presence was highest before 0800 hours both years (13.7% and 15.4% of total marks for 2006 and 2007, respectively). Marks decreased until 1100 hours and then increased around 1400 hours and remained relatively stable until 1900 hours. Marks then rose precipitously, with >20% of total marks recorded after 1900 hours both years. Deer presence was less than 10% per hour until 1800 hours, when >20% of total marks were recorded after this time both years. Among treatments, cattle marks were highest outside fences at partially fenced meadows, and deer were highest within completely fenced meadows. Our experience suggests that cameras are not viable tools for meadow monitoring due to variation captured within meadows and the time and effort involved in image processing and review.

  4. Influence of Forest-Canopy Morphology and Relief on Spectral Characteristics of Taiga Forests

    Science.gov (United States)

    Zhirin, V. M.; Knyazeva, S. V.; Eydlina, S. P.

    2017-12-01

    The article deals with the results of a statistical analysis reflecting tendencies (trends) of the relationship between spectral characteristics of taiga forests, indicators of the morphological structure of forest canopy and illumination of the territory. The study was carried out on the example of the model forest territory of the Priangarskiy taiga region of Eastern Siberia (Krasnoyarsk krai) using historical data (forest inventory 1992, Landsat 5 TM 16.06.1989) and the digital elevation model. This article describes a method for determining the quantitative indicator of morphological structure of forest canopy based on taxation data, and the authors propose to subdivide the morphological structure into high complexity, medium complexity, and relatively simple. As a result of the research, dependences of average values of spectral brightness in near and short-wave infrared channels of a Landsat 5 TM image for dark-coniferous, light-coniferous and deciduous forests from the degree of complexity of the forest-canopy structure are received. A high level of variance and maximum brightness average values are marked in green moss (hilocominosa) dark-coniferous and various-grass (larioherbosa) dark-coniferous forests and light-coniferous forests with a complex structure of canopy. The parvifoliate forests are characterized by high values of brightness in stands with a relatively simple structure of the canopy and by a small variance in brightness of any degree of the structure of the canopy complexity. The increase in brightness for the lit slopes in comparison with shaded ones in all stands with a difficult morphological canopy structure is revealed. However, the brightness values of the lit and shaded slopes do not differ for stands with a medium complexity of the structure. It is noted that, in addition to the indicator of the forest-canopy structure, the possible impact on increasing the variance of spectral brightness for the taxation plot has a variability of the

  5. Efecto nodriza intra-específico de Kageneckia angustifolia D. Don (Rosaceae sobre la germinación de semillas y sobrevivencia de plántulas en el bosque esclerófilo montano de Chile central Intra-specific nurse effect of Kageneckia angustifolia D. Don (Rosaceae and its effect on seed germination and seedling survival in the montane sclerophyllous forest of central Chile

    Directory of Open Access Journals (Sweden)

    ALEJANDRO PEÑALOZA

    2001-09-01

    sclerophyllous forests of central Chile (32-33° S, 1,500-2,100 m altitude are dominated by Kageneckia angustifolia (Rosaceae, a summer semi-deciduous species, that form a very open canopy. This open canopy suggests that microclimatic differences between open areas outside canopy and beneath canopy should be minimal, in contrast to the lower elevation "matorral" where the closed canopy of trees and bushes generate different microclimatic conditions beneath canopy. On the other hand, in montane forests precipitation occurs as snow, with higher accumulation and duration in the open areas between trees. These differences in the accumulation of snow could affect the recruitment of new individuals. We studied the intra-specific nurse effect of K. angustifolia determining the microclimatic differences between open areas and beneath canopy, and the effect of the accumulation of snow on the seed germination and seedling survival in a montane sclerophyllous forest located in the Santuario de la Naturaleza Yerba Loca, 50 km east of Santiago (33° S, 1,600 m. According to the microclimatic parameters studied (PAR, soil and air humidity, and soil and air temperature, in the montane forests there were no major microclimatic differences between open areas and beneath canopy. Only the accumulation of snow showed differences, with higher accumulation in the open areas. Seed germination was lower and later in the open areas outside canopy, suggesting that this could be related with the above-mentioned higher accumulation of snow. Seedling emerging earlier have enough time to grow and successfully survive the summer drought in comparison with seedling emerging later. This could explain the lower seedling survival in the open areas outside canopy

  6. Antibacterial and antifungal effects of essential oils from coniferous trees.

    Science.gov (United States)

    Hong, Eui-Ju; Na, Ki-Jeung; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2004-06-01

    Essential oils have potential biological effects, i.e., antibiotic, anticarcinogenic, and sedative effects during stress. In the present study, we investigated the antibacterial and antifungal effects of essential oils extracted from the coniferous species Pinus densiflora, Pinus koraiensis, and Chamaecyparis obtusa, because their biological activities have not been yet elucidated. The essential oils were quantified using gas chromatography and identified in gas chromatography-mass spectrometric analysis. Simultaneously, antibacterial and antifungal assays were performed using the essential oils distilled from the needles of coniferous trees. The major components and the percentage of each essential oil were: 19.33% beta-thujene in P. densiflora; 10.49% alpha-pinene in P. koraiensis; 10.88% bornyl acetate in C. obtusa. The essential oils from P. densiflora and C. obtusa have antibacterial effects, whereas essential oils from P. koraiensis and C. obtusa have antifungal effects. These results indicate that the essential oils from the three coniferous trees, which have mild antimicrobial properties, can inhibit the growth of gram-positive and gram-negative bacteria and fungi.

  7. Preliminary analysis of the nestedness patterns of Montane forest ...

    African Journals Online (AJOL)

    Results show that the species ordering is significantly non-random. The discussion and conclusions focus on the nested subset patterns exhibited by 14 species and, to a lesser extent, 'idiosyncratic' species and islands. Factors that may have contributed to this pattern include selective extinction and colonisation; however, ...

  8. Small mammal trapping in tropical montane forests of the Upper ...

    Indian Academy of Sciences (India)

    Animal biologists are interested in the population size of animals, whether they are ... heterogeneity can cause substantial bias in the estimators. (Burnham and ...... diversity, extinction rates and speciation rates from fossil data using capture ...

  9. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Directory of Open Access Journals (Sweden)

    Rebecca Ostertag

    Full Text Available The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species and stem density (3078 vs. 3486/ha. While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species, six-fold variation in mean annual rainfall (835-5272 mm yr(-1 and 1.8-fold variation in mean annual temperature (16.0-28.4°C. Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological

  10. Fire performance in traditional silvicultural and fire and fire surrogate treatments in Sierran mixed-conifer forests: a brief summary

    Science.gov (United States)

    Jason J. Moghaddas; Scott L. Stephens

    2007-01-01

    Mixed conifer forests cover 7.9 million acres of California’s total land base. Forest structure in these forests has been influenced by harvest practices and silvicultural systems implemented since the beginning of the California Gold Rush in 1849. Today, the role of fire in coniferous forests, both in shaping past stand structure and its ability to shape future...

  11. Flammulated Owls (Otus flammeolus) breeding in deciduous forests

    Science.gov (United States)

    Carl D. Marti

    1997-01-01

    The first studies of nesting Flammulated Owls (Otus flammeolus) established the idea that the species needs ponderosa pine (Pinus ponderosa) forests for breeding. In northern Utah, Flammulated Owls nested in montane deciduous forests dominated by quaking aspen (Populus tremuloides). No pines were present but...

  12. Home range and diet of feral cats in Hawaii forests

    Science.gov (United States)

    Smucker, T.D.; Lindsey, G.D.; Mosher, S.M.

    2000-01-01

    Feral cat Felis catus home range in a Hawaiian montane wet forest and their diet in three habitats - montane wet forest, subalpine dry forest, and lowland dry forest - were determined to provide baseline ecological data and to assess potential impacts to native terrestrial fauna. Seven cats (three males and four females) were captured in 624 trap nights. Mean weight of adult cats was 2.85 ?? 0.27 (SE) Kg for males and 1.87 ?? 0.03 kg for females. Mean diumal home range using the adaptive kernel method was 5.74 ?? 2.73 km2 for three males and 2.23 ?? 0.44 km2 for two females. Daytime locations were always within the montane wet forest with the borders on one or more sides of the home ranges of all cats defined by open grassland pastures. Rodents comprised the majority of the cat diets in all three habitats, with the frequencies of occurence between 0.88 and 0.91. Bird remains were a regular component of the diet of cats, with montane wet forest having the highest frequency of occurence (0.68), followed by subalpine dry forest (0.53), and lowland dry forest (0.21).

  13. Estimates of ion sources in deciduous and coniferous throughfall

    Science.gov (United States)

    Puckett, L.J.

    1990-01-01

    Estimates of external and internal sources of ions in net throughfall deposition were derived for a deciduous and coniferous canopy by use of multiple regression. The externel source component appears to be dominated by dry deposition of Ca2+, SO2 and NO3- during dormant and growing seasons for the two canopy types. Increases in the leaching rates of K+ and Mg2+ during the growing season reflect the presence of leaves in the deciduous canopy and increased physiological activity in both canopies. Internal leaching rates for SO42- doubled during the growing season presumably caused by increased physiological activity and uptake of SO2 through stomates. Net deposition of SO42- in throughfall during the growing season appears highly dependent on stomatal uptake of SO2. Estimates of SO2 deposition velocities were 0.06 cm s-1 and 0.13 cm s-1 for the deciduous and coniferous canopies, respectively, during the dormant season, and 0.30 cm s-1 and 0.43 cm s-1 for the deciduous and coniferous canopies, respectively, during the growing season. For the ions of major interest with respect to ecosystem effects, namely H+, NO3- and SO42-, precipitation inputs generally outweighed estimates of dry deposition input. However, net throughfall deposition of NO3- and SO42- accounted for 20-47 and 34-50 per cent, respectively, of total deposition of those ions. Error estimates of ion sources were at least 50-100 per cent and the method is subject to several assumptions and limitations.

  14. Experimental investigation of the processes of dehumidification of coniferous biomass

    Directory of Open Access Journals (Sweden)

    Bulba Elena

    2017-01-01

    Full Text Available This work includes the results of experimental studies of the moisture removal processes in the temperature range from 333 K to 413 K from coniferous woods which are typical for many regions. There are obtained the dependences of the mass rate of moisture removal on time and temperature. The effect of the evaporation of bound moisture was identified for the wood species studied. There are calculated the accommodation coefficient and the partial pressure at the evaporation surface for each type of biomass.

  15. Mixed Conifer Forest Duff Consumption during Prescribed Fires: Tree Crown Impacts

    NARCIS (Netherlands)

    Hille, M.G.; Stephens, S.L.

    2005-01-01

    Fire suppression has produced large forest floor fuel loads in many coniferous forests in western North America. This study describes spatial patterns of duff consumption in a mixed-conifer forest in the north-central Sierra Nevada, California. Overstory crown coverage was correlated to spatial

  16. Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests

    Science.gov (United States)

    Jill F. Johnstone; T. Scott Rupp; Mark Olson; David. Verbyla

    2011-01-01

    Much of the boreal forest in western North America and Alaska experiences frequent, stand-replacing wildfires. Secondary succession after fire initiates most forest stands and variations in fire characteristics can have strong effects on pathways of succession. Variations in surface fire severity that influence whether regenerating forests are dominated by coniferous...

  17. MLAOS: A Multi-Point Linear Array of Optical Sensors for Coniferous Foliage Clumping Index Measurement

    Directory of Open Access Journals (Sweden)

    Yonghua Qu

    2014-05-01

    Full Text Available The canopy foliage clumping effect is primarily caused by the non-random distribution of canopy foliage. Currently, measurements of clumping index (CI by handheld instruments is typically time- and labor-intensive. We propose a low-cost and low-power automatic measurement system called Multi-point Linear Array of Optical Sensors (MLAOS, which consists of three above-canopy and nine below-canopy optical sensors that capture plant transmittance at different times of the day. Data communication between the MLAOS node is facilitated by using a ZigBee network, and the data are transmitted from the field MLAOS to a remote data server using the Internet. The choice of the electronic element and design of the MLAOS software is aimed at reducing costs and power consumption. A power consumption test showed that, when a 4000 mAH Li-ion battery is used, a maximum of 8–10 months of work can be achieved. A field experiment on a coniferous forest revealed that the CI of MLAOS may reveal a clumping effect that occurs within the canopy. In further work, measurement of the multi-scale clumping effect can be achieved by utilizing a greater number of MLAOS devices to capture the heterogeneity of the plant canopy.

  18. Topoclimate effects on growing season length and montane conifer growth in complex terrain

    Science.gov (United States)

    Barnard, D. M.; Barnard, H. R.; Molotch, N. P.

    2017-05-01

    Spatial variability in the topoclimate-driven linkage between forest phenology and tree growth in complex terrain is poorly understood, limiting our understanding of how ecosystems function as a whole. To characterize the influence of topoclimate on phenology and growth, we determined the start, end, and length of the growing season (GSstart, GSend, and GSL, respectively) using the correlation between transpiration and evaporative demand, measured with sapflow. We then compared these metrics with stem relative basal area increment (relative BAI) at seven sites among elevation and aspects in a Colorado montane forest. As elevation increased, we found shorter GSL (-50 d km-1) due to later GSstart (40 d km-1) and earlier GSend (-10 d km-1). North-facing sites had a 21 d shorter GSL than south-facing sites at similar elevations (i.e. equal to 200 m elevation difference on a given aspect). Growing season length was positively correlated with relative BAI, explaining 83% of the variance. This study shows that topography exerts strong environmental controls on GSL and thus forest growth. Given the climate-related dependencies of these controls, the results presented here have important implications for ecosystem responses to changes in climate and highlight the need for improved phenology representation in complex terrain.

  19. Spatial and temporal trends in distribution of forest fires in Central and Eastern Europe

    Science.gov (United States)

    Ryszard Szczygieł; Barbara Ubysz; Tomasz. Zawiła-Niedźwiecki

    2009-01-01

    Forest in Central and Eastern Europe (CEE) covers 56,285,000 ha (5% of European total forested area). Forest cover in CEE makes 30% of land use. Almost 50% of the forest under study is formed by coniferous species and only 30% by deciduous ones. Forest younger than 60 years old grows on 57% of that area. These factors, together with climate conditions cause that on the...

  20. Dynamics of radiation damage and repair processes in coniferous stands in a 10-km region of the Chernobyl nuclear power station

    International Nuclear Information System (INIS)

    Kozubov, G.M.; Taskaev, A.I.

    1995-01-01

    Properties of morphogenesis, growth dynamics, anatomy and ultrastructure of wood and needle, reproductive processes in coniferous plants were studied under different level of radiation effect in the 10-km zone in 1986-1992. It was established that the full drying of pine forests began under absorbed dose 80-100 Gy/year. Threshold doses, after which repair processes were possible, reached to 10-12 Gy/year for Picea abies and 50 Gy/year for Pinus sylvestris. Three maine stages are revealed in dynamics of radiation damage and repair processes in studied conifers and their morphological and functional characteristic is presented. 14 refs., 3 figs., 2 tabs

  1. Microclimate, Water Potential, Transpiration, and Bole Dielectric Constant of Coniferous and Deciduous Tree Species in the Continental Boreal Ecotone of Central Alaska

    Science.gov (United States)

    Zimmermann, R.; McDonald, K.; Way, J.; Oren, R.

    1994-01-01

    Tree canopy microclimate, xylem water flux and xylem dielectric constant have been monitored in situ since June 1993 in two adjacent natural forest stands in central Alaska. The deciduous stand represents a mature balsam poplar site on the Tanana River floodplain, while the coniferous stand consists of mature white spruce with some black spruce mixed in. During solstice in June and later in summer, diurnal changes of xylem water potential were measured to investigate the occurrence and magnitude of tree transpiration and dielectric constant changes in stems.

  2. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands.

    Science.gov (United States)

    Lee, Se-Yeun; Ryan, Maureen E; Hamlet, Alan F; Palen, Wendy J; Lawler, Joshua J; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916-2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  3. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands

    Science.gov (United States)

    Hamlet, Alan F.; Palen, Wendy J.; Lawler, Joshua J.; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916–2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  4. Lidar and Hyperspectral Remote Sensing for the Analysis of Coniferous Biomass Stocks and Fluxes

    Science.gov (United States)

    Halligan, K. Q.; Roberts, D. A.

    2006-12-01

    Airborne lidar and hyperspectral data can improve estimates of aboveground carbon stocks and fluxes through their complimentary responses to vegetation structure and biochemistry. While strong relationships have been demonstrated between lidar-estimated vegetation structural parameters and field data, research is needed to explore the portability of these methods across a range of topographic conditions, disturbance histories, vegetation type and climate. Additionally, research is needed to evaluate contributions of hyperspectral data in refining biomass estimates and determination of fluxes. To address these questions we are a conducting study of lidar and hyperspectral remote sensing data across sites including coniferous forests, broadleaf deciduous forests and a tropical rainforest. Here we focus on a single study site, Yellowstone National Park, where tree heights, stem locations, above ground biomass and basal area were mapped using first-return small-footprint lidar data. A new method using lidar intensity data was developed for separating the terrain and vegetation components in lidar data using a two-scale iterative local minima filter. Resulting Digital Terrain Models (DTM) and Digital Canopy Models (DCM) were then processed to retrieve a diversity of vertical and horizontal structure metrics. Univariate linear models were used to estimate individual tree heights while stepwise linear regression was used to estimate aboveground biomass and basal area. Three small-area field datasets were compared for their utility in model building and validation of vegetation structure parameters. All structural parameters were linearly correlated with lidar-derived metrics, with higher accuracies obtained where field and imagery data were precisely collocated . Initial analysis of hyperspectral data suggests that vegetation health metrics including measures of live and dead vegetation and stress indices may provide good indicators of carbon flux by mapping vegetation

  5. Diversity and significance of eriophyoid mites (Acari: Eriophyoidea associated with coniferous trees in Poland: a review

    Directory of Open Access Journals (Sweden)

    Kiedrowicz Agnieszka

    2016-06-01

    Full Text Available Among the approximately 200 eriophyoid mite species associated with coniferous trees worldwide, 33 species (of the families Eriophyidae and Phytoptidae infest conifers in Poland, and 24 of them can cause visible feeding symptoms. In this paper we discuss the importance of eriophyoid mites to coniferous plants in Poland and their potential impact on the decorative value of ornamental plants. We emphasize the general lack of knowledge about the diversity of eriophyoid mites associated with coniferous trees and its role in the management and control of this economically important mite group.

  6. Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature.

    Science.gov (United States)

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Niyonzima, Felix; Adolfsson, Lisa; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    Photosynthetic capacity of tree leaves is typically positively related to nutrient content and little affected by changes in growth temperature. These relationships are, however, often poorly supported for tropical trees, for which interspecific differences may be more strongly controlled by within-leaf nutrient allocation than by absolute leaf nutrient content, and little is known regarding photosynthetic acclimation to temperature. To explore the influence of leaf nutrient status, successional strategy and growth temperature on the photosynthetic capacity of tropical trees, we collected data on photosynthetic, chemical and morphological leaf traits of ten tree species in Rwanda. Seven species were studied in a forest plantation at mid-altitude (~1,700 m), whereas six species were studied in a cooler montane rainforest at higher altitude (~2,500 m). Three species were common to both sites, and, in the montane rainforest, three pioneer species and three climax species were investigated. Across species, interspecific variation in photosynthetic capacity was not related to leaf nutrient content. Instead, this variation was related to differences in within-leaf nitrogen allocation, with a tradeoff between investments into compounds related to photosynthetic capacity (higher in pioneer species) versus light-harvesting compounds (higher in climax species). Photosynthetic capacity was significantly lower at the warmer site at 1,700 m altitude. We conclude that (1) within-leaf nutrient allocation is more important than leaf nutrient content per se in controlling interspecific variation in photosynthetic capacity among tree species in tropical Rwanda, and that (2) tropical montane rainforest species exhibit decreased photosynthetic capacity when grown in a warmer environment.

  7. Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession

    Science.gov (United States)

    Forest disturbance and long-term succession can promote open N cycling that increases N loss and soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across a topographically complex montane forest landscape influenced by human logging ...

  8. The dynamic history of the upper forest line ecotone in the northern Andes

    NARCIS (Netherlands)

    Hooghiemstra, H.; Berrio, J.C.; Groot, M.H.M.; Bogotá-A, R.G.; Moscol Olivera, M.; González-Carranza, Z.; Myster, R.W.

    2012-01-01

    In the Andean cordilleras very conspicuous ecotones can be found. The transition from continuous upper montane forest to treeless herbaceous vegetation, regionally known as "páramo" (Cleef 1981; Luteyn 1999) is known as the "upper forest line" (UFL) or "timber line" (Holtmeier 2009). Above the UFL

  9. Disturbance and topography shape nitrogen availability and ä15N over long-term forest succession

    Science.gov (United States)

    Steven S. Perakis; Alan J. Tepley; Jana E. Compton

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil ä15N values. We examined soil and foliar patterns in N and ä15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane...

  10. Variation in leaf litter production and resorption of nutrients in abundant tree species in Nyungwe tropical montane rainforest in Rwanda

    Science.gov (United States)

    Nyirambangutse, Brigitte; Mirindi Dusenge, Eric; Nsabimana, Donat; Bizuru, Elias; Pleijel, Håkan; Uddling, Johan; Wallin, Göran

    2014-05-01

    African tropical rainforests play many roles from local to global scale as providers of resources and ecosystem services. Although covering 30% of the global rainforest, only few studies aiming to better understand the storage and fluxes of carbon and nutrients in these forests have been conducted. To answer questions related to these issues, we have established 15 permanent 0.5 ha plots where we compare carbon and nutrient fluxes of primary and secondary forest tree communities in a tropical montane forest in central Africa. The studies are conducted in Nyungwe montane tropical rain forest gazetted as a National Park to protect its extensive floral and faunal diversity covering an area of 970 km2. Nyungwe is located in Southwest Rwanda (2o17'-2o50'S, 29o07'-29o26A'E). The forest is ranging between 1600-2950 m.a.s.l. and is one of the most biologically important rainforest in Albertine Rift region in terms of Biodiversity. Nyungwe consists of a mixture of primary and secondary forest communities supporting a richness of plant and animal life. More than 260 species of trees and shrubs have been found in Nyungwe, including species endemic to the Albertine Rift. The forest has a climate with a mean annual temperature of 15.5oC and annual rainfall of ca 1850 mm yr-1, with July and August being the only months when rainfall drops. A part of this study is focusing on the dynamics of nutrients through leaf turnover. This turnover of leaves is regulated to maximize the carbon gain through canopy photosynthesis and resource-use efficiency of the plant. It is known that about half of leaf nitrogen is invested in photosynthetic apparatus and that there normally is a strong correlation between the photosynthetic capacity and leaf nitrogen per unit area. Hence leaf nitrogen is an important factor for canopy photosynthesis. However, leaves are produced, senesce and fall. Some nitrogen in the leaf is lost when leaves senesce but other is resorbed. The resorption of nitrogen

  11. FLORISTIC CHANGES ALONG THE TOPOGRAPHICAL GRADIENT IN MONTANE GRASSLANDS IN MONTI PICENTINI (CAMPANIA, SW ITALY

    Directory of Open Access Journals (Sweden)

    M. CUTINI

    2010-01-01

    Full Text Available Populations of xerotolerant species (Achnatherum calamagrostis, Stipa crassiculmis subsp. picentina, are scattered along a wide altitudinal gradient on slopes at mid- and high elevation in Monti Picentini, a subcoastal mesozoic limestone ridge in Tyrrhenian Southern Italy. Their stands are widespread in grasslands of mostly secondary origin. At lower altitudes these grasslands replace former deciduous forest communities dominated by oaks or beech, while at higher altitudes they reach the summits, where they apparently merge into the remnants of the still partially grazed, zonal climatogenic, grasslands ranging above the local tree-line. Nevertheless primary stands of these grasslands are to be found around the many clusters of highly dynamic sites of the montane and sub-alpine levels, scattered around screes and rocky outcrops of the prevalently dolomitic morphology of the slopes. This virtual continuity of non arboreal communities across more than 1000 metres of the local topographical gradient, where azonal, relic stands of Pinus nigra s.l. are transitional between the grasslands and the surrounding zonal broadleaved forest vegetation, stresses patterns of the coenological changes between Festuco-Brometea and Elyno-Seslerietea along the catena, which suggest fragmentary persistence of a paleozonation.

  12. FLORISTIC CHANGES ALONG THE TOPOGRAPHICAL GRADIENT IN MONTANE GRASSLANDS IN MONTI PICENTINI (CAMPANIA, SW ITALY

    Directory of Open Access Journals (Sweden)

    F. SPADA

    2010-04-01

    Full Text Available Populations of xerotolerant species (Achnatherum calamagrostis, Stipa crassiculmis subsp. picentina, are scattered along a wide altitudinal gradient on slopes at mid- and high elevation in Monti Picentini, a subcoastal mesozoic limestone ridge in Tyrrhenian Southern Italy. Their stands are widespread in grasslands of mostly secondary origin. At lower altitudes these grasslands replace former deciduous forest communities dominated by oaks or beech, while at higher altitudes they reach the summits, where they apparently merge into the remnants of the still partially grazed, zonal climatogenic, grasslands ranging above the local tree-line. Nevertheless primary stands of these grasslands are to be found around the many clusters of highly dynamic sites of the montane and sub-alpine levels, scattered around screes and rocky outcrops of the prevalently dolomitic morphology of the slopes. This virtual continuity of non arboreal communities across more than 1000 metres of the local topographical gradient, where azonal, relic stands of Pinus nigra s.l. are transitional between the grasslands and the surrounding zonal broadleaved forest vegetation, stresses patterns of the coenological changes between Festuco-Brometea and Elyno-Seslerietea along the catena, which suggest fragmentary persistence of a paleozonation.

  13. ESTIMATION OF CARBON SEQUESTRATION BY RUSSIAN FORESTS: GEOSPATIAL ISSUE

    Directory of Open Access Journals (Sweden)

    N. V. Malysheva

    2017-01-01

    Full Text Available Сategories of carbon sequestration assessment for Russian forests are identified by GIS toolkit. Those are uniform by bioclimatic and site-specific conditions strata corresponding to modern version of bioclimatic forest district division. Stratification of forests at early stage substantially reduces the ambiguity of the evaluation because phytomass conversion sequestration capacity and expansion factor dependent on site-specific condition for calculating of forest carbon sink are absolutely necessary. Forest management units were linked to strata. Biomass conversion and expansion factor for forest carbon sink assessment linked to the strata were recalculated for forest management units. All operations were carried out with GIS analytical toolkit due to accessible functionalities. Units for forest carbon storage inventory and forest carbon balance calculation were localized. Production capacity parameters and forest carbon sequestration capacity have been visualized on maps complied by ArcGIS. Based on spatially-explicit information, we have found out that the greatest annual rates of forest’s carbon accumulation in Russian forests fall into mixed coniferous-deciduous forests of European-Ural part of Russia to Kaliningrad, Smolensk and Briansk Regions, coniferous-deciduous forests close to the boundary of Khabarovsk Region and Primorskij Kray in the Far East, as well as separate forest management units of Kabardino-Balkariya NorthCaucasian mountain area. The geospatial visualization of carbon sequestration by Russian forests and carbon balance assessment has been given.

  14. Predictors of breeding site occupancy by amphibians in montane landscapes

    Science.gov (United States)

    Groff, Luke A.; Loftin, Cynthia S.; Calhoun, Aram J.K.

    2017-01-01

    Ecological relationships and processes vary across species’ geographic distributions, life stages and spatial, and temporal scales. Montane landscapes are characterized by low wetland densities, rugged topographies, and cold climates. Consequently, aquatic-dependent and low-vagility ectothermic species (e.g., pool-breeding amphibians) may exhibit unique ecological associations in montane landscapes. We evaluated the relative importance of breeding- and landscape-scale features associated with spotted salamander (Ambystoma maculatum) and wood frog (Lithobates sylvaticus) wetland occupancy in Maine's Upper Montane-Alpine Zone ecoregion, and we determined whether models performed better when the inclusive landscape-scale covariates were estimated with topography-weighted or circular buffers. We surveyed 135 potential breeding sites during May 2013–June 2014 and evaluated environmental relationships with multi-season implicit dynamics occupancy models. Breeding site occupancy by both species was influenced solely by breeding-scale habitat features. Spotted salamander occupancy probabilities increased with previous or current beaver (Castor canadensis) presence, and models generally were better supported when the inclusive landscape-scale covariates were estimated with topography-weighted rather than circular buffers. Wood frog occupancy probabilities increased with site area and percent shallows, but neither buffer type was better supported than the other. Model rank order and support varied between buffer types, but model inferences did not. Our results suggest pool-breeding amphibian conservation in montane Maine include measures to maintain beaver populations and large wetlands with proportionally large areas of shallows ≤1-m deep. Inconsistencies between our study and previous studies substantiate the value of region-specific research for augmenting species’ conservation management plans and suggest the application of out-of-region inferences may promote

  15. The Effects of Disturbance and Climate on Carbon Storage and the Exchanges of CO2 Water Vapor and Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements at a Cluster of Supersites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Law, Beverly E.; Thomas, Christoph K.

    2011-09-20

    This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned ~50,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture

  16. Native ectomycorrhizal fungi of limber and whitebark pine: Necessary for forest sustainability?

    Science.gov (United States)

    Cathy L. Cripps; Robert K. Antibus

    2011-01-01

    Ectomycorrhizal fungi are an important component of northern coniferous forests, including those of Pinus flexilis (limber pine) and P. albicaulis (whitebark pine) which are being decimated by white pine blister rust and mountain pine beetles. Ectomycorrhizal fungi are known to promote seedling establishment, tree health, and may play a role in forest sustainability....

  17. Here today, here tomorrow: Managing forests for fisher habitat in the Northern Rockies

    Science.gov (United States)

    Sue Miller; Michael Schwartz; Lucretia E. Olson

    2016-01-01

    The fisher is a unique member of the weasel family and a sensitive species in the northern Rockies. They were almost extirpated by trapping in the early twentieth century, but these animals (a mix between a native and introduced population) now inhabit a swath of mesic coniferous forests in Idaho and Montana. Forest managers need information on fisher distribution and...

  18. Detection probabilities of woodpecker nests in mixed conifer forests in Oregon

    Science.gov (United States)

    Robin E. Russell; Victoria A. Saab; Jay J. Rotella; Jonathan G. Dudley

    2009-01-01

    Accurate estimates of Black-backed (Picoides arcticus) and Hairy Woodpecker (P. villosus) nests and nest survival rates in post-fire landscapes provide land managers with information on the relative importance of burned forests to nesting woodpeckers. We conducted multiple-observer surveys in burned and unburned mixed coniferous forests in Oregon to identify important...

  19. Effects of forest fires and post-fire rehabilitation: a Colorado, USA case study

    Science.gov (United States)

    Lee H. MacDonald; Isaac J. Larsen

    2009-01-01

    Anthropogenic activities have increased the number of large, high-burn severity wildfires in the lower and mid-elevation coniferous forests in Colorado as well as much of the western US. Forests provide most of the water for cities and agriculture, and the increased runoff and erosion after wildfires is a major concern because of the potential adverse effects on...

  20. Reactive organic air components (C{sub 6}-C{sub 12}) of anthropogenic and biogenic origin in deciduous and coniferous forests. Final report; Reaktive organische Luftkomponenten (C{sub 6}-C{sub 12}) anthropogenen und biogenen Ursprungs in Laub- und Nadelwaeldern. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Steinbrecher, R.; Fehsenfeld, U.; Hauff, K.; Jocher, M.; Kolb, C.; Reichmann, A.; Steinbrecher, J.; Tranos, S.; Wiedemann, M.

    1996-08-01

    Biogenic hydrocarbons are known to act as important precursors in tropospheric photochemical ozone formation. Large uncertainties exist about the composition of the mix of volatile organic compounds, emitted by various plant species and the respective emission rates. The emission and deposition behavior of C{sub 6} to C{sub 12} volatile organic compounds (VOC) in Norway spruce forests, oak/pine forests, grassland and the Mediterranean Garigue were studied in detail. The cuvette technique was used to study the emission form the soil, trunks and twigs. The gradient method and the REA-technique were used to obtain canopy fluxes. Among the investigated ecosystems, forests and the Mediterranean Garigue were strong monoterpene emitters, grassland emitted negligible amounts of VOC. Tall forests may act as a sink for anthropogenic hydrocarbons. In a dense Norway spruce forests the contribution of the soil to the total canopy emission was small, the fraction of the steam region may range from 1 to 64% and is not clear yet. For the upper suncrown, with ca. 80% of the needle surfaces the most important source for isoprene and monoterpenes of a closed canopy, a emission factor for {alpha}-pinene of 636 pmol m{sup -2} total needle surface s{sup -1} (30 C leaf temperature and 1000 {mu}E PAR) was calculated. In contrast to the general opinion the main controlling factors of the {alpha}-pinene emission from Norway spruce twigs and the monoterpene emission from Mediterranean oaks are light and temperature. The results of this research were used to update biogenic VOC emission inventories and a significant improvement was achieved. (orig.) [Deutsch] Biogene Kohlenwasserstoffe sind wichtige Vorlaeufer fuer die photochemische Ozonbildung in der Troposphaere. Ueber die qualitative Zusammensetzung der Emissionen von fluechtigen organischen Verbindungen aus der Vegetation und die Quellenstaerken der verschiedenen Verbindungen bestehen grosse Unsicherheiten. In Fichtenwaeldern, Kiefern

  1. Underestimated effects of low temperature during early growing season on carbon sequestration of a subtropical coniferous plantation

    Directory of Open Access Journals (Sweden)

    W.-J. Zhang

    2011-06-01

    Full Text Available The impact of air temperature in early growing season on the carbon sequestration of a subtropical coniferous plantation was discussed through analyzing the eddy flux observations at Qianyanzhou (QYZ site in southern China from 2003 to 2008. This site experienced two cold early growing seasons (with temperature anomalies of 2–5 °C in 2005 and 2008, and a severe summer drought in 2003.
    Results indicated that the low air temperature from January to March was the major factor controlling the inter-annual variations in net carbon uptake at this site, rather than the previously thought summer drought. The accumulative air temperature from January to February showed high correlation (R2=0.970, p<0.001 with the annual net ecosystem production (NEP. This was due to the controls of early-month temperature on the plant phenology developing and the growing season length at this subtropical site. The cold spring greatly shortened the growing season length and therefore reduced the carbon uptake period. The eddy flux observations showed a carbon loss of 4.04 g C m−2 per growing-season day at this coniferous forest site. On the other hand, the summer drought also reduced the net carbon uptake strength because the photosynthesis was more sensitive to water deficit stress than the ecosystem respiration. However, the impact of summer drought occurred within a relatively shorter period and the carbon sequestration went back to the normal level once the drought was relieved.

  2. Sequential fragmentation of Pleistocene forests in an East Africa biodiversity hotspot: chameleons as a model to track forest history.

    Directory of Open Access Journals (Sweden)

    G John Measey

    Full Text Available The Eastern Arc Mountains (EAM is an example of naturally fragmented tropical forests, which contain one of the highest known concentrations of endemic plants and vertebrates. Numerous paleo-climatic studies have not provided direct evidence for ancient presence of Pleistocene forests, particularly in the regions in which savannah presently occurs. Knowledge of the last period when forests connected EAM would provide a sound basis for hypothesis testing of vicariance and dispersal models of speciation. Dated phylogenies have revealed complex patterns throughout EAM, so we investigated divergence times of forest fauna on four montane isolates in close proximity to determine whether forest break-up was most likely to have been simultaneous or sequential, using population genetics of a forest restricted arboreal chameleon, Kinyongia boehmei.We used mitochondrial and nuclear genetic sequence data and mutation rates from a fossil-calibrated phylogeny to estimate divergence times between montane isolates using a coalescent approach. We found that chameleons on all mountains are most likely to have diverged sequentially within the Pleistocene from 0.93-0.59 Ma (95% HPD 0.22-1.84 Ma. In addition, post-hoc tests on chameleons on the largest montane isolate suggest a population expansion ∼182 Ka.Sequential divergence is most likely to have occurred after the last of three wet periods within the arid Plio-Pleistocene era, but was not correlated with inter-montane distance. We speculate that forest connection persisted due to riparian corridors regardless of proximity, highlighting their importance in the region's historic dispersal events. The population expansion coincides with nearby volcanic activity, which may also explain the relative paucity of the Taita's endemic fauna. Our study shows that forest chameleons are an apposite group to track forest fragmentation, with the inference that forest extended between some EAM during the Pleistocene 1

  3. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.

    Science.gov (United States)

    Chen, Han Y H; Luo, Yong

    2015-10-01

    Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1)  year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1)  year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1)  year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1)  year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass. © 2015 John Wiley & Sons Ltd.

  4. Conservation of biodiversity: a useful paradigm for forest ecosystem management.

    Science.gov (United States)

    A.B. Carey; R.O. Curtis

    1996-01-01

    The coniferous forests of the Western Hemlock Zone of western Oregon and western Washington are remarkable in the longevity and stature of their trees, long intervals between stand-replacing events, capacity to produce timber, diversity of life forms and species, and controversy over their management. The controversy is hardly new (Overton and Hunt 1974). But the...

  5. The arboreal component of a dry forest in Northeastern Brazil

    OpenAIRE

    Rodal,M. J. N.; Nascimento,L. M.

    2006-01-01

    The dry forests of northeastern Brazil are found near the coastal zone and on low, isolated mountains inland amid semi-arid vegetation. The floristic composition of these dry montane forests, as well as their relationship to humid forests (Atlantic forest sensu stricto) and to the deciduous thorn woodlands (Caatinga sensu stricto) of the Brazilian northeast are not yet well known. This paper sought to determine if the arboreal plants in a dry forest growing on a low mountain in the semi-arid ...

  6. Investigations of the metabolism of the hormones ethylen, abscisic acid and indol-3-acetic acid in coniferous trees in forest die-back areas of south western Germany; Untersuchungen zum Haushalt der Hormone Ethylen, Abscisinsaeure und Indol-3-essigsaeure in Nadelbaeumen aus Waldschadensgebieten Suedwestdeutschlands

    Energy Technology Data Exchange (ETDEWEB)

    Christmann, A.

    1993-12-31

    The author investigated changes in the hormone metabolism of affected trees; he intended to analyze as many hormones as possible. The investigations were carried out on needles, owing to the fact that the symptoms observed suggested specific disturbances of the needle hormone metabolism. Further, needles are the main point of attack of airborne pollutants. In physiologically healthy trees, the seasonal changes in hormone levels were investigated as a function of different parameters such as forest site, needle age, tree age, and position of sample branches in the tree crown. On this basis, hormone changes resulting from tree disease were characterized for the sample trees. SO{sub 2} and ozone were taken into account in the investigations. It was found that although the development with time of physiological and structural characteristics suggests premature aging of the needles of affected trees, the changes in the hormone metabolism do not correspond to the hormonal control patterns of natural needle aging. SO-2 exposure or a lack of minerals at the forest site are excluded as causes of the observed damage. No conclusive information could be obtained on the effects of ozone. (orig./MG) [Deutsch] Es war ein Ziel dieser Arbeit, nachzuweisen, welche Veraenderungen im Hormonhaushalt erkrankter Baeume vorliegen und dabei moeglichst viele Hormone zu bearbeiten. Die Untersuchungen wurden an Nadeln durchgefuehrt, da die beobachtbaren Symptome fuer eine Stoerung des Hormonhaushaltes vor allem dieser Organe sprachen und sie zudem Hauptangriffsort fuer Luftschadstoffe sind. An physiologisch gesunden Baeumen wurde das Verhalten der einzelnen Hormone im Jahresverlauf in Abhaengigkeit von verschiedenen Einflussgroessen wie Standort, Nadelalter, Baumalter und Position von Probenaesten innerhalb der Baumkrone erarbeitet. Danach wurden die krankheitsbedingten Veraenderungen im Hormonhaushalt der entsprechenden Versuchsbaeume charakterisiert. Die Schadgase SO{sub 2} und Ozon wurden

  7. Manganese in the litter fall-forest floor continuum of boreal and temperate pine and spruce forest ecosystems

    DEFF Research Database (Denmark)

    Berg, Björn; Erhagen, Björn; Johansson, Maj-Britt

    2015-01-01

    We have reviewed the literature on the role of manganese (Mn) in the litter fall-to-humus subsystem. Available data gives a focus on North European coniferous forests. Manganese concentrations in pine (Pinus spp.) foliar litter are highly variable both spatially and temporally within the same lit...

  8. Statistical data on forest fund of Russia and changing of forest productivity in the second half of XX century

    Science.gov (United States)

    Alexeyev V.A.; Markov M.V.; R.A. Birdsey; Birdsey R.A.

    2004-01-01

    Contains statistical data on area and growing-stock volume of forest lands in Oblasts, Krays and Republics of Russian Federation, for the period 1961-1998. Positive dynamics of average growing stock for coniferous, deciduous hardwood and deciduous softwood tree stands by stand-age groups were disclosed. The impact of main anthropogenic and natural factors, including...

  9. Camera trap survey of medium and large mammals in a montane rainforest of northern Peru

    Directory of Open Access Journals (Sweden)

    Carlos F. Jiménez

    2011-05-01

    Full Text Available Camera traps are a powerful tool for inventorying elusive and rare species and very useful to obtain ecologi- cal data for plans that involve wildlife conservation. In Peru, several surveys have been carried out in lowland Amazonia especially in the southeastern part of the country, but none in montane cloud forests or Yungas. We present the first camera trap studies produced in Peruvian Yungas at the locality of Querocoto village (Chota, Cajamarca, based on 2002 (dry season and 1264 (wet season camera traps-days (CTD. Two localities were surveyed in wet and dry season: The Pagaibamba Protection Forest and the San Lorenzo Forest. The wet season study was carried out in October and November, and the dry season in July to September of 2008. Eight mammalian species were recorded in both seasons. Some 66 (91.7% independent records were obtained in the dry season, but only six (8.3% in the wet one, suggesting a seasonality effect. The Mountain Paca Cunicu- lus taczanowskii was the most commonly photographed species, with 17.0 and 1.6 capture frequencies (dry and wet season respectively, whereas the Long-tailed weasel Mustela frenata (0.5 capture frequency in the dry season was the most rare species. Activity patterns suggest that Mountain Paca C. taczanowskii and the Andean Skunk C. chinga are nocturnal, while Spectacled Bear T. ornatus and Tayra E. barbara are diurnal in the study area. Our records of the Ocelot Leopardus pardalis and the Tayra E. barbara are among the highest altitudinal records known for each species. In addition, the Anta Tapirus pinchaque was also identified by its tracks, representing one of the first record known south of the Huancabamba Depression.

  10. Responses of Two Litter-Based Invertebrate Communities to Changes in Canopy Cover in a Forest Subject to Hurricanes

    Science.gov (United States)

    Barbara Richardson; Michael Richardson; Grizelle González

    2018-01-01

    Tropical forests are subject to seasonal hurricanes resulting in cycles of canopy opening and deposition of litter, followed by periods of recovery and canopy closure. Herein, we review two studies of litter-based communities in Puerto Rico; (i) a survey of bromeliad invertebrates in three montane forest types along an elevational gradient in 1993–1997, during a period...

  11. Two new species of Leandra s.str. (Melastomataceae) from the Atlantic Forest in Espírito Santo, Brazil

    NARCIS (Netherlands)

    Reginato, M.; Goldenberg, R.

    2012-01-01

    Two species of Leandra that occur in the Atlantic Forest, in the state of Espírito Santo, eastern Brazil, are described and illustrated here. Leandra cristata has been found in the understory of montane rain forest, and can be recognized by the distinct nodal ridges on the young branches, by the

  12. Using High-Resolution Data to Assess Land Use Impact on Nitrate Dynamics in East African Tropical Montane Catchments

    Science.gov (United States)

    Jacobs, Suzanne R.; Weeser, Björn; Guzha, Alphonce C.; Rufino, Mariana C.; Butterbach-Bahl, Klaus; Windhorst, David; Breuer, Lutz

    2018-03-01

    Land use change alters nitrate (NO3-N) dynamics in stream water by changing nitrogen cycling, nutrient inputs, uptake and hydrological flow paths. There is little empirical evidence of these processes for East Africa. We collected a unique 2 year high-resolution data set to assess the effects of land use (i.e., natural forest, smallholder agriculture and commercial tea plantations) on NO3-N dynamics in three subcatchments within a headwater catchment in the Mau Forest Complex, Kenya's largest tropical montane forest. The natural forest subcatchment had the lowest NO3-N concentrations (0.44 ± 0.043 mg N L-1) with no seasonal variation. NO3-N concentrations in the smallholder agriculture (1.09 ± 0.11 mg N L-1) and tea plantation (2.13 ± 0.19 mg N L-1) subcatchments closely followed discharge patterns, indicating mobilization of NO3-N during the rainy seasons. Hysteresis patterns of rainfall events indicate a shift from subsurface flow in the natural forest to surface runoff in agricultural subcatchments. Distinct peaks in NO3-N concentrations were observed during rainfall events after a longer dry period in the forest and tea subcatchments. The high-resolution data set enabled us to identify differences in NO3-N transport of catchments under different land use, such as enhanced NO3-N inputs to the stream during the rainy season and higher annual export in agricultural subcatchments (4.9 ± 0.3 to 12.0 ± 0.8 kg N ha-1 yr-1) than in natural forest (2.6 ± 0.2 kg N ha-1 yr-1). This emphasizes the usefulness of our monitoring approach to improve the understanding of land use effects on riverine N exports in tropical landscapes, but also the need to apply such methods in other regions.

  13. Forest as Underground-Closed Dendrocenoecosystem

    Directory of Open Access Journals (Sweden)

    S. N. Sannikov

    2014-02-01

    Full Text Available As a result of quantitative «microecosystem» analysis of structural and functional relationships between biogeocenosis components in coniferous forests, the leading role of stand-edificator's root competition factor has been identified in determining the undergrowth and lower layer plant’s growth, compared with its «light» competition. Considering the dominant role of a tree stand root competition in the formation of other forest biogeocenosis components, new definition of «forest» as «underground-closed dendrocenoecosystem» have been proposed.

  14. Effects of adjacent land-use types on the distribution of soil organic carbon stocks in the montane area of central Taiwan.

    Science.gov (United States)

    Chen, Chiou-Pin; Juang, Kai-Wei; Cheng, Chih-Hsin; Pai, Chuang-Wen

    2016-12-01

    Soil organic carbon (SOC) stocks can be altered through reforestation and cropping. We estimated the effects of land use on SOC stocks after natural deciduous forests replaced by crops and coniferous plantations by examining the vertical distribution of SOC stocks at different depth intervals in an adjacent Oolong tea (Camellia sinensis L.) plantation, Moso bamboo (Phyllostachys pubescens) forest, Japanese cedar (Cryptomeria japonica) forest, and Taiwania (Taiwania cryptomerioides) forest in central Taiwan. The main soil characteristics, soil nitrogen (N) content, and soil carbon to nitrogen (C/N) ratio were also determined. Different land uses resulted in significantly higher bulk density, lower cation exchange capacity, SOC, soil N, soil C/N ratio, and SOC stocks in croplands compared to forestlands. Due to the long-term application of chemical fertilizers, a significantly lower soil pH was found in the tea plantation. Croplands had a lower soil C/N ratio because of less C input into the soil and a higher mineralization rate of organic carbon during cultivation. Similar SOC stocks were found in Taiwania and Japanese cedar forests (148.5 and 151.8 Mg C ha -1 , respectively), while the tea plantation had comparable SOC stocks to the bamboo forest (101.8 and 100.5 Mg C ha -1 , respectively). Over 40% of SOC stocks was stored in croplands and over 56% was stored in forestland within the upper 10 cm of soil. Coniferous plantations can contribute to a higher SOC stock than croplands, and a significant difference can be found in the top 0-5 cm of soil.

  15. Stomatal structure and physiology do not explain differences in water use among montane eucalypts.

    Science.gov (United States)

    Gharun, Mana; Turnbull, Tarryn L; Pfautsch, Sebastian; Adams, Mark A

    2015-04-01

    Understanding the regulation of water use at the whole-tree scale is critical to advancing the utility of physiological ecology, for example in its role in predictive hydrology of forested catchments. For three eucalypt species that dominate high-elevation catchments in south-eastern Australia, we examined if whole-tree water use could be related to three widely discussed regulators of water use: stomatal anatomy, sensitivity of stomata [i.e. stomatal conductance (g(s))] to environmental influences, and sapwood area. While daily tree water use varied sixfold among species, sap velocity and sapwood area varied in parallel. Combined, stomatal structure and physiology could not explain differences in species-specific water use. Species which exhibited the fastest (Eucalyptus delegatensis) and slowest (Eucalyptus pauciflora) rates of water use both exhibited greater capacity for physiological control of g(s) [indicated by sensitivity to vapour pressure deficit (VPD)] and a reduced capacity to limit g(s) anatomically [indicated by greater potential g(s) (g(max))]. Conversely, g(s) was insensitive to VPD and g(max) was lowest for Eucalyptus radiata, the species showing intermediate rates of water use. Improved knowledge of stomatal anatomy will help us to understand the capacity of species to regulate leaf-level water loss, but seems likely to remain of limited use for explaining rates of whole-tree water use in montane eucalypts at the catchment scale.

  16. Response of mountain Picea abies forests to stand-replacing bark beetle outbreaks: Neighbourhood effects lead to self-replacement

    Science.gov (United States)

    Thorsten Zeppenfeld; Miroslav Svoboda; R. Justin DeRose; Marco Heurich; Jorg Muller; Pavla Cizkova; Martin Stary; Radek Bace; Daniel C. Donato

    2015-01-01

    Large, severe disturbances drive many forest ecosystems over the long term, but pose management uncertainties when human experience with them is limited. Recent continent-scale outbreaks of bark beetles across the temperate Northern Hemisphere have raised major concerns as to whether coniferous forests will regenerate back towards pre-outbreak condition and...

  17. Using Lidar and color infrared imagery to successfully measure stand characteristics on the William B. Bankhead National Forest, Alabama

    Science.gov (United States)

    Jeffrey Stephens; Luben Dimov; Callie Schweitzer; Wubishet Tadesse

    2008-01-01

    Light detection and ranging (Lidar) and color infrared imagery (CIR) were used to quantify forest structure and to distinguish deciduous from coniferous trees for selected stands on the William B. Bankhead National Forest in Alabama. Lidar bare ground and vegetation point clouds were used to determine tree heights and tree locations. Lidar accuracy was assessed by...

  18. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Science.gov (United States)

    C. Phillips; L.A. Kluber; J.P. Martin; B.A. Caldwell; B.J. Bond

    2012-01-01

    Distinct aggregations of fungal hyphae and rhizomorphs, or “mats”, formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was...

  19. Mountain cloud forest and grown-shade coffee plantations: A comparison of tree biodiversity in central Veracruz, Mexico

    Directory of Open Access Journals (Sweden)

    Alfredo González-Zamora

    2016-04-01

    Full Text Available Aim of the study: The objective of this work is to compare tree diversity and richness among one grown-shade coffee plantation (CAE and two sites of montane cloud forests, one preserved (MCF1 and other perturbed (MCF2. We also develop an analysis of the importance of coffee plantations as a refuge of tree species, holding a potential role for conservation.Area of study: Our study area is the coffee region of Coatepec-Xico, in the state of Veracruz, Mexico.Material and methods: We compiled a list of all tree species in each site to determine tree diversity and floristic similarity (dissimilarity. We used different similarity indices and a cluster analysis to show relations among sites.Main results: 2721 individuals from 154 species were registered in the montane cloud forests as a whole. In the grown-shade coffee plantation we registered 2947 individuals from 64 species. The most similar sites were the perturbed montane cloud forest and the grown-shade coffee plantation and the least similar were the preserved montane cloud forest and the grown-shade coffee plantation. The high biodiversity found in all sites and the differences in tree composition between the two montane cloud forests supports evidence of the ecosystems richness in the region.Research highlight: Diversity differences among sites determine that the grown-shade coffee plantation is not substitute for montane cloud forest. CAE’s are developed under similar environmental conditions than the MCF; therefore, coexistence and recombination (replacement of species make them particularly complementary. CAE’s in Veracruz have a potential role as refuge for biodiversity.

  20. Mountain cloud forest and grown-shade coffee plantations: A comparison of tree biodiversity in central Veracruz, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    González-Zamora, A.; Esperón-Rodríguez, M.; Barradas, V.L.

    2016-07-01

    Aim of study: The objective of this work is to compare tree diversity and richness among one grown-shade coffee plantation (CAE) and two sites of montane cloud forests, one preserved (MCF1) and other perturbed (MCF2). We also develop an analysis of the importance of coffee plantations as a refuge of tree species, holding a potential role for conservation. Area of study: Our study area is the coffee region of Coatepec-Xico, in the state of Veracruz, Mexico. Material and methods: We compiled a list of all tree species in each site to determine tree diversity and floristic similarity (dissimilarity). We used different similarity indices and a cluster analysis to show relations among sites. Main results: 2721 individuals from 154 species were registered in the montane cloud forests as a whole. In the grown-shade coffee plantation we registered 2947 individuals from 64 species. The most similar sites were the perturbed montane cloud forest and the grown-shade coffee plantation and the least similar were the preserved montane cloud forest and the grown-shade coffee plantation. The high biodiversity found in all sites and the differences in tree composition between the two montane cloud forests supports evidence of the ecosystems richness in the region. Research highlight: Diversity differences among sites determine that the grown-shade coffee plantation is not substitute for montane cloud forest. CAE’s are developed under similar environmental conditions than the MCF; therefore, coexistence and recombination (replacement) of species make them particularly complementary. CAE’s in Veracruz have a potential role as refuge for biodiversity. (Author)

  1. First records of the Brown Creeper breeding along the middle Rio Grande in central New Mexico

    Science.gov (United States)

    Jean-Luc E. Cartron; David L. Hawksworth; Deborah M. Finch

    2008-01-01

    In New Mexico, the Brown Creeper (Certhia americana) typically breeds in montane coniferous forests ranging in elevation from 2100 to 3300 m (Ligon 1961, Hubbard 1978). Since 2003, however, we have also noted breeding in the riparian cottonwood forest (hereafter bosque) along the middle Rio Grande, in the south valley of Albuquerque, Bernalillo...

  2. Not seeing the grass for the trees: Timber plantations and agriculture shrink tropical montane grassland by two-thirds over four decades in the Palani Hills, a Western Ghats Sky Island.

    Science.gov (United States)

    Arasumani, M; Khan, Danish; Das, Arundhati; Lockwood, Ian; Stewart, Robert; Kiran, Ravi A; Muthukumar, M; Bunyan, Milind; Robin, V V

    2018-01-01

    Tropical montane habitats, grasslands, in particular, merit urgent conservation attention owing to the disproportionate levels of endemic biodiversity they harbour, the ecosystem services they provide, and the fact that they are among the most threatened habitats globally. The Shola Sky Islands in the Western Ghats host a matrix of native forest-grassland matrix that has been planted over the last century, with exotic timber plantations. The popular discourse on the landscape change is that mainly forests have been lost to the timber plantations and recent court directives are to restore Shola forest trees. In this study, we examine spatiotemporal patterns of landscape change over the last 40 years in the Palani Hills, a significant part of the montane habitat in the Western Ghats. Using satellite imagery and field surveys, we find that 66% of native grasslands and 31% of native forests have been lost over the last 40 years. Grasslands have gone from being the dominant, most contiguous land cover to one of the rarest and most fragmented. They have been replaced by timber plantations and, to a lesser extent, expanding agriculture. We find that the spatial pattern of grassland loss to plantations differs from the loss to agriculture, likely driven by the invasion of plantation species into grasslands. We identify remnant grasslands that should be prioritised for conservation and make specific recommendations for conservation and restoration of grasslands in light of current management policy in the Palani Hills, which favours large-scale removal of plantations and emphasises the restoration of native forests.

  3. For the Aphid fauna in the territory of Yenisei river basin. Communication 1. Aphids on coniferous plants

    Directory of Open Access Journals (Sweden)

    A. V. Gurov

    2016-02-01

    Full Text Available The paper reports on new and previously not well-known data on insufficiently studied fauna of aphids living on coniferous trees in Central Siberia of the basin of Yenisei river. This region is the extensive transect of latitudinal geographic zones from semi-desert in the South to the arctic deserts in the North. That is why this region is very peculiar. This is the reason for insufficient study of regional entomological fauna. Aphids (Homoptera: Aphidoideaare a very taxonomically and ecologically heterogeneous group of insects. The aphids living on conifer trees are notstudied completely on the territory of Yenisei basin. Due to this, the studying of not well-known and economicallyimportant aphids is actual. For example, the insufficient study of regional aphids is confirmed by the fact, that duringthree weeks only of the work for INTAS-94-0930 Project two new aphid species were found and described on thisterritory. Also, the new species of family Mindaridae, which was described in Mongolia in 1980, was found in Siberiafor the first time. These finds indicate the real possibility to describe an interesting conifer aphid complex in the absolutely unstudied forested territory between Angara and Lower Tunguska rivers. Geographical location, dates ofcollection and feeding preferences of different species are described. A general review of Yenisei basin Siberian aphidfauna is suggested for the first time ever.

  4. Radiation-induced cell death in embryogenic cells of coniferous plants

    International Nuclear Information System (INIS)

    Watanabe, Yoshito; Homma-Takeda, Shino; Yukawa, Masae; Nishimura, Yoshikazu; Sasamoto, Hamako; Takahagi, Masahiko

    2004-01-01

    Reproductive processes are particularly radiosensitive in plant development, which was clearly illustrated in reduction of seed formation in native coniferous plants around Chernobyl after the nuclear accident. For the purpose to investigate the effects of ionizing radiation on embryonic formation in coniferous plants, we used an embryo-derived embryogenic cell culture of a Japanese native coniferous plant, Japanese cedar (Cryplomeria japonica). The embryogenic cells were so radiosensitive that most of the cells died by X-ray irradiation of 5 Gy. This indicated that the embryogenic cells are as radiosensitive as some mammalian cells including lymphocytes. We considered that this type of radiosensitive cell death in the embryogenic cells should be responsible for reproductive damages of coniferous plants by low dose of ionizing radiation. The cell death of the embryogenic cells was characteristic of nuclear DNA fragmentation, which is typically observed in radiation-induced programmed cell death, i.e. apoptosis, in mammalian cells. On the other hand, cell death with nuclear DNA fragmentation did not develop by X-ray irradiation in vegetative cells including meristematic cells of Japanese cedar. This suggests that an apoptosis-like programmed cell death should develop cell-specifically in embryogenic cells by ionizing radiation. The abortion of embryogenic cells may work to prevent transmission of radiation-induced genetic damages to the descendants. (author)

  5. Absorption of Power Plants СО2 Emissions by Coniferous Tree Stands

    Directory of Open Access Journals (Sweden)

    Suvorova G.G.

    2015-12-01

    Full Text Available The article reviews the ability of coniferous (common pine, siberian larch and siberian spruce stands growing in 9 municipal districts of the Irkutsk region to absorb СО2 technogenic emission of heat power plants. (EIGAF index is suggested to characterize gas-absorbing (СО2–absorbing activity; the index reflects proportion between СО2 technogenic emission and photosynthetic productivity (GPP of coniferous tree stands. СО2–absorbing capacity in 8 of the monitored districts has been shown to significantly exceed the amount of carbon dioxide emission from heat power sector. The index values EIGAF=0.01-0.97 demonstrate that СО2 technogenic emission amounts to 1-97% of coniferous stands photosynthetic productivity in the areas under study. At the same time, the most industrially developed Angarsk district shows СО2 photosynthetic absorption to be 8-12 times lower than technogenic СО2 emission. Reasons of low gas-absorbing capacity of coniferous tree stands of this area are discussed.

  6. Minimizing measurement uncertainties of coniferous needle-leaf optical properties, part I: methodological review

    NARCIS (Netherlands)

    Yanez Rausell, L.; Schaepman, M.E.; Clevers, J.G.P.W.; Malenovsky, Z.

    2014-01-01

    Optical properties (OPs) of non-flat narrow plant leaves, i.e., coniferous needles, are extensively used by the remote sensing community, in particular for calibration and validation of radiative transfer models at leaf and canopy level. Optical measurements of such small living elements are,

  7. Rainfall, fog and throughfall dynamics in a sub-tropical ridge-top cloud forest, National Park of Garajonay (La Gomera, Canary Islands, Spain)

    NARCIS (Netherlands)

    García-Santos, G.; Bruijnzeel, L.A.

    2011-01-01

    Mixed tree-heath/beech forest is a type of subtropical montane cloud forest found on wind- and fog-exposed ridges in the Canary Islands. With a dry season of 5 months and an annual precipitation of 600-700 mm, the extra water inputs through fog interception assume particular importance in this

  8. Quantifying the missing link between forest albedo and productivity in the boreal zone

    Science.gov (United States)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-11-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Currently, the physical link between forest albedo and productivity is poorly understood, yet it is crucial for designing optimal forest management strategies for mitigating climate change. We investigated the relationships between boreal forest structure, albedo and FAPAR using a radiative transfer model called Forest Reflectance and Transmittance model FRT and extensive forest inventory data sets ranging from southern boreal forests to the northern tree line in Finland and Alaska (N = 1086 plots). The forests in the study areas vary widely in structure, species composition, and human interference, from intensively managed in Finland to natural growth in Alaska. We show that FAPAR of tree canopies (FAPARCAN) and albedo are tightly linked in boreal coniferous forests, but the relationship is weaker if the forest has broadleaved admixture, or if canopies have low leaf area and the composition of forest floor varies. Furthermore, the functional shape of the relationship between albedo and FAPARCAN depends on the angular distribution of incoming solar irradiance. We also show that forest floor can contribute to over 50 % of albedo or total ecosystem FAPAR. Based on our simulations, forest albedos can vary notably across the biome. Because of larger proportions of broadleaved trees, the studied plots in Alaska had higher albedo (0.141-0.184) than those in Finland (0.136-0.171) even though the albedo of pure coniferous forests was lower in Alaska. Our results reveal that variation in solar angle will need to be accounted for when evaluating climate effects of forest management in different latitudes. Furthermore, increasing the proportion of broadleaved trees in coniferous forests is the most important means of maximizing albedo without compromising productivity: based on our findings the potential of controlling forest

  9. Zoning of the Russian Federation territory based on forest management and forest use intensity

    Directory of Open Access Journals (Sweden)

    A. A. Маrtynyuk

    2016-02-01

    Full Text Available Over extended periods issues of forest management intensification are important in all aspects of Russian forest sector development. Sufficient research has been done in silviculture, forest planning and forest economics to address forest management intensification targets. Systems of our national territory forest management and forest economics zoning due to specifics of timber processing and forest area infrastructure have been developed. Despite sufficient available experience in sustainable forest management so far intensification issues were addressed due to development of new woodlands without proper consideration of forest regeneration and sustainable forest management operations. It resulted in forest resource depletion and unfavorable substitution of coniferous forests with less valuable softwood ones in considerable territories (especially accessible for transport. The situation is complicated since degree of forest ecosystem changes is higher in territories with high potential productivity. Ongoing changes combined with the present effective forest management system resulted in a situation where development of new woodlands is impossible without heavy investments in road construction; meanwhile road construction is unfeasible due to distances to timber processing facilities. In the meantime, changes in forest legislation, availability of forest lease holding, and promising post-logging forest regeneration technologies generate new opportunities to increase timber volumes due to application of other procedures practically excluding development of virgin woodlands. With regard to above, the Russian territory was zoned on a basis of key factors that define forest management and forest use intensification based on forest ecosystem potential productivity and area transport accessibility. Based on available data with GIS analysis approach (taking into consideration value of various factors the Russian Federation forest resources have been

  10. Unearthing Secrets of the Forest

    Science.gov (United States)

    Beldin, Sarah I.; Perakis, Steven S.

    2009-01-01

    Forests are a defining feature for large areas of the Pacific northwestern United States from northern California to Alaska. Coniferous temperate rainforests in the western Cascade and coastal mountain ranges are appreciated for their aesthetic value and abundant natural resources. Few people recognize the riches beneath the forest floor; yet, soil is a key ecosystem component that makes each type of forest unique. Soils harbor immense biological diversity and control the release of water and nutrients that support life above ground. Understanding how carbon and nutrients cycle in forests, known as forest biogeochemistry, is crucial for evaluating forest productivity, composition, diversity, and change. At the U.S. Geological Survey (USGS) Forest and Rangeland Ecosystem Science Center, research in the Terrestrial Ecosystems Laboratory focuses on nutrient cycling in five themes: climate change, nutrition and sustainability, fire effects, restoration, and forest-stream linkages. This research is essential to understand the entire forest ecosystem and to use the best science available to make informed policy and management decisions.

  11. Effects of Increased Nitrogen Availability on C and N Cycles in Tropical Forests: A Meta-Analysis

    Science.gov (United States)

    2015-01-01

    Atmospheric N deposition is predicted to increase four times over its current status in tropical forests by 2030. Our ability to understand the effects of N enrichment on C and N cycles is being challenged by the large heterogeneity of the tropical forest biome. The specific response will depend on the forest’s nutrient status; however, few studies of N addition appear to incorporate the nutrient status in tropical forests, possibly due to difficulties in explaining how this status is maintained. We used a meta-analysis to explore the consequences of the N enrichment on C and N cycles in tropical montane and lowland forests. We tracked changes in aboveground and belowground plant C and N and in mineral soil in response to N addition. We found an increasing trend of plant biomass in montane forests, but not in lowland forests, as well as a greater increase in NO emission in montane forest compared with lowland forest. The N2O and NO emission increase in both forest; however, the N2O increase in lowland forest was significantly even at first time N addition. The NO emission increase showed be greater at first term compared with long term N addition. Moreover, the increase in total soil N, ammonium, microbial N, and dissolved N concentration under N enrichment indicates a rich N status of lowland forests. The available evidence of N addition experiments shows that the lowland forest is richer in N than montane forests. Finally, the greater increase in N leaching and N gas emission highlights the importance of study the N deposition effect on the global climate change. PMID:26633681

  12. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

    Science.gov (United States)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

    2016-12-01

    The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests.

  13. [Simulation study on the effects of climate change on aboveground biomass of plantation in southern China: Taking Moshao forest farm in Huitong Ecological Station as an example].

    Science.gov (United States)

    Dai, Er Fu; Zhou, Heng; Wu, Zhuo; Wang, Xiao-Fan; Xi, Wei Min; Zhu, Jian Jia

    2016-10-01

    Global climate warming has significant effect on territorial ecosystem, especially on forest ecosystem. The increase in temperature and radiative forcing will significantly alter the structure and function of forest ecosystem. The southern plantation is an important part of forests in China, its response to climate change is getting more and more intense. In order to explore the responses of southern plantation to climate change under future climate scenarios and to reduce the losses that might be caused by climate change, we used climatic estimated data under three new emission scenarios, representative concentration pathways (RCPs) scenarios (RCP2.6 scenario, RCP4.5 scenario, and RCP8.5 scenario). We used the spatially dynamic forest landscape model LANDIS-2, coupled with a forest ecosystem process model PnET-2, to simulate the impact of climate change on aboveground net primary production (ANPP), species' establishment probability (SEP) and aboveground biomass of Moshao forest farm in Huitong Ecological Station, which located in Hunan Province during the period of 2014-2094. The results showed that there were obvious differences in SEP and ANPP among different forest types under changing climate. The degrees of response of SEP to climate change for different forest types were shown as: under RCP2.6 and RCP4.5, artificial coniferous forest>natural broadleaved forest>artificial broadleaved forest. Under RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The degrees of response of ANPP to climate change for different forest types were shown as: under RCP2.6, artificial broadleaved forest> natural broadleaved forest>artificial coniferous forest. Under RCP4.5 and RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The aboveground biomass of the artificial coniferous forest would decline at about 2050, but the natural broadleaved forest and artificial broadleaved forest showed a

  14. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O

    Directory of Open Access Journals (Sweden)

    K. Pilegaard

    2006-01-01

    Full Text Available Soil emissions of NO and N2O were measured continuously at high frequency for more than one year at 15 European forest sites as part of the EU-funded project NOFRETETE. The locations represent different forest types (coniferous/deciduous and different nitrogen loads. Geographically they range from Finland in the north to Italy in the south and from Hungary in the east to Scotland in the west. The highest NO emissions were observed from coniferous forests, whereas the lowest NO emissions were observed from deciduous forests. The NO emissions from coniferous forests were highly correlated with N-deposition. The site with the highest average annual emission (82 μg NO-N m−2 h−1 was a spruce forest in South-Germany (Höglwald receiving an annual N-deposition of 2.9 g m−2. NO emissions close to the detection limit were observed from a pine forest in Finland where the N-deposition was 0.2 g N m−2 a−1. No significant correlation between N2O emission and N-deposition was found. The highest average annual N2O emission (20 μg N2O-N m−2 h−1 was found in an oak forest in the Mátra mountains (Hungary receiving an annual N-deposition of 1.6 g m−2. N2O emission was significantly negatively correlated with the C/N ratio. The difference in N-oxide emissions from soils of coniferous and deciduous forests may partly be explained by differences in N-deposition rates and partly by differences in characteristics of the litter layer and soil. NO was mainly derived from nitrification whereas N2O was mainly derived from denitrification. In general, soil moisture is lower at coniferous sites (at least during spring time and the litter layer of coniferous forests is thick and well aerated favouring nitrification and thus release of NO. Conversely, the higher rates of denitrification in deciduous forests due to a compact and moist litter layer lead to N2O production and NO consumption in the soil. The two factors soil moisture and soil temperature are

  15. A comparative analysis of simulated and observed photosynthetic CO2 uptake in two coniferous forest canopies

    DEFF Research Database (Denmark)

    Ibrom, A.; Jarvis, P.G.; Clement, R.

    2006-01-01

    -photosynthetically-active-radiation-induced biophysical variability in the simulated Pg. Analysis of residuals identified only small systematic differences between the modeled flux estimates and turbulent flux measurements at high vapor pressure saturation deficits. The merits and limitations of comparative analysis for quality evaluation of both...

  16. Feeding ecology of sharp-shinned hawks in deciduous and coniferous forests in Colorado

    Science.gov (United States)

    Suzanne M. Joy; Richard T. Reynolds; Richard L. Knight; Richard W. Hoffman

    1994-01-01

    Feeding ecology of 11 Sharp-skinned Hawk (Accipiter striates) pairs nesting in aspen (Populus tremuloides), conifer (Abies, Picea spp.), and mixed aspen-conifer habitats in southwest Colorado was investigated during 1988-1989. Small birds (x-bar = 20.9 g, SE = 0.8 g) and mammals (x-bar = 41.1 g, SE = 3.3 g) comprised 91 and 9% of...

  17. Index for characterizing post-fire soil environments in temperate coniferous forests

    Science.gov (United States)

    Jain, Theresa B.; Pilliod, David S.; Graham, Russell T.; Lentile, Leigh B.; Sandquist, Jonathan E.

    2012-01-01

    Many scientists and managers have an interest in describing the environment following a fire to understand the effects on soil productivity, vegetation growth, and wildlife habitat, but little research has focused on the scientific rationale for classifying the post-fire environment. We developed an empirically-grounded soil post-fire index (PFI) based on available science and ecological thresholds. Using over 50 literature sources, we identified a minimum of five broad categories of post-fire outcomes: (a) unburned, (b) abundant surface organic matter ( > 85% surface organic matter), (c) moderate amount of surface organic matter ( ≥ 40 through 85%), (d) small amounts of surface organic matter ( communication of potential responses or outcomes (e.g., erosion potential) from fires of varying severities.

  18. Tree crown structure indicators in a natural uneven-aged mixed coniferous forest in northeastern Mexico

    Science.gov (United States)

    Javier Jimenez-Perez; Oscar Aguirre-Calderon; Horst Kramer

    2006-01-01

    Characterization of tree crown structure provides critical information to assess a variety of ecological conditions for multiple purposes and applications. For biomass growth, for example, tree crowns have basic physiological functions: assimilation, respiration, and transpiration. How tree crowns spatially interact and grow can bring about a seamless landscape of...

  19. Using historical ecology to reassess the conservation status of coniferous forests in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Szabó, Péter; Kuneš, Petr; Svobodová-Svitavská, Helena; Švarcová, Markéta Gabriela; Křížová, Lucie; Suchánková, Silvie; Müllerová, Jana; Hédl, Radim

    2017-01-01

    Roč. 31, č. 1 (2017), s. 150-160 ISSN 0888-8892 EU Projects: European Commission(XE) 278065 - LONGWOOD Institutional support: RVO:67985939 Keywords : applied historical ecology * interdisciplinarity * vegetation models Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.842, year: 2016

  20. Documentation of meteorological data from the coniferous forest biome primary station in Oregon.

    Science.gov (United States)

    R.H. Waring; H.R. Holbo; R.P. Bueb; R.L. Fredriksen

    1978-01-01

    As part of the International Biological Program, a primary meteorological station was installed in the west-central Cascade Range of Oregon. Short-wave solar radiation, air temperature, dewpoint temperature, windspeed, and precipitation are recorded continuously. Climatic data are summarized in a daily record available from May 11, 1972, to date. This report details...

  1. Empirical test of the spectral invariants theory using imaging spectroscopy data from a coniferous forest

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Rautianien, M.; Stenberg, P.; Malenovský, Z.

    2011-01-01

    Roč. 13, č. 4 (2011), s. 668-675 ISSN 0303-2434 R&D Projects: GA MŽP(CZ) SP/2D1/70/08; GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : recollision probability * escape factor * needle albedo * CHRIS PROBA * AISA Subject RIV: EH - Ecology, Behaviour Impact factor: 1.744, year: 2011

  2. Index for characterizing post-fire soil environments in temperate coniferous forests

    Science.gov (United States)

    Theresa B. Jain; David S. Pilliod; Russell T. Graham; Leigh B. Lentile; Jonathan E. Sandquist

    2012-01-01

    Many scientists and managers have an interest in describing the environment following a fire to understand the effects on soil productivity, vegetation growth, and wildlife habitat, but little research has focused on the scientific rationale for classifying the post-fire environment. We developed an empirically-grounded soil post-fire index (PFI) based on available...

  3. Post-fire salvage logging reduces carbon sequestration in Mediterranean coniferous forest

    OpenAIRE

    Serrano-Ortiz, P.; Marañón-Jiménez, S.; Reverter, B.R.; Sánchez-Cañete, E.P.; Castro, J.; Zamora, R.; Kowalski, A.S.

    2011-01-01

    Post-fire salvage logging is a common silvicultural practice around the world, with the potential to alter the regenerative capacity of an ecosystem and thus its role as a source or a sink of carbon. However, there is no information on the effect of burnt wood management on the net ecosystem carbon balance. Here, we examine for the first time the effect of post-fire burnt wood management on the net ecosystem carbon balance by comparing the carbon exchange of two treatments in a burnt Mediterr...

  4. Biogeochemical cycles of chlorine in the coniferous forest ecosystem: practical implications

    Czech Academy of Sciences Publication Activity Database

    Matucha, Miroslav; Clarke, N.; Lachmanová, Z.; Forczek, Sándor; Fuksová, Květa; Gryndler, Milan

    2010-01-01

    Roč. 56, č. 8 (2010), s. 357-367 ISSN 1214-1178 R&D Projects: GA MŠk 7F09026 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50200510 Keywords : chlorine cycle * chlorination * enzymatic Subject RIV: GK - Forestry Impact factor: 1.076, year: 2010 www.agriculturejournals.cz/publishedArticle?journal=PSE&volume=56&firstPage=357

  5. A method for determining fire history in coniferous forests in the Mountain West

    Science.gov (United States)

    Stephen F. Arno; Kathy M. Sneck

    1977-01-01

    Describes a method for determining historic fire frequency, intensity, and size from cross sections collected from fire-scarred trees and tree age classes determined through increment borings. Tells how to interpret the influence of fire in stand composition and structure and how to identify effects of modern fire suppression.

  6. Forest biomass and tree planting for fossil fuel offsets in the Colorado Front Range

    Science.gov (United States)

    Mike A. Battaglia; Kellen Nelson; Dan Kashian; Michael G. Ryan

    2010-01-01

    This study estimates the amount of carbon available for removal in fuel reduction and reforestation treatments in montane forests of the Colorado Front Range based on site productivity, pre-treatment basal area, and planting density. Thinning dense stands will yield the greatest offsets for biomass fuel. However, this will also yield the greatest carbon losses, if the...

  7. Ecological contingency in the effects of climatic warming on forest herb communities

    Science.gov (United States)

    Harrison, Susan; Damschen, Ellen Ingman; Grace, James B.

    2010-01-01

    Downscaling from the predictions of general climate models is critical to current strategies for mitigating species loss caused by climate change. A key impediment to this downscaling is that we lack a fully developed understanding of how variation in physical, biological, or land-use characteristics mediates the effects of climate change on ecological communities within regions. We analyzed change in understory herb communities over a 60-y period (1949/1951–2007/2009) in a complex montane landscape (the Siskiyou Mountains, Oregon) where mean temperatures have increased 2 °C since 1948, similar to projections for other terrestrial communities. Our 185 sites included primary and secondary-growth lower montane forests (500–1.200 m above sea level) and primary upper montane to subalpine forests (1,500–2,100 m above sea level). In lower montane forests, regardless of land-use history, we found multiple herb-community changes consistent with an effectively drier climate, including lower mean specific leaf area, lower relative cover by species of northern biogeographic affinity, and greater compositional resemblance to communities in southerly topographic positions. At higher elevations we found qualitatively different and more modest changes, including increases in herbs of northern biogeographic affinity and in forest canopy cover. Our results provide community-level validation of predicted nonlinearities in climate change effects.

  8. The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

    NARCIS (Netherlands)

    Cuello, A.N.L.; Cleef, A.M.

    2009-01-01

    Montane forest community composition of Ranial de Guaramacal, Venezuelan Andes, was studied along the altitudinal gradient on both sides of the range with different slope expositions. Thirty five 0.1 ha plots were Surveyed, with variable intervals of 30 to 150 meters between 1350 in and 2890 in and

  9. The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

    NARCIS (Netherlands)

    Cuello A., N.L.; Cleef, A.M.

    2009-01-01

    Montane forest community composition of Ramal de Guaramacal, Venezuelan Andes, was studied along the altitudinal gradient on both sides of the range with different slope expositions. Thirty five 0.1 ha plots were surveyed, with variable intervals of 30 to 150 meters between 1350 m and 2890 m and

  10. Clusia nubium (Clusiaceae): a new species from cloud-forests of southwestern Ecuador

    DEFF Research Database (Denmark)

    Gustafsson, Mats; Borchsenius, Finn

    2016-01-01

    Clusia nubium from southwestern Ecuador is described as a species new to science. It grows as a hemiepiphyte in lower montane cloud forest. The species belongs to Clusia sect. Retinostemon, a largely Andean group characterized by male flowers with a resin-secreting synandrium of completely fused...

  11. The measurement of Cs-137 in Latvian forest litter

    International Nuclear Information System (INIS)

    Riekstina, D.; Veveris, O.

    1998-01-01

    The role of forests in the distribution of cesium 137 over the Latvian territory affected by the Chernobyl accident was examined. Concentrations of this radionuclide in soil in pine, spruce, and birch forests and in non-forest areas in Rucava (affected by the accident) and in Taurene (non-polluted zone) were compared. In Rucava, the concentrations of Cs-137 fluctuated over the region of 108-724 Bq/kg in a pine forest, 205-2270 Bq/kg in a spruce forest, and 15-30 Bq/kg beyond the forest region. In Taurene, the corresponding figures were 42-157, 19-133, and 3-19 Bq/kg, respectively. The data confirm the appreciable role of coniferous forests in the absorption of Cs-137 from the air and its redistribution within the forest area. (P.A.)

  12. Leaching of nitrate from temperate forests - effects of air pollution and forest management

    DEFF Research Database (Denmark)

    Gundersen, Per; Schmidt, Inger Kappel; Raulund-Rasmussen, Karsten

    2006-01-01

    deposition (> 8-10 kg ha(-1) a(-1)). We synthesized the current understanding of factors controlling N leaching in relation to three primary causes of N cycle disruption: (i) Increased N input (air pollution, fertilization, N-2 fixing plants). In European forests, elevated N deposition explains approximately...... half of the variability in N leaching, some of the remaining variability could be explained by differences in N availability or "N status". For coniferous forests, needle N content above 1.4% and (or) forest floor C:N ratio lower than 25 were thresholds for elevated nitrate leaching. At adjacent sites...... conifer forests receive higher N deposition and exhibit higher nitrate loss than deciduous forests; an exception is alder that shows substantial nitrate leaching through N fixation input. Fertilization with N poses limited risk to water quality, when applied to N-limited forests. (ii) Reduced plant uptake...

  13. [Carbon storage of forest stands in Shandong Province estimated by forestry inventory data].

    Science.gov (United States)

    Li, Shi-Mei; Yang, Chuan-Qiang; Wang, Hong-Nian; Ge, Li-Qiang

    2014-08-01

    Based on the 7th forestry inventory data of Shandong Province, this paper estimated the carbon storage and carbon density of forest stands, and analyzed their distribution characteristics according to dominant tree species, age groups and forest category using the volume-derived biomass method and average-biomass method. In 2007, the total carbon storage of the forest stands was 25. 27 Tg, of which the coniferous forests, mixed conifer broad-leaved forests, and broad-leaved forests accounted for 8.6%, 2.0% and 89.4%, respectively. The carbon storage of forest age groups followed the sequence of young forests > middle-aged forests > mature forests > near-mature forests > over-mature forests. The carbon storage of young forests and middle-aged forests accounted for 69.3% of the total carbon storage. Timber forest, non-timber product forest and protection forests accounted for 37.1%, 36.3% and 24.8% of the total carbon storage, respectively. The average carbon density of forest stands in Shandong Province was 10.59 t x hm(-2), which was lower than the national average level. This phenomenon was attributed to the imperfect structure of forest types and age groups, i. e., the notably higher percentage of timber forests and non-timber product forest and the excessively higher percentage of young forests and middle-aged forest than mature forests.

  14. Drought responses of conifers in ecotone forests of northern Arizona: tree ring growth and leaf delta13C.

    Science.gov (United States)

    Adams, Henry D; Kolb, Thomas E

    2004-07-01

    We sought to understand differences in tree response to meteorological drought among species and soil types at two ecotone forests in northern Arizona, the pinyon-juniper woodland/ponderosa pine ecotone, and the higher elevation, wetter, ponderosa pine/mixed conifer ecotone. We used two approaches that provide different information about drought response: the ratio of standardized radial growth in wet years to dry years (W:D) for the period between years 1950 and 2000 as a measure of growth response to drought, and delta13C in leaves formed in non-drought (2001) and drought (2002) years as a measure of change in water use efficiency (WUE) in response to drought. W:D and leaf delta13C response to drought for Pinus edulis and P. ponderosa did not differ for trees growing on coarse-texture soils derived from cinders compared with finer textured soils derived from flow basalts or sedimentary rocks. P. ponderosa growing near its low elevation range limit at the pinyon-juniper woodland/ponderosa pine ecotone had a greater growth response to drought (higher W:D) and a larger increase in WUE in response to drought than co-occurring P. edulis growing near its high elevation range limit. P. flexilis and Pseudotsuga menziesii growing near their low elevation range limit at the ponderosa pine/mixed conifer ecotone had a larger growth response to drought than co-occurring P. ponderosa growing near its high elevation range limit. Increases in WUE in response to drought were similar for all species at the ponderosa pine/mixed conifer ecotone. Low elevation populations of P. ponderosa had greater growth response to drought than high-elevation populations, whereas populations had a similar increase in WUE in response to drought. Our findings of different responses to drought among co-occurring tree species and between low- and high-elevation populations are interpreted in the context of drought impacts on montane coniferous forests of the southwestern USA.

  15. Previsual detection of two conifer-infesting adelgid species in North American forest

    Science.gov (United States)

    Stephen Cook; Karen Humes; Ryan Hruska; Christopher Williams; Grant Fraley

    2010-01-01

    The balsam woolly adelgid, Adelges piceae, and hemlock woolly adelgid, A. tsugae (Homoptera: Adelgidae), are invasive pests of coniferous forests in both the Eastern and Western United States. Balsam woolly adelgid is capable of attacking and killing native North American firs, with Fraser fir (Abies fraseri...

  16. Effects of fire severity on plant nutrient uptake reinforce alternate pathways of succession in boreal forests

    Science.gov (United States)

    A. Shenoy; K. Kielland; J.F. Johnstone

    2013-01-01

    Fire activity in the North American boreal region is projected to increase under a warming climate and trigger changes in vegetation composition. In black spruce forests of interior Alaska, fire severity impacts residual organic layer depth which is strongly linked to the relative dominance of deciduous versus coniferous trees in early succession. These alternate...

  17. Ponderosa pine, mixed conifer, and spruce-fir forests [Chapter 2

    Science.gov (United States)

    Michael A. Battaglia; Wayne D. Shepperd

    2007-01-01

    Before European settlement of the interior west of the United States, coniferous forests of this region were influenced by many disturbance regimes, primarily fires, insects, diseases, and herbivory, which maintained a diversity of successional stages and vegetative types across landscapes. Activities after settlement, such as fire suppression, grazing, and logging...

  18. Global-Scale Patterns of Forest Fragmentation

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2000-12-01

    Full Text Available We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 x 9 pixels, "small" scale to 59,049 km 2 (243 x 243 pixels, "large" scale were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe-Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types and Europe-Asia (four types, in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland. The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf.

  19. Global-scale patterns of forest fragmentation

    Science.gov (United States)

    Riitters, K.; Wickham, J.; O'Neill, R.; Jones, B.; Smith, E.

    2000-01-01

    We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 ?? 9 pixels, "small" scale) to 59,049 km 2 (243 ?? 243 pixels, "large" scale) were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined) from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe - Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types) and Europe - Asia (four types), in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland). The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf. Copyright ?? 2000 by The Resilience Alliance.

  20. BASIC CONCEPTS AND METHODS OF RESTORATION OF NATURAL FORESTS IN EASTERN EUROPE

    Directory of Open Access Journals (Sweden)

    V. N. Korotkov

    2017-03-01

    Full Text Available The modern forest in coniferous-broadleaf (hemiboreal and broadleaf zones of Eastern Europe were formed as a result of long-term human impact. This led to the loss of natural forests and total dominance of secondary forests combined with monocultures of spruce and pine that were created in clearings, burned areas and fallow lands. The reforestation model that was common in the late XIX and first half of the XX century and that was focused on the establishment of monocultures commercially valuable coniferous tree species (spruce and pine over large areas has resulted in declining biological diversity, increasing risk of tree damage due to outbreaks of pathogens and phytophagous insects, decreasing soil fertility, worsening soil and water conservation functions of forests. When restoring the prototypes of natural forests it is necessary to be guided by the modern concepts of synecology and model reconstructions of forest cover in pre-anthropogenic period that are briefly discussed in the paper. Based on the analysis of literature and research experience the author proposes the concept of natural forest restoration that can be applied primarily to the coniferous-broadleaf and broadleaf forests. The main goal is to create multiple-aged and polydominant near-natural forest ecosystems with higher resistance to fungal diseases and outbreaks of phytophagous insects. The field of concept application is specially protected natural areas (national parks, natural parks, wildlife sanctuaries, etc., different categories of protective forests located within the zones of coniferous-broadleaf and broadleaf forests on the East European Plain. The formation of multiple-aged forests is possible when group felling and group-clear felling that largely imitate the natural gap-mosaic stand are implemented. The formation of new generations of trees is possible both due to the natural regeneration and the development of forest cultures. The article provides the full set

  1. Increased topsoil carbon stock across China's forests.

    Science.gov (United States)

    Yang, Yuanhe; Li, Pin; Ding, Jinzhi; Zhao, Xia; Ma, Wenhong; Ji, Chengjun; Fang, Jingyun

    2014-08-01

    Biomass carbon accumulation in forest ecosystems is a widespread phenomenon at both regional and global scales. However, as coupled carbon-climate models predicted, a positive feedback could be triggered if accelerated soil carbon decomposition offsets enhanced vegetation growth under a warming climate. It is thus crucial to reveal whether and how soil carbon stock in forest ecosystems has changed over recent decades. However, large-scale changes in soil carbon stock across forest ecosystems have not yet been carefully examined at both regional and global scales, which have been widely perceived as a big bottleneck in untangling carbon-climate feedback. Using newly developed database and sophisticated data mining approach, here we evaluated temporal changes in topsoil carbon stock across major forest ecosystem in China and analysed potential drivers in soil carbon dynamics over broad geographical scale. Our results indicated that topsoil carbon stock increased significantly within all of five major forest types during the period of 1980s-2000s, with an overall rate of 20.0 g C m(-2) yr(-1) (95% confidence interval, 14.1-25.5). The magnitude of soil carbon accumulation across coniferous forests and coniferous/broadleaved mixed forests exhibited meaningful increases with both mean annual temperature and precipitation. Moreover, soil carbon dynamics across these forest ecosystems were positively associated with clay content, with a larger amount of SOC accumulation occurring in fine-textured soils. In contrast, changes in soil carbon stock across broadleaved forests were insensitive to either climatic or edaphic variables. Overall, these results suggest that soil carbon accumulation does not counteract vegetation carbon sequestration across China's forest ecosystems. The combination of soil carbon accumulation and vegetation carbon sequestration triggers a negative feedback to climate warming, rather than a positive feedback predicted by coupled carbon-climate models

  2. Episodic Canopy Structural Transformations and Biological Invasion in a Hawaiian Forest

    Directory of Open Access Journals (Sweden)

    Christopher S. Balzotti

    2017-07-01

    Full Text Available The remaining native forests on the Hawaiian Islands have been recognized as threatened by changing climate, increasing insect outbreak, new deadly pathogens, and growing populations of canopy structure-altering invasive species. The objective of this study was to assess long-term, net changes to upper canopy structure in sub-montane forests on the eastern slope of Mauna Kea volcano, Hawai‘i, in the context of continuing climate events, insect outbreaks, and biological invasion. We used high-resolution multi-temporal Light Detection and Ranging (LiDAR data to quantify near-decadal net changes in forest canopy height and gap distributions at a critical transition between alien invaded lowland and native sub-montane forest at the end of a recent drought and host-specific insect (Scotorythra paludicola outbreak. We found that sub-montane forests have experienced a net loss in average canopy height, and therefore structure and aboveground carbon stock. Additionally, where invasive alien tree species co-dominate with native trees, the upper canopy structure became more homogeneous. Tracking the loss of forest canopy height and spatial variation with airborne LiDAR is a cost-effective way to monitor forest canopy health, and to track and quantify ecological impacts of invasive species through space and time.

  3. The behavior of 137Cs in the soil-forest plants system

    International Nuclear Information System (INIS)

    Spiridonov, S.; Fesenko, S.; Avila, R.

    1999-01-01

    A model has been developed which simulates the behavior of 137 Cs in forest litter and soil, as well as seasonal and long-term dynamics of 137 CS content in forest plants. The long-term cycles of 137 CS migration are described as an integrated result of multiple annual cycles. The model results demonstrate a satisfactory coincidence with the experimental data. A set of model parameters is provided for each of four different types of forest (coniferous and deciduous forest; automorphic and semi-hydromorphic landscapes). The model allows an evaluation of the effects of countermeasures implemented in the contaminated forest. Refs. 1 (author)

  4. Nanocarbon materials obtained of coniferous trees in the composition of black powder

    Directory of Open Access Journals (Sweden)

    Zulkhair Mansurov

    2012-03-01

    Full Text Available Obtained black powders from coniferous wood. The carbon content of up to 90% can be used in warfare, pyrotechnics and industries. In the Republic of Kazakhstan does not produce gunpowder. In the energy-intensive materials laboratory, developed industrial black powders (ordinary, composed of components produced in the republic of Kazakhstan. Sulfur, activated carbon, based on apricot seeds and rice husks, softwood sawdust, which have lower costs than their foreign counterparts.

  5. Retention of available P in acid soils of tropical and subtropical evergreen broad-leaved forests

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianhui; ZOU Xiaoming; YANG Xiaodong

    2007-01-01

    Precipitation of mineral phosphate is often recognized as a factor of limiting the availability of P in acidic soils of tropical and subtropical forests.For this paper,we studied the extractable P pools and their transformation rates in soils of a tropical evergreen forest at Xishuangbanna and a subtropical montane wet forest at the Ailao Mountains in order to understand the biogeochemical processes regulating P availability in acidic soils.The two forests differ in forest humus layer;it is deep in the Ailao forest while little is present in the Xishuangbanna forest.The extractable P pools by resin and sodium-bicarbonate decreased when soil organic carbon content was reduced.The lowest levels of extractable P pools occurred in the surface (0-10 era) mineral soils of the Xishuangbanna forest.However,microbial P in the mineral soil of the Xishuangbauna forest was twice that in the Ailao forest.Potential rates of microbial P immobilization were greater than those of organic P mineralization in mineral soils for both forests.We suggest that microbial P immobilization plays an essential role in avoiding mineral P precipitation and retaining available P of plant in tropical acidic soils,whereas both floor mass accumulation and microbial P immobilization function benefit retaining plant available P in subtropical montane wet forests.

  6. Forecast for the dynamics of forests in Krasnoyarsk Krai

    Directory of Open Access Journals (Sweden)

    V. A. Sokolov

    2017-08-01

    Full Text Available Dynamics of the forest ecosystems connects closely with the natural and anthropogenic changes (succession processes, forest fires, windfalls, forest insects, forest diseases, forest harvesting, reforestation, the infrastructure development associated and not associated with forestry and so forth. Authors do not consider the up-to-day problem of global warming on the Earth, as opinions of scientists are controversial. Retrospective analysis of forest dynamics of the Krasnoyarsk Territory for the last 50 years has allowed to assess the impact of these changes on condition of forests. The univocal conclusion of deterioration of forest quality has been drawn. Area of coniferous forests has decreased by 9 %, including the 25 % reduction of mature and overmature forest stands. To forecast forest dynamics, modelling of natural and anthropogenic processes in the forest ecosystems has been applied, taking into account that the existing system of measures for reforestation and tending care of forest actually does not affect dynamics of the forests. The provision about increase in forest harvesting volume to 37.6 million м3 of the Development Strategy of the Krasnoyarsk Forest Industrial Complex has been used for forecasting. It has been proved that such scale of forest harvesting will inevitably lead to the over-cutting of ecological and economic accessible allowable cut that will negatively affect the forest condition in 50 years. Our forecast of forest dynamics of the Krasnoyarsk Territory for the next 50 years has showed that negative changes will continue at the same pace under the current extensive form of forest management. What is more, the maximum decrease of forest area might be in pine forests (32.9 % with the significant increase of broadleaves forests – 22.7 %. To improve the situation in the Russian forest sector, a radical change in the system of forest management is needed.

  7. Morphology and ecology of sibon snakes (Squamata: Dipsadidae) from two forests in Central America

    OpenAIRE

    Todd R. Lewis; Rowland K. Griffin; Paul B. C. Grant; Alex Figueroa; Julie M. Ray; Kirsty E. Graham; Gabriel David

    2013-01-01

    Physical measurements, abundance, and ecological observations were recorded for Sibon annulatus,S. argus, S. longifrens, and S. nebulatus at two Neotropical habitats: a lowland swamp forest in Costa Rica and a montane cloud forest in Panama. Fourty-four and 58 adult snakes were recorded from Costa Rica and Panama, respectively. Differences in morphology and body condition showed minimal significant differences among species from both geographical locations. Observations of feeding, reproducti...

  8. [Contribution of tropical upland forests to carbon storage in Colombia].

    Science.gov (United States)

    Yepes, Adriana; Herrera, Johana; Phillips, Juan; Galindo, Gustavo; Granados, Edwin; Duque, Alvaro; Barbosa, Adriana; Olarte, Claudia; Cardona, María

    2015-03-01

    The tropical montane forests in the Colombian Andean region are located above 1500 m, and have been heavily deforested. Despite the general presumption that productivity and hence carbon stocks in these ecosystems are low, studies in this regard are scarce. This study aimed to (i) to estimate Above Ground Biomass (AGB) in forests located in the South of the Colombian Andean region, (ii) to identify the carbon storage potential of tropical montane forests dominated by the black oak Colombobalanus excelsa and to identify the relationship between AGB and altitude, and (iii) to analyze the role of tropical mountain forests in conservation mechanisms such as Payment for Environmental Services (PES) and Reducing Emissions from Deforestation and Degradation (REDD+). Twenty six 0.25 ha plots were randomly distributed in the forests and all trees with D > or =10 cm were measured. The results provided important elements for understanding the role of tropical montane forests as carbon sinks. The information produced can be used in subnational initiatives, which seek to mitigate or reduce the effects of deforestation through management or conservation of these ecosystems, like REDD+ or PES. The AGB and carbon stocks results obtained were similar to those reported for lowland tropical forests. These could be explained by the dominance and abundance of C. excelsa, which accounted for over 81% of AGB/carbon. The error associated with the estimates of AGB/carbon was 10.58%. We found a negative and significant relationship between AGB and altitude, but the higher AGB values were in middle altitudes (approximatly = 700-1800 m), where the environmental conditions could be favorable to their growth. The carbon storage potential of these forests was higher. However, if the historical rate of the deforestation in the study area continues, the gross emissions of CO2e to the atmosphere could turn these forests in to an important emissions source. Nowadays, it is clear that tropical

  9. Circumscribing campo rupestre – megadiverse Brazilian rocky montane savanas

    Directory of Open Access Journals (Sweden)

    RJV. Alves

    Full Text Available Currently campo rupestre (CR is a name accepted and used internationally by botanists, zoologists, and other naturalists, usually applied to a very specific ecosystem, despite the lack of a consensual published circumscription. We present a tentative geographic circumscription of the term, combining data on climate, geology, geomorphology, soil, flora, fauna and vegetation. The circumscription of campo rupestre proposed herein is based on the following premises: (1 the classification of vegetation is not an exact science, and it is difficult to attain a high degree of consensus to the circumscription of vegetation names; (2 despite this, vegetation classification is useful for conservation and management. It is thus desirable to circumscribe vegetation types with the greatest attainable precision; (3 there is a need to preserve all montane and rocky vegetation types, regardless of classification, biome, etc; (4 the CRs are formed by a complex mosaic of vegetation types including rock-dwelling, psammophilous, aquatic, epiphytic, and penumbral plant communities. Campos rupestres stricto sensu are a Neotropical, azonal vegetation complex endemic to Brazil, forming a mosaic of rocky mountaintop “archipelagos” inserted within a matrix of zonal vegetation, mainly in the Cerrado and Caatinga provinces of the Brazilian Shield (southeastern, northeastern and central-western regions, occurring mainly above 900 m asl. up to altitudes exceeding 2000 m, having measured annual precipitation between 800 and 1500 mm, and an arid season of two to five months.

  10. Circumscribing campo rupestre - megadiverse Brazilian rocky montane savanas.

    Science.gov (United States)

    Alves, R J V; Silva, N G; Oliveira, J A; Medeiros, D

    2014-05-01

    Currently campo rupestre (CR) is a name accepted and used internationally by botanists, zoologists, and other naturalists, usually applied to a very specific ecosystem, despite the lack of a consensual published circumscription. We present a tentative geographic circumscription of the term, combining data on climate, geology, geomorphology, soil, flora, fauna and vegetation. The circumscription of campo rupestre proposed herein is based on the following premises: (1) the classification of vegetation is not an exact science, and it is difficult to attain a high degree of consensus to the circumscription of vegetation names; (2) despite this, vegetation classification is useful for conservation and management. It is thus desirable to circumscribe vegetation types with the greatest attainable precision; (3) there is a need to preserve all montane and rocky vegetation types, regardless of classification, biome, etc; (4) the CRs are formed by a complex mosaic of vegetation types including rock-dwelling, psammophilous, aquatic, epiphytic, and penumbral plant communities. Campos rupestres stricto sensu are a Neotropical, azonal vegetation complex endemic to Brazil, forming a mosaic of rocky mountaintop "archipelagos" inserted within a matrix of zonal vegetation, mainly in the Cerrado and Caatinga provinces of the Brazilian Shield (southeastern, northeastern and central-western regions), occurring mainly above 900 m asl. up to altitudes exceeding 2000 m, having measured annual precipitation between 800 and 1500 mm, and an arid season of two to five months.

  11. Montane pollen from the Tertiary of NW. Borneo

    NARCIS (Netherlands)

    Muller, J.

    1966-01-01

    In NW. Borneo thick series of Tertiary sediments occur which are rich in fossil pollen and spores. The majority of these plant microfossils were derived from the various types of tropical lowland vegetation such as mangrove (Muller, 1964), mixed peat swamp forest and mixed Dipterocarp forest. Some

  12. The vegetation of the pale green patches in the mountain forest on the North side of Mt. Pangerango (West Java)

    NARCIS (Netherlands)

    Steenis, van C.G.G.J.

    1986-01-01

    Everybody visiting the Cibodas Mountain Garden must have observed that on the North side of Mt. Pangerango there are roughly between 2300 and 2700 m several sizeable pale green patches visible in the dark green montane forest. They were never visited and it intrigued me to know their vegetation

  13. Assessing the links among environmental contaminants, endocrinology, and parasites to understand amphibian declines in montane regions of Costa Rica.

    Science.gov (United States)

    Leary, Christopher J; Ralicki, Hannah F; Laurencio, David; Crocker-Buta, Sarah; Malone, John H

    2018-01-01

    Amphibians inhabiting montane riparian zones in the Neotropics are particularly vulnerable to decline, but the reasons are poorly understood. Because environmental contaminants, endocrine disruption, and pathogens often figure prominently in amphibian declines it is imperative that we understand how these factors are potentially interrelated to affect montane populations. One possibility is that increased precipitation associated with global warming promotes the deposition of contaminants in montane regions. Increased exposure to contaminants, in turn, potentially elicits chronic elevations in circulating stress hormones that could contribute to montane population declines by compromising resistance to pathogens and/or production of sex steroids regulating reproduction. Here, we test this hypothesis by examining contaminant levels, stress and sex steroid levels, and nematode abundances in male drab treefrogs, Smilisca sordida, from lowland and montane populations in Costa Rica. We found no evidence that montane populations were more likely to possess contaminants (i.e., organochlorine, organophosphate and carbamate pesticides or benzidine and chlorophenoxy herbicides) than lowland populations. We also found no evidence of elevational differences in circulating levels of the stress hormone corticosterone, estradiol or progesterone. However, montane populations possessed lower androgen levels, hosted more nematode species, and had higher nematode abundances than lowland populations. Although these results suggested that nematodes contributed to lower androgens in montane populations, we were unable to detect a significant inverse relationship between nematode abundance and androgen level. Our results suggest that montane populations of this species are not at greater risk of exposure to contaminants or chronic stress, but implicate nematodes and compromised sex steroid levels as potential threats to montane populations.

  14. Assessing the links among environmental contaminants, endocrinology, and parasites to understand amphibian declines in montane regions of Costa Rica.

    Directory of Open Access Journals (Sweden)

    Christopher J Leary

    Full Text Available Amphibians inhabiting montane riparian zones in the Neotropics are particularly vulnerable to decline, but the reasons are poorly understood. Because environmental contaminants, endocrine disruption, and pathogens often figure prominently in amphibian declines it is imperative that we understand how these factors are potentially interrelated to affect montane populations. One possibility is that increased precipitation associated with global warming promotes the deposition of contaminants in montane regions. Increased exposure to contaminants, in turn, potentially elicits chronic elevations in circulating stress hormones that could contribute to montane population declines by compromising resistance to pathogens and/or production of sex steroids regulating reproduction. Here, we test this hypothesis by examining contaminant levels, stress and sex steroid levels, and nematode abundances in male drab treefrogs, Smilisca sordida, from lowland and montane populations in Costa Rica. We found no evidence that montane populations were more likely to possess contaminants (i.e., organochlorine, organophosphate and carbamate pesticides or benzidine and chlorophenoxy herbicides than lowland populations. We also found no evidence of elevational differences in circulating levels of the stress hormone corticosterone, estradiol or progesterone. However, montane populations possessed lower androgen levels, hosted more nematode species, and had higher nematode abundances than lowland populations. Although these results suggested that nematodes contributed to lower androgens in montane populations, we were unable to detect a significant inverse relationship between nematode abundance and androgen level. Our results suggest that montane populations of this species are not at greater risk of exposure to contaminants or chronic stress, but implicate nematodes and compromised sex steroid levels as potential threats to montane populations.

  15. Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition

    Czech Academy of Sciences Publication Activity Database

    Lladó, Salvador; Žifčáková, Lucia; Větrovský, Tomáš; Eichlerová, Ivana; Baldrian, Petr

    2016-01-01

    Roč. 52, č. 2 (2016), s. 251-260 ISSN 0178-2762 R&D Projects: GA ČR(CZ) GP14-09040P EU Projects: European Commission(CZ) FP7ITN no.289949 Institutional support: RVO:61388971 Keywords : Coniferous forest * Bacterial ecology * Acidobacteria Subject RIV: EE - Microbiology, Virology Impact factor: 3.683, year: 2016

  16. Composição florística de dois trechos em diferentes etapas serais de uma floresta estacional semidecidual em Viçosa, Minas Gerais Floristic composition of two sites different seral stages of semideciduous seasonal montane forest in Viçosa, Minas Gerais

    Directory of Open Access Journals (Sweden)

    Rogério Ferreira Ribas

    2003-12-01

    Full Text Available O presente estudo foi desenvolvido em dois trechos de floresta semidecídua, com diferentes estádios de sucessão secundária, localizada no município de Viçosa-MG, objetivando verificar variações qualitativas na composição florística. Foram demarcadas, em cada trecho, dez parcelas de 10 x 20 m, nas quais foram inventariados todos os indivíduos lenhosos com circunferência à altura de 130 cm do solo maior ou igual a 5 cm. A similaridade florística entre as parcelas foi avaliada por meio de análise de agrupamentos, utilizando o índice de Sørensen. Foram amostradas 67 espécies no trecho com 15 anos e 69 no trecho com 30 anos. Dentre as espécies exclusivas, 38 foram para o trecho com 15 anos e 40 para o trecho com 30 anos. As famílias Annonaceae, Leguminosae Caesalpinioideae e Sapindaceae, com cinco, quatro e quatro espécies cada, respectivamente, e o gênero Nectandra, com duas espécies, foram os taxa mais bem representados no trecho com 15 anos. Por outro lado, as famílias Flacourtiaceae, Meliaceae e Myrtaceae, com quatro, três e quatro espécies, respectivamente, e o gênero Ocotea, com três espécies, foram mais bem representados no trecho com 30 anos. A similaridade florística entre parcelas de um mesmo trecho foi considerada alta, tendo sido relacionada à proximidade espacial, o que implica históricos de perturbação e regeneração semelhantes, resultando, conseqüentemente, em composições florísticas mais similares e mesmo estádio de sucessão secundária.This study was carried out in two sites of a semideciduous forest, under different stages of secondary succession in Viçosa, MG to verify qualitative variations in floristic composition. In each site, ten plots of 10 m x 20 m were delimited, with all woody individuals with circumference at 130 cm height from the soil larger than or equal to 5 cm being listed. Floristic similarity among parcels was evaluated through clustering analysis, using the S

  17. Status and limiting factors of two rare plant species in dry montane communities of Hawai`i Volcanoes National Park.

    Science.gov (United States)

    Pratt, Linda W.; VanDeMark, Joshua R.; Euaparadorn, Melody

    2012-01-01

    Two rare plants native to montane dry forests and woodland communities of Hawai`i Volcanoes National Park (HAVO) were studied for more than two years to determine their stand structure, short-term mortality rates, patterns of reproductive phenology, success of fruit production, floral visitor composition, seed germination rates in the greenhouse, and survival of both natural and planted seedlings. Phyllostegia stachyoides, a shrubby Hawaiian mint (Lamiaceae) that is a species of concern, was studied within two small kīpuka at a natural population on the park’s Mauna Loa Strip, and three plantings at sites along the Mauna Loa Road were also monitored. Silene hawaiiensis, a threatened shrub species in the pink family (Caryophyllaceae), was monitored at two natural populations, one on Mauna Loa at the Three Trees Kīpuka and the second on Kīlauea Crater Rim south of Halema`uma`u. Silene hawaiiensis plantings were also made inside and outside ungulate exclosures at the park’s Kahuku Unit

  18. Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida).

    Science.gov (United States)

    Erdmann, Georgia; Scheu, Stefan; Maraun, Mark

    2012-06-01

    Most European forests are managed by humans. However, the manner and intensity of management vary. While the effect of forest management on above-ground communities has been investigated in detail, effects on the below-ground fauna remain poorly understood. Oribatid mites are abundant microarthropods in forest soil and important decomposers in terrestrial ecosystems. Here, we investigated the effect of four forest types (i.e., managed coniferous forests; 30 and 70 years old managed beech forests; natural beech forests) on the density, diversity and community structure of oribatid mites (Acari). The study was replicated at three regions in Germany: the Swabian Alb, the Hainich and the Schorfheide. To relate changes in oribatid mite community structure to environmental factors, litter mass, pH, C and N content of litter, fine roots and C content of soil were measured. Density of oribatid mites was highest in the coniferous forests and decreased in the order 30 years old, 70 years old, and natural beech forests. Mass of the litter layer and density of oribatid mites were strongly correlated indicating that the litter layer is an important factor regulating oribatid mite densities. Diversity of oribatid mites was little affected by forest type indicating that they harbor similar numbers of niches. Species composition differed between the forest types, suggesting different types of niches. The community structure of oribatid mites differed more strongly between the three regions than between the forest types indicating that regional factors are more important than effects associated with forest type.

  19. Effects of litter manipulation on litter decomposition in a successional gradients of tropical forests in southern China

    DEFF Research Database (Denmark)

    Chen, Hao; Gurmesa, Geshere A.; Liu, Lei

    2014-01-01

    Global changes such as increasing CO2, rising temperature, and land-use change are likely to drive shifts in litter inputs to forest floors, but the effects of such changes on litter decomposition remain largely unknown. We initiated a litter manipulation experiment to test the response of litter...... decomposition to litter removal/addition in three successional forests in southern China, namely masson pine forest (MPF), mixed coniferous and broadleaved forest (MF) and monsoon evergreen broadleaved forest (MEBF). Results showed that litter removal decreased litter decomposition rates by 27%, 10% and 8...

  20. Population dynamics of the epiphytic bromeliad Tillandsia butzii in cloud forest

    Science.gov (United States)

    Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana

    2016-02-01

    Epiphytes are a major component of tropical montane cloud forests. Over-exploitation and forest loss and degradation affect remnant populations. In this study, we analysed the population dynamics of the epiphytic bromeliad Tillandsia butzii over a 2-y period in a tropical montane cloud forest fragment in southern Mexico. Matrix analysis revealed that the T. butzii population is likely to be stable at the study site. On average the λ value did not differ significantly from unity: λ (95% confidence interval) = 0.978 (0.936-1.001). λ was highly influenced by stasis, to a lesser extent by growth and only slightly by fecundity. Overall, adult plant stasis and phalanx growth habit played a fundamental role in population maintenance. T. butzii tolerance to xeric conditions may contribute to population stability in the studied region.

  1. The role of forest type on throughfall during extreme precipitation events - A comparison of methods using data from the Pohorje mountains (NE Slovenia)

    Science.gov (United States)

    Vilhar, Urša; Simončič, Primož

    2013-04-01

    Extreme precipitation in the Alpine region is a major environmental factor due to high frequency of such events and consequences such as flooding of populated valley floors, erosion, avalanches, debris flow and landslides endangering exposed settlements. However, the effects of extreme precipitation are buffered by forest cover, therefore forest management practices should aim towards decreased surface runoff and soil erosion in alpine climates. In Central Europe, many pure Norway spruce stands, established on primary beech sites, were converted into mixed stands over the last 60 years. The conversion of forest management from spruce monocultures into mixed deciduous-coniferous forests changed the forest structure dramatically. This changes could influence the hydrological processes on the catchment scale, associated with major river flooding following extreme precipitation events. In this study, the effect of forest management on the partitioning of rainfall into throughfall and stemflow in coniferous and mixed deciduous-coniferous stands on Pohorje mountains in NE Slovenia were investigated. Four spruce Picea abies (L. Karst) stands were compared to four mixed spruce-beech Fagus sylvatica (L.) stands with prevailing forest plant community Cardamine Savensi Fagetum with small areas of Sphagno - Piceetum, Bazzanio - Piceetum and Rhytidiodelpholorei - Piceetum intermixed. The monthly throughfall from rain collectors and half-hourly throughfall from automated rain gauges in growing seasons from 2008 till 2012 were analyzed in order to estimate the throughfall under forest canopies. In the mixed spruce-beech stands the monthly stemflow on beech trees was also measured. For the precipitation in the open an automated weather station and rainfall collectors in an open area located very close to the research plots were used. There were small differences in seasonal throughfall found between the coniferous and mixed deciduous-coniferous stands. The seasonal throughfall was

  2. Long-term changes in soil pH across major forest ecosystems in China

    Science.gov (United States)

    Yang, Yuanhe; Li, Pin; He, Honglin; Zhao, Xia; Datta, Arindam; Ma, Wenhong; Zhang, Ying; Liu, Xuejun; Han, Wenxuan; Wilson, Maxwell C.; Fang, Jingyun

    2015-02-01

    Atmospheric acidic deposition has been a major environmental problem since the industrial revolution. However, our understanding of the effect of acidic deposition on soil pH is inconclusive. Here we examined temporal variations in topsoil pH and their relationships with atmospheric sulfur and nitrogen deposition across China's forests from the 1980s to the 2000s. To accomplish this goal, we conducted artificial neural network simulations using historical soil inventory data from the 1980s and a data set synthesized from literature published after 2000. Our results indicated that significant decreases in soil pH occurred in broadleaved forests, while minor changes were observed in coniferous and mixed coniferous and broadleaved forests. The magnitude of soil pH change was negatively correlated with atmospheric sulfur and nitrogen deposition. This relationship highlights the need for stringent measures that reduce sulfur and nitrogen emissions so as to maintain ecosystem structure and function.

  3. Edaphic potentials of beech forests on Brezovica

    Directory of Open Access Journals (Sweden)

    Knežević Milan

    2002-01-01

    Full Text Available The study deals with the soils in the montane beech forest (Fagetum moesiacae montanum Jov. 53 in the management units "Južni Kuèaj II" and "Bogovina I", on the mountain massif Brezovica. Soil genesis in the beech forests of Brezovica, along with vegetation and relief, was affected by the character of parent rock. The study soils occur over two types of bedrock: limestone and argilloschist The soil types and sub-types are defined based on the profile morphology, parent rock and pedogenetic processes Two types of soil were analysed on limestone: black earth (calcomelanosol and brown soil (calcocambisol. Two sub-types of black earth were defined: organomineral and brownised. There are two varieties of organomineral black earth: colluvial and lithic. Also two sub-types of brown soils were defined and: typical and illimerised. The soils on limestone are characterised by great spatial variability. Different combinations of soil formations occur on a small area. Soil combinations consist of two or three development phases, the most represented of which are the following: organomineral black earth - brownised black earth; organomineral black earth - brownised black earth - typical brown soil; typical brown soil - illimerised soil Typical brown soil is formed on argilloschists and it occurs in two forms: medium deep, medium skeletal acid brown soil and deep, poorly skeletal acid brown soil The most productive sites of the montane beech forest on Brezovica are deep acid brown soils and the soil combination: typical brown soil - illimerised soil on limestone.

  4. Constraints on tree seedling establishment in montane grasslands of the Valles Caldera, New Mexico

    Science.gov (United States)

    Jonathan D. Coop; Thomas J. Givnish

    2008-01-01

    Montane and subalpine grasslands are prominent, but poorly understood, features of the Rocky Mountains. These communities frequently occur below reversed tree lines on valley floors, where nightly cold air accumulation is spatially coupled with fine soil texture. We used field experiments to assess the roles of minimum temperature, soil texture, grass competition, and...

  5. Selective extraction methods for aluminium, iron and organic carbon from montane volcanic ash soils

    NARCIS (Netherlands)

    Jansen, B.; Tonneijck, F.H.; Verstraten, J.M.

    2011-01-01

    Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle. Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils, we assessed various extraction methods of Al, Fe, and

  6. Morphology and sedimentation in Caribbean montane streams" examples from Jamaica and Puerto Rico

    Science.gov (United States)

    R. Ahmad; F.N. Scatena; A Gupta

    1993-01-01

    This paper presents a summary description of the morphology, sedimentation, and behaviour of the montane streams of eastern Jamaica and eastern Puerto Rico. The area is located within a 200 km wide seismically active zone of Neogene left-lateral strike-slip deformation which defines the plate boundary between the Caribbean and North American Plates. Tropical storms,...

  7. Lithological and fluvial controls on the geomorphology of tropical montane stream channels in Puerto Rico

    Science.gov (United States)

    Andrew S. Pike; F.N. Scatena; Ellen E. Wohl

    2010-01-01

    An extensive survey and topographic analysis of fi ve watersheds draining the Luquillo Mountains in north-eastern Puerto Rico was conducted to decouple the relative infl uences of lithologic and hydraulic forces in shaping the morphology of tropical montane stream channels. The Luquillo Mountains are a steep landscape composed of volcaniclastic and igneous rocks that...

  8. water quality of the high-montane Juan Cojo and El Salado's basins (Glrardota - Antioqula, Colombia)

    International Nuclear Information System (INIS)

    Gomez Marin, Ana Maria; Naranjo Fernandez, Dario; Martinez, Andres Alfonso; Gallego Suarez, Dario de Jesus

    2007-01-01

    This work is a preliminary diagnosis of the actual state of the high-montane water sources located in the Juan Cojo's and El Salado's basins of the NE side of the Aburra valley' both belong to the Girardota municipality (6 degrades 20.951' N, 75 celsius 27.199' W between 1900 and 2500 meter above sea level in the central montane chain. in order to achieve this work several samples were taken in august 10, 11, 17 and 19 of 2004. this preliminary study includes the physicochemical and microbiological evaluation of 30 sampling points. just one of the 30 sampling points exhibited absence of microbiological pollution due to fecal and total coliforms. this fact suggests bad practices in the final disposal of domestic and farming water residuals. in the other hand, the physicochemical and the ICA (water quality index) evaluation reveal that the sampled water sources exhibit typical characteristics of common low-montane ,non-polluted water sources. in other words, although pollution levels found in those water sources are not alarming, they do not exhibit the typical pollution levels found in natural high-montane waters, as they should, even we could find some sampling points with meso-eutrophic conditions

  9. Kinyongia asheorum sp n., a new montane chameleon from the Nyiro Range, northern Kenya (Squamata: Chamaeleonidae)

    Czech Academy of Sciences Publication Activity Database

    Nečas, P.; Sindaco, R.; Kořený, L.; Kopečná, J.; Malonza, P. K.; Modrý, David

    -, č. 2028 (2009), s. 41-50 ISSN 1175-5326 R&D Projects: GA ČR GA524/03/1548; GA ČR GA206/03/1544 Institutional research plan: CEZ:AV0Z60220518 Keywords : Kinyongia asheorum sp n, * new montane chameleon * Kenya Subject RIV: EG - Zoology Impact factor: 0.891, year: 2009

  10. Remote sensing of forest decline in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Ardoe, J.

    1998-04-01

    This thesis describes the localization and quantification of deforestation and forest damage in Norway spruce forests in northern Czech Republic using Landsat data. Severe defoliation increases the spectral reflectance in all wavelength bands, especially in the mid infrared region. These spectral differences allow the separation of three damage categories with an accuracy of 75% using TM data and regression based relationships. Estimating the same categories using an artificial neural network, multi temporal TM data and topographic data yields slightly higher accuracy (78%). The methods are comparable when using identical input data, but the neural network more efficiently manage large input data sets without pre.processing, The estimated coniferous deforestation in northern Bohemia from 1972 to 1989 reveals especially affected areas between 600 and 1000 m.a.s.l. and on slopes facing south and southeast. The sector downwind a large source of sulphur dioxide was strongly deforested. Comparing regional forest damage statistics to three methods estimating harmful effects of sulphur dioxide on Norway spruce yielded significant relationships versus level of forest damage and accumulated salvage felling. Quantifying the effect of data uncertainties permit mapping the probabilities of areas to be significantly over or below thresholds for harmful effects on spruce forests. Satellite based estimation of coniferous forest health is a good complement to field surveys and aerial photography 137 refs, 7 figs, 2 tabs

  11. Green economy: un'occasione per le aree montane

    Directory of Open Access Journals (Sweden)

    Maria Sapone

    2013-06-01

    di rivitalizzare le aree montane. Il presente contributo rappresenta un avanzamento di studio sui temi che hanno interessato la costruzione di una rete di ecovillaggi approfondendo problematiche relative all'economia locale, al paesaggio e, più in generale, alla sostenibilità ambientale. Normal 0 14 false false false IT ZH-TW X-NONE

  12. Delimbing and Cross-cutting of Coniferous Trees–Time Consumption, Work Productivity and Performance

    Directory of Open Access Journals (Sweden)

    Arcadie Ciubotaru

    2018-04-01

    Full Text Available This research established the time consumption, work time structure, and productivity for primary processing in felling areas of coniferous trees felled with a chainsaw. Delimbing and partial cross-cutting were taken into consideration. The research was conducted in a mixed spruce and fir tree stand situated in the Carpathian Mountains. The team of workers consisted of a chainsaw operator and assistant with over 10 years of experience. The results indicated a total time of 536.32 s·m−3 (1145.26 s·tree−1, work performance (including delays of 6.716 m3·h−1 (3.14 tree·h−1, and work productivity (without delays of 35.459 m3·h−1 (16.58 tree·h−1. The chainsaw productivity during tree cross-cutting was 82.29 cm2·s−1. Delimbing accounted for 96.18% of the real work time, while cross-cutting accounted for 3.82%. The time consumption for delimbing and cross-cutting, as well as the work productivity and performance in the primary processing of coniferous trees in the felling area, were influenced by the breast height diameter, stem length, and tree volume, while the chainsaw productivity was influenced by the diameter of the cross-cut sections. The relationships between the aforementioned dependent and independent variables were determined by simple and linear multiple regression equations.

  13. Methodology for iodine-129 determination in coniferous plant by neutron activation

    International Nuclear Information System (INIS)

    Quintana, E.E.; Thyssen, S.M.

    1998-01-01

    Full text: The measurement methods of iodine-129 ( 129 I) include liquid scintillation counting, mass spectrometry analysis, X-ray spectrometry and neutron activation analysis. The combination of long half-life and low radiation energy, limit the sensitivity of a direct measurement in environmental matrixes. The neutron activation analysis (NAA) permits the increase in the sensitivity because of the high thermal neutron cross section of 129 I. The reaction produced is 129 I (n,γ) 130 I and the Eγ (536 keV) of iodine-130 (t 1/2 = 12,6 hours) is measured. The developed methodology allows the determination of 129 I in coniferous needles using NAA. The chemical treatment removes the interferences present in the matrix, as well as the Bromine-82 originated in the activation process. The analytical method is divided in six steps: a) digestion by alkaline fusion; b) radiochemical purification of 129 I by distillation followed by solvent extraction; c) distillation and adsorption on activated charcoal; d) neutron irradiation; e) radiochemical purification of 130 I by distillation followed by solvent extraction; f) gamma spectrometry. Iodine-131 tracer is added, and a chemical recovery of 95% in the distillations is obtained. The whole process recovery is within 70% and 85%. The detection limit is 0.48 mBq. Several factors affect this value, such as sample type, variety of coniferous, natural iodine concentration, irradiation time and neutron flux. (author) [es

  14. The full annual carbon balance of a subtropical coniferous plantation is highly sensitive to autumn precipitation.

    Science.gov (United States)

    Xu, Mingjie; Wang, Huimin; Wen, Xuefa; Zhang, Tao; Di, Yuebao; Wang, Yidong; Wang, Jianlei; Cheng, Chuanpeng; Zhang, Wenjiang

    2017-08-30

    Deep understanding of the effects of precipitation on carbon budgets is essential to assess the carbon balance accurately and can help predict potential variation within the global change context. Therefore, we addressed this issue by analyzing twelve years (2003-2014) of observations of carbon fluxes and their corresponding temperature and precipitation data in a subtropical coniferous plantation at the Qianyanzhou (QYZ) site, southern China. During the observation years, this coniferous ecosystem experienced four cold springs whose effects on the carbon budgets were relatively clear based on previous studies. To unravel the effects of temperature and precipitation, the effects of autumn precipitation were examined by grouping the data into two pools based on whether the years experienced cold springs. The results indicated that precipitation in autumn can accelerate the gross primary productivity (GPP) of the following year. Meanwhile, divergent effects of precipitation on ecosystem respiration (Re) were found. Autumn precipitation was found to enhance Re in normal years but the same regulation was not found in the cold-spring years. These results suggested that for long-term predictions of carbon balance in global climate change projections, the effects of precipitation must be considered to better constrain the uncertainties associated with the estimation.

  15. Retrospektive evaluation of the response of montane forest ecosystem to multiple stress

    Czech Academy of Sciences Publication Activity Database

    Cudlín, Pavel; Novotný, Radek; Moravec, Ivo; Chmelíková, Ewa

    2001-01-01

    Roč. 20, č. 1 (2001), s. 108-124 ISSN 1335-342X R&D Projects: GA ČR GA526/98/1147 Institutional research plan: CEZ:AV0Z6087904 Keywords : norway spruce * multiple stress * crown structure Subject RIV: EH - Ecology, Behaviour Impact factor: 0.192, year: 2001

  16. Analyis on the vascular epiphytes of tree ferns in a montane rain forest in Costa Rica

    OpenAIRE

    Jens Bittner; Javier Trejos Zelaya

    2009-01-01

    The relationships between epiphytes and host specifity are known. We investigated the relation between specific epiphytes and tree fern trunks. Only some epiphytes are frequent or very frequent on tree ferns. Most of the epiphyte species are unspecific on these trunks. Blechnum fragile are the only found exclusively on tree ferns. We also observed different epiphyte communities dependent on the tree fern species and the morphology of the tree trunk.

  17. Critical zone structure controls concentration-discharge relationships and solute generation in forested tropical montane watersheds

    Science.gov (United States)

    Wymore, Adam S.; Brereton, Richard L.; Ibarra, Daniel E.; Maher, Kate; McDowell, William H.

    2017-07-01

    Concentration-discharge (C-Q) relationships are poorly known for tropical watersheds, even though the tropics contribute a disproportionate amount of solutes to the global ocean. The Luquillo Mountains in Puerto Rico offer an ideal environment to examine C-Q relationships across a heterogeneous tropical landscape. We use 10-30 years of weekly stream chemistry data across 10 watersheds to examine C-Q relationships for weathering products (SiO2(aq), Ca2+, Mg2+, and Na+) and biologically controlled solutes (dissolved organic carbon [DOC], dissolved organic nitrogen [DON], NH4+, NO3-, PO43-, K+, and SO42-). We analyze C-Q relationships using power law equations and a solute production model and use principal component analysis to test hypotheses regarding how the structure of the critical zone controls solute generation. Volcaniclastic watersheds had higher concentrations of weathering solutes and smaller tributaries were approximately threefold more efficient at generating these solutes than larger rivers. Lithology and vegetation explained a significant amount of variation in the theoretical maximum concentrations of weathering solutes (r2 = 0.43-0.48) and in the C-Q relationships of PO43- (r2 = 0.63) and SiO2(aq) (r2 = 0.47). However, the direction and magnitude of these relationships varied. Across watersheds, various forms of N and P displayed variable C-Q relationships, while DOC was consistently enriched with increasing discharge. Results suggest that PO43- may be a useful indicator of watershed function. Relationships between C-Q and landscape characteristics indicate the extent to which the structure and function of the Critical zone controls watershed solute fluxes.

  18. Hydro-meteorological functioning of tropical montane cloud forests in the Orinoco River basin

    NARCIS (Netherlands)

    Ramírez Correal, Beatriz Helena

    2018-01-01

    The hydrologic interactions between the atmosphere, land cover and soil largely determine water availability to sustain ecosystems’and anthropogenic demands. Therefore, understanding how these interactions operate is required to design strategies to reduce or cope with the potential hydrological

  19. Rehabilitating slash pile burn scars in upper montane forests of the Colorado Front Range

    Science.gov (United States)

    Paula J. Fornwalt; Charles C. Rhoades

    2011-01-01

    Slash pile burning is widely conducted by land managers to dispose of unwanted woody fuels, yet this practice typically has undesirable ecological impacts. Simple rehabilitation treatments may be effective at ameliorating some of the negative impacts of pile burning on plants and soils. Here, we investigated: (1) the impacts of slash pile burning on soil nitrogen and...

  20. Variation in vegetation and microbial linkages with slope aspect in a montane temperate hardwood forest

    Czech Academy of Sciences Publication Activity Database

    Gilliam, F. S.; Hédl, Radim; Chudomelová, Markéta; McCulley, R. L.; Nelson, J. A.

    2014-01-01

    Roč. 5, č. 5 (2014), s. 1-17, A66 ISSN 2150-8925 R&D Projects: GA MŠk(CZ) EE2.3.20.0267 Institutional support: RVO:67985939 Keywords : vegetation * soil microorganisms * slope aspect Subject RIV: EH - Ecology, Behaviour Impact factor: 2.255, year: 2014

  1. Blood parasites of frogs from an equatorial African montane forest in western Uganda.

    Science.gov (United States)

    Readel, Anne M; Goldberg, Tony L

    2010-04-01

    In a survey of blood parasites in Ugandan frogs, 30 (17%) of 180 frogs were infected with at least 1 species of Hepatozoon or Trypanosoma, or with microfilariae. There were significant differences in the prevalence of parasitism among species, with parasitemia detected in only 3 of 9 species. The intensity of blood parasite infection ranged from 1 to 1,080 infected cells per 5,000 cells examined. Seasonal changes in the prevalence and intensity of parasitemia were not observed, nor was there any association between parasitemia and infection with the pandemic fungus Batrachochytrium dendrobatidis.

  2. Habitat preferences of birds in a montane forest mosaic in the Bamenda Highlands, Cameroon

    Czech Academy of Sciences Publication Activity Database

    Reif, J.; Sedláček, O.; Hořák, D.; Riegert, J.; Pešata, M.; Hrázský, Záboj; Janeček, Štěpán

    2007-01-01

    Roč. 78, č. 1 (2007), s. 31-36 ISSN 0030-6525 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z60050516 Keywords : species richness * community * conservation Subject RIV: EH - Ecology, Behaviour Impact factor: 0.353, year: 2007

  3. Applying Climatically Associated Species Pools to modelling compositional change in tropical montane forests

    NARCIS (Netherlands)

    Golicher, J.D.; Cayuela, L.; Alkemade, J.R.M.; González-Espinosa, M.; Ramírez-Marcial, N.

    2008-01-01

    Aim Predictive species distribution modelling is a useful tool for extracting the maximum amount of information from biological collections and floristic inventories. However, in many tropical regions records are only available from a small number of sites. This can limit the application of

  4. [Wildlife damage mitigation in agricultural crops in a Bolivian montane forest].

    Science.gov (United States)

    Perez, Eddy; Pacheco, Luis F

    2014-12-01

    Wildlife is often blamed for causing damage to human activities, including agricultural practices and the result may be a conflict between human interests and species conservation. A formal assessment of the magnitude of damage is necessary to adequately conduct management practices and an assessment of the efficiency of different management practices is necessary to enable managers to mitigate the conflict with rural people. This study was carried out to evaluate the effectiveness of agricultural management practices and controlled hunting in reducing damage to subsistence annual crops at the Cotapata National Park and Natural Area of Integrated Management. The design included seven fields with modified agricultural practices, four fields subjected to control hunting, and five fields held as controls. We registered cultivar type, density, frequency of visiting species to the field, crops lost to wildlife, species responsible for damage, and crop biomass. Most frequent species in the fields were Dasyprocta punctata and Dasypus novemcinctus. Hunted plots were visited 1.6 times more frequently than agriculturally managed plots. Crop lost to wildlife averaged 7.28% at agriculturally managed plots, 4.59% in plots subjected to hunting, and 27.61% in control plots. Species mainly responsible for damage were Pecari tajacu, D. punctata, and Sapajus apella. We concluded that both management strategies were effective to reduce damage by >50% as compared to unmanaged crop plots.

  5. Analyis on the vascular epiphytes of tree ferns in a montane rain forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Jens Bittner

    2009-02-01

    Full Text Available The relationships between epiphytes and host specifity are known. We investigated the relation between specific epiphytes and tree fern trunks. Only some epiphytes are frequent or very frequent on tree ferns. Most of the epiphyte species are unspecific on these trunks. Blechnum fragile are the only found exclusively on tree ferns. We also observed different epiphyte communities dependent on the tree fern species and the morphology of the tree trunk.

  6. Contrasting responses of millipedes and terrestrial isopods to hydrologic regime changes in forested montane wetlands

    Czech Academy of Sciences Publication Activity Database

    Sterzyńska, M.; Tajovský, Karel; Nicia, P.

    2015-01-01

    Roč. 68, May-June (2015), s. 33-41 ISSN 1164-5563 Grant - others:National Centre of Sciences(PL) NN304 156240; National Centre of Sciences(PL) NN305 107540 Institutional support: RVO:60077344 Keywords : wetlands * hydrologic change s * disturbances * mountain fens * soil macro-decomposers Subject RIV: EH - Ecology, Behaviour Impact factor: 1.951, year: 2015

  7. The arboreal component of a dry forest in Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    M. J. N. Rodal

    Full Text Available The dry forests of northeastern Brazil are found near the coastal zone and on low, isolated mountains inland amid semi-arid vegetation. The floristic composition of these dry montane forests, as well as their relationship to humid forests (Atlantic forest sensu stricto and to the deciduous thorn woodlands (Caatinga sensu stricto of the Brazilian northeast are not yet well known. This paper sought to determine if the arboreal plants in a dry forest growing on a low mountain in the semi-arid inland region (Serra Negra, 8° 35’ - 8° 38’ S and 38° 02’ - 38° 04’ W between the municipalities of Floresta and Inajá, state of Pernambuco have the same floristic composition and structure as that seen in other regional forests. In fifty 10 x 20 m plots all live and standing dead trees with trunk measuring > 5 cm diameter at breast height were measured. Floristic similarities between the forest studied and other regional forests were assessed using multivariate analysis. The results demonstrate that the dry forest studied can be classified into two groups that represent two major vegetational transitions: (1 a humid forest/dry forest transition; and (2 a deciduous thorn-woodland/ dry forest transition.

  8. The arboreal component of a dry forest in Northeastern Brazil.

    Science.gov (United States)

    Rodal, M J N; Nascimento, L M

    2006-05-01

    The dry forests of northeastern Brazil are found near the coastal zone and on low, isolated mountains inland amid semi-arid vegetation. The floristic composition of these dry montane forests, as well as their relationship to humid forests (Atlantic forest sensu stricto) and to the deciduous thorn woodlands (Caatinga sensu stricto) of the Brazilian northeast are not yet well known. This paper sought to determine if the arboreal plants in a dry forest growing on a low mountain in the semi-arid inland region (Serra Negra, 8 degrees 35 - 8 degrees 38 S and 38 degrees 02 - 38 degrees 04 W) between the municipalities of Floresta and Inajá, state of Pernambuco have the same floristic composition and structure as that seen in other regional forests. In fifty 10 x 20 m plots all live and standing dead trees with trunk measuring > 5 cm diameter at breast height were measured. Floristic similarities between the forest studied and other regional forests were assessed using multivariate analysis. The results demonstrate that the dry forest studied can be classified into two groups that represent two major vegetational transitions: (1) a humid forest/dry forest transition; and (2) a deciduous thorn-woodland/ dry forest transition.

  9. Life-history traits maintain the genomic integrity of sympatric species of the spruce budworm (Choristoneura fumiferana) group on an isolated forest island

    Science.gov (United States)

    Lisa M. Lumley; Felix A.H. Sperling

    2011-01-01

    Identification of widespread species collected from islands can be challenging due to the potential for local ecological and phenotypic divergence in isolated populations. We sought to determine how many species of the spruce budworm (Choristoneura fumiferana) complex reside in Cypress Hills, an isolated remnant coniferous forest in western Canada....

  10. Sediment Transport Capacity and Channel Processes in a Humid Tropical Montane River - Rio Pacuare, Costa Rica

    Science.gov (United States)

    Lind, P.; McDowell, P. F.

    2017-12-01

    Investigating sediment transport capacity as well as the spatial and temporal variations of sediment flux are critical component of river research, especially for applications in resource management and conservation, hazards assessment and planning, and riverine ecology. The bedload fraction of sediment transported through montane rivers often defines channel and bed form processes. It is understood that humid tropical montane rivers are capable of producing some of the largest quantities of sediment per unit drainage area. Bedload flux reported on a few Southeast Asian humid tropical montane rivers show that bedload constituted 16-75% of the total sediment load - this is notably higher than the generally accepted 10% of a channel's sediment load. However, to date almost all of the research done on sediment transport in humid tropical systems has focused on suspended load. This study presents annual bedload transport rate estimates for six field sites distributed within 45 river kilometers (Rkm) of the montane portion of the Rio Pacuare, located in the Talamanca Mountains of Costa Rica. This research reveals that flows capable of mobilizing the D84 occur on average at least once but often multiple times a year in this river system. The Rio Pacuare has a sufficient supply of sediment to meet its high transport capacity needs. As a result, large active bars composed of imbricated boulders define channel form at moderate and low flows throughout the study area. Differences in the magnitude, as well as the spatial and temporal variations of sediment flux at each field site are discussed in relation to stream power, and annual/inter-annual precipitation patterns. A unique mix of field and remote sensing techniques were applied to address these questions and to overcome some of the challenges of tropical river research. For example, due to the large grain size and high stream energy, grain mobilization and validation of modeled shear stress requirements for transport

  11. Minimizing measurement uncertainties of coniferous needle-leaf optical properties, part II: experimental set-up and error analysis

    NARCIS (Netherlands)

    Yanez Rausell, L.; Malenovsky, Z.; Clevers, J.G.P.W.; Schaepman, M.E.

    2014-01-01

    We present uncertainties associated with the measurement of coniferous needle-leaf optical properties (OPs) with an integrating sphere using an optimized gap-fraction (GF) correction method, where GF refers to the air gaps appearing between the needles of a measured sample. We used an optically

  12. [Aboveground biomass and nutrient distribution patterns of larch plantation in a montane region of eastern Liaoning Province, China].

    Science.gov (United States)

    Yan, Tao; Zhu, Jiao-Jun; Yang, Kai; Yu, Li-Zhong

    2014-10-01

    Larch is the main timber species of forest plantations in North China. Imbalance in nutrient cycling in soil emerged due to single species composition and mono system structure of plantation. Thus it is necessary to grasp its biomass and nutrients allocation for scientific management and nutrient cycling studies of larch plantation. We measured aboveground biomass (stem, branch, bark and leaf) and nutrient concentrations (C, N, P, K, Ca, Mg, Fe, Mn, Cu and Zn), and analyzed the patterns of accumulation and distribution of 19-year-old larch plantation with diameter at breast height of 12. 8 cm, tree height of 15. 3 m, and density of 2308 trees · hm(-2), in a montane region of eastern Liaoning Province, China. The results showed that aboveground biomass values were 70.26 kg and 162.16 t · hm(-2) for the individual tree of larch and the stand, respectively. There was a significant difference between biomass of the organs, and decreased in the order of stem > branch > bark > leaf. Nutrient accumulation was 749.94 g and 1730.86 kg · hm(-2) for the individual tree of larch and the stand, respectively. Nutrient accumulation of stem was significantly higher than that of branch, bark and leaf, whether it was macro-nutrient or micro-nutrient. Averagely, 749.94 g nutrient elements would be removed from the system when a 19-year-old larch tree was harvested. If only the stem part was removed from the system, the removal of nutrient elements could be reduced by 40.7%.

  13. Nitrogen Oxide Fluxes and Nitrogen Cycling during Postagricultural Succession and Forest Fertilization in the Humid Tropics.

    Science.gov (United States)

    Heather Erickson; Michael Keller; Eric Davidson

    2001-01-01

    The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region...

  14. [Temperature sensitivity of soil organic carbon mineralization and β-glucosidase enzymekinetics in the northern temperate forests at different altitudes, China].

    Science.gov (United States)

    Fan, Jin-juan; Li, Dan-dan; Zhang, Xin-yu; He, Nian-peng; Bu, Jin-feng; Wang, Qing; Sun, Xiao-min; Wen, Xue-fa

    2016-01-01

    Soil samples, which were collected from three typical forests, i.e., Betula ermanii forest, coniferous mixed broad-leaved forest, and Pinus koraiensis forest, at different altitudes along the southern slope of Laotuding Mountain of Changbai Mountain range in Liaoning Province of China, were incubated over a temperature gradient in laboratory. Soil organic carbon mineralization rates (Cmin), soil β-1,4-glucosidase (βG) kinetics and their temperature sensitivity (Q₁₀) were measured. The results showed that both altitude and temperature had significant effects on Cmin · Cmin increased with temperature and was highest in the B. ermanii forest. The temperature sensitivity of Cmin [Q₁₀(Cmin)] ranked in order of B. ermanii forest > P. koraiensis forest > coniferous mixed broad-leaved forest, but did not differ significantly among the three forests. Both the maximum activity (Vmax) and the Michaelis constant (Km) of the βG responded positively to temperature for all the forests. The temperature sensitivity of Vmax [Q₁₀(Vmax)] ranged from 1.78 to 1.90, and the temperature sensitivity of Km [Q₁₀(Km)] ranged from 1.79 to 2.00. The Q₁₀(Vmax)/Q10(Km) ratios were significantly greater in the B. ermanii soil than in the other two forest soils, suggesting that the βG kinetics-dependent impacts of the global warming or temperature increase on the decomposition of soil organic carbon were temperature sensitive for the forests at the higher altitudes.