WorldWideScience

Sample records for monoxide hydrocarbons photochemical

  1. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Science.gov (United States)

    2010-07-01

    ....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen, carbon monoxide...

  2. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    Science.gov (United States)

    Liu, Wei; Flytzani-Stephanopoulos, Maria

    1996-01-01

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  3. The photochemical reaction of hydrocarbons under extreme thermobaric conditions

    Science.gov (United States)

    Serovaiskii, Aleksandr; Kolesnikov, Anton; Mukhina, Elena; Kutcherov, Vladimir

    2017-10-01

    The photochemical reaction of hydrocarbons was found to play an important role in the experiments with the synthetic petroleum conducted in Diamond Anvil Cell (DAC). Raman spectroscopy with a green laser (514.5 nm) was used for in situ sample analysis. This photochemical effect was investigated in the pressure range of 0.7-5 GPa, in the temperature interval from the ambient conditions to 450°C. The power of laser used in these experiment series was from 0.05 W to 0.6 W. The chemical transformation was observed when the necessary threshold pressure (~2.8 GPa) was reached. This transformation correlated with the luminescence appearance on the Raman spectra and a black opaque spot in the sample was observed in the place where the laser focus was forwarded. The exposure time and laser power (at least in the 0.1-0.5 W range) did not play a role in the 0.1-0.5 GPa range.

  4. Hydrocarbons and air pollution

    International Nuclear Information System (INIS)

    Herz, O.

    1992-01-01

    This paper shows the influence of hydrocarbons vapors, emitted by transports or by volatile solvents using, on air pollution. Hydrocarbons are the principal precursors of photochemical pollution. After a brief introduction on atmospheric chemistry and photochemical reactions, the author describes the french prevention program against hydrocarbons emissions. In the last chapter, informations on international or european community programs for photochemical pollution study are given. 5 figs., 10 tabs

  5. Photochemically consumed hydrocarbons and their relationship with ozone formation in two megacities of China

    Science.gov (United States)

    Chang, C.; Wang, J.; Liu, S.; Shao, M.; Zhang, Y.; Zhu, T.; Shiu, C.; Lai, C.

    2010-12-01

    Two on-site continuous measurements of ozone and its precursors in two megacities of China were carried out in an urban site of Beijing and a suburban site near Guangzhou in the Pearl River Delta (PRD) to estimate precursor consumption and to assess its relationship with oxidant (O3+NO2) formation level. An observation-based method (OBM) with the precursor consumption concept was adopted to assess the relationship between oxidant production and amounts of photochemically consumed non-methane hydrocarbons (NMHCs). In this approach, the ratio of ethylbenzene to m,p-xylenes was used to estimate the degree of photochemical processing, as well as the amounts of photochemically consumed NMHCs by reacting with OH. By trying to correlate the observed oxidant with the observed NMHC concentration, the two areas both revealed nearly no to low correlation between them. However, it existed fair to good correlations (R2=0.68 for Beijing, 0.53 for PRD) between the observed oxidant level and the degree of photochemical processing (ethylbenzene/m,p-xylenes). Furthermore, after taking the approach of consumption to estimate the consumed amounts of NMHCs, an interesting finding reveals that the definite correlation existed between the observed oxidant level and the total consumed NMHCs. The good correlations (R2=0.83 for Beijing, 0.81 for PRD) implies that the ambient oxidant level correlated to the amount of consumed NMHCs. The results of the two megacities in China by using the OBM with the precursor consumption concept can provide another pathway to explore the relationship between photochemically produced oxidant and consumed precursors, and will be helpful to validate model results and to reduce uncertainty of model predictions. However, the method has some room for uncertainty, as injection of fresh precursor emissions and additional boundary ozone involved, etc. could affect the estimation of consumed NMHCs and observed oxidant levels. Assistance of approaches in assessing the

  6. Detection of carbon monoxide (CO) in sooting hydrocarbon flames using femtosecond two-photon laser-induced fluorescence (fs-TPLIF)

    Science.gov (United States)

    Wang, Yejun; Kulatilaka, Waruna D.

    2018-01-01

    Ultrashort-pulse, femtosecond (fs)-duration, two-photon laser-induced fluorescence (fs-TPLIF) measurements of carbon monoxide (CO) are reported in rich, sooting hydrocarbon flames. CO-TPLIF detection using conventional nanosecond or picosecond lasers are often plagued by photochemical interferences, specifically under fuel-rich flames conditions. In the current study, we investigate the commonly used CO two-photon excitation scheme of the B1Σ+ ← X1Σ+ electronic transition, using approximately 100-fs-duration excitation pulses. Fluorescence emission was observed in the Ångström band originating from directly populated B1Σ+ upper state, as well as, in the third positive band from collisionally populated b3Σ+ upper state. The current work was focused on the Ångström band emission. Interference from nascent C2 emissions originating from hot soot particles in the flame could be reduced to a negligible level using a narrower detection gate width. In contrast, avoiding interferences from laser-generated C2 Swan-band emissions required specific narrowband spectral filtering in sooting flame conditions. The observed less than quadratic laser pulse energy dependence of the TPLIF signal suggests the presence of strong three-photon ionization and stimulated emission processes. In a range of CH4/air and C2H4/air premixed flames investigated, the measured CO fluorescence signals agree well with the calculated equilibrium CO number densities. Reduced-interference CO-TPLIF imaging in premixed C2H4/O2/N2 jet flames is also reported.

  7. Metal-free photochemical silylations and transfer hydrogenations of benzenoid hydrocarbons and graphene

    Science.gov (United States)

    Papadakis, Raffaello; Li, Hu; Bergman, Joakim; Lundstedt, Anna; Jorner, Kjell; Ayub, Rabia; Haldar, Soumyajyoti; Jahn, Burkhard O.; Denisova, Aleksandra; Zietz, Burkhard; Lindh, Roland; Sanyal, Biplab; Grennberg, Helena; Leifer, Klaus; Ottosson, Henrik

    2016-10-01

    The first hydrogenation step of benzene, which is endergonic in the electronic ground state (S0), becomes exergonic in the first triplet state (T1). This is in line with Baird's rule, which tells that benzene is antiaromatic and destabilized in its T1 state and also in its first singlet excited state (S1), opposite to S0, where it is aromatic and remarkably unreactive. Here we utilized this feature to show that benzene and several polycyclic aromatic hydrocarbons (PAHs) to various extents undergo metal-free photochemical (hydro)silylations and transfer-hydrogenations at mild conditions, with the highest yield for naphthalene (photosilylation: 21%). Quantum chemical computations reveal that T1-state benzene is excellent at H-atom abstraction, while cyclooctatetraene, aromatic in the T1 and S1 states according to Baird's rule, is unreactive. Remarkably, also CVD-graphene on SiO2 is efficiently transfer-photohydrogenated using formic acid/water mixtures together with white light or solar irradiation under metal-free conditions.

  8. State Air Quality Standards.

    Science.gov (United States)

    Pollution Engineering, 1978

    1978-01-01

    This article presents in tabular form the air quality standards for sulfur dioxide, carbon monoxide, nitrogen dioxide, photochemicals, non-methane hydrocarbons and particulates for each of the 50 states and the District of Columbia. (CS)

  9. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  10. An unusual case of carbon monoxide poisoning.

    Science.gov (United States)

    Auger, P L; Levesque, B; Martel, R; Prud'homme, H; Bellemare, D; Barbeau, C; Lachance, P; Rhainds, M

    1999-01-01

    Carbon monoxide, a gas originating from incomplete combustion of carbon-based fuels, is an important cause of human deaths. In this paper, we describe an unusual carbon monoxide poisoning in a dwelling without obvious sources of combustion gases, for which two adults had to be treated in a hyperbaric chamber. Carbon monoxide readings were taken in the house and in the neighboring homes. Methane gas and nitrogen oxide levels were also monitored in the house air. Soil samples were collected around the house and tested for hydrocarbon residues. The investigation revealed the presence of a pocket of carbon monoxide under the foundation of the house. The first readings revealed carbon monoxide levels of 500 ppm in the basement. The contamination lasted for a week. The investigation indicated that the probable source of contamination was the use of explosives at a nearby rain sewer construction site. The use of explosives in a residential area can constitute a major source of carbon monoxide for the neighboring populations. This must be investigated, and public health authorities, primary-care physicians, governmental authorities, and users and manufacturers of explosives must be made aware of this problem. Images Figure 1 Figure 2 PMID:10379009

  11. An unusual case of carbon monoxide poisoning.

    Science.gov (United States)

    Auger, P L; Levesque, B; Martel, R; Prud'homme, H; Bellemare, D; Barbeau, C; Lachance, P; Rhainds, M

    1999-07-01

    Carbon monoxide, a gas originating from incomplete combustion of carbon-based fuels, is an important cause of human deaths. In this paper, we describe an unusual carbon monoxide poisoning in a dwelling without obvious sources of combustion gases, for which two adults had to be treated in a hyperbaric chamber. Carbon monoxide readings were taken in the house and in the neighboring homes. Methane gas and nitrogen oxide levels were also monitored in the house air. Soil samples were collected around the house and tested for hydrocarbon residues. The investigation revealed the presence of a pocket of carbon monoxide under the foundation of the house. The first readings revealed carbon monoxide levels of 500 ppm in the basement. The contamination lasted for a week. The investigation indicated that the probable source of contamination was the use of explosives at a nearby rain sewer construction site. The use of explosives in a residential area can constitute a major source of carbon monoxide for the neighboring populations. This must be investigated, and public health authorities, primary-care physicians, governmental authorities, and users and manufacturers of explosives must be made aware of this problem.

  12. Method of making gold thiolate and photochemically functionalized microcantilevers

    Science.gov (United States)

    Boiadjiev, Vassil I [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Bonnesen, Peter V [Knoxville, TN; Goretzki, Gudrun [Nottingham, GB

    2009-08-25

    Highly sensitive sensor platforms for the detection of specific reagents, such as chromate, gasoline and biological species, using microcantilevers and other microelectromechanical systems (MEMS) whose surfaces have been modified with photochemically attached organic monolayers, such as self-assembled monolayers (SAM), or gold-thiol surface linkage are taught. The microcantilever sensors use photochemical hydrosilylation to modify silicon surfaces and gold-thiol chemistry to modify metallic surfaces thereby enabling individual microcantilevers in multicantilever array chips to be modified separately. Terminal vinyl substituted hydrocarbons with a variety of molecular recognition sites can be attached to the surface of silicon via the photochemical hydrosilylation process. By focusing the activating UV light sequentially on selected silicon or silicon nitride hydrogen terminated surfaces and soaking or spotting selected metallic surfaces with organic thiols, sulfides, or disulfides, the microcantilevers are functionalized. The device and photochemical method are intended to be integrated into systems for detecting specific agents including chromate groundwater contamination, gasoline, and biological species.

  13. Distributions of Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport, Photochemical Degradation/Production at Polar Sunrise.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A

    2017-08-15

    The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.

  14. Vertical observation of molecular hydrogen and carbon monoxide: Implication for non-photochemical H2 production at ocean surface and subsurface

    Science.gov (United States)

    Kawagucci, S.; Narita, T.; Obata, H.; Ogawa, H.; Gamo, T.

    2009-12-01

    Biological nitrogen fixation is a key metabolism controlling marine N-cycling and also known as a main H2 source. Recently, it was proposed that a monitoring of surface H2 concentration could be used quickly to figure out the spatial extent of biological nitrogen fixation activity without onboard incubation required for currently used methods for detecting the activity. However, H2 behavior in ocean water was still unresolved. This study carried out vertical observation of H2 and CO concentrations in south of Japan, western North Pacific. Because carbon monoxide, CO, in seawater has no relation with nitrogen fixation metabolism and is produced dominantly by the photochemical reaction, which is an altanative H2 source, simultaneous observation and comparison of H2 and CO concentration is helpful to investigate H2 behavior in ocean water. Reductive gases in seawater were observed during the R/V Tansei-maru KT-08-14 cruise by using a wired CTD-CMS (CTD-carousel multiple sampling) system to conduct vertical sampling (at most 200 m depth) and by using a plastic bucket for sampling surface seawater. The sample in the Niskin-X bottle was directed to the bottom of a 120 mL brown-colored glass vial allowed to overflow by 2 volumes before the tube was slowly withdrawn. After the addition of 0.5 mL HgCl2-saturated solution for poisoning, the PTFE-lined butyl-gum septum was used to cap the vials. Molecular hydrogen (H2) and carbon monoxide (CO) were analyzed at an onboard laboratory within 6 hours after subsampling. 20 mL of sample water was substituted by 20 mL of H2- and CO-free air using a gas-tight syringe; then the vial was put on an automatic shaker and shaken upside down for 6 minutes to achieve a complete equilibrium between the dissolved and head space gases in the vial. The equilibrated headspace was taken by another gas-tight syringe and then injected into a gas chromatograph equipped with a trace reduced gas detector. Vertical distribution of dissolved H2 and CO

  15. The separation of hydrocarbons from waste vapor streams

    International Nuclear Information System (INIS)

    Behling, R.D.; Ohlrogge, K.; Peinemann, K.V.; Kyburz, E.

    1989-01-01

    Hydrocarbon vapors generated from industrial processes dispersed into air are contributing factors for the creation of photochemical smog. The separation of hydrocarbon vapor by means of membranes is in case of some applications a technically simple and economic process. A membrane vapor separation process with a following treatment of the retentate by catalytic incineration is introduced in this paper

  16. Photochemical oxidant transport - Mesoscale lake breeze and synoptic-scale aspects

    Science.gov (United States)

    Lyons, W. A.; Cole, H. S.

    1976-01-01

    Data from routine ozone monitoring in southeastern Wisconsin and limited monitoring of the Milwaukee area by the Environmental Protection Agency are examined. Hourly averages as high as 30 pphm have been recorded in southeastern Wisconsin, and high readings have been reported in rural regions throughout the state. The observations indicate that photochemical oxidants and their nitrogen oxide and reactive hydrocarbon precursers advect from Chicago and northern Indiana into southeastern Wisconsin. There is evidence that synoptic-scale transport of photochemical oxidants occurs, allowing the pollution of entire anticyclones. These results cast doubt on the validity of the Air Quality Control Regions established by amendment to the Clean Air Act of 1970.

  17. Mechanistic studies related to the metal catalyzed reduction of carbon monoxide to hydrocarbons. Final report, April 1, 1977-June 30, 1985

    International Nuclear Information System (INIS)

    Casey, C.P.

    1985-02-01

    Studies of compounds related to proposed intermediates in the hydrogenation of carbon monoxide over homogeneous and heterogeneous catalysts have been carried out. The synthesis, structure, and reactions of metal formyl compounds have been investigated. The synthesis and desproportionation reactions of hydroxymethyl metal compounds have been explored. Reactions involving interconversion of n 5 - and n'-C 5 H 5 organometallic compounds have been discovered. New synthetic routes to bimetallic compounds with bridging hydrocarbon ligands have been developed. The first bimetallic compound with a budging CH ligand has been prepared. The hydrocarbation reaction in which the CH bond of a bridging methylidyne complex adds across a carbon-carbon double bond has been discovered. New heterobimetallic compounds linked by a heterodifunctional ligand and heterobimetallic compounds with directly bonded early and late transition metals have been synthesized in a search for new CO hydrogenation catalysts. 36 refs

  18. Characterization of non-methane hydrocarbons in Asian summer monsoon outflow observed by the CARIBIC aircraft

    Directory of Open Access Journals (Sweden)

    A. K. Baker

    2011-01-01

    Full Text Available Between April and December 2008 the CARIBIC commercial aircraft conducted monthly measurement flights between Frankfurt, Germany and Chennai, India. These flights covered the period of the Asian summer monsoon (June–September, during which enhancements in a number of atmospheric species were observed in the upper troposphere over southwestern Asia. In addition to in situ measurements of trace gases and aerosols, whole air samples were collected during the flights, and these were subsequently analyzed for a suite of trace gases that included a number of C2–C8 non-methane hydrocarbons. Non-methane hydrocarbons are relatively short-lived compounds and the large enhancements in their mixing ratios in the upper troposphere over southwestern Asia during the monsoon, sometimes more than double their spring and fall means, provides qualitative evidence for the influence of convectively uplifted boundary layer air. The particularly large enhancements of the combustion tracers benzene and ethyne, along with the similarity of their ratios with carbon monoxide and emission ratios from the burning of household biofuels, indicate a strong influence of biofuel burning to NMHC emissions in this region. Conversely, the ratios of ethane and propane to carbon monoxide, along with the ratio between i-butane and n-butane, indicate a significant source of these compounds from the use of fossil fuels, and comparison to previous campaigns suggests that this source could be increasing. Photochemical aging patterns of NMHCs showed that the CARIBIC samples were collected in two distinctly different regions of the monsoon circulation: a southern region where air masses had been recently influenced by low level contact and a northern region, where air parcels had spent substantial time in transit in the upper troposphere before being probed. Estimates of age using ratios of individual NMHCs have ranges of 3–6 days in the south and 9–12 days in

  19. Catalysts for the production of hydrocarbons from carbon monoxide and water

    Science.gov (United States)

    Sapienza, R.S.; Slegeir, W.A.; Goldberg, R.I.

    1985-11-06

    A method of converting low H/sub 2//CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200 to 350/sup 0/C in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinum, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n + 1) greater than or equal to x greater than or equal to O and for olefinic hydrocarbons: 2n greater than or equal to x greater than or equal to O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

  20. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    Science.gov (United States)

    Rolllins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2012-07-24

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  1. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  2. Tropospheric Ozone and Photochemical Smog

    Science.gov (United States)

    Sillman, S.

    2003-12-01

    The question of air quality in polluted regions represents one of the issues of geochemistry with direct implications for human well-being. Human health and well-being, along with the well-being of plants, animals, and agricultural crops, are dependent on the quality of air we breathe. Since the start of the industrial era, air quality has become a matter of major importance, especially in large cities or urbanized regions with heavy automobile traffic and industrial activity.Concern over air quality existed as far back as the 1600s. Originally, polluted air in cities resulted from the burning of wood or coal, largely as a source of heat. The industrial revolution in England saw a great increase in the use of coal in rapidly growing cities, both for industrial use and domestic heating. London suffered from devastating pollution events during the late 1800s and early 1900s, with thousands of excess deaths attributed to air pollution (Brimblecombe, 1987). With increasing use of coal, other instances also occurred in continental Europe and the USA. These events were caused by directly emitted pollutants (primary pollutants), including sulfur dioxide (SO2), carbon monoxide (CO), and particulates. They were especially acute in cities with northerly locations during fall and winter when sunlight is at a minimum. These original pollution events gave rise to the term "smog" (a combination of smoke and fog). Events of this type have become much less severe since the 1950s in Western Europe and the US, as natural gas replaced coal as the primary source of home heating, industrial smokestacks were designed to emit at higher altitudes (where dispersion is more rapid), and industries were required to install pollution control equipment.Beginning in the 1950s, a new type of pollution, photochemical smog, became a major concern. Photochemical smog consists of ozone (O3) and other closely related species ("secondary pollutants") that are produced photochemically from directly

  3. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site

    Science.gov (United States)

    Buss, Joshua A.; Agapie, Theodor

    2016-01-01

    Carbon dioxide is the ultimate source of the fossil fuels that are both central to modern life and problematic: their use increases atmospheric levels of greenhouse gases, and their availability is geopolitically constrained. Using carbon dioxide as a feedstock to produce synthetic fuels might, in principle, alleviate these concerns. Although many homogeneous and heterogeneous catalysts convert carbon dioxide to carbon monoxide, further deoxygenative coupling of carbon monoxide to generate useful multicarbon products is challenging. Molybdenum and vanadium nitrogenases are capable of converting carbon monoxide into hydrocarbons under mild conditions, using discrete electron and proton sources. Electrocatalytic reduction of carbon monoxide on copper catalysts also uses a combination of electrons and protons, while the industrial Fischer-Tropsch process uses dihydrogen as a combined source of electrons and electrophiles for carbon monoxide coupling at high temperatures and pressures. However, these enzymatic and heterogeneous systems are difficult to probe mechanistically. Molecular catalysts have been studied extensively to investigate the elementary steps by which carbon monoxide is deoxygenated and coupled, but a single metal site that can efficiently induce the required scission of carbon-oxygen bonds and generate carbon-carbon bonds has not yet been documented. Here we describe a molybdenum compound, supported by a terphenyl-diphosphine ligand, that activates and cleaves the strong carbon-oxygen bond of carbon monoxide, enacts carbon-carbon coupling, and spontaneously dissociates the resulting fragment. This complex four-electron transformation is enabled by the terphenyl-diphosphine ligand, which acts as an electron reservoir and exhibits the coordinative flexibility needed to stabilize the different intermediates involved in the overall reaction sequence. We anticipate that these design elements might help in the development of efficient catalysts for

  4. Photo-assisted removal of fuel oil hydrocarbons from wood and concrete.

    Science.gov (United States)

    Popova, Inna E; Kozliak, Evguenii I

    2008-08-01

    A novel photo-treatment to decontaminate building structural elements polluted with fuel oil hydrocarbons as a result of spillage and/or a catastrophic flood was examined. A proof-of-concept study evaluating the photocatalytic removal of hydrocarbons (n-hexadecane and fuel oil #2) from contaminated wood (southern yellow pine) and concrete was conducted using scintillation counting (with (14)C-labeled n-hexadecane) and gas chromatography. Contaminated samples were irradiated by UV or fluorescent light in the absence or presence of a photocatalyst, TiO(2). As a result of the treatment, under various scenarios, up to 80-98% of the originally applied n-hexadecane was removed, within a wide range of contaminant concentrations (4-250 mg/g wood). The essential treatment time increased from 1-7 days for low concentrations to several weeks for high concentrations. Mass balance experiments showed that the only product formed from (14)C-labeled n-hexadecane in detectable amounts was (14)CO(2). For low amounts of applied hydrocarbon (4-20 mg/g wood), the overall process rate was limited by the contaminant transport/mobility whereas for high n-hexadecane concentrations (150-250 mg/g, corresponding to 50-80% filling of wood pores), the key factor was the photochemical reaction. Photodegradation experiments conducted with standard heating fuel oil #2 (a representative real-world contaminant) resulted in a significant (up to 80%) photochemical removal of mid-size hydrocarbons (C(13)-C(17)) in 3 weeks whereas heavier hydrocarbons (> C(17)) were not affected; light hydrocarbons (evaporation. These results point toward a promising technique to reclaim wooden and concrete structures contaminated with semi-volatile chemicals.

  5. Direct electroreduction of CO2 into hydrocarbon

    International Nuclear Information System (INIS)

    Winea, Gauthier; Ledoux, Marc-Jacques; Pham-Huu, Cuong; Gangeri, Miriam; Perathoner, Siglinda; Centi, Gabriele

    2006-01-01

    A lot of methods exist to directly reduce carbon dioxide into hydrocarbons: the photoelectrochemical process is certainly the most interesting, essentially due to the similarities with photosynthesis. As the human activities produce a great quantity of CO 2 , this one can then be considered as an infinite source of carbon. The products of this reaction are identical to those obtained during a Fischer-Tropsch reaction, that is to say hydrocarbons, alcohols and carboxylic acids. These works deal with the electrochemical reduction of CO 2 in standard conditions of temperature and pressure. The photochemical part has been replaced by a current generator as electrons source and a KHCO 3 aqueous solution as protons source. The first catalytic results clearly show that it is possible to reduce CO 2 into light hydrocarbons, typically from C1 to C9. (O.M.)

  6. Photochemical air pollution

    International Nuclear Information System (INIS)

    Te Winkel, B.H.

    1992-01-01

    During periods of severe photochemical air pollution (smog) the industry in the Netherlands is recommended by the Dutch government to strongly reduce the emissions of air pollutants. For the electric power generating companies it is important to investigate the adequacy of this policy. The purpose of this investigation is to determine the contribution of electric power plants to photochemical air pollution and to assess the efficacy of emission reducing measures. A literature survey on the development of photochemical air pollution was carried out and modelled calculations concerning the share of the electric power plants to the photochemical air pollution were executed

  7. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer

    Science.gov (United States)

    Zimmerman, P. R.; Greenberg, J. P.; Westberg, C. E.

    1988-01-01

    Tropospheric mixing ratios of methane, C2-C10 hydrocarbons, and carbon monoxide were measured over the Amazon tropical forest near Manaus, Amazonas, Brazil, in July and August 1985. The measurements, consisting mostly of altitude profiles of these gases, were all made within the atmospheric boundary layer up to an altitude of 1000 m above ground level. Data characterize the diurnal hydrocarbon composition of the boundary layer. Biogenic emissions of isoprene control hydroxyl radical concentrations over the forest. Biogenic emission fluxes of isoprene and terpenes are estimated to be 25,000 micrograms/sq m per day and 5600 micrograms/sq m per day, respectively. This isoprene emission is equivalent to 2 percent of the net primary productivity of the tropical forest. Atmospheric oxidation of biogenic isoprene and terpenes emissions from the Amazon forest may account for daily increases of 8-13 ppb for carbon monoxide in the planetary boundary layer.

  8. Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong.

    Science.gov (United States)

    Guo, H; Lee, S C; Louie, P K K; Ho, K F

    2004-12-01

    Ambient air quality measurements of 156 species including 39 alkanes, 32 alkenes, 2 alkynes, 24 aromatic hydrocarbons, 43 halocarbons and 16 carbonyls, were carried out for 120 air samples collected at two sampling stations (CW and TW) in 2001 throughout Hong Kong. Spatial variations of volatile organic compounds (VOCs) in the atmosphere were investigated. Levels of most alkanes and alkenes at TW site were higher than that at the CW site, while the BTEX concentrations at the two sites were close. The BTEX ratios at CW and TW were 1.6:10.1:1.0:1.6 and 2.1:10.8:1.0:2.0, respectively. For major halogenated hydrocarbons, the mean concentrations of chloromethane, CFCs 12 and 22 did not show spatial variations at the two sites. However, site-specific differences were observed for trichloroethene and tetrachloroethene. Furthermore, there were no significant differences for carbonyls such as formaldehyde, acetaldehyde and acetone between the two sites. The levels of selected hydrocarbons in winter were 1-5 times that in summer. There were no common seasonal trends for carbonyls in Hong Kong. The ambient level of formaldehyde, the most abundant carbonyl, was higher in summer. However, levels of acetaldehyde, acetone and benzaldehyde in winter were 1.6-3.8 times that in summer. The levels of CFCs 11 and 12, and chloromethane in summer were higher than that in winter. Strong correlation of most hydrocarbons with propene and n-butane suggested that the primary contributors of hydrocarbons were vehicular emissions in Hong Kong. In addition, gasoline evaporation, use of solvents, leakage of liquefied petroleum gas (LPG), natural gas leakage and other industrial emissions, and even biogenic emissions affected the ambient levels of hydrocarbons. The sources of halocarbons were mainly materials used in industrial processes and as solvents. Correlation analysis suggested that photochemical reactions made significant contributions to the ambient levels of carbonyls in summer whereas

  9. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Education Safety Education Centers Carbon Monoxide Information Center Carbon Monoxide Information Center En Español The Invisible Killer Carbon monoxide, also known as CO, is called the " ...

  10. Recovering hydrocarbons with surfactants from lignin

    Energy Technology Data Exchange (ETDEWEB)

    Naae, D.G.; Whittington, L.E.; Ledoux, W.A.; Debons, F.E.

    1988-11-29

    This patent describes a method of recovering hydrocarbons from an underground hydrocarbon formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation through an injection well a surfactant slug comprising about 0.1% to about 10% by weight of surfactants produced from lignin, the surfactants produced by placing lignin in contact with water, converting the lignin into low molecular weight lignin phenols by reducing the lignin in the presence of a reducing agent of carbon monoxide or hydrogen creating a reduction reaction mixture comprising oil soluble lignin phenols, the reduction occurring at a temperature greater than about 200/sup 0/C and a pressure greater than about 100 psi, recovering the oil soluble lignin phenols from the reduction mixture, and converting the lignin phenols into lignin surfactants by a reaction selected from the group consisting of alkoxylation, sulfonation, sulfation, aklylation, sulfomethylation, and alkoxysulfation; injecting into the formation through the injection well a drive fluid to push the surfactant slug towards a production well; and recovering hydrocarbons at the production well.

  11. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Education Centers Carbon Monoxide Information Center Carbon Monoxide Information Center En Español The Invisible Killer Carbon monoxide, ... Install one and check its batteries regularly. View Information About CO Alarms Other CO Topics Safety Tips ...

  12. IR Laser Ablation of Silicon Monoxide in Gaseous Methanol and Hydrocarbons: Deposition of Polyoxocarbosilane

    Czech Academy of Sciences Publication Activity Database

    Dřínek, Vladislav; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2004-01-01

    Roč. 71, č. 2 (2004), s. 431-444 ISSN 0165-2370 R&D Projects: GA ČR GA203/00/1288 Institutional research plan: CEZ:AV0Z4072921; CEZ:AV0Z4032918; CEZ:AV0Z4040901 Keywords : silicon monoxide * reactive laser ablation * polyoxocarbosilane coatings Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.352, year: 2004

  13. Carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The document identifies the main sources of carbon monoxide (CO) in the general outdoor atmosphere, describes methods of measuring and monitoring its concentration levels in the United Kingdom, and discusses the effects of carbon monoxide on human health. Following its review, the Panel has put forward a recommendation for an air quality standard for carbon monoxide in the United Kingdom of 10 ppm, measured as a running 8-hour average. The document includes tables and graphs of emissions of CO, in total and by emission source, and on the increase in blood levels of carboxyhaemoglobin with continuing exposure to CO. 11 refs., 4 figs., 4 tabs.

  14. Characteristics of atmospheric non-methane hydrocarbons during haze episode in Beijing, China.

    Science.gov (United States)

    Guo, Songjun; Tan, Jihua; Duan, Jingchun; Ma, Yongliang; Yang, Fumo; He, Kebin; Hao, Jimin

    2012-12-01

    This study firstly focused on non-methane hydrocarbons (NMHCs) during three successive days with haze episode (16-18 August 2006) in Beijing. Concentrations of alkanes, alkenes, aromatic hydrocarbons, and ethyne all peaked at traffic rush hour, implying vehicular emission; and alkanes also peaked at non-traffic rush hour in the daytime, implying additional source. Especially, alkanes and aromatics clearly showed higher levels in the nighttime than that in the daytime, implying their active photochemical reactions in the daytime. Correlation coefficients (R (2)) showed that propane, n-butane, i-butane, ethene, propene, and benzene correlated with ethyne (R (2) = 0.61-0.66), suggesting that their main source is vehicular emission; 2-methylpentane and n-hexane correlated with i-pentane (R (2) = 0.61-0.64), suggesting that gasoline evaporation is their main source; and ethylbezene, m-/p-xylene, and o-xylene correlated with toluene (R (2) = 0.60-0.79), suggesting that their main source is similar to that of toluene (e.g., solvent usage). The R (2) of ethyne, i-pentane, and toluene with total NMHCs were 0.58, 0.76, and 0.60, respectively, indicating that ambient hydrocarbons are associated with vehicular emission, gasoline evaporation, and solvent usage. The sources of other hydrocarbons (e.g., ethane) might be natural gas leakage, biogenic emission, or long-range transport of air pollutants. Measured higher mean B/T ratio (0.78 ± 0.27) was caused by the more intensive photochemical activity of toluene than benzene, still indicating the dominant emission from vehicles.

  15. Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Kamal Mishra

    2016-01-01

    Full Text Available Introduction: Carbon monoxide is known as the silent killer, being colorless, odourless, and tasteless. Initially non-irritating, it is very difficult for people to detect Carbon monoxide is a product of incomplete combustion of organic matter due to insufficient oxygen supply that prevents complete oxidation of carbon to C02. During World War II, Nazis used gas vans to kill an estimated over 700,000 prisoners by carbon monoxide poisoning. This method was also used in the gas chambers ofseveral death camps. The true number of incidents of carbon monoxide poisoning is unknown, since many non-lethal exposures go undetected From the available data, carbon monoxide poisoning is the most common cause of injury and death due to poisoning worldwide. Clinical features and management: The signs of carbon monoxide poisoning vary with concentration and length of exposure. Subtle cardiovascular or neurobehavioural effects occur at low concentration. The onset of chronic poisoning is usually insidious and easily mistaken for viral prodrome, depression, or gastroenteritis in children. The classic sign of carbon monoxide poisoning which is actually more often seen in the dead than the living is appearing red-cheeked and healthy. Cherry pink colour develops in nails, skin and mucosa. In acute poisoning, common abnormalities of posture and tone are cogwheel rigidity, opisthotonus, spasticity or flaccidity and seizures. Retinal haemorrhages and the classic cherry red skin colour are seldom seen. Different people andpopulations may have different carbon monoxide tolerance levels. On average, exposures at 100ppm or greater is dangerous to human health. Treatment and prevention: The mainstay of treatment is 100% oxygen administration until the COHb level is normal When the patient is stable enough to be transported, hyperbaric oxygen (HBOT should be considered This treatment is safe and well tolerated Public education about the danger of carbon monoxide, with

  16. Carbon Monoxide Safety

    Science.gov (United States)

    ... with the Media Fire Protection Technology Carbon monoxide safety outreach materials Keep your community informed about the ... KB | Spanish PDF 592 KB Handout: carbon monoxide safety Download this handout and add your organization's logo ...

  17. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... main content Languages 简体中文 English Bahasa Indonesia 한국어 Español ภาษาไทย Tiếng Việt Text Size: Decrease Font Increase ... Monoxide Information Center Carbon Monoxide Information Center En Español The Invisible Killer Carbon monoxide, also known as ...

  18. Hydrogenating gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nicolardot, P L.F.

    1930-08-06

    Gaseous hydrocarbons obtained by the destructive distillation of carbonaceous materials are simultaneously desulfurized and hydrogenated by passing them at 350 to 500/sup 0/C, mixed with carbon monoxide and water vapor over lime mixed with metallic oxides present in sufficient amount to absorb the carbon dioxide as it is formed. Oxides of iron, copper, silver, cobalt, and metals of the rare earths may be used and are mixed with the lime to form a filling material of small pieces filling the reaction vessel which may have walls metallized with copper and zinc dust. The products are condensed and fixed with absorbents, e.g. oils, activated carbon, silica gels. The metallic masses may be regenerated by a hot air stream and by heating in inert gases.

  19. Carbon monoxide poisoning

    Science.gov (United States)

    ... Animals can also be poisoned by carbon monoxide. People who have pets at home may notice that their animals become ... or unresponsive from carbon monoxide exposure. Often the pets will ... these conditions. This can lead to a delay in getting help.

  20. Photochemical effects of sunlight.

    Science.gov (United States)

    Daniels, F

    1972-07-01

    The importance of sunlight in bringing about not only photosynthesis in plants, but also other photochemical effects, is reviewed. More effort should be devoted to photochemical storage of the sun's energy without the living plant. There is no theoretical reason to believe that such reactions are impossible. Ground rules for searching for suitable solar photochemical reactions are given, and a few attempts are described, but nothing successful has yet been found. Future possibilities are suggested. Photogalvanic cells which convert sunlight into electricity deserve further research. Eugene Rabinowitch has been an active pioneer in these fields.

  1. Photochemical production of ozone and control strategy for Southern Taiwan

    Science.gov (United States)

    Shiu, Chein-Jung; Liu, Shaw Chen; Chang, Chih-Chung; Chen, Jen-Ping; Chou, Charles C. K.; Lin, Chuan-Yao; Young, Chea-Yuan

    An observation-based method (OBM) is developed to evaluate the ozone (O 3) production efficiency (O 3 molecules produced per NO x molecule consumed) and O 3 production rate ( P(O 3)) during a field campaign in southern Taiwan. The method can also provide an estimate of the concentration of OH. A key step in the method is to use observed concentrations of two aromatic hydrocarbons, namely ethylbenzene and m, p-xylene, to estimate the degree of photochemical processing and amounts of photochemically consumed NO x and NMHCs by OH. In addition, total oxidant (O 3+NO 2) instead of O 3 itself turns out to be very useful for representing ozone production in the OBM approach. The average O 3 production efficiency during the field campaign in Fall (2003) is found to be about 10.2±3.9. The relationship of P(O 3) with NO x is examined and compared with a one-dimensional (1D) photochemical model. Values of P(O 3) derived from the OBM are slightly lower than those calculated in the 1D model. However, OH concentrations estimated by the OBM are about a factor of 2 lower than the 1D model. Fresh emissions, which affect the degree of photochemical processing appear to be a major cause of the underestimate. We have developed a three-dimensional (3D) OBM O 3 production diagram that resembles the EKMA ozone isopleth diagram to study the relationship of the total oxidant versus O 3 precursors. The 3D OBM O 3 production diagram suggests that reducing emissions of NMHCs are more effective in controlling O 3 than reducing NO x. However, significant uncertainties remain in the OBM, and considerable more work is required to minimize these uncertainties before a definitive control strategy can be reached. The observation-based approach provides a good alternative to measuring peroxy radicals for evaluating the production of O 3 and formulating O 3 control strategy in urban and suburban environments.

  2. The reformation of liquid hydrocarbons in an aqueous discharge reactor

    International Nuclear Information System (INIS)

    Zhang, Xuming; Cha, Min Suk

    2015-01-01

    We present an aqueous discharge reactor for the reformation of liquid hydrocarbons. To increase a dielectric constant of a liquid medium, we added distilled water to iso-octane and n-dodecane. As expected, we found decreased discharge onset voltage and increased discharge power with increased water content. Results using optical emission spectroscopy identified OH radicals and O atoms as the predominant oxidative reactive species with the addition of water. Enriched CH radicals were also visualized, evidencing the existence of cascade carbon–carbon cleavage and dehydrogenation processes in the aqueous discharge. The gaseous product consisted primarily of hydrogen, carbon monoxide, and unsaturated hydrocarbons. The composition of the product was readily adjustable by varying the volume of water added, which demonstrated a significant difference in composition with respect to the tested liquid hydrocarbon. In this study, we found no presence of CO 2 emissions or the contamination of the reactor by solid carbon deposition. These findings offer a new approach to the reforming processes of liquid hydrocarbons and provide a novel concept for the design of a practical and compact plasma reformer. (paper)

  3. General circulation model study of atmospheric carbon monoxide

    International Nuclear Information System (INIS)

    Pinto, J.P.; Yung, Y.L.; Rind, D.; Russell, G.L.; Lerner, J.A.; Hansen, J.E.; Hameed, S.

    1983-01-01

    The carbon monoxide cycle is studied by incorporating the known and hypothetical sources and sinks in a tracer model that uses the winds generated by a general circulation model. Photochemical production and loss terms, which depend on OH radical concentrations, are calculated in an interactive fashion. The computed global distribution and seasonal variations of CO are compared with observations to obtain constraints on the distribution and magnitude of the sources and sinks of CO, and on the tropospheric abundance of OH. The simplest model that accounts for available observations requires a low latitude plant source of about 1.3 x 10 15 g yr -1 , in addition to sources from incomplete combustion of fossil fuels and oxidation of methane. The globally averaged OH concentration calculated in the model is 7 x 10 5 cm -3 . Models that calculate globally averaged OH concentrations much lower than our nominal value are not consistent with the observed variability of CO. Such models are also inconsistent with measurements of CO isotopic abundances, which imply the existence of plant sources

  4. Engineering photochemical smog through convection towers

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, S.; Prueitt, M.L.; Bossert, J.E.; Mroz, E.J.; Krakowski, R.A.; Miller, R.L. [Los Alamos National Lab., NM (United States); Jacobson, M.Z.; Turco, R.P. [Los Alamos National Lab., NM (United States)]|[Univ. of California, Los Angeles, CA (United States). Atmospheric Sciences Dept.

    1995-02-01

    Reverse convection towers have attracted attention as a medium for cleansing modern cities. Evaporation of an aqueous mist injected at the tower opening could generate electrical power by creating descent, and simultaneously scavenge unsightly and unhealthful particulates. The study offered here assesses the influence to tower water droplets on the photochemical component of Los Angeles type smog. The primary radical chain initiator OH is likely removed into aqueous phases well within the residence time of air in the tower, and then reacts away rapidly. Organics do not dissolve, but nighttime hydrolysis of N{sub 2}O{sub 5} depletes the nitrogen oxides. A lack of HOx would slow hydrocarbon oxidation and so also ozone production. Lowering of NOx would also alter ozone production rates, but the direction is uncertain. SO{sub 2} is available in sufficient quantities in some urban areas to react with stable oxidants, and if seawater were the source of the mist, the high pH would lead to fast sulfur oxidation kinetics. With an accommodation coefficient of 10{sup {minus}3}, however, ozone may not enter the aqueous phase efficiently. Even if ozone is destroyed or its production suppressed, photochemical recovery times are on the order of hours, so that tower processing must be centered on a narrow midday time window. The cost of building the number of structures necessary for this brief turnover could be prohibitive. The increase in humidity accompanying mist evaporation could be controlled with condensers, but might otherwise counteract visibility enhancements by recreating aqueous aerosols. Quantification of the divergent forcings convection towers must exert upon the cityscape would call for coupled three dimensional modeling of transport, microphysics, and photochemistry. 112 refs.

  5. Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation

    Science.gov (United States)

    Fang, Zheng; Deng, Wei; Zhang, Yanli; Ding, Xiang; Tang, Mingjin; Liu, Tengyu; Hu, Qihou; Zhu, Ming; Wang, Zhaoyi; Yang, Weiqiang; Huang, Zhonghui; Song, Wei; Bi, Xinhui; Chen, Jianmin; Sun, Yele; George, Christian; Wang, Xinming

    2017-12-01

    Agricultural residues are among the most abundant biomass burned globally, especially in China. However, there is little information on primary emissions and photochemical evolution of agricultural residue burning. In this study, indoor chamber experiments were conducted to investigate primary emissions from open burning of rice, corn and wheat straws and their photochemical aging as well. Emission factors of NOx, NH3, SO2, 67 non-methane hydrocarbons (NMHCs), particulate matter (PM), organic aerosol (OA) and black carbon (BC) under ambient dilution conditions were determined. Olefins accounted for > 50 % of the total speciated NMHCs emission (2.47 to 5.04 g kg-1), indicating high ozone formation potential of straw burning emissions. Emission factors of PM (3.73 to 6.36 g kg-1) and primary organic carbon (POC, 2.05 to 4.11 gC kg-1), measured at dilution ratios of 1300 to 4000, were lower than those reported in previous studies at low dilution ratios, probably due to the evaporation of semi-volatile organic compounds under high dilution conditions. After photochemical aging with an OH exposure range of (1.97-4.97) × 1010 molecule cm-3 s in the chamber, large amounts of secondary organic aerosol (SOA) were produced with OA mass enhancement ratios (the mass ratio of total OA to primary OA) of 2.4-7.6. The 20 known precursors could only explain 5.0-27.3 % of the observed SOA mass, suggesting that the major precursors of SOA formed from open straw burning remain unidentified. Aerosol mass spectrometry (AMS) signaled that the aged OA contained less hydrocarbons but more oxygen- and nitrogen-containing compounds than primary OA, and carbon oxidation state (OSc) calculated with AMS resolved O / C and H / C ratios increased linearly (p < 0.001) with OH exposure with quite similar slopes.

  6. Carbon monoxide measurements at Mace Head, Ireland

    Science.gov (United States)

    Doddridge, Bruce G.; Dickerson, Russell R.; Spain, T. Gerard; Oltmans, Samuel J.; Novelli, Paul C.

    1994-01-01

    The North Atlantic Ocean is bordered by continents which may each, under the influence of seasonal weather patterns, act as sources of natural and anthropogenic trace gas and particulate species. Photochemically active species such as carbon monoxide (CO) react to form ozone (O3), a species of critical importance in global climate change. CO is sparingly soluble in water, and the relatively long lifetime of CO in the troposphere makes this species an ideal tracer of air masses with origin over land. We have measured CO using a nondispersive infrared gas filter correlation analyzer at Mace Head on the west coast of Ireland nearly continuously since August 9, 1991. Measurements of CO were acquired at 20-sec resolution and recorded as 60-sec averages. Daily, monthly, and diurnal variation data characteristics of CO mixing ratios observed at this site are reported. Depending on source regions of air parcels passing over this site, 60-min concentrations of CO range from clean air values of approximately 90 ppbv to values in excess of 300 ppbv. Data characterizing the correlation between 60-min CO and O3 mixing ratio data observed at this site are reported also.

  7. Occult carbon monoxide poisoning.

    Science.gov (United States)

    Kirkpatrick, J N

    1987-01-01

    A syndrome of headache, fatigue, dizziness, paresthesias, chest pain, palpitations and visual disturbances was associated with chronic occult carbon monoxide exposure in 26 patients in a primary care setting. A causal association was supported by finding a source of carbon monoxide in a patient's home, workplace or vehicle; results of screening tests that ruled out other illnesses; an abnormally high carboxyhemoglobin level in 11 of 14 patients tested, and abatement or resolution of symptoms when the source of carbon monoxide was removed. Exposed household pets provided an important clue to the diagnosis in some cases. Recurrent occult carbon monoxide poisoning may be a frequently overlooked cause of persistent or recurrent headache, fatigue, dizziness, paresthesias, abdominal pain, diarrhea and unusual spells.

  8. Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Alisa Wray

    2016-07-01

    Full Text Available Audience: This oral boards case is appropriate for all emergency medicine learners (residents, interns, and medical students. Introduction: Carbon monoxide (CO is a colorless and odorless gas that typically results from combustion. It binds hemoglobin, dissociating oxygen, causing headache, weakness, confusion and possible seizure or coma. Pulse oxygen levels may be falsely elevated. Practitioners should maintain a high index of suspicion for carbon monoxide poisoning. If caught early CO poisoning is reversible with oxygen or hyperbaric oxygen therapy. Objectives: The learner will assess a patient with altered mental status and weakness, ultimately identifying that the patient has carbon monoxide poisoning. The learner will treat the patient with oxygen and admit/transfer the patient for hyperbaric oxygenation. Method: Oral boards case

  9. Carbon Monoxide Photoproduction from Particles and Solutes in the Delaware Estuary under Contrasting Hydrological Conditions.

    Science.gov (United States)

    Song, Guisheng; Richardson, John D; Werner, James P; Xie, Huixiang; Kieber, David J

    2015-12-15

    Full-spectrum, ultraviolet (UV), and visible broadband apparent quantum yields (AQYs) for carbon monoxide (CO) photoproduction from chromophoric dissolved organic matter (CDOM) and particulate organic matter (POM) were determined in the Delaware Estuary in two hydrologically contrasting seasons in 2012: an unusually low flow in August and a storm-driven high flow in November. Average AQYs for CDOM and POM in November were 10 and 16 times the corresponding AQYs in August. Maximum AQYs in November occurred in a midestuary particle absorption maximum zone. Although POM AQYs were generally smaller than CDOM AQYs, the ratio of the former to the latter increased substantially from the UV to the visible. In both seasons, UV solar radiation was the primary driver for CO photoproduction from CDOM whereas visible light was the principal contributor to POM-based CO photoproduction. CDOM dominated CO photoproduction in the uppermost water layer while POM prevailed at deeper depths. On a depth-integrated basis, the Delaware Estuary shifted from a CDOM-dominated system in August to a POM-dominated system in November with respect to CO photoproduction. This study reveals that flood events may enhance photochemical cycling of terrigenous organic matter and switch the primary photochemical driver from CDOM to POM.

  10. Seasonal and Diurnal Variations of Atmospheric Non-Methane Hydrocarbons in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Longfeng Li

    2012-05-01

    Full Text Available In recent decades, high ambient ozone concentrations have become one of the major regional air quality issues in the Pearl River Delta (PRD region. Non-methane hydrocarbons (NMHCs, as key precursors of ozone, were found to be the limiting factor in photochemical ozone formation for large areas in the PRD. For source apportioning of NMHCs as well as ozone pollution control strategies, it is necessary to obtain typical seasonal and diurnal patterns of NMHCs with a large pool of field data. To date, few studies have focused on seasonal and diurnal variations of NMHCs in urban areas of Guangzhou. This study explored the seasonal variations of most hydrocarbons concentrations with autumn maximum and spring minimum in Guangzhou. The diurnal variations of most anthropogenic NMHCs typically showed two-peak pattern with one at 8:00 in the morning and another at 20:00 in the evening, both corresponding to traffic rush hours in Guangzhou, whereas isoprene displayed a different bimodal diurnal curve. Propene, ethene, m, p-xylene and toluene were the four largest contributors to ozone formation in Guangzhou, based on the evaluation of individual NMHCs’ photochemical reactivity. Therefore, an effective strategy for controlling ozone pollution may be achieved by the reduction of vehicle emissions in Guangzhou.

  11. The reformation of liquid hydrocarbons in an aqueous discharge reactor

    KAUST Repository

    Zhang, Xuming

    2015-04-21

    We present an aqueous discharge reactor for the reformation of liquid hydrocarbons. To increase a dielectric constant of a liquid medium, we added distilled water to iso-octane and n-dodecane. As expected, we found decreased discharge onset voltage and increased discharge power with increased water content. Results using optical emission spectroscopy identified OH radicals and O atoms as the predominant oxidative reactive species with the addition of water. Enriched CH radicals were also visualized, evidencing the existence of cascade carbon-carbon cleavage and dehydrogenation processes in the aqueous discharge. The gaseous product consisted primarily of hydrogen, carbon monoxide, and unsaturated hydrocarbons. The composition of the product was readily adjustable by varying the volume of water added, which demonstrated a significant difference in composition with respect to the tested liquid hydrocarbon. In this study, we found no presence of CO2 emissions or the contamination of the reactor by solid carbon deposition. These findings offer a new approach to the reforming processes of liquid hydrocarbons and provide a novel concept for the design of a practical and compact plasma reformer. © 2015 IOP Publishing Ltd.

  12. Impact of the Improved Patsari Biomass Stove on Urinary Polycyclic Aromatic Hydrocarbon Biomarkers and Carbon Monoxide Exposures in Rural Mexican Women

    Science.gov (United States)

    Riojas-Rodriguez, Horacio; Schilmann, Astrid; Marron-Mares, Adriana Teresa; Masera, Omar; Li, Zheng; Romanoff, Lovisa; Sjödin, Andreas; Rojas-Bracho, Leonora; Needham, Larry L.

    2011-01-01

    Background: Cooking with biomass fuels on open fires results in exposure to health-damaging pollutants such as carbon monoxide (CO), polycyclic aromatic hydrocarbons (PAHs), and particulate matter. Objective: We compared CO exposures and urinary PAH biomarkers pre- and postintervention with an improved biomass stove, the Patsari stove. Methods: In a subsample of 63 women participating in a randomized controlled trial in central Mexico, we measured personal CO exposure for 8 hr during the day using continuous monitors and passive samplers. In addition, first-morning urine samples obtained the next day were analyzed for monohydroxylated PAH metabolites by gas chromatography/isotope dilution/high-resolution mass spectrometry. Exposure data were collected during the use of an open fire (preintervention) and after installation of the improved stove (postintervention) for 47 women, enabling paired comparisons. Results: Median pre- and postintervention values were 4 and 1 ppm for continuous personal CO and 3 and 1 ppm for passive sampler CO, respectively. Postintervention measurements indicated an average reduction of 42% for hydroxylated metabolites of naphthalene, fluorene, phenanthrene, and pyrene on a whole-weight concentration basis (micrograms per liter of urine), and a 34% reduction on a creatinine-adjusted basis (micrograms per gram of creatinine). Pre- and postintervention geometric mean values for 1-hydroxypyrene were 3.2 and 2.0 μg/g creatinine, respectively. Conclusion: Use of the Patsari stove significantly reduced CO and PAH exposures in women. However, levels of many PAH biomarkers remained higher than those reported among smokers. PMID:21622083

  13. Photochemical hydrogen production system

    International Nuclear Information System (INIS)

    Copeland, R.J.

    1990-01-01

    Both technical and economic factors affect the cost of producing hydrogen by photochemical processes. Technical factors include the efficiency and the capital and operating costs of the renewable hydrogen conversion system; economic factors include discount rates, economic life, credit for co-product oxygen, and the value of the energy produced. This paper presents technical and economic data for a system that generates on-peak electric power form photochemically produced hydrogen

  14. Photochemical decomposition of catecholamines

    International Nuclear Information System (INIS)

    Mol, N.J. de; Henegouwen, G.M.J.B. van; Gerritsma, K.W.

    1979-01-01

    During photochemical decomposition (lambda=254 nm) adrenaline, isoprenaline and noradrenaline in aqueous solution were converted to the corresponding aminochrome for 65, 56 and 35% respectively. In determining this conversion, photochemical instability of the aminochromes was taken into account. Irradiations were performed in such dilute solutions that the neglect of the inner filter effect is permissible. Furthermore, quantum yields for the decomposition of the aminochromes in aqueous solution are given. (Author)

  15. Conversion of hydrocarbons and alcohols for fuel cells

    Science.gov (United States)

    Joensen, Finn; Rostrup-Nielsen, Jens R.

    The growing demand for clean and efficient energy systems is the driving force in the development of fuel processing technology for providing hydrogen or hydrogen-containing gaseous fuels for power generation in fuel cells. Successful development of low cost, efficient fuel processing systems will be critical to the commercialisation of this technology. This article reviews various reforming technologies available for the generation of such fuels from hydrocarbons and alcohols. It also briefly addresses the issue of carbon monoxide clean-up and the question of selecting the appropriate fuel(s) for small/medium scale fuel processors for stationary and automotive applications.

  16. Reconnaissance survey for lightweight and carbon tetrachloride extractable hydrocarbons in the central and eastern basins of Lake Erie: September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Zapotosky, J.E.; White, W.S.

    1980-10-01

    A reconnaissance survey of the central and eastern basins of Lake Erie (22,240 km/sup 2/) was conducted from September 17 to 27, 1978. The survey provided baseline information on natural gas and oil losses from geologic formations, prior to any potential development of natural gas resources beneath the United States portion of the Lake. Lightweight hydrocarbons indicative of natural gas (methane, ethane, propane, isobutane, and n-butane) are introduced into the waters of Lake Erie by escape from geologic formations and by biological/photochemical processes. The geochemical exploration technique of hydrocarbon sniffing provided enough data to reveal significant distribution patterns, approximate concentrations, and potential sources. Twelve sites with elevated lightweight hydrocarbon concentrations had a composition similar to natural gas. In one area of natural gas input, data analysis suggested a potential negative effect of natural gas on phytoplanktonic metabolism (i.e., ethylene concentration). Samples taken for liquid hydrocarbon analysis (carbon tetrachloride extractable hydrocarbons) correlated best with biologically derived lightweight hydrocarbons.

  17. MODELLING OF CARBON MONOXIDE AIR POLLUTION IN LARG CITIES BY EVALUETION OF SPECTRAL LANDSAT8 IMAGES

    Directory of Open Access Journals (Sweden)

    M. Hamzelo

    2015-12-01

    Full Text Available Air pollution in large cities is one of the major problems that resolve and reduce it need multiple applications and environmental management. Of The main sources of this pollution is industrial activities, urban and transport that enter large amounts of contaminants into the air and reduces its quality. With Variety of pollutants and high volume manufacturing, local distribution of manufacturing centers, Testing and measuring emissions is difficult. Substances such as carbon monoxide, sulfur dioxide, and unburned hydrocarbons and lead compounds are substances that cause air pollution and carbon monoxide is most important. Today, data exchange systems, processing, analysis and modeling is of important pillars of management system and air quality control. In this study, using the spectral signature of carbon monoxide gas as the most efficient gas pollution LANDSAT8 images in order that have better spatial resolution than appropriate spectral bands and weather meters،SAM classification algorithm and Geographic Information System (GIS , spatial distribution of carbon monoxide gas in Tehran over a period of one year from the beginning of 2014 until the beginning of 2015 at 11 map have modeled and then to the model valuation ،created maps were compared with the map provided by the Tehran quality comparison air company. Compare involved plans did with the error matrix and results in 4 types of care; overall, producer, user and kappa coefficient was investigated. Results of average accuracy were about than 80%, which indicates the fit method and data used for modeling.

  18. Two-step processing of oil shale to linear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)

    2013-11-01

    Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)

  19. Inhibition of photosynthesis by carbon monoxide and suspension of the carbon monoxide inhibition by light

    Energy Technology Data Exchange (ETDEWEB)

    Gewitz, H S; Voelker, W

    1963-08-01

    The experimental subject was the autotroph Chlorella pyrenoidosa. It was found that growth conditions determine whether the alga is inhibited by carbon monoxide or not. Respiration and photosynthesis are inhibited by carbon monoxide if the cells have grown rapidly under high light intensities. The inhibition of respiration and photosynthesis found in such cells is completely reversible. The inhibition depends not only on carbon monoxide pressure, but also on the oxygen pressure prevailing at the same time. 5 references, 1 figure, 3 tables.

  20. Research opportunities in photochemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The workshop entitled {open_quotes}Research Opportunities in Photochemical Sciences{close_quotes} was initiated by the U.S. Department of Energy (DOE), Office of Energy Research (ER), Office of Basic Energy Sciences (BES), Division of Chemical Sciences. The National Renewable Energy Laboratory (NREL) in Golden, Colorado was requested by ER to host the workshop. It was held February 5-8, 1996 at the Estes Park Conference Center, Estes Park, CO, and attended by about 115 leading scientists and engineers from the U.S., Japan, and Europe; program managers for the DOE ER and Energy Efficiency and Renewable Energy (EERE) programs also attended. The purpose of the workshop was to bridge the communication gap between the practioneers and supporters of basic research in photochemical science and the practioneers and supporters of applied research and development in technologies related to photochemical science. For the purposes of the workshop the definition of the term {open_quotes}photochemical science{close_quotes} was broadened to include homogeneous photochemistry, heterogeneous photochemistry, photoelectrochemistry, photocatalysis, photobiology (for example, the light-driven processes of biological photosynthesis and proton pumping), artificial photosynthesis, solid state photochemistry, and solar photochemistry. The technologies under development through DOE support that are most closely related to photochemical science, as defined above, are the renewable energy technologies of photovoltaics, biofuels, hydrogen energy, carbon dioxide reduction and utilization, and photocatalysis for environmental cleanup of water and air. Individual papers were processed separately for the United states Department of Energy databases.

  1. Photochemical smog and plants

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, T.

    1974-07-01

    Surveys of plant damage due to photochemical smog are summarized. The components of smog which appear to be responsible for plant damage include ozone and peroxyacyl nitrates. Their phytotoxic effects are much greater than those due to sulfur oxides. Damage surveys since 1970 reveal the following symptoms appearing on herbaceous plants (morning glory, cocks comb, dahlia, knotweed, petunia, chickweed, Welsh onion, spinach, Chinese cabbage, chard, taro): yellowish-white leaf discoloration, white and brown spots on matured leaves, and silvering of the lower surfaces of young leaves. Symptoms which appear on arboraceous plants such as zelkova, poplar, ginkgo, planetree, rose mallow, magnolia, pine tree, and rhododendron include early yellowing and reddening, white or brown spots, and untimely leaf-fall. The above plants are now utilized as indicator plants of photochemical smog. Surveys covering a broad area of Tokyo and three other prefectures indicate that plant damage due to photochemical smog extends to relatively unpolluted areas.

  2. Compilation and evaluation of a Paso del Norte emission inventory

    Energy Technology Data Exchange (ETDEWEB)

    Funk, T.H.; Chinkin, L.R.; Roberts, P.T. [Sonoma Technology, Inc., 1360 Redwood Way, Suite C, 94954-1169 Petaluma, CA (United States); Saeger, M.; Mulligan, S. [Pacific Environmental Services, 5001 S. Miami Blvd., Suite 300, 27709 Research Triangle Park, NC (United States); Paramo Figueroa, V.H. [Instituto Nacional de Ecologia, Avenue Revolucion 1425, Nivel 10, Col. Tlacopac San Angel, Delegacion Alvaro Obregon, C.P., 01040, D.F. Mexico (Mexico); Yarbrough, J. [US Environmental Protection Agency - Region 6, 1445 Ross Avenue, Suite 1200, 75202-2733 Dallas, TX (United States)

    2001-08-10

    Emission inventories of ozone precursors are routinely used as input to comprehensive photochemical air quality models. Photochemical model performance and the development of effective control strategies rely on the accuracy and representativeness of an underlying emission inventory. This paper describes the tasks undertaken to compile and evaluate an ozone precursor emission inventory for the El Paso/Ciudad Juarez/Southern Dona Ana region. Point, area and mobile source emission data were obtained from local government agencies and were spatially and temporally allocated to a gridded domain using region-specific demographic and land-cover information. The inventory was then processed using the US Environmental Protection Agency (EPA) recommended Emissions Preprocessor System 2.0 (UAM-EPS 2.0) which generates emissions files compatible with the Urban Airshed Model (UAM). A top-down evaluation of the emission inventory was performed to examine how well the inventory represented ambient pollutant compositions. The top-down evaluation methodology employed in this study compares emission inventory ratios of non-methane hydrocarbon (NMHC)/nitrogen oxide (NO{sub x}) and carbon monoxide (CO)/NO{sub x} ratios to corresponding ambient ratios. Detailed NMHC species comparisons were made in order to investigate the relative composition of individual hydrocarbon species in the emission inventory and in the ambient data. The emission inventory compiled during this effort has since been used to model ozone in the Paso del Norte airshed (Emery et al., CAMx modeling of ozone and carbon monoxide in the Paso del Norte airshed. In: Proc of Ninety-Third Annual Meeting of Air and Waste Management Association, 18-22 June 2000, Air and Waste Management Association, Pittsburgh, PA, 2000)

  3. Insights into hydrocarbon formation by nitrogenase cofactor homologs.

    Science.gov (United States)

    Lee, Chi Chung; Hu, Yilin; Ribbe, Markus W

    2015-04-14

    The L-cluster is an all-iron homolog of nitrogenase cofactors. Driven by europium(II) diethylenetriaminepentaacetate [Eu(II)-DTPA], the isolated L-cluster is capable of ATP-independent reduction of CO and CN(-) to C1 to C4 and C1 to C6 hydrocarbons, respectively. Compared to its cofactor homologs, the L-cluster generates considerably more CH4 from the reduction of CO and CN(-), which could be explained by the presence of a "free" Fe atom that is "unmasked" by homocitrate as an additional site for methanation. Moreover, the elevated CH4 formation is accompanied by a decrease in the amount of longer hydrocarbons and/or the lengths of the hydrocarbon products, illustrating a competition between CH4 formation/release and C-C coupling/chain extension. These observations suggest the possibility of designing simpler synthetic clusters for hydrocarbon formation while establishing the L-cluster as a platform for mechanistic investigations of CO and CN(-) reduction without complications originating from the heterometal and homocitrate components. Nitrogenase is a metalloenzyme that is highly complex in structure and uniquely versatile in function. It catalyzes two reactions that parallel two important industrial processes: the reduction of nitrogen to ammonia, which parallels the Haber-Bosch process in ammonia production, and the reduction of carbon monoxide to hydrocarbons, which parallels the Fischer-Tropsch process in fuel production. Thus, the significance of nitrogenase can be appreciated from the perspective of the useful products it generates: (i) ammonia, the "fixed" nitrogen that is essential for the existence of the entire human population; and (ii) hydrocarbons, the "recycled" carbon fuel that could be used to directly address the worldwide energy shortage. This article provides initial insights into the catalytic characteristics of various nitrogenase cofactors in hydrocarbon formation. The reported assay system provides a useful tool for mechanistic

  4. Thermo-cleavable polymers: Materials with enhanced photochemical stability

    DEFF Research Database (Denmark)

    Manceau, Matthieu; Petersen, Martin Helgesen; Krebs, Frederik C

    2010-01-01

    Photochemical stability of three thermo-cleavable polymers was investigated as thin films under atmospheric conditions. A significant increase in lifetime was observed once the side-chain was cleaved emphasizing the detrimental effect of solubilizing groups on the photochemical stability of conju......Photochemical stability of three thermo-cleavable polymers was investigated as thin films under atmospheric conditions. A significant increase in lifetime was observed once the side-chain was cleaved emphasizing the detrimental effect of solubilizing groups on the photochemical stability...... of conjugated polymers. In addition to their ease of processing, thermo-cleavable polymers thus also offer a greater intrinsic stability under illumination....

  5. Occult Carbon Monoxide Poisoning

    OpenAIRE

    Kirkpatrick, John N.

    1987-01-01

    A syndrome of headache, fatigue, dizziness, paresthesias, chest pain, palpitations and visual disturbances was associated with chronic occult carbon monoxide exposure in 26 patients in a primary care setting. A causal association was supported by finding a source of carbon monoxide in a patient's home, workplace or vehicle; results of screening tests that ruled out other illnesses; an abnormally high carboxyhemoglobin level in 11 of 14 patients tested, and abatement or resolution of symptoms ...

  6. Heterogeneous OH oxidation of motor oil particles causes selective depletion of branched and less cyclic hydrocarbons.

    Science.gov (United States)

    Isaacman, Gabriel; Chan, Arthur W H; Nah, Theodora; Worton, David R; Ruehl, Chris R; Wilson, Kevin R; Goldstein, Allen H

    2012-10-02

    Motor oil serves as a useful model system for atmospheric oxidation of hydrocarbon mixtures typical of anthropogenic atmospheric particulate matter, but its complexity often prevents comprehensive chemical speciation. In this work we fully characterize this formerly "unresolved complex mixture" at the molecular level using recently developed soft ionization gas chromatography techniques. Nucleated motor oil particles are oxidized in a flow tube reactor to investigate the relative reaction rates of observed hydrocarbon classes: alkanes, cycloalkanes, bicycloalkanes, tricycloalkanes, and steranes. Oxidation of hydrocarbons in a complex aerosol is found to be efficient, with approximately three-quarters (0.72 ± 0.06) of OH collisions yielding a reaction. Reaction rates of individual hydrocarbons are structurally dependent: compared to normal alkanes, reaction rates increased by 20-50% with branching, while rates decreased ∼20% per nonaromatic ring present. These differences in rates are expected to alter particle composition as a function of oxidation, with depletion of branched and enrichment of cyclic hydrocarbons. Due to this expected shift toward ring-opening reactions heterogeneous oxidation of the unreacted hydrocarbon mixture is less likely to proceed through fragmentation pathways in more oxidized particles. Based on the observed oxidation-induced changes in composition, isomer-resolved analysis has potential utility for determining the photochemical age of atmospheric particulate matter with respect to heterogeneous oxidation.

  7. A novel phytoremediation technology shown to remediate petroleum hydrocarbons from soils in situ

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.D.; Yu, X.M.; Gerhardt, K.; Glick, B.; Greenberg, B [Waterloo Environmental Biotechnology Inc., Hamilton, ON (Canada); Waterloo Univ., ON (Canada). Dept. of Biology

    2009-04-01

    This article described a newly developed, advanced microbe-enhanced phytoremediation system that can be used to remediate lands polluted by hydrocarbons, salts and metals. The technology uses 3 complementary processes to achieve effective remediation of strongly bound persistent organic pollutants (POPs) from soil. The remediation process involves physical soil treatment, photochemical photooxidation, microbial remediation and growth of plants treated with plant growth promoting rhizobacteria (PGPR). The PGPR-enhanced phytoremediation system (PEPS) alleviates plant stress and increases biodegradation activities, thereby accelerating plant growth in the presence of POPs or poor soils. The PEPS has been used successfully to remove petroleum hydrocarbons (PHCs) from impacted soils in situ at several sites across Canada. Studies have shown that the PHCs are degraded in the rhizosphere. This article also presented a summary of the work conducted at 3 sites in Alberta. It took only 2 years to remediate the 3 sites to levels required for site closure under Alberta Tier 1 guidelines. It was concluded that PEPS is equally effective for total PHC and Fraction 3 CCME hydrocarbons. 1 tab., 3 figs.

  8. Photochemical dynamics of surface oriented molecules

    International Nuclear Information System (INIS)

    Ho, W.

    1992-01-01

    The period 8/01/91-7/31/92 is the first year of a new project titled ''Photochemical Dynamics of Surface Oriented Molecules'', initiated with DOE Support. The main objective of this project is to understand the dynamics of elementary chemical reactions by studying photochemical dynamics of surface-oriented molecules. In addition, the mechanisms of photon-surface interactions need to be elucidated. The strategy is to carry out experiments to measure the translational energy distribution, as a function of the angle from the surface normal, of the photoproducts by time-of-flight (TOF) technique by varying the photon wavelength, intensity, polarization, and pulse duration. By choosing adsorbates with different bonding configuration, the effects of adsorbate orientation on surface photochemical dynamics can be studied

  9. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be safely...

  10. Photochemical Pollution Modeling of Ozone at Metropolitan Area of Porto Alegre - RS/Brazil using WRF/Chem

    Science.gov (United States)

    Cuchiara, G. C.; Carvalho, J.

    2013-05-01

    One of the main problems related to air pollution in urban areas is caused by photochemical oxidants, particularly troposphere ozone (O3), which is considered a harmful substance. The O3 precursors (carbon monoxide CO, nitrogen oxides NOx and hydrocarbons HCs) are predominantly of anthropogenic origin in these areas, and vehicles are the main emission sources. Due to the increased urbanization and industrial development in recent decades, air pollutant emissions have increased likewise, mainly by mobile sources in the highly urbanized and developed areas, such as the Metropolitan Area of Porto Alegre-RS (MAPA). According to legal regulations implemented in Brazil in 2005, which aimed at increasing the fraction of biofuels in the national energy matrix, 2% biodiesel were supposed to be added to the fuel mixture within three years, and up to 5% after eight years of implementation of these regulations. Our work performs an analysis of surface concentrations for O3, NOx, CO, and HCs through numerical simulations with WRF/Chem (Weather Research and Forecasting model with Chemistry). The model is validated against observational data obtained from the local urban air quality network for the period from January 5 to 9, 2009 (96 hours). One part of the study focused on the comparison of simulated meteorological variables, to observational data from two stations in MAPA. The results showed that the model simulates well the diurnal evolution of pressure and temperature at the surface, but is much less accurate for wind speed. Another part included the evaluation of model results of WRF/Chem for O3 versus observed data at air quality stations Esteio and Porto Alegre. Comparisons between simulated and observed O3 revealed that the model simulates well the evolution of the observed values, but on many occasions the model did not reproduce well the maximum and minimum concentrations. Finally, a preliminary quantitative sensitivity study on the impact of biofuel on the

  11. Thermal Reactions in Mixtures of Micron-sized Silicon Monoxide and Titanium Monoxide - Redox Paths Overcoming Passivation Shells.

    Czech Academy of Sciences Publication Activity Database

    Jandová, Věra; Pokorná, Dana; Kupčík, Jaroslav; Bezdička, Petr; Křenek, T.; Netrvalová, M.; Cuřínová, Petra; Pola, Josef

    2018-01-01

    Roč. 44, č. 1 (2018), s. 503-516 ISSN 0922-6168 R&D Projects: GA TA ČR TA04010169 Institutional support: RVO:67985858 Keywords : silicon monoxide * titanium monoxide * hifh-temperature Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.369, year: 2016

  12. Photochemical smog modeling for assessment of potential impacts of different management strategies on air quality of the Bangkok Metropolitan Region, Thailand.

    Science.gov (United States)

    Oanh, Nguyen Thi Kim; Zhang, Baoning

    2004-10-01

    A photochemical smog model system, the Variable-Grid Urban Airshed Model/Systems Applications International Mesoscale Model (UAM-V/SAIMM), was used to investigate photochemical pollution in the Bangkok Metropolitan Region (BMR). The model system was first applied to simulate a historical photochemical smog episode of two days (January 13-14, 1997) using the 1997 anthropogenic emission database available at the Pollution Control Department and an estimated biogenic emission. The output 1-hr ozone (O3) for BMR, however, did not meet the U.S. Environmental Protection Agency suggested performance criteria. The simulated minimum and maximum O3 values in the domain were much higher than the observations. Multiple model runs with different precursor emission reduction scenarios showed that the best model performance with the simulated 1-hr O3 meeting all the criteria was obtained when the volatile organic compound (VOC) and oxides of nitrogen (NOx) emission from mobile source reduced by 50% and carbon monoxide by 20% from the original database. Various combinations of anthropogenic and biogenic emissions in Bangkok and surrounding provinces were simulated to assess the contribution of different sources to O3 pollution in the city. O3 formation in Bangkok was found to be more VOC-sensitive than NOx-sensitive. To attain the Thailand ambient air quality standard for 1-hr O3 of 100 ppb, VOC emission in BMR should be reduced by 50-60%. Management strategies considered in the scenario study consist of Stage I, Stage II vapor control, replacement of two-stroke by four-stroke motorcycles, 100% compressed natural gas bus, 100% natural gas-fired power plants, and replacement of methyltertiarybutylether by ethanol as an additive for gasoline.

  13. Solar production of catalytic filamentous carbon by thermal decomposition of hydrocarbons and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, V A; Kuvshinov, G G; Mogilnykh, Yu I [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation); Reller, A [University of Hamburg (Germany); Steinfeld, A; Weidenkaff, A; Meier, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Concentrated solar radiation was used as the clean source of process heat for the production of Catalytic Filamentous Carbon (CFC) by thermal decomposition of gaseous hydrocarbons and by CO disproportionation in the presence of small metal catalyst particles. Depending on the catalyst, two different types of CFC, namely nano tubes and nano fibers, were obtained in solar experiments at the PSI solar furnace. (author) 2 figs., 1 tab., 7 refs.

  14. Limitations of ambient air quality standards in evaluating indoor environments

    International Nuclear Information System (INIS)

    Peterson, J.E.

    1992-01-01

    Analysis of the kinds of data used for the derivation of ambient air quality standards (AAQSs) for carbon monoxide and ozone shows that these values are based on the toxicology of the materials and thus are suitable for evaluating potential health effects of indoor environments, especially on the very young, the aged, and the infirm. A similar analysis shows that the AAQSs for suspended particulate matter, nitrogen dioxide, and sulfur dioxide are strictly empirical and that they should not be used for any but their first, intended purpose. The AAQSs for non-methane hydrocarbons are based on photochemical smog production, not injury of any kind, and have no utility for indoor environment evaluation

  15. Recent changes in carbon dioxide, carbon monoxide and methane and the implications for global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.C.; Conway, T.J.; Dlugokencky, E.J.; Tans, P.P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Climate Monitoring and Diagnostics Lab.

    1995-01-01

    The article reviews figures for published data on recent changes of atmospheric levels of carbon dioxide, carbon monoxide and methane in terms of their sources and sinks. The largest source of CO{sub 2} is the combustion of fossil fuels, followed by emissions from deforestation and the oxidation of CO to CO{sub 2}. Carbon monoxide has an indirect influence on the earth`s radiative balance, as if levels of CO increase, levels of OH radicals decline which affects removal of other gases oxidised by this radical, notably CH{sub 4}. Major sources of CO are fossil fuel combustion, emissions from biomass, and oxidation of atmospheric CH{sub 4} and other non-methane hydrocarbons. The latest measurements suggest the depressed growth rates of CO{sub 2}, CO and CH{sub 4} have began to recover. Reasons for this are suggested. Future monitoring of atmospheric species in laboratories around the world, coupled with information on the isotopic signature of the trace gases, will improve our understanding of possible causes for trends in these gases. This will be invaluable in making policy decisions regarding future climate change. 34 refs., 4 figs.

  16. Thermal reactions in mixtures of micron-sized silicon monoxide and titanium monoxide: redox paths overcoming passivation shells

    Czech Academy of Sciences Publication Activity Database

    Jandová, V.; Pokorná, D.; Kupčík, Jaroslav; Bezdička, Petr; Křenek, T.; Netrvalová, M.; Cuřínová, P.; Pola, J.

    2018-01-01

    Roč. 44, č. 1 (2018), s. 503-516 ISSN 0922-6168 Institutional support: RVO:61388980 Keywords : Silicon monoxide * Titanium monoxide * High-temperature * Oxygen-transfer reactions * Titanium suboxides * Titanium silicide * Methylene blue depletion Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.369, year: 2016

  17. Carbon monoxide: The 21st century poison that goes unnoticed

    International Nuclear Information System (INIS)

    Hoskins, J.A.

    1999-01-01

    This editorial article describes the effects of carbon monoxide poisoning on human beings and the mechanisms involving carbon monoxide saturation of haemoglobin that are responsible for it. The initial research done in the mid-1800s by Claude Bernard is presented. Methods of treatment for persons poisoned by carbon monoxide are discussed and the experiments made by J.B.S. Haldane on himself by breathing in carbon monoxide are described. Acclimatisation effects observed by Haldane and his co-workers and concerning persons occupationally exposed to carbon monoxide emissions are described

  18. Carbon monoxide: The 21st century poison that goes unnoticed

    Energy Technology Data Exchange (ETDEWEB)

    Hoskins, J.A. [Reigate, Surrey (United Kingdom)

    1999-07-01

    This editorial article describes the effects of carbon monoxide poisoning on human beings and the mechanisms involving carbon monoxide saturation of haemoglobin that are responsible for it. The initial research done in the mid-1800s by Claude Bernard is presented. Methods of treatment for persons poisoned by carbon monoxide are discussed and the experiments made by J.B.S. Haldane on himself by breathing in carbon monoxide are described. Acclimatisation effects observed by Haldane and his co-workers and concerning persons occupationally exposed to carbon monoxide emissions are described.

  19. Vacancy distribution in nonstoichiometric vanadium monoxide

    International Nuclear Information System (INIS)

    Gusev, A.I.; Davydov, D.A.; Valeeva, A.A.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → A certain fraction of vanadium atoms in disordered cubic vanadium monoxide VO y and ordered tetragonal phase V 52 O 64 is located in tetrahedral positions of a basic cubic lattice. → These positions are never occupied by any atoms in other strongly nonstoichiometric carbides, nitrides and oxides. → Both disordered and ordered structures of vanadium monoxide are characterized by the presence of short-range order of displacements in the oxygen sublattice and short-range order of substitution in the metal sublattice. → The short-range order of displacement is caused by the local displacements of O atoms from V (t) atoms occupying tetrahedral positions. The short-range order of substitution appears because V (t) atoms in the tetrahedral positions are always in the environment of four vacancies □ of the vanadium sublattice. - Abstract: Structural vacancy distribution in the crystal lattice of the tetragonal V 52 O 64 superstructure which is formed on the basis of disordered superstoichiometric cubic vanadium monoxide VO y ≡V x O z is experimentally determined and the presence of significant local atomic displacements and large local microstrains in a crystal lattice of real ordered phase is established. It is shown that the relaxation of local microstrains takes place owing to the basic disordered cubic phase grain refinement and a formation of ordered phase domains. The ordered phase domains grow in the direction from the boundaries to the centre of grains of the disordered basic cubic phase. Isothermal evolution at 970 K of the average domain size in ordered VO 1.29 vanadium monoxide is established. It is shown that the short-range order presents in a metal sublattice of disordered cubic VO y vanadium monoxide. The character of the short-range order is such that vanadium atoms occupying tetrahedral positions are in the environment of four vacant sites of the vanadium sublattice. This means that the

  20. Enzymic oxidation of carbon monoxide. II

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, T

    1959-01-01

    An enzyme which catalyzes the oxidation of carbon monoxide into carbon dioxide was obtained in a cell free state from Desulfovibrio desulfuricans. The enzyme activity was assayed manometrically by measuring the rate of gas uptake under the atmosphere of carbon monoxide in the presence of benzyl-viologen as an oxidant. The optimum pH range was 7 to 8. The activity was slightly suppressed by illumination. The enzyme was more stable than hydrogenase or formate dehydrogenase against the heat treatment, suggesting that it is a different entity from these enzymes. In the absence of an added oxidant, the enzyme preparation produced hydrogen gas under the atmosphere of carbon monoxide. The phenomenon can be explained assuming the reductive decomposition of water. 17 references, 4 figures, 2 tables.

  1. Bacterium oxidizing carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kistner, A

    1953-01-01

    Present-day knowledge of the microbiological oxidation of carbon monoxide is based on doubtful observations and imperfect experimental procedures. By making use of shake cultures in contact with gas mixtures containing high concentrations of CO and by employing liquid enrichment media with a low content of organic matter and solid media of the same composition with not more than 1.2% agar, it proved possible to isolate a co-oxidizing bacterium of the genus hydrogenomonas from sewage sludge. For the first time irrefutable proof has been given of the oxidation of carbon monoxide by a pure culture of a bacterium, both in growing cultures and in resting cell suspensions. 12 references.

  2. Campaign to prevent carbon monoxide poisoning : fall-winter 2007-2008

    International Nuclear Information System (INIS)

    Lefebvre, B.; Chabot, L.; Gratton, J.; Lacoursiere, D.

    2009-01-01

    Quebec launched a public health campaign for the Montreal region to prevent carbon monoxide poisoning. The objectives of the campaign were to communicate the dangers of carbon monoxide poisoning, its potential sources, its effects on public health, and the means to prevent poisoning. Its purpose was to inform the public of the risks and strategies to be used in case of carbon monoxide poisoning and to lay out the merits of household carbon monoxide alarms. The communication was done by way of the media, in cooperation with community organizations and school boards. Other tools used in the campaign included the Internet, flyers and press releases. A poll taken in 2008 showed that 59 per cent of the respondents had one or more sources for carbon monoxide in their homes, including fireplaces, and that 28 per cent had a functioning alarm for carbon monoxide detection. A future survey will be held to follow-up on the evolution of the campaign. The development of various activities will help decrease the risk of carbon monoxide poisoning. tabs., figs.

  3. Formation of undesired by-products in deNO{sub x} catalysis by hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, Frank; Koeppel, Rene A; Baiker, Alfons [Department of Chemical Engineering and Industrial Chemistry, Swiss Federal Institute of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1995-11-20

    The catalytic performance of Cu/ZSM-5 and {gamma}-alumina in the selective catalytic reduction of nitrogen oxides by alkenes in excess oxygen and the formation of potentially harmful by-products such as hydrogen cyanide, cyanic acid, ammonia, nitrous oxide and carbon monoxide have been studied by means of FT-IR-gas phase analysis. Over Cu/ZSM-5 the reduction activity was strongly influenced by the type of hydrocarbon, while there was no significant difference when starting from NO or NO{sub 2}. In contrast, with {gamma}-alumina NO{sub 2} was reduced more efficiently than NO with both reductants. Water addition strongly suppressed the catalytic activity of {gamma}-alumina. Regarding the formation of undesired by-products, substantial amounts of carbon monoxide were observed in all experiments, independently of the feed composition. The type of catalyst, the use of either NO or NO{sub 2}, the alkene used as a reductant and water strongly influenced the formation of other by-products. With alumina ethene showed a lower tendency to form HCN as compared to propene and water addition further suppressed by-product formation. This contrasts the findings with Cu/ZSM-5, where HCN production was not significantly altered by the presence of water. On this catalyst HNCO was found additionally for dry feeds, whereas ammonia appeared in the presence of water in the same temperature range. Under special feed gas compositions further by-products, formaldehyde and hydrocarbons, were found over Cu/ZSM-5, whereas none of these compounds were observed over {gamma}-alumina

  4. Assessment of carbon monoxide values in smokers: a comparison of carbon monoxide in expired air and carboxyhaemoglobin in arterial blood

    DEFF Research Database (Denmark)

    Andersson, Mette F; Møller, Ann M

    2010-01-01

    Smoking increases perioperative complications. Carbon monoxide concentrations can estimate patients' smoking status and might be relevant in preoperative risk assessment. In smokers, we compared measurements of carbon monoxide in expired air (COexp) with measurements of carboxyhaemoglobin (COHb) ...

  5. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    C. W. Spicer

    1994-08-01

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  6. Search of medical literature for indoor carbon monoxide exposure

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, T.; Ivanovich, M.

    1995-12-01

    This report documents a literature search on carbon monoxide. The search was limited to the medical and toxicological databases at the National Library of Medicine (MEDLARS). The databases searched were Medline, Toxline and TOXNET. Searches were performed using a variety of strategies. Combinations of the following keywords were used: carbon, monoxide, accidental, residential, occult, diagnosis, misdiagnosis, heating, furnace, and indoor. The literature was searched from 1966 to the present. Over 1000 references were identified and summarized using the following abbreviations: The major findings of the search are: (1) Acute and subacute carbon monoxide exposures result in a large number of symptoms affecting the brain, kidneys, respiratory system, retina, and motor functions. (2) Acute and subacute carbon monoxide (CO) poisonings have been misdiagnosed on many occasions. (3) Very few systematic investigations have been made into the frequency and consequences of carbon monoxide poisonings.

  7. Trace organic removal by photochemical oxidation

    International Nuclear Information System (INIS)

    Gupta, S.K. Sen; Peori, R.G.; Wickware, S.L.

    1995-02-01

    Photochemical oxidation methods can be used for the destruction of dissolved organic contaminants in most process effluent streams, including those originating from the nuclear power sector. Evaporators can be used to separate organic contaminants from the aqueous phase if they are non volatile, but a large volume of secondary waste (concentrate) is produced, and the technology is capital-intensive. This paper describes two different types of photochemical oxidation technologies used to destroy trace organics in wastewater containing oil and grease. (author). 9 refs., 4 figs

  8. Solar cycle variations in mesospheric carbon monoxide

    Science.gov (United States)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander; Fontenla, Juan

    2018-05-01

    As an extension of Lee et al. (2013), solar cycle variation of carbon monoxide (CO) is analyzed with MLS observation, which covers more than thirteen years (2004-2017) including maximum of solar cycle 24. Being produced primarily by the carbon dioxide (CO2) photolysis in the lower thermosphere, the variations of the mesospheric CO concentration are largely driven by the solar cycle modulated ultraviolet (UV) variation. This solar signal extends down to the lower altitudes by the dynamical descent in the winter polar vortex, showing a time lag that is consistent with the average descent velocity. To characterize a global distribution of the solar impact, MLS CO is correlated with the SORCE measured total solar irradiance (TSI) and UV. As high as 0.8 in most of the polar mesosphere, the linear correlation coefficients between CO and UV/TSI are more robust than those found in the previous work. The photochemical contribution explains most (68%) of the total variance of CO while the dynamical contribution accounts for 21% of the total variance at upper mesosphere. The photochemistry driven CO anomaly signal is extended in the tropics by vertical mixing. The solar cycle signal in CO is further examined with the Whole Atmosphere Community Climate Model (WACCM) 3.5 simulation by implementing two different modeled Spectral Solar Irradiances (SSIs): SRPM 2012 and NRLSSI. The model simulations underestimate the mean CO amount and solar cycle variations of CO, by a factor of 3, compared to those obtained from MLS observation. Different inputs of the solar spectrum have small impacts on CO variation.

  9. Processes in petroleum chemistry. Technical and economical characteristics Vol. 1. Synthesis gas and derivatives. Main hydrocarbon intermediaries (2 ed. )

    Energy Technology Data Exchange (ETDEWEB)

    Chauvel, A.; Lefebvre, G.; Castex, L.

    1985-01-01

    The aim of this book is to give rudiments for a preliminary study to outline petrochemical operation and cost estimation. Basic operations are examined: Steam reforming or partial oxidation, steam or thermal cracking and catalytic reforming. The main topics examined include: hydrogen purification, hydrogen fabrication from hydrocarbons, carbonaceous materials or water, production of carbon monoxide, ammoniac synthesis methanol synthesis from synthesis gas, preparation of formol, urea, acetylene and monomers for the preparation of plastics.

  10. Photochemical reduction of uranyl ion with triphenylphosphine

    International Nuclear Information System (INIS)

    Brar, A.S.; Sidhu, M.S.; Sandhu, S.S.

    1981-01-01

    Photochemical reduction of uranyl ion with triphenylphosphine has been studied in acetone-water medium in the presence of sulphuric acid at 346nm, 400nm and 434nm wavelengths. The photochemical reduction is of second order and increases with increase in hydrogen ion concentration. Absorption spectra of uranyl ion in acidic medium and uranyl ion with triphenylphosphine do not show any ground state complex formation. The value of quantum yield increases with the wavelength of the radiation increase from 346 to 434nm. Plots of reciprocal of quantum yield for the formation of U(IV) versus reciprocal [triphenylphosphine] are linear. Products characterized by UV and visible, IR and TLC show the formation of U(IV) and triphenylphosphine oxide. On the basis of above observations mechanism of the photochemical reduction has been proposed. (author)

  11. Nitrogen Incorporation in CH4-N2 Photochemical Aerosol Produced by Far UV Irradiation

    Science.gov (United States)

    Trainer, Melissa G.; Jimenez, Jose L.; Yung, Yuk L.; Toon, Owen B.; Tolbert, Margaret A.

    2012-01-01

    Nitrile incorporation into Titan aerosol accompanying hydrocarbon chemistry is thought to be driven by extreme UV wavelengths (lambda irradiated gas. The aerosol mass greatly decreases when N2 is removed, indicating that N2 plays a major role in aerosol production. Because direct dissociation of N2 is highly improbable given the immeasurably low cross-section at the wavelengths studied, the chemical activation of N2 must occur via another pathway. Any chemical activation of N2 at wavelengths > 120 nm is presently unaccounted for in atmospheric photochemical models. We suggest that reaction with CH radicals produced from CH4 photolysis may provide a mechanism for incorporating N into the molecular structure of the aerosol. Further work is needed to understand the chemistry involved, as these processes may have significant implications for prebiotic chemistry on the early Earth and similar planets.

  12. EMERGING TECHNOLOGY PROJECT BULLETIN: LASER INDUCED PHOTOCHEMICAL OXIDATIVE DESTRUCTION

    Science.gov (United States)

    The process developed by Energy and Environmental Engineering, Incorporated, is designed to photochemically oxidize organic compounds in wastewater by applying ultraviolet radiation using an Excimer laser. The photochemical reactor can destroy low to moderate concentrations...

  13. Delayed encephalopathy after acute carbon monoxide poisoning

    Directory of Open Access Journals (Sweden)

    Mehmet İbrahim Turan

    2014-03-01

    Full Text Available Carbon monoxide poisoning is a major cause of death following attempted suicide and accidental exposures. Although clinical presentation depends on the duration and the intensity of exposure, the assessment of the severity of intoxication is difficult. A small percentage of patients who show complete initial recovery may develop delayed neurological deficits. Delayed encephalopathy after acute carbon monoxide poisoning is a rare and poor prognosis neurologic disorders and there is no specific treatment. We present a case with early onset of delayed encephalopathy after acute carbon monoxide poisoning with typical cranial imaging findings in a child with atypical history and clinical presentation.

  14. Kinetic laws of deep oxidations of n-butane and carbon monoxide at presence Cu-Cr-Co/Al2O3/Al-frame catalysts

    International Nuclear Information System (INIS)

    Muradova, P.A; Djafarova, S.A; Seyfullayeva, Z.M; Efendiyev, M.R; Litvishkov, Yu. N.

    2007-01-01

    Full text: The results of research laws of reaction of deep oxidation of n-butane and carbon monoxide in the presence of Cu-Cr-Co/AL 2 O 3 /Al-frame catalysts are sited, with the purpose of acknowledgement of stated before assumptions on the physic oxidation-reduction mechanism of observable transformations. It is established, that dependence of an output of carbon monoxide on a degree of transformation of n-butane in an area of its relatively values, has extreme character that is typical for formation and an expenditure of intermediate products under the consecutive circuit. In area of low transformations of hydrocarbon CO and CO 2 are formed by parallel way. The generalized physic circuit of the postulated mechanism of joint transformation of n-butane and CO on three independent reactionary routes and kinetic model of process corresponding to it is offered. With use of settlement methods of optimization the estimation of parameters of the offered kinetic model has been out

  15. Photochemical Assessment Monitoring Stations (PAMS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Photochemical Assessment Monitoring Stations (PAMS). This file provides information on the numbers and distribution (latitude/longitude) of air monitoring sites...

  16. A box model study on photochemical interactions between VOCs and reactive halogen species in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    K. Toyota

    2004-01-01

    Full Text Available A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry to investigate photochemical interactions between volatile organic compounds (VOCs and reactive halogen species in the marine boundary layer (MBL. Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit description of oxidative degradation of up to C3-hydrocarbons (CH4, C2H6, C3H8, C2H4, C3H6, and C2H2 initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in forming halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO and alkenes (especially C3H6 are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from a reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. The reaction between Br atoms and C2H2 is shown to be unimportant for determining the degree of bromine activation in the remote MBL. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl

  17. Photochemical processes and ozone production in Finnish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, T; Hakola, H [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1997-12-31

    Photochemical ozone production is observed in March-September. Highest ozone concentrations and production efficiencies are observed in spring in the northern parts and in summer in the southern parts of the country. VOC concentrations are relatively low compared to continental areas in general. During the growing season a substantial part of the total reactive mass of VOCs is of biogenic origin. Large forest areas absorb ozone substantially, decreasing the ambient ozone concentrations in central and northern parts of Finland where long-range transport of ozone is relatively important compared to local production. The aim of the work conducted at Finnish Meteorological Institute has been to characterise concentrations of photochemically active species in the boundary layer and their photochemical formation and deposition including the effects on vegetation. Also interactions between the boundary layer and free troposphere of ozone have been studied. In the future, fluxes of both biogenic species and air pollutants will be measured and the models will be further developed so that the photochemical and micrometeorological processes could be better understood

  18. Photochemical processes and ozone production in Finnish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, T.; Hakola, H. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Photochemical ozone production is observed in March-September. Highest ozone concentrations and production efficiencies are observed in spring in the northern parts and in summer in the southern parts of the country. VOC concentrations are relatively low compared to continental areas in general. During the growing season a substantial part of the total reactive mass of VOCs is of biogenic origin. Large forest areas absorb ozone substantially, decreasing the ambient ozone concentrations in central and northern parts of Finland where long-range transport of ozone is relatively important compared to local production. The aim of the work conducted at Finnish Meteorological Institute has been to characterise concentrations of photochemically active species in the boundary layer and their photochemical formation and deposition including the effects on vegetation. Also interactions between the boundary layer and free troposphere of ozone have been studied. In the future, fluxes of both biogenic species and air pollutants will be measured and the models will be further developed so that the photochemical and micrometeorological processes could be better understood

  19. A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior

    International Nuclear Information System (INIS)

    Baek, S.O.; Field, R.A.; Goldstone, M.E.; Kirk, P.W.; Lester, J.N.; Perry, R.

    1991-01-01

    A review has been written to assess the sources, fate and behavior of polycyclic aromatic hydrocarbons (PAH) in the atmosphere. PAH are formed mainly by anthropogenic processes, especially the combustion of organic fuels. PAH concentration in air will reflect the location of source emitters, with high concentrations corresponding with urban and industrial areas. PAH are however ubiquitous contaminants of the environment having been detected in remote areas of the world. This is thought to be due to long term transport in the atmosphere. PAH can also be subjected to chemical and/or photochemical change whilst resident in the atmosphere prior to their removal by either wet or dry deposition. 146 refs., 5 tabs

  20. Vertical profiles of ozone, carbon monoxide, and dew-point temperature obtained during GTE/CITE 1, October-November 1983. [Chemical Instrumentation Test and Evaluation

    Science.gov (United States)

    Fishman, Jack; Gregory, Gerald L.; Sachse, Glen W.; Beck, Sherwin M.; Hill, Gerald F.

    1987-01-01

    A set of 14 pairs of vertical profiles of ozone and carbon monoxide, obtained with fast-response instrumentation, is presented. Most of these profiles, which were measured in the remote troposphere, also have supporting fast-response dew-point temperature profiles. The data suggest that the continental boundary layer is a source of tropospheric ozone, even in October and November, when photochemical activity should be rather small. In general, the small-scale vertical variability between CO and O3 is in phase. At low latitudes this relationship defines levels in the atmosphere where midlatitude air is being transported to lower latitudes, since lower dew-point temperatures accompany these higher CO and O3 concentrations. A set of profiles which is suggestive of interhemispheric transport is also presented. Independent meteorological analyses support these interpretations.

  1. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Import Surveillance International Recall Guidance Civil and Criminal Penalties Federal Court Orders & ... 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of Consumer Products 2012 ...

  2. Biogenic non-methane hydrocarbons (NMHC). Nature`s contribution to regional and global atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klockow, D.; Hoffman, T. [Inst. of Spectrochemistry and Applied Spectroscopy, Dortmund (Germany)

    1995-12-31

    Terrestrial vegetation provides an important source of volatile hydrocarbons, especially isoprene, monoterpenes and in addition possibly sesquiterpenes as well as oxygenated compounds. Although there exist considerable uncertainties in the estimation of the magnitude of these biogenic NMHC emissions, it is generally accepted that the majority of global NMHC release is from natural and not from anthropogenic sources. Taking into consideration the high reactivity of the mostly unsaturated biogenic emissions, their impact on tropospheric processes can be assumed to be of great importance. Together with anthropogenic NO{sub x} emissions, the highly reactive natural alkenes can act as precursors in photochemical oxidant formation and contribute to regional-scale air pollution. Their oxidation in the atmosphere and the subsequent gas-to-particle conversion of the products lead to the formation of organic aerosols. Because of the formation of phytotoxic compounds, the interaction of the biogenic hydrocarbons with ozone inside or outside the leaves and needles of plants has been suggested to play a role in forest decline. (author)

  3. Biogenic non-methane hydrocarbons (NMHC). Nature`s contribution to regional and global atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klockow, D; Hoffman, T [Inst. of Spectrochemistry and Applied Spectroscopy, Dortmund (Germany)

    1996-12-31

    Terrestrial vegetation provides an important source of volatile hydrocarbons, especially isoprene, monoterpenes and in addition possibly sesquiterpenes as well as oxygenated compounds. Although there exist considerable uncertainties in the estimation of the magnitude of these biogenic NMHC emissions, it is generally accepted that the majority of global NMHC release is from natural and not from anthropogenic sources. Taking into consideration the high reactivity of the mostly unsaturated biogenic emissions, their impact on tropospheric processes can be assumed to be of great importance. Together with anthropogenic NO{sub x} emissions, the highly reactive natural alkenes can act as precursors in photochemical oxidant formation and contribute to regional-scale air pollution. Their oxidation in the atmosphere and the subsequent gas-to-particle conversion of the products lead to the formation of organic aerosols. Because of the formation of phytotoxic compounds, the interaction of the biogenic hydrocarbons with ozone inside or outside the leaves and needles of plants has been suggested to play a role in forest decline. (author)

  4. Volatile organic compounds (VOCs) in photochemically aged air from the eastern and western Mediterranean

    Science.gov (United States)

    Derstroff, Bettina; Hüser, Imke; Bourtsoukidis, Efstratios; Crowley, John N.; Fischer, Horst; Gromov, Sergey; Harder, Hartwig; Janssen, Ruud H. H.; Kesselmeier, Jürgen; Lelieveld, Jos; Mallik, Chinmay; Martinez, Monica; Novelli, Anna; Parchatka, Uwe; Phillips, Gavin J.; Sander, Rolf; Sauvage, Carina; Schuladen, Jan; Stönner, Christof; Tomsche, Laura; Williams, Jonathan

    2017-08-01

    During the summertime CYPHEX campaign (CYprus PHotochemical EXperiment 2014) in the eastern Mediterranean, multiple volatile organic compounds (VOCs) were measured from a 650 m hilltop site in western Cyprus (34° 57' N/32° 23' E). Periodic shifts in the northerly Etesian winds resulted in the site being alternately impacted by photochemically processed emissions from western (Spain, France, Italy) and eastern (Turkey, Greece) Europe. Furthermore, the site was situated within the residual layer/free troposphere during some nights which were characterized by high ozone and low relative humidity levels. In this study we examine the temporal variation of VOCs at the site. The sparse Mediterranean scrub vegetation generated diel cycles in the reactive biogenic hydrocarbon isoprene, from very low values at night to a diurnal median level of 80-100 pptv. In contrast, the oxygenated volatile organic compounds (OVOCs) methanol and acetone exhibited weak diel cycles and were approximately an order of magnitude higher in mixing ratio (ca. 2.5-3 ppbv median level by day, range: ca. 1-8 ppbv) than the locally emitted isoprene and aromatic compounds such as benzene and toluene. Acetic acid was present at mixing ratios between 0.05 and 4 ppbv with a median level of ca. 1.2 ppbv during the daytime. When data points directly affected by the residual layer/free troposphere were excluded, the acid followed a pronounced diel cycle, which was influenced by various local effects including photochemical production and loss, direct emission, dry deposition and scavenging from advecting air in fog banks. The Lagrangian model FLEXPART was used to determine transport patterns and photochemical processing times (between 12 h and several days) of air masses originating from eastern and western Europe. Ozone and many OVOC levels were ˜ 20 and ˜ 30-60 % higher, respectively, in air arriving from the east. Using the FLEXPART calculated transport time, the contribution of photochemical

  5. Hydrogenation of carbon monoxide over supported palladium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K.; Hashimoto, H.; Kunugi, T.

    1978-03-01

    An alumina-supported 2% palladium catalyst had higher activity for carbon monoxide hydrogenation than a silica-supported 2% palladium catalyst, at 250/sup 0/-400/sup 0/C and 1 atm. The addition of lanthanum oxide or thorium oxide, but not of potassium oxide, to the silica-supported catalyst increased the conversion at 350/sup 0/C from 1.1% to 81.0% with a selectivity of 56.1% for methane, 1.4% for C/sub 2/ compounds, 0.1% for C/sub 3/ compounds, and 42.5% for carbon dioxide. Temperature-programed desorption of carbon monoxide in a hydrogen stream showed that of two desorption peaks observed for carbon monoxide, the one at higher temperature corresponded to the carbon monoxide species which hydrogenates to methane and that the area of this peak increased with increasing thorium content of the catalyst. Graphs, tables, and 12 references.

  6. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  7. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-01-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290

  8. Photochemical oxidation: A solution for the mixed waste dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A. [Vulcan Peroxidation Systems, Inc., Tucson, AZ (United States)] [and others

    1995-12-31

    Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposed of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.

  9. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  10. Reactions and reaction intermediates on iron surfaces--1. Methanol, ethanol, and isopropanol on Fe(100). 2. Hydrocarbons and carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Benziger, J.B.; Madix, R.J.

    1980-09-01

    Temperature-programed desorption and ESCA showed that the alcohols formed alkoxy intermediates on Fe(100) surfaces at room temperature, but that the methoxy and ethoxy species were much more stable than the isopropoxy intermediate. The alkoxy species reacted above 400/sup 0/K by decomposing into carbon monoxide and hydrogen, hydrogenation to alcohol, and scission of C-C and C-O bonds with hydrogenation of the hydrocarbon fragments. Ethylene, acetylene, and cis-2-butene formed stable, unidentified surface species. Methyl chloride formed stable surface methyl groups which decomposed into hydrogen and surface carbide at 475/sup 0/K. Formic and acetic acids yielded stable carboxylate intermediates which decomposed above 490/sup 0/K to hydrogen, carbon monoxide, and carbon dioxide. The studies suggested that the alkoxy surface species may be important intermediates in the Fischer-Tropsch reaction on iron.

  11. Carbon Monoxide Nonattainment Areas

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for Carbon Monoxide and have...

  12. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of Consumer Products 2012 Annual Estimates OCTOBER 13, 2015 Incidents, Deaths, and In-Depth Investigations Associated with Non-Fire ...

  13. Effect of vegetation in reducing carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, J C

    1977-01-01

    Carbon monoxide is a product of incomplete combustion. Because almost all of this gas is produced by motor vehicles, it is considered to have a line rather than a stationary point source. Greatest concentrations of this lethal gas correspond to periods of peak traffic volume and congestion; therefore, there are two daily periods of maxima and minima. Carbon monoxide cannot be detected by sight or smell. For this reason, this gas is especially deadly. During the summer of 1975, a study involving carbon monoxide concentrations at selected sites in Sendai was undertaken in conjunction with an ongoing investigation of urban pollution under the directorship of Professor Toshio Noh of Tohoku University. This study was made possible by a grant from the Japan Society for the Promotion of Science. 5 references, 5 figures, 1 table.

  14. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Community Outreach Resource Center Toy Recall Statistics CO Poster Contest Pool Safely Business & Manufacturing Business & Manufacturing Business ... Featured Resources CPSC announces winners of carbon monoxide poster contest Video View the blog Clues You Can ...

  15. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Unites States die every year from accidental non-fire related CO poisoning associated with consumer products, including ... CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of ...

  16. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Safety Blogs: CO Safety More CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths ... 2011 Annual Estimates View All CO-Related Injury Statistics and Technical Reports Related Links Recalls Safety Education ...

  17. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... CONSUMER PRODUCT SAFETY COMMISSION Search CPSC Search Menu Home Recalls Recall List CPSC Recall API Recall Lawsuits ... and Bans Report an Unsafe Product Consumers Businesses Home Safety Education Safety Education Centers Carbon Monoxide Information ...

  18. Mobile Carbon Monoxide Monitoring System Based on Arduino-Matlab for Environmental Monitoring Application

    Science.gov (United States)

    Azieda Mohd Bakri, Nur; Junid, Syed Abdul Mutalib Al; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2015-11-01

    Nowadays, the increasing level of carbon monoxide globally has become a serious environmental issue which has been highlighted in most of the country globally. The monitoring of carbon monoxide content is one of the approaches to identify the level of carbon monoxide pollution towards providing the solution for control the level of carbon monoxide produced. Thus, this paper proposed a mobile carbon monoxide monitoring system for measuring the carbon monoxide content based on Arduino-Matlab General User Interface (GUI). The objective of this project is to design, develop and implement the real-time mobile carbon monoxide sensor system and interfacing for measuring the level of carbon monoxide contamination in real environment. Four phases or stages of work have been carried out for the accomplishment of the project, which classified as sensor development, controlling and integrating sensor, data collection and data analysis. As a result, a complete design and developed system has been verified with the handheld industrial standard carbon monoxide sensor for calibrating the sensor sensitivity and measurement in the laboratory. Moreover, the system has been tested in real environments by measuring the level of carbon monoxide in three different lands used location; industrial area; residential area and main road (commercial area). In this real environment test, the industrial area recorded the highest reading with 71.23 ppm and 82.59 ppm for sensor 1 and sensor 2 respectively. As a conclusion, the mobile realtime carbon monoxide system based on the Arduino-Matlab is the best approach to measure the carbon monoxide concentration in different land-used since it does not require a manual data collection and reduce the complexity of the existing carbon monoxide level concentration measurement practise at the same time with a complete data analysis facilities.

  19. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... On Safety Blogs: CO Safety More CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide ... Related Links Recalls Safety Education Regulations, Laws & Standards Research & Statistics Business & Manufacturing Small Business Resources OnSafety Blogs ...

  20. Seasonal photochemical transformations of nitrogen species in a forest stream and lake.

    Directory of Open Access Journals (Sweden)

    Petr Porcal

    Full Text Available The photochemical release of inorganic nitrogen from dissolved organic matter is an important source of bio-available nitrogen (N in N-limited aquatic ecosystems. We conducted photochemical experiments and used mathematical models based on pseudo-first-order reaction kinetics to quantify the photochemical transformations of individual N species and their seasonal effects on N cycling in a mountain forest stream and lake (Plešné Lake, Czech Republic. Results from laboratory experiments on photochemical changes in N speciation were compared to measured lake N budgets. Concentrations of organic nitrogen (Norg; 40-58 µmol L-1 decreased from 3 to 26% during 48-hour laboratory irradiation (an equivalent of 4-5 days of natural solar insolation due to photochemical mineralization to ammonium (NH4+ and other N forms (Nx; possibly N oxides and N2. In addition to Norg mineralization, Nx also originated from photochemical nitrate (NO3- reduction. Laboratory exposure of a first-order forest stream water samples showed a high amount of seasonality, with the maximum rates of Norg mineralization and NH4+ production in winter and spring, and the maximum NO3- reduction occurring in summer. These photochemical changes could have an ecologically significant effect on NH4+ concentrations in streams (doubling their terrestrial fluxes from soils and on concentrations of dissolved Norg in the lake. In contrast, photochemical reactions reduced NO3- fluxes by a negligible (<1% amount and had a negligible effect on the aquatic cycle of this N form.

  1. Photochemical Copper Coating on 3D Printed Thermoplastics

    Science.gov (United States)

    Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-08-01

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.

  2. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Español The Invisible Killer Carbon monoxide, also known as CO, is called the "Invisible Killer" because it's ... used or incorrectly-vented fuel-burning appliances such as furnaces, stoves, water heaters and fireplaces. Watch This ...

  3. 40 CFR 52.2426 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Science.gov (United States)

    2010-07-01

    ... Stations (PAMS) Program. 52.2426 Section 52.2426 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.2426 Photochemical Assessment Monitoring Stations (PAMS) Program. On November 23, 1994 Virginia's... Photochemical Assessment Monitoring Stations (PAMS) Program as a state implementation plan (SIP) revision, as...

  4. High-energy chemical processes: Laser irradiation of aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Liu, A.D.; Loffredo, D.M.

    1994-01-01

    Recent studies of the high-energy photochemical degradation of polycyclic aromatic hydrocarbons (PAHs) in solution have furthered our fundamental understanding of the way in which radiation interacts with matter. A new comprehensive mechanism that unifies many of the seemingly contradictory observations in radiation and photochemistry has been proposed on basis of evidence gathered using specialized techniques such as transient optical spectroscopy and transient dc conductivity. The PAH molecules were activated by two-photon ionization, and behavior of the transient ions were monitored as a function of photon energy. It was found that a greater percentage of ions retain sufficient energy to decompose when higher energy light was used. When these cations decompose they leave a trail of products that establish a ''high-energy'' decomposition pathway that involves proton transfer from the ion, a mechanism hitherto not considered in photoionization processes

  5. Occupational exposure to gases, polycyclic aromatic hydrocarbons and volatile organic compounds in biomass-fired power plants.

    Science.gov (United States)

    Jumpponen, M; Rönkkömäki, H; Pasanen, P; Laitinen, J

    2013-01-01

    The combustion of fuels produces air pollutants in the form of gases, organic compounds, and particulate matter. However, although the environmental aspect of these agents has been examined, workers' exposure to them is still a neglected issue. The purpose of this study was to measure maintenance and ash removal workers' multiple exposures to gases, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) during their work tasks in biomass-fired power plants. Our hygienic measurements revealed that carbon monoxide, nitric oxide, ammonia and sulfur dioxide were the most common gases that the workers were exposed to during their tasks. Their average concentrations were 0.45 ppm, 0.06 ppm, 0.11 ppm and 0.42 ppm, respectively. Phenanthrene and naphthalene were the most prominent PAHs. At the same sampling points, the most commonly found VOCs were aromatic and aliphatic hydrocarbons and turpentines. The calculated total PAH concentrations were less than 7% of benzo[a]pyrene's eight-hour occupational exposure limit, and the total VOC concentrations were below the Finnish reference value for the normal industrial level in all measured work tasks. The most evident health effect caused by multiple exposures to gases was upper respiratory track irritation, followed by the disruption of oxygen transport, and finally central nervous system disorders. We recommend powered air respirators with ABEK+P3 cartridges and carbon monoxide gas detectors as the minimum requirement for those working inside biomass-fired power plant boilers, and compressed air breathing apparatus as the best form of protection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Iron oxides photochemical dissolution

    International Nuclear Information System (INIS)

    Blesa, M.A.; Litter, M.I.

    1987-01-01

    This work was intended to study the light irradiation influence of diverse wave-lengths on iron oxides dissolution in aqueous solutions. The objectives of this work were: the exploration of photochemical processes with the aim of its eventual application in: a) decontamination and chemical cleaning under special conditions; b) materials for solar energy conversion. (Author)

  7. Volatile organic compounds (VOCs in photochemically aged air from the eastern and western Mediterranean

    Directory of Open Access Journals (Sweden)

    B. Derstroff

    2017-08-01

    Full Text Available During the summertime CYPHEX campaign (CYprus PHotochemical EXperiment 2014 in the eastern Mediterranean, multiple volatile organic compounds (VOCs were measured from a 650 m hilltop site in western Cyprus (34° 57′ N/32° 23′ E. Periodic shifts in the northerly Etesian winds resulted in the site being alternately impacted by photochemically processed emissions from western (Spain, France, Italy and eastern (Turkey, Greece Europe. Furthermore, the site was situated within the residual layer/free troposphere during some nights which were characterized by high ozone and low relative humidity levels. In this study we examine the temporal variation of VOCs at the site. The sparse Mediterranean scrub vegetation generated diel cycles in the reactive biogenic hydrocarbon isoprene, from very low values at night to a diurnal median level of 80–100 pptv. In contrast, the oxygenated volatile organic compounds (OVOCs methanol and acetone exhibited weak diel cycles and were approximately an order of magnitude higher in mixing ratio (ca. 2.5–3 ppbv median level by day, range: ca. 1–8 ppbv than the locally emitted isoprene and aromatic compounds such as benzene and toluene. Acetic acid was present at mixing ratios between 0.05 and 4 ppbv with a median level of ca. 1.2 ppbv during the daytime. When data points directly affected by the residual layer/free troposphere were excluded, the acid followed a pronounced diel cycle, which was influenced by various local effects including photochemical production and loss, direct emission, dry deposition and scavenging from advecting air in fog banks. The Lagrangian model FLEXPART was used to determine transport patterns and photochemical processing times (between 12 h and several days of air masses originating from eastern and western Europe. Ozone and many OVOC levels were  ∼  20 and  ∼  30–60 % higher, respectively, in air arriving from the east. Using the FLEXPART

  8. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Investigations Associated with Non-Fire Carbon Monoxide from Engine-Driven Generators and Other Engine-Driven Tools, 2004–2014 JANUARY 08, 2015 Non- ... outside of the Federal Government. CPSC does not control this external site or its privacy policy and ...

  9. An interesting cause of pulmonary emboli: Acute carbon monoxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Sevinc, A.; Savli, H.; Atmaca, H. [Gaziantep University, Gaziantep (Turkey). School of Medicine

    2005-07-01

    Carbon monoxide poisoning, a public health problem of considerable significance, is a relatively frequent event today, resulting in thousands of hospitalizations annually. A 70-year-old lady was seen in the emergency department with a provisional diagnosis of carbon monoxide poisoning. The previous night, she slept in a tightly closed room heated with coal ember. She was found unconscious in the morning with poor ventilation. She had a rare presentation of popliteal vein thrombosis, pulmonary emboli, and possible tissue necrosis with carbon monoxide poisoning. Oxygen treatment with low-molecular-weight heparin (nadroparine) and warfarin therapy resulted in an improvement in both popliteal and pulmonary circulations. In conclusion, the presence of pulmonary emboli should be sought in patients with carbon monoxide poisoning.

  10. Inheritance of photochemical air pollution tolerance in petunias

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, G.P.; Addis, D.H.; Thorne, L.

    1976-12-01

    Seven commercial inbred lines of pink flowered multiflora petunia (Petunia hybrida Vilm.) which differed widely in degrees of tolerance to photochemical oxidants were crossed in all possible combinations to yield a complete diallel cross. Sibling representatives of all 49 possible hybrids were then separately subjected to ozone (O/sub 3/), peroxyacetyl nitrate (PAN), and ambient oxidants at Arcadia, California. The seedlings were scored for tolerance to each pollutant and the inheritance of tolerance to each pollutant was studied. At the ambient levels of photochemical oxidants encountered, PAN more severely injured the petunias than did the O/sub 3/ component. Hybrids tolerant to one oxidant were not necessarily tolerant to the other. The genes which contributed photochemical oxidant tolerance in petunia acted primarily in an additive manner with some indication of partial dominance for tolerance. Gene interaction was evident in the expression of petunia sensitivity to PAN.

  11. Simulation of photoreactive transients and of photochemical transformation of organic pollutants in sunlit boreal lakes across 14 degrees of latitude: A photochemical mapping of Sweden.

    Science.gov (United States)

    Koehler, Birgit; Barsotti, Francesco; Minella, Marco; Landelius, Tomas; Minero, Claudio; Tranvik, Lars J; Vione, Davide

    2018-02-01

    Lake water constituents, such as chromophoric dissolved organic matter (CDOM) and nitrate, absorb sunlight which induces an array of photochemical reactions. Although these reactions are a substantial driver of pollutant degradation in lakes they are insufficiently understood, in particular on large scales. Here, we provide for the first time comprehensive photochemical maps covering a large geographic region. Using photochemical kinetics modeling for 1048 lakes across Sweden we simulated the steady-state concentrations of four photoreactive transient species, which are continuously produced and consumed in sunlit lake waters. We then simulated the transient-induced photochemical transformation of organic pollutants, to gain insight into the relevance of the different photoreaction pathways. We found that boreal lakes were often unfavorable environments for photoreactions mediated by hydroxyl radicals (OH) and carbonate radical anions (CO 3 - ), while photoreactions mediated by CDOM triplet states ( 3 CDOM*) and, to a lesser extent, singlet oxygen ( 1 O 2 ) were the most prevalent. These conditions promote the photodegradation of phenols, which are used as plastic, medical drug and herbicide precursors. When CDOM concentrations increase, as is currently commonly the case in boreal areas such as Sweden, 3 CDOM* will also increase, promoting its importance in photochemical pathways even more. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Multidimensional gas chromatography for the characterization of permanent gases and light hydrocarbons in catalytic cracking process.

    Science.gov (United States)

    Luong, J; Gras, R; Cortes, H J; Shellie, R A

    2013-01-04

    An integrated gas chromatographic system has been successfully developed and implemented for the measurement of oxygen, nitrogen, carbon monoxide, carbon dioxide and light hydrocarbons in one single analysis. These analytes are frequently encountered in critical industrial petrochemical and chemical processes like catalytic cracking of naphtha or diesel fuel to lighter components used in gasoline. The system employs a practical, effective configuration consisting of two three-port planar microfluidic devices in series with each other, having built-in fluidic gates, and a mid-point pressure source. The use of planar microfluidic devices offers intangible advantages like in-oven switching with no mechanical moving parts, an inert sample flow path, and a leak-free operation even with multiple thermal cycles. In this way, necessary features such as selectivity enhancement, column isolation, column back-flushing, and improved system cleanliness were realized. Porous layer open tubular capillary columns were employed for the separation of hydrocarbons followed by flame ionization detection. After separation has occurred, carbon monoxide and carbon dioxide were converted to methane with the use of a nickel-based methanizer for detection with flame ionization. Flow modulated thermal conductivity detection was employed to measure oxygen and nitrogen. Separation of all the target analytes was achieved in one single analysis of less than 12 min. Reproducibility of retention times for all compounds were found to be less than 0.1% (n=20). Reproducibility of area counts at two levels, namely 100 ppm(v) and 1000 ppm(v) over a period of two days were found to be less than 5.5% (n=20). Oxygen and nitrogen were found to be linear over a range from 20 ppm(v) to 10,000 ppm(v) with correlation coefficients of at least 0.998 and detection limits of less than 10 ppm(v). Hydrocarbons of interest were found to be linear over a range from 200 ppb(v) to 1000 ppm(v) with correlation

  13. Polyketones as alternating copolymers of carbon monoxide

    International Nuclear Information System (INIS)

    Belov, Gennady P; Novikova, Elena V

    2004-01-01

    Characteristic features of the catalytic synthesis of alternating copolymers of carbon monoxide with various olefins, dienes, styrene and its derivatives are considered. The diversity of catalyst systems used for the copolymerisation of carbon monoxide is demonstrated and their influence on the structure and the molecular mass of the resulting copolymers is analysed. The data on the structure and physicochemical and mechanical properties of this new generation of functional copolymers are generalised and described systematically for the first time.

  14. Hearing Loss due to Carbon Monoxide Poisoning

    DEFF Research Database (Denmark)

    Mehrparvar, Amir Houshang; Davari, Mohammad Hossein; Mollasadeghi, Abolfazl

    2013-01-01

    Carbon monoxide poisoning is one of the rare causes of hearing loss which may cause reversible or irreversible, unilateral or bilateral hearing loss after acute or chronic exposure. In this report, we present a case of bilateral sensorineural hearing loss in a secondary smelting workshop worker...... after an acute exposure to carbon monoxide. This complication was diagnosed by pure-tone audiometry and confirmed by transient evoked otoacoustic emissions. Hearing loss has not improved after 3 months of followup....

  15. Development of an enzymatic sensor for carbon monoxide

    International Nuclear Information System (INIS)

    Hurtado, Clara; Gomez, Diana; Larmat, Fernando; Torres, Walter; Cuervo, Raul; Bravo, Enrique; Benitez, Neyla

    2003-01-01

    The detection and the pursuit of gases that contribute in the increase of the atmospheric contamination are a necessity, for what the electrochemical sensors have potential industrial applications for the control of the quality of the air. The development of amperometric sensor based on enzymes offers advantages, since the use of the biological component provides him high selectivity due to the great specificity of the substrate of the enzyme. The monoxide of carbon (CO) it is a polluting, poisonous gas, taken place during the incomplete combustion of organic materials (natural gas, petroleum, gasoline, coal and vegetable material). The determination of monoxide of carbon (CO) it can be reached by electrochemical mediums using the methylene blue like the electronic mediator for the enzyme monoxide of carbon oxidase (COx)

  16. Trends in photochemical smog in the Cape Peninsula and the ...

    African Journals Online (AJOL)

    There has been growing public concern over reports of increasing air pollution in the Cape Peninsula. Attention has been focused on the 'brown haze' and on photochemical smog. Because of deficiencies in the monitoring equipment, information on trends in photochemical smog levels over the past decade is limited.

  17. Atmospheric analyzer, carbon monoxide monitor and toluene diisocyanate monitor

    Science.gov (United States)

    Shannon, A. V.

    1977-01-01

    The purpose of the atmospheric analyzer and the carbon monoxide and toluene diisocyanate monitors is to analyze the atmospheric volatiles and to monitor carbon monoxide and toluene diisocyanate levels in the cabin atmosphere of Skylab. The carbon monoxide monitor was used on Skylab 2, 3, and 4 to detect any carbon monoxide levels above 25 ppm. Air samples were taken once each week. The toluene diisocyanate monitor was used only on Skylab 2. The loss of a micrometeoroid shield following the launch of Skylab 1 resulted in overheating of the interior walls of the Orbital Workshop. A potential hazard existed from outgassing of an isocyanate derivative resulting from heat-decomposition of the rigid polyurethane wall insulation. The toluene diisocyanate monitor was used to detect any polymer decomposition. The atmospheric analyzer was used on Skylab 4 because of a suspected leak in the Skylab cabin. An air sample was taken at the beginning, middle, and the end of the mission.

  18. Carbon monoxide exposure in households in Ciudad Juárez, México.

    Science.gov (United States)

    Montoya, Teresa; Gurian, Patrick L; Velázquez-Angulo, Gilberto; Corella-Barud, Verónica; Rojo, Analila; Graham, Jay P

    2008-03-01

    This study assessed exposure to carbon monoxide from gas and wood heater emissions in a sample of 64 households in peri-urban residential areas in Ciudad Juárez, Chihuahua, México. Indoor and outdoor carbon monoxide concentrations and temperatures were monitored for a continuous period of 1 week at 1 and 6-min intervals, respectively. The moving average carbon monoxide concentrations were compared to the World Health Organization (WHO) standards for carbon monoxide. Sixty-seven percent of households with gas heaters and 60% of households with wood heaters exceeded a health-based standard at some point during the monitoring. The difference between indoor and outdoor temperatures was modestly correlated with average carbon monoxide exposure (r=0.35, p-value h standard of 9ppm (odds ratio=5.1, p-value=0.031). These results highlight the need for further efforts to identify and mitigate potentially hazardous carbon monoxide exposures, particularly in moderate-income countries with cooler climates.

  19. Metallic and insulating 3d transition-element monoxides and their stability

    International Nuclear Information System (INIS)

    Johansson, H.B.

    1977-01-01

    The binding properties of the 3d monoxides are studied in detail, and it is shown that the metallic character of TiO and VO is directly reflected in their heat of formation. The same holds true for NbO. From a stability analysis of the 3d monoxides versus decomposition, it is found that TiO, VO, and FeO are close to an instability. Further, it can be concluded that both ScO and CrO must be very near existence. The general occurrence of transition-metal monoxides is shown to be directly correlated with ionic properties of the transition elements. An investigation of the absorption edge in the 3d monoxides is also undertaken. The importance of the crystal-field splitting is noticed, and it is shown that the heat of formation of the monoxides can be used to derive the crystal-field parameter Δ. The change from a delocalized to a localized behavior of the d electrons in the 3d monoxides is compared with a similar change of the f electrons in the actinides. Some similarities between these two series of materials are pointed out

  20. Assessment of carbon monoxide values in smokers: a comparison of carbon monoxide in expired air and carboxyhaemoglobin in arterial blood

    DEFF Research Database (Denmark)

    Andersson, Mette F; Møller, Ann M

    2010-01-01

    Smoking increases perioperative complications. Carbon monoxide concentrations can estimate patients' smoking status and might be relevant in preoperative risk assessment. In smokers, we compared measurements of carbon monoxide in expired air (COexp) with measurements of carboxyhaemoglobin (COHb) ......) in arterial blood. The objectives were to determine the level of correlation and to determine whether the methods showed agreement and evaluate them as diagnostic tests in discriminating between heavy and light smokers....

  1. Autumn photoproduction of carbon monoxide in Jiaozhou Bay, China

    Science.gov (United States)

    Ren, Chunyan; Yang, Guipeng; Lu, Xiaolan

    2014-06-01

    Carbon monoxide (CO) plays a significant role in global warming and atmospheric chemistry. Global oceans are net natural sources of atmospheric CO. CO at surface ocean is primarily produced from the photochemical degradation of chromophoric dissolved organic matter (CDOM). In this study, the effects of photobleaching, temperature and the origin (terrestrial or marine) of CDOM on the apparent quantum yields (AQY) of CO were studied for seawater samples collected from Jiaozhou Bay. Our results demonstrat that photobleaching, temperature and the origin of CDOM strongly affected the efficiency of CO photoproduction. The concentration, absorbance and fluorescence of CDOM exponentially decreased with increasing light dose. Terrestrial riverine organic matter could be more prone to photodegradation than the marine algae-derived one. The relationships between CO AQY and the dissolved organic carbon-specific absorption coefficient at 254 nm for the photobleaching study were nonlinear, whereas those of the original samples were strongly linear. This suggests that: 1) terrestrial riverine CDOM was more efficient than marine algae-derived CDOM for CO photoproduction; 2) aromatic and olefinic moieties of the CDOM pool were affected more strongly by degradation processes than by aliphatic ones. Water temperature and the origin of CDOM strongly affected the efficiency of CO photoproduction. The photoproduction rate of CO in autumn was estimated to be 31.98 μmol m-2 d-1 and the total DOC photomineralization was equivalent to 3.25%-6.35% of primary production in Jiaozhou Bay. Our results indicate that CO photochemistry in coastal areas is important for oceanic carbon cycle.

  2. Hydrocarbon conversion with an attenuated superactive multimetallic catalytic composite

    International Nuclear Information System (INIS)

    Antos, G.J.

    1981-01-01

    Hydrocarbons are converted by contacting them at hydrocarbon conversion conditions with a novel attenuated superactive multimetallic catalytic composite comprising a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component, which is maintained in the elemental metallic state during the incorporation and pyrolysis of the rhenium carbonyl component, and of an iron component. In a highly preferred embodiment, this novel catalytic composite also contains a catalytically effective amount of a halogen component. The platinum group component, pyrolyzed rhenium carbonyl component, iron component and optional halogen component are preferably present in the multimetallic catalytic composite in amounts, calculated on an elemental basis, corresponding to about 0.01 to about 2 wt. % platinum group metal, about 0.01 to about 5 wt. % rhenium, about 0.005 to about 4 wt. % iron and about 0.1 to about 5 wt. % halogen. A key feature associated with the preparation of the subject catalytic composite is reaction of a rhenium carbonyl complex with a porous carrier material containing a uniform dispersion of an iron component and of a platinum group component maintained in the elemental state, whereby the interaction of the rhenium moiety with the platinum group moiety is maximized due to the platinophilic (i.e., platinum-seeking) propensities of the carbon monoxide ligands associated with the rhenium reagent. A specific example of the type of hydrocarbon conversion process disclosed herein is a process for the catalytic reforming of a low octane gasoline fraction wherein the gasoline fraction and a hydrogen stream are contacted with the attenuated superactive multimetallic catalytic composite at reforming conditions

  3. Assessment of diphenylcyclopropenone for photochemically induced mutagenicity in the Ames assay

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, M.G.; Connor, T.H.; Henkin, J.; Wilkin, J.K.; Matney, T.S.

    1987-10-01

    The photochemical conversion of diphenylcyclopropenone to diphenylacetylene has recently been reported. Diphenylcyclopropenone is used in the treatment of alopecia areata and is nonmutagenic in a limited Ames assay. We examined diphenylcyclopropenone and diphenylacetylene, as well as synthetic precursors of diphenylcyclopropenone--dibenzylketone and alpha,alpha'-dibromodibenzylketone--for mutagenicity against TA100, TA98, TA102, UTH8413, and UTH8414. All compounds were nonmutagenic except alpha,alpha'-dibromodibenzylketone, which was a potent mutagen in TA100 with and without S-9 activation. The effect of photochemical activation of diphenylcyclopropenone in the presence of bacteria demonstrated mutagenicity in UTH8413 (two times background) at 10 micrograms/plate with S-9 microsomal activation. 8-Methoxypsoralen produces a mutagenic response in TA102 at 0.1 microgram/plate with 60 seconds of exposure to 350 nm light. In vitro photochemically activated Ames assay with S-9 microsomal fraction may enhance the trapping of short-lived photochemically produced high-energy mutagenic intermediates. This technique offers exciting opportunities to trap high-energy intermediates that may play an important role in mutagenesis. This method can be applied to a variety of topically applied dermatologic agents, potentially subjected to photochemical changes in normal use.

  4. 40 CFR 86.1322-84 - Carbon monoxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... be used. (2) Zero the carbon monoxide analyzer with either zero-grade air or zero-grade nitrogen. (3... columns is one form of corrective action which may be taken.) (b) Initial and periodic calibration. Prior... calibrated. (1) Adjust the analyzer to optimize performance. (2) Zero the carbon monoxide analyzer with...

  5. Occupational medicine effects of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, W.M. [South African Society of Occupational Medicine (South Africa)

    1998-10-01

    Carbon monoxide can affect the body if it is inhaled or if liquid carbon monoxide comes in contact with the eyes or skin. The effects of overexposure are discussed and a brief explanation of the toxicological effects of CO given. Methods of control of CO from common operations (exhaust fumes of internal combustion engines, the chemical industry and foundries, welding, mines or tunnels, fire damp explosions, industrial heating) are by local exhaust ventilation or use of a respiratory protective device. The South African hazardous chemical substance regulation NO. R. 1179 of 25 August 1995 stipulates maximum safe levels of CO concentration. 4 refs., 1 photo.

  6. Understanding the Atmosphere of 51 Eri b: Do Photochemical Hazes Cloud the Planets Spectrum?

    Science.gov (United States)

    Marley, Mark Scott; Zahnle, Kevin; Moses, J.; Morley, C.

    2015-01-01

    The first young giant planet to be discovered by the Gemini Planet Imager was the (is) approximately 2MJ planet 51 Eri b. This approximately 20 Myr old young Jupiter is the first directly imaged planet to show unmistakable methane in H band. To constrain the planet's mass, atmospheric temperature, and composition, the GPI J and H band spectra as well as some limited photometric points were compared to the predictions of substellar atmosphere models. The best fitting models reported in the discovery paper (Macintosh et al. 2015) relied upon a combination of clear and cloudy atmospheric columns to reproduce the data. However for an object as cool as 700 K, the origin of the cloud coverage is somewhat puzzling, as the global silicate and iron clouds would be expected to have sunk well below the photosphere by this effective temperature. While strong vertical mixing in these low gravity atmospheres remains a plausible explanation, we have explored whether atmospheric photochemistry, driven by the UV flux from the primary star, may yield hazes that also influence the observed spectrum of the planet. To explore this possibility we have modeled the atmospheric photochemistry of 51 Eri b using two state-of-the-art photochemical models, both capable of predicting yields of complex hydrocarbons under various atmospheric conditions. In our presentation we will summarize the modeling approach employed to characterize 51 Eri b, explaining constraints on the planet's effective temperature, gravity, and atmospheric composition and also present results of our studies of atmospheric photochemistry. We will discuss whether photochemical hazes could indeed be responsible for the particulate opacity that apparently sculpts the spectrum of the planet.

  7. Carbon monoxide poisoning from waterpipe smoking: a retrospective cohort study.

    Science.gov (United States)

    Eichhorn, Lars; Michaelis, Dirk; Kemmerer, Michael; Jüttner, Björn; Tetzlaff, Kay

    2018-04-01

    Waterpipe smoking may increasingly account for unintentional carbon monoxide poisoning, a serious health hazard with high morbidity and mortality. We aimed at identifying waterpipe smoking as a cause for carbon monoxide poisoning in a large critical care database of a specialty care referral center. This retrospective cohort study included patients with a history of exposure to waterpipe smoking and carbon monoxide blood gas levels >10% or presence of clinical symptoms compatible with CO poisoning admitted between January 2013 and December 2016. Patients' initial symptoms and carbon monoxide blood levels were retrieved from records and neurologic status was assessed before and after hyperbaric oxygen treatment. Sixty-one subjects with carbon monoxide poisoning were included [41 males, 20 females; mean age 23 (SD ± 6) years; range 13-45] with an initial mean carboxyhemoglobin of 26.93% (SD ± 9.72). Most common symptoms included syncope, dizziness, headache, and nausea; 75% had temporary syncope. Symptoms were not closely associated with blood COHb levels. CO poisoning after waterpipe smoking may present in young adults with a wide variability of symptoms from none to unconsciousness. Therefore diagnosis should be suspected even in the absence of symptoms.

  8. Photochemical reduction of CO{sub 2} to fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, D. [National Renewable Energy Lab., Golden, CO (United States); Eisenberg, R. [Univ. of Rochester, NY (United States); Fujita, E. [Brookhaven National Lab., Upton, NY (United States)

    1996-09-01

    Photochemical reduction of CO{sub 2} represents a potentially useful approach to developing a sustainable source of carbon-based chemicals, fuels, and materials. In this report the present status of photochemical CO{sub 2} reduction is assessed, areas that need to be better understood for advancement are identified, and approaches to overcoming barriers are suggested. Because of the interdisciplinary nature of this field, assessments of three closely interrelated areas are given including integrated photochemical systems for catalytic CO{sub 2} reduction, thermal catalytic CO{sub 2} reactions, and electrochemical CO{sub 2} reduction. The report concludes with a summary and assessment of potential impacts of this area on chemical and energy technologies.

  9. PHOTOCHEMICAL HEATING OF DENSE MOLECULAR GAS

    Energy Technology Data Exchange (ETDEWEB)

    Glassgold, A. E. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Najita, J. R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-09-10

    Photochemical heating is analyzed with an emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and then heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimes as large, if not much larger than, the direct heating. In very dense gas, the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.

  10. Successful Treatment of Severe Carbon Monoxide Poisoning and Refractory Shock Using Extracorporeal Membrane Oxygenation.

    Science.gov (United States)

    Teerapuncharoen, Krittika; Sharma, Nirmal S; Barker, Andrew B; Wille, Keith M; Diaz-Guzman, Enrique

    2015-09-01

    Carbon monoxide (CO) is the most common cause of poisoning and poisoning-related death in the United States. It is a tasteless and odorless poisonous gas produced from incomplete combustion of hydrocarbons, such as those produced by cars and heating systems. CO rapidly binds to hemoglobin to form carboxyhemoglobin, leading to tissue hypoxia, multiple-organ failure, and cardiovascular collapse. CO also binds to myocardial myoglobin, preventing oxidative phosphorylation in cardiac mitochondria and resulting in cardiac ischemia or stunning and cardiogenic pulmonary edema. Treatment of CO poisoning is mainly supportive, and supplemental oxygen remains the cornerstone of therapy, whereas hyperbaric oxygen therapy is considered for patients with evidence of neurological and myocardial injury. Extracorporeal membrane oxygenation (ECMO) has been utilized effectively in patients with respiratory failure and hemodynamic instability, but its use has rarely been reported in patients with CO poisoning. We report the successful use of venoarterial ECMO in a patient with severe CO poisoning and multiple-organ failure. Copyright © 2015 by Daedalus Enterprises.

  11. Correlation between air flow rate and pollutant concentrations during two-stage oak log combustion in a 25 KW residential boiler

    Directory of Open Access Journals (Sweden)

    Juszczak Marek

    2016-09-01

    Full Text Available It can be expected that there is a considerable correlation between combustion air flow rate and the concentrations of carbon monoxide, hydrocarbons and nitrogen oxide in the flue gas. The influence of temperature and oxygen concentration in the combustion zone on the concentrations of carbon monoxide, hydrocarbons and nitrogen oxide in the flue gas, for high and low combustion air flow, was analysed. Oxygen concentration for which the concentration of carbon monoxide is the lowest was determined, as well as the mutual relation between carbon monoxide and nitrogen oxide concentration.

  12. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    Science.gov (United States)

    Liu, D. Kwok-Keung; Chang, Shih-Ger

    1987-08-25

    The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

  13. Photochemical heavy-atom effects

    International Nuclear Information System (INIS)

    Koziar, J.C.; Cowan, D.O.

    1978-01-01

    The effects of halogenated solvents such as n-butyl chloride, n-propyl bromide, and ethyl iodide, on the photochemistry of several aromatic compounds are reviewed. Dimerization of acenaphthylene is discussed in terms of spin -orbit coupling induced by the solvents. Appropriate wave functions are given for both the solvents and the compound. Cycloaddition reactions, electrocyclic rearrangements, and photochemical cis-trans isomerization are also considered

  14. Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications.

    Science.gov (United States)

    Su, Yuanhai; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2014-08-18

    Continuous-flow photochemistry is used increasingly by researchers in academia and industry to facilitate photochemical processes and their subsequent scale-up. However, without detailed knowledge concerning the engineering aspects of photochemistry, it can be quite challenging to develop a suitable photochemical microreactor for a given reaction. In this review, we provide an up-to-date overview of both technological and chemical aspects associated with photochemical processes in microreactors. Important design considerations, such as light sources, material selection, and solvent constraints are discussed. In addition, a detailed description of photon and mass-transfer phenomena in microreactors is made and fundamental principles are deduced for making a judicious choice for a suitable photomicroreactor. The advantages of microreactor technology for photochemistry are described for UV and visible-light driven photochemical processes and are compared with their batch counterparts. In addition, different scale-up strategies and limitations of continuous-flow microreactors are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hydrogen bonding of formamide, urea, urea monoxide and their thio

    Indian Academy of Sciences (India)

    Ab initio and DFT methods have been employed to study the hydrogen bonding ability of formamide, urea, urea monoxide, thioformamide, thiourea and thiourea monoxide with one water molecule and the homodimers of the selected molecules. The stabilization energies associated with themonohydrated adducts and ...

  16. Aqueous photochemical degradation of hydroxylated PAHs: Kinetics, pathways, and multivariate effects of main water constituents

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Linke; Na, Guangshui [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Chen, Chang-Er [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Li, Jun [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); College of Marine Science, Shanghai Ocean University, Shanghai 201306 (China); Ju, Maowei; Wang, Ying; Li, Kai [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Peng, E-mail: pzhang@nmemc.org.cn [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Yao, Ziwei [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China)

    2016-03-15

    Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) are contaminants of emerging concern in the aquatic environment, so it is of great significance to understand their environmental transformation and toxicity. This study investigated the aqueous photochemical behavior of four OH-PAHs, 9-Hydroxyfluorene (9-OHFL), 2-Hydroxyfluorene, 9-Hydroxyphenanthrene and 1-Hydroxypyrene, under simulated sunlight irradiation (λ > 290 nm). It was observed that their photodegradation followed the pseudo-first-order kinetics. Based on the determined quantum yields, their calculated solar apparent photodegradation half-lives in surface waters at 45° N latitude ranged from 0.4 min for 9-Hydroxyphenanthrene to 7.5 × 10{sup 3} min for 9-OHFL, indicating that the OH-PAHs would intrinsically photodegrade fast in sunlit surface waters. Furthermore, 9-OHFL as an example was found to undergo direct photolysis, and self-sensitized photooxidation via ·OH rather than {sup 1}O{sub 2} in pure water. The potential photoreactions involved photoinduced hydroxylation, dehydrogenation and isomerization based on product identification by GC–MS/MS. 9-OHFL photodegraded slower in natural waters than in pure water, which was attributed to the integrative effects of the most photoreactive species, such as Fe(III), NO{sub 3}{sup −}, Cl{sup −} and humic acid. The photomodified toxicity was further examined using Vibrio fischeri, and it was found that the toxicity of photolyzed 9-OHFL did not decrease significantly (p > 0.05) either in pure water or in seawater, implying the comparable or higher toxicity of some intermediates. These results are important for assessing the fate and risks of OH-PAHs in surface waters. - Graphical abstract: Aqueous photochemical behavior of 4 hydroxylated PAHs is first reported on revealing the kinetics, mechanisms, toxicity, and multivariate effects of water constituents. - Highlights: • It is first reported on aqueous photochemical behavior of 4 hydroxylated

  17. Photochemical fate of beta-blockers in NOM enriched waters

    International Nuclear Information System (INIS)

    Wang, Ling; Xu, Haomin; Cooper, William J.; Song, Weihua

    2012-01-01

    Beta-blockers, prescribed for the treatment of high blood pressure and for long-term use after a heart attack, have been detected in surface and ground waters. This study examines the photochemical fate of three beta-blockers, atenolol, metoprolol, and nadolol. Hydrolysis accounted for minor losses of these beta-blockers in the pH range 4–10. The rate of direct photolysis at pH 7 in a solar simulator varied from 6.1 to 8.9 h −1 at pH 7. However, the addition of a natural organic matter (NOM) isolate enhanced the photochemical loss of all three compounds. Indirect photochemical fate, generally described by reactions with hydroxyl radical (·OH) and singlet oxygen ( 1 ΔO 2 ), and, the direct reaction with the triplet excited state, 3 NOM ⁎ , also varied but collectively appeared to be the major loss factor. Bimolecular reaction rate constants of the three beta-blockers with 1 ΔO 2 and ·OH were measured and accounted for 0.02–0.04% and 7.2–38.9% of their loss, respectively. These data suggest that the 3 NOM ⁎ contributed 50.6–85.4%. Experiments with various 3 NOM ⁎ quenchers supported the hypothesis that it was singly the most important reaction. Atenolol was chosen for more detailed investigation, with the photoproducts identified by LC–MS analysis. The results suggested that electron-transfer could be an important mechanism in photochemical fate of beta-blockers in the presence of NOM. - Highlights: ► Photochemical degradation of beta-blockers in the simulated natural waters. ► Reactive Oxygen Species play a minor role in the indirect photodegradation. ► The loss of beta-blockers results from direct reaction with 3 DOM ⁎ .

  18. Carbon monoxide poisoning - Immediate diagnosis and treatment are crucial to avoid complications.

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, L.D. [Case Western Reserve University, Cleveland, OH (United States)

    2006-03-15

    Carbon monoxide is an odorless, colorless, tasteless gas produced by the incomplete combustion of carbon-containing fuels (oil, kerosene, coal, wood) or the inadequate ventilation of natural gas. When carbon monoxide is introduced into the bloodstream, it binds to hemoglobin, reducing the number of binding sites available for oxygen. Carbon monoxide also changes the structure of the hemoglobin molecule, which makes it even more difficult for oxygen that has attached to be released into tissues. The resulting tissue ischemia can lead to organ failure, permanent changes in cognition, or death. Carbon monoxide poisoning is the leading cause of death by poisoning in industrialized countries.

  19. Occupational carbon monoxide violations in the State of Washington, 1994-1999.

    Science.gov (United States)

    Lofgren, Don J

    2002-07-01

    Occupational exposure to carbon monoxide continues to cause a number of injuries and deaths. This study reviewed the State of Washington OSHA inspection records for occupational safety or health violations related to carbon monoxide for the time period 1994-1999 to assess the agency's efforts and further identify and characterize causative factors. Inspection data were also compared with carbon monoxide claims data from a companion study to determine if the agency was visiting the most at risk work operations. Inspections were identified by searching computerized violation texts for "carbon monoxide" or "CO." The study found 142 inspections with one or more carbon monoxide violations. Inspections were spread over 84 different 4-digit Standard Industrial Classification codes. Most inspections were initiated as a result of a complaint or other informant. Inspections were predominantly in construction and manufacturing, whereas carbon monoxide claims were mores evenly distributed between the major industries. Inspections also may have failed to find violations for some types of equipment responsible for carbon monoxide claims. Forklifts were the source of carbon monoxide most often associated with a violation, followed by compressors for respirators, auto/truck/bus, and temporary heating devices. Inspections in response to poisonings found common factors associated with lack of recognition and failure to use or maintain equipment and ventilation. Some work sites with one or more poisonings were not being inspected. Only 10 of the 51 incidents with industrial insurance claim reports of carboxyhemoglobin at or above 20 percent were inspected. Further, it was found more preventive efforts should be targeted at cold storage operations and certain warehouse and construction activities. It is proposed that more specific standards, both consensus and regulatory, would provide additional risk reduction. Reliance upon safe work practices as a primary method of control in the

  20. Surface retention and photochemical reactivity of the diphenylether herbicide oxyfluorfen.

    Science.gov (United States)

    Scrano, Laura; Bufo, Sabino A; Cataldi, Tommaso R I; Albanis, Triantafyllos A

    2004-01-01

    The photochemical behavior of oxyfluorfen [2-chloro-1-(3-etoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene] on two Greek soils was investigated. Soils were sampled from Nea Malgara and Preveza regions, characterized by a different organic matter content. Soils were spiked with the diphenyl-ether herbicide and irradiation experiments were performed either in the laboratory with a solar simulator (xenon lamp) or outside, under natural sunlight irradiation; other soil samples were kept in the dark to control the retention reaction. Kinetic parameters of both retention and photochemical reactions were calculated using zero-, first- and second- (Langmuir-Hinshelwood) order equations, and best fit was checked through statistical analysis. The soil behaviors were qualitatively similar but quantitatively different, with the soil sampled from the Nea Malgara region much more sorbent as compared with Preveza soil. All studied reactions followed second-order kinetics and photochemical reactions were influenced by retaining capability of the soils. The contributions of the photochemical processes to the global dissipation rates were also calculated. Two main metabolites were identified as 2-chloro-1-(3-ethoxy-4-hydroxyphenoxy)-4-(trifluoromethyl)benzene and 2-chloro-1- (3-hydroxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene.

  1. An Integrative Study of Photochemical Air Pollution in Hong Kong: an Overview

    Science.gov (United States)

    Wang, T.

    2014-12-01

    Hong Kong is situated in the Pearl River delta of Southern China. This region has experienced phenomenal economic growth in the past 30 years. Emissions of large amount of pollutants from urban areas and various industries coupled with subtropical climate have led to frequent occurrences of severe photochemical air pollution. Despite the long-term control efforts of the Hong Kong government, the atmospheric levels of ozone have been increasing in the past decade. To obtain an updated and more complete understanding of photochemical smog, an integrative study has been conducted during 2010-2014. Several intensive measurement campaigns were carried out at urban, suburban and rural sites in addition to the routine observations at fourteen air quality monitoring stations in Hong Kong. Meteorological, photochemical, and chemical-transport modeling studies were conducted to investigate the causes/processes of elevated photochemical pollution . The main activities of this study were to (1) examine the situation and trends of photochemical air pollution in Hong Kong, (2) understand some underlying chemical processes in particular the poorly-understood heterogeneous processes of reactive nitrogen oxides, (3) quantify the local, regional, and super-regional contributions to the ozone pollution in Hong Kong, and (4) review the control policy and make further recommendations based on the science. This paper will give an overview of this study and present some key results on the trends and chemistry of the photochemical pollution in this polluted subtropical region.

  2. Pulmonary edema in acute carbon monoxide poisoning

    International Nuclear Information System (INIS)

    Kim, Kun Sang; Chang, Kee Hyun; Lee, Myung Uk

    1974-01-01

    Acute carbon monoxide poisoning has frequently occurred in Korean, because of the coal briquette being widely used as fuel in Korean residences. Carbon monoxide poisoning has been extensively studied, but it has been sparsely reported that pulmonary edema may develop in acute CO poisoning. We have noticed nine cases of pulmonary edema in acute CO poisoning last year. Other possible causes of pulmonary edema could be exclude in all cases but one. The purpose of this paper is to describe nine cases of pulmonary edema complicated in acute CO poisoning and discuss the pathogenesis and the prognosis

  3. Pulmonary edema in acute carbon monoxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Sang; Chang, Kee Hyun; Lee, Myung Uk [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1974-10-15

    Acute carbon monoxide poisoning has frequently occurred in Korean, because of the coal briquette being widely used as fuel in Korean residences. Carbon monoxide poisoning has been extensively studied, but it has been sparsely reported that pulmonary edema may develop in acute CO poisoning. We have noticed nine cases of pulmonary edema in acute CO poisoning last year. Other possible causes of pulmonary edema could be exclude in all cases but one. The purpose of this paper is to describe nine cases of pulmonary edema complicated in acute CO poisoning and discuss the pathogenesis and the prognosis.

  4. Electro- and photochemical switching of dithienylethene self-assembled monolayers on gold electrodes

    DEFF Research Database (Denmark)

    Browne, W.R.; Kudernac, T.; Katsonis, N.

    2008-01-01

    forms of the dithienylethene SAMs is examined and found to be sensitive to the molecular structure of the switch. For the three dithienylethenes, the electrochemical behavior with respect to electrochemical ring opening/closing is retained in the SAMs. In contrast, a marked dependence on the nature...... of the anchoring group is observed upon immobilization in terms of the retention of the photochemical properties observed in solution. For the meta-thiophenol anchor both photochemical ring opening and closing are observed in the SAM, while for the thienyl-thiol-anchored switches the photochemically properties...

  5. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis

    Science.gov (United States)

    2016-01-01

    The use of photochemical transformations is a powerful strategy that allows for the formation of a high degree of molecular complexity from relatively simple building blocks in a single step. A central feature of all light-promoted transformations is the involvement of electronically excited states, generated upon absorption of photons. This produces transient reactive intermediates and significantly alters the reactivity of a chemical compound. The input of energy provided by light thus offers a means to produce strained and unique target compounds that cannot be assembled using thermal protocols. This review aims at highlighting photochemical transformations as a tool for rapidly accessing structurally and stereochemically diverse scaffolds. Synthetic designs based on photochemical transformations have the potential to afford complex polycyclic carbon skeletons with impressive efficiency, which are of high value in total synthesis. PMID:27120289

  6. Emission sources of non-methane volatile organic compounds (NMVOCs) and their contribution to photochemical ozone (O3) formation at an urban atmosphere in western India.

    Science.gov (United States)

    Yadav, R.; Sahu, L. K.; Tripathi, N.; Pal, D.

    2017-12-01

    Atmospheric non-methane volatile organic compounds (NMVOCs) were measured at a sampling site in Udaipur city of western India during 2015 to recognize their pollution levels, variation characteristics, sources and photochemical reactivity. The samples were analyzed for NMVOCs using a Gas Chromatograph equipped with Flame Ionization Detector (GC/FID) and Thermal Desorption (TD) system. The main focus on understand the sources responsible for NMVOC emissions, and evaluating the role of the identified sources towards ozone formation. Hourly variations of various NMVOC species indicate that VOCs mixing ratios were influenced by photochemical removal with OH radicals for reactive species, secondary formation for oxygenated VOCs. In general, higher mixing ratios were observed during winter/pre-monsoon and lower levels during the monsoon season due to the seasonal change in meteorological, transport path of air parcel and boundary layer conditions. The high levels of propane (C3H8) and butane (C4H10) show the dominance of LPG over the study location. The correlation coefficients of typical NMVOC pairs (ethylene/propylene, propylene/isoprene, and ethane/propane) depicted that vehicular emission and natural gas leakages were important sources for atmospheric hydrocarbons in Udaipur. Based on the annual data, PMF analysis suggest the source factors namely biomass burning/ bio-fuel, automobile exhaust, Industrial/ natural gas/power plant emissions, petrol/Diesel, gasoline evaporation, and use of liquid petroleum gas (LPG) contribute to NMVOCs loading. The propylene-equivalent and ozone formation potential of NMVOCs have also been calculated in order to find out their OH reactivity and contribution to the photochemical ozone formation.

  7. Southern Africa - a giant natural photochemical reactor

    CSIR Research Space (South Africa)

    Diab, RD

    2006-04-01

    Full Text Available photochemical reactor’ are abundant sources of ozone precursors (biomass burning, lightning, biogenic and urban-industrial sources), and meteorological conditions that promote anticyclonic recirculation on a subhemispheric scale....

  8. Seasonal variations of C1-C4 alkyl nitrates at a coastal site in Hong Kong: Influence of photochemical formation and oceanic emissions.

    Science.gov (United States)

    Song, Junwei; Zhang, Yingyi; Huang, Yu; Ho, Kin Fai; Yuan, Zibing; Ling, Zhenhao; Niu, Xiaojun; Gao, Yuan; Cui, Long; Louie, Peter K K; Lee, Shun-Cheng; Lai, Senchao

    2018-03-01

    Five C 1 -C 4 alkyl nitrates (RONO 2 ) were measured at a coastal site in Hong Kong in four selected months of 2011 and 2012. The total mixing ratios of C 1 -C 4 RONO 2 (Σ 5 RONO 2 ) ranged from 15.4 to 143.7 pptv with an average of 65.9 ± 33.0 pptv. C 3 -C 4 RONO 2 (2-butyl nitrate and 2-propyl nitrate) were the most abundant RONO 2 during the entire sampling period. The mixing ratios of C 3 -C 4 RONO 2 were higher in winter than those in summer, while the ones of methyl nitrate (MeONO 2 ) were higher in summer than those in winter. Source analysis suggests that C 2 -C 4 RONO 2 were mainly derived from photochemical formation along with biomass burning (58.3-71.6%), while ocean was a major contributor to MeONO 2 (53.8%) during the whole sampling period. The photochemical evolution of C 2 -C 4 RONO 2 was investigated, and found to be dominantly produced by the parent hydrocarbon oxidation. The notable enrichment of MeONO 2 over C 3 -C 4 RONO 2 was observed in a summer episode when the air masses originating from the South China Sea (SCS) and MeONO 2 was dominantly derived from oceanic emissions. In order to improve the accuracy of ozone (O 3 ) prediction in coastal environment, the relative contribution of RONO 2 from oceanic emissions versus photochemical formation and their coupling effects on O 3 production should be taken into account in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Carbon monoxide and COHb concentration in blood in various circumstances

    Energy Technology Data Exchange (ETDEWEB)

    Modic, J. [Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana (Slovenia)

    2003-07-01

    On the basis of known medical experiments we find out the correlation between the concentration of carbon monoxide (CO) in inhaling air and the concentration of carboxihemoglobyne (COHb) in human blood. All internal combustion engines produce exhaust gases containing noxious compounds: carbon monoxide, nitrogen oxides (NO{sub x}), carbon oxides (CxHy) and smoke. In a living room is important the smoke of cigarettes, smoke of furnaces, improper ventilation. In tunnel is most dangerous the carbon monoxide if it exceeds an allowable level. In human blood the carbon monoxide causes increasing the concentration of carboxihemoglobyne and in this case the hypoxia of web. With help of mathematical model the concentrations of some dangerous substances at the end of tunnel were calculated. For this case a differential equation also was developed and it shows the correlation between concentration of carbon monoxide in the air and concentration of carboxihemoglobyne in the blood. The constructed mathematical model shows circumstances in the tunnel (velocity of air moving as effect of induction, concentration of noxious substances and criterial number). Also a corresponding computer program was developed, which makes possible a quick and simple calculation. All the results are proved by experiments. Finally the differential equation was done, which shows a temporal connection between both parameters as a function of tunnel characteristics. (author)

  10. Relationships between ozone and other photochemical products at Ll. Valby, Denmark

    DEFF Research Database (Denmark)

    Skov, H.; Egeløv, A.H.; Granby, K.

    1997-01-01

    literature results it is estimated that the non-photochemical background mixing ratio of O-3 in the Northern Hemisphere is 24+/-6 ppbv. The correlation of HCOOH and CH3COOH with Ox indicates that these acids are of photochemical origin. A high correlation of HNO3 with Ox is also found. The anti-correlation...

  11. Photochemical reactions of actinide ions

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi

    1995-01-01

    This paper reviews the results of photochemical studies of actinide ions, which have been performed in our research group for past several years as follows: I) behavior of the excited uranyl(VI) ion; II) photo-reductions of the uranyl ion with organic and inorganic compounds; III) photo-oxidations of uranium(IV) and plutonium(III) in nitric acid solutions. (author)

  12. Photochemically induced emission tuning of conductive polumers used in OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Vasilopoulou, M [NCSR ' Demokritos' , Institute of Microelectronics, POB 60228, 153 10 Agia Paraskevi, Attiki (Greece); Pistolis, G [Institute of Physical Chemistry, NCSR ' Demokritos' Athens 153 10 (Greece); Argitis, P [NCSR ' Demokritos' , Institute of Microelectronics, POB 60228, 153 10 Agia Paraskevi, Attiki (Greece)

    2005-01-01

    The present work focuses on the use of novel patterning technology schemes for the fabrication of OLED-based displays and in particular on the definition of two colour emitting pixels in one polymeric conducting layer. The approach adopted to this end is based on photochemically induced emition tuning. On the basis of this approach a novel photolithographic patterning technique was developed, aiming at the considerable simplification of the display fabrication process and on the performance improvement. We prepared electroluminescent devices that are emitting blue colour ({lambda}{sub max} 413 nm) with a turnon voltage about 12-15 V. In other devices we introduce a dispersed dye (1-[4-(dimethylamino)phenyl]-6-phenylhexatriene) and a series of photoacid generators (onium salts) in the polymeric layer and, by using an appropriate photochemical transformation through a photomask in a single layer, we were able to change the colour to desirable direction, since the parent compound and its photochemical product have distinguishable luminescence spectra (green and blue colour respectively). We were able to produce two of the three primary colours in a single layer of a conductive polymer by using a photochemical transformation based on photoacid induced emission change. A series of photoacid generators were evaluated.

  13. Poisoning by carbon monoxide in Morocco from 1991 to 2008.

    Science.gov (United States)

    Aghandous, Rachida; Chaoui, Hanane; Rhalem, Naima; Semllali, Ilham; Badri, Mohamed; Soulaymani, Abdelmajid; Ouammi, Lahcen; Soulaymani-Bencheikh, Rachida

    2012-04-01

    To describe the characteristics relating to the provenance of statements, patients and to evaluate the spatiotemporal evolution of carbon monoxide poisoning reported to Poison Control Center and Pharmacovigilance of Morocco (CAPM). This is a retrospective study over a period of 18 years from 1991 to 2008, for all cases of poisoning by carbon monoxide reported to CAPM. The epidemiological study focused on 12 976 cases of carbon monoxide poisoning reported to CAPM between 1991 and 2008. The average age of patients was 25.5 +/- 15.6 years, sex ratio was 0.5. The poisoning occurred by accident in 98.7% of cases, especially at home (96.7%) and in cold months. The urban population was the most affected (89.0%). The region of Meknes Tafilalt was the most concerned with 16.6% of cases. The symptomatology was characterized by the predominance of gastrointestinal tract diseases (37.1%). Deaths have reached a percentage of 0.9%. These qualitative and quantitative information is useful to highlight warnings and plan a strategy against carbon monoxide poisoning in Morocco.

  14. Carbon monoxide, smoking, and atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, P

    1973-10-01

    Studies on the effects of carbon monoxide and smoking on atherosclerosis are reviewed. Nonsmokers do not run the risk of getting significantly elevated carboxyhemoglobin levels from automobile exhaust in the streets, however, they do run the risk of getting elevated carboxyhemoglobin levels from exposure to CO in closed areas such as garages and tunnels. Carboxyhemoglobin levels up to 20 percent may also be found in smokers. The central nervous system seems to be influenced by carboxyhemoglobin concentrations up to 20 percent. The myocardium may also be affected. Experimental work with rabbits exposed to carbon monoxide and cholesterol is described which proved that CO has a damaging effect on arterial walls, leading to increased permeability for various plasma components, to the formation of subendothelial edema, and to increased atheromatosis. The results indicate that the much higher risk of smokers of developing arterial disease in comparison to nonsmokers is mainly due to the inhaled CO in the tobacco smoke and not to nicotine. (Air Pollut. Abstr.)

  15. Approximate photochemical dynamics of azobenzene with reactive force fields

    Science.gov (United States)

    Li, Yan; Hartke, Bernd

    2013-12-01

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).

  16. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  17. Photochemical synthesis of UO2 nanoparticles

    International Nuclear Information System (INIS)

    Rath, M.C.; Keny, Sangeeta; Naik, D.B.

    2014-01-01

    UO 2 nanoparticles have been recently synthesized by us from aqueous solutions of uranyl nitrate through radiolytic method on high-energy electron beam irradiation. In this study, the synthesis of UO 2 nanoparticles through photochemical method is reported which is a complementary route to radiation chemical method

  18. Photochemical fate of beta-blockers in NOM enriched waters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ling; Xu, Haomin; Cooper, William J. [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Song, Weihua, E-mail: wsong@fudan.edu.cn [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China)

    2012-06-01

    Beta-blockers, prescribed for the treatment of high blood pressure and for long-term use after a heart attack, have been detected in surface and ground waters. This study examines the photochemical fate of three beta-blockers, atenolol, metoprolol, and nadolol. Hydrolysis accounted for minor losses of these beta-blockers in the pH range 4-10. The rate of direct photolysis at pH 7 in a solar simulator varied from 6.1 to 8.9 h{sup -1} at pH 7. However, the addition of a natural organic matter (NOM) isolate enhanced the photochemical loss of all three compounds. Indirect photochemical fate, generally described by reactions with hydroxyl radical ({center_dot}OH) and singlet oxygen ({sup 1}{Delta}O{sub 2}), and, the direct reaction with the triplet excited state, {sup 3}NOM{sup Low-Asterisk }, also varied but collectively appeared to be the major loss factor. Bimolecular reaction rate constants of the three beta-blockers with {sup 1}{Delta}O{sub 2} and {center_dot}OH were measured and accounted for 0.02-0.04% and 7.2-38.9% of their loss, respectively. These data suggest that the {sup 3}NOM{sup Low-Asterisk} contributed 50.6-85.4%. Experiments with various {sup 3}NOM{sup Low-Asterisk} quenchers supported the hypothesis that it was singly the most important reaction. Atenolol was chosen for more detailed investigation, with the photoproducts identified by LC-MS analysis. The results suggested that electron-transfer could be an important mechanism in photochemical fate of beta-blockers in the presence of NOM. - Highlights: Black-Right-Pointing-Pointer Photochemical degradation of beta-blockers in the simulated natural waters. Black-Right-Pointing-Pointer Reactive Oxygen Species play a minor role in the indirect photodegradation. Black-Right-Pointing-Pointer The loss of beta-blockers results from direct reaction with {sup 3}DOM{sup Low-Asterisk }.

  19. Photochemical reactions of nucleic acids and their constituents of photobiological relevance

    International Nuclear Information System (INIS)

    Saito, I.; Sugiyama, H.; Matsuura, T.

    1983-01-01

    A review is given of the papers published from 1977 to May 1983 on the UV-induced photochemical reactions of nucleic acids and their constituents of photobiological relevance where the structures of photoproducts have been fully characterized. Among the topics discussed are photoadditions relevant to nucleic acid-protein photocrosslinking, photoreactions with psoralens and nucleic acids and photochemical reactions of polynucleotides. (U.K.)

  20. Protect Yourself from Carbon Monoxide Poisoning

    Centers for Disease Control (CDC) Podcasts

    2007-11-20

    Learn about carbon monoxide - a colorless, odorless gas - and how to protect yourself and your family.  Created: 11/20/2007 by CDC National Center for Environmental Health.   Date Released: 12/4/2007.

  1. 40 CFR 51.241 - Nonattainment areas for carbon monoxide and ozone.

    Science.gov (United States)

    2010-07-01

    ... Intergovernmental Consultation Agency Designation § 51.241 Nonattainment areas for carbon monoxide and ozone. (a... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Nonattainment areas for carbon monoxide and ozone. 51.241 Section 51.241 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  2. [Protective effects of endogenous carbon monoxide against myocardial ischemia-reperfusion injury in rats].

    Science.gov (United States)

    Zhou, Zhen; Ma, Shuang; Liu, Jie; Ji, Qiao-Rong; Cao, Cheng-Zhu; Li, Xiao-Na; Tang, Feng; Zhang, Wei

    2018-04-25

    The present study is aimed to explore the effects of endogenous carbon monoxide on the ischemia-reperfusion in rats. Wistar rats were intraperitoneally injected with protoporphyrin cobalt chloride (CoPP, an endogenous carbon monoxide agonist, 5 mg/kg), zinc protoporphyrin (ZnPP, an endogenous carbon monoxide inhibitor, 5 mg/kg) or saline. Twenty-four hours after injection, the myocardial ischemia-reperfusion model was made by Langendorff isolated cardiac perfusion system, and cardiac function parameters were collected. Myocardial cGMP content was measured by ELISA, and the endogenous carbon monoxide in plasma and myocardial enzymes in perfusate at 10 min after reperfusion were measured by colorimetry. The results showed that before ischemia the cardiac functions of CoPP, ZnPP and control groups were stable, and there were no significant differences. After reperfusion, cardiac functions had significant differences among the three groups (P endogenous carbon monoxide can maintain cardiac function, shorten the time of cardiac function recovery, and play a protective role in cardiac ischemia-reperfusion.

  3. Carbon monoxide and carbon dioxide interaction with tantalum

    International Nuclear Information System (INIS)

    Belov, V.D.; Ustinov, Yu.K.; Komar, A.P.

    1978-01-01

    The adsorption of carbon monoxide and carbon dioxide on tantalum and the dissolution of these gases in the adsorbent at T >= 300 K have been studied. The flash-filament method (FFM) in a monopole mass-spectrometer and a field emission microscopy was used in the same apparatus. Carbon monoxide and carbon dioxide dissociate on the tantalum surface, carbon monoxide being desorbed in both cases during the flash. The desorption curves of CO reveal three different binding states: two of them (α and β' 1 ) for the adsorbed particles whereas the high temperature desorption state relates to the adsorbate dissolved in the metal. For the β' 1 state of CO the activation energy, the pre-exponential factor and the kinetic order in the kinetic equation of desorption have been estimated. They turned out to be E = 110 kcal/mol, C = 3 X 10 12 sec -1 , and γ = 1. The activation energy of diffusion for CO in tantalum and the energy of outgassing for the metal were found to be 9.4 and 49 kcal/mole, respectively. (Auth.)

  4. Carbon monoxide and carbon dioxide interaction with tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Belov, V D; USTINOV, YU K; KOMAR, A P [AN SSSR, LENINGRAD. FIZIKO-TEKHNICHESKIJ INST.

    1978-03-01

    The adsorption of carbon monoxide and carbon dioxide on tantalum and the dissolution of these gases in the adsorbent at T >= 300 K have been studied. The flash-filament method (FFM) in a monopole mass-spectrometer and a field emission microscopy was used in the same apparatus. Carbon monoxide and carbon dioxide dissociate on the tantalum surface, carbon monoxide being desorbed in both cases during the flash. The desorption curves of CO reveal three different binding states: two of them (..cap alpha.. and ..beta..'/sub 1/) for the adsorbed particles whereas the high temperature desorption state relates to the adsorbate dissolved in the metal. For the ..beta..'/sub 1/ state of CO the activation energy, the pre-exponential factor and the kinetic order in the kinetic equation of desorption have been estimated. They turned out to be E = 110 kcal/mol, C = 3 X 10/sup 12/ sec/sup -1/, and ..gamma.. = 1. The activation energy of diffusion for CO in tantalum and the energy of outgassing for the metal were found to be 9.4 and 49 kcal/mole, respectively.

  5. Occupational carbon monoxide poisoning in the State of Washington, 1994-1999.

    Science.gov (United States)

    Lofgren, Don J

    2002-04-01

    Carbon monoxide poisonings continue to be significant and preventable for a number of work operations. This study assesses occupational carbon monoxide morbidity and mortality for the state of Washington based on a review of workers' compensation records for the years 1994-1999. The study characterizes sources, industries, and causative factors, and further attempts to identify work operations most at risk. Records were identified by both injury source and diagnostic codes. The study limits itself to non-fire-related carbon monoxide poisonings and primarily those from acute exposure. A decline in the number of claims was not evident, but the number of incidents per year showed a slight decline. Carbon monoxide poisonings were found to occur throughout all types of industries. The greatest number of claims was found in agriculture, followed by construction and wholesale trade, with these three accounting for more than half the claims and nearly half of the incidents. The more severe poisonings did not necessarily occur in industries with the greatest number of incidents. The major source for carbon monoxide poisoning was forklift trucks, followed by auto/truck/bus, portable saws, and more than 20 other sources. Fruit packing and storage had the highest number of incidents mostly due to fuel-powered forklift activity, with nearly half of the incidents occurring in cold rooms. Adverse health effects as measured by carboxyhemoglobin, hyperbaric oxygen treatment, unconsciousness, and number and cost of claims were indexed by source. Though several specific work operations were identified, the episodic nature of carbon monoxide poisonings, as well as the diverse industries and sources, and the opportunity for a severe poisoning in any number of operations, poses challenges for effective intervention.

  6. Photochemical Formation of C1-C5 Alkyl Nitrates in Suburban Hong Kong and over the South China Sea.

    Science.gov (United States)

    Zeng, Lewei; Lyu, Xiaopu; Guo, Hai; Zou, Shichun; Ling, Zhenhao

    2018-04-24

    Alkyl nitrates (RONO 2 ) are important reservoirs of atmospheric nitrogen, regulating nitrogen cycling and ozone (O 3 ) formation. In this study, we found that propane and n-butane were significantly lower at the offshore site (WSI) in Hong Kong ( p 0.05). Stronger oxidative capacity at WSI led to more efficient RONO 2 formation. Relative incremental reactivity (RIR) was for the first time used to evaluate RONO 2 -precursor relationships. In contrast to a consistently volatile organic compounds (VOC)-limited regime at TC, RONO 2 formation at WSI switched from VOC-limited regime during O 3 episodes to VOC and nitrogen oxides (NO x ) colimited regime during nonepisodes. Furthermore, unlike the predominant contributions of parent hydrocarbons to C 4 -C 5 RONO 2 , the production of C 1 -C 3 RONO 2 was more sensitive to other VOCs like aromatics and carbonyls, which accounted for ∼40-90% of the productions of C 1 -C 3 alkylperoxy (RO 2 ) and alkoxy radicals (RO) at both sites. This resulted from the decomposition of larger RO 2 /RO and the change of OH abundance under the photochemistry of other VOCs. This study advanced our understanding of the photochemical formation of RONO 2 , particularly the relationships between RONO 2 and their precursors, which were not confined to the parent hydrocarbons.

  7. A review of post-column photochemical reaction systems coupled to electrochemical detection in HPLC

    International Nuclear Information System (INIS)

    Fedorowski, Jennifer; LaCourse, William R.

    2010-01-01

    Post-column photochemical reaction systems have developed into a common approach for enhancing conventional methods of detection in HPLC. Photochemical reactions as a means of 'derivatization' have a significant number of advantages over chemical reaction-based methods, and a significant effort has been demonstrated to develop an efficient photochemical reactor. When coupled to electrochemical (EC) detection, the technique allows for the sensitive and selective determination of a variety of compounds (e.g., organic nitro explosives, beta-lactam antibiotics, sulfur-containing antibiotics, pesticides and insecticides). This review will focus on developments and methods using post-column photochemical reaction systems followed by EC detection in liquid chromatography. Papers are presented in chronological order to emphasize the evolution of the approach and continued importance of the application.

  8. CW-Laser-Induced Solid-State Reactions in Mixed Micron-Sized Particles of Silicon Monoxide and Titanium Monoxide: Nano-Structured Composite with Visible Light Absorption

    Czech Academy of Sciences Publication Activity Database

    Křenek, T.; Tesař, J.; Kupčík, Jaroslav; Netrvalová, M.; Pola, M.; Jandová, Věra; Pokorná, Dana; Cuřínová, Petra; Bezdička, Petr; Pola, Josef

    2017-01-01

    Roč. 27, č. 6 (2017), s. 1640-1648 ISSN 1574-1443 Institutional support: RVO:61388980 ; RVO:67985858 Keywords : Cw CO2 laser heating * IR laser imaging * Silicon monoxide * Solid state redox reactions * Ti/Si/O composite * Titanium monoxide Subject RIV: CA - Inorganic Chemistry; CI - Industrial Chemistry, Chemical Engineering (UCHP-M) OBOR OECD: Inorganic and nuclear chemistry; Chemical process engineering (UCHP-M) Impact factor: 1.577, year: 2016

  9. Highly efficient destruction of squamous carcinoma cells of the head and neck by photochemical internalization of Ranpirnase.

    Science.gov (United States)

    Liebers, Nora; Holland-Letz, Tim; Welschof, Mona; Høgset, Anders; Jäger, Dirk; Arndt, Michaela A E; Krauss, Jürgen

    2017-11-01

    Photochemical Internalization is a novel drug delivery technology for cancer treatment based on the principle of Photodynamic Treatment. Using a photosensitizer that locates in endocytic vesicles membranes of tumor cells, Photochemical internalization enables cytosolic release of endocytosed antitumor agents in a site-specific manner. The purpose of the present in-vitro study was to explore whether Photochemical Internalization is able to enhance the efficacy of Ranpirnase, a cytotoxic amphibian ribonuclease, for eradication of squamous cell carcinoma of the head and neck. Cell viability was measured in 8 primary human cell lines of squamous cell carcinoma of the head and neck after treatment with Ranpirnase and Photochemical Internalization. For Photochemical Internalization the photosensitizer disulfonated tetraphenyl porphine was incubated with tumor cells followed by exposure to blue light (435 nm). Our study demonstrates significant enhancement of antitumor activity of Ranpirnase by Photochemical Internalization. Treatment responses were heterogeneous between the primary cancer cell lines. Combining Photochemical Internalization with Ranpirnase resulted in 4.6 to 1,940-fold increased cytotoxicity when compared with the ribonuclease alone (P Internalization in squamous cell carcinoma of the head and neck.

  10. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    Science.gov (United States)

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  11. The Effect of Carbon Monoxide Poisoning on Platelet Volume in Children

    Directory of Open Access Journals (Sweden)

    Halise Akça

    2017-04-01

    Full Text Available Introduction: Carbon monoxide poisoning is one of the most important causes of morbidity and mortality. There is increasing evidence supporting the important role of mean platelet volume (MPV as a marker of hypoxia and inflammation. In this study, we aimed to determine changes in MPV values in pediatric patients with carbon monoxide poisoning. Methods: We retrospectively evaluated children who were diagnosed with carbon monoxide poisoning in our hospital between January 2005 and 2014. Results: We included 228 children with carbon monoxide poisoning (49% male in this retrospective, controlled study. The mean age of the patients was 88±56 months. Control group consisted of 200 age-matched healthy children. There was no statistically significant difference in MPV levels between the study and control groups (8.43±1.1 fL and 8.26±0.7 fL, respectively. No correlation of MPV and platelet count with carboxyhemoglobin (COHb was found. Conclusion: In our study, it was determined that MPV value was not a helpful parameter for predicting the diagnosis of acute carbon monoxide poisoning in childhood. The difference between the MPV values and the lack of significance and the absence of correlation between MPV value and COHb level led to the fact that MPV was not a guide indicating the clinical severity of the condition.

  12. International conference on the photochemical conversion and storage of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, M.Z.

    1977-01-31

    Abstracts are given for the eight formal lectures and the contributed papers from delegates which were presented in the form of posters. There were seven sessions divided by subject as follows: (1) photochemistry, (2) electron transfer mechanisms in photochemical energy conversion processes, (3) photoelectrolysis, (4) photogalvanics, (5) photochemical production of fuels in homogeneous solutions, (6) membranes for photosynthesis reactions, and (7) non-biological systems for organic molecular energy storage. (WHK)

  13. New reduced variant in gadolinium and samarium monoxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bist, B M.S.; Kumar, J; Srivastava, O N [Banaras Hindu Univ. (India). Dept. of Physics

    1977-01-01

    A new reduced phase has been observed in the thin films of gadolinium and samarium monoxides. This phase results on imparting an annealing treatment to the monoxides and is formed as a result of the creation and ordering of vacancies in the oxygen sublattice. The new phase has been analysed to possess a rhombohedral unit cell with lattice parameters a/sub R/ = a/sub 0/ square root of (3/2) and c/sub R/ = a/sub 0/ square root of 3 (based on hexagonal axes, a/sub 0/ being the lattice parameter of the fundamental zinc blende type unit cell of the monoxide). Based on the proposed structure, the new phase can be assigned the solid state chemical formula RO/sub x/ where R = Gd, Sm and x = 0.66.

  14. Carbon monoxide toxicity. (Latest citations from the Life Sciences Collection database). NewSearch

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    The bibliography contains citations concerning the mechanism and clinical manifestations of carbon monoxide (CO) exposure, including the effects on the liver, cardiovascular, and nervous systems. Topics include studies of the carbon monoxide binding affinity with hemoglobin, measurement of carboxyhemoglobin in humans and various animal species, carbon monoxide levels resulting from tobacco and marijuana smoke, occupational exposure and the NIOSH (National Institute for Occupational Safety and Health) biological exposure index, symptomology and percent of blood CO, and intrauterine exposure. Air pollution, tobacco smoking, and occupational exposure are discussed as primary sources of carbon monoxide exposure. The effects of cigarette smoking on fetal development and health are excluded and examined in a separate bibliography. (Contains a minimum of 137 citations and includes a subject term index and title list.)

  15. Carbon monoxide may be an important molecule in migraine and other headaches

    DEFF Research Database (Denmark)

    Arngrim, Nanna; Schytz, Henrik W; Hauge, Mette K

    2014-01-01

    INTRODUCTION: Carbon monoxide was previously considered to just be a toxic gas. A wealth of recent information has, however, shown that it is also an important endogenously produced signalling molecule involved in multiple biological processes. Endogenously produced carbon monoxide may thus play...

  16. Photochemical Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes

    Science.gov (United States)

    He, Chao; Hoerst, Sarah M.; Lewis, Nikole K.; Yu, Xinting; Moses, Julianne I.; Kempton, Eliza M.- R.; Marley, Mark S.; McGuiggan, Patricia; Morley, Caroline V.; Valenti, Jeff A.; hide

    2018-01-01

    UV (ultraviolet) radiation can induce photochemical processes in the atmospheres of exoplanet and produce haze particles. Recent transmission spectra of super-Earths and mini-Neptunes have demonstrated the possibility that exoplanets have haze/cloud layers at high altitudes in their atmospheres. Haze particles play an important role in planetary atmospheres because they affect the chemistry, dynamics, and radiation flux in planetary atmospheres, and may provide a source of organic material to the surface which may impact the origin or evolution of life. However, very little information is known about photochemical processes in cool, high-metallicity exoplanetary atmospheres. We present here photochemical haze formation in laboratory simulation experiments with UV radiation; we explored temperatures ranging from 300 to 600 degrees Kelvin and a range of atmospheric metallicities (100 times, 1000 times, and 10000 times solar metallicity). We find that photochemical hazes are generated in all simulated atmospheres, but the haze production rates appear to be temperature dependent: the particles produced in each metallicity group decrease as the temperature increases. The images taken with an atomic force microscope (AFM) show that the particle size (15 nanometers to 190 nanometers) varies with temperature and metallicity. Our results provide useful laboratory data on the photochemical haze formation and particle properties, which can serve as critical inputs for exoplanet atmosphere modeling, and guide future observations of exoplanets with the Transiting Exoplanet Survey Satellite (TESS), the James Webb Space Telescope (JWST), and the Wide-Field Infrared Survey Telescope (WFIRST).

  17. WATER DEFICIT ENSURES THE PHOTOCHEMICAL EFFICIENCY OF Copaifera langsdorffii Desf1

    Directory of Open Access Journals (Sweden)

    Angélica Lino Rodrigues

    2017-02-01

    Full Text Available ABSTRACT The intensity and frequency of drought periods has increased according to climate change predictions. The fast overcome and recovery are important adaptive features for plant species found in regions presenting water shortage periods. Copaifera langsdorffii is a neotropical species that has developed leaves presenting physiological mechanisms and morphological adaptations that allow its survival under seasonal water stress. We aimed in this work to observe substantial physiological responses for water saving and damage representative to the photochemical reaction after exposed plants to water stress and to subsequent recovery. We found in plants mechanisms to control water loss through the lower stomatal conductance, even after rehydration. It goes against the rapid recovery of leaves, indicated by the relative water content values restored to previously unstressed plants. Stomatal conductance was the only variable presenting high plasticity index. In photochemical activity, the species presented higher photochemical quenching, electron transport rate and effective quantum yield of photosystem II when they were subjected to rehydration after water stress period. Our results suggest that C. langsdorffii presented rapid rehydration and higher photochemical efficiency even after water restriction. These data demonstrate that this species can be used as a model for physiological studies due to the adjustment developed in response to different environmental schemes.

  18. DNA bulky adducts in a Mediterranean population correlate with environmental ozone concentration, an indicator of photochemical smog.

    Science.gov (United States)

    Palli, Domenico; Saieva, Calogero; Grechi, Daniele; Masala, Giovanna; Zanna, Ines; Barbaro, Antongiulio; Decarli, Adriano; Munnia, Armelle; Peluso, Marco

    2004-03-01

    Ozone (O(3)), the major oxidant component in photochemical smog, mostly derives from photolysis of nitrogen dioxide. O(3) may have biologic effects directly and/or via free radicals reacting with other primary pollutants and has been reported to influence daily mortality and to increase lung cancer risk. Although DNA damage may be caused by ozone itself, only other photochemical reaction products (as oxidised polycyclic aromatic hydrocarbons) may form bulky DNA adducts, a reliable biomarker of genotoxic damage and cancer risk, showing a seasonal trend. In a large series consisting of 320 residents in the metropolitan area of Florence, Italy, enrolled in a prospective study for the period 1993-1998 (206 randomly sampled volunteers, 114 traffic-exposed workers), we investigated the correlation between individual levels of DNA bulky adducts and a cumulative O(3) exposure score. The average O(3) concentrations were calculated for different time windows (0-5 to 0-90 days) prior to blood drawing for each participant, based on daily measurements provided by the local monitoring system. Significant correlations between DNA adduct levels and O3 cumulative exposure scores in the last 2-8 weeks before enrollment emerged in never smokers. Correlations were highest in the subgroup of never smokers residing in the urban area and not occupationally exposed to vehicle traffic pollution, with peak values for average concentrations 4-6 weeks before enrollment (r = 0.34). Our current findings indicate that DNA adduct formation may be modulated by individual characteristics and by the cumulative exposure to environmental levels of ozone in the last 4-6 weeks, possibly through ozone-associated reactive pollutants. Copyright 2003 Wiley-Liss, Inc.

  19. CARBON MONOXIDE AND THE NERVOUS SYSTEM

    Science.gov (United States)

    Carbon monoxide (CO) is a colorless, tasteless, odorless, and non-irritating gas formed when carbon in fuel is not burned completely. It enters the bloodstream through the lungs and attaches to hemoglobin (Hb), the body's oxygen carrier, forming carboxyhemoglobin (COHb) and there...

  20. Iron catalyst for preparation of polymethylene from synthesis gas and method for producing the catalyst

    Science.gov (United States)

    Sapienza, R.S.; Slegeir, W.A.

    1990-05-15

    This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

  1. Net Ecosystem Fluxes of Hydrocarbons from a Ponderosa Pine Forest in Colorado

    Science.gov (United States)

    Rhew, R. C.; Turnipseed, A. A.; Ortega, J. V.; Smith, J. N.; Guenther, A. B.; Shen, S.; Martinez, L.; Koss, A.; Warneke, C.; De Gouw, J. A.; Deventer, M. J.

    2015-12-01

    Light (C2-C4) alkenes, light alkanes and isoprene (C5H8) are non-methane hydrocarbons that play important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. Natural terrestrial fluxes of the light hydrocarbons are poorly characterized, with global emission estimates based on limited field measurements. In 2014, net fluxes of these compounds were measured at the Manitou Experimental Forest Observatory, a semi-arid ponderosa pine forest in the Colorado Rocky Mountains and site of the prior BEACHON campaigns. Three field intensives were conducted between June 17 and August 10, 2014. Net ecosystem flux measurements utilized a relaxed eddy accumulation system coupled to an automated gas chromatograph. Summertime average emissions of ethene and propene were up to 90% larger than those observed from a temperate deciduous forest. Ethene and propene fluxes were also correlated to each other, similar to the deciduous forest study. Emissions of isoprene were small, as expected for a coniferous forest, and these fluxes were not correlated with either ethene or propene. Unexpected emissions of light alkanes were also observed, and these showed a distinct diurnal cycle. Understory flux measurements allowed for the partitioning of fluxes between the surface and the canopy. Full results from the three field intensives will be compared with environmental variables in order to parameterize the fluxes for use in modeling emissions.

  2. Photochemical Internalization of Bleomycin Before External-Beam Radiotherapy Improves Locoregional Control in a Human Sarcoma Model

    International Nuclear Information System (INIS)

    Norum, Ole-Jacob; Bruland, Oyvind Sverre; Gorunova, Ludmila; Berg, Kristian

    2009-01-01

    Purpose: The aim of this study was to explore the tumor growth response of the combination photochemical internalization and external-beam radiotherapy. Photochemical internalization is a technology to improve the utilization of therapeutic macromolecules in cancer therapy by photochemical release of endocytosed macromolecules into the cytosol. Methods and Materials: A human sarcoma xenograft TAX-1 was inoculated subcutaneously into nude mice. The photosensitizer AlPcS 2a and bleomycin were intraperitoneally administrated 48 h and 30 min, respectively, before diode laser light exposure at 670 nm (20 J/cm 2 ). Thirty minutes or 7 days after photochemical treatment, the animals were subjected to 4 Gy of ionizing radiation. Results: Using photochemical internalization of bleomycin as an adjunct to ionizing radiation increased the time to progression for the tumors from 17 to 33 days as compared with that observed with photodynamic therapy combined with ionizing radiation as well as for radiochemotherapy with bleomycin. The side effects observed when photochemical internalization of bleomycin was given shortly before ionizing radiation were eliminated by separating the treatment modalities in time. Conclusion: Photochemical internalization of bleomycin combined with ionizing radiation increased the time to progression and showed minimal toxicity and may therefore reduce the total radiation dose necessary to obtain local tumor control while avoiding long-term sequelae from radiotherapy.

  3. Photochemical smog incident on June 30, 1973

    Energy Technology Data Exchange (ETDEWEB)

    Hata, S

    1973-01-01

    The first photochemical smog incident in Shizuoka prefecture (June 30, 1973) started in Hamamatsu and extended 100 km northeast as far as Fujinomiya city. This not only involved an extraordinarily large area, but the type of smog was different from that in Tokyo and Osaka. The victims were all pupils exercising at the time in the playgrounds. In Hamamatsu, 1050 children were involved and complained of eye irritation and pain, throat pain, coughs, and headaches between 2 and 3 pm, but there were no serious effects. The damages to agricultural produce were extensive and 70% of the total rice fields (1656 hectares), and 40 hectares of green scallions were affected. In Shizuoka, 716 children were affected about 5:30 pm, but in Fujinomiya, which is located further northeast, 16 children were affected about 4 pm. The movement of the damages, the locations, the extent of damages, and the direction of the wind, were puzzling in the light of the normal pattern of photochemical smogs, and the pollution sources could not be the coastal industrial area or automobile exhaust gases. Meteorological factors were similar to the usual photochemical smog conditions, but the locations of the cities involved and the wind direction from the sea suggested that the pollution source was the Pacific Ocean. Since the wind above 1000 m was northeast, circulation of industrial pollutants by the sea breeze is a possible explanation. The maximum concentration of oxidants was about 0.2 ppm in all areas except for Hamamatsu, where it was a little over 0.2 ppm.

  4. Optimization of Treatment Policy for Acute Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    R. N. Akalayev

    2012-01-01

    Full Text Available Objective: to evaluate the efficiency of combination use of hyperbaric oxygenation, succinate-containing solutions, and anti-edematous agents in patients with acute carbon monoxide poisoning. Subjects and methods. The results of treatment were analyzed in 32 patients admitted in 2009—2011 for severe acute carbon monoxide poisoning and a Glasgow coma score of 6—8. The patients were divided into 2 groups: 1 patients whose combination therapy involved hyperbaric oxygenation, Succinasol infusions, and L-lysine-aescinate injections; 2 those who received traditional therapy. All the patients underwent complex clinical, laboratory, and neurophysiologic examinations. Results. Just 24 hours after the combination use of Succinasol and L-lysine-aescinate, Group I patients were observed to have substantially reduced lactate, the content of the latter approached the normal value following 48 hours, which was much below the values in the control group. The similar pattern was observed when endogenous intoxication parameters were examined. During the performed therapy, the level of consciousness and that of intellect according to the MMSE and FAB scales were restored more rapidly in the study group patients than in Group 2. Conclusion. The combination use of hyperbaric oxygenation, the succinate-containing solution Succinasol, and the anti-edematous agent L-lysine-aescinate considerably enhances the efficiency of intensive therapy for acute carbon monoxide poisoning. Key words: carbon monoxide, toxic hypoxic encephalopathy, combination therapy, hyperbaric oxygenation, succinic acid, L-lysine-aescinate.

  5. Carbon monoxide toxicity. (Latest citations from the Life Sciences Collection database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The bibliography contains citations concerning the mechanism and clinical manifestations of carbon monoxide (CO) exposure, including the effects on the liver, cardiovascular, and nervous systems. Topics include studies of the carbon monoxide binding affinity with hemoglobin, measurement of carboxyhemoglobin in humans and various animal species, carbon monoxide levels resulting from tobacco and marijuana smoke, occupational exposure and the NIOSH (National Institute for Occupational Safety and Health) biological exposure index, symptomology and percent of blood CO, and intrauterine exposure. Air pollution, tobacco smoking, and occupational exposure are discussed as primary sources of carbon monoxide exposure. The effects of cigarette smoking on fetal development and health are excluded and examined in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Carbon monoxide toxicity. (Latest citations from the Life Sciences Collection database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The bibliography contains citations concerning the mechanism and clinical manifestations of carbon monoxide (CO) exposure, including the effects on the liver, cardiovascular, and nervous systems. Topics include studies of the carbon monoxide binding affinity with hemoglobin, measurement of carboxyhemoglobin in humans and various animal species, carbon monoxide levels resulting from tobacco and marijuana smoke, occupational exposure and the NIOSH (National Institute for Occupational Safety and Health) biological exposure index, symptomology and percent of blood CO, and intrauterine exposure. Air pollution, tobacco smoking, and occupational exposure are discussed as primary sources of carbon monoxide exposure. The effects of cigarette smoking on fetal development and health are excluded and examined in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Carbon Monoxide Exposure in Youth Ice Hockey.

    Science.gov (United States)

    Macnow, Theodore; Mannix, Rebekah; Meehan, William P

    2017-11-01

    To examine the effect of ice resurfacer type on carboxyhemoglobin levels in youth hockey players. We hypothesized that players in arenas with electric resurfacers would have normal, stable carboxyhemoglobin levels during games, whereas those in arenas with internal combustion engine (IC) resurfacers would have an increase in carboxyhemoglobin levels. Prospective cohort study. Enclosed ice arenas in the northeastern United States. Convenience sample of players aged 8 to 18 years old in 16 games at different arenas. Eight arenas (37 players) used an IC ice resurfacer and 8 arenas (36 players) an electric resurfacer. Carboxyhemoglobin levels (SpCO) were measured using a pulse CO-oximeter before and after the game. Arena air was tested for carbon monoxide (CO) using a metered gas detector. Players completed symptom questionnaires. The change in SpCO from pregame to postgame was compared between players at arenas with electric versus IC resurfacers. Carbon monoxide was present at 6 of 8 arenas using IC resurfacers, levels ranged from 4 to 42 parts per million. Carbon monoxide was not found at arenas with electric resurfacers. Players at arenas with IC resurfacers had higher median pregame SpCO levels compared with those at electric arenas (4.3% vs 1%, P carboxyhemoglobin during games and have elevated baseline carboxyhemoglobin levels compared with players at arenas with electric resurfacers. Electric resurfacers decrease the risk of CO exposure.

  8. Catalytic Copolymerization of Ethene and Carbon Monoxide on Nickel Complexes.

    Science.gov (United States)

    Domhöver, Bernd; Kläui, Wolfgang; Kremer-Aach, Andreas; Bell, Ralf; Mootz, Dietrich

    1998-11-16

    Can palladium be replaced by nickel? For the industrial copolymerization of carbon monoxide and ethene a palladium catalyst is used which cannot be recovered-a cheaper procedure would be desirable. The presented complex 1 is the first structurally characterized nickel compound which does not polymerize ethene but a mixture from carbon monoxide and ethene unter mild conditions to give a perfectly alternating polyketone. © 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  9. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The provisions...

  10. On the composition of nonstoichiometric europium monoxide

    International Nuclear Information System (INIS)

    Ignat'eva, N.I.

    1990-01-01

    Consideration is given to results of of investigation into chemical composition, homogeneity region, type of disordering of nonstoichiometric europium monoxide. Precision methods of X-ray diffraction, electron-microscopic, atomic-absorption chemical analysis were used. It is shown that lattice volume reduces with increase of oxygen content in the oxide. For monocrystal of EuO 1.01 composition a=5.146 A. All samples of europium monoxide are characterized by low conductivity. Conductivity value changes by two orders (from 10 -8 to 10 -6 Θ -1 ·cm -1 ) when passing from the sample of stoichiometric composition to maximally disordered one. The disordering is considered according to the type of charged cation vacancies, leading to occurrence of equivalent number of electron defects of positive holes. 4 refs.; 1 tab

  11. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  12. Mechanism of obtaining carbon monoxide and hydrogen during brown coal radiolysis. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rustamov, V R; Kurbanov, M A; Dzantiev, B T; Kerimov, V K; Musaeva, P F

    1982-05-01

    This article analyzes effects of gamma radiation on the yield of products of coal gasification: hydrogen and carbon monoxide. Samples of brown coal from the Kansk-Achins basin were treated by gamma radiation with cobalt 60 radiation source. Analyses show that accumulation of hydrogen and carbon monoxide in brown coal under influence of gamma radiation is characterized by a constant rate. Yields of carbon monoxide and hydrogen amount to 0.16 molecule/100 electro volt and 0.21 molecule/electro volt respectively. Reducing radiation dose from 2.5 to 0.7 millirad/h reduces yields of hydrogen and carbon monoxide. Increasing temperature of vacuum brown coal pyrolysis from 200 to 600 C causes decrease of hydrogen yield. Hydrogen yield decrease during temperature increase is caused by a high content of aromatic nuclei in the samples used in the radiolysis. (5 refs.)

  13. Photochemical reaction products in air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, E R; Darley, E F; Taylor, O C; Scott, W E

    1961-01-01

    Isolation and purification of peroxyacetyl nitrate (PAN) from artificial photochemical reaction of olefins and NO/sub x/ in air are analyzed. Olefin splits at the double bond, one end forming carbonyl compound and the other yielding PAN, among others. At concentrations below 1 ppM, PAN causes plant damage. At a concentration of about 1 ppM, PAN is a strong eye irritant.

  14. Carbon monoxide toxicity. (Latest citations from the Life Sciences Collection data base). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    The bibliography contains citations concerning the mechanism and clinical manifestations of carbon monoxide (CO) exposure, including the effects on the liver, cardiovascular, and nervous systems. Topics include studies of the carbon monoxide binding affinity with hemoglobin, measurement of carboxyhemoglobin in humans and various animal species, carbon monoxide levels resulting from tobacco and marijuana smoke, occupational exposure and the NIOSH (National Institute for Occupational Safety and Health) biological exposure index, symptomology and percent of blood CO, and intrauterine exposure. Air pollution, tobacco smoking, and occupational exposure are discussed as primary sources of carbon monoxide exposure. The effects of cigarette smoking on fetal development and health are excluded and examined in a separate bibliography. (Contains a minimum of 172 citations and includes a subject term index and title list.)

  15. New electrochemical and photochemical systems for water and wastewater treatment

    International Nuclear Information System (INIS)

    Sarria, Victor M; Parra, Sandra; Rincon, Angela G; Torres, Ricardo A; Pulgarin, Cesar

    2005-01-01

    With the increasing pressure on a more effective use of water resources, the development of appropriate water treatment technologies become more and more important. Photochemical and electrochemical oxidation processes have been proposed in recent years as an attractive alternative for the treatment of contaminated water containing anthropogenic substances hardly biodegradable as well as to purify and disinfect drinking waters. The aim of this paper is to present some of our last results demonstrating that electrochemical, photochemical, and the coupling of these processes with biological systems are very promising alternatives for the improvement of the water quality

  16. Carrier-lifetime-controlled selective etching process for semiconductors using photochemical etching

    International Nuclear Information System (INIS)

    Ashby, C.I.H.; Myers, D.R.

    1992-01-01

    This patent describes a process for selectively photochemically etching a semiconductor material. It comprises introducing at least one impurity into at least one selected region of a semiconductor material to be etched to increase a local impurity concentration in the at least one selected region relative to an impurity concentration in regions of the semiconductor material adjacent thereto, for reducing minority carrier lifetimes within the at least one selected region relative to the adjacent regions for thereby providing a photochemical etch-inhibiting mask at the at least one selected region; and etching the semiconductor material by subjecting the surface of the semiconductor material to a carrier-driven photochemical etching reaction for selectively etching the regions of the semiconductor material adjacent the at least one selected region having the increase impurity concentration; wherein the step of introducing at least one impurity is performed so as not to produce damage to the at least one selected region before any etching is performed

  17. A divalent rare earth oxide semiconductor: Yttrium monoxide

    Science.gov (United States)

    Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya

    Rare earth sesquioxides like Y2O3 are known as widegap insulators with the highly stable closed shell trivalent rare earth ions. On the other hand, rare earth monoxides such as YO have been recognized as gaseous phase, and only EuO and YbO were thermodynamically stable solid-phase rock salt monoxides. In this study, solid-phase rock salt yttrium monoxide, YO, was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO possesses unusual valence of Y2+ ([Kr] 4d1) . In contrast with Y2O3, YO was narrow gap semiconductor with dark-brown color. The electrical conductivity was tunable from 10-1 to 103 Ω-1 cm-1 by introducing oxygen vacancies as electron donor. Weak antilocalization behavior was observed indicating significant spin-orbit coupling owing to 4 d electron carrier. The absorption spectral shape implies the Mott-Hubbard insulator character of YO. Rare earth monoixdes will be new platform of functional oxides. This work was supported by JST-CREST, the Japan Society for the Promotion of Science (JSPS) with Grant-in-Aid for Scientific Research on Innovative Areas (Nos. 26105002 and 26105006), and Nanotechnology Platform (Project No.12024046) of MEXT, Japan.

  18. Study on the surface oxidation resistance of uranium metal in the atmosphere of carbon monoxide

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou

    1999-01-01

    The surface reactions of different layers on uranium metal with carbon monoxide at 25, 80 and 200 degree C are studied by X-ray photoelectron spectroscopy (XPS). The experimental results show that the carbon monoxide is adsorbed on the surface oxide layer of uranium and interacted each other. The content of oxygen in the surface oxide and O/U ratio are decreased with increasing the exposure of carbon monoxide to the surface layer. The effect of reduction on the metal surface is more obviously with a higher temperature and increasing of layer thickness. The investigation indicates the uranium metal has resistance to further oxidation in the atmosphere of carbon monoxide

  19. XPS study on the surface reaction of uranium metal with carbon monoxide at 200 degree C

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-12-01

    The surface reaction of uranium metal with carbon monoxide at 200 degree C has been studied by X-ray photoelectron spectroscopy (XPS). The carbon monoxide adsorption on the surface oxide layer resulted in U4f peak shifting to the lower binding energy and the content of oxygen in the oxide is decreased. O/U radio decreases with increasing the exposure of carbon monoxide to the surface layer. The investigation indicated the surface layer of uranium metal was further reduced in the atmosphere of carbon monoxide at high temperature. (3 refs., 5 figs.)

  20. Performance simulation of planar SOFC using mixed hydrogen and carbon monoxide gases as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Y. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan)]. E-mail: inui@eee.tut.ac.jp; Urata, A. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan); Ito, N. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan); Nakajima, T. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan); Tanaka, T. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan)

    2006-08-15

    The authors investigate in detail the influence of the mixing ratio of hydrogen and carbon monoxide in the fuel on the cell performance of the SOFC through numerical simulations for a single cell plate of the co-flow type planar cell. It is made clear that the cell performance is almost the same and excellent, independent of the mixing ratio of hydrogen and carbon monoxide under the nominal operating condition. The electromotive force of the hydrogen rich fuel gas is a little higher than that of the carbon monoxide rich fuel gas. The internal voltage drop in the cell decreases as the fraction of carbon monoxide becomes high. Since the value of the single cell voltage is determined by the balance of these two phenomena, the lowering of the electromotive force is dominant and the single cell voltage of the hydrogen rich fuel gas is higher when the inlet gas temperature is high, whereas the voltage drop reduction is dominant and the single cell voltage of the carbon monoxide rich fuel gas is higher when the temperature is low. The effect of the additional gases of water vapor and carbon dioxide is restricted to the single cell voltage shift, and the qualitative dependence of the single cell voltage on the inlet gas temperature is determined by the mixing ratio of hydrogen and carbon monoxide.

  1. Performance simulation of planar SOFC using mixed hydrogen and carbon monoxide gases as fuel

    International Nuclear Information System (INIS)

    Inui, Y.; Urata, A.; Ito, N.; Nakajima, T.; Tanaka, T.

    2006-01-01

    The authors investigate in detail the influence of the mixing ratio of hydrogen and carbon monoxide in the fuel on the cell performance of the SOFC through numerical simulations for a single cell plate of the co-flow type planar cell. It is made clear that the cell performance is almost the same and excellent, independent of the mixing ratio of hydrogen and carbon monoxide under the nominal operating condition. The electromotive force of the hydrogen rich fuel gas is a little higher than that of the carbon monoxide rich fuel gas. The internal voltage drop in the cell decreases as the fraction of carbon monoxide becomes high. Since the value of the single cell voltage is determined by the balance of these two phenomena, the lowering of the electromotive force is dominant and the single cell voltage of the hydrogen rich fuel gas is higher when the inlet gas temperature is high, whereas the voltage drop reduction is dominant and the single cell voltage of the carbon monoxide rich fuel gas is higher when the temperature is low. The effect of the additional gases of water vapor and carbon dioxide is restricted to the single cell voltage shift, and the qualitative dependence of the single cell voltage on the inlet gas temperature is determined by the mixing ratio of hydrogen and carbon monoxide

  2. HYDROCARBON EMISSION RINGS IN PROTOPLANETARY DISKS INDUCED BY DUST EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Bergin, Edwin A.; Du, Fujun; Schwarz, K.; Zhang, K. [Department of Astronomy, University of Michigan, 311 West Hall, 1085 S. University Ave, Ann Arbor, MI 48109 (United States); Cleeves, L. Ilsedore [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Blake, G. A. [Division of Geological and Planetary Sciences, MC 150-21, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Visser, R. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748, Garching (Germany)

    2016-11-01

    We report observations of resolved C{sub 2}H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C{sub 3}H{sub 2} emission ring with an identical spatial distribution to C{sub 2}H in the TW Hya disk. This suggests that these are hydrocarbon rings (i.e., not limited to C{sub 2}H). Using a detailed thermo-chemical model we show that reproducing the emission from C{sub 2}H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.

  3. [Carboxyhemoglobin concentration in carbon monoxide poisoning. Critical appraisal of the predictive value].

    Science.gov (United States)

    Köthe, L; Radke, J

    2010-06-01

    In cases of unclear depression of conciousness, arrhythmia and symptoms of cardiac insufficiency inadvertent carbon monoxide intoxication should always be taken into consideration. Rapid diagnosis of acute carbon monoxide intoxication with mostly unspecific symptoms requires an immediate supply of high dose oxygen which enables a distinct reduction of mortality and long-term morbidity. Levels of carboxyhemoglobin, however, should not be used as a parameter to decide whether to supply normobaric or the more efficient hyperbaric oxygen. There is no sufficient coherence between carboxyhemoglobin blood levels and clinical symptoms. Increased carboxyhemoglobin concentrations help to diagnose acute carbon monoxide intoxication but do not allow conclusions to be drawn about possible long-term neuropsychiatric or cardiac consequences.

  4. Utility of the Measurement of Carboxyhemoglobin Level at the Site of Acute Carbon Monoxide Poisoning in Rural Areas

    Directory of Open Access Journals (Sweden)

    Makoto Onodera

    2016-01-01

    Full Text Available Objective. This study examined the hypothesis that correlations exist between the carbon monoxide exposure time and the carboxyhemoglobin concentration at the site of carbon monoxide poisoning, using a pulse carbon monoxide oximeter in rural areas or the carboxyhemoglobin concentration measured at a given medical institution. Background. In previous studies, no definitive relationships between the arterial blood carboxyhemoglobin level and the severity of carbon monoxide poisoning have been observed. Method. The subjects included patients treated for acute carbon monoxide poisoning in whom a medical emergency team was able to measure the carboxyhemoglobin level at the site of poisoning. We examined the relationship between the carboxyhemoglobin level at the site of poisoning and carbon monoxide exposure time and the relationships between the arterial blood carboxyhemoglobin level and carbon monoxide exposure time. Results. A total of 10 patients met the above criteria. The carboxyhemoglobin levels at the site of poisoning were significantly and positively correlated with the exposure time (rs = 0.710, p=0.021, but the arterial blood carboxyhemoglobin levels were not correlated with the exposure time. Conclusion. In rural areas, the carboxyhemoglobin level measured at the site of carbon monoxide poisoning correlated with the exposure time.

  5. Utility of the Measurement of Carboxyhemoglobin Level at the Site of Acute Carbon Monoxide Poisoning in Rural Areas.

    Science.gov (United States)

    Onodera, Makoto; Fujino, Yasuhisa; Kikuchi, Satoshi; Sato, Masayuki; Mori, Kiyofumi; Beppu, Takaaki; Inoue, Yoshihiro

    2016-01-01

    Objective. This study examined the hypothesis that correlations exist between the carbon monoxide exposure time and the carboxyhemoglobin concentration at the site of carbon monoxide poisoning, using a pulse carbon monoxide oximeter in rural areas or the carboxyhemoglobin concentration measured at a given medical institution. Background. In previous studies, no definitive relationships between the arterial blood carboxyhemoglobin level and the severity of carbon monoxide poisoning have been observed. Method. The subjects included patients treated for acute carbon monoxide poisoning in whom a medical emergency team was able to measure the carboxyhemoglobin level at the site of poisoning. We examined the relationship between the carboxyhemoglobin level at the site of poisoning and carbon monoxide exposure time and the relationships between the arterial blood carboxyhemoglobin level and carbon monoxide exposure time. Results. A total of 10 patients met the above criteria. The carboxyhemoglobin levels at the site of poisoning were significantly and positively correlated with the exposure time (rs = 0.710, p = 0.021), but the arterial blood carboxyhemoglobin levels were not correlated with the exposure time. Conclusion. In rural areas, the carboxyhemoglobin level measured at the site of carbon monoxide poisoning correlated with the exposure time.

  6. Repair processes for photochemical damage in mammalian cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1974-01-01

    Repair processes for photochemical damage in cells following uv irradiation are reviewed. Cultured fibroblast cells from human patients with xeroderma pigmentosum were used as an example to illustrate aspects of repair of injuries to DNA and proteins. (250 references) (U.S.)

  7. Chemical production from waste carbon monoxide: its potential for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Rohrmann, C.A.; Schiefelbein, G.F.; Molton, P.M.; Li, C.T.; Elliott, D.C.; Baker, E.G.

    1977-11-01

    Results of a study of the potential for energy conservation by producing chemicals from by-product or waste carbon monoxide (CO) from industrial sources are summarized. Extensive compilations of both industrial sources and uses for carbon monoxide were developed and included. Reviews of carbon monoxide purification and concentration technology and preliminary economic evaluations of carbon monoxide concentration, pipeline transportation and utilization of CO in the synthesis of ammonia and methanol are included. Preliminary technical and economic feasibility studies were made of producing ammonia and methanol from the by-product CO produced by a typical elemental phosphorus plant. Methanol synthesis appears to be more attractive than ammonia synthesis when using CO feedstock because of reduced water gas shift and carbon dioxide removal requirements. The economic studies indicate that methanol synthesis from CO appears to be competitive with conventional technology when the price of natural gas exceeds $0.82/million Btu, while ammonia synthesis from CO is probably not competitive until the price of natural gas exceeds $1.90/million Btu. It is concluded that there appears to be considerable potential for energy conservation in the chemical industry, by collecting CO rather than flaring it, and using it to make major chemicals such as ammonia and methanol.

  8. Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer

    Directory of Open Access Journals (Sweden)

    Ulrich C. Fischer

    2014-09-01

    Full Text Available A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM of (3-aminopropyltriethoxysilane (APTES is explored with three different processes: 1 a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2 a chemical process induced by oxygen plasma etching as well as 3 a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL, which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern.

  9. Utility of the Measurement of Carboxyhemoglobin Level at the Site of Acute Carbon Monoxide Poisoning in Rural Areas

    OpenAIRE

    Onodera, Makoto; Fujino, Yasuhisa; Kikuchi, Satoshi; Sato, Masayuki; Mori, Kiyofumi; Beppu, Takaaki; Inoue, Yoshihiro

    2016-01-01

    Objective. This study examined the hypothesis that correlations exist between the carbon monoxide exposure time and the carboxyhemoglobin concentration at the site of carbon monoxide poisoning, using a pulse carbon monoxide oximeter in rural areas or the carboxyhemoglobin concentration measured at a given medical institution. Background. In previous studies, no definitive relationships between the arterial blood carboxyhemoglobin level and the severity of carbon monoxide poisoning have been o...

  10. Carbon monoxide poisoning-induced cardiomyopathy from charcoal at a barbecue restaurant: a case report.

    Science.gov (United States)

    Kim, Hyun-Jun; Chung, Yun Kyung; Kwak, Kyeong Min; Ahn, Se-Jin; Kim, Yong-Hyun; Ju, Young-Su; Kwon, Young-Jun; Kim, Eun-A

    2015-01-01

    Acute carbon monoxide poisoning has important clinical value because it can cause severe adverse cardiovascular effects and sudden death. Acute carbon monoxide poisoning due to charcoal is well reported worldwide, and increased use of charcoal in the restaurant industry raises concern for an increase in occupational health problems. We present a case of carbon monoxide poisoning induced cardiomyopathy in a 47-year-old restaurant worker. A male patient was brought to the emergency department to syncope and complained of left chest pain. Cardiac angiography and electrocardiography were performed to rule out acute ischemic heart disease, and cardiac markers were checked. After relief of the symptoms and stabilization of the cardiac markers, the patient was discharged without any complications. Electrocardiography was normal, but cardiac angiography showed up to a 40% midsegmental stenosis of the right coronary artery with thrombotic plaque. The level of cardiac markers was elevated at least 5 to 10 times higher than the normal value, and the carboxyhemoglobin concentration was 35% measured at one hour after syncope. Following the diagnosis of acute carbon monoxide poisoning induced cardiomyopathy, the patient's medical history and work exposure history were examined. He was found to have been exposed to burning charcoal constantly during his work hours. Severe exposure to carbon monoxide was evident in the patient because of high carboxyhemoglobin concentration and highly elevated cardiac enzymes. We concluded that this exposure led to subsequent cardiac injury. He was diagnosed with acute carbon monoxide poisoning-induced cardiomyopathy due to an unsafe working environment. According to the results, the risk of exposure to noxious chemicals such as carbon monoxide by workers in the food service industry is potentially high, and workers in this sector should be educated and monitored by the occupational health service to prevent adverse effects.

  11. Analysis of Non-Methane Hydrocarbon Data from 2004-2016 in a Subtropical Area close to the Gulf of Mexico

    Science.gov (United States)

    Rappenglueck, B.

    2017-12-01

    Speciated C2-C11 non-methane hydrocarbons (NMHC) have been measured online on an hourly basis at Lake Jackson/TX close to the Gulf of Mexico. Altogether 48 NMHCs along with NO, NO2, NOx, O3 have been collected continuously from January 2004-December 2016 under the auspices of the Texas Commission on Environmental Quality. Data was screened for background conditions representing marine wind sectors. The data set represents a combination of marine air masses mixed with local biogenic emissions. The data analysis addresses photochemical processing of air masses as reflected in the relationship of ln(n-butane/ethane) vs. ln(propane/ethane) and ln(i-butane/ethane) vs. ln(n-butane/ethane). In addition, key NMHC relationships for radical chemistry, e.g. i-butane vs n-butane for OH and Cl chemistry and i-pentane vs. n-pentane for NO3 chemistry, are discussed. Seasonal analysis revealed a clear trend with maximum NMHC mixing ratios in winter time and lowest mixing ratios in summer reflecting the impact of photochemical processes in summer. Propene equivalents were highest during summertime, with significant contributions from alkenes, including isoprene. The relation of propane/ethane vs ethane indicates seasonal variation with lowest values (i.e. most aged air masses) in winter.

  12. Modeling chemisorption kinetics of carbon monoxide on polycrystalline platinum

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, R.G.; Modell, M.; Baddour, R.F.

    1978-04-01

    Seven distinct desorption surface states of carbon monoxide on polycrystalline platinum were detected by deconvoluting temperature-programed desorption spectra of 4-100% carbon monoxide monolayer coverage. The adstates had fixed activation energies of desorption (22.5-32.6 kcal/mole) over the entire coverage range. Rates of formation and populations were derived. The chemisorption was modeled by a Hinshelwood-type expression which allowed for site creation and suggested that adsorbed molecules are sufficiently mobile during desorption heating to fill ordered states of minimum energy and that chemisorption into these states is noncompetitive and determined by the surface. Spectra, diagrams, graphs, tables, and 49 references.

  13. Influence of carbon monoxide to the surface layer of uranium metal and its oxides

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-09-01

    The surface structures of uranium metal and triuranium octaoxide (U 3 O 8 ) and the influence of carbon monoxide to the surface layers have been studied by X-ray photoelectron spectroscopy (XPS). After exposure to carbon monoxide, contents of oxygen in the surface oxides of uranium metal and U 3 O 8 are decreased and O/U ratios decrease 7.2%, 8.0% respectively. The investigation indicated the surface layers of uranium metal and its oxides were forbidden to further oxidation in the atmosphere of carbon monoxide. (11 refs., 9 figs., 2 tabs.)

  14. The properties and Roles of Resonance-Stabilized Radicals in Photochemical Pathways in Titan's Atmosphere

    Science.gov (United States)

    Sebree, Joshua A.; Kidwell, Nathan; Zwier, Timothy

    2010-11-01

    In recent years, the Cassini satellite has been providing details about the composition of Titan's atmosphere. Recent data has shown the existence of polycyclic aromatic hydrocarbons (PAHs) at higher altitudes than previously expected including masses tentatively ascribed to naphthalene and anthracene. The formation of indene (C9H9) and naphthalene (C10H8), the simplest PAHs, and their derivatives are of great interest as similar mechanisms may lead to the formation of larger fused-ring systems. In recent years it has been proposed that resonance-stabilized radicals (RSRs) may play an important role as intermediates along these pathways. RSRs gain extra stability by delocalizing the unpaired electron through a neighboring conjugated π-system. Because of this extra stability, RSRs are able to build up in concentration, allowing for the creation of larger, more complex systems through their recombination with other RSRs. Mass-selective UV-visible spectra of two RSRs, phenylallyl and benzylallenyl radicals, have been recorded under jet-cooled conditions. These two radicals, while sharing the same radical conjugation, have unique properties. The roles these radicals may play in the formation of fused ring systems will be discussed along with recent photochemical results on reaction pathways starting from benzylallene through the benzylallenyl radical.

  15. Zatrucie tlenkiem węgla – drogi narażenia, obraz kliniczny, metody leczenia = Carbon monoxide poisoning, routes of exposure, clinical manifestation, treatment

    Directory of Open Access Journals (Sweden)

    Magdalena Sowa

    2015-04-01

    owa kluczowe: tlenek węgla, zatrucie, hipoksja.   Abstract   Introduction: Carbon monoxide (CO is a colorless, odorless, non-irritating and toxic gas, undetectable by the sense organs. CO is a product of incomplete combustion of substances containing hydrocarbon products (industrial gas, coal, wood. Carbon monoxide is one of the most common causes of poisoning inhalation in the world. Aim of the study: The aim of this study was to analyze the routes of exposure, clinical manifestation and treatment of carbon monoxide poisoning. Brief overview of the state of knowledge: The toxicity of carbon monoxide is strongly associated with its high affinity for hemoglobin (approximately 200 times greater than the oxygen. The heart and central nervous system (CNS are the most vulnerable to CO. Pathomechanism of action involves binding of carbon monoxide with iron atom in the heme molecule to form a compound called carboxyhemoglobin (COHb. Inhaling carbon monoxide-rich air may cause anoxia. The oxidative metabolic processes are inhibited. Accumulation of acidic metabolites cause the enlargement of the cerebral arteries and consequently hyperemia of the brain. Summary: The amount of carbon monoxide poisoning in Poland is higher than in other European countries. Significant decrease mortality for carbon monoxide poisoning has observed over the last few years. Thousands of patients who lose their health and  their lives, should cause the attention to the effectiveness of preventive measures.   Keywords: carbon monoxide, poisoning, hypoxia.

  16. Photochemical Creation of Fluorescent Quantum Defects in Semiconducting Carbon Nanotube Hosts.

    Science.gov (United States)

    Wu, Xiaojian; Kim, Mijin; Kwon, Hyejin; Wang, YuHuang

    2018-01-15

    Quantum defects are an emerging class of synthetic single-photon emitters that hold vast potential for near-infrared imaging, chemical sensing, materials engineering, and quantum information processing. Herein, we show that it is possible to optically direct the synthetic creation of molecularly tunable fluorescent quantum defects in semiconducting single-walled carbon nanotube hosts through photochemical reactions. By exciting the host semiconductor with light that resonates with its electronic transition, we find that halide-containing aryl groups can covalently bond to the sp 2 carbon lattice. The introduced quantum defects generate bright photoluminescence that allows tracking of the reaction progress in situ. We show that the reaction is independent of temperature but correlates strongly with the photon energy used to drive the reaction, suggesting a photochemical mechanism rather than photothermal effects. This type of photochemical reactions opens the possibility to control the synthesis of fluorescent quantum defects using light and may enable lithographic patterning of quantum emitters with electronic and molecular precision. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Carbon Monoxide Hazards from Small Gasoline Powered Engines

    Science.gov (United States)

    ... DHHS (NIOSH) Publication No. 96-118 (1996) Describes health effects and current standards and guidelines relating to carbon monoxide, as well as recommendations for workers, employers, and manufacturers regarding small gasoline powered engine ...

  18. Utility of Photochemical Traits as Diagnostics of Thermal Tolerance amongst Great Barrier Reef Corals

    Directory of Open Access Journals (Sweden)

    Matthew R. Nitschke

    2018-02-01

    Full Text Available Light availability is considered a key factor regulating the thermal sensitivity of reef building corals, where excessive excitation of photosystem II (PSII further exacerbates pressure on photochemical pathways already compromised by heat stress. Coral symbionts acclimate to changes in light availability (photoacclimation by continually fine-tuning the photochemical operating efficiency of PSII. However, how this process adjusts throughout the warmest months in naturally heat-tolerant or sensitive species is unknown, and whether this influences the capacity to tolerate transient heat stress is untested. We therefore examined the PSII photophysiology of 10 coral species (with known thermal tolerances from shallow reef environments at Heron Island (Great Barrier Reef, Australia, in spring (October-November, 2015 vs. summer (February-March, 2016. Corals were maintained in flow-through aquaria and rapid light curve (RLC protocols using pulse amplitude modulated (PAM fluorometry captured changes in the PSII photoacclimation strategy, characterized as the minimum saturating irradiance (Ek, and the extent of photochemical ([1 – C], operating efficiency vs. non-photochemical ([1 – Q] energy dissipation. Values of Ek across species were >2-fold higher in all coral species in spring, consistent with a climate of higher overall light exposure (i.e., higher PAR from lower cloud cover, rainfall and wind speed compared with summer. Summer decreases in Ek were combined with a shift toward preferential photochemical quenching in all species. All coral species were subsequently subjected to thermal stress assays. An equivalent temperature-ramping profile of 1°C increase per day and then maintenance at 32°C was applied in each season. Despite the significant seasonal photoacclimation, the species hierarchy of thermal tolerance [maximum quantum yields of PSII (Fv/Fm, monitored at dawn and dusk] did not shift between seasons, except for Pocillopora

  19. Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation

    Science.gov (United States)

    Guo, Li-Wen; Du, Pei-Pei; Fu, Xin-Pu; Ma, Chao; Zeng, Jie; Si, Rui; Huang, Yu-Ying; Jia, Chun-Jiang; Zhang, Ya-Wen; Yan, Chun-Hua

    2016-11-01

    Small-size (carbon monoxide at room temperature, by the aid of in situ X-ray absorption fine structure analysis and in situ diffuse reflectance infrared Fourier transform spectroscopy. We find that the metallic gold component in clusters or particles plays a much more critical role as the active site than the cationic single-atom gold species for the room-temperature carbon monoxide oxidation reaction.

  20. Distribution of hydrocarbon-utilizing microorganisms and hydrocarbon biodegradation potentials in Alaskan continental shelf areas

    International Nuclear Information System (INIS)

    Roubal, G.; Atlas, R.M.

    1978-01-01

    Hydrocarbon-utilizing microogranisms were enumerated from Alaskan continental shelf areas by using plate counts and a new most-probable-number procedure based on mineralization of 14 C-labeled hydrocarbons. Hydrocarbon utilizers were ubiquitously distributed, with no significant overall concentration differences between sampling regions or between surface water and sediment samples. There were, however, significant seasonal differences in numbers of hydrocarbon utilizers. Distribution of hydrocarbon utilizers within Cook Inlet was positively correlated with occurrence of hydrocarbons in the environment. Hydrocarbon biodegradation potentials were measured by using 14 C-radiolabeled hydrocarbon-spiked crude oil. There was no significant correlation between numbers of hydrocarbon utilizers and hydrocarbon biodegradation potentials. The biodegradation potentials showed large seasonal variations in the Beaufort Sea, probably due to seasonal depletion of available nutrients. Non-nutrient-limited biodegradation potentials followed the order hexadecane > naphthalene >> pristane > benzanthracene. In Cook Inlet, biodegradation potentials for hexadecane and naphthalene were dependent on availability of inorganic nutrients. Biodegradation potentials for pristane and benzanthracene were restricted, probably by resistance to attack by available enzymes in the indigenous population

  1. Hearing Loss due to Carbon Monoxide Poisoning

    DEFF Research Database (Denmark)

    Mehrparvar, Amir Houshang; Davari, Mohammad Hossein; Mollasadeghi, Abolfazl

    2013-01-01

    Carbon monoxide poisoning is one of the rare causes of hearing loss which may cause reversible or irreversible, unilateral or bilateral hearing loss after acute or chronic exposure. In this report, we present a case of bilateral sensorineural hearing loss in a secondary smelting workshop worker a...

  2. SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES

    Energy Technology Data Exchange (ETDEWEB)

    Ciaravella, A.; Candia, R.; Collura, A. [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, 90134 Palermo (Italy); Jimenez-Escobar, A.; Munoz Caro, G. M. [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Cecchi-Pestellini, C. [INAF-Osservatorio Astronomico di Cagliari, Strada n.54, Loc. Poggio dei Pini, I-09012 Capoterra (Italy); Giarrusso, S. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Barbera, M., E-mail: aciaravella@astropa.unipa.it [Dipartimento di Scienze Fisiche and Astronomiche, Universita di Palermo, Sezione di Astronomia, Piazza del Parlamento 1, I-90134 Palermo (Italy)

    2012-02-10

    There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ultraviolet radiation is severely inhibited. After H{sub 2}O, CO is often the most abundant component of icy grain mantles in dense interstellar clouds and circumstellar disks. In this work we present irradiation of a pure carbon monoxide ice using a soft X-ray spectrum peaked at 0.3 keV. Analysis of irradiated samples shows formation of CO{sub 2}, C{sub 2}O, C{sub 3}O{sub 2}, C{sub 3}, C{sub 4}O, and CO{sub 3}/C{sub 5}. Comparison of X-rays and ultraviolet irradiation experiments, of the same energy dose, shows that X-rays are more efficient than ultraviolet radiation in producing new species. With the exception of CO{sub 2}, X-ray photolysis induces formation of a larger number of products with higher abundances, e.g., C{sub 3}O{sub 2} column density is about one order of magnitude higher in the X-ray experiment. To our knowledge this is the first report on X-ray photolysis of CO ices. The present results show that X-ray irradiation represents an efficient photo-chemical way to convert simple ices to more complex species.

  3. A plasmaless, photochemical etch process for porous organosilicate glass films

    Science.gov (United States)

    Ryan, E. Todd; Molis, Steven E.

    2017-12-01

    A plasmaless, photochemical etch process using ultraviolet (UV) light in the presence of NH3 or O2 etched porous organosilicate glass films, also called pSiCOH films, in a two-step process. First, a UV/NH3 or UV/O2 treatment removed carbon (mostly methyl groups bonded to silicon) from a pSiCOH film by demethylation to a depth determined by the treatment exposure time. Second, aqueous HF was used to selectively remove the demethylated layer of the pSiCOH film leaving the methylated layer below. UV in the presence of inert gas or H2 did not demethylate the pSiCOH film. The depth of UV/NH3 demethylation followed diffusion limited kinetics and possible mechanisms of demethylation are presented. Unlike reactive plasma processes, which contain ions that can damage surrounding structures during nanofabrication, the photochemical etch contains no damaging ions. Feasibility of the photochemical etching was shown by comparing it to a plasma-based process to remove the pSiCOH dielectric from between Cu interconnect lines, which is a critical step during air gap fabrication. The findings also expand our understanding of UV photon interactions in pSiCOH films that may contribute to plasma-induced damage to pSiCOH films.

  4. Petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.; Teal, J.M.; Parker, P.L.

    1976-01-01

    Methods for analysis of petroleum hydrocarbons in marine samples are presented. Types of hydrocarbons present and their origins are discussed. Principles and methods of analysis are outlined. Infrared spectrometry, uv spectrometry, gas chromatography, mass spectroscopy, and carbon 14 measurements are described

  5. CT and clinical patterns in suicidal carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Grobovschek, M.; Geretsegger, C.; Weinberger, R.; Fartacek, R.

    1988-12-01

    Cranial CT is important to exclude the presence of a mass in the cavum cranii in case of an unclear suicide attempt, particularly a traumatic mass. It can be helpful also in cases of carbon monoxide intoxications.

  6. The chitosan - Porphyrazine hybrid materials and their photochemical properties.

    Science.gov (United States)

    Chełminiak-Dudkiewicz, Dorota; Ziegler-Borowska, Marta; Stolarska, Magdalena; Sobotta, Lukasz; Falkowski, Michal; Mielcarek, Jadwiga; Goslinski, Tomasz; Kowalonek, Jolanta; Węgrzynowska-Drzymalska, Katarzyna; Kaczmarek, Halina

    2018-04-01

    Three magnesium sulfanyl porphyrazines differing in the size of peripheral substituents (3,5-dimethoxybenzylsulfanyl, (3,5-dimethoxybenzyloxy)benzylsulfanyl, 3,5-bis[(3,5-bis[(3,5-dimethoxybenzyloxy)benzyloxy]benzylsulfanyl) were exposed to visible and ultraviolet radiation (UV A + B + C) in order to determine their photochemical properties. The course of photochemical reactions in dimethylformamide solutions and the ability of the systems to generate singlet oxygen were studied by UV-Vis spectroscopy, which additionally gave information on aggregation processes. The porphyrazines were found to be stable upon visible light irradiation conditions, but when exposed to high energy UV radiation, the efficient photodegradation of these macrocycles was observed. Therefore, these three magnesium sulfanyl porphyrazines were incorporated into chitosan matrix. The obtained thin films of chitosan doped with porphyrazines were subjected to polychromatic UV-radiation and studied by spectroscopic methods (UV-Vis, FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Application of chitosan as a polymer matrix for porphyrazines was found to be successful method that effectively stopped the unwelcome degradation of macrocycles, thus worth considering for their photoprotection. In addition, the surface properties of the hybrid material were determined by contact angle measurements and calculation of surface free energy. Intermolecular interactions between these novel porphyrazines and chitosan were detected. The mechanism of photochemical reactions occurring in studied systems has been discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Enhanced Indirect Photochemical Transformation of Histidine and Histamine through Association with Chromophoric Dissolved Organic Matter.

    Science.gov (United States)

    Chu, Chiheng; Lundeen, Rachel A; Remucal, Christina K; Sander, Michael; McNeill, Kristopher

    2015-05-05

    Photochemical transformations greatly affect the stability and fate of amino acids (AAs) in sunlit aquatic ecosystems. Whereas the direct phototransformation of dissolved AAs is well investigated, their indirect photolysis in the presence of chromophoric dissolved organic matter (CDOM) is poorly understood. In aquatic systems, CDOM may act both as sorbent for AAs and as photosensitizer, creating microenvironments with high concentrations of photochemically produced reactive intermediates, such as singlet oxygen (1O2). This study provides a systematic investigation of the indirect photochemical transformation of histidine (His) and histamine by 1O2 in solutions containing CDOM as a function of solution pH. Both His and histamine showed pH-dependent enhanced phototransformation in the CDOM systems as compared to systems in which model, low-molecular-weight 1O2 sensitizers were used. Enhanced reactivity resulted from sorption of His and histamine to CDOM and thus exposure to elevated 1O2 concentrations in the CDOM microenvironment. The extent of reactivity enhancement depended on solution pH via its effects on the protonation state of His, histamine, and CDOM. Sorption-enhanced reactivity was independently supported by depressed rate enhancements in the presence of a cosorbate that competitively displaced His and histamine from CDOM. Incorporating sorption and photochemical transformation processes into a reaction rate prediction model improved the description of the abiotic photochemical transformation rates of His in the presence of CDOM.

  8. Nonfatal, unintentional, non--fire-related carbon monoxide exposures--United States, 2004-2006.

    Science.gov (United States)

    2008-08-22

    Carbon monoxide (CO) is a colorless, odorless, nonirritating gas that is produced through the incomplete combustion of hydrocarbons. Sources of CO include combustion devices (e.g., boilers and furnaces), motor-vehicle exhaust, generators and other gasoline or diesel-powered engines, gas space heaters, woodstoves, gas stoves, fireplaces, tobacco smoke, and various occupational sources. CO poisoning is a leading cause of unintentional poisoning deaths in the United States; it was responsible for approximately 450 deaths each year during 1999-2004 and an estimated 15,200 emergency department (ED) visits each year during 2001-2003. Health effects of CO exposure can range from viral-like symptoms (e.g., fatigue, dizziness, headache, confusion, and nausea) to more severe conditions (e.g., disorientation, unconsciousness, long-term neurologic disabilities, coma, cardiorespiratory failure, and death). CO poisoning often is misdiagnosed and underdetected because of the nonspecific nature of symptoms. To update a previously published report and provide national estimates of CO-related ED visits during 2004-2006, CDC analyzed data from the National Electronic Injury Surveillance System--All Injury Program (NEISS-AIP) database. During 2004-2006, an estimated average of 20,636 ED visits for nonfatal, unintentional, non-fire-related CO exposures occurred each year. Approximately 73% of these exposures occurred in homes, and 41% occurred during winter months (December-February). Prevention efforts targeting residential and seasonal CO exposures can substantially reduce CO-related morbidity.

  9. Quantitative evaluation of volatile hydrocarbons in post-mortem blood in forensic autopsy cases of fire-related deaths.

    Science.gov (United States)

    Yonemitsu, Kosei; Sasao, Ako; Oshima, Toru; Mimasaka, Sohtaro; Ohtsu, Yuki; Nishitani, Yoko

    2012-04-10

    Volatile hydrocarbons in post-mortem blood from victims of fires were analyzed quantitatively by headspace gas chromatography mass spectrometry. The benzene and styrene concentrations in the blood were positively correlated with the carboxyhemoglobin (CO-Hb) concentration, which is evidence that the deceased inhaled the hydrocarbons and carbon monoxide simultaneously. By contrast, the concentrations of toluene and CO-Hb in the blood were not significantly correlated. This lack of correlation could be explained by two different sources of toluene, with low blood concentrations of toluene arising when the deceased inhaled smoke and high blood concentrations of toluene arising when the deceased inhaled petroleum vapor or other unknown vapors. The quantity of soot deposited in the respiratory tract was classified into four grades (-, 1+, 2+, 3+). The mean CO-Hb concentration in the 1+ soot group was significantly lower than those in the 2+ (ptypes of smoke produced by different materials. For example, petroleum combustion with a limited supply of oxygen, like in a compartment fire, may produce a large volume of dense black smoke that contains a large quantity of soot. Soot deposits in the airways and the blood CO-Hb concentration are basic and essential autopsy findings that are used to investigate fire-related deaths. The quantitative GC-MS analysis of blood volatile hydrocarbons can provide additional useful information on the cause of the fire and the circumstances surrounding the death. In combination, these three findings are useful for the reconstruction of cases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Kinetics of heterogeneous catalysis oxidation of carbon monoxide

    International Nuclear Information System (INIS)

    Khawaja, Y.; Sadiq, A.

    1987-10-01

    An irreversible kinetic surface-reaction model, based upon the reaction of carbon monoxide nd oxygen on a catalyst surface is investigated by means of Monte Carlo simulation. The adsorbed molecules/atoms on the surface undergo both first and second order kinetic phase transitions. The first order transition is found to occur at x/sub/co=x/sub/2=0.5255 with an error bar of 0.0003, where x/sub/co is the concentration of carbon monoxide in the gas phase. The time evolution of this catalytic reaction is studied both analytically and by computer simulation. Slightly above x/sub/2, the oxygen coverage relaxation time for the oxygen is found to diverage as the inverse of 3.54 times the absolute of the difference of x/sub/2 and x/sub/co. (orig./A.B.)

  11. Vapor Pressure and Evaporation Coefficient of Silicon Monoxide over a Mixture of Silicon and Silica

    Science.gov (United States)

    Ferguson, Frank T.; Nuth, Joseph A., III

    2012-01-01

    The evaporation coefficient and equilibrium vapor pressure of silicon monoxide over a mixture of silicon and vitreous silica have been studied over the temperature range (1433 to 1608) K. The evaporation coefficient for this temperature range was (0.007 plus or minus 0.002) and is approximately an order of magnitude lower than the evaporation coefficient over amorphous silicon monoxide powder and in general agreement with previous measurements of this quantity. The enthalpy of reaction at 298.15 K for this reaction was calculated via second and third law analyses as (355 plus or minus 25) kJ per mol and (363.6 plus or minus 4.1) kJ per mol respectively. In comparison with previous work with the evaporation of amorphous silicon monoxide powder as well as other experimental measurements of the vapor pressure of silicon monoxide gas over mixtures of silicon and silica, these systems all tend to give similar equilibrium vapor pressures when the evaporation coefficient is correctly taken into account. This provides further evidence that amorphous silicon monoxide is an intimate mixture of small domains of silicon and silica and not strictly a true compound.

  12. Correlation of computed tomography, magnetic resonance imaging and clinical outcome in acute carbon monoxide poisoning.

    Science.gov (United States)

    Ozcan, Namik; Ozcam, Giray; Kosar, Pinar; Ozcan, Ayse; Basar, Hulya; Kaymak, Cetin

    2016-01-01

    Carbon monoxide is a toxic gas for humans and is still a silent killer in both developed and developing countries. The aim of this case series was to evaluate early radiological images as a predictor of subsequent neuropsychological sequelae, following carbon monoxide poisoning. After carbon monoxide exposure, early computed tomography scans and magnetic resonance imaging findings of a 52-year-old woman showed bilateral lesions in the globus pallidus. This patient was discharged and followed for 90 days. The patient recovered without any neurological sequela. In a 58-year-old woman exposed to carbon monoxide, computed tomography showed lesions in bilateral globus pallidus and periventricular white matter. Early magnetic resonance imaging revealed changes similar to that like in early tomography images. The patient recovered and was discharged from hospital. On the 27th day of exposure, the patient developed disorientation and memory impairment. Late magnetic resonance imaging showed diffuse hyperintensity in the cerebral white matter. White matter lesions which progress to demyelination and end up in neuropsychological sequelae cannot always be diagnosed by early computed tomography and magnetic resonance imaging in carbon monoxide poisoning. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Converting high boiling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; DuFour, L

    1929-02-12

    A process is given for converting high boiling hydrocarbons into low boiling hydrocarbons, characterized in that the high boiling hydrocarbons are heated to 200 to 500/sup 0/C in the presence of ferrous chloride and of such gases as hydrogen, water gas, and the like gases under a pressure of from 5 to 40 kilograms per square centimeter. The desulfurization of the hydrocarbons occurs simultaneously.

  14. Vaporization study on vanadium monoxide and two-phase mixture of vanadium and vanadium monoxide by mass-spectrometric method

    International Nuclear Information System (INIS)

    Banchorndhevakul, W.; Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The vapor pressures over single phase vanadium monoxide VO 1.022 (s) and the two-phase mixture of vanadium metal (β phase) and vanadium monoxide were measured by mass-spectrometric method in the temperature range of 1,803 ∼ 1,990 and 1,703 ∼ 1,884 K, respectively. The main gas species over both systems were found to be VO(g) and V(g). The vapor pressure of VO(g) over the two-phase mixture of V(s) and VO(s) was a little lower than that over single phase VO(s). The vapor pressure of V(g) over the two-phase mixture was nearly equal to that over single phase. From the vapor pressure data, the enthalpies of vaporization, the enthalpies of formation for VO(g) and V(g) and the dissociation energy of VO(g) were determined. The oxygen partial pressure was calculated as a function of temperature from the vapor pressures of VO(g) and V(g), from which the partial molar enthalpies and entropies of oxygen in both systems were obtained. (author)

  15. Environmental variables and levels of exhaled carbon monoxide and carboxyhemoglobin in elderly people taking exercise.

    Science.gov (United States)

    Salicio, Marcos Adriano; Mana, Viviane Aparecida Martins; Fett, Waléria Christiane Rezende; Gomes, Luciano Teixeira; Botelho, Clovis

    2016-04-01

    This article aims to analyze levels of exhaled carbon monoxide, carboxyhemoglobinand cardiopulmonary variables in old people practicing exercise in external environments, and correlate them with climate and pollution factors. Temporal ecological study with118 active elderly people in the city of Cuiabá, in the state of Mato Grosso, Brazil. Data were obtained on use of medication, smoking, anthropometric measurements, spirometry, peak flow, oxygen saturation, heart rate, exhaled carbon monoxide, carboxyhemoglobin, climate, number of farm fires and pollution. Correlations were found between on the one hand environmental temperature, relative humidity of the air and number of farmers' fires, and on the other hand levels of carbon monoxide exhaled and carboxyhemoglobin (p carboxyhemoglobin and heart rate. There is thus a need for these to be monitored during exercise. The use of a carbon monoxide monitor to evaluate exposure to pollutants is suggested.

  16. Sunlight-Induced Photochemical Degradation of Methylene Blue by Water-Soluble Carbon Nanorods

    Directory of Open Access Journals (Sweden)

    Anshu Bhati

    2016-01-01

    Full Text Available Water-soluble graphitic hollow carbon nanorods (wsCNRs are exploited for their light-driven photochemical activities under outdoor sunlight. wsCNRs were synthesized by a simple pyrolysis method from castor seed oil, without using any metal catalyst or template. wsCNRs exhibited the light-induced photochemical degradation of methylene blue used as a model pollutant by the generation of singlet oxygen species. Herein, we described a possible degradation mechanism of methylene blue under the irradiation of visible photons via the singlet oxygen-superoxide anion pathway.

  17. Variability of carbon monoxide and carbon dioxide apparent quantum yield spectra in three coastal estuaries of the South Atlantic Bight

    Directory of Open Access Journals (Sweden)

    H. E. Reader

    2012-11-01

    Full Text Available The photochemical oxidation of oceanic dissolved organic carbon (DOC to carbon monoxide (CO and carbon dioxide (CO2 has been estimated to be a significant process with global photoproduction transforming petagrams of DOC to inorganic carbon annually. To further quantify the importance of these two photoproducts in coastal DOC cycling, 38 paired apparent quantum yield (AQY spectra for CO and CO2 were determined at three locations along the coast of Georgia, USA over the course of one year. The AQY spectra for CO2 were considerably more varied than CO. CO AQY spectra exhibited a seasonal shift in spectrally integrated (260 nm–490 nm AQY from higher efficiencies in the autumn to less efficient photoproduction in the summer. While full-spectrum photoproduction rates for both products showed positive correlation with pre-irradiation UV-B sample absorption (i.e. chromophoric dissolved organic matter, CDOM as expected, we found no correlation between AQY and CDOM for either product at any site. Molecular size, approximated with pre-irradiation spectral slope coefficients, and aromatic content, approximated by the specific ultraviolet absorption of the pre-irradiated samples, were also not correlated with AQY in either data set. The ratios of CO2 to CO photoproduction determined using both an AQY model and direct production comparisons were 23.2 ± 12.5 and 22.5 ± 9.0, respectively. Combined, both products represent a loss of 2.9 to 3.2% of the DOC delivered to the estuaries and inner shelf of the South Atlantic Bight yearly, and 6.4 to 7.3% of the total annual degassing of CO2 to the atmosphere. This result suggests that direct photochemical production of CO and CO2 is a small, yet significant contributor to both DOC cycling and CO2 gas exchange in this coastal system.

  18. CT and clinical patterns in suicidal carbon monoxide

    International Nuclear Information System (INIS)

    Grobovschek, M.; Geretsegger, C.; Weinberger, R.; Fartacek, R.

    1988-01-01

    Cranial CT is important to exclude the presence of a mass in the cavum cranii in case of an unclear suicide attempt, particularly a traumatic mass. It can be helpful also in cases of carbon monoxide intoxications. (orig.) [de

  19. Photochemical pollution indicators; Les indicateurs de la pollution photochimique. La mesure des composes azotes

    Energy Technology Data Exchange (ETDEWEB)

    Perros, P E; Marion, T [Paris-7 Univ., 75 (France). Laboratoire Interuniversitaire des Systemes Atmospheriques

    1998-11-01

    The number of photochemical pollution is generally based on the observation of ozone and nitrogen oxides concentration levels. So, the measurement of photochemical pollution indicators becomes essential to better understand the involved phenomena, and at the end to enable its reduction control and strategy. In this paper, we focus on the measurements of nitrogen compounds (NO{sub x} PAN, HNO{sub 3}). (authors) 24 refs.

  20. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, C.S.

    1995-01-05

    Two of the most important chemically reactive tropospheric gases are ozone (O{sub 3}) and the hydroxyl radical (OH). Although ozone in the stratosphere is a necessary protector against the sun`s radiation, tropospheric ozone is actually a pollutant which damages materials and vegetation, acts as a respiratory irritant, and is a greenhouse gas. One of the two main sources of ozone in the troposphere is photochemical production. The photochemistry is initiated when hydrocarbons and carbon monoxide (CO) react with nitrogen oxides (NO{sub x} = NO + NO{sub 2}) in the presence of sunlight. Reaction with the hydroxyl radical, OH, is the main sink for many tropospheric gases. The hydroxyl radical is highly reactive and has a lifetime on the order of seconds. Its formation is initiated by the photolysis of tropospheric ozone. Tropospheric chemistry involves a complex, non-linear set of chemical reactions between atmospheric species that vary substantially in time and space. To model these and other species on a global scale requires the use of a global, three-dimensional chemistry, transport, and deposition (CTD) model. In this work, I developed two such three dimensional CTD models. The first model incorporated the chemistry necessary to model tropospheric ozone production from the reactions of nitrogen oxides with carbon monoxide (CO) and methane (CH{sub 4}). The second also included longer-lived alkane species and the biogenic hydrocarbon isoprene, which is emitted by growing plants and trees. The models` ability to predict a number of key variables (including the concentration of O{sub 3}, OH, and other species) were evaluated. Then, several scenarios were simulated to understand the change in the chemistry of the troposphere since preindustrial times and the role of anthropogenic NO{sub x} on present day conditions.

  1. Photochemical degradation of alachlor in water

    Directory of Open Access Journals (Sweden)

    Tajana Đurkić

    2017-01-01

    Full Text Available This study investigates the photochemical degradation of alachlor, a chloroacetanilide herbicide. All experiments were conducted in ultra-pure deionized water (ASTM Type I quality using direct ultraviolet (UV photolysis and the UV/H2O2 advanced oxidation process. The direct UV photolysis and UV/H2O2 experiments were conducted in a commercial photochemical reactor with a quartz reaction vessel equipped with a 253.7 nm UV low pressure mercury lamp (Philips TUV 16 W. The experimental results demonstrate that UV photolysis was very effective for alachlor degradation (up to 97% removal using a high UV fluence of 4200 mJ/cm2. The UV/H2O2 process promoted alachlor degradation compared to UV photolysis alone, with a high degree of decomposition (97% achieved at a significantly lower UV fluence of 600 mJ/cm2 when combined with 1 mg H2O2/L. The application of UV photolysis alone with a UV fluence of 600 mJ/cm2 gave a negligible 4% alachlor degradation. The photo degradation of alachlor, in both direct UV photolysis and the UV/H2O2 process, followed pseudo first-order kinetics. The degradation rate constant was about 6 times higher for the UV/H2O2 process than for UV photolysis alone.

  2. Environmental tobacco smoke exposure among non-smoking waiters: measurement of expired carbon monoxide levels

    Directory of Open Access Journals (Sweden)

    Ronaldo Laranjeira

    2000-07-01

    Full Text Available CONTEXT: Exposure to environmental tobacco smoke is a health risk that is of concern to patrons and of particular concern to employees of restaurants and bars. OBJECTIVE: To assess environmental tobacco smoke exposure (using expired carbon monoxide levels in non-smoking waiters before and after a normal day's shift and to compare pre-exposure levels with non-smoking medical students. DESIGN: An observational study. SETTING: Restaurants with more than 50 tables or 100 places in São Paulo. SUBJECTS: 100 non-smoking restaurant waiters and 100 non-smoking medical students in São Paulo, Brazil. MAIN MEASUREMENTS: Levels of expired carbon monoxide, measured with a Smokerlyser (Bedfont EC 50 Scientific, before and after a normal day's work. RESULTS: Waiters' pre-exposure expired carbon monoxide levels were similar to those of medical students, but after a mean of 9 hours exposure in the workplace, median levels more than doubled (2.0 ppm vs. 5.0 ppm, P <0.001. Post-exposure carbon monoxide levels were correlated with the number of tables available for smokers (Kendall's tau = 0.2, P <0.0001. CONCLUSIONS: Exposure to environmental tobacco smoke is the most likely explanation for the increase in carbon monoxide levels among these non-smoking waiters. These findings can be used to inform the ongoing public health debate on passive smoking.

  3. Photochemically Synthesized Polyimides

    Science.gov (United States)

    Meador, Michael A.; Tyson, Daniel S.

    2008-01-01

    An alternative to the conventional approach to synthesis of polyimides involves the use of single monomers that are amenable to photopolymerization. Heretofore, the synthesis of polyimides has involved multiple-monomer formulations and heating to temperatures that often exceed 250 C. The present alternative approach enables synthesis under relatively mild conditions that can include room temperature. The main disadvantages of the conventional approach are the following: Elevated production temperatures can lead to high production costs and can impart thermal stresses to the final products. If the proportions of the multiple monomeric ingredients in a given batch are not exactly correct, the molecular weight and other physical properties of the final material could be reduced from their optimum or desired values. To be useful in the alternative approach, a monomer must have a molecular structure tailored to exploit Diels-Alder trapping of a photochemically generated ortho-quinodimethane. (In a Diels-Alder reaction, a diene combines with a dienophile to form molecules that contain six-membered rings.) In particular, a suitable monomer (see figure) contains ortho-methylbenzophenone connected to a dienophile (in this case, a maleimide) through a generic spacer group. Irradiation with ultraviolet light gives rise to a photochemical intermediate the aforementioned ortho-quinodimethane from the ortho-methylbenzophenone. This group may react with the dienophile on another such monomer molecule to produce an oligomer that, in turn may react in a stepgrowth manner to produce a polyimide. This approach offers several advantages in addition to those mentioned above: The monomer can be stored for a long time because it remains unreactive until exposed to light. Because the monomer is the only active starting ingredient, there is no need for mixing, no concern for ensuring correct proportions of monomers, and the purity of the final product material is inherently high. The use

  4. Photochemical exchange reactions of thymine, uracil and their nucleosides with selected amino acids

    International Nuclear Information System (INIS)

    Shetlar, M.D.; Taylor, J.A.; Hom, K.

    1984-01-01

    The photoinduced exchange reactions of thymine with lysine at basic pH, using 254 nm light, have been studied. Three products have been isolated, namely, 6-amino-2-(1-thyminyl)hexanoic acid (Ia), 2-amino-6-(1-thyminyl)hexanoic acid (IIa) and 1-amino-5-(1-thyminyl)pentane (IIIa). Compound IIIa was shown to be a secondary product, produced by photochemical decarboxylation of Ia. Photochemical reaction of thymine with glycine and alanine at basic pH led, respectively, to formation of 2-(1-thyminyl)acetic acid (Ic) and 2-(1-thyminyl)propionic acid (Id). Compounds Ic and Id underwent photolysis to produce the decarboxylated secondary products 1-methylthymine and 1-ethylthymine, respectively. Thymidine reacts photochemically with glycine and alanine to produce the same products. Irradiation of DNA in the presence of lysine at basic pH led to the formation of the same products formed in the thymine-lysine system, namely Ia, IIa and IIIa. Uracil was found to undergo analogous photochemical exchange reactions with lysine to form 6-amino-2-(1-uracilyl)hexanoic acid (Ib), and 2-amino-6-(1-uracilyl)hexanoic acid (IIb). Compound Ib was found to undergo photodecarboxylation to form 1-amino-5-(1-uracilyl)pentane (IIIb), analogous to the secondary photoreaction of Ia. Photoreaction of uracil with 1,5-diaminopentane (cadaverine) likewise led to formation of IIIb. (author)

  5. Production of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T; Day, R E

    1920-04-27

    A process is disclosed of converting hydro-carbon oils having high boiling points to hydro-carbon oils having low boiling points, which process comprises adding the oil to be treated to a mass of hydro-carbon oil bearing shale, passing the shale with the oil through a conveyor retort and subjecting the material while in the retort to a heat treatment involving a temperature of at least 500/sup 0/F.

  6. 40 CFR 52.2671 - Classification of regions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Classification of regions. 52.2671 Section 52.2671 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... region Pollutant Particulate matter Sulfur oxides Nitrogen dioxide Carbon monoxide Photochemical oxidants...

  7. 40 CFR 52.2321 - Classification of regions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Classification of regions. 52.2321 Section 52.2321 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... region Pollutant Particulate matter Sulfur oxides Nitrogen dioxide Carbon monoxide Photochemical oxidants...

  8. 40 CFR 52.2621 - Classification of regions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Classification of regions. 52.2621 Section 52.2621 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... region Pollutant Particulate matter Sulfur oxides Nitrogen dioxide Carbon monoxide Photochemical oxidants...

  9. A Retrospective Analysis of Pediatric Patients Admitted to the Pediatric Emergency Service for Carbon Monoxide Intoxication

    OpenAIRE

    Metin Uysalol; Ezgi Paslı Uysalol; Gamze Varol Saraçoğlu; Semra Kayaoğlu

    2011-01-01

    Objective: The aim of the study is to analyze the general aspects of cases with carbon monoxide intoxication in order to improve the approach to future patients. Material and Methods: The hospital records of 84 children (mean age 4.71±2.64 years; 48 male, 36 female) who had been admitted to Paediatric Emergency Department for carbon monoxide intoxication between October 2007 and February 2009, were retrospectively evaluated in a descriptive analysis.Results: The source of carbon monoxide into...

  10. Assessment of exposure to carbon monoxide group of firefighters from fire fighting and rescue units

    Directory of Open Access Journals (Sweden)

    Jadwiga Lembas-Bogaczyk

    2011-03-01

    Full Text Available Firemen threat during fire burning of chemical substances indicated presence of carbon monoxide (CO in all cases. Carbon monoxide causes death of fire. Inhaled through respiratory system, links with hemoglobin, thus blocking transport and distribution of oxygen in the body. This leads to tissue anoxia, which is a direct threat to firefighters’ life. The purpose of this study was to assess the exposure to carbon monoxide of participating firefighters extinguishing fire. Estimation of carbon monoxide quantity absorbed by firefighters was isolated in a group of 40 firefighters from Fire Extinguishing and Rescue Unit of State Fire in Nysa. The study was conducted by measuring carbon monoxide in exhaled air. For measurement of carbon monoxide concentration in exhaled air Micro CO meter was used. Results were demonstrated separately for nonsmokers (n425 and smokers (n415. Mean COHb[%] levels in nonsmokers, measured prior the rescue action was 0,3950,3% and increased statistically significant after the action to 0,6150,34%, while in the group smokers, this level was 2,1750,64% before the action and increased insignificantly after the action to 2,3350,63%. The average COHb level in the same groups before and after exercise, was respectively: for nonsmokers prior to exercise was 0,4850,28% and after exercise decreased statistically significant to 0,3050,27%. In the group of smokers before exercise was 2,2350,61% and decreased statistically significant up to 1,5450,71%. It was no difference between the group of age and time of employment.

  11. Dispersion and photochemical evolution of reactive pollutants in street canyons

    Science.gov (United States)

    Kwak, Kyung-Hwan; Baik, Jong-Jin; Lee, Kwang-Yeon

    2013-05-01

    Dispersion and photochemical evolution of reactive pollutants in street canyons with canyon aspect ratios of 1 and 2 are investigated using a computational fluid dynamics (CFD) model coupled with the carbon bond mechanism IV (CBM-IV). Photochemical ages of NOx and VOC are expressed as a function of the NO2-to-NOx and toluene-to-xylene ratios, respectively. These are found to be useful for analyzing the O3 and OH oxidation processes in the street canyons. The OH oxidation process (O3 oxidation process) is more pronounced in the upper (lower) region of the street canyon with a canyon aspect ratio of 2, which is characterized by more (less) aged air. In the upper region of the street canyon, O3 is chemically produced as well as transported downward across the roof level, whereas O3 is chemically reduced in the lower region of the street canyon. The O3 chemical production is generally favorable when the normalized photochemical ages of NOx and VOC are larger than 0.55 and 0.28, respectively. The sensitivities of O3 chemical characteristics to NOx and VOC emission rates, photolysis rate, and ambient wind speed are examined for the lower and upper regions of the street canyon with a canyon aspect ratio of 2. The O3 concentration and the O3 chemical production rate divided by the O3 concentration increase as the NOx emission rate decreases and the VOC emission rate and photolysis rate increase. The O3 concentration is less sensitive to the ambient wind speed than to other factors considered. The relative importance of the OH oxidation process compared to the O3 oxidation process increases with increasing NOx emission rate and photolysis rate and decreasing VOC emission rate. In this study, both O3 and OH oxidation processes are found to be important in street-canyon scale chemistry. The methodology of estimating the photochemical ages can potentially be adopted to neighborhood scale chemistry.

  12. Study on the influence of carbon monoxide to the surface oxide layer of uranium metal

    International Nuclear Information System (INIS)

    Wang Xiaolin; Duan Rongliang; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong

    1997-01-01

    The influence of carbon monoxide to the surface oxide layer of uranium metal has been studied by X-ray photoelectron spectroscopy (XPS) and gas chromatography (GC). Carbon monoxide adsorption on the oxide layer resulted in U4f peak shifting to the lower binding energy. The content of oxygen in the oxide is decreased and the atomic ratio (O/U) is decreased by 7.2%. The amount of carbon dioxide in the atmosphere after the surface reaction is increased by 11.0%. The investigation indicates that the surface layer can prevent the further oxidation uranium metal in the atmosphere of carbon monoxide

  13. Photochemical Reactions of Particulate Organic Matter: Deciphering the Role of Direct and Indirect Processes

    Science.gov (United States)

    Carrasquillo, A. J.; Gelfond, C. E.; Kocar, B. D.

    2016-12-01

    Photochemical reactions of natural organic matter (NOM) represent potentially important pathways for biologically recalcitrant material to be chemically altered in aquatic systems. Irradiation can alter the physical state of organic matter by facilitating the cycling between the particulate (POM) and dissolved (DOM) pools, however, a molecular level understanding of this chemically dynamic system is currently lacking. Photochemical reactions of a target molecule proceed by the direct absorption of a photon, or through reaction with a second photolytically generated species (i.e. the hydroxyl radical, singlet oxygen, excited triplet state NOM, hydrogen peroxide, etc.). Here, we isolate the major direct and indirect photochemical reactions of a lignocellulose-rich POM material (Phragmites australis) to determine their relative importance in changing the the chemical structure of the parent POM, and in the production of DOM. We measured POM molecular structure using a combination of NMR and FTIR for bulk analyses and scanning transmission x-ray microscopy (STXM) for spatially resolved chemistry, while the chemical composition of photo-produced DOM was measured using ultra-high resolution mass spectrometry. Results are discussed in the context of the differences in chemical composition of both NOM pools resulting from the isolated photochemical pathways. All treatments result in an increase in DOM with reaction time, indicating that the larger POM matrix is likely fragmenting into smaller more soluble species. Spectroscopic measurements, on the other hand, point to functionalization reactions which increase the abundance of alcohol, acid, and carbonyl moieties in both carbon pools. This unique dataset provides new insight into how photochemical reactions alter the chemical composition of NOM while highlighting the relative importance of indirect pathways.

  14. The composition dependence of the photochemical reactivity of strontium barium titanate

    Science.gov (United States)

    Bhardwaj, Abhilasha

    The efficiency of particulate water photolysis catalysts is impractically low due to the recombination of intermediate species and charge carriers. The back reaction can occur easily if the oxidation and reduction sites on the surface of the catalyst are not far enough apart. It is hypothesized that it will be possible to increase the separation of the sites of the two half reactions and reduce the recombination of photogenerated charge carriers by using a ferroelectric material with permanent internal dipolar fields. This separation of the reaction sites may significantly increase the efficiency of the process. The present work compares the photochemical reactivities of ferroelectric and nonferroelectric materials (SrxBa1-xTiO 3, 0.0≤ x ≤1.0) with similar composition and structure. The reactivities are compared by measuring the color change of methylene blue dye after the aqueous dye solution reacts on the surface of ceramic sample pellets as a result of exposure to UV light. The reactivities are also compared by measuring the amount of silver that is formed when an aqueous AgNO3 solution photochemically reacts on the surface. The change in the color of the dye is measured by diffuse reflectance spectroscopy and absorbance measurements. The amount of silver is measured by atomic force microscopy. The photochemical reactivity of SrxBa1-xTiO3 shows a local maximum at the composition of the ferroelectric to non-ferroelectric transition. Also, the reactivities decrease as BaTiO3 and SrTiO3 become less pure. The dominant factors causing this trend in reactivities of SrxBa1-xTiO3 are the dielectric constant and alloy scattering. It is found that higher values of the dielectric constant increase the photochemical reactivity by enlarging the space charge region. The increase in alloy scattering in SrxBa1-xTiO 3 solid solutions as x increases from zero or decreases from 1, has adverse effect on reactivity. There are other factors such as ferroelectric polarization

  15. Ammonia removal from leachate by photochemical process using H2O2

    Directory of Open Access Journals (Sweden)

    Giovani Archanjo Brota

    2010-08-01

    Full Text Available In this work, it was studied the optimization of the photochemical process using H2O2/UV in order to reduce the concentration of ammonia in leachate. It was used landfills leachate previously treated in the development of studies. A photochemical reactor with the capacity of 1.7 liters equipped with refrigeration system and recirculation of leachate was employed in the research. The influence of temperature, the light bulb power, the concentration of H2O2 and treatment time were tested during the study. A removal of 97% of ammonia was observed at 90 min.

  16. Photochemical Aryl Radical Cyclizations to Give (E-3-Ylideneoxindoles

    Directory of Open Access Journals (Sweden)

    Michael Gurry

    2014-09-01

    Full Text Available (E-3-Ylideneoxindoles are prepared in methanol in reasonable to good yields, as adducts of photochemical 5-exo-trig of aryl radicals, in contrast to previously reported analogous radical cyclizations initiated by tris(trimethylsilylsilane and azo-initiators that gave reduced oxindole adducts.

  17. Laser induced photochemical and photophysical processes in fuel reprocessing: present scenario and future prospects

    International Nuclear Information System (INIS)

    Bhowmick, G.K.; Sarkar, S.K.; Ramanujam, A.

    2001-01-01

    State-of-art lasers can meet the very stringent requirements of nuclear technology and hence find application in varied areas of nuclear fuel cycle. Here, we discuss two specific applications in nuclear fuel reprocessing namely (a) add-on photochemical modifications of PUREX process where photochemical reactors replace the chemical reactors, and (b) fast, matrix independent sensitive laser analytical techniques. The photochemical modifications based on laser induced valency adjustment offers efficient separation, easy maintenance and over all reduction in the volume of radioactive waste. The analytical technique of time resolved laser induced fluorescence (TRLIF) has several attractive features like excellent sensitivity, element selective, and capability of on line remote process monitoring. For optically opaque solutions, optical excitation is detected by its conversion into thermal energy by non-radiative relaxation processes using the photo-thermal spectroscopic techniques. (author)

  18. Molecular-beam studies of primary photochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T.

    1982-12-01

    Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser.

  19. Molecular-beam studies of primary photochemical processes

    International Nuclear Information System (INIS)

    Lee, Y.T.

    1982-12-01

    Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser

  20. Production of Ethylene and Carbon Monoxide by Microorganisms

    Science.gov (United States)

    T. H. Filer; L. R. Brown; S. Brown-Sarobot; S. Martin

    1984-01-01

    Various quantities of ethylene and carbon monoxide were produced on PDA by Fusicladium effusum, Pestilotia nucicola, Alternaria tenuis, and Fusarium oxysporum subcultured from diseased pecan shucks. Repeated subculturing of these fungi on potato dextrose broth supplemented with iron powder produced ethylene. The production of...

  1. Chronic toxicity of selected polycyclic aromatic hydrocarbons to algae and crustaceans using passive dosing.

    Science.gov (United States)

    Bragin, Gail E; Parkerton, Thomas F; Redman, Aaron D; Letinksi, Daniel J; Butler, Josh D; Paumen, Miriam Leon; Sutherland, Cary A; Knarr, Tricia M; Comber, Mike; den Haan, Klaas

    2016-12-01

    Because of the large number of possible aromatic hydrocarbon structures, predictive toxicity models are needed to support substance hazard and risk assessments. Calibration and evaluation of such models requires toxicity data with well-defined exposures. The present study has applied a passive dosing method to generate reliable chronic effects data for 8 polycyclic aromatic hydrocarbons (PAHs) on the green algae Pseudokirchneriella subcapitata and the crustacean Ceriodaphnia dubia. The observed toxicity of these substances on algal growth rate and neonate production were then compared with available literature toxicity data for these species, as well as target lipid model and chemical activity-based model predictions. The use of passive dosing provided well-controlled exposures that yielded more consistent data sets than attained by past literature studies. Results from the present study, which were designed to exclude the complicating influence of ultraviolet light, were found to be well described by both target lipid model and chemical activity effect models. The present study also found that the lack of chronic effects for high molecular weight PAHs was consistent with the limited chemical activity that could be achieved for these compounds in the aqueous test media. Findings from this analysis highlight that variability in past literature toxicity data for PAHs may be complicated by both poorly controlled exposures and photochemical processes that can modulate both exposure and toxicity. Environ Toxicol Chem 2016;35:2948-2957. © 2016 SETAC. © 2016 SETAC.

  2. Implications of imprecision in kinetic rate data for photochemical model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R.W.; Thompson, A.M. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center

    1997-12-31

    Evaluation of uncertainties in photochemical model calculations is of great importance to scientists performing assessment modeling. A major source of uncertainty is the measurement imprecision inherent in photochemical reaction rate data that modelers rely on. A rigorous method of evaluating the impact of data imprecision on computational uncertainty is the study of error propagation using Monte Carlo techniques. There are two problems with the current implementation of the Monte Carlo method. First, there is no satisfactory way of accounting for the variation of imprecision with temperature in 1, 2, or 3D models; second, due to its computational expense, it is impractical in 3D model studies. These difficulties are discussed. (author) 4 refs.

  3. Implications of imprecision in kinetic rate data for photochemical model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R W; Thompson, A M [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center

    1998-12-31

    Evaluation of uncertainties in photochemical model calculations is of great importance to scientists performing assessment modeling. A major source of uncertainty is the measurement imprecision inherent in photochemical reaction rate data that modelers rely on. A rigorous method of evaluating the impact of data imprecision on computational uncertainty is the study of error propagation using Monte Carlo techniques. There are two problems with the current implementation of the Monte Carlo method. First, there is no satisfactory way of accounting for the variation of imprecision with temperature in 1, 2, or 3D models; second, due to its computational expense, it is impractical in 3D model studies. These difficulties are discussed. (author) 4 refs.

  4. Ambient carbon monoxide and cardiovascular mortality: a nationwide time-series analysis in 272 cities in China.

    Science.gov (United States)

    Liu, Cong; Yin, Peng; Chen, Renjie; Meng, Xia; Wang, Lijun; Niu, Yue; Lin, Zhijing; Liu, Yunning; Liu, Jiangmei; Qi, Jinlei; You, Jinling; Kan, Haidong; Zhou, Maigeng

    2018-01-01

    Evidence of the acute health effects of ambient carbon monoxide air pollution in developing countries is scarce and mixed. We aimed to evaluate short-term associations between carbon monoxide and daily cardiovascular disease mortality in China. We did a nationwide time-series analysis in 272 major cities in China from January, 2013, to December, 2015. We extracted daily cardiovascular disease mortality data from China's Disease Surveillance Points system. Data on daily carbon monoxide concentrations for each city were obtained from the National Urban Air Quality Real-time Publishing Platform. City-specific associations between carbon monoxide concentrations and daily mortality from cardiovascular disease, coronary heart disease, and stroke were estimated with over-dispersed generalised linear models. Bayesian hierarchical models were used to obtain national and regional average associations. Exposure-response association curves and potential effect modifiers were evaluated. Two-pollutant models were fit to evaluate the robustness of the effects of carbon monoxide on cardiovascular mortality. The average annual mean carbon monoxide concentration in these cities from 2013 to 2015 was 1·20 mg/m 3 , ranging from 0·43 mg/m 3 to 2·45 mg/m 3 . For a 1 mg/m 3 increase in average carbon monoxide concentrations on the present day and previous day (lag 0-1), we observed significant increments in mortality of 1·12% (95% posterior interval [PI] 0·42-1·83) from cardiovascular disease, 1·75% (0·85-2·66) from coronary heart disease, and 0·88% (0·07-1·69) from stroke. These associations did not vary substantially by city, region, and demographic characteristics (age, sex, and level of education), and the associations for cardiovascular disease and coronary heart disease were robust to the adjustment of criteria co-pollutants. We did not find a threshold below which carbon monoxide exposure had no effect on cardiovascular disease mortality. This analysis is, to our

  5. Performance of a Throttle Cycle Refrigerator with Nitrogen-Hydrocarbon and Argon-Hydrocarbon Mixtures

    Science.gov (United States)

    Venkatarathnam, G.; Senthil Kumar, P.; Srinivasa Murthy, S.

    2004-06-01

    Throttle cycle refrigerators are a class of vapor compression refrigerators that can provide refrigeration at cryogenic temperatures and operate with refrigerant mixtures. The performance of our prototype refrigerators with nitrogen-hydrocarbon, nitrogen-hydrocarbon-helium and argon-hydrocarbon refrigerant mixtures is presented in this paper.

  6. Optimization of mass flow rate in RGTT200K coolant purification for Carbon Monoxide conversion process

    International Nuclear Information System (INIS)

    Sumijanto; Sriyono

    2016-01-01

    Carbon monoxide is a species that is difficult to be separated from the reactor coolant helium because it has a relatively small molecular size. So it needs a process of conversion from carbon monoxide to carbondioxide. The rate of conversion of carbon monoxide in the purification system is influenced by several parameters including concentration, temperature and mass flow rate. In this research, optimization of the mass flow rate in coolant purification of RGTT200K for carbon monoxide conversion process was done. Optimization is carried out by using software Super Pro Designer. The rate of reduction of reactant species, the growth rate between the species and the species products in the conversion reactions equilibrium were analyzed to derive the mass flow rate optimization of purification for carbon monoxide conversion process. The purpose of this study is to find the mass flow rate of purification for the preparation of the basic design of the RGTT200K coolant helium purification system. The analysis showed that the helium mass flow rate of 0.6 kg/second resulted in an un optimal conversion process. The optimal conversion process was reached at a mass flow rate of 1.2 kg/second. A flow rate of 3.6 kg/second – 12 kg/second resulted in an ineffective process. For supporting the basic design of the RGTT200K helium purification system, the mass flow rate for carbon monoxide conversion process is suggested to be 1.2 kg/second. (author)

  7. Cardiological aspects of carbon monoxide poisoning.

    Science.gov (United States)

    Marchewka, Jakub; Gawlik, Iwona; Dębski, Grzegorz; Popiołek, Lech; Marchewka, Wojciech; Hydzik, Piotr

    2017-01-01

    The aim of this study was to assess cardiological manifestations of carbon monoxide (CO) poisoning. Background/introduction: Carbon monoxide intoxication is one of the most important toxicological causes of morbidity and mortality worldwide. Early clinical manifestation of CO poisoning is cardiotoxicity. We enrolled 75 patients (34 males and 41 females, mean age 37.6 ± 17.7 y/o) hospitalized due to CO poisoning. Laboratory tests including troponin I, blood pressure measurements, HR and electrocardiograms (ECG) were collected. Pach's scale scoring and grading system was used to establish severity of poisoning. Grade of poisoning is positively correlated with troponin I levels and systolic blood pressure. Moreover, troponin levels are significantly correlated with exposition time, lactates and are higher in tachycardiac, hypertensive and positive ECG subpopulations. COHb levels are indicative of exposure but do not correlate with grade of poisoning. The main cause of CO poisoning were bathroom heaters - 83%, only 11% of examined intoxicated population were equipped with CO detectors. Complex cardiological screening covering troponin levels, ECG, blood pressure and heart rate measurements as well as complete blood count with particular attention to platelet parameters should be performed in each case where CO intoxication is suspected. More emphasis on education on CO poisoning is needed.

  8. Petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in Hong Kong marine sediments

    International Nuclear Information System (INIS)

    Zheng, G.J.; Richardson, B.J.

    1999-01-01

    A total of 20 surficial sediment samples, obtained from Hong Kong coastal waters, were analysed for petroleum hydrocarbons (PHCs) and a suite of 15 polycyclic aromatic hydrocarbons (PAHs). The results indicate that Hong Kong coastal sediments are often seriously polluted with petroleum related hydrocarbons. This is especially so in heavily urbanised or industrialized localities, such as Kowloon Bay (Victoria Harbour), Tsing Yi North and Tolo Harbour. Petroleum hydrocarbon pollutants in marine sediments are believed to be mainly derived from the transportation of oil, shipping activities, spillages, and industrial, stormwater and waste wastewater discharge. The ratio of unresolved complex mixture (UCM) to n-alkanes, carbon preference index (CPI), and n-C 16 values indicate that the main contribution to petroleum hydrocarbon contamination is via oil and its products. Pollutant sources appear to be stable and continuing when compared with previous data. (author)

  9. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  10. Effect of N-Acetylcysteine in Protecting from Simultaneous Noise and Carbon Monoxide Induced Hair Cell Loss

    Directory of Open Access Journals (Sweden)

    Akram Pourbakht

    2011-06-01

    Full Text Available Background and Aim: N-acetylcysteine, a glutathione precursor and reactive oxygen species scavenger, is reported to be effective in reducing noise-induced hearing loss. Many workers in industry are exposed simultaneously to noise and chemical pollutants such as carbon monoxide. We investigated effectiveness of N-acetylcysteine in protecting the cochlea from simultaneous noise and carbon monoxide damages.Methods: Twelve rabbits were exposed simeltaneously to 100 dB sound pressure level of broad band noise and carbon monoxide 8 hours a day for 5 days. One hour before exposure, experimental group received 325 mg/kg of N-acetylcysteine while normal saline was administered for the control group. The protective effect of N-acetylcysteine was evaluated 3 weeks after exposure by histological assessment of the hair cells.Results: Simultaneous exposure to noise and carbon monoxide resulted in a considerable damage to the outer hair cells; however, the inner hair cells and the pillar cells remained intact. Use of N-acetylcysteine in the experimental group significantly reduced the extent of outer hair cell loss.Conclusion: N-acetylcysteine attenuates simultaneous noise and carbon monoxide induced hair cell damage in rabbits.

  11. Treatment in carbon monoxide poisoning patients with headache: a prospective, multicenter, double-blind, controlled clinical trial.

    Science.gov (United States)

    Ocak, Tarik; Tekin, Erdal; Basturk, Mustafa; Duran, Arif; Serinken, Mustafa; Emet, Mucahit

    2016-11-01

    There is a lack of specificity of the analgesic agents used to treat headache and underlying acute carbon monoxide poisoning. To compare effectiveness of "oxygen alone" vs "metoclopramide plus oxygen" vs "metamizole plus oxygen" therapy in treating carbon monoxide-induced headache. A prospective, multicenter, double-blind, controlled trial. Three emergency departments in Turkey. Adult carbon monoxide poisoning patients with headache. A total of 117 carbon monoxide-intoxicated patients with headache were randomized into 3 groups and assessed at baseline, 30 minutes, 90 minutes, and 4 hours. The primary outcome was patient-reported improvement rates for headache. Secondary end points included nausea, need for rescue medication during treatment, and reduction in carboxyhemoglobin levels. During observation, there was no statistical difference between drug type and visual analog scale score change at 30 minutes, 90 minutes, or 4 hours, for either headache or nausea. No rescue medication was needed during the study period. The reduction in carboxyhemoglobin levels did not differ among the 3 groups. The use of "oxygen alone" is as efficacious as "oxygen plus metoclopramide" or "oxygen plus metamizole sodium" in the treatment of carbon monoxide-induced headache. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Cyclic process for producing methane from carbon monoxide with heat removal

    Science.gov (United States)

    Frost, Albert C.; Yang, Chang-lee

    1982-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  13. Digit and letter alexia in carbon monoxide poisoning

    Institute of Scientific and Technical Information of China (English)

    Qingyu Shen; Xiaoming Rong; Rui Pan; Ying Peng; Wei Peng; Yamei Tang

    2012-01-01

    This study examined a 24-year-old patient with delayed encephalopathy, who was admitted to hospital with complaints of headache and visual impairment 1 week after acute carbon monoxide poisoning. The results of a visual field assessment, electroencephalography and head magnetic resonance imaging indicated damage to the cerebral cortex. After a 2-week treatment period, the patient had recovered from the visual impairment, but exhibited digit- and letter-reading difficulty. The Chinese aphasia battery and the number and letter battery supplement were conducted. The results revealed that the patient exhibited digit and letter alexia, while the ability to read Chinese characters was preserved. In contrast, the patient exhibited a deficit in Chinese character writing, while number and letter writing remained intact. Following treatment, reading and writing ability was improved and electroencephalographic abnormalities were ameliorated. Overall, our experimental findings demonstrated that delayed encephalopathy following acute carbon monoxide poisoning was characterized by digit and letter alexia.

  14. Handbook for Evaluating Ecological Effects of Pollution at DARCOM installations. Volume 2, Essential Background Data. (Installation Environmental Impact Assessment)

    Science.gov (United States)

    1979-12-01

    Nitrates Sulfur dioxide Xylene Nitrites Oxides of nitrogen Mercaptans "Red Water" Carbon monoxide Chlorine Acids: Ketones Fluorine Hydrochloric Esters...Trichloroethylene Varnishes Methylchloroform Undercoatings Mineral spirits Liquid styrene Naphtha Adhesives Halgenated hydrocarbons Nonmethane hydrocarbons

  15. The indigenous Sea Gypsy divers of Thailand's west coast: measurement of carbon monoxide in the breathing air.

    Science.gov (United States)

    Gold, D; Geater, A; Aiyarak, S; Juengpraert, W

    1999-07-01

    Approximately 400 indigenous divers live and work on Thailand's west coast. They dive with surface supplied air from primitive compressor units mounted on open boats which measure from seven to 11 meters in length. It was suspected that carbon monoxide was present in the breathing air of at least the gasoline-driven compressor units. To determine the presence of carbon monoxide gas in the breathing air, compressed air from the compressor was pumped through the diver air supply hose through a plenum (monitoring) chamber established on the boat. After a compressor warm-up of 15 minutes, the diving air was measured with the boat at eight different bearings to the wind, each 45 degrees apart at intervals of five minutes. Three of the four gasoline-driven compressor units tested showed presence of carbon monoxide in the breathing air. One diesel-driven unit showed a very low concentration of carbon monoxide (3-4 ppm) and six diesel-driven units showed no detectable carbon monoxide. Although not tested, diesel exhaust emissions could also enter the breathing air by the same route. A locally made modification to the compressor air intake was designed and successfully tested on one gasoline-driven compressor unit. An information sheet on the hazards of carbon monoxide as well as on the modification has been developed for distribution among the villages.

  16. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition

    DEFF Research Database (Denmark)

    Konhauser, Kurt; Amskold, Larry; Lalonde, Stefan

    2007-01-01

    to the rise of atmospheric oxygen and the development of a protective ozone layer, the Earth's surface was subjected to high levels of ultraviolet radiation. Bulk ocean waters that were anoxic at this time could have supported high concentrations of dissolved Fe(II). Under such conditions, dissolved ferrous...... for biology [Fran??ois, L.M., 1986, Extensive deposition of banded iron formations was possible without photosynthesis. Nature 320, 352-354]. Here, we evaluate the potential importance of photochemical oxidation using a combination of experiments and thermodynamic models. The experiments simulate......-type systems, then we are driven to conclude that oxide-facies BIF are the product of a rapid, non-photochemical oxidative process, the most likely candidates being direct or indirect biological oxidation, and that a significant fraction of BIF could have initially been deposited as ferrous minerals. ?? 2007...

  17. Ethylene and Carbon Monoxide Production by Septoria musiva

    Science.gov (United States)

    S. Brown-Skrobot; L. R. Brown; T. H. Filer

    1984-01-01

    An investigation into the mechanism by which Septoria musiva causes the premature defoliation of cottonwood trees was undertaken. Gas-chromatograpic analysis of the atmosphere overlying the original culture indicated that this fungus produced significant quantities of ethylene and carbon monoxide. Subcultures failed to produce either gas on a variety...

  18. Pathways and bioenergetics of anaerobic carbon monoxide fermentation

    NARCIS (Netherlands)

    Diender, Martijn; Stams, Fons; Machado de Sousa, Diana

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the

  19. Photochemical Reactivity of Dissolved Organic Matter in Boreal Lakes

    Science.gov (United States)

    Gu, Y.; Vuorio, K.; Tiirola, M.; Perämäki, S.; Vahatalo, A.

    2016-12-01

    Boreal lakes are rich in dissolved organic matter (DOM) that terrestrially derived from forest soil and wetland, yet little is known about potential for photochemical transformation of aquatic DOM in boreal lakes. Transformation of chromophoric dissolved organic matter (CDOM) can decrease water color and enhance microbial mineralization, affecting primary production and respiration, which both affect the CO2 balance of the lakes. We used laboratory solar radiation exposure experiments with lake water samples collected from 54 lakes located in Finland and Sweden, representing different catchment composition and watershed location to assess photochemical reactivity of DOM. The pH of water samples ranged from 5.4 to 8.3, and the concentrations of dissolved iron (Fe) were between samples received simulated solar radiation corresponding to a daily dose of sunlight, and photomineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) was measured for determination of spectral apparent quantum yields (AQY). During irradiation, photobleaching decreased the absorption coefficients of CDOM at 330 nm between 4.9 and 79 m-1 by 0.5 to 11 m-1. Irradiation generated DIC from 2.8 to 79 μmol C L-1. The AQY at 330 nm ranged between 31 and 273 ×10-6 mol C mol photons-1 h-1, which was correlated positively with concentration of dissolved Fe, and negatively with pH. Further statistical analyze indicated that the interaction between pH and Fe may explain much of the photochemical reactivity of DOM in the examined lakes, and land cover concerns main catchment areas also can have impact on the photoreaction process. This study may suggest how environmental conditions regulate DOM photomineralization in boreal lakes.

  20. Effect of latitude on the potential for formation of photochemical smog

    Energy Technology Data Exchange (ETDEWEB)

    Neiboer, H [Central Laboratorium TNO, Delft, Netherlands; Carter, W P.L.; Lloyd, A C; Pitts, Jr, J N

    1976-01-01

    The effect of latitude on the potential for the formation of photochemical smog has been assessed. Calculations suggest that at the summer solstice, the integrated sunlight intensity at Rotterdam or Fairbanks (Alaska) is very similar to that in Los Angeles. Computations carried out, assuming the same pollutant emission inventory for the three locations, showed that ozone and PAN dosages depend more on the integrated light intensity than on the nature of the light intensity distribution with time. Therefore, if factors such as emissions and meteorological conditions are equal, the potential for significant photochemical smog formation during the summer months is similar for Los Angeles (34/sup 0/N) and northern cities such as Rotterdam (52/sup 0/N) and Nome or Fairbanks, Alaska (65/sup 0/N).

  1. Interactions of carbon monoxide and hemoglobin at high altitude

    Energy Technology Data Exchange (ETDEWEB)

    Collier, C.R. (Univ. of Southern California Medical Center, Los Angeles); Goldsmith, J.R.

    1983-01-01

    The health risks to U.S. populations who are exposed to ambient carbon monoxide and live at altitudes (such as Denver, Salt Lake City, and Albuquerque) were evaluated using a set of mathematical models. The assumption that a given increase in carboxyhemoglobin would require a more stringent volumetric air quality standard was tested. The results using the model predict that the 8-h or 1-h standards adopted for sea level condition need not be altered to protect individuals against health risks at altitude, if the standards are in volumetric terms. They would need to be reduced if the standards are left in gravimetric terms. If the guideline is to be based on a given decrement of oxygen tension, many other variables must be specified, but expected differences in ambient carbon monoxide have a small impact compared to the effect of altitude itself.

  2. Accidental carbon monoxide poisoning during yagya for faith healing--a case report.

    Science.gov (United States)

    Behera, C; Millo, T M; Jaiswal, A; Dogra, T D

    2013-03-01

    A 20-year-old female and a 45-year-old male were found lying dead on the floor with frothand vomitus stain present over mouth, nose and face in a closed room. An earthen bowl with incomplete burnt woods, flowers, food materials, agarbati, etc, was also found lying near the body of the two deceased. The cause of death, established by autopsy and toxicological examination was carbon monoxide poisoning in both victims. The source of carbon monoxide was incomplete burnt woods used for yagya during puja (a faith healing practice) for bearing children.

  3. Photochemical Synthesis and Properties of Colloidal Copper, Silver and Gold Adsorbed on Quartz

    International Nuclear Information System (INIS)

    Loginov, Anatoliy V.; Gorbunova, Valentina V.; Boitsova, Tatiana B.

    2002-01-01

    Original methods for the photochemical production of stable copper, silver and gold colloids in the form of films on quartz, and dispersion in liquids were devised. It is shown that photochemical synthesis of colloidal metals is a difficult multiphase process, and includes the formation of low-valence forms of Cu(I), Au(I) and nonmetal clusters, colloidal particles and their agglomerates. Cluster stabilization and further growth to colloidal particles are achieved by adsorption onto the solid surface (quartz) or by increasing the viscosity of photolyte. In the absence of these methods of stabilization, the processes of intermediate reoxidation to Cu(II) and Au(III) and agglomeration of Ag and Au colloids proceed in a photolyte. Adsorption and the rate of cluster growth on a quartz surface are speeded up by the action of monochromatic UV light. Experimental models of the mechanism of colloidal formation are suggested. The dependence of the growth rate and the properties of the colloids on conditions of the photochemical procedure (energy and light intensity, concentration of initial complex) has been established

  4. [Carbon monoxide poisoning by a heating system].

    Science.gov (United States)

    Dietz, Eric; Gehl, Axel; Friedrich, Peter; Kappus, Stefan; Petter, Franz; Maurer, Klaus; Püschel, Klaus

    2016-01-01

    A case of accidental carbon monoxide poisoning in several occupants of two neighboring residential buildings in Hamburg-Harburg (Germany) caused by a defective gas central heating system is described. Because of leaks in one of the residential buildings and the directly adjacent wall of the neighboring house, the gas could spread and accumulated in both residential buildings, which resulted in a highly dangerous situation. Exposure to the toxic gas caused mild to severe intoxication in 15 persons. Three victims died still at the site of the accident. Measures to protect the occupants were taken only with a great delay. As symptoms were unspecific, it was not realized that the various alarms given by persons involved in the accident were related to the same cause. In order to take appropriate measures in time it is indispensible to recognize, assess and check potential risks, which can be done by using carbon monoxide warning devices and performing immediate COHb measurements with special pulse oximeters on site. Moreover, the COHb content in the blood should be routinely determined in all patients admitted to an emergency department with unspecific symptoms.

  5. Global emissions and models of photochemically active compounds

    International Nuclear Information System (INIS)

    Penner, J.E.; Atherton, C.S.; Graedel, T.E.

    1993-01-01

    Anthropogenic emissions from industrial activity, fossil fuel combustion, and biomass burning are now known to be large enough (relative to natural sources) to perturb the chemistry of vast regions of the troposphere. A goal of the IGAC Global Emissions Inventory Activity (GEIA) is to provide authoritative and reliable emissions inventories on a 1 degree x 1 degree grid. When combined with atmospheric photochemical models, these high quality emissions inventories may be used to predict the concentrations of major photochemical products. Comparison of model results with measurements of pertinent species allows us to understand whether there are major shortcomings in our understanding of tropospheric photochemistry, the budgets and transport of trace species, and their effects in the atmosphere. Through this activity, we are building the capability to make confident predictions of the future consequences of anthropogenic emissions. This paper compares IGAC recommended emissions inventories for reactive nitrogen and sulfur dioxide to those that have been in use previously. We also present results from the three-dimensional LLNL atmospheric chemistry model that show how emissions of anthropogenic nitrogen oxides might potentially affect tropospheric ozone and OH concentrations and how emissions of anthropogenic sulfur increase sulfate aerosol loadings

  6. Photochemical and other air pollutions in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Floor, H.

    1975-01-01

    Together with the State Institute of Public Health and the Royal Dutch Meteorological Institute, the Institute of Phytopathological Research continued investigations on incidence of air pollution in the country. The main purpose is to measure the effects of air pollution on indicator plants and to detect over the years which components separately or perhaps together damage indicator plants. In 1974, the network of experimental fields in the Netherlands was completed. From April until October, 29 fields were inspected weekly for typical symptoms of air pollution. Just as in the preceding year O3 caused most injury of the photochemical air pollutants, as shown by Spinacia oleracea and Nicotiana tabacum. Other photochemical air pollutants like PAN, and the pollutants SO2, NO/sub x/ and ethylene caused little injury to the indicator plants Urtica urens, Poa annua, Medicago sativa, Petunia nyctaginiflora and Solanum tuberosum. Symptoms of damage on Tulipa gesneriana, Gladiolus gandavensis and Freesia refracta indicated air pollution by HF in all experimental fields, but especially in the south of the country. The F determination in the air by means of the limed paper method established the results with the indicator plants.

  7. Emission factors of particulate matter, polycyclic aromatic hydrocarbons, and levoglucosan from wood combustion in south-central Chile.

    Science.gov (United States)

    Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge

    2017-07-01

    In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from

  8. Photochemical stability of electrochromic polymers and devices

    DEFF Research Database (Denmark)

    Jensen, Jacob; Madsen, Morten Vesterager; Krebs, Frederik C

    2013-01-01

    The stability of fully printed flexible organic electrochromics based on 11 different conjugated polymers is explored from the fundamental chemical degradation level to the operational device level. The photochemical stability of the electrochromic polymers (ECPs) is studied enabling an analysis ...... based on flexible barrier substrates exhibit increased stability and are indeed viable in devices such as shading elements, light management systems, displays with low switching speed requirements and signage. © 2013 The Royal Society of Chemistry....

  9. Absorption of nicotine and carbon monoxide from passive smoking under natural conditions of exposure.

    Science.gov (United States)

    Jarvis, M J; Russell, M A; Feyerabend, C

    1983-01-01

    Seven non-smokers were exposed to tobacco smoke under natural conditions for two hours in a public house. Measures of nicotine and cotinine in plasma, saliva, and urine and expired air carbon monoxide all showed reliable increases. The concentrations of carbon monoxide and nicotine after exposure averaged 15.7% and 7.5% respectively of the values found in heavy smokers. Although the increase in expired air carbon monoxide of 5.9 ppm was similar to increases in smokers after a single cigarette, the amount of nicotine absorbed was between a tenth and a third of the amount taken in from one cigarette. Since this represented a relatively extreme acute natural exposure, any health risks of passive smoking probably depend less on quantitative factors than on qualitative differences between sidestream and mainstream smoke. PMID:6648864

  10. Cherenkov light as a source of photochemical reactions in irradiated solutions of nitrile of malachite green

    Energy Technology Data Exchange (ETDEWEB)

    Stuglik, Z; Grodkowski, J

    1986-10-01

    Experimental data on photochemical activity of Cherenkov light are presented. Malachite green leucocyanide was used to detect the photochemical effects. The G value of Cherenkov light from the region 200-330 nm (number of quanta formed per 100 eV absorbed energy of ionizing radiation) in ethanol was estimated to be in the range of 0.0027-0.049. 14 references.

  11. Cherenkov light as a source of photochemical reactions in irradiated solutions of nitrile of malachite green

    International Nuclear Information System (INIS)

    Stuglik, Z.; Grodkowski, J.

    1986-01-01

    Experimental data on photochemical activity of Cherenkov light are presented. Malachite green leucocyanide was used to detect the photochemical effects. The G value of Cherenkov light from the region 200-330 nm (number of quanta formed per 100 eV absorbed energy of ionizing radiation) in ethanol was estimated to be in the range of 0.0027-0.049. (author)

  12. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min

    2017-01-01

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured

  13. An operando FTIR spectroscopic and kinetic study of carbon monoxide pressure influence on rhodium-catalyzed olefin hydroformylation.

    Science.gov (United States)

    Kubis, Christoph; Sawall, Mathias; Block, Axel; Neymeyr, Klaus; Ludwig, Ralf; Börner, Armin; Selent, Detlef

    2014-09-08

    The influence of carbon monoxide concentration on the kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a phosphite-modified rhodium catalyst has been studied for the pressure range p(CO)=0.20-3.83 MPa. Highly resolved time-dependent concentration profiles of the organometallic intermediates were derived from IR spectroscopic data collected in situ for the entire olefin-conversion range. The dynamics of the catalyst and organic components are described by enzyme-type kinetics with competitive and uncompetitive inhibition reactions involving carbon monoxide taken into account. Saturation of the alkyl-rhodium intermediates with carbon monoxide as a cosubstrate occurs between 1.5 and 2 MPa of carbon monoxide pressure, which brings about a convergence of aldehyde regioselectivity. Hydrogenolysis of the acyl intermediate is fast at 30 °C and low pressure of p(CO)=0.2 MPa, but is of minus first order with respect to the solution concentration of carbon monoxide. Resting 18-electron hydrido and acyl complexes that correspond to early and late rate-determining states, respectively, coexist as long as the conversion of the substrate is not complete. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Carbon monoxide and methane adsorption of crude oil refinery using activated carbon from palm shells as biosorbent

    Science.gov (United States)

    Yuliusman; Afdhol, M. K.; Sanal, Alristo

    2018-03-01

    Carbon monoxide and methane gas are widely present in oil refineries. Off-potential gas is used as raw material for the petrochemical industry. In order for this off-gas to be utilized, carbon monoxide and methane must be removed from off-gas. This study aims to adsorb carbon monoxide and methane using activated carbon of palm shells and commercial activated carbon simultaneously. This research was conducted in 2 stages: 1) Preparation and characterization of activated carbon, 2) Carbon monoxide and methane adsorption test. The activation experiments using carbon dioxide at a flow rate of 150 ml/min yielded a surface area of 978.29 m2/g, Nitrogen at flow rate 150 ml/min yielded surface area 1241.48 m2/g, and carbon dioxide and nitrogen at a flow rate 200 ml/min yielded a surface area 300.37 m2/g. Adsorption of carbon monoxide and methane on activated carbon of palm shell systems yielded results in the amount of 0.5485 mg/g and 0.0649 mg/g and using commercial activated carbon yielded results in the amount of 0.5480 mg/g and 0.0650 mg/g

  15. 40 CFR 52.430 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Photochemical Assessment Monitoring Stations (PAMS) Program. 52.430 Section 52.430 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Natural Resources & Environmental Control submitted a plan for the establishment and implementation of a...

  16. 40 CFR 52.480 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Science.gov (United States)

    2010-07-01

    ... of Columbia's Department of Consumer and Regulatory Affairs submitted a plan for the establishment... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Photochemical Assessment Monitoring Stations (PAMS) Program. 52.480 Section 52.480 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  17. 40 CFR 52.1080 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Science.gov (United States)

    2010-07-01

    ... Stations (PAMS) Program. 52.1080 Section 52.1080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 52.1080 Photochemical Assessment Monitoring Stations (PAMS) Program. On March 24, 1994 Maryland's... Assessment Monitoring Stations (PAMS) Program as a state implementation plan (SIP) revision, as required by...

  18. Photochemical technique for reduction of uranium and subsequently plutonium in the Purex process

    International Nuclear Information System (INIS)

    Goldstein, M.; Barker, J.J.; Gangwer, T.

    1976-09-01

    A photochemical modification of the Purex process is described in which a purified side stream of UO 2 ++ ion is reduced to U +4 outside the radioactive area of the reprocessing plant. The U +4 is then cycled back to step 2 of the Purex process to reduce the plutonium and effect separation within the partitioning column. This process is shown to be very energy efficient and compatible with existing conventional lamp technology. Preliminary cost estimates of the energy requirements for photon production are essentially negligible. Conceptual systems and photochemical reactor designs are presented. Potential benefits of this system are discussed

  19. Influence of photochemical transformations upon optic-spectral characteristics of iodine cadmium crystals with copper dopant

    International Nuclear Information System (INIS)

    Novosad, S.S.

    2000-01-01

    The influence of photochemical transformations upon absorption. X-ray, photo- and thermostimulated luminescence of crystals CdI 2 :CuI, CdI 2 :CuI and CdI 2 :CuO grown by Stockbarger - Czochralski method has been studied. The photochemical reactions in crystals of iodine cadmium with the dopant of copper leads to reducing the intensity of X-ray, photo- and thermostimulated luminescence, the appearance of new luminescent centers is not observed

  20. Acute wood or coal exposure with carbon monoxide intoxication induces sister chromatid exchange

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, S.; Vatansever, S.; Cefle, K.; Palanduz, S.; Guler, K.; Erten, N.; Erk, O.; Karan, M.A.; Tascioglu, C. [University of Istanbul, Istanbul (Turkey). Istanbul Faculty of Medicine

    2002-07-01

    The object of this study was to investigate the genotoxic effect of acute overexposure to combustion products originating from coal or wood stoves in patients presenting with acute carbon monoxide intoxication. The authors analyzed the frequency of sister chromatid exchange and the carboxyhemoglobin concentration in 20 consecutive patients without a history of smoking or drug use who had been treated in the Emergency Care Unit of Istanbul Medical Faculty due to acute carbon monoxide intoxication. All of these cases were domestic accidents due to dysfunctioning coal or wood stoves. The results were compared with a control group of 20 nonsmoking, nondrug-using healthy individuals matched for age, sex, and absence of other chemical exposure. It was concluded that acute exposure to combustion products of wood or coal is genotoxic to DNA. Potential causes of genotoxicity include known mutagenic compounds present in coal or wood smoke and ash, oxygen radicals formed during combustion, as well as hypoxic and reperfusion injury mechanisms initiated by carbon monoxide intoxication.

  1. Mixing ratios of carbon monoxide in the troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.C.; Steele, L.P. (Univ. of Colorado, Boulder (United States)); Tans, P.P. (NOAA, Boulder, CO (United States))

    1992-12-20

    Carbon monoxide (CO) mixing ratios were measured in air samples collected weekly at eight locations. The air was collected as part of the CMDL/NOAA cooperative flask sampling program (Climate Monitoring and Diagnostics Laboratory, formerly Geophysical Monitoring for Climatic Change, Air Resources Laboratory/National Oceanic and Atmospheric Administration) at Point Barrow, Alaska, Niwot Ridge, Colorado, Mauna Loa and Cape Kumakahi, Hawaii, Guam, Marianas Islands, Christmas Island, Ascension Island and American Samoa. Half-liter or 3-L glass flasks fitted with glass piston stopcocks holding teflon O rings were used for sample collection. CO levels were determined within several weeks of collection using gas chromatography followed by mercuric oxide reduction detection, and mixing ratios were referenced against the CMDL/NOAA carbon monoxide standard scale. During the period of study (mid-1988 through December 1990) CO levels were greatest in the high latitudes of the northern hemisphere (mean mixing ratio from January 1989 to December 1990 at Point Barrow was approximately 154 ppb) and decreased towards the south (mean mixing ratio at Samoa over a similar period was 65 ppb). Mixing ratios varied seasonally, the amplitude of the seasonal cycle was greatest in the north and decreased to the south. Carbon monoxide levels were affected by both local and regional scale processes. The difference in CO levels between northern and southern latitudes also varied seasonally. The greatest difference in CO mixing ratios between Barrow and Samoa was observed during the northern winter (about 150 ppb). The smallest difference, 40 ppb, occurred during the austral winter. The annually averaged CO difference between 71[degrees]N and 14[degrees]S was approximately 90 ppb in both 1989 and 1990; the annually averaged interhemispheric gradient from 71[degrees]N to 41[degrees]S is estimated as approximately 95 ppb. 66 refs., 5 figs., 5 tabs.

  2. The study on laser photochemical process of Diazonaphthoquinon-Cresol system

    International Nuclear Information System (INIS)

    Wei Jie; Huang Yu Li; Wang Wenke

    1999-01-01

    The kinetic process of laser photochemical reaction of diazonaphthoquinon-cresol system was studied by using laser spectrophotofluorimetry and laser induced fluorescence attenuation method. The nonlinear relationship between photodecomposition rate of the sensitizer and laser power, exposure time and concentration of solutions was discussed in detail

  3. Photochemical reduction of uranyl ion by acetonitrile and propionitrile

    International Nuclear Information System (INIS)

    Brar, A.S.; Chander, R.; Sandhu, S.S.

    1979-01-01

    The photochemical reduction of uranyl ion by acetonitrile, propionitrile, benzonitrile, phenylacetonitrile, cyanoacetic acid and malononitrile in aqueous or aq. acetone medium using radiations >= 400 nm from a medium pressure mercury vapour lamp has been investigated. Except acetonitrile and propionitrile all other nitriles fail to bring about the reduction of uranyl ion. The reduction with aceto- and propionitriles has been found to obey pseudo-first order kinetics. The magnitude of rate of reduction with propionitrile is higher than that with acetonitrile. The pseudo-first order rate constants and quenching constant have been calculated from the kinetic data. It has been found that physical and chemical quenching compete with each other. The plot of reciprocal of quantum yield versus reciprocal (nitrile) is linear with a small intercept on the ordinate axis. Absorption spectra of uranyl ion in pure water, in the presence of acid and in the presence of acid+nitrile reveal that there is no ground state interaction between uranyl ion and the nitrile. A mechanism of photochemical reduction of uranyl ion based on α-hydrogen abstraction from the nitrile has been proposed. (auth.)

  4. Photochemical reactions of aqueous plutonium systems

    International Nuclear Information System (INIS)

    Friedman, H.A.; Toth, L.M.; Bell, J.T.

    1977-01-01

    The photochemical shift of the Pu 4+ disproportionation equilibrium in aqueous perchloric acid solutions has been measured and shown to be reversible. Ratios of equilibrium quotients between light and dark conditions have been measured for 0.01 M Pu ion concentrations in 0.53 to 1.24 N acid solutions exposed to 0.5 Watt of UV light. The photodecomposition of time- and temperature-aged Pu(IV) polymers in perchloric and nitric acid solutions have been examined as a function of aging conditions. Effects similar to those seen previously for fresh polymers have been observed in the aged perchloric acid solutions. (author)

  5. Carbon monoxide apparent quantum yields and photoproduction in the Tyne estuary

    Directory of Open Access Journals (Sweden)

    A. Stubbins

    2011-03-01

    Full Text Available Carbon monoxide (CO apparent quantum yields (AQYs are reported for a suite of riverine, estuarine and sea water samples, spanning a range of coloured dissolved organic matter (CDOM sources, diagenetic histories, and concentrations (absorption coefficients. CO AQYs were highest for high CDOM riverine samples and almost an order of magnitude lower for low CDOM coastal seawater samples. CO AQYs were between 47 and 80% lower at the mouth of the estuary than at its head. Whereas, a conservative mixing model predicted only 8 to 14% decreases in CO AQYs between the head and mouth of the estuary, indicating that a highly photoreactive pool of terrestrial CDOM is lost during estuarine transit. The CDOM absorption coefficient (a at 412 nm was identified as a good proxy for CO AQYs (linear regression r2 > 0.8; n = 12 at all CO AQY wavelengths studied (285, 295, 305, 325, 345, 365, and 423 nm and across environments (high CDOM river, low CDOM river, estuary and coastal sea. These regressions are presented as empirical proxies suitable for the remote sensing of CO AQYs in natural waters, including open ocean water, and were used to estimate CO AQY spectra and CO photoproduction in the Tyne estuary based upon annually averaged estuarine CDOM absorption data. A minimum estimate of annual CO production was determined assuming that only light absorbed by CDOM leads to the formation of CO and a maximum limit was estimated assuming that all light entering the water column is absorbed by CO producing photoreactants (i.e. that particles are also photoreactive. In this way, annual CO photoproduction in the Tyne was estimated to be between 0.99 and 3.57 metric tons of carbon per year, or 0.004 to 0.014% of riverine dissolved organic carbon (DOC inputs to the estuary. Extrapolation of CO photoproduction rates to estimate total DOC photomineralisation indicate that less than 1% of DOC inputs are removed via photochemical processes during

  6. Fabrication of self-written waveguide in photosensitive polyimide resin by controlling photochemical reaction of photosensitizer

    International Nuclear Information System (INIS)

    Yamashita, K.; Kuro, T.; Oe, K.; Mune, K.; Tagawa, K.; Naitou, R.; Mochizuki, A.

    2004-01-01

    We have investigated optical properties of photosensitive polyimide appropriating for long self-written waveguide fabrication. From systematic measurements of absorption properties, it was found that photochemical reaction of photosensitizer dissolved in the photosensitive polyimide resins relates to transparency after the exposure, which limits the length of the fabricated self-written waveguide. By controlling the photochemical reaction, in which the photosensitive polyimide resin has sufficient transparency during exposure, four times longer self-written waveguide core was fabricated

  7. Light-induced hysteresis and recovery behaviors in photochemically activated solution-processed metal-oxide thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jeong-Wan; Park, Sung Kyu, E-mail: yhkim76@skku.edu, E-mail: skpark@cau.ac.kr [School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Kim, Yong-Hoon, E-mail: yhkim76@skku.edu, E-mail: skpark@cau.ac.kr [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-07-28

    In this report, photo-induced hysteresis, threshold voltage (V{sub T}) shift, and recovery behaviors in photochemically activated solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) are investigated. It was observed that a white light illumination caused negative V{sub T} shift along with creation of clockwise hysteresis in electrical characteristics which can be attributed to photo-generated doubly ionized oxygen vacancies at the semiconductor/gate dielectric interface. More importantly, the photochemically activated IGZO TFTs showed much reduced overall V{sub T} shift compared to thermally annealed TFTs. Reduced number of donor-like interface states creation under light illumination and more facile neutralization of ionized oxygen vacancies by electron capture under positive gate potential are claimed to be the origin of the less V{sub T} shift in photochemically activated TFTs.

  8. Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts.

    Science.gov (United States)

    Tsai, Wen-Tien

    2017-09-21

    Among the halogenated hydrocarbons, chloromethanes (i.e., methyl chloride, CH₃Cl; methylene chloride, CH₂Cl₂; chloroform, CHCl₃; and carbon tetrachloride, CCl₄) play a vital role due to their extensive uses as solvents and chemical intermediates. This article aims to review their main chemical/physical properties and commercial/industrial uses, as well as the environment and health hazards posed by them and their toxic decomposition products. The environmental properties (including atmospheric lifetime, radiative efficiency, ozone depletion potential, global warming potential, photochemical ozone creation potential, and surface mixing ratio) of these chlorinated methanes are also reviewed. In addition, this paper further discusses their atmospheric fates and human health implications because they are apt to reside in the lower atmosphere when released into the environment. According to the atmospheric degradation mechanism, their toxic degradation products in the troposphere include hydrogen chloride (HCl), carbon monoxide (CO), chlorine (Cl₂), formyl chloride (HCOCl), carbonyl chloride (COCl₂), and hydrogen peroxide (H₂O₂). Among them, COCl₂ (also called phosgene) is a powerful irritating gas, which is easily hydrolyzed or thermally decomposed to form hydrogen chloride.

  9. Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles

    Directory of Open Access Journals (Sweden)

    C. Chou

    2013-01-01

    Full Text Available A measurement campaign (IMBALANCE conducted in 2009 was aimed at characterizing the physical and chemical properties of freshly emitted and photochemically aged combustion particles emitted from a log wood burner and diesel vehicles: a EURO3 Opel Astra with a diesel oxidation catalyst (DOC but no particle filter and a EURO2 Volkswagen Transporter TDI Syncro without emission aftertreatment. Ice nucleation experiments in the deposition and condensation freezing modes were conducted with the Portable Ice Nucleation Chamber (PINC at three nominal temperatures, −30 °C, −35 °C and −40 °C. Freshly emitted diesel particles showed ice formation only at −40 °C in the deposition mode at 137% relative humidity with respect to ice (RHi and 92% relative humidity with respect to water (RHw, and photochemical ageing did not play a role in modifying their ice nucleation behaviour. Only one diesel experiment where α-pinene was added for the ageing process, showed an ice nucleation enhancement at −35 °C. Wood burning particles also act as ice nuclei (IN at −40 °C in the deposition mode at the same conditions as for diesel particles and photochemical ageing also did not alter the ice formation properties of the wood burning particles. Unlike diesel particles, wood burning particles form ice via condensation freezing at −35 °C whereas no ice nucleation was observed at −30 °C. Photochemical ageing did not affect the ice nucleation ability of the diesel and wood burning particles at the three different temperatures investigated but a broader range of temperatures below −40 °C need to be investigated in order to draw an overall conclusion on the effect of photochemical ageing on deposition/condensation ice nucleation across the entire temperature range relevant to cold clouds.

  10. Influence of cation size and surface coverage upon the infrared spectrum of carbon monoxide

    OpenAIRE

    Huang, Jimin

    1991-01-01

    Adsorbed carbon monoxide is utilized as a double layer probe molecule because of its strong absorption in infrared region and because of the high sensitivity of the carbon-oxygen bond to changes in the environment local to the electrode surface. Potential Difference Infrared Spectroscopy was used to investigate the structural behavior of CO adsorbed on a platinum electrode. Carbon monoxide was found to be exclusively linear-bonded on platinum electrode in the presence of tetran...

  11. Detection of hydrocarbons in irradiated foods

    International Nuclear Information System (INIS)

    Miyahara, Makoto; Maitani, Tamio; Saito, Akiko; Kamimura, Tomomi; Nagasawa, Taeko; Kobayashi, Yasuo; Ito, Hitoshi

    2003-01-01

    The hydrocarbon method for the detection of irradiated foods is now recognized as the international technique. This method is based on radiolysis of fatty acids in food to give hydrocarbons. In order to expand this technique's application, ten foods (butter, cheese, chicken, pork, beef, tuna, dry shrimp, avocado, papaya, and mango) were irradiated in the range from 0.5 to 10 kGy and the hydrocarbons in them were detected. Recoveries of the hydrocarbons from most foods were acceptable (38-128%). Some hydrocarbons were found in non-irradiated foods, particularly, in butter, cheese, tuna, and shrimp. Seven irradiated foods, butter, cheese, chicken, beef, pork, tuna, dry shrimp, and avocado were detectable at their practical doses by measuring the appropriate marker hydrocarbons. In most case, marker hydrocarbon will be 1,7-hexadecadiene. However, the marker hydrocarbons produced only in irradiated foods varied from food to food; therefore, it is necessary to check a specific irradiated food for marker hydrocarbons. On the other hand, two irradiated foods (papaya and mango which were irradiated at their practical doses) were difficult to distinguish from non-irradiated foods using this method. (author)

  12. Detection of hydrocarbons in irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, Makoto; Maitani, Tamio [National Inst. of Health Sciences, Tokyo (Japan); Saito, Akiko; Kamimura, Tomomi; Nagasawa, Taeko [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Allied Health Sciences; Kobayashi, Yasuo; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Establishment

    2003-06-01

    The hydrocarbon method for the detection of irradiated foods is now recognized as the international technique. This method is based on radiolysis of fatty acids in food to give hydrocarbons. In order to expand this technique's application, ten foods (butter, cheese, chicken, pork, beef, tuna, dry shrimp, avocado, papaya, and mango) were irradiated in the range from 0.5 to 10 kGy and the hydrocarbons in them were detected. Recoveries of the hydrocarbons from most foods were acceptable (38-128%). Some hydrocarbons were found in non-irradiated foods, particularly, in butter, cheese, tuna, and shrimp. Seven irradiated foods, butter, cheese, chicken, beef, pork, tuna, dry shrimp, and avocado were detectable at their practical doses by measuring the appropriate marker hydrocarbons. In most case, marker hydrocarbon will be 1,7-hexadecadiene. However, the marker hydrocarbons produced only in irradiated foods varied from food to food; therefore, it is necessary to check a specific irradiated food for marker hydrocarbons. On the other hand, two irradiated foods (papaya and mango which were irradiated at their practical doses) were difficult to distinguish from non-irradiated foods using this method. (author)

  13. 40 CFR 52.2035 - Photochemical Assessment Monitoring Stations (PAMS) Program.

    Science.gov (United States)

    2010-07-01

    ... Stations (PAMS) Program. 52.2035 Section 52.2035 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...) Pennsylvania § 52.2035 Photochemical Assessment Monitoring Stations (PAMS) Program. On September 23, 1994... (PAMS) Program as a state implementation plan (SIP) revision, as required by section 182(c)(1) of the...

  14. Tolerance of Antarctic soil fungi to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Kevin A.; Bridge, Paul; Clark, Melody S. [British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET (United Kingdom)

    2007-01-01

    Little is known about the effects of hydrocarbons and fuel oil on Antarctic filamentous fungi in the terrestrial Antarctic environment. Growth of fungi and bacteria from soils around Rothera Research Station (Adelaide Island, Antarctic Peninsula) was assessed in the presence of ten separate aromatic and aliphatic hydrocarbons [marine gas oil (MGO), dodecane, hexadecane, benzoic acid, p-hydroxybenzoic acid, toluene, phenol, biphenyl, naphthalene and m- and p-xylenes with ethylbenzene]. Aromatic hydrocarbons inhibited soil microbial growth more than aliphatic hydrocarbons. Soil microorganisms from a moss patch, where little previous impact or hydrocarbon contamination had occurred, were less tolerant of hydrocarbons than those from high impact sites. Fungal growth rates of Mollisia sp., Penicillium commune, Mortierella sp., Trichoderma koningii, Trichoderma sp. and Phoma herbarum were assessed in the presence of hydrocarbons. Generally, aromatic hydrocarbons inhibited or stopped hyphal extension, though growth rates increased with some aliphatic hydrocarbons. Hyphal dry weight measurements suggested that Mortierella sp. may be able to use dodecane as sole carbon and energy source. Hydrocarbon-degrading Antarctic fungi may have use in future hydrocarbon spill bioremediation. (author)

  15. Characteristics of exogenous carbon monoxide deliveries

    Directory of Open Access Journals (Sweden)

    Hui-jun Hu

    2016-01-01

    Full Text Available Carbon monoxide (CO has long been considered an environmental pollutant and a poison. Exogenous exposure to amounts of CO beyond the physiologic level of the body can result in a protective or adaptive response. However, as a gasotransmitter, endogenous CO is important for multiple physiologic functions. To date, at least seven distinct methods of delivering CO have been utilized in animal and clinical studies. In this mini-review, we summarize the exogenous CO delivery methods and compare their advantages and disadvantages.

  16. Carbon monoxide oxidation using Zn-Cu-Ti hydrotalcite-derived ...

    Indian Academy of Sciences (India)

    Multioxide catalysts of zinc, copper and titanium with different ratios obtained from layered double hydroxide (LDH) precursors were used in the oxidation of carbon monoxide. The catalysts were characterized by energy-dispersive X-ray spectrometry, X-ray diffraction, thermal analyses (TG, DTG and DTA) and scanning ...

  17. Heparin Assisted Photochemical Synthesis of Gold Nanoparticles and Their Performance as SERS Substrates

    Science.gov (United States)

    Rodríguez-Torres, Maria del Pilar; Díaz-Torres, Luis Armando; Romero-Servin, Sergio

    2014-01-01

    Reactive and pharmaceutical-grade heparins were used as biologically compatible reducing and stabilizing agents to photochemically synthesize colloidal gold nanoparticles. Aggregates and anisotropic shapes were obtained photochemically under UV black-light lamp irradiation (λ = 366 nm). Heparin-functionalized gold nanoparticles were characterized by Scanning Electron Microscopy and UV-Vis spectroscopy. The negatively charged colloids were used for the Surface Enhanced Raman Spectroscopy (SERS) analysis of differently charged analytes (dyes). Measurements of pH were taken to inspect how the acidity of the medium affects the colloid-analyte interaction. SERS spectra were taken by mixing the dyes and the colloidal solutions without further functionalization or addition of any aggregating agent. PMID:25342319

  18. Production of light hydrocarbons, etc. [from heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-10-07

    A process is given for the production of light hydrocarbons of the gasoline type and, if desired, of the middle-oil type, from liquid or fusible heavy or medium heavy hydrocarbon materials. The process comprises subjecting the said initial materials in the first stage to catalytic hydrofining, separating the lower boiling constituents and the hydrogenating gas from the resulting products and then subjecting the higher boiling constituents in a second stage to a splitting destructive hydrogenation and then recycling substantially the entire reaction mixture obtained in the second stage to the frst stage.

  19. A 3 D regional scale photochemical air quality model application to a 3 day summertime episode over Paris; Un modele photochimique 3D de qualite de l`air a l`echelle regionale. Application a un episode de 3 jours a Paris en ete

    Energy Technology Data Exchange (ETDEWEB)

    Jaecker-Voirol, A.; Lipphardt, M.; Martin, B.; Quandalle, Ph.; Salles, J. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Carissimo, B.; Dupont, P.M.; Musson-Genon, L.; Riboud, P.M. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Aumont, B.; Bergametti, G.; Bey, I.; Toupanse, G. [Paris-12 Univ., 94 - Creteil (France). Laboratoire interuniversitaire des systemes atmospheriques]|[Paris-7 Univ., 75 (France)

    1998-03-01

    This paper presents AZUR, a 3D Eulerian photochemical air quality model for the simulation of air pollution in urban and semi-urban areas. The model tracks gas pollutant species emitted into the atmosphere by transportation and industrial sources, it computes the chemical reactions of these species under varying meteorological conditions (photolysis, pressure, temperature, humidity), their transport by wind and their turbulent diffusion as a function of air stability. It has a modular software structure which includes several components dedicated to specific processes: MERCURE, a meso-scale meteorological model to compute the wind field, turbulent diffusion coefficients, and other meteorological parameters; MIEL, an emission inventory model describing the pollutant fluxes from automotive transportation, domestic and industrial activities; MoCA a photochemical gas phase model describing the chemistry of ozone, NO{sub x}, an hydrocarbon compounds; AIRQUAL, a 3D Eulerian model describing the transport by mean wind flux and air turbulent diffusion of species in the atmosphere, associated with a Gear type chemical equation solver. The model has been applied to a 3-day summertime episode over Paris area. Simulation results are compared to ground level concentration measurements performed by the local monitoring network (Airparif). (authors) 22 refs.

  20. Carbon monoxide poisoning in children riding in the back of pickup trucks.

    Science.gov (United States)

    Hampson, N B; Norkool, D M

    OBJECTIVE - To describe the case characteristics of a series of children poisoned with carbon monoxide while traveling in the back of pickup trucks. DESIGN - Pediatric cases referred for treatment of carbon monoxide poisoning with hyperbaric oxygen between 1986 and 1991 were reviewed. Those cases that occurred during travel in the back of pickup trucks were selected. Clinical follow-up by telephone interview ranged from 2 to 55 months. SETTING - A private, urban, tertiary care center in Seattle, Wash. PATIENTS - Twenty children ranging from 4 to 16 years of age. INTERVENTION - All patients were treated with hyperbaric oxygen. MAIN OUTCOME MEASURES - Characteristics of the poisoning incident and clinical patient outcome. RESULTS - Of 68 pediatric patients treated for accidental carbon monoxide poisoning, 20 cases occurred as children rode in the back of pickup trucks. In 17 of these, the children were riding under a rigid closed canopy on the rear of the truck, while three episodes occurred as children rode beneath a tarpaulin. Average carboxyhemoglobin level on emergency department presentation was 18.2% +/- 2.4% (mean +/- SEM; range, 1.6% to 37.0%). Loss of consciousness occurred in 15 of the 20 children. One child died of cerebral edema, one had permanent neurologic deficits, and 18 had no recognizable sequelae related to the episode. In all cases, the truck exhaust system had a previously known leak or a tail pipe that exited at the rear rather than at the side of the pickup truck. CONCLUSIONS - Carbon monoxide poisoning is a significant hazard for children who ride in the back of pickup trucks. If possible, this practice should be avoided.

  1. Campaign to prevent carbon monoxide poisoning : fall-winter 2007-2008; Campagne de prevention des intoxications au monoxyde de carbone : automne-hiver 2007-2008

    Energy Technology Data Exchange (ETDEWEB)

    Lefebvre, B.; Chabot, L.; Gratton, J. [Direction de sante publique de Montreal, Montreal, PQ (Canada); Lacoursiere, D. [Quebec Ministere de la Sante et des Services sociaux du Quebec, Quebec, PQ (Canada)

    2009-07-01

    Quebec launched a public health campaign for the Montreal region to prevent carbon monoxide poisoning. The objectives of the campaign were to communicate the dangers of carbon monoxide poisoning, its potential sources, its effects on public health, and the means to prevent poisoning. Its purpose was to inform the public of the risks and strategies to be used in case of carbon monoxide poisoning and to lay out the merits of household carbon monoxide alarms. The communication was done by way of the media, in cooperation with community organizations and school boards. Other tools used in the campaign included the Internet, flyers and press releases. A poll taken in 2008 showed that 59 per cent of the respondents had one or more sources for carbon monoxide in their homes, including fireplaces, and that 28 per cent had a functioning alarm for carbon monoxide detection. A future survey will be held to follow-up on the evolution of the campaign. The development of various activities will help decrease the risk of carbon monoxide poisoning. tabs., figs.

  2. Sensorineural Hearing Loss following Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Joseph P. Pillion

    2012-01-01

    Full Text Available A case study is presented of a 17-year-old male who sustained an anoxic brain injury and sensorineural hearing loss secondary to carbon monoxide poisoning. Audiological data is presented showing a slightly asymmetrical hearing loss of sensorineural origin and mild-to-severe degree for both ears. Word recognition performance was fair to poor bilaterally for speech presented at normal conversational levels in quiet. Management considerations of the hearing loss are discussed.

  3. Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight

    Science.gov (United States)

    Zhong, M.; Jang, M.

    2014-02-01

    Wood-burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross section (integrated between 280 and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood-burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time, indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of primary organic aerosol with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood-burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line wildfire in Florida. We conclude that the biomass-burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood-burning OC.

  4. Dynamic light absorption of biomass burning organic carbon photochemically aged under natural sunlight

    Science.gov (United States)

    Zhong, M.; Jang, M.

    2013-08-01

    Wood burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross-section (integrated between 280 nm and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of POA with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line Wildfire in Florida. We conclude that the biomass burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood burning OC.

  5. Synthesis of fluorescent metal nanoparticles in aqueous solution by photochemical reduction

    KAUST Repository

    Kshirsagar, Prakash; Sangaru, Shiv; Brunetti, Virgilio; Malvindi, Maria Ada Da; Pompa, Pier Paolo

    2014-01-01

    A facile green chemistry approach for the synthesis of sub-5 nm silver and gold nanoparticles is reported. The synthesis was achieved by a photochemical method using tyrosine as the photoreducing agent. The size of the gold and silver nanoparticles

  6. Photochemical transformations accelerated in continuous-flow reactors : basic concepts and applications

    NARCIS (Netherlands)

    Su, Y.; Straathof, N.J.W.; Hessel, V.; Noel, T.

    2014-01-01

    Continuous-flow photochemistry is used increasingly by researchers in academia and industry to facilitate photochemical processes and their subsequent scale-up. However, without detailed knowledge concerning the engineering aspects of photochemistry, it can be quite challenging to develop a suitable

  7. Participation of the Halogens in Photochemical Reactions in Natural and Treated Waters

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-10-01

    Full Text Available Halide ions are ubiquitous in natural waters and wastewaters. Halogens play an important and complex role in environmental photochemical processes and in reactions taking place during photochemical water treatment. While inert to solar wavelengths, halides can be converted into radical and non-radical reactive halogen species (RHS by sensitized photolysis and by reactions with secondary reactive oxygen species (ROS produced through sunlight-initiated reactions in water and atmospheric aerosols, such as hydroxyl radical, ozone, and nitrate radical. In photochemical advanced oxidation processes for water treatment, RHS can be generated by UV photolysis and by reactions of halides with hydroxyl radicals, sulfate radicals, ozone, and other ROS. RHS are reactive toward organic compounds, and some reactions lead to incorporation of halogen into byproducts. Recent studies indicate that halides, or the RHS derived from them, affect the concentrations of photogenerated reactive oxygen species (ROS and other reactive species; influence the photobleaching of dissolved natural organic matter (DOM; alter the rates and products of pollutant transformations; lead to covalent incorporation of halogen into small natural molecules, DOM, and pollutants; and give rise to certain halogen oxides of concern as water contaminants. The complex and colorful chemistry of halogen in waters will be summarized in detail and the implications of this chemistry for global biogeochemical cycling of halogen, contaminant fate in natural waters, and water purification technologies will be discussed.

  8. Photochemical synthesis of biomolecules under anoxic conditions

    Science.gov (United States)

    Folsome, C.; Brittain, A.; Zelko, M.

    1983-01-01

    The long-wavelength UV anoxic photosynthesis of uracil, various sugars (including deoxyribose and glycoaldehyde), amino acids, and other organic photoproducts is reported. The reactions were conducted in a mixture of water, calcium carbonate, hydrazine, and formaldehyde which were subjected to 24 hr or 72 hr radiation. Product yields were greatest when the hydrazine/formaldehyde ratio was one, and when the reactant concentrations were low. These data suggest that organic products can be formed in variety from those amounts of formaldehyde and hydazine precursors which are themselves formed under anoxic UV photochemical conditions.

  9. Versatility of hydrocarbon production in cyanobacteria.

    Science.gov (United States)

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H 2 O, and CO 2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  10. Hydrocarbon Plume Dynamics in the Worldś Most Spectacular Hydrocarbon Seeps, Santa Barbara Channel, California

    Science.gov (United States)

    Mau, S.; Reed, J.; Clark, J.; Valentine, D.

    2006-12-01

    Large quantities of natural gas are emitted from the seafloor into the coastal ocean near Coal Oil Point, Santa Barbara Channel (SBC), California. Methane, ethane, and propane were quantified in the surface water at 79 stations in a 270 km2 area in order to map the surficial hydrocarbon plume and to quantify air-sea exchange of these gases. A time series was initiated for 14 stations to identify the variability of the mapped plume, and biologically-mediated oxidation rates of methane were measured to quantify the loss of methane in surface water. The hydrocarbon plume was found to comprise ~70 km2 and extended beyond study area. The plume width narrowed from 3 km near the source to 0.7 km further from the source, and then expanded to 6.7 km at the edge of the study area. This pattern matches the cyclonic gyre which is the normal current flow in this part of the Santa Barbara Channel - pushing water to the shore near the seep field and then broadening the plume while the water turns offshore further from the source. Concentrations of gaseous hydrocarbons decrease as the plume migrates. Time series sampling shows similar plume width and hydrocarbon concentrations when normal current conditions prevail. In contrast, smaller plume width and low hydrocarbon concentrations were observed when an additional anticyclonic eddy reversed the normal current flow, and a much broader plume with higher hydrocarbon concentrations was observed during a time of diminished speed within the current gyre. These results demonstrate that surface currents control hydrocarbon plume dynamics in the SBC, though hydrocarbon flux to the atmosphere is likely less dependent on currents. Estimates of air- sea hydrocarbon flux and biological oxidation rates will also be presented.

  11. Concept for lowest emissions of a hydrogen internal combustion engine; Niedrigstemissionskonzept fuer einen wasserstoffbetriebenen Verbrennungsmotor

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Marcel Christian Thomas

    2012-03-15

    This paper describes a concept with lowest emissions for a hydrogen internal combustion engine for passenger cars. With optimisation of the combustion concept the level of nitrogen oxide is below 90%, hydrocarbon and carbon monoxide below 99% of the SULEV target (CARB). This concept enables a potential in power density that is comparable to current supercharged combustion engines at lowest emission level without catalytic aftertreatment. Additionally with a catalytic aftertreatment system, the emission level of a current hydrogen combustion engine (mono-fuel) is lowered to a level, that this car can be labeled as air cleaning vehicle for hydrocarbons and carbon monoxide.

  12. Nickel films: Nonselective and selective photochemical deposition and properties

    International Nuclear Information System (INIS)

    Smirnova, N.V.; Boitsova, T.B.; Gorbunova, V.V.; Alekseeva, L.V.; Pronin, V.P.; Kon'uhov, G.S.

    2006-01-01

    Nickel films deposited on quartz surfaces by the photochemical reduction of a chemical nickel plating solution were studied. It was found that the deposition of the films occurs after an induction period, the length of which depends on the composition of the photolyte and the light intensity. Ni particles with a mean diameter of 20-30 nm were detected initially by transmission electron microscopy. The particles then increased in size (50 nm) upon irradiation and grouped into rings consisting of 4-5 particles. Irradiation with high-intensity light produces three-dimensional films. The calculated extinction coefficient of the nickel film was found to be 4800 L mol -1 cm -1 . Electron diffraction revealed that the prepared amorphous nickel films crystallize after one day of storage. It was determined that the films exhibit catalytic activity in the process of nickel deposition from nickel plating solution. The catalytic action remains for about 5-7 min after exposure of the films to air. The processes of selective and nonselective deposition of the nickel films are discussed. The use of poly(butoxy titanium) in the process of selective photochemical deposition enables negative and positive images to be prepared on quartz surfaces

  13. Photochemical epoxidation of olefins by visible light in a redox system involving Sb(V) tetraphenylporphyrin and water

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Haruo; Hida, Mitsuhiko (Tokyo Metropolitan Univ. (Japan))

    1989-03-25

    The authors explore electron donors from the viewpoint of solar energy storage. Much attention has been focused on how a water molecule can be incorporated into electron donor system. In this paper, the authors describe a photochemical epoxidation of alkene sensitized by Sb(V)-, P(V)-, Sn(IV)-, Ge(IV)- tetraphenylporphyrin (TPP) with higher oxidation potential than 1.0 Volts vs. NHE in redox systems with a water molecule as an electron donor. The water molecule acts as an electron donor, and alkene acts as an oxygen atom acceptor in this photoredox system. Epoxidation of alkenes usually requires strong oxidizing agents either by the thermal or photochemical method. This is the first example of the photochemical epoxide formation from alkene and water without any strong oxidizing agent. 1 fig.

  14. Cumulative exposure to carbon monoxide during the day

    Energy Technology Data Exchange (ETDEWEB)

    Joumard, R. (INRETS, 69 - Bron (FR))

    The carbon monoxide, CO, has the advantage of being very easily and accurately measured under various conditions. In addition, it allows the translation of CO concentrations into their biological effects. The cumulative CO exposure should be considered according to current environment conditions during a given period of life, e.g. the day. In addition, the translation of concentrations and exposure times of CO fixed on blood haemoglobine (carboxyhaemoglobine) depends on physiological factors such as age, size, sex, or physical activity. This paper gives some examples of CO exposure translated into curves of carboxyhaemoglobine: case of 92 persons whose schedule was studied in details, of customs officers whose exposure was measured during one week, or other theoretical cases. In all the cases studied, smoking is by far the first factor of pollution by carbon monoxide. If not considering this case, the CO contents observed are preoccupying for sensitive subjects (in particular children) only in very rare cases. Furthermore, this approach allows the assessment of maximal allowable concentrations during specific exposures (work, e.g. in a tunnel) by integrating them into normal life conditions and population current exposure.

  15. L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route.

    Science.gov (United States)

    Singh, Avinash; Kunwar, Amit; Rath, M C

    2018-05-01

    L-cysteine capped CdSe quantum dots were synthesized via photochemical route in aqueous solution under UV photo-irradiation. The as grown CdSe quantum dots exhibit broad fluorescence at room temperature. The CdSe quantum dots were found to be formed only through the reactions of the precursors, i.e., Cd(NH3)2+4 and SeSO2-3 with the photochemically generated 1-hydroxy-2-propyl radicals, (CH3)2COH radicals, which are formed through the process of H atom abstraction by the photoexcited acetone from 2-propanol. L-Cysteine was found to act as a suitable capping agent for the CdSe quantum dots and increases their biocompatability. Cytotoxicty effects of these quantum dots were evaluated in Chinese Hamster Ovary (CHO) epithelial cells, indicated a significant lower level for the L-cysteine capped CdSe quantum dots as compare to the bare ones.

  16. Analysis of carbon monoxide (CO) with Delhi Finite Line Source (DFLS) in MT Haryono Street, Medan City

    Science.gov (United States)

    Turmuzi, M.; Suryati, I.; Mashaly, E. T.; Batubara, F.

    2018-02-01

    One source to decrease urban air ambient quality is transportation sector. Important pollutants are released by gas emissions from vehicles are carbon monoxide (CO), hydrocarbons (HC), nitrogen dioxide (NO2), particulate matter and others. The presence of CO pollutants in the ambient air can be predicted by modeling air quality. This study aims to estimate CO concentration resulting from transportation activities using Delhi Finite Line Source (DFLS) model, comparing CO prediction using a DFLS model with CO observation in the field, and determine the suitability of the DFLS model application on the MT Haryono street in Medan City. Research was conducted for 3 days at two sample points with frequency twice daily. Based on research results, the range of CO concentration from observation between 22.903 μg/m3 - 27.484 μg/m3. CO observation is still below the ambient air quality standard. According to the DFLS calculations, the range of CO concentration between 1.499 μg/m3- 2.051 μg/m3. The calculation index of agreement (IOA) validation test obtained value of d = 0.22. The DFLS model is not suitable to be applied on MT Haryono street because many factors affected such as wind direction and wind velocity, ambient air temperature and humidity

  17. Ferromagnetic semiconductor-metal transition in heterostructures of electron doped europium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Stollenwerk, Tobias

    2013-09-15

    In the present work, we develop and solve a self-consistent theory for the description of the simultaneous ferromagnetic semiconductor-metal transition in electron doped Europium monoxide. We investigate two different types of electron doping, Gadolinium impurities and Oxygen vacancies. Besides the conduction band occupation, we can identify low lying spin fluctuations on magnetic impurities as the driving force behind the doping induced enhancement of the Curie temperature. Moreover, we predict the signatures of these magnetic impurities in the spectra of scanning tunneling microscope experiments. By extending the theory to allow for inhomogeneities in one spatial direction, we are able to investigate thin films and heterostructures of Gadolinium doped Europium monoxide. Here, we are able to reproduce the experimentally observed decrease of the Curie temperature with the film thickness. This behavior is attributed to missing coupling partners of the localized 4f moments as well as to an electron depletion at the surface which leads to a reduction of the number of itinerant electrons. By investigating the influence of a metallic substrate onto the phase transition in Gadolinium doped Europium monoxide, we find that the Curie temperature can be increased up to 20%. However, as we show, the underlying mechanism of metal-interface induced charge carrier accumulation is inextricably connected to a suppression of the semiconductor-metal transition.

  18. Ferromagnetic semiconductor-metal transition in heterostructures of electron doped europium monoxide

    International Nuclear Information System (INIS)

    Stollenwerk, Tobias

    2013-09-01

    In the present work, we develop and solve a self-consistent theory for the description of the simultaneous ferromagnetic semiconductor-metal transition in electron doped Europium monoxide. We investigate two different types of electron doping, Gadolinium impurities and Oxygen vacancies. Besides the conduction band occupation, we can identify low lying spin fluctuations on magnetic impurities as the driving force behind the doping induced enhancement of the Curie temperature. Moreover, we predict the signatures of these magnetic impurities in the spectra of scanning tunneling microscope experiments. By extending the theory to allow for inhomogeneities in one spatial direction, we are able to investigate thin films and heterostructures of Gadolinium doped Europium monoxide. Here, we are able to reproduce the experimentally observed decrease of the Curie temperature with the film thickness. This behavior is attributed to missing coupling partners of the localized 4f moments as well as to an electron depletion at the surface which leads to a reduction of the number of itinerant electrons. By investigating the influence of a metallic substrate onto the phase transition in Gadolinium doped Europium monoxide, we find that the Curie temperature can be increased up to 20%. However, as we show, the underlying mechanism of metal-interface induced charge carrier accumulation is inextricably connected to a suppression of the semiconductor-metal transition.

  19. Photochemical Hydrogen Doping Induced Embedded Two-Dimensional Metallic Channel Formation in InGaZnO at Room Temperature.

    Science.gov (United States)

    Kim, Myeong-Ho; Lee, Young-Ahn; Kim, Jinseo; Park, Jucheol; Ahn, Seungbae; Jeon, Ki-Joon; Kim, Jeong Won; Choi, Duck-Kyun; Seo, Hyungtak

    2015-10-27

    The photochemical tunability of the charge-transport mechanism in metal-oxide semiconductors is of great interest since it may offer a facile but effective semiconductor-to-metal transition, which results from photochemically modified electronic structures for various oxide-based device applications. This might provide a feasible hydrogen (H)-radical doping to realize the effectively H-doped metal oxides, which has not been achieved by thermal and ion-implantation technique in a reliable and controllable way. In this study, we report a photochemical conversion of InGaZnO (IGZO) semiconductor to a transparent conductor via hydrogen doping to the local nanocrystallites formed at the IGZO/glass interface at room temperature. In contrast to thermal or ionic hydrogen doping, ultraviolet exposure of the IGZO surface promotes a photochemical reaction with H radical incorporation to surface metal-OH layer formation and bulk H-doping which acts as a tunable and stable highly doped n-type doping channel and turns IGZO to a transparent conductor. This results in the total conversion of carrier conduction property to the level of metallic conduction with sheet resistance of ∼16 Ω/□, room temperature Hall mobility of 11.8 cm(2) V(-1) sec(-1), the carrier concentration at ∼10(20) cm(-3) without any loss of optical transparency. We demonstrated successful applications of photochemically highly n-doped metal oxide via optical dose control to transparent conductor with excellent chemical and optical doping stability.

  20. Photochemical immobilization of anthraquinone conjugated oligonucleotides and PCR amplicons on solid surfaces

    DEFF Research Database (Denmark)

    Koch, T.; Jacobsen, N.; Fensholdt, J.

    2000-01-01

    Ligand immobilization on solid surfaces is an essential step in fields such as diagnostics, bio sensor manufacturing, and new material sciences in general. In this paper a photochemical approach based on anthraquinone as the chromophore is presented. Photochemical procedures offer special...... advantages as they are able to generate highly reactive species in an orientation specific manner. As presented here, anthraquinone (AQ) mediated covalent DNA immobilization appears to be superior to currently known procedures. A synthetic procedure providing AQ-phosphoramidites is presented. These reagents...... facilitate AQ conjugation during routine DNA synthesis, thus enabling the AQ-oligonucleotides to be immobilized in a very convenient and efficient manner. AQ-conjugated PCR primers can be used directly in PCR. When the PCR is performed in solution, the amplicons can be immobilized after the PCR. Moreover...

  1. Predicting hydrocarbon release from soil

    International Nuclear Information System (INIS)

    Poppendieck, D.; Loehr, R.C.

    2002-01-01

    'Full text:' The remediation of hazardous chemicals from soils can be a lengthy and costly process. As a result, recent regulatory initiatives have focused on risk-based corrective action (RBCA) approaches. Such approaches attempt to identify the amount of chemical that can be left at a site with contaminated soil and still be protective of human health and the environment. For hydrocarbons in soils to pose risk to human heath and the environment, the hydrocarbons must be released from the soil and accessible to microorganisms, earthworms, or other higher level organisms. The sorption of hydrocarbons to soil can reduce the availability of the hydrocarbon to receptors. Typically in soils and sediments, there is an initial fast release of a hydrocarbon from the soil to the aqueous phase followed by a slower release of the remaining hydrocarbon to the aqueous phase. The rate and extent of slow release can influence aqueous hydrocarbon concentrations and the fate and transport of hydrocarbons in the subsurface. Once the fast fraction of the chemical has been removed from the soil, the remaining fraction of a chemical may desorb at a rate that natural mechanisms can attenuate the released hydrocarbon. Hence, active remediation may be needed only until the fast fraction has been removed. However, the fast fraction is a soil and chemical specific parameter. This presentation will present a tier I type protocol that has been developed to quickly estimate the fraction of hydrocarbons that are readily released from the soil matrix to the aqueous phase. Previous research in our laboratory and elsewhere has used long-term desorption (four months) studies to determine the readily released fraction. This research shows that a single short-term (less than two weeks) batch extraction procedure provides a good estimate of the fast released fraction derived from long-term experiments. This procedure can be used as a tool to rapidly evaluate the release and bioavailability of

  2. Studies on the photochemical and thermal dissociation synthesis of krypton difluoride

    Energy Technology Data Exchange (ETDEWEB)

    Kinkead, S.A.; FitzPatrick, J.R.; Foropoulos, J. Jr.; Kissane, R.J.; Purson, J.D.

    1993-08-01

    Like dioxygen difluoride (O{sub 2}F{sub 2}), KrF{sub 2} can be produced by thermal dissociation or photochemical synthesis from the elements; however, the yields are invariably much less than those obtained for O{sub 2}F{sub 2}. For example, while irradiation of liquid O{sub 2}/F{sub 2} mixtures at {minus}196{degrees}C through a sapphire window with an unfiltered 1,000W uv lamp provides in excess of 3g of O{sub 2}F{sub 2} per hour, the yield of KrF{sub 2} under identical circumstances is approximately 125 mg/hr. In this report, the yield of KrF{sub 2} in quartz and Pyrex{trademark} photochemical reactors has been examined as a function of irradiation wavelength, irradiation power, and Kr: F{sub 2} mole ratio. The uv-visible spectrum of KrF{sub 2} has also been recorded for comparison with earlier work, and the quantum yield for photodissociation at two wavelengths determined. The synthesis of KrF{sub 2} using large thermal gradients has also been examined using resistively heated nickel filaments to thermally dissociate the F{sub 2} in close proximity to liquid nitrogen-cooled metal surfaces. As a net result, KrF{sub 2} has been produced in yields in excess of 1.75 g/hr for extended periods in photochemical systems, and 2.3 g/hr for shorter periods in thermally dissociative reactors. This paper summarizes the results of examining parametrically several different types of reactors for efficiency of producing krypton difluoride.

  3. Fuel additive improves plant`s air quality

    Energy Technology Data Exchange (ETDEWEB)

    Kratch, K.

    1995-07-01

    Employees of a major pulp and paper manufacturer complained to the Michigan Department of Public Health that emissions from liquefied petroleum gas-powered fork-lifts used in one of the facility`s warehouses were making them ill. The new and tight building was locking in carbon monoxide emissions, according to the plant`s vehicle maintenance supervisor. Although LPG is a clean-burning fuel, it absorbs impurities from pipelines, resulting in emissions problems. After the company introduced a fuel additive to the LPG, employees` symptoms disappeared. According to the maintenance supervisor, there have been no complaints since the additive was introduced five years ago. A major US auto manufacturer also found the additive helpful in reducing carbon monoxide emissions from forklift trucks in a large parts warehouse to levels within OSHA limits. The carmaker conducted a test of 10 forklifts at its Toledo, Ohio, plant to determine the additive`s effectiveness. Trucks were equipped with new or rebuilt vaporizers, and their carburetors were adjusted for the lowest carbon monoxide and hydrocarbon emissions levels prior to the test. According to Advanced Technology, five trucks were filled with LPG and treated with CGX-4, and five used fuel from the same stock but without the additive. All were operated 16 hours a day, six days a week without further tuning or adjusting. Carbon monoxide and hydrocarbon emissions were measured at 30-, 45- and 65-day intervals. Test results show that all of the trucks using the additive maintained low levels of carbon monoxide and hydrocarbon emissions longer than trucks not using the additive.

  4. Reduced combustion mechanism for C1-C4 hydrocarbons and its application in computational fluid dynamics flare modeling.

    Science.gov (United States)

    Damodara, Vijaya; Chen, Daniel H; Lou, Helen H; Rasel, Kader M A; Richmond, Peyton; Wang, Anan; Li, Xianchang

    2017-05-01

    Emissions from flares constitute unburned hydrocarbons, carbon monoxide (CO), soot, and other partially burned and altered hydrocarbons along with carbon dioxide (CO 2 ) and water. Soot or visible smoke is of particular concern for flare operators/regulatory agencies. The goal of the study is to develop a computational fluid dynamics (CFD) model capable of predicting flare combustion efficiency (CE) and soot emission. Since detailed combustion mechanisms are too complicated for (CFD) application, a 50-species reduced mechanism, LU 3.0.1, was developed. LU 3.0.1 is capable of handling C 4 hydrocarbons and soot precursor species (C 2 H 2 , C 2 H 4 , C 6 H 6 ). The new reduced mechanism LU 3.0.1 was first validated against experimental performance indicators: laminar flame speed, adiabatic flame temperature, and ignition delay. Further, CFD simulations using LU 3.0.1 were run to predict soot emission and CE of air-assisted flare tests conducted in 2010 in Tulsa, Oklahoma, using ANSYS Fluent software. Results of non-premixed probability density function (PDF) model and eddy dissipation concept (EDC) model are discussed. It is also noteworthy that when used in conjunction with the EDC turbulence-chemistry model, LU 3.0.1 can reasonably predict volatile organic compound (VOC) emissions as well. A reduced combustion mechanism containing 50 C 1 -C 4 species and soot precursors has been developed and validated against experimental data. The combustion mechanism is then employed in the computational fluid dynamics (CFD) of modeling of soot emission and combustion efficiency (CE) of controlled flares for which experimental soot and CE data are available. The validated CFD modeling tools are useful for oil, gas, and chemical industries to comply with U.S. Environmental Protection Agency's (EPA) mandate to achieve smokeless flaring with a high CE.

  5. GC×GC measurements of C7-C11 aromatic and n-alkane hydrocarbons on Crete, in air from Eastern Europe during the MINOS campaign

    Science.gov (United States)

    Xu, X.; Williams, C.; Plass-Dülmer, H.; Berresheim, H.; Salisbury, G.; Lange, L.; Lelieveld, J.

    2003-09-01

    During the Mediterranean Intensive Oxidant Study (MINOS) campaign in August 2001 gas-phase organic compounds were measured using comprehensive two-dimensional gas chromatography (GCxGC) at the Finokalia ground station, Crete. In this paper, C7-C11 aromatic and n-alkane measurements are presented and interpreted. The mean mixing ratios of the hydrocarbons varied from 1±1 pptv (i-propylbenzene) to 43±36 pptv (toluene). The observed mixing ratios showed strong day-to-day variations and generally higher levels during the first half of the campaign. Mean diel profiles showed maxima at local midnight and late morning, and minima in the early morning and evening. Results from analysis using a simplified box model suggest that both the chemical sink (i.e. reaction with OH) and the variability of source strengths were the causes of the observed variations in hydrocarbon mixing ratios. The logarithms of hydrocarbon concentrations were negatively correlated with the OH concentrations integral over a day prior to the hydrocarbon measurements. Slopes of the regression lines derived from these correlations for different compounds are compared with literature rate constants for their reactions with OH. The slopes for most compounds agree reasonably well with the literature rate constants. A sequential reaction model has been applied to the interpretation of the relationship between ethylbenzene and two of its potential products, i.e. acetophenone and benzeneacetaldehyde. The model can explain the good correlation observed between [acetophenone]/[ethylbenzene] and [benzeneacetaldehyde]/[ethylbenzene]. The model results and field measurements suggest that the reactivity of benzeneacetaldehyde may lie between those of acetophenone and ethylbenzene and that the ratio between yields of acetophenone and benzeneacetaldehyde may be up to 28:1. Photochemical ages of trace gases sampled at Finokalia during the campaign are estimated using the sequential reaction model and related data

  6. Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1927-02-22

    Coal tar, mineral oils, bitumens, coal extraction products, hydrogenation products of coal, oil schists can be atomized and heated with steam to decompose pyrogenetically and form gases rich in olefins which may be heated with or without pressure and with or without catalysts to produce liquid hydrocarbons of low boiling point, some of which may be aromatic. The apparatus should be lined with copper, silica, or ferrosilicon to prevent contact of the bases with iron which causes deposition of soot. Catalysts used may be metal oxides, silica, graphite, active charcoal, mica, pumice, porcelain, barium carbonate, copper, silver, gold, chromium, boron, or their compounds. At temperatures from 300 to 400/sup 0/C, olefins are produced. At higher temperatures, naphthenes and benzene hydrocarbons are produced.

  7. Carbon monoxide - hydrogen combustion characteristics in severe accident containment conditions. Final report

    International Nuclear Information System (INIS)

    2000-03-01

    Carbon monoxide can be produced in severe accidents from interaction of ex-vessel molten core with concrete. Depending on the particular core-melt scenario, the type of concrete and geometric factors affecting the interaction, the quantities of carbon monoxide produced can vary widely, up to several volume percent in the containment. Carbon monoxide is a combustible gas. The carbon monoxide thus produced is in addition to the hydrogen produced by metal-water reactions and by radiolysis, and represents a possibly significant contribution to the combustible gas inventory in the containment. Assessment of possible accident loads to containment thus requires knowledge of the combustion properties of both CO and H 2 in the containment atmosphere. Extensive studies have been carried out and are still continuing in the nuclear industry to assess the threat of hydrogen in a severe reactor accident. However the contribution of carbon monoxide to the combustion threat has received less attention. Assessment of scenarios involving ex-vessel interactions require additional attention to the potential contribution of carbon monoxide to combustion loads in containment, as well as the effectiveness of mitigation measures designed for hydrogen to effectively deal with particular aspects of carbon monoxide. The topic of core-concrete interactions has been extensively studied; for more complete background on the issue and on the physical/thermal-hydraulics phenomena involved, the reader is referred to Proceedings of CSNI Specialists Meetings (Ritzman, 1987; Alsmeyer, 1992) and a State-of-Art Report (European Commission, 1995). The exact amount of carbon monoxide present in a reactor pit or in various compartments (or rooms) in a containment building is specific to the type of concrete and the accident scenario considered. Generally, concrete containing limestone and sand have a high percentage of CaCO 3 . Appendix A provides an example of results of estimates of CO and CO 2

  8. Low-cost process for hydrogen production

    Science.gov (United States)

    Cha, Chang Y.; Bauer, Hans F.; Grimes, Robert W.

    1993-01-01

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen an carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  9. Pathology of carbon monoxide poisoning in two cats.

    Science.gov (United States)

    Sobhakumari, Arya; Poppenga, Robert H; Pesavento, J Brad; Uzal, Francisco A

    2018-03-05

    Carbon monoxide (CO), a common cause of poisoning in human beings has also been implicated in the death of animals. Though there are multiple studies on CO poisoning and relevant lethal blood COHb concentrations in humans, there are no reliable reports of diagnostic lethal carboxyhemoglobin percentage of saturation (COHb%) in cats. Additionally, due to shared housing environments, exposures to companion animals can be a surrogate for lethal exposures in human beings and provide valuable information in concurrent forensic investigations. Two adult Singapura brown ticked cats were submitted to the California Animal Health and Food Safety Laboratory (CAHFS) for necropsy and diagnostic work-up. These animals were found dead along with their two deceased owners. Similar lesions were observed in both cats. At necropsy, gross lesions consisted of multifocal, large, irregular, bright red spots on the skin of the abdomen and the inner surface of ear pinnae, bright red muscles and blood. The carcasses, and tissues fixed in formalin retained the bright red discoloration for up to two weeks. Microscopic lesions included diffuse pulmonary congestion and edema, and multifocal intense basophilia of cardiomyocytes mostly affecting whole fibers or occasionally a portion of the fiber. Based on the clinical history,gross and microscopic changes, cyanide or carbon monoxide poisoning was suspected. Blood samples analyzed for carbon monoxide showed 57 and 41% carboxyhemoglobin COHb%. Muscle samples were negative for cyanide. There are no established reference values for lethal COHb concentration in cats. The COHb % values detected in this case which fell within the lethal range reported for other species, along with the gross lesions and unique histological findings in the heart suggest a helpful criteria for diagnosis of CO intoxication associated death in cats. This case demonstrates that since pets share the same environment as human beings and often are a part of their activities

  10. Photochemical versus biological production of methyl iodide during Meteor 55

    Science.gov (United States)

    Richter, U.; Wallace, D.

    2003-04-01

    The flux of methyl iodide from sea to air represents the largest flux of iodine from the ocean to the atmosphere. Surface water concentrations and hence fluxes are particularly high in tropical regions. This flux may be responsible for the enrichment of iodine in the marine aerosol and may contribute to important processes in the marine boundary layer, including particle formation. Methyl iodide is commonly referred to as a biogenic gas, with both macroalgae and phytoplankton identified as important sources. On the other hand experimental and field data have shown the importance of photochemical production that is not necessarily associated directly with biological activity. During the Meteor cruise 55 along 11°N in the tropical Atlantic Ocean, a series of experiments were conducted to examine the biological vs. photochemical production of methyl iodide. A total of eight separate experiments were conducted. Production of CH3I in quartz glass flasks during 24 hour incubations (dark and natural sunlight) was measured under three experimental treatments: untreated seawater, filtered seawater (0.1 um pore size filter to exclude most phytoplankton and bacteria), and seawater that was poisoned with mercuric chloride. There were two clear findings from these experiments: (1) methyl iodide production was significantly higher in all the incubations that were exposed to the light than in the dark incubations; (2) there was no significant difference between CH3I production under the three experimental treatments. These results argue very strongly for the primary importance of photochemical production of CH3I as opposed to biogenic production at least for the tropical open ocean surface waters. Further experiments are required to investigate the reactants involved, their sources, the wavelength and depth dependence of production, etc. as well as (possibly related) sink processes.

  11. Characteristic and Prediction of Carbon Monoxide Concentration using Time Series Analysis in Selected Urban Area in Malaysia

    Directory of Open Access Journals (Sweden)

    Abdul Hamid Hazrul

    2017-01-01

    Full Text Available Carbon monoxide (CO is a poisonous, colorless, odourless and tasteless gas. The main source of carbon monoxide is from motor vehicles and carbon monoxide levels in residential areas closely reflect the traffic density. Prediction of carbon monoxide is important to give an early warning to sufferer of respiratory problems and also can help the related authorities to be more prepared to prevent and take suitable action to overcome the problem. This research was carried out using secondary data from Department of Environment Malaysia from 2013 to 2014. The main objectives of this research is to understand the characteristic of CO concentration and also to find the most suitable time series model to predict the CO concentration in Bachang, Melaka and Kuala Terengganu. Based on the lowest AIC value and several error measure, the results show that ARMA (1,1 is the most appropriate model to predict CO concentration level in Bachang, Melaka while ARMA (1,2 is the most suitable model with smallest error to predict the CO concentration level for residential area in Kuala Terengganu.

  12. Fractional separation of hydrocarbon vapours

    Energy Technology Data Exchange (ETDEWEB)

    1937-07-10

    A process is described for converting higher boiling hydrocarbons to lower boiling hydrocarbons by subjecting them at elevated temperatures to a conversion operation, then separating the higher and lower boiling fractions. The separation takes place while the reaction products are maintained in the vapor phase by contact with a mass of solid porous material which has little or no catalytic activity but does have a preferential absorption property for higher boiling hydrocarbons so that the lower boiling part of the reaction products pass through the separation zone while the heavier hydrocarbons are retained. The separation is accomplished without substantial loss of heat of these reaction products.

  13. Quenching of excited uranyl ion during its photochemical reduction with triphenyl-phosphine : Part IV - effect of heterocyclic molecules

    International Nuclear Information System (INIS)

    Sidhu, M.S.; Bhatia, P.V.K.

    1994-01-01

    The presence of heterocyclic compounds triggers off a competition between photophysical and photochemical annihilation of excited uranyl ion during its photochemical reduction with triphenylphosphine. This competition is used to measure Stern-Volmer constant using UV visible spectrophotometer for quenching the uranyl ion luminescence with a number of heterocyclic molecules viz., pyridine, thiophene bipyridyl, tetrahydrofuran and piperidine. (author). 7 refs., 2 figs., 1 tab

  14. Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)

    Energy Technology Data Exchange (ETDEWEB)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  15. Carbon monoxide toxicity. January 1978-March 1989 (Citations from the Life Sciences Collection data base). Report for January 1978-March 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-03-01

    This bibliography contains citations concerning the mechanism and clinical manifestations of carbon monoxide exposure, including the effects on the liver, cardiovascular, and nervous systems. Topics include carbon monoxide binding affinity studies with hemoglobin, measurement of carboxyhemoglobin in humans and various animal species, carbon monoxide levels as related to tobacco and marijuana smoke, occupational exposure and the NIOSH biological exposure index, symptomology and percent of blood CO, and intrauterine exposure. Air pollution, tobacco smoking, and occupational exposure are discussed as primary sources of carbon monoxide exposure. The effects of cigarette smoking on fetal development and health are excluded and examined in a separate bibliography. (This updated bibliography contains 221 citations, 19 of which are new entries to the previous edition.)

  16. Wavelength modulation spectroscopy near 5 μm for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor

    Science.gov (United States)

    Lee, Daniel D.; Bendana, Fabio A.; Schumaker, S. Alexander; Spearrin, R. Mitchell

    2018-05-01

    A laser absorption sensor was developed for carbon monoxide (CO) sensing in high-pressure, fuel-rich combustion gases associated with the internal conditions of hydrocarbon-fueled liquid bipropellant rockets. An absorption feature near 4.98 μm, comprised primarily of two rovibrational lines from the P-branch of the fundamental band, was selected to minimize temperature sensitivity and spectral interference with other combustion gas species at the extreme temperatures (> 3000 K) and pressures (> 50 atm) in the combustion chamber environment. A scanned wavelength modulation spectroscopy technique (1 f-normalized 2 f detection) is utilized to infer species concentration from CO absorption, and mitigate the influence of non-absorption transmission losses and noise associated with the harsh sooting combustor environment. To implement the sensing strategy, a continuous-wave distributed-feedback (DFB) quantum cascade laser (QCL) was coupled to a hollow-core optical fiber for remote mid-infrared light delivery to the test article, with high-bandwidth light detection by a direct-mounted photovoltaic detector. The method was demonstrated to measure time-resolved CO mole fraction over a range of oxidizer-to-fuel ratios and pressures (20-70 atm) in a single-element-injector RP-2-GOx rocket combustor.

  17. Spectroscopic investigations of high-power laser-induced dielectric breakdown in gas mixtures containing carbon monoxide.

    Science.gov (United States)

    Civis, Svatopluk; Babánková, Dagmar; Cihelka, Jaroslav; Sazama, Petr; Juha, Libor

    2008-08-07

    Large-scale plasma was created in gas mixtures containing carbon monoxide by high-power laser-induced dielectric breakdown (LIDB). The composition of the mixtures used corresponded to a cometary and/or meteoritic impact into the Earth's early atmosphere. A multiple-centimeter-sized fireball was created by focusing a single 85 J, 450 ps near-infrared laser pulse into the center of a 15 L gas cell. The excited reaction intermediates that formed in various stages of the LIDB plasma chemical evolution were investigated by optical emission spectroscopy (OES) with temporal resolution. Special attention was paid to any OES signs of molecular ions. However, carbon monoxide cations were registered only if their production was enhanced by Penning ionization, i.e., excess He was added to the CO. The chemical consequences of laser-produced plasma generation in a CO-N 2-H 2O mixture were investigated using high resolution Fourier-transform infrared absorption spectroscopy (FTIR) and gas chromatography (GC). Several simple inorganic and organic compounds were identified in the reaction mixture exposed to ten laser sparks. H 2 (18)O was used to avoid possible contamination. The large laser spark triggered more complex reactivity originating in carbon monoxide than expected, when taking into account the strong triple bond of carbon monoxide causing typically inefficient dissociation of this molecule in electrical discharges.

  18. Carbon Monoxide Poisoning: Death on Mount McKinley,

    Science.gov (United States)

    1987-05-08

    Additionally, studies by Astrup(5) and Thomas(6) have reported decreased erythrocytic 2, 3- diphosphoglycerate (2, 3-DPG) concentrations with acute...Halebian, et al found no significant difference in measured 02 consumption or extraction between dogs subjected to CO poisoning vs nitrogen anoxia .(9...Astrup P: Intraerythrocytic 2,3- diphosphoglycerate and carbon monoxide exposure. Ann NY Acad Sci 1970;174:252-254. 6. Thomas MF, Penny DG: Hematologic

  19. Natural clinoptilolite exchanged with iron: characterization and catalytic activity in nitrogen monoxide reduction

    Directory of Open Access Journals (Sweden)

    Daria Tito-Ferro

    2016-12-01

    Full Text Available The aim of this work was to characterize the natural clinoptilolite from Tasajeras deposit, Cuba, modified by hydrothermal ion-exchange with solutions of iron (II sulfate and iron (III nitrate in acid medium. Besides this, its catalytic activity to reduce nitrogen monoxide with carbon monoxide/propene in the presence of oxygen was evaluated. The characterization was performed by Mössbauer and UV-Vis diffuse reflectance spectroscopies and adsorption measurements. The obtained results lead to conclude that in exchanged samples, incorporated divalent and trivalent irons are found in octahedral coordination. Both irons should be mainly in cationic extra-framework positions inside clinoptilolite channels as charge compensating cations, and also as iron oxy-hydroxides resulting from limited hydrolysis of these cations. The iron (III exchanged samples has a larger amount of iron oxy-hydroxides agglomerates. The iron (II exchanged samples have additionally iron (II sulfate adsorbed. The catalytic activity in the nitrogen monoxide reduction is higher in the exchanged zeolites than starting. Among all samples, those exchanged of iron (II has the higher catalytic activity. This lead to outline that, main catalytically active centers are associated with divalent iron.

  20. Carbon Monoxide Poisoning in a Child: A Case Report | Asani ...

    African Journals Online (AJOL)

    The exact incidence of carbon monoxide (CO) poisoning in Nigeria is unknown. Globally, CO poisoning is frequently unrecognized and under-reported since the clinical presentation is relatively non-specific. The circumstances usually involve an unsuspected increase of CO in an enclosed environment. We present the ...

  1. Bioremediation of soils containing petroleum hydrocarbons, chlorinated phenols, and polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Seech, A.; Burwell, S.; Marvan, I.

    1994-01-01

    Bench-scale treatability investigations, pilot-scale and full-scale bioremediation projects were conducted to evaluate Daramend trademark bioremediation of soils containing petroleum hydrocarbons, heavy oils, paraffins, chlorinated phenols and polycyclic aromatic hydrocarbons (PAHs). Bench-scale investigations were conducted using glass microcosms. Pilot-scale and full-scale demonstrations were conducted at industrial sites and included treatment of excavated soils and sediments in on-site cells constructed using synthetic liners and covered by steel/polyethylene structures as well as in-situ treatment. A total of approximately 5,000 tons of soil was treated. The soil treatment included organic soil amendments, specialized tillage/aeration apparatus, and strict control of soil moisture. The amendments are composed of naturally-occurring organic materials prepared to soil-specific particle size distributions, nutrient profiles, and nutrient-release kinetics. Bench-scale work indicated that in refinery soil containing high concentrations of heavy oils, extractable hydrocarbon concentrations could be rapidly reduced to industrial clean-up criteria, and that the hydrocarbons were fully mineralized with release of CO 2

  2. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    isolated fungi could be useful in the bioremediation of hydrocarbon polluted sites. Keywords: ... Technologies such as mechanical force, burying, evaporation, dispersant application, and ..... The effects of drilling fluids on marine bacteria from a.

  3. Formation of chemical compounds from irradiated mixtures of aromatic hydrocarbons and nitrogen oxides

    NARCIS (Netherlands)

    Besemer, A.C.

    1982-01-01

    The paper describes the analysis of products of the photochemical degradation of toluene and toluene-14C in smog chamber experiments. Compounds identified included methylglyoxal, possibly the recently postulated butenedial and other carbonyl compounds. The main product of photochemical degradation

  4. Measuring Trace Hydrocarbons in Silanes

    Science.gov (United States)

    Lesser, L. A.

    1984-01-01

    Technique rapid and uses standard analytical equipment. Silane gas containing traces of hydrocarbons injected into carrier gas of moist nitrogen having about 0.2 percent water vapor. Carrier, water and silane pass through short column packed with powdered sodium hydroxide which combines moisture and silane to form nonvolatile sodium silicate. Carrier gas free of silane but containing nonreactive hydrocarbons, pass to silica-gel column where chromatographic separation takes place. Hydrocarbons measured by FID.

  5. Silica Supported Platinum Catalysts for Total Oxidation of the Polyaromatic Hydrocarbon Naphthalene: An Investigation of Metal Loading and Calcination Temperature

    Directory of Open Access Journals (Sweden)

    David R. Sellick

    2015-04-01

    Full Text Available A range of catalysts comprising of platinum supported on silica, prepared by an impregnation method, have been studied for the total oxidation of naphthalene, which is a representative Polycyclic Aromatic Hydrocarbon. The influence of platinum loading and calcination temperature on oxidation activity was evaluated. Increasing the platinum loading up to 2.5 wt.% increased the catalyst activity, whilst a 5.0 wt.% catalyst was slightly less active. The catalyst containing the optimum 2.5 wt.% loading was most active after calcination in air at 550 °C. Characterisation by carbon monoxide chemisorption and X-ray photoelectron spectroscopy showed that low platinum dispersion to form large platinum particles, in combination with platinum in metallic and oxidised states was important for high catalyst activity. Catalyst performance improved after initial use in repeat cycles, whilst there was slight deactivation after prolonged time-on-stream.

  6. A 60-yr record of atmospheric carbon monoxide reconstructed from Greenland firn air

    Science.gov (United States)

    Petrenko, V. V.; Martinerie, P.; Novelli, P.; Etheridge, D. M.; Levin, I.; Wang, Z.; Blunier, T.; Chappellaz, J.; Kaiser, J.; Lang, P.; Steele, L. P.; Hammer, S.; Mak, J.; Langenfelds, R. L.; Schwander, J.; Severinghaus, J. P.; Witrant, E.; Petron, G.; Battle, M. O.; Forster, G.; Sturges, W. T.; Lamarque, J.-F.; Steffen, K.; White, J. W. C.

    2012-08-01

    We present a reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monoxide (CO) mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO was already higher in 1950 than it is today. CO mole fractions rose gradually until the 1970s and peaked in the 1970s or early 1980s, followed by a decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radical (OH), as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless large changes in OH are assumed. We argue that the available CO emission inventories chronically underestimate NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe.

  7. Supply Ventilation and Prevention of Carbon Monoxide (II) Ingress into Building Premises

    Science.gov (United States)

    Litvinova, N. A.

    2017-11-01

    The article contains the relationships of carbon monoxide (II) concentration versus height-above-ground near buildings derived based on results of studies. The results of studies are crucial in preventing external pollutants ingress into a ventilation system. Being generated by external emission sources, such as motor vehicles and city heating plants, carbon monoxide (II) enters the premises during operation of a supply ventilation system. Fresh air nomographic charts were drawn to select the height of a fresh air intake into the ventilation system. Nomographic charts take into account external sources. The selected emission sources are located at various levels above ground relative to the building. The recommendations allow designing supply ventilation taking into account the quality of ambient air through the whole building height.

  8. Theoretical studies on the catalytic oxidation of carbon monoxide on nickel clusters

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K.; Kojima, I.; Miyazaki, E.

    1986-01-01

    Complete neglect of differential overlap (CNDO) molecular orbital calculations using the method of Anno and Sakai for the evaluation of the valence orbital ionization potential (VOIP) were performed with the aim of studying the oxidation of carbon monoxide on nickel clusters. A cluster surface was assumed to be preadsorbed with oxygen and the variation of various bond energies with the approach of a carbon monoxide molecule was studied for different models. Various possibilities for the reaction path are discussed in the light of the theoretical findings and it is suggested that at a low coverage of oxygen the reaction may follow a Langmuir-Hinshelwood path, whereas at a high coverage, an Eley-Rideal path might be more probable. 55 references, 13 figures.

  9. Purifying hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Rostin, H

    1938-08-11

    A process is described for continuously purifying hydrocarbon oils consisting in conducting the vapors of the same at a temperature of 300 to 400/sup 0/C over the oelitic ore minette together with reducing gases in presence of steam the proportion of the reducing gases and steam being such that the sulfur of the hydrocarbons escapes from the reaction chamber in the form of sulfuretted hydrogen without permanent sulfide of iron being formed.

  10. Hydrogen Oxidation on Gas Diffusion Electrodes for Phosphoric Acid Fuel Cells in the Presence of Carbon Monoxide and Oxygen

    DEFF Research Database (Denmark)

    Gang, Xiao; Li, Qingfeng; Hjuler, Hans Aage

    1995-01-01

    Hydrogen oxidation has been studied on a carbon-supported platinum gas diffusion electrode in a phosphoric acidelectrolyte in the presence of carbon monoxide and oxygen in the feed gas. The poisoning effect of carbon monoxide presentin the feed gas was measured in the temperature range from 80...... to 150°C. It was found that throughout the temperaturerange, the potential loss due to the CO poisoning can be reduced to a great extent by the injection of small amounts ofgaseous oxygen into the hydrogen gas containing carbon monoxide. By adding 5 volume percent (v/o) oxygen, an almost...

  11. Smog chamber studies on the air chemistry of biogenic hydrocarbons in the presence of ozone, NOx and SO2

    International Nuclear Information System (INIS)

    Nolting, F.; Zetzsch, C.

    1990-01-01

    The influence of SO 2 on the photochemical degradation processes of the biogenic hydrocarbon α-pinene was studied with respect to the present forest decline. For that purpose premixed air was irradiated with simulated sunlight in laboratory experiments using a modified smog chamber. The performance of a novel semi continuous analyzer for H 2 SO 4 /sulfate was tested for smog chamber studies of the transformation of SO 2 to sulfuric acid and sulfur containing aerosol. An influence of SO 2 on the formation of ozone was not detected. The rates of degradation cannot be described by gas phase reactions alone, and, in addition, they are faster in the presence of humidity. Depending on humidity, 30-50% of the consumed SO 2 can be recovered in the suspended aerosol. In the presence of 60% relative humidity the nearly exclusive product is sulfur aerosol that needs further characterization. (orig.) With 9 figs., 42 refs [de

  12. Recovering low-boiling hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1934-10-03

    A process is described for the recovery of low-boiling hydrocarbons of the nature of benzine through treatment of liquid carbonaceous materials with hydrogen under pressure at raised temperature, suitably in the presence of catalysts. Middle oils (practically saturated with hydrogen) or higher boiling oils at a temperature above 500/sup 0/ (with or without the addition of hydrogen) containing cyclic hydrocarbons not saturated with hydrogen are changed into low boiling hydrocarbons of the nature of benzine. The cracking takes place under strongly hydrogenating conditions (with the use of a strongly active hydrogenating catalyst or high pressure) at temperatures below 500/sup 0/. If necessary, the constituents boiling below 200/sup 0/ can be reconverted into cyclic hydrocarbons partially saturated with hydrogen. (BLM)

  13. Low concentration of exogenous carbon monoxide protects mammalian cells against proliferation induced by radiation-induced bystander effect

    International Nuclear Information System (INIS)

    Tong, Liping; Yu, K.N.; Bao, Lingzhi; Wu, Wenqing; Wang, Hongzhi; Han, Wei

    2014-01-01

    Highlights: • We show the possibility of modulate proliferation induced by radiation-induced bystander effect with low concentration carbon monoxide. • Carbon monoxide inhibited proliferation via modulating the transforming growth factor β1 (TGF-β1)/nitric oxide (NO) signaling pathway. • Exogenous carbon monoxide has potential application in clinical radiotherapy. - Abstract: Radiation-induced bystander effect (RIBE) has been proposed to have tight relationship with the irradiation-caused secondary cancers beyond the irradiation-treated area after radiotherapy. Our previous studies demonstrated a protective effect of low concentration carbon monoxide (CO) on the genotoxicity of RIBE after α-particle irradiation. In the present work, a significant inhibitory effect of low-dose exogenous CO, generated by tricarbonyldichlororuthenium (II) dimer [CO-releasing molecule (CORM-2)], on both RIBE-induced proliferation and chromosome aberration was observed. Further studies on the mechanism revealed that the transforming growth factor β1/nitric oxide (NO) signaling pathway, which mediated RIBE signaling transduction, could be modulated by CO involved in the protective effects. Considering the potential of exogenous CO in clinical applications and its protective effect on RIBE, the present work aims to provide a foundation for potential application of CO in radiotherapy

  14. Low concentration of exogenous carbon monoxide protects mammalian cells against proliferation induced by radiation-induced bystander effect

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Liping [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Bao, Lingzhi; Wu, Wenqing; Wang, Hongzhi [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Han, Wei, E-mail: hanw@hfcas.cn [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-01-15

    Highlights: • We show the possibility of modulate proliferation induced by radiation-induced bystander effect with low concentration carbon monoxide. • Carbon monoxide inhibited proliferation via modulating the transforming growth factor β1 (TGF-β1)/nitric oxide (NO) signaling pathway. • Exogenous carbon monoxide has potential application in clinical radiotherapy. - Abstract: Radiation-induced bystander effect (RIBE) has been proposed to have tight relationship with the irradiation-caused secondary cancers beyond the irradiation-treated area after radiotherapy. Our previous studies demonstrated a protective effect of low concentration carbon monoxide (CO) on the genotoxicity of RIBE after α-particle irradiation. In the present work, a significant inhibitory effect of low-dose exogenous CO, generated by tricarbonyldichlororuthenium (II) dimer [CO-releasing molecule (CORM-2)], on both RIBE-induced proliferation and chromosome aberration was observed. Further studies on the mechanism revealed that the transforming growth factor β1/nitric oxide (NO) signaling pathway, which mediated RIBE signaling transduction, could be modulated by CO involved in the protective effects. Considering the potential of exogenous CO in clinical applications and its protective effect on RIBE, the present work aims to provide a foundation for potential application of CO in radiotherapy.

  15. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    Science.gov (United States)

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  16. Water Treatment Process Intensification by Combination of Electrochemical and Photochemical Methods

    Czech Academy of Sciences Publication Activity Database

    Krystyník, Pavel; Klusoň, Petr; Tito, D.N.

    2015-01-01

    Roč. 94, SI (2015), s. 85-92 ISSN 0255-2701 R&D Projects: GA MPO(CZ) FR-TI1/065; GA TA ČR TA03010548 Institutional support: RVO:67985858 Keywords : electrocoagulation * photochemical oxidation * TOC removal Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.154, year: 2015

  17. A Universal Protocol for Photochemical Covalent Immobilization of Intact Carbohydrates for the Preparation of Carbohydrate Microarrays

    Science.gov (United States)

    Wang, Huibin; Zhang, Yiming; Yuan, Xun; Chen, Yi; Yan, Mingdi

    2010-01-01

    A universal photochemical method has been established for the immobilization of intact carbohydrates and their analogues, and for the fabrication of carbohydrate microarrays. The method features the use of perfluorophenyl azide (PFPA)-modified substrates and the photochemical reaction of surface azido groups with printed carbohydrates. Various aldoses, ketoses, non-reducing sugars such as alditols and their derivatives can be directly arrayed on the PFPA-modified chips. The lectin-recognition ability of arrayed mannose, glucose and their oligo- and polysaccharides were confirmed using surface plasmon resonance imaging and laser-induced fluorescence imaging. PMID:21138274

  18. Acute Compartment Syndrome Which Causes Rhabdomyolysis by Carbon Monoxide Poisoning and Sciatic Nerve Injury Associated with It: A Case Report.

    Science.gov (United States)

    Ji, Jung-Woo

    2017-09-01

    Rhabdomyolysis is most frequently caused by soft tissue injury with trauma to the extremities. Non-traumatic rhabdomyolysis may be caused by alcohol or drug abuse, infection, collagen disease, or intensive exercise, but incidence is low. In particular, rhabdomyolysis resulting from carbon monoxide poisoning is especially rare. If caught before death, carbon monoxide poisoning has been shown to cause severe muscle necrosis and severe muscle damage leading to acute renal failure. In cases of carbon-monoxide-induced rhabdomyolsis leading to acute compartment syndrome in the buttocks and sciatic nerve injury are rare. We have experience treating patients with acute compartment syndrome due to rhabdomyolysis following carbon monoxide poisoning. We report the characteristic features of muscle necrosis observed during a decompression operation and magnetic resonance imaging findings with a one-year follow-up in addition to a review of the literature.

  19. Syntrophic biodegradation of hydrocarbon contaminants.

    Science.gov (United States)

    Gieg, Lisa M; Fowler, S Jane; Berdugo-Clavijo, Carolina

    2014-06-01

    Anaerobic environments are crucial to global carbon cycling wherein the microbial metabolism of organic matter occurs under a variety of redox conditions. In many anaerobic ecosystems, syntrophy plays a key role wherein microbial species must cooperate, essentially as a single catalytic unit, to metabolize substrates in a mutually beneficial manner. Hydrocarbon-contaminated environments such as groundwater aquifers are typically anaerobic, and often methanogenic. Syntrophic processes are needed to biodegrade hydrocarbons to methane, and recent studies suggest that syntrophic hydrocarbon metabolism can also occur in the presence of electron acceptors. The elucidation of key features of syntrophic processes in defined co-cultures has benefited greatly from advances in 'omics' based tools. Such tools, along with approaches like stable isotope probing, are now being used to monitor carbon flow within an increasing number of hydrocarbon-degrading consortia to pinpoint the key microbial players involved in the degradative pathways. The metagenomic sequencing of hydrocarbon-utilizing consortia should help to further identify key syntrophic features and define microbial interactions in these complex communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Measurements on high temperature fuel cells with carbon monoxide-containing fuel gases; Messungen an Hochtemperatur-Brennstoffzellen mit kohlenmonoxidhaltigen Brenngasen

    Energy Technology Data Exchange (ETDEWEB)

    Apfel, Holger

    2012-10-10

    In the present work the different power density of anode-supported high-temperature solid oxide fuel cells (ASC-SOFCs) were examined for carbon monoxide-containing fuels. In addition to wet hydrogen / carbon monoxide mixtures the cells were run with synthetic gas mixtures resembling the products of an autothermal reformer, and actual reformate generated by a 2 kW autothermal reformer. It was found that the power-voltage characteristics of an ASC depends primarily on the open circuit voltages of different gas mixtures, but is nearly independent of the hydrogen concentration of the fuel, although the reaction rates of other potential fuels within the gas mixture, namely carbon monoxide and methane, are much lower that the hydrogen reaction rate. The probable reason is that the main fuel for the electrochemical oxidation within the cell is hydrogen, while the nickel in the base layer of the anode acts as a reformer which replenishes the hydrogen by water reduction via carbon monoxide and methane oxidation.

  1. High-resolution gas chromatographic analysis of polycyclic aromatic hydrocarbons and aliphatic hydrocarbons

    International Nuclear Information System (INIS)

    Perez, M.; Gonzalez, D.

    1988-01-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons and aliphatic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column in two different polar stationary phases OV-1 and SE-54. The limitation and the advantages of the procedure are discussed in terms of separation, sensitivity and precision. (Author) 20 refs

  2. Pathways and bioenergetics of anaerobic carbon monoxide fermentation.

    OpenAIRE

    Martijn eDiender; Alfons J.M. Stams; Alfons J.M. Stams; Diana Z. Sousa

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis and acetogenesis, ...

  3. Hydrocarbon pollution from marinas in estuarine sediments

    Science.gov (United States)

    Voudrias, Evangelos A.; Smith, Craig L.

    1986-03-01

    A measure of the impact of marinas on three Eastern Virginia estuarine creeks was obtained by a study of hydrocarbons in their sediments. Two of the creeks support considerable marine activity, including pleasure boat marinas, boat repair facilities, and commercial fishing operations. The third creek, which served as a control, is seldom used by boats, and is surrounded by marsh and woodland. Sediments from the creeks with marinas contained significantly higher levels of both aromatic and aliphatic hydrocarbons than did the control. Differences in the concentrations of certain oil-pollution indicators, such as the 17α,21β-hopane homologs and phytane, and low molecular weight aromatic hydrocarbons, are indicative of light petroleum fractions. Most of the aromatic hydrocarbons from all creeks, however, appear to have a pyrogenic origin. Although hydrocarbons from three probable origins (petroleum, pyrogenesis, and recent biosynthesis) were detected in all locations, the petroleum-derived and pyrogenic hydrocarbons were of only minor importance relative to the biogenic hydrocarbons in the control creek.

  4. Intraspecific variation in Pinus pinaster PSII photochemical efficiency in response to winter stress and freezing temperatures.

    Directory of Open Access Journals (Sweden)

    Leyre Corcuera

    Full Text Available As part of a program to select maritime pine (Pinus pinaster Ait. genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT₅₀, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site.P. pinaster showed sensitivity to winter stress at the continental site, during the colder winter. The combination of low temperatures, high solar irradiation and low precipitation caused sustained decreases in maximal photochemical efficiency (F(v/F(m, quantum yield of non-cyclic electron transport (Φ(PSII and photochemical quenching (qP. The variation in photochemical parameters was larger among families than among populations, and population differences appeared only under the harshest conditions at the continental site. As expected, the environmental effects (winter and site on the photochemical parameters were much larger than the genotypic effects (population or family. LT₅₀ was closely related to the minimum winter temperatures of the population's range. The dark-adapted F(v/F(m ratio discriminated clearly between interior and coastal populations.In conclusion, variations in F(v/F(m, Φ(PSII, qP and non-photochemical quenching (NPQ in response to winter stress were primarily due to the differences between the winter conditions and the sites and secondarily due to the differences among families and their interactions with the environment. Populations from continental climates showed higher frost tolerance (LT₅₀ than coastal populations that typically experience mild

  5. Intraspecific variation in Pinus pinaster PSII photochemical efficiency in response to winter stress and freezing temperatures.

    Science.gov (United States)

    Corcuera, Leyre; Gil-Pelegrin, Eustaquio; Notivol, Eduardo

    2011-01-01

    As part of a program to select maritime pine (Pinus pinaster Ait.) genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT₅₀, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site.P. pinaster showed sensitivity to winter stress at the continental site, during the colder winter. The combination of low temperatures, high solar irradiation and low precipitation caused sustained decreases in maximal photochemical efficiency (F(v)/F(m)), quantum yield of non-cyclic electron transport (Φ(PSII)) and photochemical quenching (qP). The variation in photochemical parameters was larger among families than among populations, and population differences appeared only under the harshest conditions at the continental site. As expected, the environmental effects (winter and site) on the photochemical parameters were much larger than the genotypic effects (population or family). LT₅₀ was closely related to the minimum winter temperatures of the population's range. The dark-adapted F(v)/F(m) ratio discriminated clearly between interior and coastal populations.In conclusion, variations in F(v)/F(m), Φ(PSII), qP and non-photochemical quenching (NPQ) in response to winter stress were primarily due to the differences between the winter conditions and the sites and secondarily due to the differences among families and their interactions with the environment. Populations from continental climates showed higher frost tolerance (LT₅₀) than coastal populations that typically experience mild winters

  6. BIOREMEDIATION OF A PETROLEUM-HYDROCARBON

    African Journals Online (AJOL)

    ES OBE

    under field conditions in the bioremediation of a petroleum- hydrocarbon polluted ... an accelerated biodegradation of petroleum hydrocarbons in a polluted agricultural soil ..... 12) Jackson, M.L. Soil chemical analysis. ... biological assay. 3 rd.

  7. Carbon monoxide toxicity. April 1978-November 1989 (A Bibliography from the Life Sciences Collection data base). Report for April 1978-November 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    This bibliography contains citations concerning the mechanism and clinical manifestations of carbon monoxide exposure, including the effects on the liver, cardiovascular, and nervous systems. Topics include carbon monoxide binding affinity studies with hemoglobin, measurement of carboxyhemoglobin in humans and various animal species, carbon monoxide levels as related to tobacco and marijuana smoke, occupational exposure and the NIOSH biological exposure index, symptomology and percent of blood CO, and intrauterine exposure. Air pollution, tobacco smoking, and occupational exposure are discussed as primary sources of carbon monoxide exposure. The effects of cigarette smoking on fetal development and health are excluded and examined in a separate bibliography. (This updated bibliography contains 237 citations, 16 of which are new entries to the previous edition.)

  8. Photochemically induced oscillations of aromatic pentazadienes

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, T; Hahn, C; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Aromatic pentazadienes are used to enhance the laser induced ablation of standard polymers with low absorption in the UV. Therefore the photochemistry of substituted 1,5-diaryl-3-alkyl-1,4-pentazadiene monomers was studied with a pulsed excimer laser as irradiation source. The net photochemical reaction proceeds in an overall one-step pathway A{yields}B. Quantum yields for the laser decomposition were determined to be up to 10%. An oscillating behaviour of the absorption was found during the dark period following the irradiation. The temperature dependence of this dark reaction has been studied. An attempt to model this behaviour in terms of a non-linear coupling between heat released, heat transfer, and reaction kinetics will be described. (author) 4 figs., 4 refs.

  9. 75 FR 58305 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Revised Format for...

    Science.gov (United States)

    2010-09-24

    ... monoxide, Hydrocarbons, Incorporation by reference, Intergovernmental relations, Lead, Nitrogen dioxide... 60735 Sec. 6. 7/31/2009 11/20/2009, 74 FR 60197 Sec. 3. 1-2 Definitions 9/26/1980 11/5/1981, 46 FR 54943.../2009, 74 FR 52891.... Paragraph (c). and Marion Cos. 2009 Chicago Hydrocarbon Control Strategy..... 8...

  10. MLS/Aura L2 Chlorine Monoxide (ClO) Mixing Ratio V002

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2CLO is the EOS Aura Microwave Limb Sounder (MLS) standard product for chlorine monoxide derived from radiances measured primarily by the 640 GHz radiometer. The...

  11. Aliphatic hydrocarbon and polycyclic aromatic hydrocarbon geochemistry of twelve major rivers in the Northwest Territories

    International Nuclear Information System (INIS)

    Backus, S.; Swyripa, M.; Peddle, J.; Jeffries, D.S.

    1995-01-01

    Suspended sediment and water samples collected from twelve major rivers in the Northwest Territories were analyzed for aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) to assess the sources and transport of hydrocarbons entering the Arctic Ocean. Three stations on the Mackenzie River and one station near the mouth of eleven other northern rivers were selected for sampling. Samples were collected on the Mackenzie River on four occasions to characterize spring, summer and fall flow conditions and once on the remaining eleven rivers during high flow conditions. The Mackenzie River is distinctively different then the other eleven rivers. Naturally occurring hydrocarbons predominate in the river. These hydrocarbons include biogenic alkanes, diagenic PAHs, petrogenic alkanes, and PAHs from oil seeps and/or bitumens. Anthropogenic inputs of PAHs are low as indicated by low concentrations of combustion PAHs. Alkyl PAH distributions indicate that a significant component of the lower molecular weight PAH fraction is petrogenic. The majority of the high molecular weight PAHs, together with the petrogenic PAHs have a principal source in the Mackenzie River

  12. 40 CFR Table 5 to Subpart Jjj of... - Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...

  13. Photodegradation of polycyclic aromatic hydrocarbon pyrene by iron oxide in solid phase

    International Nuclear Information System (INIS)

    Wang, Y.; Liu, C.S.; Li, F.B.; Liu, C.P.; Liang, J.B.

    2009-01-01

    To better understand the photodegradation of polycyclic aromatic hydrocarbons (PAH) in solid phase in natural environment, laboratory experiments were conducted to study the influencing factors, kinetics and intermediate compound of pyrene photodegradation by iron oxides. The results showed that the pyrene photodegradation rate followed the order of α-FeOOH > α-Fe 2 O 3 > γ-Fe 2 O 3 > γ-FeOOH at the same reaction conditions. Lower dosage of α-FeOOH and higher light intensity increased the photodegradation rate of pyrene. Iron oxides and oxalic acid can set up a photo-Fenton-like system without additional H 2 O 2 in solid phase to enhance the photodegradation of pyrene under UV irradiation. All reaction followed the first-order reaction kinetics. The half-life (t 1/2 ) of pyrene in the system showed the higher efficiencies of using iron oxide as photocatalyst to degrade pyrene. Intermediate compound pyreno was found during photodegradation reactions by gas chromatography-mass spectrometry (GC-MS). The photodegradation efficiency for PAHs in this photo-Fenton-like system was also confirmed by using the contaminated soil samples. This work provides some useful information to understand the remediation of PAHs contaminated soils by photochemical techniques under practical condition

  14. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1988-09-13

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.

  15. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Martins

    2012-09-01

    Full Text Available Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  16. Systemic Administration of Carbon Monoxide-Releasing Molecule-3 Protects the Skeletal Muscle in Porcine Model of Compartment Syndrome.

    Science.gov (United States)

    Bihari, Aurelia; Cepinskas, Gediminas; Sanders, David; Lawendy, Abdel-Rahman

    2018-05-01

    Acute limb compartment syndrome, a complication of musculoskeletal trauma, results in muscle necrosis and cell death. Carbon monoxide, liberated from the carbon monoxide-releasing molecule-3, has been shown protective in a rat model of compartment syndrome. The purpose of this study was to test the effect of carbon monoxide-releasing molecule-3 in a preclinical large animal model of compartment syndrome, with the ultimate goal of developing a pharmacologic adjunct treatment for compartment syndrome. Animal research study. Basic research laboratory in a hospital setting. Male Yorkshire-Landrace pigs (50-60 kg). Pigs underwent 6 hours of intracompartmental pressure elevation by infusing fluid into the anterior compartment of the right hind limb. Carbon monoxide-releasing molecule-3 was administered systemically (2 mg/kg, IV) at fasciotomy, followed by 3-hour reperfusion. Muscle perfusion, inflammation, injury, and apoptosis were assessed in the skeletal muscle. Systemic leukocyte activation was assessed during compartment syndrome and reperfusion. Elevation of hind limb intracompartmental pressure resulted in significant microvascular perfusion deficits (44% ± 1% continuously perfused capillaries in compartment syndrome vs 76% ± 4% in sham; p molecule-3 at fasciotomy increased the number of continuously perfused capillaries (68% ± 3%; p molecule-3 at fasciotomy offered protection against compartment syndrome-induced microvascular perfusion deficit, tissue injury, and systemic leukocyte activation. The data suggest the potential therapeutic application of carbon monoxide-releasing molecule-3 to patients at risk of developing compartment syndrome.

  17. Range measurements of keV hydrogen ions in solid oxygen and carbon monoxide

    International Nuclear Information System (INIS)

    Schou, J.; Soerensen, H.; Andersen, H.H.; Nielsen, M.; Rune, J.

    1984-01-01

    Ranges of 1.3-3.5 keV/atom hydrogen and deuterium molecular ions have been measured by a thin-film reflection method. The technique, used here for range measurements in solid oxygen and carbon monoxide targets, is identical to the one used previously for range measurements in hydrogen and nitrogen. The main aim was to look for phase-effects, i.e. gas-solid differences in the stopping processes. While measured ranges in solid oxygen were in agreement with known gas data, the ranges in solid carbon monoxide were up to 50% larger than those calculated from gas-stopping data. The latter result agrees with that previously found for solid nitrogen. (orig.)

  18. Formation of chemical compounds from irradiated mixtures of aromatic hydrocarbons and nitrogen oxides

    International Nuclear Information System (INIS)

    Besemer, A.C.

    1982-01-01

    The analysis of products of the photochemical degradation of toluene and toluene- 14 C in smog chamber experiments is described. Compounds identified included methylglyoxal, possibly the recently postulated butenedial and other carbonyl compounds. The main product of photochemical degradation of methylglyoxal appeared to be acetaldehyde. (author)

  19. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    Science.gov (United States)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  20. Ozonolysis and Subsequent Photolysis of unsaturated organic molecules: Model Systems for Photochemical Aging of Organic Aerosol Particles

    Science.gov (United States)

    Park, J.; Gomez, A. L.; Walser, M. L.; Lin, A.; Nizkorodov, S. A.

    2005-12-01

    Chemical and photochemical aging of organic species adsorbed on aerosol particle surfaces is believed to have a significant effect on cloud condensation properties of atmospheric aerosols. Ozone initiated oxidation reactions of thin films of undecylenic acid and alkene-terminated self assembled monolayers (SAMs) on SiO2 surface were investigated using a combination of spectroscopic and mass spectrometric techniques. Photolysis of the oxidized film in the tropospheric actinic region (λ>290 nm) readily produces formaldehyde and formic acid as gas-phase products. Photodissociation action spectra of the oxidized film suggest that organic peroxides are responsible for the enhanced photochemical activity. The presence of peroxides in the oxidized sample was confirmed by mass-spectrometric analysis and by an iodometric test. Significant polymerization resulting from secondary reactions of Criegee radicals during ozonolysis of the film is also observed. The reaction mechanism and its implications for photochemical aging of atmospheric aerosol particles will be discussed.

  1. Organic photochemical reactions on solid surfaces: Enrichment and separation of isotopes. Final report. SBIR-1988, Phase 2

    International Nuclear Information System (INIS)

    Ruderman, W.; Fehlner, J.; Spencer, J.

    1988-01-01

    The objectives of the Phase II program were to: (1) investigate organic photochemical reactions on solid porous silica surfaces, (2) utilize the magnetic isotope effect to develop a (13)C enrichment process using a fluidized bed reactor, and (3) investigate the possibility of enrichment of heavier isotopes having a nuclear spin. Although researchers were able to demonstrate a continuous fluidized bed (13)C enrichment process, analysis showed that the process could not compete with low temperature distillation of CO because of the high cost of the starting material, dibenzylketone (DBK), and the difficulty of converting the photochemical decomposition products back to DBK. However, the process shows promise for the separation of heavier isotopes such as (29)Si. The photochemical studies led to the discovery that the selectivity for terminal chlorination of alkanes can be increased more than 25 fold by sorbing the alkanes on ZSM-5 zeolites in a fluidized bed. The selectivity is ascribed to the presence of interfaces within the crystals

  2. Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai.

    Science.gov (United States)

    Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Zhang, Renyi; Wang, Xinming

    2014-09-01

    The aerosol number concentration and size distribution as well as size-resolved particle chemical composition were measured during haze and photochemical smog episodes in Shanghai in 2009. The number of haze days accounted for 43%, of which 30% was severe (visibilitysmog episodes, about 5.89 times and 4.29 times those of clean days. The particle volume concentration and surface concentration in haze, photochemical smog and clean days were 102, 49, 15μm(3)/cm(3) and 949, 649, 206μm(2)/cm(3), respectively. As haze events got more severe, the number concentration of particles smaller than 50nm decreased, but the particles of 50-200nm and 0.5-1μm increased. The diurnal variation of particle number concentration showed a bimodal pattern in haze days. All soluble ions were increased during haze events, of which NH4(+), SO4(2-) and NO3(-) increased greatly, followed by Na(+), K(+), Ca(2+) and Cl(-). These ions were very different in size-resolved particles during haze and photochemical smog episodes. Copyright © 2014. Published by Elsevier B.V.

  3. Photochemical recombination of deep centers in silicon: decay of donor-acceptor pairs

    International Nuclear Information System (INIS)

    Adilov, K.A.

    1991-01-01

    Processes of photochemical recombination of deep impurity centers (DIC) in p-Si alloyed by Te, Zn and Fe occuring at 300-350 K under irradiation by super-low-energy light from δ 14 -10 17 quantum/cm 2 )Xs intensity impurity absorption range, are considered

  4. The electric dipole moment of cobalt monoxide, CoO.

    Science.gov (United States)

    Zhuang, Xiujuan; Steimle, Timothy C

    2014-03-28

    A number of low-rotational lines of the E(4)Δ7/2 ← X(4)Δ7/2 (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h7/2, and the electron quadrupole parameter, eQq0, for the E(4)Δ7/2(υ = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, μ(→)(el), for the X(4)Δ7/2 (υ = 0) and E(4)Δ7/2 (υ = 1) states were determined to be 4.18 ± 0.05 D and 3.28 ± 0.05 D, respectively, from the analysis of the observed Stark spectra of F' = 7 ← F″ = 6 branch feature in the Q(7/2) line and the F' = 8 ← F″ = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.

  5. Atmospheric photochemical reactivity and ozone production at two sites in Hong Kong: Application of a Master Chemical Mechanism-photochemical box model

    Science.gov (United States)

    Ling, Z. H.; Guo, H.; Lam, S. H. M.; Saunders, S. M.; Wang, T.

    2014-09-01

    A photochemical box model incorporating the Master Chemical Mechanism (v3.2), constrained with a full suite of measurements, was developed to investigate the photochemical reactivity of volatile organic compounds at a semirural site (Mount Tai Mo Shan (TMS)) and an urban site (Tsuen Wan (TW)) in Hong Kong. The levels of ozone (O3) and its precursors, and the magnitudes of the reactivity of O3 precursors, revealed significant differences in the photochemistry at the two sites. Simulated peak hydroperoxyl radical (HO2) mixing ratios were similar at TW and TMS (p = 0.05), while the simulated hydroxyl radical (OH) mixing ratios were much higher at TW (p TMS, but at TW, both HCHO and O3 photolyses were found to be major contributors. By contrast, radical-radical reactions governed HOx radical losses at TMS, while at TW, the OH + NO2 reaction was found to dominate in the morning and the radical-radical reactions at noon. Overall, the conversion of NO to NO2 by HO2 dictated the O3 production at the two sites, while O3 destruction was dominated by the OH + NO2 reaction at TW, and at TMS, O3 photolysis and the O3 + HO2 reaction were the major mechanisms. The longer OH chain length at TMS indicated that more O3 was produced for each radical that was generated at this site.

  6. Photochemical and Spectroscopic Effects Resulting from Excimer Laser Excitation.

    Science.gov (United States)

    Wang, Xuan Xiao

    I. Photochemical production of ozone from pure oxygen using excimer lasers. Production of ozone was observed from experiments when oxygen was under a broadband pulsed KrF laser radiation. The production process was found to be autocatalytic. Mechanisms for the ozone formation were proposed. Experimental results over a range of oxygen pressure and laser pulse energy (irradiance) provided evidences in favor of the proposed mechanisms. Experiments were also numerically modeled. Good agreement between the experimental and the numerical results were observed, which provided further evidence to support the proposed mechanisms. Cross sections for some photochemical processes in the mechanisms were estimated. Production of ozone from pure oxygen under a ArF excimer laser radiation (193 nm) was also studied and numerically modeled. Effects of ambient water vapor on ozone production were investigated. Experimental results showed a fast ozone destruction when water vapor was present in the cell. However, numerical results obtained from the well-known OH and HO _2 chain ozone destruction mechanism predicted a slower ozone destruction. Possible reasons for the discrepancy are discussed. II. Resonance-enhanced multiphoton ionization of N_2 at 193 and 248 nm detected by N_sp{2}{+} fluorescence. Using a broadband excimer laser operating at 193 and 248 nm multiphoton ionization at high pressures in air and pure nitrogen has been detected by fluorescence from N_sp{2}{+} in the B-X firstnegative system. Measurements of the fluorescence intensity as a function of beam irradiance indicate resonance in N_2 at the energy of two 193 nm photons (2 + 1 REMPI) and three 248 nm photons (3 + 1 REMPI). Possible intermediate states are discussed. III. Excimer laser-induced fluorescence from some organic solvents. Fluorescence was observed from vapor phase benzene, toluene, p-xylene, benzyl chloride, methyl benzoate, acetic anhydride, ether, methanol, ethyl acetone, acetone, and 2-butanone using

  7. Silicon Monoxide at 1 atm and Elevated Pressures: Crystalline or Amorphous?

    KAUST Repository

    AlKaabi, Khalid

    2014-03-05

    The absence of a crystalline SiO phase under ordinary conditions is an anomaly in the sequence of group 14 monoxides. We explore theoretically ordered ground-state and amorphous structures for SiO at P = 1 atm, and crystalline phases also at pressures up to 200 GPa. Several competitive ground-state P = 1 atm structures are found, perforce with Si-Si bonds, and possessing Si-O-Si bridges similar to those in silica (SiO2) polymorphs. The most stable of these static structures is enthalpically just a little more stable than a calculated random bond model of amorphous SiO. In that model we find no segregation into regions of amorphous Si and amorphous SiO2. The P = 1 atm structures are all semiconducting. As the pressure is increased, intriguing new crystalline structures evolve, incorporating Si triangular nets or strips and stishovite-like regions. A heat of formation of crystalline SiO is computed; it is found to be the most negative of all the group 14 monoxides. Yet, given the stability of SiO2, the disproportionation 2SiO (s) → Si(s)+SiO2(s) is exothermic, falling right into the series of group 14 monoxides, and ranging from a highly negative ΔH of disproportionation for CO to highly positive for PbO. There is no major change in the heat of disproportionation with pressure, i.e., no range of stability of SiO with respect to SiO2. The high-pressure SiO phases are metallic. © 2014 American Chemical Society.

  8. A Retrospective Analysis of Pediatric Patients Admitted to the Pediatric Emergency Service for Carbon Monoxide Intoxication

    Directory of Open Access Journals (Sweden)

    Metin Uysalol

    2011-09-01

    Full Text Available Objective: The aim of the study is to analyze the general aspects of cases with carbon monoxide intoxication in order to improve the approach to future patients. Material and Methods: The hospital records of 84 children (mean age 4.71±2.64 years; 48 male, 36 female who had been admitted to Paediatric Emergency Department for carbon monoxide intoxication between October 2007 and February 2009, were retrospectively evaluated in a descriptive analysis.Results: The source of carbon monoxide intoxication was heaters, waterheaters and fi re in 82.1%, 7.1% and 6% of cases, respectively. There was a statistically signifi cant difference between the carboxyhemoglobin levels of the patients according to the clinical classifi cation (p<0.05. The intoxication caused by heaters was observed signifi cantly in November, December and January (p<0.001, between 16:00-24:00 hours (p<0.001 and among more than one member of a family (p<0.001. A medium level correlation was detected between the treatment approach and clinical classifi cation (r=0.50, p<0.001. Conclusion: Carbon monoxide intoxication, in the presented series, was found to develop accidentally; mostly in the Winter season; during night hours when the family members gathered together. The carboxyhemoglobin levels were appropriate with the developing clinical findings. Carboxyhemoglobin level solely was not enough for achieving the diagnosis and planning the treatment.

  9. Studies of Silyl-Transfer Photochemical Reactions of N-[(Trimethylsilyl)alkyl]saccharins

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae Won; Oh, Sun Wha; Park, Hea Jung; Yoon, Ung Chan [Pusan National University, Busan (Korea, Republic of); Kim, Dong Uk [Daegu National University of Education, Daegu (Korea, Republic of); Xue, Jin Ying [Harbin Normal University, Harbin (China); Mariano, Patrick S. [University of New Mexico, Albuquerque (United States)

    2010-09-15

    Photochemical studies of N-[(trimethylsilyl)alkyl]saccharins were carried out to investigate their photochemical behavior. Depending on the nature of the substrate and the solvent system employed, reactions of these substances can take place by either SET-promoted silyl migration from carbon to either the amide carbonyl or sulfonyl oxygen or by a N-S homolysis route. The results of the current studies show that an azomethine ylide, arising from a SET-promoted silyl migration pathway, is generated in photoreactions of N-[(trimethylsilyl)methyl]saccharin and this intermediate reacts to give various photoproducts depending on the conditions employed. In addition, irradiation of N-[(trimethylsily)ethyl]saccharin produces an excited state that reacts through two pathways, the relative importance is governed by solvent polarity and protic nature. Finally, photoirradiation of N-[(trimethylsilyl)propyl]saccharin in a highly polar solvent system comprised of 35% aqueous MeOH gives rise to formation of a tricyclic pyrrolizidine and saccharin that generated via competitive SET-promoted silyl transfer and γ-hydrogen abstraction pathways.

  10. Studies of Silyl-Transfer Photochemical Reactions of N-[(Trimethylsilyl)alkyl]saccharins

    International Nuclear Information System (INIS)

    Cho, Dae Won; Oh, Sun Wha; Park, Hea Jung; Yoon, Ung Chan; Kim, Dong Uk; Xue, Jin Ying; Mariano, Patrick S.

    2010-01-01

    Photochemical studies of N-[(trimethylsilyl)alkyl]saccharins were carried out to investigate their photochemical behavior. Depending on the nature of the substrate and the solvent system employed, reactions of these substances can take place by either SET-promoted silyl migration from carbon to either the amide carbonyl or sulfonyl oxygen or by a N-S homolysis route. The results of the current studies show that an azomethine ylide, arising from a SET-promoted silyl migration pathway, is generated in photoreactions of N-[(trimethylsilyl)methyl]saccharin and this intermediate reacts to give various photoproducts depending on the conditions employed. In addition, irradiation of N-[(trimethylsily)ethyl]saccharin produces an excited state that reacts through two pathways, the relative importance is governed by solvent polarity and protic nature. Finally, photoirradiation of N-[(trimethylsilyl)propyl]saccharin in a highly polar solvent system comprised of 35% aqueous MeOH gives rise to formation of a tricyclic pyrrolizidine and saccharin that generated via competitive SET-promoted silyl transfer and γ-hydrogen abstraction pathways

  11. Process for separating liquid hydrocarbons from waxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, F J

    1948-03-08

    A process is described for the separation of liquid hydrocarbons from waxes comprising adding to a mixture of liquid hydrocarbons and waxes a sufficient quantity of an organo-silicon compound to cause the separation of the hydrocarbon and wax. The organo-silicon compounds are selected from the class of organic silicanes and their hydrolysis products and polymers. The silicanes have the formula R/sub y/SiX/sub z/, in which R is a saturated or unsaturated hydrocarbon radical, X is a halogen or another hydrocarbon radical or an -OR group, y has a value 1, 2, or 3 and z has a value 1, 2, or 3.

  12. Process for treating hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    1933-09-15

    A process is described for treating simultaneously bituminous substances and hydrocarbon oils for the production of low-boiling hydrocarbons and volatilization of the bituminous substances, characterized by the fact that it consists of heating a current of charge constituted by a mixture of the bituminous substances and hydrocarbon oils, to a high temperature, passing the heated current into a zone of extended reaction where the vapors are separated from the liquid or solid residue to favor transformation of the liquid hydrocarbons and volatilization of the bituminous substances, owing to the utilization of a heating agent carried to a high temperature being brought in contact with the heated charge in order to communicate its heat to the charge, while this later presents itself as relatively fine pellet or in the condition of distinct particles, particularly separated from one another.

  13. 40 CFR Table 2 to Subpart Aaaa of... - Carbon Monoxide Emission Limits for New Small Municipal Waste Combustion Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Carbon Monoxide Emission Limits for New... Pt. 60, Subpt. AAAA, Table 2 Table 2 to Subpart AAAA of Part 60—Carbon Monoxide Emission Limits for.... Compliance is determined by continuous emission monitoring systems. b Block averages, arithmetic mean. See...

  14. Photochemical Cyclopolymerization of Polyimides in Ultraviolet Ridgidizing Composites for Use in Inflatable Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovation uses photochemical cyclopolymerization of polyimides to manufacture ultraviolet rigidizable composites for use in RIS (ridgidizing inflatable)...

  15. Iron monoxide photodissociation

    Science.gov (United States)

    Chestakov, D. A.; Parker, D. H.; Baklanov, A. V.

    2005-02-01

    The photodissociation of Fe56O was studied by means of the velocity map imaging technique. A molecular beam of iron atoms and iron monoxide molecules was created using an electrical discharge with an iron electrode in a supersonic expansion of molecular oxygen. The ground state iron atom Fe(D45) and FeO concentrations in the molecular beam have been estimated. The dissociation energy of the FeO XΔ5 ground electronic state was found to be D00(FeO )=4.18±0.01eV. The effective absorption cross section of FeO at 252.39nm (vac), leading to the Fe(D45)+O(P3) dissociation channel, is ˜1.2×10-18cm2. A (1+1) resonantly enhanced multiphoton ionization spectrum of Fe56O in the region 39550-39580 cm-1 with rotational structure has been observed, but not assigned. Angular distributions of Fe(D45) and Fe(D35) products for the channel FeO →Fe(D4,35)+O(P3) have been measured at several points in the 210-260nm laser light wavelength region. The anisotropy parameter varies strongly with wavelength for both channels.

  16. A Highly Effective Photochemical System for Complex Treatment of Heavily Contaminated Wastewaters

    Czech Academy of Sciences Publication Activity Database

    Krystyník, Pavel; Klusoň, Petr; Hejda, S.; Mašín, P.; Tito, D.N.

    2014-01-01

    Roč. 86, č. 11 (2014), s. 2212-2220 ISSN 1061-4303 R&D Projects: GA MPO(CZ) FR-TI1/065 Institutional support: RVO:67985858 Keywords : advanced oxidation processes * photochemical oxidation * wastewater treatment Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.865, year: 2014

  17. Selected constituents in the smokes of foreign commercial cigaretts: tar, nicotine, carbon monoxide, and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, R.A.; Quincy, R.B.; Guerin, M.R.

    1979-05-01

    The tar, nicotine, carbon monoxide, and carbon dioxide contents of the smokes of 220 brands of foreign commercial cigarettes are reported. In some instances, filter cigarettes of certain brands were found to deliver as much or more smoke constituents than their nonfilter counterparts. Also, data indicated that there can be a great variation in the tar, nicotine, or carbon monoxide content of the smoke of samples of a given brand of cigarettes, depending on the nation in which they are purchased. 24 tables.

  18. The Range of 1-3 keV Electrons in Solid Oxygen and Carbon Monoxide

    DEFF Research Database (Denmark)

    Oehlenschlæger, M.; Andersen, H.H.; Schou, Jørgen

    1985-01-01

    The range of 1-3 keV electrons in films of solid oxygen and carbon monoxide has been measured by a mirror substrate method. The technique used here is identical to the one previously used for range measurements in solid hydrogen and nitrogen. The range in oxygen is slightly shorter than that in n......The range of 1-3 keV electrons in films of solid oxygen and carbon monoxide has been measured by a mirror substrate method. The technique used here is identical to the one previously used for range measurements in solid hydrogen and nitrogen. The range in oxygen is slightly shorter than...

  19. Polymers designed for laser ablation-influence of photochemical properties

    International Nuclear Information System (INIS)

    Lippert, T.; Dickinson, J.T.; Hauer, M.; Kopitkovas, G.; Langford, S.C.; Masuhara, H.; Nuyken, O.; Robert, J.; Salmio, H.; Tada, T.; Tomita, K.; Wokaun, A.

    2002-01-01

    The ablation characteristics of various polymers were studied at low and high fluences. The polymers can be divided into three groups, i.e. polymers containing triazene and ester groups, the same polymers without the triazene group, and polyimide as reference polymer. At high fluences similar ablation parameters, i.e. etch rates and effective absorption coefficients, were obtained for all polymers. The main difference is the absence of carbon deposits for the designed polymers. At low fluences (at 308 nm) very pronounced differences are detected. The polymers containing the photochemically most active group (triazene) exhibit the lowest threshold of ablation (as low as 25 mJ cm -2 ) and the highest etch rates (up to 3 μm/pulse), followed by the designed polyesters and then polyimide. The laser-induced decomposition of the designed polymers was studied by nanosecond-interferometry. Only the triazene-polymer reveals etching without any sign of surface swelling, which is observed for all other polymers. The etching of the triazene-polymer starts and ends with the laser pulse, clearly indicating photochemical etching. The triazene-polymer was also studied by time-of-flight mass spectrometry (TOF-MS). The intensities of the ablation fragments show pronounced differences between irradiation at the absorption band of the triazene group (308 nm) and irradiation at a shorter wavelength (248 nm)

  20. Gamma-radiation induced polymerization of methyl methacrylate in aliphatic hydrocarbons: kinetics and evidence for incorporation of hydrocarbon in the polymer chain

    International Nuclear Information System (INIS)

    Mohan, H.; Iyer, R.M.

    1989-01-01

    On γ-radiolysis, the rate of polymerization of methyl methacrylate in hydrocarbon solvents is observed to decrease. It is explained by hydrocarbon entry into the polymer chains. The hydrocarbon entry into the polymer chains is observed to take place at later stages of polymerization and increases with hydrocarbon chain length. The extent of hydrocarbon entry into the polymer chains is estimated by NMR and GLC analysis. It is observed to be equal to ∼ 12% corresponding to ∼ 97 hexadecane molecules in each polymer chain. The IR, DSC, MW determination and radiation effects on the polymer showed evidences for hydrocarbon entry into the polymer. It is explained by chain transfer from the growing polymer radical to the hydrocarbon molecules. The chain transfer constant is determined to be equal to 1 x 10 -2 . (author)

  1. Steam hydrocarbon cracking and reforming

    NARCIS (Netherlands)

    Golombok, M.

    2004-01-01

    Many industrial chemical processes are taught as distinct contrasting reactions when in fact the unifying comparisons are greater than the contrasts. We examine steam hydrocarbon reforming and steam hydrocarbon cracking as an example of two processes that operate under different chemical reactivity

  2. Photochemical degradation of the carbapenem antibiotics imipenem and meropenem in aqueous solutions under solar radiation.

    Science.gov (United States)

    Reina, Alejandro Cabrera; Martínez-Piernas, Ana B; Bertakis, Yannis; Brebou, Christina; Xekoukoulotakis, Nikolaos P; Agüera, Ana; Sánchez Pérez, José Antonio

    2018-01-01

    This paper deals with the photochemical fate of two representative carbapenem antibiotics, namely imipenem and meropenem, in aqueous solutions under solar radiation. The analytical method employed for the determination of the target compounds in various aqueous matrices, such as ultrapure water, municipal wastewater treatment plant effluents, and river water, at environmentally relevant concentrations, was liquid chromatography coupled with hybrid triple quadrupole-linear ion trap-mass spectrometry. The absorption spectra of both compounds were measured in aqueous solutions at pH values from 6 to 8, and both compounds showed a rather strong absorption band centered at about 300 nm, while their molar absorption coefficient was in the order from 9 × 10 3 -10 4  L mol -1  cm -1 . The kinetics of the photochemical degradation of the target compounds was studied in aqueous solutions under natural solar radiation in a solar reactor with compound parabolic collectors. It was found that the photochemical degradation of both compounds at environmentally relevant concentrations follows first order kinetics and the quantum yield was in the order of 10 -3  mol einsten -1 . Several parameters were studied, such as solution pH, the presence of nitrate ions and humic acids, and the effect of water matrix. In all cases, it was found that the presence of various organic and inorganic constituents in the aqueous matrices do not contribute significantly, either positively or negatively, to the photochemical degradation of both compounds under natural solar radiation. In a final set of photolysis experiments, the effect of the level of irradiance was studied under simulated solar radiation and it was found that the quantum yield for the direct photodegradation of both compounds remained practically constant by changing the incident solar irradiance from 28 to 50 W m -2 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fetal brain damage following maternal carbon monoxide intoxication: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Ginsberg, M D; Myers, R E

    1974-01-01

    Techniques of fetal monitoring, including fetal blood sampling in utero, were employed to study the physiological effects of acute maternal carbon monoxide intoxication on nine term-pregnant female rhesus monkeys exposed to 0.1 to 0.3% inspired carbon monoxide over 1 to 3 hr. The mothers tolerated carboxyhemoglobin levels exceeding 60% without clinical sequelae, whereas the fetuses promptly developed profound hypoxia upon exposure of the mothers to CO. The fetal COHb levels rose only gradually over 1 to 3 hr, and thus contributed only slightly to the development of early fetal hypoxia. The fetal hypoxia was associated with bradycardia, hypotension, and metabolic and respiratory acidosis. Severity of intrauterine hypoxia was closely correlated with the appearance of brain damage. Brain swelling associated with hemorrhagic necrosis of the cerebral hemispheres (severe brain damage) appeared only in fetuses whose arterial oxygen content was reduced below 1.0 ml/100 ml for at least 45 min during the maternal CO intoxication.

  4. Experimental and modelling study of reverse flow catalytic converters for natural gas/diesel dual fuel engine pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.

    2000-07-01

    There is renewed interest in the development of natural gas vehicles in response to the challenge to reduce urban air pollution and consumption of petroleum. The natural gas/diesel dual fuel engine is one way to apply natural gas to the conventional diesel engine. Dual fuel engines operating on natural gas and diesel emit less nitrogen oxides, and less carbon soot to the air compared to conventional diesel engines. The problem is that at light loads, fuel efficiency is reduced and emissions of hydrocarbons and carbon monoxide are increased. This thesis focused on control methods for emissions of hydrocarbons and carbon monoxide in the dual fuel engine at light loads. This was done by developing a reverse flow catalytic converter to complement dual fuel engine exhaust characteristics. Experimental measurements and numerical simulations of reverse flow catalytic converters were conducted. Reverse flow creates a high reactor temperature even when the engine is run at low exhaust temperature levels at light loads. The increase in reactor temperature from reverse flow could be 2 or 3 times higher than the adiabatic temperature increase, which is based on the reactor inlet temperature and concentration. This temperature makes it possible for greater than 90 per cent of the hydrocarbon and carbon monoxide to be converted with a palladium based catalyst. Reverse flow appears to be better than conventional unidirectional flow to deal with natural gas/diesel dual fuel engine pollution at light loads. Reverse flow could also maintain reactor temperature at over 800 K and hydrocarbon conversion at about 80 per cent during testing. The newly presented model simulates reactor performance with reasonable accuracy. Both carbon monoxide and methane oxidation over the palladium catalyst in excess oxygen and water were described using first order kinetics.

  5. Will the US Clean Air Act come to Australia?

    International Nuclear Information System (INIS)

    Saxby, Bill

    1992-01-01

    This article examines the Clean Air Act and whether the emerging situation in Sydney and Melbourne is likely to require similar radical action to prevent a decline in public health of city dwellers. It is concluded that both Sydney and Melbourne are in the league of the world's polluted cities. The pollutants of concern are mainly carbon monoxide and ozone. Emissions reduction in these two cities during the 1980s has reduced photochemical smog formation to near the guidelines, but both these cities retain the potential to form high levels of photochemical smog under the right weather conditions, as shown by Sydney in 1990. 2 tabs., ills

  6. Russia and China hydrocarbon relations. A building block toward international hydrocarbon regulation?

    International Nuclear Information System (INIS)

    Locatelli, Catherine; Abbas, Mehdi; Rossiaud, Sylvain

    2015-12-01

    This article is a first step of a research agenda on international hydrocarbon regulations. With regards to both: i) the new wealth and power equilibrium in the international political economy and ii) the new political economy of carbon that is emerging from The Paris agreement on Climate changes, this research agenda aims at analysing the changing national structures of governance and the ways these changes lead to international, bilateral, pluri-lateral or multilateral hydrocarbon regulation

  7. Conversion of no-carrier-added [11C]carbon dioxide to [11C]carbon monoxide on molybdenum for the synthesis of 11C-labelled aromatic ketones

    International Nuclear Information System (INIS)

    Zeisler, S.K.; Nader, M.; Theobald, A.; Oberdorfer, F.

    1997-01-01

    A new method for the efficient conversion of no-carrier-added [ 11 C]carbon dioxide into [ 11 C]carbon monoxide is described. [ 11 C]Carbon dioxide produced by proton bombardment of ultra high purity nitrogen is pre-concentrated in a cryo trap and then passed through a quartz tube filled with a mesh of thin molybdenum wire heated to 850 o C. [ 11 C]Carbon dioxide readily reacts with molybdenum to form [ 11 C]carbon monoxide and molybdenum(IV) oxide. The latter also reduces carbon dioxide to carbon monoxide and helps improve the performance of the converter. [ 11 C]Carbon monoxide is purified from remaining [ 11 C]carbon dioxide and collected in a small silica trap from which it is eluted into a reaction mixture for the palladium-mediated synthesis of a 11 C-labelled aromatic ketone. Radiochemical yields of up to 81% (decay-corrected) for [ 11 C]carbon monoxide were obtained. Radiochemical purity and specific radioactivity of both [ 11 C]carbon monoxide and the 11 C-labelled ketone are sufficient for nuclear medical studies with PET. (Author)

  8. Photochemical reaction of Si-substituted ethynylsilanes with 1,2-ethanedithiol

    Energy Technology Data Exchange (ETDEWEB)

    Voronkov, M.G.; Brodskaya, E.I.; Kalabin, G.A.; Vlasova, N.N.; Yarosh, O.G.; Zhila, G.Y.

    1985-12-01

    The authors investigate the chief products of the photochemical reactions of Si-substituted ethynylsilanes with 1,2,-ethanedithiol at 60-70 C. It is found that the chief products are 2-triorganylsilyl-substituted 1,4-dithiacyclopentanes and 1,4-dithiacyclohexanes. On lowering the temperature to -30 C, formation of bis (triorganylsilyl)-substituted 1,4,7,10-tetrathiacyclododecanes occurs along with the abo ve-mentioned five- and six-membered heterocycles.

  9. Iodine monoxide in the north subtropical free troposphere

    OpenAIRE

    O. Puentedura; M. Gil; A. Saiz-Lopez; T. Hay; M. Navarro-Comas; A. Gómez-Pelaez; E. Cuevas; J. Iglesias; L. Gomez

    2012-01-01

    Iodine monoxide (IO) differential slant column densities (DSCD) have been retrieved from a new multi-axis differential optical absorption spectroscopy (MAX-DOAS) instrument deployed at the Izaña subtropical observatory as part of the Network for the Detection of Atmospheric Composition Change (NDACC) programme. The station is located at 2370 m a.s.l., well above the trade wind inversion that limits the top of the marine boundary layer, and hence is representative of the free troposphere. We r...

  10. Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts

    Science.gov (United States)

    Tsai, Wen-Tien

    2017-01-01

    Among the halogenated hydrocarbons, chloromethanes (i.e., methyl chloride, CH3Cl; methylene chloride, CH2Cl2; chloroform, CHCl3; and carbon tetrachloride, CCl4) play a vital role due to their extensive uses as solvents and chemical intermediates. This article aims to review their main chemical/physical properties and commercial/industrial uses, as well as the environment and health hazards posed by them and their toxic decomposition products. The environmental properties (including atmospheric lifetime, radiative efficiency, ozone depletion potential, global warming potential, photochemical ozone creation potential, and surface mixing ratio) of these chlorinated methanes are also reviewed. In addition, this paper further discusses their atmospheric fates and human health implications because they are apt to reside in the lower atmosphere when released into the environment. According to the atmospheric degradation mechanism, their toxic degradation products in the troposphere include hydrogen chloride (HCl), carbon monoxide (CO), chlorine (Cl2), formyl chloride (HCOCl), carbonyl chloride (COCl2), and hydrogen peroxide (H2O2). Among them, COCl2 (also called phosgene) is a powerful irritating gas, which is easily hydrolyzed or thermally decomposed to form hydrogen chloride. PMID:29051455

  11. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative. (b...

  12. Collision data involving hydro-carbon molecules

    International Nuclear Information System (INIS)

    Tawara, H.; Itikawa, Y.; Nishimura, H.; Tanaka, H.; Nakamura, Y.

    1990-07-01

    Hydro-carbon molecules are abundantly produced when graphites are used as internal wall materials of hydrogen plasmas and strongly influence properties of low temperature plasmas near the edges as well as those of high temperature plasmas at the center. In this report, following simple description of the production mechanisms of hydro-carbon molecules under the interactions between graphite and hydrogen plasma, the present status of collision data for hydro-carbon molecules by electron impact is discussed and the relevant data are summarized in a series of figures and tables. It should also be noted that, in addition to fusion plasmas, these hydrocarbon data compiled here are quite useful in other applications such as plasma chemistry and material processing. (author)

  13. Study of inner shell excitation effect on C-H dissociation in aromatic hydrocarbon solids

    International Nuclear Information System (INIS)

    Shimoyama, I.; Nakagawa, K.; Matsui, F.; Yoem, H.W.; Ohta, T.; Tanaka, S.; Mase, K.

    2000-01-01

    Since Carson et al. have reported the 'Coulomb Explosion' model, an inner shell excitation effect on dissociation is intensively attractive because multiply ionized states induced by Auger decay enhance dissociation. This effect on chemical reaction has been investigated especially for surface reaction processes such as desorption induced electron transition (DIET). Recently, some studies on DIET using monochromatic soft X-rays have reported that desorption yield depends on not only the repulsion energy but also the character of excited molecular orbital (MO). This means that inner shell resonant excitations to different MO result in different desorption. This Inner Shell Resonant Excitation Effect' is very interesting because it enables us to control photochemical reactions with synchrotron radiation. Two important problems lie ahead of us for application of this effect. One problem is secondary effect. When one irradiates soft X-rays to materials, following reaction includes two kinds of mixed effects; fundamental effect (FE) and secondary effect (SE). FE originates from interactions between photons and materials, while SE originates from interactions between secondary electrons and materials. Since the inner shell resonant excitation effect essentially originates from FE, it is important to know the ratio of FE to SE in a photochemical reaction in order to estimate true magnitude of the inner shell resonant excitation effect. The other problem is the difference between surface reaction and bulk reaction. Weather the bulk reaction shows inner shell excitation effect as well as the surface reaction does? Some studies of the inner shell excitation effect on damage in bulk have been reported. To our knowledge, however, there is no study which reports the difference between bulk and surface reaction. In this paper, we present two kinds of works with aromatic hydrocarbon compounds. First, we present photon stimulated ion desorption (PSID) on condensed benzene to study

  14. Diffusion-weighted MR imaging findings in carbon monoxide poisoning

    International Nuclear Information System (INIS)

    Teksam, M.; Casey, S.O.; Michel, E.; Liu, H.; Truwit, C.L.

    2002-01-01

    Diffusion-weighted MR imaging (DWI) of two patients with carbon monoxide (CO) poisoning demonstrated white matter and cortical hyperintensities. In one patient, the changes on the FLAIR sequence were more subtle than those on DWI. The DWI abnormality in this patient represented true restriction. In the second patient, repeated exposure to CO caused restricted diffusion. DWI may be helpful for earlier identification of the changes of acute CO poisoning. (orig.)

  15. Representativeness and climatology of carbon monoxide and ozone at the global GAW station Mt. Kenya in equatorial Africa

    Directory of Open Access Journals (Sweden)

    S. Henne

    2008-06-01

    Full Text Available The tropics strongly influence the global atmospheric chemistry budget. However, continuous in-situ observations of trace gases are rare especially in equatorial Africa. The WMO Global Atmosphere Watch (GAW programme aimed to close this gap with the installation of the Mt. Kenya (MKN baseline station. Here, the first continuous measurements of carbon monoxide (CO and ozone (O3 at this site covering the period June 2002 to June 2006 are presented. The representativeness of the site was investigated by means of statistical data analysis, air mass trajectory clustering, interpretation of biomass burning variability and evaluation of O3-CO relationships. Because of its location in eastern equatorial Africa, the site was rarely directly influenced by biomass burning emissions, making it suitable for background observations. Located at 3678 m above sea level the night-time (21:00–04:00 UTC measurements of CO and O3 were in general representative of the free troposphere, while day-time measurements were influenced by atmospheric boundary layer air. Increased night-time concentrations were observed in 25% of all nights and associated with residual layers of increased CO and water vapour in the free troposphere. Six representative flow regimes towards Mt. Kenya were determined: eastern Africa (21% of the time, Arabian Peninsula and Pakistan (16%, northern Africa free tropospheric (6%, northern Indian Ocean and India (17%, south-eastern Africa (18% and southern India Ocean (21% flow regimes. The seasonal alternation of these flow regimes was determined by the monsoon circulation and caused a distinct semi-annual cycle of CO with maxima during February (primary and August (secondary, annually variable and with minima in April (primary and November (secondary, annually variable. O3 showed a weaker annual cycle with a minimum in November and a broad summer maximum. Inter-annual variations were explained with

  16. Process for desulfurizing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-04-12

    A process is described for the desulfurization of a mixture of hydrocarbons, and in particular hydrocarbons containing less than 7 atoms of carbon and sulfur compounds of the type of sulfur carbonyl, characterized by the fact that the mixture, preferably in the liquid phase, is brought in contact with a solution of caustic alkali, essentially anhydrous or preferably with a solution of alkali hydroxide in an organic hydroxy nonacid solvent, for example, an alcohol, or with an alkaline alcoholate, under conditions suitable to the formation of hydrogen sulfide which produces a hydrocarbon mixture free from sulfur compounds of the sulfur carbonyl type but containing hydrogen sulfide, and that it is treated, following mixing, having beem submitted to the first treatment, by means of aqueous alkaline hydroxide to eliminate the hydrogen sulfide.

  17. Studies of Catalytic Properties of Inorganic Rock Matrices in Redox Reactions

    Directory of Open Access Journals (Sweden)

    Nikolay M. Dobrynkin

    2017-09-01

    Full Text Available Intrinsic catalytic properties of mineral matrices of various kinds (basalts, clays, sandstones were studied, which are of interest for in-situ heavy oil upgrading (i.e., underground to create advanced technologies for enhanced oil recovery. The elemental, surface and phase composition and matrix particle morphology, surface and acidic properties were studied using elemental analysis, X-ray diffraction, adsorption and desorption of nitrogen and ammonia. The data on the catalytic activity of inorganic matrices in ammonium nitrate decomposition (reaction with a large gassing, oxidation of hydrocarbons and carbon monoxide, and hydrocracking of asphaltenes into maltenes (the conversion of heavy hydrocarbons into more valuable light hydrocarbons were discussed. In order to check their applicability for the asphaltenes hydrocracking catalytic systems development, basalt and clay matrices were used as supports for iron/basalt, nickel/basalt and iron/clay catalysts. The catalytic activity of the matrices in the reactions of the decomposition of ammonium nitrate, oxidation of hydrocarbons and carbon monoxide, and hydrocracking of asphaltens was observed for the first time.

  18. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration.

    Science.gov (United States)

    Ward, Collin P; Nalven, Sarah G; Crump, Byron C; Kling, George W; Cory, Rose M

    2017-10-03

    In sunlit waters, photochemical alteration of dissolved organic carbon (DOC) impacts the microbial respiration of DOC to CO 2 . This coupled photochemical and biological degradation of DOC is especially critical for carbon budgets in the Arctic, where thawing permafrost soils increase opportunities for DOC oxidation to CO 2 in surface waters, thereby reinforcing global warming. Here we show how and why sunlight exposure impacts microbial respiration of DOC draining permafrost soils. Sunlight significantly increases or decreases microbial respiration of DOC depending on whether photo-alteration produces or removes molecules that native microbial communities used prior to light exposure. Using high-resolution chemical and microbial approaches, we show that rates of DOC processing by microbes are likely governed by a combination of the abundance and lability of DOC exported from land to water and produced by photochemical processes, and the capacity and timescale that microbial communities have to adapt to metabolize photo-altered DOC.The role of dissolved organic carbon (DOC) photo-alteration in the microbial respiration of DOC to CO 2 is unclear. Here, the authors show that the impact of this mechanism depends on whether photo-alteration of DOC produces or removes molecules used by native microbial communities prior to light exposure.

  19. Photophysical and photochemical properties of novel metallophthalocyanines bearing 7-oxy-3-(m-methoxyphenyl)coumarin groups

    International Nuclear Information System (INIS)

    Taştemel, Ayşegül; Karaca, Birsen Yılmaz; Durmuş, Mahmut; Bulut, Mustafa

    2015-01-01

    Tetra-peripherally and non-peripherally 7-oxy-3-(m-methoxyphenyl)coumarin-substituted zinc(II) (4a and 5a), indium(III)acetate (4b and 5b) and magnesium(II) (4c and 5c) phthalocyanines were synthesized for the first time. These phthalocyanines were characterized by elemental analysis, FT-IR, 1 H NMR, UV–vis spectroscopy and mass spectra. The novel phthalocyanines showed excellent solubility in general organic solvents, such as dichloromethane, chloroform, tetrahydrofuran (THF), N,N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The photophysical and photochemical properties of these phthalocyanines were investigated in DMF. The effects of the central metal ions (Zn 2+ , Mg 2+ , In +3 ) and the position (peripheral or non-peripheral) of the substituents on the photophysical and photochemical parameters were reported for comparison. The singlet oxygen quantum yield values of novel phthalocyanines ranged from 0.29 to 0.82 in DMF. In this study, the fluorescence quenching behavior of the studied zinc(II) and magnesium(II) phthalocyanine complexes was also described by the addition of 1,4-benzoquinone. - Highlights: • 7-oxy-3-(m-methoxyphenyl)coumarin-substituted Zn, In(III)OAc and Mg phthalocyanines. • Investigation of their photophysical and photochemical properties in DMF. • The effects of metal types and position of the substituents on these properties.

  20. A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air

    Science.gov (United States)

    Petrenko, V. V.; Martinerie, P.; Novelli, P.; Etheridge, D. M.; Levin, I.; Wang, Z.; Blunier, T.; Chappellaz, J.; Kaiser, J.; Lang, P.; Steele, L. P.; Hammer, S.; Mak, J.; Langenfelds, R. L.; Schwander, J.; Severinghaus, J. P.; Witrant, E.; Petron, G.; Battle, M. O.; Forster, G.; Sturges, W. T.; Lamarque, J.-F.; Steffen, K.; White, J. W. C.

    2013-08-01

    We present the first reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monoxide (CO) mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO in 1950 was 140-150 nmol mol-1, which is higher than today's values. CO mole fractions rose by 10-15 nmol mol-1 from 1950 to the 1970s and peaked in the 1970s or early 1980s, followed by a ≈ 30 nmol mol-1 decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radicals (OH), as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless unrealistically large changes in OH are assumed. We argue that the available CO emission inventories strongly underestimate historical NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe.

  1. A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air

    Directory of Open Access Journals (Sweden)

    V. V. Petrenko

    2013-08-01

    Full Text Available We present the first reconstruction of the Northern Hemisphere (NH high latitude atmospheric carbon monoxide (CO mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008. CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO in 1950 was 140–150 nmol mol−1, which is higher than today's values. CO mole fractions rose by 10–15 nmol mol−1 from 1950 to the 1970s and peaked in the 1970s or early 1980s, followed by a ≈ 30 nmol mol−1 decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radicals (OH, as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless unrealistically large changes in OH are assumed. We argue that the available CO emission inventories strongly underestimate historical NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe.

  2. Carbon monoxide poisoning in Nigeria - it is time to pay attention ...

    African Journals Online (AJOL)

    Background: Carbon monoxide (CO) is a colourless, odourless gas and a cause of thousands of deaths across the world annually but its lethal consequences often go unrecognized, especially in developing countries. Aim: To discuss the subject of CO poisoning using local examples. Methods: Information was drawn from ...

  3. Hydrocarbon-degrading bacteria isolation and surfactant influence ...

    African Journals Online (AJOL)

    Hydrocarbons are substantially insoluble in water, often remaining partitioned in the non-aqueous phase liquid (NAPL). However, there had been little or no attempts to advance the bioavailability of hydrocarbons through the use of surfactants. This study was conducted based on the need to isolate hydrocarbon degrading ...

  4. Sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants.

    Science.gov (United States)

    Gerner, Nadine V; Cailleaud, Kevin; Bassères, Anne; Liess, Matthias; Beketov, Mikhail A

    2017-11-01

    Hydrocarbons have an utmost economical importance but may also cause substantial ecological impacts due to accidents or inadequate transportation and use. Currently, freshwater biomonitoring methods lack an indicator that can unequivocally reflect the impacts caused by hydrocarbons while being independent from effects of other stressors. The aim of the present study was to develop a sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants, which can be used in hydrocarbon-specific bioindicators. We employed the Relative Sensitivity method and developed the sensitivity ranking S hydrocarbons based on literature ecotoxicological data supplemented with rapid and mesocosm test results. A first validation of the sensitivity ranking based on an earlier field study has been conducted and revealed the S hydrocarbons ranking to be promising for application in sensitivity based indicators. Thus, the first results indicate that the ranking can serve as the core component of future hydrocarbon-specific and sensitivity trait based bioindicators.

  5. A review of photochemical approaches for the treatment of a wide range of pesticides.

    Science.gov (United States)

    Reddy, P Venkata Laxma; Kim, Ki-Hyun

    2015-03-21

    Pesticides are renowned as some of the most pernicious chemicals known to humankind. Nine out of twelve most hazardous and persistent organic chemicals on planet have been identified as pesticides and their derivatives. Because of their strong recalcitrant nature, it often becomes a difficult task to treat them by conventional approaches. It is well perceived that many factors can interfere with the degradation of pesticides under ambient conditions, e.g., media, light intensity, humic content, and other biological components. However, for the effective treatment of pesticides, photochemical methods are viewed as having clear and perceivable advantages. In this article, we provide a review of the fundamental characteristics of photochemical approaches for pesticide treatment and the factors governing their capacity and potential in such a process. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. SEASONAL SOIL FLUXES OF CARBON MONOXIDE IN BURNED AND UNBURNED BRAZILIAN SAVANNAS

    Science.gov (United States)

    Soil-atmosphere fluxes of carbon monoxide (CO) were measured from September 1999 through November 2000 in savanna areas in central Brazil (Cerrado) under different fire regimes using transparent and opaque static chambers. Studies focused on two vegetation types, cerrado stricto...

  7. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    National Research Council Canada - National Science Library

    Cernansky, N.P

    1998-01-01

    .... The research program entailed mechanistic studies examining the oxidation chemistry of single-component hydrocarbons and ignition studies examining the overall ignition of pure single component fuels and fuel blends...

  8. Process for refining hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Risenfeld, E H

    1924-11-26

    A process is disclosed for the refining of hydrocarbons or other mixtures through treatment in vapor form with metal catalysts, characterized by such metals being used as catalysts, which are obtained by reduction of the oxide of minerals containing the iron group, and by the vapors of the hydrocarbons, in the presence of the water vapor, being led over these catalysts at temperatures from 200 to 300/sup 0/C.

  9. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper

    Science.gov (United States)

    Li, Christina W.; Ciston, Jim; Kanan, Matthew W.

    2014-04-01

    The electrochemical conversion of CO2 and H2O into liquid fuel is ideal for high-density renewable energy storage and could provide an incentive for CO2 capture. However, efficient electrocatalysts for reducing CO2 and its derivatives into a desirable fuel are not available at present. Although many catalysts can reduce CO2 to carbon monoxide (CO), liquid fuel synthesis requires that CO is reduced further, using H2O as a H+ source. Copper (Cu) is the only known material with an appreciable CO electroreduction activity, but in bulk form its efficiency and selectivity for liquid fuel are far too low for practical use. In particular, H2O reduction to H2 outcompetes CO reduction on Cu electrodes unless extreme overpotentials are applied, at which point gaseous hydrocarbons are the major CO reduction products. Here we show that nanocrystalline Cu prepared from Cu2O (`oxide-derived Cu') produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (-0.25 volts to -0.5 volts versus the reversible hydrogen electrode) in CO-saturated alkaline H2O. By comparison, when prepared by traditional vapour condensation, Cu nanoparticles with an average crystallite size similar to that of oxide-derived copper produce nearly exclusive H2 (96% Faraday efficiency) under identical conditions. Our results demonstrate the ability to change the intrinsic catalytic properties of Cu for this notoriously difficult reaction by growing interconnected nanocrystallites from the constrained environment of an oxide lattice. The selectivity for oxygenates, with ethanol as the major product, demonstrates the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity.

  10. A carbon monoxide passive sampler: Research and development needs

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, G.W.; Apte, M.G.; Diamond, R.C.; Woods, A.L.

    1991-11-01

    In rare instances, carbon monoxide (CO) levels in houses can reach dangerously high concentrations, causing adverse health effects ranging from mild headaches to, under extreme conditions, death. Hundreds of fatal accidental carbon monoxide poisonings occur each year primarily due to the indoor operation of motor vehicles, the indoor use of charcoal for cooking, the operation of malfunctioning vented and unvented combustion appliances, and the misuse combustion appliances. Because there is a lack of simple, inexpensive, and accurate field sampling instrumentation, it is difficult for gas utilities and researchers to conduct field research studies designed to quantify the concentrations of CO in residences. Determining the concentration of CO in residences is the first step towards identifying the high risk appliances and high-CO environments which pose health risks. Thus, there exists an urgent need to develop and field-validate a CO-quantifying technique suitable for affordable field research. A CO passive sampler, if developed, could fulfill these requirements. Existing CO monitoring techniques are discussed as well as three potential CO-detection methods for use in a CO passive sampler. Laboratory and field research needed for the development and validation of an effective and cost-efficient CO passive sampler are also discussed.

  11. The electric dipole moment of cobalt monoxide, CoO

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Xiujuan, E-mail: zhuangxj@hnu.edu.cn [College of Physics and Microelectronics Science, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082 (China); Steimle, Timothy C. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States)

    2014-03-28

    A number of low-rotational lines of the E{sup 4}Δ{sub 7/2} ← X{sup 4}Δ{sub 7/2} (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h{sub 7/2}, and the electron quadrupole parameter, eQq{sub 0}, for the E{sup 4}Δ{sub 7/2}(υ = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, μ{sup -vector}{sub el}, for the X{sup 4}Δ{sub 7/2} (υ = 0) and E{sup 4}Δ{sub 7/2} (υ = 1) states were determined to be 4.18 ± 0.05 D and 3.28 ± 0.05 D, respectively, from the analysis of the observed Stark spectra of F′ = 7 ← F″ = 6 branch feature in the Q(7/2) line and the F′ = 8 ← F″ = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.

  12. GC×GC measurements of C7-C11 aromatic and n-alkane hydrocarbons on Crete, in air from Eastern Europe during the MINOS campaign

    Directory of Open Access Journals (Sweden)

    X. Xu

    2003-01-01

    Full Text Available During the Mediterranean Intensive Oxidant Study (MINOS campaign in August 2001 gas-phase organic compounds were measured using comprehensive two-dimensional gas chromatography (GCxGC at the Finokalia ground station, Crete. In this paper, C7-C11 aromatic and n-alkane measurements are presented and interpreted. The mean mixing ratios of the hydrocarbons varied from 1±1 pptv (i-propylbenzene to 43±36 pptv (toluene. The observed mixing ratios showed strong day-to-day variations and generally higher levels during the first half of the campaign. Mean diel profiles showed maxima at local midnight and late morning, and minima in the early morning and evening. Results from analysis using a simplified box model suggest that both the chemical sink (i.e. reaction with OH and the variability of source strengths were the causes of the observed variations in hydrocarbon mixing ratios. The logarithms of hydrocarbon concentrations were negatively correlated with the OH concentrations integral over a day prior to the hydrocarbon measurements. Slopes of the regression lines derived from these correlations for different compounds are compared with literature rate constants for their reactions with OH. The slopes for most compounds agree reasonably well with the literature rate constants. A sequential reaction model has been applied to the interpretation of the relationship between ethylbenzene and two of its potential products, i.e. acetophenone and benzeneacetaldehyde. The model can explain the good correlation observed between [acetophenone]/[ethylbenzene] and [benzeneacetaldehyde]/[ethylbenzene]. The model results and field measurements suggest that the reactivity of benzeneacetaldehyde may lie between those of acetophenone and ethylbenzene and that the ratio between yields of acetophenone and benzeneacetaldehyde may be up to 28:1. Photochemical ages of trace gases sampled at Finokalia during the campaign are estimated using the sequential reaction model and

  13. Modelling and Evaluation of Aircraft Emissions. Final report

    International Nuclear Information System (INIS)

    Savola, M.

    1996-01-01

    An application was developed to calculate the emissions and fuel consumption of a jet and turboprop powered aircraft in Finnair's scheduled and charter traffic both globally and in the Finnish flight information regions. The emissions calculated are nitrogen oxides, unburnt hydrocarbons and carbon monoxide. The study is based on traffic statistics of one week taken from three scheduled periods in 1993. Each flight was studied by dividing the flight profile into sections. The flight profile data are based on aircraft manufacturers' manuals, and they serve as initial data for engine manufacturers' emission calculation programs. In addition, the study includes separate calculations on air traffic emissions at airports during the so-called LTO cycle. The fuel consumption calculated for individual flights is 419,395 tonnes globally, and 146,142 tonnes in the Finnish flight information regions. According to Finnair's statistics the global fuel consumption is 0.97-fold compared with the result given by the model. The results indicate that in 1993 the global nitrogen oxide emissions amounted to 5,934 tonnes, the unburnt hydrocarbon emissions totalled 496 tonnes and carbon monoxide emissions 1,664 tonnes. The corresponding emissions in the Finnish flight information regions were as follows: nitrogen oxides 2,105 tonnes, unburnt hydrocarbons 177 tonnes and carbon monoxide 693 tonnes. (orig.)

  14. [Cerebellar Infarction After Carbon Monoxide Poisoning and Hyperbaric Oxygen Therapy].

    Science.gov (United States)

    Wick, Matthias; Schneiker, André; Bele, Sylvia; Pawlik, Michael; Meyringer, Helmut; Graf, Bernhard; Wendl, Christina; Kieninger, Martin

    2017-06-01

    We report on a patient who developed a space-occupying cerebellar infarction with occlusive hydrocephalus after a poisoning with carbon monoxide with the intention to commit suicide. A neurosurgical and intensive care therapy were needed. The patient's survival without severe neurological deficits could be secured due to the early detection of the intracerebral lesions. Georg Thieme Verlag KG Stuttgart · New York.

  15. Chemical fingerprinting of hydrocarbon-contamination in soil

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Nejrup, Jens; Jensen, Julie K.

    2015-01-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U...... and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends....... Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl...

  16. Air-dust-borne associations of phototrophic and hydrocarbon-utilizing microorganisms: promising consortia in volatile hydrocarbon bioremediation.

    Science.gov (United States)

    Al-Bader, Dhia; Eliyas, Mohamed; Rayan, Rihab; Radwan, Samir

    2012-11-01

    Aquatic and terrestrial associations of phototrophic and heterotrophic microorganisms active in hydrocarbon bioremediation have been described earlier. The question arises: do similar consortia also occur in the atmosphere? Dust samples at the height of 15 m were collected from Kuwait City air, and analyzed microbiologically for phototrophic and heterotrophic hydrocarbon-utilizing microorganisms, which were subsequently characterized according to their 16S rRNA gene sequences. The hydrocarbon utilization potential of the heterotrophs alone, and in association with the phototrophic partners, was measured quantitatively. The chlorophyte Gloeotila sp. and the two cyanobacteria Nostoc commune and Leptolyngbya thermalis were found associated with dust, and (for comparison) the cynobacteria Leptolyngbya sp. and Acaryochloris sp. were isolated from coastal water. All phototrophic cultures harbored oil vapor-utilizing bacteria in the magnitude of 10(5) g(-1). Each phototrophic culture had its unique oil-utilizing bacteria; however, the bacterial composition in Leptolyngbya cultures from air and water was similar. The hydrocarbon-utilizing bacteria were affiliated with Acinetobacter sp., Aeromonas caviae, Alcanivorax jadensis, Bacillus asahii, Bacillus pumilus, Marinobacter aquaeolei, Paenibacillus sp., and Stenotrophomonas maltophilia. The nonaxenic cultures, when used as inocula in batch cultures, attenuated crude oil in light and dark, and in the presence of antibiotics and absence of nitrogenous compounds. Aqueous and diethyl ether extracts from the phototrophic cultures enhanced the growth of the pertinent oil-utilizing bacteria in batch cultures, with oil vapor as a sole carbon source. It was concluded that the airborne microbial associations may be effective in bioremediating atmospheric hydrocarbon pollutants in situ. Like the aquatic and terrestrial habitats, the atmosphere contains dust-borne associations of phototrophic and heterotrophic hydrocarbon

  17. 40 CFR Table 5 to Subpart Bbbb of... - Model Rule-Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Model Rule-Carbon Monoxide Emission... BBBB of Part 60—Model Rule—Carbon Monoxide Emission Limits for Existing Small Municipal Waste... PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste...

  18. Photochemistry in Saturn’s Ring-Shadowed Atmosphere: Modulation of Hydrocarbons and Aerosols

    Science.gov (United States)

    Edgington, Scott G.; Atreya, Sushil K.; Wilson, Eric H.; Baines, Kevin H.; West, Robert A.; Bjoraker, Gordon L.; Fletcher, Leigh N.; Momary, Tom

    2015-11-01

    Cassini has been orbiting Saturn for over eleven years now. During this epoch, the ring shadow has moved from covering much of the northern hemisphere (the solar inclination was 24 degrees) to covering a large swath south of the equator and it continues to move southward. At Saturn Orbit Insertion in 2004, the projection of the A-ring onto Saturn reached as far as 40N along the central meridian (52N at the terminator). At its maximum extent, the ring shadow can reach as far as 48N/S (58N/S at the terminator). The net effect is that the intensity of both ultraviolet and visible sunlight penetrating through the rings to any particular latitude will vary depending on both Saturn’s axis relative to the Sun and the optical thickness of each ring system. In essence, the rings act like semi-transparent venetian blinds.Our previous work, examined the variation of the solar flux as a function of solar inclination, i.e. for each 7.25-year season at Saturn. Here, we report on the impact of the oscillating ring shadow on the photolysis and production rates of hydrocarbons (acetylene, ethane, propane, and benzene) and phosphine in Saturn’s stratosphere and upper troposphere. The impact of these production and loss rates on the abundance of long-lived photochemical products leading to haze formation are explored. Similarly, we assess their impact on phosphine abundance, a disequilibrium species whose presence in the upper troposphere can be used as a tracer of convective processes in the deeper atmosphere.We will also present our ongoing analysis of Cassini’s datasets that provide an estimate of the evolving haze content of the northern hemisphere and we will begin to assess the implications for dynamical mixing. In particular, we will examine how the now famous hexagonal jet stream acts like a barrier to transport, isolating Saturn’s north polar region from outside transport of photochemically-generated molecules and haze.The research described in this paper was carried

  19. Bioremediation: Technology for treating hydrocarbon-contaminated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Towprayoon, S.; Kuntrangwattana, S. [King Mongkut`s Institute of Technology, Bangkok (Thailand)

    1996-12-31

    Cutting oil wastewater from an iron and steel factory was applied to the soil windrow. Self-remediation was then compared with remediation with acclimatized indigenous microbes. The incremental reduction rate of the microorganisms and hydrocarbon-degradable microbes was slower in self-remediation than in the latter treatment. Within 30 days, when the acclimatized indigenous microbes were used, there was a significant reduction of the contaminated hydrocarbons, while self-remediation took longer to reduce to the same concentration. Various nitrogen sources were applied to the soil pile, namely, organic compost, chemical fertilizer, ammonium sulfate, and urea. The organic compost induced a high yield of hydrocarbon-degradable microorganisms, but the rate at which the cutting oil in the soil decreased was slower than when other nitrogen sources were used. The results of cutting oil degradation studied by gas chromatography showed the absence of some important hydrocarbons. The increment of the hydrocarbon-degradable microbes in the land treatment ecosystem does not necessarily correspond to the hydrocarbon reduction efficiency. 3 refs., 3 figs.

  20. Biodegradation of petroleum hydrocarbons at low temperatures

    International Nuclear Information System (INIS)

    Whyte, L. G.; Greer, C W.

    1999-01-01

    Bioremediation of contaminated Arctic sites has been proposed as the logistically and economically most favorable solution despite the known technical difficulties. The difficulties involve the inhibition of pollutants removal by biodegradation below freezing temperatures and the relative slowness of the process to remove enough hydrocarbon pollutants during the above-freezing summer months. Despite these formidable drawbacks, biodegradation of hydrocarbon contaminants is possible even in below-zero temperatures, especially if indigenous psychrophilic and psychrotropic micro-organism are used. This paper reports results of a study involving several hydrocarbon-degrading psychrotropic bacteria and suggests bioaugmentation with specific cold-adapted organisms and/or biostimulation with commercial fertilizers for enhancing degradation of specific contaminants in soils from northern Canada. An evaluation of the biodegradation potential of hydrocarbon contaminated soils in the high Arctic suggested that the contaminated soils contained sufficient numbers of cold-adapted hydrocarbon-degrading bacteria and that the addition of fertilizer was sufficient to enhance the level of hydrocarbon degradation at low ambient summer temperatures. 9 refs., 2 tabs., 3 figs

  1. Carbon monoxide is not responsible for the cigarette smokeinduced changes in the pulmonary metabolism of arachidonic acid and prostaglandin E2

    International Nuclear Information System (INIS)

    Maennistoe, J.; Puustinen, T.; Uotila, P.

    1985-01-01

    Cigarette smoke is known to interfere with the pulmonary metabolism of arachidomic acid and prostaglandin E 2 (PGE 2 ). We investigated the possible role of carbon monoxide in these cigarette smoke-infuced alterations. 4 C-Arachidonic acid (50 nmol) was indused into the pulmonary circulation of isolated perfused hamster lungs and the radioactive metabolites in the perfusion effluent, as well as the distribution of incorporated radioactive arachidonic acid within the lung lipids, were analysed. Carbon monoxide, added into the ventilatory air, had no effect on the oxidative metabolism of arachidonic acid or on the distribution of radioactive arachidonic acid within the lung. In addition, carbon monoxide had no effect on the metabolism of PGE 2 following infusion of 100 nmol of 14 C-PGE 2 into the rat pulmonary circulation. The present study suggests that carbon monoxide is not responsible for the cigarette smoke-induced changes in the pulmonary metabolism of arachidonic acid and PGE 2 . (author)

  2. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi

  3. Process for in-situ biodegradation of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Ely, D.L.; Heffner, D.A.

    1991-01-01

    This patent describes an in situ process for biodegrading hydrocarbons by drawing oxygen into an undisturbed hydrocarbon contaminated zone in a fluid permeable soil. It comprises: establishing a borehole extending from the earth's surface through a hydrocarbon contaminated zone having hydrocarbon degrading microbes therein; lining the borehole with a fluid impermeable liner coaxially spaced and sealingly connected to the inside surface of the borehole and extending from the earth's surface to the hydrocarbon-contaminated zone; the liner including a fluid permeable portion extending from the lower end thereof and through at least a portion of the hydrocarbon contaminated zone, fluidly connecting a source of negative pressure to the fluid impermeable line; evacuating gas from the borehole through the fluid permeable portion of the liner at a rate sufficient to draw air from the earth's surface into the hydrocarbon containing zone; and adjusting the flow rate of the evacuated gas so that the amount of hydrocarbon biodegradation therein is within 50% of the maximum hydrocarbon biodegradation rate as detected by the volume of carbon dioxide in the evacuated gas

  4. The Future of Carbon Monoxide Measurements from Space

    Science.gov (United States)

    Drummond, J.

    It is now over 20 years since the Measurements of Air Pollution from Space MAPS instrument made the first measurements of tropospheric carbon monoxide from the shuttle Since that time a number of instruments have flown including the Measurements Of Pollution In The Troposphere MOPITT Tropospheric Emission Spectrometer TES and SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY SCIAMCHY to name only three of many Each of these instruments has a unique observing method and unique mission characteristics It is accepted that measurements of carbon monoxide provide a useful proxy of the pollution of the troposphere and contribute significantly to studies of various phenomena in the atmosphere and atmosphere-surface interactions These measurements should therefore be continued -- but in what form Technology has progresses significantly since the current generation of instruments was designed and our ability to interpret the data from such instrumentation has likewise expanded It is therefore fruitful to consider what is the best set of measurements that can be made which parameters should be emphasized and which compromised on the way to the next generation of sensors The Measurements of Air Pollution Levels in the Environment MAPLE instrument is a study financed by the Canadian Space Agency to design a next-generation instrument and since instrument spacecraft and mission are now intimately linked a consideration of the whole mission is appropriate This talk will outline some potential developments in the hardware

  5. Influence of carbon monoxide poisoning on the fetal heart monitor tracing: a report of 3 cases.

    Science.gov (United States)

    Towers, Craig V; Corcoran, Vincent A

    2009-03-01

    The diagnosis of carbon monoxide poisoning in the third trimester of pregnancy requires an index of suspicion, and the appearance of the fetal heart monitor tracing may help in this regard. Three cases of third-trimester acute carbon monoxide poisoning occurred. In each pregnancy, the fetal heart monitor tracing on admission was correlated with the maternal carboxyhemoglobin level, and how the pattern changed following the institution of therapy was analyzed. In all 3 cases, the initial fetal heart rate pattern demonstrated decreased variability with an elevated baseline and an absence of accelerations and decelerations. Within 45-90 minutes of treatment onset, the baseline fetal heart rate dropped by 20-40 beats per minute, the variability became moderate, and accelerations occurred. Absent accelerations with minimal variability, if caused by uteroplacental insufficiency, are usually preceded by recurrent decelerations. Absent accelerations with minimal variability in the absence of recurrent decelerations may suggest another cause, of which carbon monoxide intoxication can be added to the differential, especially since this disorder often has nonspecific clinical symptoms.

  6. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.

    Science.gov (United States)

    Adetutu, Eric; Weber, John; Aleer, Sam; Dandie, Catherine E; Aburto-Medina, Arturo; Ball, Andrew S; Juhasz, Albert L

    2013-10-15

    In this study, impediments to hydrocarbon biodegradation in contaminated soils were assessed using chemical and molecular methodologies. Two long-term hydrocarbon contaminated soils were utilised which were similar in physico-chemical properties but differed in the extent of hydrocarbon (C10-C40) contamination (S1: 16.5 g kg(-1); S2: 68.9 g kg(-1)). Under enhanced natural attenuation (ENA) conditions, hydrocarbon biodegradation was observed in S1 microcosms (26.4% reduction in C10-C40 hydrocarbons), however, ENA was unable to stimulate degradation in S2. Although eubacterial communities (PCR-DGGE analysis) were similar for both soils, the alkB bacterial community was less diverse in S2 presumably due to impacts associated with elevated hydrocarbons. When hydrocarbon bioaccessibility was assessed using HP-β-CD extraction, large residual concentrations remained in the soil following the extraction procedure. However, when linear regression models were used to predict the endpoints of hydrocarbon degradation, there was no significant difference (P>0.05) between HP-β-CD predicted and microcosm measured biodegradation endpoints. This data suggested that the lack of hydrocarbon degradation in S2 resulted primarily from limited hydrocarbon bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effects of acetylene and carbon monoxide on long-term hydrogen production by Mastigocladus laminosus, a thermophilic blue-green alga

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Y; Yokoyama, H; Takahara, K; Miyamoto, K

    1982-01-01

    Long-term H/sub 2/ production by a thermophilic and heterocystous blue-green alga (cyanobacterium) Mastigocladus laminosus was studied under the conditions when acetylene and carbon monoxide were supplemented to the gas phase of the culture vessel. The addition of both gases enhanced H/sub 2/ evolution by nitrogen-starved cells. The concentrations of acetylene and carbon monoxide in the gas phase of argon/CO/sub 2/ (97.5/2.5) were 10% and 0.2 to 1%, respectively, for the maximum H/sub 2/ production. Renewals of the gas phase, in addition to the addition of acetylene and carbon monoxide, were necessary for durable H/sub 2/ production. Since the concentrations of both H/sub 2/ and O/sub 2/ accumulated in the gas phase were minimized after the renewals, the H/sub 2/ uptake activity, which was not completely inhibited by acetylene and carbon monoxide, was reduced and thereby H/sub 2/ evolution was restored. Under such conditions, H/sub 2/ production for up to 20 days was observed under argon and N/sub 2/ atmospheres with average rats of 3.9 and 3.3..mu..l/mg dry wt/h, respectively. H/sub 2/ evolution for 15 days was observed even under an air atmosphere containing acetylene and carbon monoxide. It was thus shown that prolonged production of H/sub 2/ was possible by the use of a blue-green alga which exhibits a high activity of H/sub 2/ uptake under nitrogen-starved conditions.

  8. Geochemical assessment of light gaseous hydrocarbons in near-surface soils of Kutch-Saurashtra: Implication for hydrocarbon prospects

    Science.gov (United States)

    Rao, P. Lakshmi Srinivasa; Madhavi, T.; Srinu, D.; Kalpana, M. S.; Patil, D. J.; Dayal, A. M.

    2013-02-01

    Light hydrocarbons in soil have been used as direct indicators in geochemical hydrocarbon exploration, which remains an unconventional path in the petroleum industry. The occurrence of adsorbed soil gases, methane and heavier homologues were recorded in the near-surface soil samples collected from Kutch-Saurashtra, India. Soil gas alkanes were interpreted to be derived from deep-seated hydrocarbon sources and have migrated to the surface through structural discontinuities. The source of hydrocarbons is assessed to be thermogenic and could have been primarily derived from humic organic matter with partial contribution from sapropelic matter. Gas chromatographic analyses of hydrocarbons desorbed from soil samples through acid extraction technique showed the presence of methane through n-butane and the observed concentrations (in ppb) vary from: methane (C1) from 4-291, ethane (C2) from 0-84, propane (C3) from 0-37, i-butane (iC4) from 0-5 and n-butane (nC4) from 0-4. Carbon isotopes measured for methane and ethane by GC-C-IRMS, range between -42.9‰ to -13.3‰ (Pee Dee Belemnite - PDB) and -21.2‰ to -12.4‰ (PDB), respectively. The increased occurrence of hydrocarbons in the areas near Anjar of Kutch and the area south to Rajkot of Saurashtra signifies the area potential for oil and gas.

  9. Plasmon mediated non-photochemical nucleation of nanoparticles by circularly polarized light

    OpenAIRE

    Karpov, Victor G.; Grigorchuk, Nicholas I.

    2014-01-01

    We predict nucleation of pancake shaped metallic nanoparticles having plasmonic frequencies in resonance with a non-absorbed circularly polarized electromagnetic field. We show that the same field can induce nucleation of randomly oriented needle shaped particles. The probabilities of these shapes are estimated vs. field frequency and strength, material parameters, and temperature. This constitutes a quantitative model of non-photochemical laser induced nucleation (NPLIN) consistent with the ...

  10. Rates and regimes of photochemical ozone production over Central East China in June 2006: a box model analysis using comprehensive measurements of ozone precursors

    Directory of Open Access Journals (Sweden)

    Y. Kanaya

    2009-10-01

    Full Text Available An observation-based box model approach was undertaken to estimate concentrations of OH, HO2, and RO2 radicals and the net photochemical production rate of ozone at the top of Mount Tai, located in the middle of Central East China, in June 2006. The model calculation was constrained by the measurements of O3, H2O, CO, NO, NO2, hydrocarbon, HCHO, and CH3CHO concentrations, and temperature and J values. The net production rate of ozone was estimated to be 6.4 ppb h−1 as a 6-h average (09:00–15:00 CST, suggesting 58±37 ppb of ozone is produced in one day. Thus the daytime buildup of ozone recorded at the mountain top as ~23 ppb on average is likely affected by in situ photochemistry as well as by the upward transport of polluted air mass in the daytime. On days with high ozone concentrations (hourly values exceeding 100 ppb at least once, in situ photochemistry was more active than it was on low ozone days, suggesting that in situ photochemistry is an important factor controlling ozone concentrations. Sensitivity model runs for which different NOx and hydrocarbon concentrations were assumed suggested that the ozone production occurred normally under NOx-limited conditions, with some exceptional periods (under volatile-organic-compound-limited conditions in which there was fresh pollution. We also examined the possible influence of the heterogeneous loss of gaseous HO2 radicals in contact with aerosol particle surfaces on the rate and regimes of ozone production.

  11. In-situ hydrocarbon delineation using laser-induced fluorescence

    International Nuclear Information System (INIS)

    Taer, A.D.; Hastings, R.W.; Brown, A.Y.; Frend, R.

    1996-01-01

    An investigation of hydrocarbons in soils was conducted at an active Shell Oil Company petroleum products terminal, located in Carson, California. An investigation approach involving Laser-Induced Fluorescence (LIF) and Cone Penetrometer Testing (CPT) technologies was implemented to provide real-time, in-situ characterization of site stratigraphy, hydrocarbon distribution and importantly, hydrocarbon product differentiation. The area of investigation is located along a property boundary, where a plume of separate phase hydrocarbons has been actively recovered for several years. CPT/LIF technology was selected for the investigation since previous delineation efforts using hydrocarbon fingerprinting methods proved inconclusive. Additionally, the CPT/LIF technology had the potential to provide a cost effective solution to accomplish project objectives. Based on the information obtained during this investigation, it was determined that the plume of separate phase hydrocarbons along the northern property boundary is from a source distinctly different than any identified hydrocarbons known to be from on-site sources. In addition, the plume was determined to not be connected with any other known on-site hydrocarbon plumes. The results of this CPT/LIF investigation were consistent with the known hydrogeologic conditions. This evaluation determined that CPT/LIF technology was very effective in addressing project objectives and resulted in a significant cost savings

  12. Constructed wetlands for treatment of dissolved phase hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Moore, B J; Ross, S D [Komex International, Calgary, AB (Canada); Gibson, D [Calgary Univ., AB (Canada); Hardisty, P E [Komex Clarke Bond, Bristol (United Kingdom)

    1999-01-01

    The use of constructed wetlands as an alternative to conventional treatment of condensate-contaminated groundwater was studied. In 1997 a pilot scale wetland was constructed and implemented at the Gulf Strachan Gas Processing Plant to determine its ability in treating extracted groundwater contaminated with natural gas condensates. This paper presented the results of hydrocarbon removal efficiency, hydrocarbon removal mechanisms, winter operation, and the effect of hydrocarbons on vegetation health. The inflow water to the wetland contains 15 to 20 mg/L of C[sub 5]-C[sub 10] hydrocarbons, including 50 per cent BTEX compounds. During the summer months, hydrocarbon removal efficiency was 100 per cent, but decreased to 60 and 30 per cent in the spring and late fall, respectively. The hydrocarbons not removed in the wetland were eventually removed along the outflow channel. Temperature was determined to be an important factor in the variable removal rates, particularly when there is no aeration. The main hydrocarbon removal mechanisms appear to be volatilization, biodegradation and dilution. At present, plant uptake is not a factor. 12 refs., 1 tab., 3 figs.

  13. Constructed wetlands for treatment of dissolved phase hydrocarbons

    International Nuclear Information System (INIS)

    Moore, B.J.; Ross, S.D.; Gibson, D.; Hardisty, P.E.

    1999-01-01

    The use of constructed wetlands as an alternative to conventional treatment of condensate-contaminated groundwater was studied. In 1997 a pilot scale wetland was constructed and implemented at the Gulf Strachan Gas Processing Plant to determine its ability in treating extracted groundwater contaminated with natural gas condensates. This paper presented the results of hydrocarbon removal efficiency, hydrocarbon removal mechanisms, winter operation, and the effect of hydrocarbons on vegetation health. The inflow water to the wetland contains 15 to 20 mg/L of C 5 -C 10 hydrocarbons, including 50 per cent BTEX compounds. During the summer months, hydrocarbon removal efficiency was 100 per cent, but decreased to 60 and 30 per cent in the spring and late fall, respectively. The hydrocarbons not removed in the wetland were eventually removed along the outflow channel. Temperature was determined to be an important factor in the variable removal rates, particularly when there is no aeration. The main hydrocarbon removal mechanisms appear to be volatilization, biodegradation and dilution. At present, plant uptake is not a factor. 12 refs., 1 tab., 3 figs

  14. Saturated versus unsaturated hydrocarbon interactions with carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Deivasigamani eUmadevi

    2014-09-01

    Full Text Available The interactions of various acyclic and cyclic hydrocarbons in both saturated and unsaturated forms with the carbon nanostructures (CNSs have been explored by using density functional theory (DFT calculations. Model systems representing armchair and zigzag carbon nanotubes (CNTs and graphene have been considered to investigate the effect of chirality and curvature of the CNSs towards these interactions. Results of this study reveal contrasting binding nature of the acyclic and cyclic hydrocarbons towards CNSs. While the saturated molecules show stronger binding affinity in acyclic hydrocarbons; the unsaturated molecules exhibit higher binding affinity in cyclic hydrocarbons. In addition, acyclic hydrocarbons exhibit stronger binding affinity towards the CNSs when compared to their corresponding cyclic counterparts. The computed results excellently corroborate the experimental observations. The interaction of hydrocarbons with graphene is more favourable when compared with CNTs. Bader’s theory of atoms in molecules has been invoked to characterize the noncovalent interactions of saturated and unsaturated hydrocarbons. Our results are expected to provide useful insights towards the development of rational strategies for designing complexes with desired noncovalent interaction involving CNSs.

  15. Bioavialability of Dom Photochemically Released from Resuspended Sediments

    Science.gov (United States)

    Avery, G. B., Jr.; Rainey, D. H.; Mead, R. N.; Skrabal, S. A.; Kieber, R. J.; Felix, J. D.; Helms, J. R.

    2016-02-01

    Little is known regarding the bioavailability of dissolved organic matter (DOM) released photochemically from resuspended estuarine sediments. Sediments were collected from two sites along the Cape Fear River estuary, NC, USA, size fractionated in 0.2 µm filtered Gulf Stream seawater and exposed to simulated sunlight for six hours. Light exposed samples resulted in increases of dissolved organic carbon (DOC) (34 ± 3 µM), chromophoric dissolved organic matter (CDOM) (a300nm, 2.7 m-1), and fluorescent dissolved organic matter (FDOM) (78.6 quinine sulfate equivalents (QSE)) compared to dark controls. Ultra high resolution mass spectrometric characterization indicated the photoreleased DOM was more oxidized and condensed based upon van Kreevlan analysis. Samples were then filtered and inoculated to a final ratio of 4% with coastal water sample filtered through a100 µm net to remove larger grazing organisms and particles while keeping most of bacterial community intact. All three parameters were monitored during a 30 day-long incubation in the dark to assess biological consumption and alteration. Previously light exposed samples had double (20 vs. 9 µM) the amount of DOC consumed compared to samples not previously exposed to light and twice the loss of CDOM (a300nm, 0.6 vs. 0.3 m-1) compared to samples not previously exposed to light. Previously light exposed samples resulted in a threefold loss of FDOM (9.5 QSE) compared to samples not previously exposed to light (2.8 QSE). Results of this study are important because they demonstrate dissolved organic matter released photochemically from resuspended sediments is more bioavailable than ambient material likely fueling secondary productivity and impacting ecosystem functioning in coastal regions.

  16. Radiolysis of hydrocarbons in liquid phase (Modern state of problem)

    International Nuclear Information System (INIS)

    Saraeva, V.V.

    1986-01-01

    Problems of ionizing radiation effect on hydrocarbons and hydrocarbon systems in a liquid phase are considered. Modern representations on the mechanism of hydrocarbon radiolysis are presented. Electron moderation and ion-electron pair formation, behaviour of charged particles, excited states, radical formation and their reactions are discussed. Behaviour of certain hydrocarbon classes: alkanes, cyclic hydrocarbons, olefines, aromatic hydrocarbons as well as different hydrocarbon mixtures is considered in detail. Radiation-chemical changes in organic coolants and ways of increasing radiation resistance are considered. Polyphenyl compounds are noted to be most perspective here

  17. Instrumentation for Air Pollution Monitoring

    Science.gov (United States)

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  18. Separation of the mercury isotopes by the indirect photochemical method

    International Nuclear Information System (INIS)

    Botter nee Bergheaud, F.; Scaringella nee Desnoyer, M.; Wacongne, M.

    1976-01-01

    A method of photochemical separation of the mercury isotopes by the so-called indirect route in which a gas stream of oxygen and butadiene containing a mixture of mercury isotopes is passed through one or a number of vessels placed in series. The gas stream is irradiated by a lamp containing mercury which is depleted in one or a number of the isotopes and said isotopes are recovered in a trap placed downstream of the vessel or vessels

  19. Production of hydrocarbons of value

    Energy Technology Data Exchange (ETDEWEB)

    1931-06-16

    A process is described for the production of hydrocarbons of great value by treating with heat and pressure carbonaceous materials such as coals, tars, mineral oils, and products of distillation and transformation of these materials, also for the refining with heat and pressure of mixed liquid hydrocarbons by means of hydrogen gas, preferably in the presence of catalysts, consisting in using as the hydrogenating gas that obtained by gasification of combustible solids after partial or complete cleaning at atmospheric or elevated pressures, by means of solid adsorbents, chemical agents or catalysts, or mixtures of these agents, the hydrocarbons being characterized by strong unsaturation, and the presence of oxygen, sulfur compounds, and oxides of nitrogen.

  20. APEX (Aqueous Photochemistry of Environmentally occurring Xenobiotics): a free software tool to predict the kinetics of photochemical processes in surface waters.

    Science.gov (United States)

    Bodrato, Marco; Vione, Davide

    2014-04-01

    The APEX software predicts the photochemical transformation kinetics of xenobiotics in surface waters as a function of: photoreactivity parameters (direct photolysis quantum yield and second-order reaction rate constants with transient species, namely ˙OH, CO₃(-)˙, (1)O₂ and the triplet states of chromophoric dissolved organic matter, (3)CDOM*), water chemistry (nitrate, nitrite, bicarbonate, carbonate, bromide and dissolved organic carbon, DOC), and water depth (more specifically, the optical path length of sunlight in water). It applies to well-mixed surface water layers, including the epilimnion of stratified lakes, and the output data are average values over the considered water column. Based on intermediate formation yields from the parent compound via the different photochemical pathways, the software can also predict intermediate formation kinetics and overall yield. APEX is based on a photochemical model that has been validated against available field data of pollutant phototransformation, with good agreement between model predictions and field results. The APEX software makes allowance for different levels of knowledge of a photochemical system. For instance, the absorption spectrum of surface water can be used if known, or otherwise it can be modelled from the values of DOC. Also the direct photolysis quantum yield can be entered as a detailed wavelength trend, as a single value (constant or average), or it can be defined as a variable if unknown. APEX is based on the free software Octave. Additional applications are provided within APEX to assess the σ-level uncertainty of the results and the seasonal trend of photochemical processes.