WorldWideScience

Sample records for monovalent cation transporters

  1. Effect of primycin on monovalent cation transport of erythrocyte membrane and lipid bilayer.

    Science.gov (United States)

    Blaskó, K; Györgyi, S; Horváth, I

    1979-04-01

    The effects of primycin were investigated on the alkali-cation transport of human erythrocytes and on the electric conduction of bimolecular lipid membranes. In the concentration range of 3.10(-6) approximately 10(-5) M primycin increased the permeability of erythrocytes to alkali-cations according to the sequences Cs+ greater than Rb+ approximately K+ greater than Na+, while the conductance of the negatively charged phosphatidylserine bimolecular lipid membrane increased by 2 approximately 3 orders of magnitude. The resistance-lowering effect of primycin strongly depended on the cationic species applied and a selectivity order Na+ greater than K+ greater than Rb+ greater than Cs+ was found. A possible mechanism of the primycin-membrane interaction is suggested on the basis of experimental data.

  2. Differential effect of HOE642 on two separate monovalent cation transporters in the human red cell membrane

    DEFF Research Database (Denmark)

    Bernhardt, Ingolf; Weiss, Erwin; Robinson, Hannah C

    2007-01-01

    Residual K(+) fluxes in red blood cells can be stimulated in conditions of low ionic strength. Previous studies have identified both the non-selective, voltage-dependent cation (NSVDC) channel and the K(+)(Na(+))/H(+) exchanger as candidate pathways mediating this effect, although it is possible...... blood cell apoptosis (eryptosis) and disease....

  3. The Mrp system: a giant among monovalent cation/proton antiporters?

    Science.gov (United States)

    Swartz, Talia H; Ikewada, Sayuri; Ishikawa, Osamu; Ito, Masahiro; Krulwich, Terry Ann

    2005-10-01

    Mrp systems are a novel and broadly distributed type of monovalent cation/proton antiporter of bacteria and archaea. Monovalent cation/proton antiporters are membrane transport proteins that catalyze efflux of cytoplasmic sodium, potassium or lithium ions in exchange for external hydrogen ions (protons). Other known monovalent cation antiporters are single gene products, whereas Mrp systems have been proposed to function as hetero-oligomers. A mrp operon typically has six or seven genes encoding hydrophobic proteins all of which are required for optimal Mrp-dependent sodium-resistance. There is little sequence similarity of Mrp proteins to other antiporters but three of these proteins have significant sequence similarity to membrane embedded subunits of ion-translocating electron transport complexes. Mrp antiporters have essential roles in the physiology of alkaliphilic and neutralophilic Bacillus species, nitrogen-fixing Sinorhizobium meliloti and in the pathogen Staphylococcus aureus, although these bacteria contain multiple monovalent cation/proton antiporters. The wide distribution of Mrp systems leads to the anticipation of important roles in an even wider variety of pathogens, extremophiles and environmentally important organisms. Here, the distribution, established physiological roles and catalytic activities of Mrp systems are reviewed, hypotheses regarding their complexity are discussed and major open questions about their function are highlighted.

  4. Electron transport through monovalent atomic wires

    DEFF Research Database (Denmark)

    Lee, Y. J.; Brandbyge, Mads; Puska, M. J.

    2004-01-01

    Using a first-principles density-functional method we model electron transport through linear chains of monovalent atoms between two bulk electrodes. For noble-metal chains the transport resembles that for free electrons over a potential barrier whereas for alkali-metal chains resonance states...... at the chain determine the conductance. As a result, the conductance for noble-metal chains is close to one quantum of conductance, and it oscillates moderately so that an even number of chain atoms yields a higher value than an odd number. The conductance oscillations are large for alkali-metal chains...

  5. Activation and inhibition of histone deacetylase 8 by monovalent cations.

    Science.gov (United States)

    Gantt, Stephanie L; Joseph, Caleb G; Fierke, Carol A

    2010-02-26

    The metal-dependent histone deacetylases (HDACs) catalyze hydrolysis of acetyl groups from acetyllysine side chains and are targets of cancer therapeutics. Two bound monovalent cations (MVCs) of unknown function have been previously observed in crystal structures of HDAC8; site 1 is near the active site, whereas site 2 is located > 20 A from the catalytic metal ion. Here we demonstrate that one bound MVC activates catalytic activity (K(1/2) = 3.4 mM for K(+)), whereas the second, weaker-binding MVC (K(1/2) = 26 mM for K(+)) decreases catalytic activity by 11-fold. The weaker binding MVC also enhances the affinity of the HDAC inhibitor suberoylanilide hydroxamic acid by 5-fold. The site 1 MVC is coordinated by the side chain of Asp-176 that also forms a hydrogen bond with His-142, one of two histidines important for catalytic activity. The D176A and H142A mutants each increase the K(1/2) for potassium inhibition by > or = 40-fold, demonstrating that the inhibitory cation binds to site 1. Furthermore, the MVC inhibition is mediated by His-142, suggesting that this residue is protonated for maximal HDAC8 activity. Therefore, His-142 functions either as an electrostatic catalyst or a general acid. The activating MVC binds in the distal site and causes a time-dependent increase in activity, suggesting that the site 2 MVC stabilizes an active conformation of the enzyme. Sodium binds more weakly to both sites and activates HDAC8 to a lesser extent than potassium. Therefore, it is likely that potassium is the predominant MVC bound to HDAC8 in vivo.

  6. Independent adsorption of monovalent cations and cationic polymers at PE/PG lipid membranes

    Science.gov (United States)

    Khomich, Daria A.; Nesterenko, Alexey M.; Kostritskii, Andrei Yu; Kondinskaia, Diana A.; Ermakov, Yuri A.; Gurtovenko, Andrey A.

    2017-01-01

    Synthetic cationic polymers constitute a wide class of polymeric biocides. Commonly their antimicrobial effect is associated to their interaction with bacterial membranes. In the present study we analyze the interaction of various cationic polymers with model bacterial membranes comprised of a mixture of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). We describe a polymer-membrane interaction as a process of modification of the surface charge. It is well known that small monovalent inorganic cations (Na+, K+) cannot overcharge the surface of a bilayer containing anionic lipids. In contrast, polycations are able to overcharge anionic membranes and demonstrate a very large input to the electric field distribution at the membrane-water interface. We aimed here to study the electrostatic effects associated with the interaction of polycations of different types with a model lipid membrane whose composition closely resembles that of bacterial membranes (PE:PG = 1:4). Four different cationic polymers (polyvinylamine, polyallylamine, poly-L-lysine and polyethylenimine) were adsorbed at a model PE/PG bilayer in MD simulations. Adsorption of sodium cations was inspected separately for PE/PG bilayers of different composition and cation’s binding parameters were determined. From computational experiments and consequent theoretical analysis we concluded that sodium adsorption at anionic binding sites does not depend on the presence of polycations. Therefore, we hypothesize that antimicrobial activity of the studied cationic polymers should depend on the ionic composition of the medium.

  7. Influence of competing inorganic cations on the ion exchange equilibrium of the monovalent organic cation metoprolol on natural sediment.

    Science.gov (United States)

    Niedbala, Anne; Schaffer, Mario; Licha, Tobias; Nödler, Karsten; Börnick, Hilmar; Ruppert, Hans; Worch, Eckhard

    2013-02-01

    The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na(+) and Ca(2+) on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH=7. Isotherms for the beta-blocker metoprolol were obtained by sediment-water batch tests over a wide concentration range (1-100000 μg L(-1)). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n=0.9), indicating slightly non-linear behavior. Results show that the influence of Ca(2+) compared to Na(+) is more pronounced. A logarithmic correlation between the Freundlich coefficient K(Fr) and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface.

  8. Incorporation of Monovalent Cations in Sulfate Green Rust

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Dideriksen, K.; Katz, A.;

    2014-01-01

    Green rust is a naturally occurring layered mixed-valent ferrous-ferric hydroxide, which can react with a range of redox-active compounds. Sulfate-bearing green rust is generally thought to have interlayers composed of sulfate and water. Here, we provide evidence that the interlayers also contain...... with water showed that Na+ and K+ were structurally fixed in the interlayer, whereas Rb+ and Cs+ could be removed, resulting in a decrease in the basal layer spacing. The incorporation of cations in the interlayer opens up new possibilities for the use of sulfate green rust for exchange reactions with both...

  9. Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Abdi-Jalebi, Mojtaba; Dar, M Ibrahim; Sadhanala, Aditya; Senanayak, Satyaprasad P; Grätzel, Michael; Friend, Richard H

    2017-03-19

    Here, we demonstrate the incorporation of monovalent cation additives into CH3NH3PbI3 perovskite in order to adjust the optical, excitonic, and electrical properties. The possibility of doping was investigated by adding monovalent cation halides with similar ionic radii to Pb(2+), including Cu(+), Na(+), and Ag(+). A shift in the Fermi level and a remarkable decrease of sub-bandgap optical absorption, along with a lower energetic disorder in the perovskite, was achieved. An order-of-magnitude enhancement in the bulk hole mobility and a significant reduction of transport activation energy within an additive-based perovskite device was attained. The confluence of the aforementioned improved properties in the presence of these cations led to an enhancement in the photovoltaic parameters of the perovskite solar cell. An increase of 70 mV in open circuit voltage for AgI and a 2 mA/cm(2) improvement in photocurrent density for NaI- and CuBr-based solar cells were achieved compared to the pristine device. Our work paves the way for further improvements in the optoelectronic quality of CH3NH3PbI3 perovskite and subsequent devices. It highlights a new avenue for investigations on the role of dopant impurities in crystallization and controls the electronic defect density in perovskite structures.

  10. Effects of monovalent cations on folding kinetics of G-quadruplexes.

    Science.gov (United States)

    You, Jing; Li, Hui; Lu, Xi-Ming; Li, Wei; Wang, Peng-Ye; Dou, Shuo-Xing; Xi, Xu-Guang

    2017-08-31

    G-quadruplexes are special structures existing at the ends of human telomeres, the folding kinetics of which are essential for their functions, such as in the maintenance of genome stability and the protection of chromosome ends. In the present study, we investigated the folding kinetics of G-quadruplex in different monovalent cation environments and determined the detailed kinetic parameters for Na(+)- and K(+)-induced G-quadruplex folding, and for its structural transition from the basket-type Na(+) form to the hybrid-type K(+) form. More interestingly, although Li(+) was often used in previous studies of G-quadruplex folding as a control ion supposed to have no effect, we have found that Li(+) can actually influence the folding kinetics of both Na(+)- and K(+)-induced G-quadruplexes significantly and in different ways, by changing the folding fraction of Na(+)-induced G-quadruplexes and greatly increasing the folding rates of K(+)-induced G-quadruplexes. The present study may shed new light on the roles of monovalent cations in G-quadruplex folding and should be useful for further studies of the underlying folding mechanism. © 2017 The Author(s).

  11. Circular Dichroism is Sensitive to Monovalent Cation Binding in Monensin Complexes.

    Science.gov (United States)

    Nedzhib, Ahmed; Kessler, Jiří; Bouř, Petr; Gyurcsik, Béla; Pantcheva, Ivayla

    2016-05-01

    Monensin is a natural antibiotic that exhibits high affinity to certain metal ions. In order to explore its potential in coordination chemistry, circular dichroism (CD) spectra of monensic acid A (MonH) and its derivatives containing monovalent cations (Li(+) , Na(+) , K(+) , Rb(+) , Ag(+) , and Et4 N(+) ) in methanolic solutions were measured and compared to computational models. Whereas the conventional CD spectroscopy allowed recording of the transitions down to 192 nm, synchrotron radiation circular dichroism (SRCD) revealed other bands in the 178-192 nm wavelength range. CD signs and intensities significantly varied in the studied compounds, in spite of their similar crystal structure. Computational modeling based on the Density Functional Theory (DFT) and continuum solvent model suggests that the solid state monensin structure is largely conserved in the solutions as well. Time-dependent Density Functional Theory (TDDFT) simulations did not allow band-to-band comparison with experimental spectra due to their limited precision, but indicated that the spectral changes were caused by a combination of minor conformational changes upon the monovalent cation binding and a direct involvement of the metal electrons in monensin electronic transitions. Both the experiment and simulations thus show that the CD spectra of monensin complexes are very sensitive to the captured ions and can be used for their discrimination. Chirality 28:420-428, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Susanne Gerber

    2016-01-01

    Full Text Available Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the electrochemical potential differences, but also primary or secondary active transport processes driven by the inter- play of different ions (symport, antiport or by ATP consumption (ATPases. The model-confronted with experimental data-reproduces the experimentally observed potassium and proton fluxes induced by the external stimuli KCl and glucose. The estimated phenomenological constants combine kinetic parameters and transport coefficients. These are in good agreement with the biological understanding of the transporters thus providing a better understanding of the control exerted by the coupled fluxes. The model predicts the flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing positive charges. Furthermore, the effect of a second KCl stimulus is simulated, predicting a reduced cellular response for cells that were first exposed to a high KCl stimulus compared to cells pretreated with a mild KCl stimulus. By describing the generalized forces that are responsible for a given flow, the model provides information and suggestions for new experiments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or selected plant cells.

  13. A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gerber, Susanne; Fröhlich, Martina; Lichtenberg-Fraté, Hella; Shabala, Sergey; Shabala, Lana; Klipp, Edda

    2016-01-01

    Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the electrochemical potential differences, but also primary or secondary active transport processes driven by the inter- play of different ions (symport, antiport) or by ATP consumption (ATPases). The model-confronted with experimental data-reproduces the experimentally observed potassium and proton fluxes induced by the external stimuli KCl and glucose. The estimated phenomenological constants combine kinetic parameters and transport coefficients. These are in good agreement with the biological understanding of the transporters thus providing a better understanding of the control exerted by the coupled fluxes. The model predicts the flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing positive charges. Furthermore, the effect of a second KCl stimulus is simulated, predicting a reduced cellular response for cells that were first exposed to a high KCl stimulus compared to cells pretreated with a mild KCl stimulus. By describing the generalized forces that are responsible for a given flow, the model provides information and suggestions for new experiments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or selected plant cells.

  14. Single crystal structures of thallium (I) thorium fluorides and crystal chemistry of monovalent tetravalent cation pentafluorides

    Science.gov (United States)

    Oudahmane, Abdelghani; El-Ghozzi, Malika; Jouffret, Laurent; Avignant, Daniel

    2015-12-01

    Two thallium (I) thorium (IV) fluorides, TlTh3F13 and TlThF5 were obtained by solid state synthesis and their crystal structures determined from single crystal X-ray diffraction data recorded at room temperature with an APEX-II CCD diffractometer. TlTh3F13 is orthorhombic, space group Pmc21, with a=8.1801(2) Å, b=7.4479(2) Å, c=8.6375(2) Å, V=526.24(2) Å3, Z=2 and TlThF5 is monoclinic, space group P21/n, with a=8.1128(5) Å, b=7.2250(4) Å, c=8.8493(6) Å, β=116.683(3)°, V=463.46(5) Å3, Z=4. The structure of TlTh3F13 comprises layers of corner and edge-sharing ThF9 polyhedra further linked by chains of trans connected tricapped trigonal prisms ThF9 through corners and edges. The three dimensional thorium frameworks delimits channels parallel to [0 0 1] where the 11-coordinated Tl+ ions are arranged into double columns located in mirror planes of the structure. TlTh3F13 is isotypic with RbTh3F13, RbU3F13 and with one of the two polymorphs of CsTh3F13. The structure of TlThF5 may be regarded as a layer structure built up from the regular succession of 2∞[ M ‧F5 ] - corrugated layers further held by the Tl+ ions along the [1 0 1 ̅] direction. The layers are built up from edge and corner-sharing thorium polyhedra where each (ThF9)5- monocapped square antiprism is connected to five others by sharing three edges and two corners. TlThF5 is isostructural with β-NH4UF5 and with one of the polymorphs of CsThF5. A comparison of the different structural types of MM‧F5 pentafluorides is presented and a diagram of repartition of their structures is given. From the comparison of the Tl structures with their Rb or Cs homologs, where very similar monovalent cation environments are observed it should be concluded to a stereochemically inactivity of the 6s2 lone pair of Tl(I) in both TlTh3F13 and TlThF5, contrary to what is observed in richer Tl(I) content Tl3ThF7 fluorothorate.

  15. Ring-Puckering Potential Energy Functions for Trimethylene Sulfide and Its Monovalent Cation.

    Science.gov (United States)

    Chun, Hye Jin; Ocola, Esther J; Laane, Jaan

    2017-04-13

    The spectra and ring-puckering potential energy function for trimethylene sulfide cation (TMS(+)) from vacuum ultraviolet mass-analyzed threshold ionization spectra have recently been reported. To provide an in-depth comparison of the potential function with that of trimethylene sulfide (TMS) itself, we have used ab initio MP2/cc-pVTZ calculations and DFT B3LYP/cc-pVTZ calculations to predict the structures of both TMS and TMS(+) and then used these to calculate coordinate-dependent ring-puckering kinetic energy functions for both species. These kinetic energy functions allowed us to calculate refined potential energy functions of the puckering for both molecules based on the previously published spectra. TMS has an experimental barrier of 271 cm(-1) and energy minima at ring-puckering angles of ±29°. For TMS(+) the barrier is 60 cm(-1) and the energy minima correspond to ring-puckering angles of ±21°. The lower barrier for the cation reflects the smaller amount of angle strain in the ring angles for TMS(+).

  16. Simultaneous Analysis of Monovalent Anions and Cations with a Sub-Microliter Dead-Volume Flow-Through Potentiometric Detector for Ion Chromatography.

    Science.gov (United States)

    Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim

    2016-04-01

    A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na(+)), potassium (K(+)), ammonium (NH4 (+)), chloride (Cl(-)) and nitrate (NO3 (-)) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples.

  17. Cloning and identification of Group 1 mrp operon encoding a novel monovalent cation/proton antiporter system from the moderate halophile Halomonas zhaodongensis.

    Science.gov (United States)

    Meng, Lin; Hong, Shan; Liu, Henan; Huang, Haipeng; Sun, Hao; Xu, Tong; Jiang, Juquan

    2014-11-01

    The novel species Halomonas zhaodongensis NEAU-ST10-25(T) recently identified by our group is a moderate halophile which can grow at the range of 0-2.5 M NaCl (optimum 0.5 M) and pH 6-12 (optimum pH 9). To explore its halo-alkaline tolerant mechanism, genomic DNA was screened from NEAU-ST10-25(T) in this study for Na(+)(Li(+))/H(+) antiporter genes by selection in Escherichia coli KNabc lacking three major Na(+)(Li(+))/H(+) antiporters. One mrp operon could confer tolerance of E. coli KNabc to 0.8 M NaCl and 100 mM LiCl, and an alkaline pH. This operon was previously mainly designated mrp (also mnh, pha or sha) due to its multiple resistance and pH-related activity. Here, we will also use mrp to designate the homolog from H. zhaodongensis (Hz_mrp). Sequence analysis and protein alignment showed that Hz_mrp should belong to Group 1 mrp operons. Further phylogenetic analysis reveals that Hz_Mrp system should represent a novel sub-class of Group 1 Mrp systems. This was confirmed by a significant difference in pH-dependent activity profile or the specificity and affinity for the transported monovalent cations between Hz_Mrp system and all the known Mrp systems. Therefore, we propose that Hz_Mrp should be categorized as a novel Group 1 Mrp system.

  18. Yeast Kch1 and Kch2 membrane proteins play a pleiotropic role in membrane potential establishment and monovalent cation homeostasis regulation.

    Science.gov (United States)

    Felcmanova, Kristina; Neveceralova, Petra; Sychrova, Hana; Zimmermannova, Olga

    2017-08-01

    The Kch1 and Kch2 plasma-membrane proteins were identified in Saccharomyces cerevisiae as being essential for the activation of a high-affinity Ca2+ influx system. We searched for Kch proteins roles in the maintenance of cation homeostasis and tested the effect of kch1 and/or kch2 deletions on various physiological parameters. Compared to wild-type, kch1 kch2 mutant cells were smaller, relatively hyperpolarised, grew better under limited K+ conditions and exhibited altered growth in the presence of monovalent cations. The absence of Kch1 and Kch2 did not change the intracellular pH in cells growing at low potassium or the tolerance of cells to divalent cations, high concentration of sorbitol or extreme external pH. The overexpression of KCH1 only increased the intracellular pH in the presence of elevated K+ in media. None of the phenotypes associated with the deletion of KCH1 and KCH2 in wild type were observed in a strain lacking KCH genes and main K+ uptake systems Trk1 and Trk2. The role of the Kch homologue in cation homeostasis was also tested in Candida albicans cells. Our data demonstrate that Kch proteins significantly contribute to the maintenance of optimal cation homeostasis and membrane potential in S. cerevisiae but not in C. albicans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Regulation of formyl peptide receptor binding to rabbit neutrophil plasma membranes. Use of monovalent cations, guanine nucleotides, and bacterial toxins to discriminate among different states of the receptor

    Energy Technology Data Exchange (ETDEWEB)

    Feltner, D.E.; Marasco, W.A.

    1989-06-01

    The regulation by monovalent cations, guanine nucleotides, and bacterial toxins of (3H)FMLP binding to rabbit neutrophil plasma membranes was studied by using dissociation techniques to identify regulatory effects on separate receptor states. Under conditions of low receptor occupancy (1 nM (3H)FMLP) and in both Na+ and K+ buffers, dissociation is heterogenous, displaying two distinct, statistically significant off rates. (3H)FMLP binding was enhanced by substituting other monovalent cations for Na+. In particular, enhanced binding in the presence of K+ relative to Na+ was caused by additional binding to both rapidly and slowly dissociating receptors. Three receptor dissociation rates, two of which appear to correspond to the two affinity states detected in equilibrium binding studies, were defined by specific GTP and pertussis toxin (PT) treatments. Neither GTP, nor PT or cholera toxins (CT) had an effect on the rate of dissociation of (3H)FMLP from the rapidly dissociating form of the receptor. Both 100 microM GTP and PT treatments increased the percentage of rapidly dissociating receptors, correspondingly decreasing the percentage of slowly dissociating receptors. The observed changes in the rapidly and slowly dissociating receptors after GTP, PT, and CT treatments were caused by an absolute decrease in the amount of binding to the slowly dissociating receptors. However, complete inhibition of slowly dissociating receptor binding by GTP, PT, or both was never observed. Both GTP and PT treatments, but not CT treatment, increased by two-fold the rate of dissociation of 1 nM (3H)FMLP from the slowly dissociating form of the receptor, resulting in a third dissociation rate. Thus, slowly dissociating receptors comprise two different receptor states, a G protein-associated guanine nucleotide and PT-sensitive state and a guanine nucleotide-insensitive state.

  20. Structure of a cation-bound multidrug and toxic compound extrusion transporter

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao; Szewczyk, Paul; Karyakin, Andrey; Evin, Mariah; Hong, Wen-Xu; Zhang, Qinghai; Chang, Geoffrey (Scripps)

    2010-10-26

    Transporter proteins from the MATE (multidrug and toxic compound extrusion) family are vital in metabolite transport in plants, directly affecting crop yields worldwide. MATE transporters also mediate multiple-drug resistance (MDR) in bacteria and mammals, modulating the efficacy of many pharmaceutical drugs used in the treatment of a variety of diseases. MATE transporters couple substrate transport to electrochemical gradients and are the only remaining class of MDR transporters whose structure has not been determined. Here we report the X-ray structure of the MATE transporter NorM from Vibrio cholerae determined to 3.65 {angstrom}, revealing an outward-facing conformation with two portals open to the outer leaflet of the membrane and a unique topology of the predicted 12 transmembrane helices distinct from any other known MDR transporter. We also report a cation-binding site in close proximity to residues previously deemed critical for transport. This conformation probably represents a stage of the transport cycle with high affinity for monovalent cations and low affinity for substrates.

  1. Preparation and characterization of monovalent ion selective cation exchange membranes based on sulphonated poly(ether ether ketone)

    NARCIS (Netherlands)

    Balster, J.H.; Krupenko, O.; Krupenko, O.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Wessling, Matthias

    2005-01-01

    This paper analyses the separation properties of various commercial cation exchange membranes (CEMs) and tailor made membranes based on sulphonated poly(ether ether ketone) and poly(ether sulphone) for binary electrolyte solutions containing protons and calcium ions. All membranes are thoroughly

  2. Preparation and characterisation of monovalent ion selective cation exchange membranes based on sulphonated poly(ether ether ketone)

    NARCIS (Netherlands)

    Balster, J.; Krupenko, O.; Punt, I.G.M.; Stamatialis, D.; Wessling, M.

    2005-01-01

    This paper analyses the separation properties of various commercial cation exchange membranes (CEMs) and tailor made membranes based on sulphonated poly(ether ether ketone) and poly(ether sulphone) for binary electrolyte solutions containing protons and calcium ions. All membranes are thoroughly cha

  3. A monovalent ion-selective cation current activated by noradrenaline in smooth muscle cells of rabbit ear artery.

    Science.gov (United States)

    Wang, Q; Hogg, R C; Large, W A

    1993-04-01

    Membrane currents were recorded with the perforated-patch method with a low-chloride (35 mM) pipette solution in isolated smooth muscle cells of the rabbit ear artery. At a holding potential of -50 mV in potassium-free conditions spontaneous inward single-channel currents were observed and noradrenaline evoked a noisy inward current, which appeared to be comprised of the spontaneous currents. The reversal potential (Vr) of the spontaneous channel and noradrenaline-induced current was not affected in anion-substitution experiments but Vr was altered when external Na+ was replaced with choline or TRIS. The relationship between clamp potential and spontaneous single-channel current amplitude was linear and the mean unitary conductance was 28 pS. Caffeine, which releases calcium from the sarcoplasmic reticulum, and the calcium ionophore ionomycin activated the cation current and also blocked the response to noradrenaline. Spontaneous channel current activity and the noradrenaline-induced current were blocked when external NaCl was replaced with 89 mM CaCl2. The response to noradrenaline was blocked by prazosin but was not affected by yohimbine and therefore the response is mediated by alpha 1-adrenoceptors. It is concluded that in rabbit ear artery smooth muscle cells there is a calcium-activated cation channel of 28 pS conductance, which is relatively impermeable to calcium but can be activated by noradrenaline.

  4. Influence of monovalent alkaline metal cations on binder-free nano-zeolite X in para-xylene separation

    Institute of Scientific and Technical Information of China (English)

    Milad Rasouli; Nakisa Yaghobi; Hossein Atashi; Majid Rasouli

    2015-01-01

    The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of SiO2/Al2O3 was synthesized through hydrothermal process and ion-exchanged with alkaline metal cations like lithium, sodium and potassium. The product was characterized by X-ray diffraction, scanning electron microscopy (SEM), nitrogen adsorption, transform electron microscopy (TEM) and in situ Fourier transform infrared (FTIR) spectroscopy. The influence of nano-zeolite water content and desorbent type on the selectivity of para-xylene toward other C8 aromatic isomers was studied. The optimization of adsorption process was also investigated under variable operation conditions. The isotherm for each isomer of C8 aromatics and the desorbents possess the adsorption characteristics of Langmuir type. The selectivity factor of para-xylene relative to each of meta-xylene, ortho-xylene and ethylben-zene under the optimum conditions obtained to be 5.36, 2.43 and 3.22, in the order given.

  5. Stable isotope (C, O) and monovalent cation fractionation upon synthesis of carbonate-bearing hydroxyl apatite (CHAP) via calcite transformation

    Science.gov (United States)

    Böttcher, Michael E.; Schmiedinger, Iris; Wacker, Ulrike; Conrad, Anika C.; Grathoff, Georg; Schmidt, Burkhard; Bahlo, Rainer; Gehlken, Peer-L.; Fiebig, Jens

    2016-04-01

    Carbonate-bearing hydroxyl-apatite (CHAP) is of fundamental and applied interest to the (bio)geochemical, paleontological, medical and material science communities, since it forms the basic mineral phase in human and animal teeth and bones. In addition, it is found in non-biogenic phosphate deposits. The stable isotope and foreign element composition of biogenic CHAP is widely used to estimate the formation conditions. This requires careful experimental calibration under well-defined boundary conditions. Within the DFG project EXCALIBOR, synthesis of carbonate-bearing hydroxyapatite was conducted via the transformation of synthetic calcite powder in aqueous solution as a function of time, pH, and temperature using batch-type experiments. The aqueous solution was analyzed for the carbon isotope composition of dissolved inorganic carbonate (gas irmMS), the oxygen isotope composition of water (LCRDS), and the cationic composition. The solid was characterized by powder X-ray diffraction, micro Raman and FTIR spectroscopy, SEM-EDX, elemental analysis (EA, ICP-OES) and gas irmMS. Temperature was found to significantly impact the transformation rate of calcite to CHAP. Upon complete transformation, CHAP was found to contain up to 5% dwt carbonate, depending on the solution composition (e.g., pH), both incorporated on the A and B type position of the crystal lattice. The oxygen isotope fractionation between water and CHAP decreased with increasing temperature with a tentative slope shallower than those reported in the literature for apatite, calcite or aragonite. In addition, the presence of dissolved NH4+, K+ or Na+ in aqueous solution led to partial incorporation into the CHAP lattice. How these distortions of the crystal lattice may impact stable isotope discrimination is subject of future investigations.

  6. Endomembrane Cation Transporters and Membrane Trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Sze, Heven [Univ. of Maryland, College Park, MD (United States). Dept. of Cell Biology & Molecular Genetics

    2017-04-01

    Multicellular, as well as unicellular, organisms have evolved mechanisms to regulate ion and pH homeostasis in response to developmental cues and to a changing environment. The working hypothesis is that the balance of fluxes mediated by diverse transporters at the plasma membrane and in subcellular organelles determines ionic cellular distribution, which is critical for maintenance of membrane potential, pH control, osmolality, transport of nutrients, and protein activity. An emerging theme in plant cell biology is that cells respond and adapt to diverse cues through changes of the dynamic endomembrane system. Yet we know very little about the transporters that might influence the operation of the secretory system in plants. Here we focus on transporters that influence alkali cation and pH homeostasis, mainly in the endomembrane/ secretory system. The endomembrane system of eukaryote cells serves several major functions: i) sort cargo (e.g. enzymes, transporters or receptors) to specific destinations, ii) modulate the protein and lipid composition of membrane domains through remodeling, and iii) determine and alter the properties of the cell wall through synthesis and remodeling. We had uncovered a novel family of predicted cation/H+ exchangers (CHX) and K+ efflux antiporters (KEA) that are prevalent in higher plants, but rare in metazoans. We combined phylogenetic and transcriptomic analyses with molecular genetic, cell biological and biochemical studies, and have published the first reports on functions of plant CHXs and KEAs. CHX studied to date act at the endomembrane system where their actions are distinct from the better-studied NHX (Na/K-H+ exchangers). Arabidopsis thaliana CHX20 in guard cells modulate stomatal opening, and thus is significant for vegetative survival. Other CHXs ensure reproductive success on dry land, as they participate in organizing pollen walls, targeting of pollen tubes to the ovule or promoting

  7. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    Science.gov (United States)

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density.

  8. Transport of biguanides by human organic cation transporter OCT2.

    Science.gov (United States)

    Sogame, Yoshihisa; Kitamura, Atsushi; Yabuki, Masashi; Komuro, Setsuko; Takano, Mikihisa

    2013-06-01

    Biguanides have the severe side effect of lactic acidosis. Although both metformin and phenformin are biguanide derivatives, there is a difference in the frequency at which they induce lactic acidosis. However, the reasons for the difference are not clear. Metformin has been reported to be mainly excreted into urine by human organic cation transporter 2 (hOCT2). The present study was designed to investigate the renal transport of metformin and phenformin, focusing on hOCT2, using hOCT2-expressing oocytes. Both biguanides were found to be good substrates for hOCT2. However, phenformin exhibited a higher affinity and transport activity than metformin. The Km values for metformin and phenformin were 235 and 37.4 μM, with CL(int) (V(max)/K(m)) values of 71.9×10⁻³ μL/min per oocyte and 209×10⁻³ μL/min per oocyte, respectively. This is the first report that has compared the transport profiles of these biguanides in hOCT2-expressing oocytes. The results suggest that plasma concentration of phenformin in subjects carrying hOCT2 variant may be higher compared to reference subjects, as reported in metformin. In addition, the relationship between plasma concentration of these biguanides and blood lactate level as well as the possible reasons for the difference in the associated frequency of occurrence of lactic acidosis are discussed.

  9. Solubility and transport of cationic and anionic patterned nanoparticles

    Science.gov (United States)

    Su, Jiaye; Guo, Hongxia; Olvera de La Cruz, Monica

    2012-02-01

    Diffusion and transport of nanoparticles (NPs) though nanochannels is important for desalination, drug delivery, and biomedicine. Their surface composition dictate their efficiency separating them by reverse osmosis, delivering into into cells, as well as their toxicity. We analyze bulk diffusion and transport through nanochannels of NPs with different hydrophobic-hydrophilic patterns achieved by coating a fraction of the NP sites with positive or negative charges via explicit solvent molecular dynamics simulations. The cationic NPs are more affected by the patterns, less water soluble, and have higher diffusion constants and fluxes than their anionic NPs counterparts. The NP-water interaction dependence on surface pattern and field strength explains these observations. For equivalent patterns, anionic NPs solubilize more than cationic NPs since the Coulomb interaction of free anionic NPs, which are much stronger than hydrophobic NP-water interactions, are about twice that of cationic NPs.

  10. Electrical transport and EPR investigations: A comparative study for d.c. conduction mechanism in monovalent and multivalent ions doped polyaniline

    Indian Academy of Sciences (India)

    Suresh Kumar Gupta; Vandna Luthra; Ramadhar Singh

    2012-10-01

    A detailed comparative study of electron paramagnetic resonance (EPR) in conjunction with d.c. electrical conductivity has been undertaken to know about the charge transport mechanism in polyaniline (PANI) doped with monovalent and multivalent protonic acids. This work is in continuation of our previous work for further understanding the conduction mechanism in conducting polymers. The results reveal that the polarons and bipolarons are the main charge carriers formed during doping process and these cause increase in electrical conductivity not only by increase in their concentration but also because of their enhanced mobility due to increased inter-chain transport in polyaniline at high doping levels. EPR line asymmetry having Dysonian line shape for highly doped samples shows a marked deviation of amplitudes / ratio from values close to one to much high values as usually observed in metals, thereby support the idea of high conductivity at higher doping levels. The nature of dopant ions and their doping levels control the charge carriers concentration as well as electrical conductivity of polyaniline. The electrical conductivity has also been studied as a function of temperature to know the thermally assisted transport process of these charge carriers at different doping levels which has been found to follow the Mott’s variable range hopping (VRH) conduction model for all the three dopants used. The charge carriers show a change over from 3D VRH to quasi 1D VRH hopping process for multivalent ions at higher doping levels whereas 1D VRH has been followed by monovalent ion for full doping range. These studies collectively give evidence of inter-chain percolation at higher doping levels causing increase in effective mobility of the charge carriers which mainly seems to govern the electrical conduction behaviour in this system.

  11. Effects of monovalent cation doping on the structure, microstructure, lattice distortion and magnetic behavior of single crystalline NdMnO3 compounds.

    Science.gov (United States)

    Nandy, Anshuman; Pradhan, S K

    2015-10-21

    Pure and 15 mol% Na, K-doped NdMnO3 compounds with perovskite structures are prepared by sol-gel method. Tiny single crystals are formed after sintering the compounds at 1000 °C. The effect of Na and K doping as well as the effect of sintering temperature on the formation and microstructure of NdMnO3 are studied in detail by the Rietveld refinement technique using X-ray powder diffraction data. Single phase formation and single crystalline growth are also confirmed by high resolution transmission electron microscopy (HRTEM). Bond angles and bond lengths are calculated and shown by 3D diagrams. Monovalent doping induces noticeable changes in the microstructure and yields better structural stability in these compounds. Doping results in the change of Mn-O, Nd-O and Mn-O-Mn bond lengths which in turn reduces the lattice and octahedral distortion in the system along with an increase in the tolerance factor. The magnetic properties of these compounds are also modified as a result of doping. The temperature dependent magnetization results show that the Neel temperature of antiferromagnetic NdMnO3 compound is 67.2 K and the Curie temperatures of ferromagnetic Nd0.85Na0.15MnO3 and Nd0.85K0.15MnO3 compounds are 99.1 K and 98.6 K respectively. Both 15% Na and K doping results in a similar TC in doped NdMnO3 compounds.

  12. An RNA aptamer possessing a novel monovalent cation-mediated fold inhibits lysozyme catalysis by inhibiting the binding of long natural substrates.

    Science.gov (United States)

    Padlan, Camille S; Malashkevich, Vladimir N; Almo, Steve C; Levy, Matthew; Brenowitz, Michael; Girvin, Mark E

    2014-04-01

    RNA aptamers are being developed as inhibitors of macromolecular and cellular function, diagnostic tools, and potential therapeutics. Our understanding of the physical nature of this emerging class of nucleic acid-protein complexes is limited; few atomic resolution structures have been reported for aptamers bound to their protein target. Guided by chemical mapping, we systematically minimized an RNA aptamer (Lys1) selected against hen egg white lysozyme. The resultant 59-nucleotide compact aptamer (Lys1.2minE) retains nanomolar binding affinity and the ability to inhibit lysozyme's catalytic activity. Our 2.0-Å crystal structure of the aptamer-protein complex reveals a helical stem stabilizing two loops to form a protein binding platform that binds lysozyme distal to the catalytic cleft. This structure along with complementary solution analyses illuminate a novel protein-nucleic acid interface; (1) only 410 Å(2) of solvent accessible surface are buried by aptamer binding; (2) an unusually small fraction (∼18%) of the RNA-protein interaction is electrostatic, consistent with the limited protein phosphate backbone contacts observed in the structure; (3) a single Na(+) stabilizes the loops that constitute the protein-binding platform, and consistent with this observation, Lys1.2minE-lysozyme complex formation takes up rather than displaces cations at low ionic strength; (4) Lys1.2minE inhibits catalysis of large cell wall substrates but not catalysis of small model substrates; and (5) the helical stem of Lys1.2minE can be shortened to four base pairs (Lys1.2minF) without compromising binding affinity, yielding a 45-nucleotide aptamer whose structure may be an adaptable protein binding platform.

  13. The Geometry and Structural Properties of the 4,8,12-Trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyrene System in the Cationic State. Structures of a Planar Organic Cation with Various Monovalent- and Divalent Anions

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Laursen, Bo W.; Johannsen, Ib

    1999-01-01

    The geometry of the 4,8,12-trioxa-4,8,12,12c- tetrahydrodibenzo[cd,mn]pyrene system in the cationic state was established by X-ray structural resolution of the salts formed between the cationand various anions. The geometry was found to be planar for the 4,8,12-trioxa-4,8,12,12c- tetrahydrodibenzo...... [cd,mn]pyrenylium and 2,6,10-tri (tert-butyl)-4,8,12-trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyre nylium cations with the monovalentanions I-, BF4-, PF6- AsF6-, HNO3. NO3- and CF3SO3-, and the divalent anions S2O62- and Mo6Cl142-. The salts were found to crystallize in distinct space groups...... following a characteristic pattern. Mixed cation-anion stacking resulted in space groups with high symmetry: Pbca in three cases and R (3) over bar c in one; a temperature study of the latter was made at ten different temperatures. The formation of dimers of anions and cations resulted in lower...

  14. The plasma membrane monoamine transporter (PMAT): Structure, function, and role in organic cation disposition.

    Science.gov (United States)

    Wang, J

    2016-11-01

    Plasma membrane monoamine transporter (PMAT) is a new polyspecific organic cation transporter that transports a variety of biogenic amines and xenobiotic cations. Highly expressed in the brain, PMAT represents a major uptake2 transporter for monoamine neurotransmitters. At the blood-cerebrospinal fluid (CSF) barrier, PMAT is the principal organic cation transporter for removing neurotoxins and drugs from the CSF. Here I summarize our latest understanding of PMAT and its roles in monoamine uptake and xenobiotic disposition. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  15. The Role of Transporters in the Toxicity of Chemotherapeutic Drugs: Focus on Transporters for Organic Cations.

    Science.gov (United States)

    Hucke, Anna; Ciarimboli, Giuliano

    2016-07-01

    The introduction of chemotherapy in the treatment of cancer is one of the most important achievements of modern medicine, even allowing the cure of some lethal diseases such as testicular cancer and other malignant neoplasms. The number and type of chemotherapeutic agents available have steadily increased and have developed until the introduction of targeted tumor therapy. It is now evident that transporters play an important role for determining toxicity of chemotherapeutic drugs not only against target but also against nontarget cells. This is of special importance for intracellularly active hydrophilic drugs, which cannot freely penetrate the plasma membrane. Because many important chemotherapeutic agents are substrates of transporters for organic cations, this review discusses the known interaction of these substances with these transporters. A particular focus is given to the role of transporters for organic cations in the development of side effects of chemotherapy with platinum derivatives and in the efficacy of recently developed tyrosine kinase inhibitors to specifically target cancer cells. It is evident that specific inhibition of uptake transporters may be a possible strategy to protect against undesired side effects of platinum derivatives without compromising their antitumor efficacy. These transporters are also important for efficient targeting of tyrosine kinase inhibitors to cancer cells. However, in order to achieve the aims of protecting from undesired toxicities and improving the specificity of uptake by tumor cells, an exact knowledge of transporter expression, function, regulation under normal and pathologic conditions, and of genetically and epigenetically regulation is mandatory.

  16. Cation Transport in Polymer Electrolytes: A Microscopic Approach

    Science.gov (United States)

    Maitra, A.; Heuer, A.

    2007-06-01

    A microscopic theory for cation diffusion in polymer electrolytes is presented. Based on a thorough analysis of molecular dynamics simulations on poly(ethylene) oxide with LiBF4, the mechanisms of cation dynamics are characterized. Cation jumps between polymer chains can be identified as renewal processes. This allows us to obtain an explicit expression for the lithium ion diffusion constant DLi by invoking polymer-specific properties such as the Rouse dynamics. This extends previous phenomenological and numerical approaches. In particular, the chain length dependence of DLi can be predicted and compared with experimental data. This dependence can be fully understood without referring to entanglement effects.

  17. Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    James E. Saiers

    2012-09-20

    The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.

  18. Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (Oct1 [Slc22a1]) gene

    NARCIS (Netherlands)

    Jonker, JW; Wagenaar, E; Mol, CAAM; Buitelaar, M; Koepsell, H; Smit, JW; Schinkel, AH

    2001-01-01

    The polyspecific organic cation transporter 1 (OCT1 [SLC22A1]) mediates facilitated transport of small (hydrophilic) organic cations. OCT1 is localized at the basolateral membrane of epithelial cells in the liver, kidney, and intestine and could therefore be involved in the elimination of endogenous

  19. Transport of dicationic drugs pentamidine and furamidine by human organic cation transporters.

    Science.gov (United States)

    Ming, Xin; Ju, Wujian; Wu, Huali; Tidwell, Richard R; Hall, James E; Thakker, Dhiren R

    2009-02-01

    The antiparasitic activity of aromatic diamidine drugs, pentamidine and furamidine, depends on their entry into the pathogenic protozoa via membrane transporters. However, no such diamidine transporter has been identified in mammalian cells. The goal of this study is to investigate whether these dicationic drugs are substrates for human organic cation transporters (hOCTs, solute carrier family 22A1-3) and whether hOCTs play a role in their tissue distribution, elimination, and toxicity. Inhibitory and substrate activities of pentamidine and furamidine were studied in stably transfected Chinese hamster ovary (CHO) cells. The results of [(3)H]1-methyl-4-phenylpyridinium uptake study showed that pentamidine is a potent inhibitor for all three OCT isoforms (IC50 pentamidine and furamidine was 4.4- and 9.3-fold greater, respectively, in CHO-hOCT1 cells compared with the mock cells. Ranitidine, an hOCT1 inhibitor, reversed this hOCT1-mediated potentiation of cytotoxicity. This is the first finding that dicationic drugs, such as pentamidine and furamidine, are substrates for hOCT1. In humans, aromatic diamidines are primarily eliminated in the bile but are distributed and cause toxicity in both liver and kidney. These transporters may play important roles in the disposition of aromatic diamidines in humans, as well as resultant drug-drug interactions and toxicity involving diamidine drugs.

  20. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter

    DEFF Research Database (Denmark)

    Weyand, Simone; Shimamura, Tatsuro; Yajima, Shunsuke

    2008-01-01

    The nucleobase-cation-symport-1 (NCS1) transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85-angstrom resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens. Mhp1 contains 12 trans...

  1. Blood-Brain Barrier Transport of Cationized Immunoglobulin G: Enhanced Delivery Compared to Native Protein

    Science.gov (United States)

    Triguero, Domingo; Buciak, Jody B.; Yang, Jing; Pardridge, William M.

    1989-06-01

    IgG molecules are potential neuropharmaceuticals that may be used for therapeutic or diagnostic purposes. However, IgG molecules are excluded from entering brain, owing to a lack of transport of these plasma proteins through the brain capillary wall, or blood-brain barrier (BBB). The possibility of enhanced IgG delivery through the BBB by cationization of the proteins was explored in the present studies. Native bovine IgG molecules were cationized by covalent coupling of hexamethylenediamine and the isoelectric point was raised to >10.7 based on isoelectric focusing studies. Native and cationized IgG molecules were radiolabeled with 125I and chloramine T. Cationized IgG, but not native IgG, was rapidly taken up by isolated bovine brain microvessels, which were used as an in vitro model system of the BBB. Cationized IgG binding was time and temperature dependent and was saturated by increasing concentrations of unlabeled cationized IgG (dissociation constant of the high-affinity binding site, 0.90 ± 0.37 μ M; Bmax, 1.4 ± 0.4 nmol per mg of protein). In vivo studies documented enhanced brain uptake of 125I-labeled cationized IgG relative to [3H]albumin, and complete transcytosis of the 125I-labeled cationized IgG molecule through the BBB and into brain parenchyma was demonstrated by thaw-mount autoradiography of frozen sections of rat brain obtained after carotid arterial infusions of 125I-labeled cationized IgG. These studies demonstrate that cationization of IgG molecules greatly facilitates the transport of these plasma proteins through the BBB in vivo, and this process may provide a new strategy for IgG delivery through the BBB.

  2. Blood-brain barrier transport of cationized immunoglobulin G: Enhanced delivery compared to native protein

    Energy Technology Data Exchange (ETDEWEB)

    Triguero, D.; Buciak, J.B.; Yang, J.; Pardridge, W.M.

    1989-06-01

    IgG molecules are potential neuropharmaceuticals that may be used for therapeutic or diagnostic purposes. However, IgG molecules are excluded from entering brain, owing to a lack of transport of these plasma proteins through the brain capillary wall, or blood-brain barrier (BBB). The possibility of enhanced IgG delivery through the BBB by cationization of the proteins was explored in the present studies. Native bovine IgG molecules were cationized by covalent coupling of hexamethylenediamine and the isoelectric point was raised to greater than 10.7 based on isoelectric focusing studies. Native and cationized IgG molecules were radiolabeled with /sup 125/I and chloramine T. Cationized IgG, but not native IgG, was rapidly taken up by isolated bovine brain microvessels, which were used as an in vitro model system of the BBB. Cationized IgG binding was time and temperature dependent and was saturated by increasing concentrations of unlabeled cationized IgG (dissociation constant of the high-affinity binding site, 0.90 +/- 0.37 microM; Bmax, 1.4 +/- 0.4 nmol per mg of protein). In vivo studies documented enhanced brain uptake of 125I-labeled cationized IgG relative to (3H)albumin, and complete transcytosis of the 125I-labeled cationized IgG molecule through the BBB and into brain parenchyma was demonstrated by thaw-mount autoradiography of frozen sections of rat brain obtained after carotid arterial infusions of 125I-labeled cationized IgG. These studies demonstrate that cationization of IgG molecules greatly facilitates the transport of these plasma proteins through the BBB in vivo, and this process may provide a new strategy for IgG delivery through the BBB.

  3. Cation hexaammines are selective and potent inhibitors of the CorA magnesium transport system.

    Science.gov (United States)

    Kucharski, L M; Lubbe, W J; Maguire, M E

    2000-06-02

    Cation hexaammines and related compounds are chemically stable analogs of the hydrated form of cations, particularly Mg(2+). We tested the ability of several of these compounds to inhibit transport by the CorA or MgtB Mg(2+) transport systems or the PhoQ receptor kinase for Mg(2+) in Salmonella typhimurium. Cobalt(III)-, ruthenium(II)-, and ruthenium(III)-hexaammines were potent inhibitors of CorA-mediated influx. Cobalt(III)- and ruthenium(III)chloropentaammines were slightly less potent inhibitors of CorA. The compounds inhibited uptake by the bacterial S. typhimurium CorA and by the archaeal Methanococcus jannaschii CorA, which bear only 12% identity in the extracellular periplasmic domain. Cation hexaammines also inhibited growth of S. typhimurium strains dependent on CorA for Mg(2+) uptake but not of isogenic strains carrying a second Mg(2+) uptake system. In contrast, hexacyano-cobaltate(III) and ruthenate(II)- and nickel(II)hexaammine had little effect on uptake. The inhibition by the cation hexaammines was selective for CorA because none of the compounds had any effect on transport by the MgtB P-type ATPase Mg(2+) transporter or the PhoQ Mg(2+) receptor kinase. These results demonstrate that cation hexaammines are potent and highly selective inhibitors of the CorA Mg(2+) transport system and further indicate that the initial interaction of the CorA transporter is with a fully hydrated Mg(2+) cation.

  4. Mathematical Modelling of Cation Transport and Regulation in Yeast.

    Science.gov (United States)

    Kahm, Matthiasé; Kschischo, Maik

    2016-01-01

    Mathematical modelling of ion transport is a strategy to understand the complex interplay between various ionic species and their transporters. Such models should provide new insights and suggest new interesting experiments. Two essential variables in models for ion transport and control are the membrane potential and the intracellular pH, which generates an additional layer of complexity absent from many other models of biochemical reaction pathways. The aim of this text is to introduce the reader to the basic principles and assumptions of modelling in this field. A simplified model of potassium transport will be used as an example and will be derived in a step by step manner. This forms the basis for understanding the advantages and limitations of more complex models. These are briefly reviewed at the end of this chapter.

  5. Comparative cation dependency of sugar transport by crustacean hepatopancreas and intestine

    Directory of Open Access Journals (Sweden)

    Ada Duka

    2014-06-01

    Full Text Available Glucose is transported in crustacean hepatopancreas and intestine by Na+-dependent co-transport, while Na+-dependent D-fructose influx has only been described for the hepatopancreas. It is still unclear if the two sugars are independently transported by two distinct cation-dependent co-transporter carrier systems. In this study, lobster (Homarus americanus hepatopancreas brush border membrane vesicles (BBMV were used to characterize, in detail, the cation-dependency of both D-[3H]-glucose and D-[3H]-fructose influxes, while in vitro perfused intestines were employed to determine the nature of cation-dependent sugar transport across this organ. Over the sodium concentration range of 0–100 mM, both [3H]-glucose and [3H]-fructose influxes (0.1 mM; 1 min uptakes by hepatopancreatic BBMV were hyperbolic functions of [Na+]. [3H]-glucose and [3H]-fructose influxes by hepatopancreatic BBMV over a potassium concentration range of 15–100 mM were hyperbolic functions of [K+]. Both sugars displayed significant (p<0.01 Na+/K+-dependent and cation-independent uptake processes. Transepithelial 25 µM [3H]-glucose and [3H]-fructose fluxes across lobster intestine over luminal sodium and potassium concentration ranges of 0–50 mM and 5–100 mM, respectively, were hyperbolic functions of luminal [Na+] and [K+]. As with hepatopancreatic sugar transport, transepithelial intestinal sugar transport exhibited both significant (p<0.01 Na+/K+-dependent and cation-independent processes. Results suggest that both D-glucose and D-fructose are transported by a single SGLT-type carrier in each organ with sodium being the “preferred”, high affinity, cation for both sugars in the hepatopancreas, and potassium being the “preferred”, high affinity, cation for both sugars in the intestine.

  6. Effects of Octylphenol and Bisphenol A on the Metal Cation Transporter Channels of Mouse Placentas

    Directory of Open Access Journals (Sweden)

    Jae-Hwan Lee

    2016-09-01

    Full Text Available Octylphenol (OP and bisphenol A (BPA are known as endocrine-disrupting chemicals (EDCs. During pregnancy, the expression of steroid hormone receptors is controlled by maternal and fetal nutrition. To evaluate the impact of EDCs during pregnancy, ethinyl estradiol (EE, 0.2 mg/kg/day, OP (50 mg/kg/day, and BPA (50 mg/kg/day were administered to pregnant mice. The mRNA levels of TRPV6 (transient receptor potential cation channels in subfamily V, member 6 decreased significantly by EE and OP. The PMCA1 (ATPase, Ca++ transporting, plasma membrane 1 mRNA and protein levels decreased significantly by EE, OP, and BPA. CTR1 (solute carrier family 31, member 1 and ATP7A (ATPase, Cu++ transporting, alpha polypeptide expression decreased significantly by EE, OP, and BPA. The mRNA levels of IREG1 (iron-regulated transporter, member 1 decreased significantly by EE. Hephaestin (HEPH mRNA levels decreased significantly by EE, OP, and BPA, and protein levels decreased significantly by BPA. As a result of immunohistochemistry analysis, all cation transporter proteins were found in labyrinth of placenta. To confirm the cytosolic level of cations, levels of cation level in fetal serum were measured. EE, OP, and BPA significantly reduced serum calcium and copper levels, and iron levels were reduced by BPA. Taken together, some EDCs, such as OP and BPA, could modulate the calcium, copper, and iron ion-transporting channels during pregnancy. The fetus relies on the mother for ionic transportation, and, therefore, pregnant women should avoid exposure to cation-channel-disrupting chemicals.

  7. Effects of Octylphenol and Bisphenol A on the Metal Cation Transporter Channels of Mouse Placentas

    Science.gov (United States)

    Lee, Jae-Hwan; Ahn, Changhwan; Kang, Hee Young; Hong, Eui-Ju; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-01-01

    Octylphenol (OP) and bisphenol A (BPA) are known as endocrine-disrupting chemicals (EDCs). During pregnancy, the expression of steroid hormone receptors is controlled by maternal and fetal nutrition. To evaluate the impact of EDCs during pregnancy, ethinyl estradiol (EE, 0.2 mg/kg/day), OP (50 mg/kg/day), and BPA (50 mg/kg/day) were administered to pregnant mice. The mRNA levels of TRPV6 (transient receptor potential cation channels in subfamily V, member 6) decreased significantly by EE and OP. The PMCA1 (ATPase, Ca++ transporting, plasma membrane 1) mRNA and protein levels decreased significantly by EE, OP, and BPA. CTR1 (solute carrier family 31, member 1) and ATP7A (ATPase, Cu++ transporting, alpha polypeptide) expression decreased significantly by EE, OP, and BPA. The mRNA levels of IREG1 (iron-regulated transporter, member 1) decreased significantly by EE. Hephaestin (HEPH) mRNA levels decreased significantly by EE, OP, and BPA, and protein levels decreased significantly by BPA. As a result of immunohistochemistry analysis, all cation transporter proteins were found in labyrinth of placenta. To confirm the cytosolic level of cations, levels of cation level in fetal serum were measured. EE, OP, and BPA significantly reduced serum calcium and copper levels, and iron levels were reduced by BPA. Taken together, some EDCs, such as OP and BPA, could modulate the calcium, copper, and iron ion-transporting channels during pregnancy. The fetus relies on the mother for ionic transportation, and, therefore, pregnant women should avoid exposure to cation-channel-disrupting chemicals. PMID:27690074

  8. Involvement of organic cation transporter 1 in the lactic acidosis caused bv metformin

    NARCIS (Netherlands)

    Wang, DS; Kusuhara, H; Kato, Y; Jonker, JW; Schinkel, AH; Sugiyama, Y

    2003-01-01

    Biguanides are a class of drugs widely used as oral antihyperglycemic agents for the treatment of type 2 diabetes mellitus, but they are associated with lactic acidosis, a lethal side effect. We reported previously that biguanides are good substrates of rat organic cation transporter 1 (Oct1; Slc22a

  9. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin

    NARCIS (Netherlands)

    Wang, DS; Jonker, JW; Kato, Y; Kusuhara, H; Schinkel, AH; Sugiyama, Y

    2002-01-01

    Metformin, a biguanide, is widely used as an oral hypoglycemic agent for the treatment of type 2 diabetes mellitus. The purpose of the present study was to investigate the role of organic cation transporter 1 (Oct1) in the disposition of metformin. Transfection of rat Oct1 cDNA results in the time-d

  10. Multi-physical model of cation and water transport in ionic polymer-metal composite sensors

    Science.gov (United States)

    Zhu, Zicai; Chang, Longfei; Horiuchi, Tetsuya; Takagi, Kentaro; Aabloo, Alvo; Asaka, Kinji

    2016-03-01

    Ion-migration based electrical potential widely exists not only in natural systems but also in ionic polymer materials. We presented a multi-physical model and investigated the transport process of cation and water of ionic polymer-metal composites based on our thorough understanding on the ionic sensing mechanisms in this paper. The whole transport process was depicted by transport equations concerning convection flux under the total pressure gradient, electrical migration by the built-in electrical field, and the inter-coupling effect between cation and water. With numerical analysis, the influence of critical material parameters, the elastic modulus Ewet, the hydraulic permeability coefficient K, the diffusion coefficient of cation dII and water dWW, and the drag coefficient of water ndW, on the distribution of cation and water was investigated. It was obtained how these parameters correlate to the voltage characteristics (both magnitude and response speed) under a step bending. Additionally, it was found that the effective relative dielectric constant ɛr has little influence on the voltage but is positively correlated to the current. With a series of optimized parameters, the predicted voltage agreed with the experimental results well, which validated our model. Based on our physical model, it was suggested that an ionic polymer sensor can benefit from a higher modulus Ewet, a higher coefficient K and a lower coefficient dII, and a higher constant ɛr.

  11. Does modulation of organic cation transporters improve pralidoxime activity in an animal model of organophosphate poisoning?

    Science.gov (United States)

    Kayouka, Maya; Houzé, Pascal; Baud, Frederic J; Cisternino, Salvatore; Debray, Marcel; Risède, Patricia; Schinkel, Alfred H; Warnet, Jean-Michel

    2011-04-01

    Pralidoxime is an organic cation used as an antidote in addition to atropine to treat organophosphate poisoning. Pralidoxime is rapidly eliminated by the renal route and thus has limited action. The objectives of this work were as follows. 1) Study the role of organic cation transporters in the renal secretion of pralidoxime using organic cation transporter substrates (tetraethylammonium) and knockout mice (Oct1/2⁻/⁻; Oct3⁻/⁻). 2) Assess whether sustained high plasma concentrations increase pralidoxime antidotal activity toward paraoxon-induced respiratory toxicity. INSERM U705, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de l'Observatoire, 75006 Paris, France. Rodents: Knockout mice (Oct1/2⁻/⁻; Oct3⁻/⁻) and Sprague-Dawley rats. None. In rats, the renal clearance of pralidoxime was 3.6-fold higher than the creatinine clearance. Pretreatment with tetraethylammonium (75 mg/kg) in rats or deficiencies in organic cation transporters 1 and 2 in mice (Oct1/2⁻/⁻) resulted in a significant increase in plasma pralidoxime concentrations. Lack of Oct3 did not alter plasma pralidoxime concentrations. The antidotal activity of pralidoxime (50 mg/kg intramuscularly) was longer and with greater effect, resulting in a return to normal values when administered to rats pretreated with tetraethylammonium. Pralidoxime is secreted in rats and mice by renal Oct1 and/or Oct2 but not by Oct3. Modulation of organic cation transporter activity increased the plasma pralidoxime concentrations and the antidotal effect of pralidoxime with sustained return within the normal range of respiratory variables in paraoxon-poisoned rats. These results suggest a promising approach in an animal model toward the increase in efficiency of pralidoxime. However, further studies are needed before these results are extended to human poisoning.

  12. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions.

    Science.gov (United States)

    Sun, Pengzhan; Zheng, Feng; Zhu, Miao; Song, Zhigong; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Little, Reginald B; Xu, Zhiping; Zhu, Hongwei

    2014-01-28

    Graphene and graphene oxide (G-O) have been demonstrated to be excellent filters for various gases and liquids, showing potential applications in areas such as molecular sieving and water desalination. In this paper, the selective trans-membrane transport properties of alkali and alkaline earth cations through a membrane composed of stacked and overlapped G-O sheets ("G-O membrane") are investigated. The thermodynamics of the ion transport process reveal that the competition between the generated thermal motions and the interactions of cations with the G-O sheets results in the different penetration behaviors to temperature variations for the considered cations (K(+), Mg(2+), Ca(2+), and Ba(2+)). The interactions between the studied metal atoms and graphene are quantified by first-principles calculations based on the plane-wave-basis-set density functional theory (DFT) approach. The mechanism of the selective ion trans-membrane transportation is discussed further and found to be consistent with the concept of cation-π interactions involved in biological systems. The balance between cation-π interactions of the cations considered with the sp(2) clusters of G-O membranes and the desolvation effect of the ions is responsible for the selectivity of G-O membranes toward the penetration of different ions. These results help us better understand the ion transport process through G-O membranes, from which the possibility of modeling the ion transport behavior of cellular membrane using G-O can be discussed further. The selectivity toward different ions also makes G-O membrane a promising candidate in areas of membrane separations.

  13. Compounds having aromatic rings and side-chain amide-functionality and a method for transporting monovalent anions across biological membranes using the same

    Science.gov (United States)

    Davis, Jeffery T.; Sidorov, Vladimir; Kotch, Frank W.

    2008-04-08

    A compound containing at least two aromatic rings covalently bonded together, with each aromatic ring containing at least one oxyacetamide-based side chain, the compound being capable of forming a chloride ion channel across a lipid bilayer, and transporting chloride ion across the lipid bilayer.

  14. Zebrafish ("Danio rerio") endomembrane antiporter similar to a yeast cation/H(+) transporter is required for neural crest development

    Science.gov (United States)

    CAtion/H (+) eXchangers (CAXs) are integral membrane proteins that transport Ca (2+) or other cations by exchange with protons. While several yeast and plant CAX proteins have been characterized, no functional analysis of a vertebrate CAX homologue has yet been reported. In this study, we further ch...

  15. Effect of cationized gelatins on the paracellular transport of drugs through caco-2 cell monolayers.

    Science.gov (United States)

    Seki, Toshinobu; Kanbayashi, Hiroshi; Nagao, Tomonobu; Chono, Sumio; Tabata, Yasuhiko; Morimoto, Kazuhiro

    2006-06-01

    Cationized gelatins, candidate absorption enhancers, were prepared by addition of ethylenediamine or spermine to gelatin and the effects of the resulting ethylenediaminated gelatin (EG) and sperminated gelatin (SG) on the paracellular transport of 5(6)-carboxyfluorescein (CF), FITC-dextran-4 (FD4), and insulin through caco-2 cell monolayers were examined. The Renkin function was used for characterization of the paracellular pathway and changes in the pore radius (R) and pore occupancy/length ratio (epsilon/L) calculated from the apparent permeability coefficients (P(app)) of CF and FD4 are discussed. Ethylenediaminetetraacetic acid (EDTA) increased the R of the caco-2 cell monolayer and the P(app) of all compounds examined was markedly increased by the addition of EDTA. On the other hand, EG and SG did not increase R and their enhancing effects were not as strong as those of EDTA. The increase in epsilon/L could be the enhancing mechanism for the cationized gelatins. The number of pathways for water-soluble drugs, such as CF and FD4, in the caco-2 monolayers could be increased by the addition of the cationized gelatins. The ratios of the permeability coefficients of insulin (observed/calculated based on the Renkin function) suggest that insulin undergoes enzymatic degradation during transport which is not inhibited by enhancers.

  16. Effects of ionic strength on passive and iontophoretic transport of cationic permeant across human nail.

    Science.gov (United States)

    Smith, Kelly A; Hao, Jinsong; Li, S Kevin

    2009-06-01

    Transport across the human nail under hydration can be modeled as hindered transport across aqueous pore pathways. As such, nail permselectivity to charged species can be manipulated by changing the ionic strength of the system in transungual delivery to treat nail diseases. The present study investigated the effects of ionic strength upon transungual passive and iontophoretic transport. Transungual passive and anodal iontophoretic transport experiments of tetraethylammonium ion (TEA) were conducted under symmetric conditions in which the donor and receiver had the same ionic strength in vitro. Experiments under asymmetric conditions were performed to mimic the in vivo conditions. Prior to the transport studies, TEA uptake studies were performed to assess the partitioning of TEA into the nail. Permselectivity towards TEA was inversely related to ionic strength in both passive and iontophoretic transport. The permeability and transference number of TEA were higher at lower ionic strengths under the symmetric conditions due to increased partitioning of TEA into the nail. Transference numbers were smaller under the asymmetric conditions compared with their symmetric counterparts. The results demonstrate significant ionic strength effects upon the partitioning and transport of a cationic permeant in transungual transport, which may be instrumental in the development of transungual delivery systems.

  17. Milan hypertensive rat as a model for studying cation transport abnormality in genetic hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, P.; Barber, B.R.; Torielli, L.; Ferrandi, M.; Salardi, S.; Bianchi, G.

    1987-11-01

    Environmental factors, genetic polymorphisms, and different experimental designs have been the main impediments to evaluating a genetic association between cell membrane cation transport abnormalities and human essential or genetic hypertension. We review the results obtained in the Milan hypertensive strain of rats (MHS) and in its appropriate control normotensive strain (MNS) to illustrate our approach to defining the role of cation transport abnormality in a type of genetic hypertension. Before the development of a difference in blood pressure between the two strains, the comparison of kidney and erythrocyte functions showed that MHS had an increased glomerular filtration rate and urinary output, and lower plasma renin and urine osmolality. Kidney cross-transplantation between the strains showed that hypertension is transplanted with the kidney. Proximal tubular cell volume and sodium content were lower in MHS while sodium transport across the brush border membrane vesicles of MHS was faster. Erythrocytes in MHS were smaller and had lower sodium concentration, and Na+-K+ cotransport and passive permeability were faster. The differences in volume, sodium content, and Na+-K+ cotransport between erythrocytes of the two strains persisted after transplantation of bone marrow to irradiated F1 (MHS X MNS) hybrids. Moreover, in normal segregating F2 hybrid populations there was a positive correlation between blood pressure and Na+-K+ cotransport. These results suggest a genetic and functional link in MHS between cell membrane cation transport abnormalities and hypertension. Thus, erythrocyte cell membrane may be used for approaching the problem of defining the genetically determined molecular mechanism underlying the development of a type of essential hypertension. 35 references.

  18. Electrophysiological characterization of human and mouse sodium-dependent citrate transporters (NaCT/SLC13A5) reveal species differences with respect to substrate sensitivity and cation dependence.

    Science.gov (United States)

    Zwart, Ruud; Peeva, Polina M; Rong, James X; Sher, Emanuele

    2015-11-01

    The citric acid cycle intermediate citrate plays a crucial role in metabolic processes such as fatty acid synthesis, glucose metabolism, and β-oxidation. Citrate is imported from the circulation across the plasma membrane into liver cells mainly by the sodium-dependent citrate transporter (NaCT; SLC13A5). Deletion of NaCT from mice led to metabolic changes similar to caloric restriction; therefore, NaCT has been proposed as an attractive therapeutic target for the treatment of obesity and type 2 diabetes. In this study, we expressed mouse and human NaCT into Xenopus oocytes and examined some basic functional properties of those transporters. Interestingly, striking differences were found between mouse and human NaCT with respect to their sensitivities to citric acid cycle intermediates as substrates for these transporters. Mouse NaCT had at least 20- to 800-fold higher affinity for these intermediates than human NaCT. Mouse NaCT is fully active at physiologic plasma levels of citrate, but its human counterpart is not. Replacement of extracellular sodium by other monovalent cations revealed that human NaCT was markedly less dependent on extracellular sodium than mouse NaCT. The low sensitivity of human NaCT for citrate raises questions about the translatability of this target from the mouse to the human situation and raises doubts about the validity of this transporter as a therapeutic target for the treatment of metabolic diseases in humans.

  19. Hypomorphic variants of cationic amino acid transporter 3 in males with autism spectrum disorders.

    Science.gov (United States)

    Nava, Caroline; Rupp, Johanna; Boissel, Jean-Paul; Mignot, Cyril; Rastetter, Agnès; Amiet, Claire; Jacquette, Aurélia; Dupuits, Céline; Bouteiller, Delphine; Keren, Boris; Ruberg, Merle; Faudet, Anne; Doummar, Diane; Philippe, Anne; Périsse, Didier; Laurent, Claudine; Lebrun, Nicolas; Guillemot, Vincent; Chelly, Jamel; Cohen, David; Héron, Delphine; Brice, Alexis; Closs, Ellen I; Depienne, Christel

    2015-12-01

    Cationic amino acid transporters (CATs) mediate the entry of L-type cationic amino acids (arginine, ornithine and lysine) into the cells including neurons. CAT-3, encoded by the SLC7A3 gene on chromosome X, is one of the three CATs present in the human genome, with selective expression in brain. SLC7A3 is highly intolerant to variation in humans, as attested by the low frequency of deleterious variants in available databases, but the impact on variants in this gene in humans remains undefined. In this study, we identified a missense variant in SLC7A3, encoding the CAT-3 cationic amino acid transporter, on chromosome X by exome sequencing in two brothers with autism spectrum disorder (ASD). We then sequenced the SLC7A3 coding sequence in 148 male patients with ASD and identified three additional rare missense variants in unrelated patients. Functional analyses of the mutant transporters showed that two of the four identified variants cause severe or moderate loss of CAT-3 function due to altered protein stability or abnormal trafficking to the plasma membrane. The patient with the most deleterious SLC7A3 variant had high-functioning autism and epilepsy, and also carries a de novo 16p11.2 duplication possibly contributing to his phenotype. This study shows that rare hypomorphic variants of SLC7A3 exist in male individuals and suggest that SLC7A3 variants possibly contribute to the etiology of ASD in male subjects in association with other genetic factors.

  20. Effects of cations on hormone transport in primary roots of Zea mays

    Science.gov (United States)

    Hasenstein, K. H.; Evans, M. L.

    1988-01-01

    We examined the influence of aluminum and calcium (and certain other cations) on hormone transport in corn roots. When aluminum was applied unilaterally to the caps of 15 mm apical root sections the roots curved strongly away from the aluminum. When aluminum was applied unilaterally to the cap and 3H-indole-3-acetic acid was applied to the basal cut surface twice as much radioactivity (assumed to be IAA) accumulated on the concave side of the curved root as on the convex side. Auxin transport in the apical region of intact roots was preferentially basipetal, with a polarity (basipetal transport divided by acropetal transport) of 6.3. In decapped 5 mm apical root segments, auxin transport was acropetally polar (polarity = 0.63). Application of aluminum to the root cap strongly promoted acropetal transport of auxin reducing polarity from 6.3 to 2.1. Application of calcium to the root cap enhanced basipetal movement of auxin, increasing polarity from 6.3 to 7.6. Application of the calcium chelator, ethylene-glycol-bis-(beta-aminoethylether)-N,N,N',N'-tetraacetic acid, greatly decreased basipetal auxin movement, reducing polarity from 6.3 to 3.7. Transport of label after application of tritiated abscisic acid showed no polarity and was not affected by calcium or aluminum. The results indicate that the root cap is particularly important in maintaining basipetal polarity of auxin transport in primary roots of corn. The induction of root curvature by unilateral application of aluminum or calcium to root caps is likely to result from localized effects of these ions on auxin transport. The findings are discussed relative to the possible role of calcium redistribution in the gravitropic curvature of roots and the possibility of calmodulin involvement in the action of calcium and aluminum on auxin transport.

  1. Cation-selective transporters are critical to the AMPK-mediated antiproliferative effects of metformin in human breast cancer cells.

    Science.gov (United States)

    Cai, Hao; Zhang, Yunhui; Han, Tianxiang Kevin; Everett, Ruth S; Thakker, Dhiren R

    2016-05-01

    The antidiabetic drug metformin exerts antineoplastic effects against breast cancer and other cancers. One mechanism by which metformin is believed to exert its anticancer effect involves activation of its intracellular target, adenosine monophosphate-activated protein kinase (AMPK), which is also implicated in the antidiabetic effect of metformin. It is proposed that in cancer cells, AMPK activation leads to inhibition of the mammalian target of rapamycin (mTOR) and the downstream pS6K that regulates cell proliferation. Due to its hydrophilic and cationic nature, metformin requires cation-selective transporters to enter cells and activate AMPK. This study demonstrates that expression levels of cation-selective transporters correlate with the antiproliferative and antitumor efficacy of metformin in breast cancer. Metformin uptake and antiproliferative activity were compared between a cation-selective transporter-deficient human breast cancer cell line, BT-20, and a BT-20 cell line that was engineered to overexpress organic cation transporter 3 (OCT3), a representative of cation-selective transporters and a predominant transporter in human breast tumors. Metformin uptake was minimal in BT-20 cells, but increased by >13-fold in OCT3-BT20 cells, and its antiproliferative potency was >4-fold in OCT3-BT20 versus BT-20 cells. This increase in antiproliferative activity was associated with greater AMPK phosphorylation and decreased pS6K phosphorylation in OCT3-BT20 cells. In vitro data were corroborated by in vivo observations of significantly greater antitumor efficacy of metformin in xenograft mice bearing OCT3-overexpressing tumors versus low transporter-expressing wildtype tumors. Collectively, these findings establish a clear relationship between cation-selective transporter expression, the AMPK-mTOR-pS6K signaling cascade, and the antiproliferative activity of metformin in breast cancer.

  2. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Emin, David, E-mail: emin@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Akhtari, Massoud [Semple Institutes for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Ellingson, B. M. [Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Mathern, G. W. [Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  3. Stress regulated members of the plant organic cation transporter family are localized to the vacuolar membrane

    Directory of Open Access Journals (Sweden)

    Koch Wolfgang

    2008-07-01

    Full Text Available Abstract Background In Arabidopsis six genes group into the gene family of the organic cation transporters (OCTs. In animals the members of the OCT-family are mostly characterized as polyspecific transporters involved in the homeostasis of solutes, the transport of monoamine neurotransmitters and the transport of choline and carnitine. In plants little is known about function, localisation and regulation of this gene family. Only one protein has been characterized as a carnitine transporter at the plasma membrane so far. Findings We localized the five uncharacterized members of the Arabidopsis OCT family, designated OCT2-OCT6, via GFP fusions and protoplast transformation to the tonoplast. Expression analysis with RNA Gel Blots showed a distinct, organ-specific expression pattern of the individual genes. With reporter gene fusion of four members we analyzed the tissue specific distribution of OCT2, 3, 4, and 6. In experiments with salt, drought and cold stress, we could show that AtOCT4, 5 and 6 are up-regulated during drought stress, AtOCT3 and 5 during cold stress and AtOCT 5 and 6 during salt stress treatments. Conclusion Localisation of the proteins at the tonoplast and regulation of the gene expression under stress conditions suggests a specific role for the transporters in plant adaptation to environmental stress.

  4. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism

    Science.gov (United States)

    Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.

    1999-01-01

    The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.

  5. CAX-ing a wide net: Cation/H(+) transporters in metal remediation and abiotic stress signalling

    Science.gov (United States)

    Cation/proton exchangers (CAXs) are a class of secondary energised ion transporter that are being implicated in an increasing range of cellular and physiological functions. CAXs are primarily Ca(2+) efflux transporters that mediate the sequestration of Ca(2+) from the cytosol, usually into the vacuo...

  6. Attraction between like-charged monovalent ions

    Science.gov (United States)

    Zangi, Ronen

    2012-05-01

    Ions with like-charges repel each other with a magnitude given by the Coulomb law. The repulsion is also known to persist in aqueous solutions albeit factored by the medium's dielectric constant. In this paper, we report results from molecular dynamics simulations of alkali halides salt solutions indicating an effective attraction between some of the like-charged monovalent ions. The attraction is observed between anions, as well as between cations, leading to the formation of dimers with lifetimes on the order of few picoseconds. Two mechanisms have been identified to drive this counterintuitive attraction. The first is exhibited by high-charge density ions, such as fluoride, at low salt concentrations, yielding effective attractions with magnitude up to the order of 1-2 kT. In this case, the stronger local electric field generated when the two ions are in contact augments the alignment of neighboring waters toward the ions. This results in a gain of substantial favorable ion-water interaction energy. For fluorides, this interaction constitutes the major change among the different energy components compensating for the anion-anion repulsion, and therefore, rendering like-charge association possible. The second mechanism involves mediation by counterions, the attractions increase with salt concentration and are characterized by small magnitudes. In particular, clusters of ion triplets, in which a counterion is either bridging the two like-charged ions or is paired to only one of them, are formed. Although these two mechanisms may not yield net attractions in many cases, they might still be operational and significant, explaining effective repulsions between like-charged ions with magnitudes much smaller than expected based on continuum electrostatics.

  7. Attraction between like-charged monovalent ions.

    Science.gov (United States)

    Zangi, Ronen

    2012-05-14

    Ions with like-charges repel each other with a magnitude given by the Coulomb law. The repulsion is also known to persist in aqueous solutions albeit factored by the medium's dielectric constant. In this paper, we report results from molecular dynamics simulations of alkali halides salt solutions indicating an effective attraction between some of the like-charged monovalent ions. The attraction is observed between anions, as well as between cations, leading to the formation of dimers with lifetimes on the order of few picoseconds. Two mechanisms have been identified to drive this counterintuitive attraction. The first is exhibited by high-charge density ions, such as fluoride, at low salt concentrations, yielding effective attractions with magnitude up to the order of 1-2 kT. In this case, the stronger local electric field generated when the two ions are in contact augments the alignment of neighboring waters toward the ions. This results in a gain of substantial favorable ion-water interaction energy. For fluorides, this interaction constitutes the major change among the different energy components compensating for the anion-anion repulsion, and therefore, rendering like-charge association possible. The second mechanism involves mediation by counterions, the attractions increase with salt concentration and are characterized by small magnitudes. In particular, clusters of ion triplets, in which a counterion is either bridging the two like-charged ions or is paired to only one of them, are formed. Although these two mechanisms may not yield net attractions in many cases, they might still be operational and significant, explaining effective repulsions between like-charged ions with magnitudes much smaller than expected based on continuum electrostatics.

  8. Interparticle migration of metal cations in stream sediments as a factor in toxics transport

    Science.gov (United States)

    Jackman, A.P.; Kennedy, V.C.; Bhatia, N.

    2001-01-01

    Sorption of metal cations by stream sediments is an important process affecting the movement of released contaminants in the environment. The ability of cations to desorb from one sediment particle and subsequently sorb to another can greatly affect metal transport rates but rates for this process have not been reported. The objective of this study was to determine the rate at which sorbed metals can migrate from contaminated sediment particles to uncontaminated sediment particles as a function of the concentration of the contaminating solution and the duration of the contact with the contaminating solution. Samples of small sediment particles were exposed to solutions containing cobalt, after which they were rinsed and combined with larger uncontaminated sediment particles in the presence of stream water. Initial concentrations of the contaminating solution ranged from 1ng/l to 1000mg/l and exposures to the contaminating solution ranged from 6h to 14 days. The rate of the migration increased with increasing concentrations in the contaminating solution and with decreasing times of exposure to the contaminating solution. Under the conditions of these experiments, the time required for the migration to reach equilibrium was on the order of months or longer. In separate experiments, the kinetics of adsorption and desorption of cobalt were measured as a function of concentration of the contaminating solution. The time required to reach adsorption equilibrium increased with increasing concentration in the contaminating solution. Times to sorption equilibrium were on the order of months. Desorption was much slower than adsorption and, together with intraparticle diffusion, probably controls the rate of migration from contaminated to uncontaminated sediment. The results of this study show that interparticle migration of metal cations can proceed at significant rates that are strongly influenced by the length of time that the metal has been in contact with the sediment

  9. Monovalent plasmonic nanoparticles for biological applications

    Science.gov (United States)

    Seo, Daeha; Lee, Hyunjung; Lee, Jung-uk; Haas, Thomas J.; Jun, Young-wook

    2016-03-01

    The multivalent nature of commercial nanoparticle imaging agents and the difficulties associated with producing monovalent nanoparticles challenge their use in biology, where clustering of target biomolecules can perturb dynamics of biomolecular targets. Here, we report production and purification of monovalent gold and silver nanoparticles for their single molecule imaging application. We first synthesized DNA-conjugated 20 nm and 40 nm gold and silver nanoparticles via conventional metal-thiol chemistry, yielding nanoparticles with mixed valency. By employing an anion-exchange high performance liquid chromatography (AE-HPLC) method, we purified monovalent nanoparticles from the mixtures. To allow efficient peak-separation resolution while keeping the excellent colloidal stability of nanoparticles against harsh purification condition (e.g. high NaCl), we optimized surface properties of nanoparticles by modulating surface functional groups. We characterized the monovalent character of the purified nanoparticles by hybridizing two complementary conjugates, forming dimers. Finally, we demonstrate the use of the monovalent plasmonic nanoprobes as single molecule imaging probes by tracking single TrkA receptors diffusing on the cell membrane and compare to monovalent quantum dot probes.

  10. Role of a Hydrophobic Pocket in Polyamine Interactions with the Polyspecific Organic Cation Transporter OCT3.

    Science.gov (United States)

    Li, Dan C; Nichols, Colin G; Sala-Rabanal, Monica

    2015-11-13

    Organic cation transporter 3 (OCT3, SLC22A3) is a polyspecific, facilitative transporter expressed in astrocytes and in placental, intestinal, and blood-brain barrier epithelia, and thus elucidating the molecular mechanisms underlying OCT3 substrate recognition is critical for the rational design of drugs targeting these tissues. The pharmacology of OCT3 is distinct from that of other OCTs, and here we investigated the role of a hydrophobic cavity tucked within the translocation pathway in OCT3 transport properties. Replacement of an absolutely conserved Asp by charge reversal (D478E), neutralization (D478N), or even exchange (D478E) abolished MPP(+) uptake, demonstrating this residue to be obligatory for OCT3-mediated transport. Mutations at non-conserved residues lining the putative binding pocket of OCT3 to the corresponding residue in OCT1 (L166F, F450L, and E451Q) reduced the rate of MPP(+) transport, but recapitulated the higher sensitivity pharmacological profile of OCT1. Thus, interactions of natural polyamines (putrescine, spermidine, spermine) and polyamine-like potent OCT1 blockers (1,10-diaminodecane, decamethonium, bistriethylaminodecane, and 1,10-bisquinuclidinedecane) with wild-type OCT3 were weak, but were significantly potentiated in the mutant OCT3s. Conversely, a reciprocal mutation in OCT1 (F161L) shifted the polyamine-sensitivity phenotype toward that of OCT3. Further analysis indicated that OCT1 and OCT3 can recognize essentially the same substrates, but the strength of substrate-transporter interactions is weaker in OCT3, as informed by the distinct makeup of the hydrophobic cleft. The residues identified here are key contributors to both the observed differences between OCT3 and OCT1 and to the mechanisms of substrate recognition by OCTs in general.

  11. Proton pump inhibitors inhibit metformin uptake by organic cation transporters (OCTs.

    Directory of Open Access Journals (Sweden)

    Anne T Nies

    Full Text Available Metformin, an oral insulin-sensitizing drug, is actively transported into cells by organic cation transporters (OCT 1, 2, and 3 (encoded by SLC22A1, SLC22A2, or SLC22A3, which are tissue specifically expressed at significant levels in various organs such as liver, muscle, and kidney. Because metformin does not undergo hepatic metabolism, drug-drug interaction by inhibition of OCT transporters may be important. So far, comprehensive data on the interaction of proton pump inhibitors (PPIs with OCTs are missing although PPIs are frequently used in metformin-treated patients. Using in silico modeling and computational analyses, we derived pharmacophore models indicating that PPIs (i.e. omeprazole, pantoprazole, lansoprazole, rabeprazole, and tenatoprazole are potent OCT inhibitors. We then established stably transfected cell lines expressing the human uptake transporters OCT1, OCT2, or OCT3 and tested whether these PPIs inhibit OCT-mediated metformin uptake in vitro. All tested PPIs significantly inhibited metformin uptake by OCT1, OCT2, and OCT3 in a concentration-dependent manner. Half-maximal inhibitory concentration values (IC(50 were in the low micromolar range (3-36 µM and thereby in the range of IC(50 values of other potent OCT drug inhibitors. Finally, we tested whether the PPIs are also transported by OCTs, but did not identify PPIs as OCT substrates. In conclusion, PPIs are potent inhibitors of the OCT-mediated metformin transport in vitro. Further studies are needed to elucidate the clinical relevance of this drug-drug interaction with potential consequences on metformin disposition and/or efficacy.

  12. Cooperative binding of primycin and gramicidin on erythrocyte membranes. A cation transport study.

    Science.gov (United States)

    Suga'r, I P; Blaskó, K; Györgyi, S; Shcagina, L V; Malev, V V; Lev, A A

    1989-01-01

    In this paper the authors present a comparative study of the actions of the antibiotics primycin and gramicidin on the erythrocyte membrane permeability. It has been found that both antibiotics have a nonlinear effect on the membrane permeability. Above a threshold antibiotic concentration, which is characteristic of the type of the antibiotic, the cation permeability of the erythrocyte membranes increases sharply. In the range of nonlinearity the transport-kinetic curves level off before achieving the equilibrium radioactive ion distribution between the extra- and intracellular spaces. A stochastic model of the cooperative and aspecific incorporation of antibiotic molecules into the membrane explains the experimental findings. The authors conclude that membrane permeability increases at the places where two or more antibiotic molecules form aggregates in the membrane.

  13. Cationic amino acid transporter 2 enhances innate immunity during Helicobacter pylori infection.

    Directory of Open Access Journals (Sweden)

    Daniel P Barry

    Full Text Available Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2 is essential for transport of L-arginine (L-Arg into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO produced from inducible NO synthase (iNOS, or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/- mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/- mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/- mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.

  14. Cold gelation of alginates induced by monovalent cations.

    Science.gov (United States)

    Karakasyan, C; Legros, M; Lack, S; Brunel, F; Maingault, P; Ducouret, G; Hourdet, D

    2010-11-08

    A new reversible gelation pathway is described for alginates in aqueous media. From various samples differing by their mannuronic/guluronic content (M/G), both enthalpic and viscoelastic experiments demonstrate that alginates having a high M content are able to form thermoreversible assemblies in the presence of potassium salts. The aggregation behavior is driven by the low solubility of M-blocks at low temperature and high ionic strength. In semidilute solutions, responsive assemblies induce a strong increase of the viscosity below a critical temperature. A true physical gel is obtained in the entangled regime, although the length scale of specific interactions between M-blocks decreases with increasing density of entanglements. Cold setting takes place at low temperatures, below 0 °C for potassium concentrations lower than 0.2 mol/kg, but the aggregation process can be easily shifted to higher temperatures by increasing the salt concentration. The self-assembling process of alginates in solution of potassium salts is characterized by a sharp gelation exotherm and a broad melting endotherm with a large hysteresis of 20-30 °C between the transition temperatures. The viscoelastic properties of alginate gels in potassium salts closely depend on thermal treatment (rate of cooling, time, and temperature of storage), polymer and salt concentrations, and monomer composition as well. In the case of alginates with a high G content, a similar aggregation behavior is also evidenced at higher salt concentrations, but the extent of the self-assembling process remains too weak to develop a true gelation behavior in solution.

  15. Export of a single drug molecule in two transport cycles by a multidrug efflux pump.

    Science.gov (United States)

    Fluman, Nir; Adler, Julia; Rotenberg, Susan A; Brown, Melissa H; Bibi, Eitan

    2014-08-08

    Secondary multidrug transporters use ion concentration gradients to energize the removal from cells of various antibiotics. The Escherichia coli multidrug transporter MdfA exchanges a single proton with a single monovalent cationic drug molecule. This stoichiometry renders the efflux of divalent cationic drugs energetically unfavourable, as it requires exchange with at least two protons. Here we show that surprisingly, MdfA catalyses efflux of divalent cations, provided that they have a unique architecture: the two charged moieties must be separated by a long linker. These drugs are exchanged for two protons despite the apparent inability of MdfA to exchange two protons for a single drug molecule. Our results suggest that these drugs are transported in two consecutive transport cycles, where each cationic moiety is transported as if it were a separate substrate. We propose that secondary transport can adopt a processive-like mode of action, thus expanding the substrate spectrum of multidrug transporters.

  16. Identification of functional amino acid residues involved in polyamine and agmatine transport by human organic cation transporter 2.

    Directory of Open Access Journals (Sweden)

    Kyohei Higashi

    Full Text Available Polyamine (putrescine, spermidine and spermine and agmatine uptake by the human organic cation transporter 2 (hOCT2 was studied using HEK293 cells transfected with pCMV6-XL4/hOCT2. The Km values for putrescine and spermidine were 7.50 and 6.76 mM, and the Vmax values were 4.71 and 2.34 nmol/min/mg protein, respectively. Spermine uptake by hOCT2 was not observed at pH 7.4, although it inhibited both putrescine and spermidine uptake. Agmatine was also taken up by hOCT2, with Km value: 3.27 mM and a Vmax value of 3.14 nmol/min/mg protein. Amino acid residues involved in putrescine, agmatine and spermidine uptake by hOCT2 were Asp427, Glu448, Glu456, Asp475, and Glu516. In addition, Glu524 and Glu530 were involved in putrescine and spermidine uptake activity, and Glu528 and Glu540 were weakly involved in putrescine uptake activity. Furthermore, Asp551 was also involved in the recognition of spermidine. These results indicate that the recognition sites for putrescine, agmatine and spermidine on hOCT2 strongly overlap, consistent with the observation that the three amines are transported with similar affinity and velocity. A model of spermidine binding to hOCT2 was constructed based on the functional amino acid residues.

  17. Transport Properties of Multivalent Cations in Nafion-117 Membrane with Mixed Ionic Composition.

    Science.gov (United States)

    Chaudhury, Sanhita; Agarwal, Chhavi; Goswami, A

    2015-08-20

    The transport characteristics of multivalent cations like Ba(2+) and Eu(3+) have been studied in bi-ionic form of the Nafion-117 membrane. The membranes have been prepared by loading different proportions of H(+)-Ba(2+)/Mg(2+)-Ba(2+)/Ba(2+)-Eu(3+)/H(+)-Eu(3+)/Na(+)-Eu(3+). The cationic compositions of the membranes have been determined from the measured ion exchange isotherms. Results show that the self-diffusion coefficient of Ba(2+) (D(Ba)) in H-Ba/Mg-Ba systems as well as the self-diffusion coefficient of Eu(3+) (D(Eu)) in H-Eu/Na-Eu systems are strongly dependent on the membrane ionic compositions and decreased continuously with increasing concentration of the highly hydrated ions (H(+)/Na(+)/Mg(2+)) in the membrane. Increase in the proportion of H(+)/Na(+)/Mg(2+) ions in the membrane increases the effective charge on the membrane matrix. This causes stronger electrostatic interaction of the less hydrated multivalent ions (Ba(2+)/Eu(3+)) with the membrane matrix charges, which ultimately results in their slower self-diffusion coefficients. The higher the valence, the stronger the electrostatic interaction is with the fixed ionic charges; hence, in general, D(Eu) is affected more as compared to D(Ba). On the basis of the free-volume theory for polymers, the effective interaction potential (Φ) of the Ba(2+) with the fixed ionic sites in the membrane has been calculated and found to be on the order of approximately millivolts. The higher the proportion of hydrated ion in the membrane, the higher the Φ is and the stronger the ion pair formation is with the fixed ionic sites in the membrane. However, in the Ba-Eu system, as the electrostatic interactions of the two ions with the membrane matrix are close, D(Ba) and D(Eu) are independent of the membrane ionic composition. The ionic composition dependence of D(Ba) in the H-Ba system is reflected in the transport rate of Ba(2+), showing the importance of such measurements in understanding the transport

  18. Expression Profile of Cationic Amino Acid Transporters in Rats with Endotoxin-Induced Uveitis

    Directory of Open Access Journals (Sweden)

    Yung-Ray Hsu

    2016-01-01

    Full Text Available Purpose. The transcellular arginine transportation via cationic amino acid transporter (CAT is the rate-limiting step in nitric oxide (NO synthesis, which is crucial in intraocular inflammation. In this study, CAT isoforms and inducible nitric oxide synthase (iNOS expression was investigated in endotoxin-induced uveitis (EIU. Methods. EIU was induced in Lewis rats by lipopolysaccharide (LPS injection. In the treatment group, the rats were injected intraperitoneally with the proteasome inhibitor bortezomib before EIU induction. After 24 hours, leukocyte quantification, NO measurement of the aqueous humor, and histopathological examination were evaluated. The expression of CAT isoforms and iNOS was determined by reverse transcription-polymerase chain reaction, western blotting, and immunofluorescence staining. Nuclear factor-kappa B (NF-κB binding activity was evaluated by electrophoretic mobility shift assay. The mouse macrophage cell line RAW 264.7 was used to validate the in vivo findings. Results. LPS significantly stimulated iNOS, CAT-2A, and CAT-2B mRNA and protein expression but did not affect CAT-1 in EIU rats and RAW 264.7 cells. Bortezomib attenuated inflammation and inhibited iNOS, CAT-2A, and CAT-2B expression through NF-κB inhibition. Conclusions. CAT-2 and iNOS, but not CAT-1, are specifically involved in EIU. NF-κB is essential in the induction of CAT-2 and iNOS in EIU.

  19. “Uphill” cation transport: A bioinspired photo-driven ion pump

    Science.gov (United States)

    Zhang, Zhen; Kong, Xiang-Yu; Xie, Ganhua; Li, Pei; Xiao, Kai; Wen, Liping; Jiang, Lei

    2016-01-01

    Biological ion pumps with active ionic transport properties lay the foundation for many life processes. However, few analogs have been produced because extra energy is needed to couple to this “uphill” process. We demonstrate a bioinspired artificial photo-driven ion pump based on a single polyethylene terephthalate conical nanochannel. The pumping process behaving as an inversion of zero-volt current can be realized by applying ultraviolet irradiation from the large opening. The light energy can accelerate the dissociation of the benzoic acid derivative dimers existing on the inner surface of nanochannel, which consequently produces more mobile carboxyl groups. Enhanced electrostatic interaction between the ions traversing the nanochannel and the charged groups on the inner wall is the key reason for the uphill cation transport behavior. This system creates an ideal experimental and theoretical platform for further development and design of various stimuli-driven and specific ion–selective bioinspired ion pumps, which anticipates wide potential applications in biosensing, energy conversion, and desalination. PMID:27774511

  20. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor.

    Science.gov (United States)

    Kim, J W; Closs, E I; Albritton, L M; Cunningham, J M

    1991-08-22

    Susceptibility of rodent cells to infection by ecotropic murine leukaemia viruses (MuLV) is determined by binding of the virus envelope to a membrane receptor that has multiple membrane-spanning domains. Cells infected by ecotropic MuLV synthesize envelope protein, gp70, which binds to this receptor, thereby preventing additional infections. The consequences of envelope-MuLV receptor binding for the infected host cell have not been directly determined, partly because the cellular function of the MuLV receptor protein is unknown. Here we report a coincidence in the positions of the first eight putative membrane-spanning domains found in the virus receptor and in two related proteins, the arginine and histidine permeases of Saccharomyces cerevisiae (Fig. 1), but not in any other proteins identified by computer-based sequence comparison of the GenBank data base. Xenopus oocytes injected with receptor-encoding messenger RNA show increased uptake of L-arginine, L-lysine and L-ornithine. The transport properties and the expression pattern of the virus receptor behave in ways previously attributed to y+, the principal transporter of cationic L-amino acids in mammalian cells.

  1. Colloid-Facilitated Transport of Cations in an Unsaturated Fractured Soil Under Transient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Joseph [Univ. of Colorado, Boulder, CO (United States)

    2015-01-31

    Rainfall experiments were conducted using intact soil cores and an instrumented soil pedon to examine the effect of physical heterogeneity and rainfall characteristics on the mobilization of colloids, organic matter, cesium, and strontium in a fractured soil. To measure the spatial variability of infiltration of colloids and contaminants, samples were collected through a 19-port grid placed below the soil core in laboratory study and in 27 samplers at multiple depths in the soil pedon in the field study. Cesium and strontium were applied to the soil cores and the soil pedon prior to mobilization experiments. Rainwater solutions of multiple ionic strengths and organic matter concentrations were applied to the soil cores and soil pedon to mobilize in situ colloids, cesium, and strontium. The mobilization of colloids and metal cations occurred through preferential flow paths in the soil cores. Compared to steady rainfall, greater amounts of colloids were mobilized during rainfall interrupted by pauses, which indicates that the supply of colloids to be mobilized was replenished during the pauses. A maximum in the amount of mobilized colloids were mobilized during a rainfall following a pause of 2.5 d. Pauses of shorter or longer duration resulted in less colloid mobilization. Freeze-thaw cycles, a transient condition in winter, enhanced colloid mobilization and colloid-facilitated transport of cesium and strontium in the soil cores. The exchange of solutes between the soil matrix and macropores caused a hysteretic mobilization of colloids, cesium, and strontium during changes in ionic strength. Colloid-facilitated mobilization of cesium and strontium was important at low ionic strength in fractures where slow flow allowed greater exchange of flow between the fractures and the surrounding matrix. The release of cesium and strontium by cation exchange occurred at high ionic strength in fractures where there is a little exchange of pore water with the surrounding matrix

  2. Model Simulations of a Field Experiment on Cation Exchange-affected Multicomponent Solute Transport in a Sandy Aquifer

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Ammentorp, Hans Christian; Christensen, Thomas Højlund

    1993-01-01

    A large-scale and long-term field experiment on cation exchange in a sandy aquifer has been modelled by a three-dimensional geochemical transport model. The geochemical model includes cation-exchange processes using a Gaines-Thomas expression, the closed carbonate system and the effects of ionic...... of 800 days due to a substantially attenuation in the aquifer. The observed and the predicted breakthrough curves showed a reasonable accordance taking the duration of the experiment into account. However, some discrepancies were observed probably caused by the revealed non-ideal exchange behaviour of K+....

  3. Differential transport of platinum compounds by the human organic cation transporter hOCT2 (hSLC22A2)

    NARCIS (Netherlands)

    H. Burger (Herman); A. Zoumaro-Djayoon (Adja); A.W.M. Boersma (Anton); J. Helleman (Jozien); P.M.J.J. Berns (Els); A.H.J. Mathijssen (Ron); W.J. Loos (Walter); E.A.C. Wiemer (Erik)

    2010-01-01

    textabstractAbstract BACKGROUND: Solute carriers (SLCs), in particular organic cation transporters (OCTs), have been implicated in the cellular uptake of platinum-containing anticancer compounds. The activity of these carriers may determine the pharmacokinetics and the severity of side effects, inc

  4. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    Science.gov (United States)

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  5. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion.

    Directory of Open Access Journals (Sweden)

    Nicolás M Kouyoumdzian

    Full Text Available The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP on organic cation transporters (OCTs expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T, ANP, dopamine (DA, D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects.

  6. Cationic amino acid transporter-2 regulates immunity by modulating arginase activity.

    Directory of Open Access Journals (Sweden)

    Robert W Thompson

    2008-03-01

    Full Text Available Cationic amino acid transporters (CAT are important regulators of NOS2 and ARG1 activity because they regulate L-arginine availability. However, their role in the development of Th1/Th2 effector functions following infection has not been investigated. Here we dissect the function of CAT2 by studying two infectious disease models characterized by the development of polarized Th1 or Th2-type responses. We show that CAT2(-/- mice are significantly more susceptible to the Th1-inducing pathogen Toxoplasma gondii. Although T. gondii infected CAT2(-/- mice developed stronger IFN-gamma responses, nitric oxide (NO production was significantly impaired, which contributed to their enhanced susceptibility. In contrast, CAT2(-/- mice infected with the Th2-inducing pathogen Schistosoma mansoni displayed no change in susceptibility to infection, although they succumbed to schistosomiasis at an accelerated rate. Granuloma formation and fibrosis, pathological features regulated by Th2 cytokines, were also exacerbated even though their Th2 response was reduced. Finally, while IL-13 blockade was highly efficacious in wild-type mice, the development of fibrosis in CAT2(-/- mice was largely IL-13-independent. Instead, the exacerbated pathology was associated with increased arginase activity in fibroblasts and alternatively activated macrophages, both in vitro and in vivo. Thus, by controlling NOS2 and arginase activity, CAT2 functions as a potent regulator of immunity.

  7. Atomistic Studies of Cation Transport in Tetragonal ZrO2 During Zirconium Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Xian-Ming Bai; Yongfeng Zhang; Michael R. Tonks

    2013-10-01

    Zirconium alloys are the major fuel cladding materials in current reactors. The water-side corrosion is one of the major degradation mechanisms of these alloys. During corrosion the transport of oxidizing species in zirconium dioxide (ZrO2) determines the corrosion kinetics. Previously it has been argued that the outward diffusion of cation ions is important for forming protective oxides. In this work, the migration of Zr defects in tetragonal ZrO2 is studied with temperature accelerated dynamics and molecular dynamics simulations. The results show that Zr interstitials have anisotropic diffusion and migrate preferentially along the [001] or c direction in tetragonal ZrO2. The compressive stresses can increase the Zr interstitial migration barrier significantly. The migration barriers of some defect clusters can be much lower than those of point defects. The migration of Zr interstitials at some special grain boundaries is much slower than in a bulk oxide. The implications of these atomistic simulation results in the Zr corrosion are discussed.

  8. Effects of cation and anion solvation on ion transport in functionalized perfluoropolyethers electrolytes

    Science.gov (United States)

    Timachova, Ksenia; Chintapalli, Mahati; Olsen, Kevin; Desimone, Joseph; Balsara, Nitash

    Advances in polymer electrolytes for use in lithium batteries have been limited by the incorporation of selective lithium binding groups that provide necessary solvation for the lithium but ultimately restrict the mobility of the lithium ions relative to anions. Perfluoropolyether electrolytes (PFPE) are a new class of nonflammable liquid polymer electrolytes that have been functionalized with solvating groups for both lithium ions and fluorinated anions. PFPEs with different endgroups mixed with LiN(SO2CF3)2 salt have shown substantial differences in conductivity and allows us to investigate the effects of varying solvating environments on ion transport. To study the independent motion of cations and anions in these systems, the individual diffusion coefficients of the Li + and (SO2CF3)2 - ions were measured using pulsed-field gradient nuclear magnetic resonance (PFG-NMR). Comparing conductivity calculated using these diffusion coefficients with electrochemical measurements yields an estimation for the number of charge carrier in the system. The amount of salt dissociation, not the mobility of the salt, is the primary driver of differences in electrochemical conductivities between PFPEs with different solvating groups.

  9. Transcription factor organic cation transporter 1 (OCT-1 affects the expression of porcine Klotho (KL gene

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-07-01

    Full Text Available Klotho (KL, originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp as the porcine KL core promoter. MARC0022311SNP (A or G in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1, which was confirmed using electrophoretic mobility shift assays (EMSA and chromatin immune-precipitation (ChIP. Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1.

  10. Inhibition of human organic cation transporters by the alkaloids matrine and oxymatrine.

    Science.gov (United States)

    Pan, Xiaolei; Wang, Li; Gründemann, Dirk; Sweet, Douglas H

    2014-01-01

    Human organic cation transporters (hOCTs; SLC22) are expressed in many organs, including intestine, liver, kidney, heart and brain, where they contribute to the absorption, distribution, and elimination of endogenous and exogenous substances. The alkaloids matrine and oxymatrine are widely used in herbal medicine for the treatment of cancer, as well as viral, and cardiac diseases. Their physicochemical properties indicated that they are potential inhibitors for hOCTs, leading to drug-drug interactions in vivo. Therefore, we assessed the inhibitory effects of matrine and oxymatrine on the function of hOCT1 (SLC22A1), hOCT2 (SLC22A2) and hOCT3 (SLC22A3) using stably transfected transporter-expressing cells. At 100-fold excess, oxymatrine exhibited marked inhibition of hOCT1-mediated substrate uptake (pmatrine failed to produce significant inhibition on hOCT1. The IC50 value for oxymatrine on hOCT1 was estimated as 513±132 μM. While there was no significant inhibition of hOCT2 or hOCT3 at 100-fold excess, oxymatrine and matrine showed 42% and 88% inhibition of hOCT3-mediated substrate uptake at 3 and 6mM, respectively. Considering the potential intestinal lumen and reported plasma concentrations of matrine and oxymatrine, these data suggest that drug-drug interactions may occur during hOCT1-mediated hepatic and renal uptake and during hOCT3-mediated intestinal absorption.

  11. Combinatorial pharmacophore modeling of organic cation transporter 2 (OCT2) inhibitors: insights into multiple inhibitory mechanisms.

    Science.gov (United States)

    Xu, Yuan; Liu, Xian; Li, Shanshan; Zhou, Nannan; Gong, Likun; Luo, Cheng; Luo, Xiaomin; Zheng, Mingyue; Jiang, Hualiang; Chen, Kaixian

    2013-12-02

    Organic cation transporter 2 (OCT2) is responsible for the entry step of many drugs in renal elimination, of which the changing activity may cause unwanted drug-drug interactions (DDIs). To develop drugs with favorable safety profile and provide instruction for rational clinical drug administration, it is of great interest to investigate the multiple mechanisms of OCT2 inhibition. In this study, we designed a combinatorial scheme to screen the optimum combination of pharmacophores from a pool of hypotheses established based on 162 OCT2 inhibitors. Among them, one single pharmacophore hypothesis represents a potential binding mode that may account for one unique inhibitory mechanism, and the obtained pharmacophore combination describes the multimechanisms of OCT2 inhibition. The final model consists of four individual pharmacophores, i.e., DHPR18, APR2, PRR5 and HHR4. Given a query ligand, it is considered as an inhibitor if it matches at least one of the hypotheses, or a noninhibitor if it fails to match any of four hypotheses. Our combinatorial pharmacophore model performs reasonably well to discriminate inhibitors and noninhibitors, yielding an overall accuracy around 0.70 for a test set containing 81 OCT2 inhibitors and 218 noninhibitors. Intriguingly, we found that the number of matched hypotheses was positively correlated with inhibition rate, which coincides with the pharmacophore modeling result of P-gp substrate binding. Further analysis suggested that the hypothesis PRR5 was responsible for competitive inhibition of OCT2, and other hypotheses were important for interaction between the inhibitor and OCT2. In light of the results, a hypothetical model for inhibiting transporting mediated by OCT2 was proposed.

  12. Role of the Plasma Membrane Transporter of Organic Cations OCT1 and Its Genetic Variants in Modern Liver Pharmacology

    Directory of Open Access Journals (Sweden)

    Elisa Lozano

    2013-01-01

    Full Text Available Changes in the uptake of many drugs by the target cells may dramatically affect the pharmacological response. Thus, downregulation of SLC22A1, which encodes the organic cation transporter type 1 (OCT1, may affect the response of healthy hepatocytes and liver cancer cells to cationic drugs, such as metformin and sorafenib, respectively. Moreover, the overall picture may be modified to a considerable extent by the preexistence or the appearance during the pathogenic process of genetic variants. Some rare OCT1 variants enhance transport activity, whereas other more frequent variants impair protein maturation, plasma membrane targeting or the function of this carrier, hence reducing intracellular active drug concentrations. Here, we review current knowledge of the role of OCT1 in modern liver pharmacology, which includes the use of cationic drugs to treat several diseases, some of them of great clinical relevance such as diabetes and primary liver cancer (cholangiocarcinoma and hepatocellular carcinoma. We conclude that modern pharmacology must consider the individual evaluation of OCT1 expression/function in the healthy liver and in the target tissue, particularly if this is a tumor, in order to predict the lack of response to cationic drugs and to be able to design individualized pharmacological treatments with the highest chances of success.

  13. Circulating inhibitor of ouabain-insensitive cation transport in malignantrenal hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Simon, G.

    1986-03-01

    The role of circulating humoral agents in the pathogenesis of vascular wall Na depletion in malignant hypertension (MHT) was investigated. Plasma was collected from 33 male F344 rats with malignant one-kidney, one clip HT and 22 normotensive control rats. MHT developed spontaneously and was characterized by inactivity, weight loss, edema, anemia or hemoconcentration, hyperkalemia, and renal insufficiency. For bioassay, monolayers of quiescent vascular smooth muscle cells from F344 rats were incubated in deproteinized or whole plasma for measurement of /sup 86/Rb uptake with or without 2 mM ouabain or 1 mM furosemide. Compared to controls, ouabain-insensitive /sup 86/Rb uptake was reduced from 8.2 +- 2.0 nmol/mg protein min/sup -1/ (mean +- SD) to 5.2 +- 1.4 in deproteinized plasma (p < 0.01, N = 12) and from 6.6 +- 1.9 to 4.0 +- 0.3 in whole plasma (p < 0.05, N=5) of rats with MHT, due in part to a reduction in furosemide-sensitive uptake (p < 0.01, N = 6). There were no differences in ouabain-sensitive /sup 86/Rb uptake of cells between groups. In rats with MHT the increased Na content of the aorta that characterizes benign one-kidney, one clip HT was reversed, and bladder wall Na content was reduced (p < 0.001, N = 9). In MHT, a furosemide-like, ouabain-insensitive cation transport inhibitor in blood and urine may be the cause of vascular wall Na loss and of natriuresis that triggers the syndrome.

  14. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation

    Science.gov (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-01

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  15. Cation Transport Coupled to ATP Hydrolysis by the (Na, K)-ATPase: An Integrated, Animated Model

    Science.gov (United States)

    Leone, Francisco A.; Furriel, Rosa P. M.; McNamara, John C.; Horisberger, Jean D.; Borin, Ivana A.

    2010-01-01

    An Adobe[R] animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na[superscript +] and K[superscript +] translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P[subscript 2c]-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also…

  16. Ion transport resistance in Microbial Electrolysis Cells with anion and cation exchange membranes

    NARCIS (Netherlands)

    Sleutels, T.H.J.A.; Hamelers, H.V.M.; Rozendal, R.A.; Buisman, C.J.N.

    2009-01-01

    Previous studies have shown that Microbial Electrolysis Cells (MECs) perform better when an anion exchange membrane (AEM) than when a cation exchange membrane (CEM) separates the electrode chambers. Here, we have further studied this phenomenon by comparing two analysis methods for bio-electrochemic

  17. Transport of organic anions and cations in murine embryonic kidney development and in serially-reaggregated engineered kidneys.

    Science.gov (United States)

    Lawrence, Melanie L; Chang, C-Hong; Davies, Jamie A

    2015-03-13

    Recent advances in renal tissue engineering have shown that dissociated, early renogenic tissue from the developing embryo can self-assemble into morphologically accurate kidney-like organs arranged around a central collecting duct tree. In order for such self-assembled kidneys to be useful therapeutically or as models for drug screening, it is necessary to demonstrate that they are functional. One of the main functional characteristics of mature kidneys is transport of organic anions and cations into and out of the proximal tubule. Here, we show that the transport function of embryonic kidneys allowed to develop in culture follows a developmental time-course that is comparable to embryonic kidney development in vivo. We also demonstrate that serially-reaggregated engineered kidneys can transport organic anions and cations through specific uptake and efflux channels. These results support the physiological relevance of kidneys grown in culture, a commonly used model for kidney development and research, and suggest that serially-reaggregated kidneys self-assembled from separated cells have some functional characteristics of intact kidneys.

  18. Structural, magnetic and magneto-transport properties of monovalent doped manganite Pr{sub 0.55}K{sub 0.05}Sr{sub 0.4}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thaljaoui, R., E-mail: thaljaoui@gmail.com [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax (Tunisia); Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Department of Chemistry, University of Warsaw, Al. Zwirki i Wigury 101, 02-089 Warsaw (Poland); Boujelben, W. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax (Tunisia); Pękała, M. [Department of Chemistry, University of Warsaw, Al. Zwirki i Wigury 101, 02-089 Warsaw (Poland); Pękała, K.; Antonowicz, J. [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Fagnard, J.-F.; Vanderbemden, Ph. [SUPRATECS, Department of Electrical Engineering and Computer Science (B28), University of Liege (Belgium); Dąbrowska, S. [Warsaw University of Technology, Faculty of Materials Science, ul. Wołoska 141, 02-507 Warsaw (Poland); Mucha, J. [Institute of Low Temperature Physics and Structural Research, 50-422 Wrocław (Poland)

    2014-10-25

    Highlights: • Investigation of a new monovalent doped manganite Pr{sub 0.55}K{sub 0.05}Sr{sub 0.4}MnO{sub 3}. • The stability of the sample has been carried by using the DTA analysis. • Magnetic entropy change around 2.26 J kg{sup −1} K{sup −1} resulting RCP value of 70 J/kg for an applied magnetic field of 2 T. • Second order phase transition is confirmed by Arrott plots: A and B Landau coefficients. • Thermal conductivity values are found to be higher for sample with the largest crystallite sizes. - Abstract: Pr{sub 0.55}K{sub 0.05}Sr{sub 0.4}MnO{sub 3} sample have been synthesized using the conventional solid state reaction. Rietveld refinements of the X-ray diffraction patterns at room temperature confirm that the sample is single phase and crystallizes in the orthorhombic structure with Pnma space group; the crystallite size is around 70 nm. The SEM images show that grain size spreads around 1000–1200 nm. DTA analysis does not reveal any clear transition in temperature range studied. The low-temperature DSC indicates that Curie temperature is around 297 K. Magnetization measurements in a magnetic applied field of 0.01 T exhibit a paramagnetic–ferromagnetic transition at the Curie temperature T{sub C} = 303 K. A magnetic entropy change under an applied magnetic field of 2 T is found to be 2.26 J kg{sup −1} K{sup −1}, resulting in a large relative cooling power around 70 J/kg. Electrical resistivity measurements reveal a transition from semiconductor to metallic phase. The thermal conductivity is found to be higher than that reported for undoped and Na doped manganites reported by Thaljaoui et al. (2013)

  19. Protein Kinase C-Independent Inhibition of Organic Cation Transporter 1 Activity by the Bisindolylmaleimide Ro 31-8220.

    Directory of Open Access Journals (Sweden)

    Abdullah Mayati

    Full Text Available Ro 31-8220 is a potent protein kinase C (PKC inhibitor belonging to the chemical class of bisindolylmaleimides (BIMs. Various PKC-independent effects of Ro 31-8220 have however been demonstrated, including inhibition of the ATP-binding cassette drug transporter breast cancer resistance protein. In the present study, we reported that the BIM also blocks activity of the solute carrier organic cation transporter (OCT 1, involved in uptake of marketed drugs in the liver, in a PKC-independent manner. Ro 31-8220, in contrast to other pan-PKC inhibitors such as staurosporine and chelerythrine, was thus shown to cis-inhibit uptake of the reference OCT1 substrate tetraethylammonium in OCT1-transfected HEK293 cells in a concentration-dependent manner (IC50 = 0.18 μM and without altering membrane expression of OCT1. This blockage of OCT1 was also observed in human hepatic HepaRG cells that constitutionally express OCT1. It likely occurred through a mixed mechanism of inhibition. Ro 31-8220 additionally trans-inhibited TEA uptake in OCT1-transfected HEK293 cells, which likely discards a transport of Ro 31-8220 by OCT1. Besides Ro 31-8220, 7 additional BIMs, including the PKC inhibitor LY 333531, inhibited OCT1 activity, whereas 4 other BIMs were without effect. In silico analysis of structure-activity relationships next revealed that various molecular descriptors, especially 3D-WHIM descriptors related to total size, correspond to key physico-chemical parameters for inhibition of OCT1 activity by BIMs. In addition to activity of OCT1, Ro 31-8220 inhibited those of other organic cation transporters such as multidrug and toxin extrusion protein (MATE 1 and MATE2-K, whereas, by contrast, it stimulated that of OCT2. Taken together, these data extend the nature of cellular off-targets of the BIM Ro 31-8220 to OCT1 and other organic cation transporters, which has likely to be kept in mind when using Ro 31-8220 and other BIMs as PKC inhibitors in experimental or

  20. Pharmacological and physiological functions of the polyspecific organic cation transporters : OCT1, 2, and 3 (SLC22A1-3)

    NARCIS (Netherlands)

    Jonker, JW; Schinkel, AH

    2004-01-01

    For the elimination of environmental toxins and metabolic waste products, the body is equipped with a range of broad-specificity transporters that are generally present in the liver, kidney, and intestine. The polyspecific organic cation transporters OCT1, 2, and 3 (SLC22A1-3) mediate the facilitate

  1. Production and targeting of monovalent quantum dots.

    Science.gov (United States)

    Seo, Daeha; Farlow, Justin; Southard, Kade; Jun, Young-Wook; Gartner, Zev J

    2014-10-23

    The multivalent nature of commercial quantum dots (QDs) and the difficulties associated with producing monovalent dots have limited their applications in biology, where clustering and the spatial organization of biomolecules is often the object of study. We describe here a protocol to produce monovalent quantum dots (mQDs) that can be accomplished in most biological research laboratories via a simple mixing of CdSe/ZnS core/shell QDs with phosphorothioate DNA (ptDNA) of defined length. After a single ptDNA strand has wrapped the QD, additional strands are excluded from the surface. Production of mQDs in this manner can be accomplished at small and large scale, with commercial reagents, and in minimal steps. These mQDs can be specifically directed to biological targets by hybridization to a complementary single stranded targeting DNA. We demonstrate the use of these mQDs as imaging probes by labeling SNAP-tagged Notch receptors on live mammalian cells, targeted by mQDs bearing a benzylguanine moiety.

  2. Functional Determinants of Metal Ion Transport and Selectivity in Paralogous Cation Diffusion Facilitator Transporters CzcD and MntE in Streptococcus pneumoniae.

    Science.gov (United States)

    Martin, Julia E; Giedroc, David P

    2016-01-19

    Cation diffusion facilitators (CDFs) are a large family of divalent metal transporters that collectively possess broad metal specificity and contribute to intracellular metal homeostasis and virulence in bacterial pathogens. Streptococcus pneumoniae expresses two homologous CDF efflux transporters, MntE and CzcD. Cells lacking mntE or czcD are sensitive to manganese (Mn) or zinc (Zn) toxicity, respectively, and specifically accumulate Mn or Zn, respectively, thus suggesting that MntE selectively transports Mn, while CzcD transports Zn. Here, we probe the origin of this metal specificity using a phenotypic growth analysis of pneumococcal variants. Structural homology to Escherichia coli YiiP predicts that both MntE and CzcD are dimeric and each protomer harbors four pairs of conserved metal-binding sites, termed the A site, the B site, and the C1/C2 binuclear site. We find that single amino acid mutations within both the transmembrane domain A site and the B site in both CDFs result in a cellular metal sensitivity similar to that of the corresponding null mutants. However, multiple mutations in the predicted cytoplasmic C1/C2 cluster of MntE have no impact on cellular Mn resistance, in contrast to the analogous substitutions in CzcD, which do have on impact on cellular Zn resistance. Deletion of the MntE-specific C-terminal tail, present only in Mn-specific bacterial CDFs, resulted in only a modest growth phenotype. Further analysis of MntE-CzcD functional chimeric transporters showed that Asn and Asp in the ND-DD A-site motif of MntE and the most N-terminal His in the HD-HD site A of CzcD (the specified amino acids are underlined) play key roles in transporter metal selectivity. Cation diffusion facilitator (CDF) proteins are divalent metal ion transporters that are conserved in organisms ranging from bacteria to humans and that play important roles in cellular physiology, from metal homeostasis and resistance to type I diabetes in vertebrates. The respiratory

  3. High stability of electro-transport and magnetism against the A-site cation disorder in SrRuO3.

    Science.gov (United States)

    Wang, Y L; Liu, M F; Liu, R; Xie, Y L; Li, X; Yan, Z B; Liu, J-M

    2016-06-14

    It is known that the electro-transport and magnetism of perovskite alkaline-earth ruthenate oxides are sensitive to the lattice distortion associated with the A-site cation size. Orthorhombic CaRuO3 and cubic BaRuO3 exhibit distinctly different electro-transport and magnetic properties from orthorhombic SrRuO3. It has been suggested that SrRuO3 can be robust against some intrinsic/external perturbations but fragile against some others in terms of electro-transport and magnetism, and it is our motivation to explore such stability against the local site cation disorder. In this work, we prepare a set of SrRuO3-based samples with identical averaged A-site size but different A-site cation disorder (size mismatch) by Ca and Ba co-substitution of Sr. It is revealed that the electro-transport and magnetism of SrRuO3 demonstrate relatively high stability against this A-site cation disorder, characterized by the relatively invariable electrical and magnetic properties in comparison with those of SrRuO3 itself. A simple electro-transport network model is proposed to explain quantitatively the measured behaviors. The present work suggests that SrRuO3 as an itinerant electron ferromagnetic metal possesses relatively high robustness against local lattice distortion and cation occupation disorder.

  4. High stability of electro-transport and magnetism against the A-site cation disorder in SrRuO3

    Science.gov (United States)

    Wang, Y. L.; Liu, M. F.; Liu, R.; Xie, Y. L.; Li, X.; Yan, Z. B.; Liu, J.-M.

    2016-06-01

    It is known that the electro-transport and magnetism of perovskite alkaline-earth ruthenate oxides are sensitive to the lattice distortion associated with the A-site cation size. Orthorhombic CaRuO3 and cubic BaRuO3 exhibit distinctly different electro-transport and magnetic properties from orthorhombic SrRuO3. It has been suggested that SrRuO3 can be robust against some intrinsic/external perturbations but fragile against some others in terms of electro-transport and magnetism, and it is our motivation to explore such stability against the local site cation disorder. In this work, we prepare a set of SrRuO3-based samples with identical averaged A-site size but different A-site cation disorder (size mismatch) by Ca and Ba co-substitution of Sr. It is revealed that the electro-transport and magnetism of SrRuO3 demonstrate relatively high stability against this A-site cation disorder, characterized by the relatively invariable electrical and magnetic properties in comparison with those of SrRuO3 itself. A simple electro-transport network model is proposed to explain quantitatively the measured behaviors. The present work suggests that SrRuO3 as an itinerant electron ferromagnetic metal possesses relatively high robustness against local lattice distortion and cation occupation disorder.

  5. Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine.

    Science.gov (United States)

    Müller, Fabian; König, Jörg; Hoier, Eva; Mandery, Kathrin; Fromm, Martin F

    2013-09-15

    The antiviral lamivudine is cleared predominantly by the kidney with a relevant contribution of renal tubular secretion. It is not clear which drug transporters mediate lamivudine renal secretion. Our aim was to investigate lamivudine as substrate of the renal drug transporters organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins MATE1 and MATE2-K. Uptake experiments were performed in OCT2, MATE1, or MATE2-K single-transfected human embryonic kidney 293 (HEK) cells. Transcellular transport experiments were performed in OCT2 and/or MATE1 single- or double-transfected Madin-Darby canine kidney II (MDCK) cells grown on transwell filters. Lamivudine uptake was significantly increased in HEK-OCT2, HEK-MATE1, and HEK-MATE2-K cells compared to control cells. In transcellular experiments, OCT2 located in the basolateral membrane had no effect on transcellular lamivudine transport. MATE1 located in the apical membrane decreased intracellular concentrations and increased transcellular transport of lamivudine from the basal to the apical compartment. MATE1- or MATE2-K-mediated transport was increased by an oppositely directed pH gradient. Several simultaneously administered drugs inhibited OCT2- or MATE2-K-mediated lamivudine uptake. The strongest inhibitors were carvedilol for OCT2 and trimethoprim for MATE2-K (inhibition by 96.3 and 83.7% at 15 μM, respectively, ptransport in OCT2-MATE1 double-transfected cells was inhibited by trimethoprim with an IC₅₀ value of 6.9 μM. Lamivudine is a substrate of renal drug transporters OCT2, MATE1, and MATE2-K. Concomitant administration of drugs that inhibit these transporters could decrease renal clearance of lamivudine.

  6. The mechanisms of Mg2+ and Co2+ transport by the CorA family of divalent cation transporters.

    Science.gov (United States)

    Guskov, Albert; Eshaghi, Said

    2012-01-01

    The metal ions Mg(2+) and Co(2+) are essential for life, although to different degree. They have similar chemical and physical properties, but their slight differences result in Mg(2+) to be the most abundant metal ion in living cells and the trace element Co(2+) being toxic at relatively low concentrations. Specialized transporters have evolved in living cells to supply and balance the Mg(2+) and Co(2+) need of the cells. The current knowledge of the molecular mechanisms of Mg(2+) and Co(2+) -specific transporters is very limited at this point. Recently, there has been remarkable advances to understand the CorA family, a family of transporters that are able to transport both ions. These new data have increased our insights in how Mg(2+) and Co(2+) are translocated across membranes. Presently, CorA is probably the best system to study the mechanisms of Mg(2+) and Co(2+) transport. This chapter discusses the mechanisms through which CorA selects, transports, and regulates the translocation of its substrate. In addition, we highlight the physical and chemical properties of the substrates, which are important parameters required for better understanding of the transporter action. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Monovalent copper-activated oxygenated insulators

    Science.gov (United States)

    Parent, C.; Boutinaud, P.; Flem, G. Le; Moine, B.; Pedrini, C.; Garcia, D.; Faucher, M.

    1994-12-01

    The photoluminescence of monovalent copper in oxygenated insulators has been extensively studied. The spectroscopy and the excited states dynamics of Cu + ions were investigated as a function of the copper concentration and temperature in various glassy and crystallized materials, essentially borates and phosphates. The broad band fluorescences observed in the visible range under UV excitation arise from two main emitting centers: isolated Cu + ions and (Cu +) 2 pairs. The spectroscopic characteristics of isolated Cu + depend strongly on the local structure, whereas those of the copper pairs remain nearly unaltered whatever the host-matrix. Energy diagrams are proposed for both centers, using ab initio LCAO calculations, in connection with structural investigations involving XRD, ND and EXAFS spectroscopies. Borate glasses can be considered as potential laser sources for tunable output in the whole visible range.

  8. Effects of monovalent and divalent salts on the phospholipid and fatty acid compositions of a halotolerant Planococcus sp.

    Science.gov (United States)

    Miller, K J

    1986-09-01

    The phospholipid headgroup and fatty acid compositions of a halotolerant Planococcus sp. (strain A4a) were examined when cells were grown in the presence of high concentrations of a variety of salts. The fatty acid composition of Planococcus sp. strain A4a was altered primarily as a function of the osmolality of the growth medium. The phospholipid headgroup composition was influenced by both the osmolality of the growth medium and the nature of the cation species present. An increase in the cardiolipin/phosphatidylglycerol molar ratio was detected when cells were grown in the presence of high concentrations of monovalent cations.

  9. High expression of organic cation transporter 3 in human BAT-like adipocytes. Implications for extraneuronal norepinephrine uptake

    DEFF Research Database (Denmark)

    Breining, Peter; Pedersen, Steen Bønløkke; Pikelis, Arunas;

    2016-01-01

    with known markers of thermogenic function, e.g. UCP1. When examining neck AT biopsies from 57 individuals we found that OCT3 was expressed at 2.5 ± 0.16 fold higher level in the deep-neck AT compared with subcutaneous AT. UCP1 was found extensively expressed in the deep-neck AT depot and the correlation...... between UCP1 and OCT3 within the deep-neck AT was found highly significant (r(2) = 0.4012, P-value 3-blocker. In conclusion, we found that OCT3 may......Brown adipose tissue (BAT) is activated by extracellular norepinephrine (NE) released by the sympathetic nervous system. The extracellular concentration of NE is additionally regulated by the disappearance/degradation of NE. Recent studies have introduced the organic cation transporter 3 (OCT3...

  10. Formaldehyde mediated proton-transport catalysis in the ketene-water radical cation CH2C(O)OH2+

    Science.gov (United States)

    Lee, Richard; Ruttink, Paul J. A.; Burgers, Peter C.; Terlouw, Johan K.

    2006-09-01

    Previous studies have shown that the solitary ketene-water ion CH2C(O)OH2+ (1) does not isomerize into CH2C(OH)2+ (2), its more stable hydrogen shift isomer. Tandem mass spectrometry based collision experiments reveal that this isomerization does take place in the CH2O loss from low-energy 1,3-dihydroxyacetone ions (HOCH2)2CO+. A mechanistic analysis using the CBS-QB3 model chemistry shows that such molecular ions rearrange into hydrogen-bridged radical cations [CH2C(O)O(H)-H...OCH2]+ in which the CH2O molecule catalyzes the transformation 1 --> 2 prior to dissociation. The barrier for the unassisted reaction, 29 kcal mol-1, is reduced to a mere 0.6 kcal mol-1 for the catalysed transformation. Formaldehyde is an efficient catalyst because its proton affinity meets the criterion for facile proton-transport catalysis.

  11. Synthesis and Crystal Structure of A New Armed-tetraazacrown Ether and Its Liquid Membrane Transport of Alkali Metal Cations

    Institute of Scientific and Technical Information of China (English)

    马淑兰; 朱文祥; 董淑静; 郭倩玲; 佘远斌

    2003-01-01

    A new tetra-N-substituted tetraazacrown ether derivative, 4,7,13,16-tetra ( 2-cyanobenzyl)-1, 10-dioxa-4, 7, 13, 16-tetraazacy-dooctademne, C44H48N8O2, has been synthesized and struc-turally characterized. It crystallizes in the monoclinic system,Slmeegroup P21/c with a = 1.1176(3) nm, b =2.1906(7) nm,c=0.8430(3)nm, V=2.0132(10)nm3, β = 102.740(5)°,Z=4, Dc= 1.189 g/cm3, final R1=0.0460, wR2=0.0803.The liquid membrane transports of alkali metal cations using the new macrocyde as the ion-carrier were also studied. Com-pared with some macrocyclic ligands, our newly synthesized lig.and showed a good selectivity ratio for Na Na+/Li+.

  12. Cationic amino acid transporters and Salmonella Typhimurium ArgT collectively regulate arginine availability towards intracellular Salmonella growth.

    Directory of Open Access Journals (Sweden)

    Priyanka Das

    Full Text Available Cationic amino acid transporters (mCAT1 and mCAT2B regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells.

  13. L-carnitine, a diet component and organic cation transporter OCTN ligand, displays immunosuppressive properties and abrogates intestinal inflammation.

    Science.gov (United States)

    Fortin, G; Yurchenko, K; Collette, C; Rubio, M; Villani, A-C; Bitton, A; Sarfati, M; Franchimont, D

    2009-04-01

    Allele variants in the L-carnitine (LCAR) transporters OCTN1 (SLC22A4, 1672 C --> T) and OCTN2 (SLC22A5, -207 G --> C) have been implicated in susceptibility to Crohn's disease (CD). LCAR is consumed in the diet and transported actively from the intestinal lumen via the organic cation transporter OCTN2. While recognized mainly for its role in fatty acid metabolism, several lines of evidence suggest that LCAR may also display immunosuppressive properties. This study sought to investigate the immunomodulatory capacity of LCAR on antigen-presenting cell (APC) and CD4+ T cell function by examining cytokine production and the expression of activation markers in LCAR-supplemented and deficient cell culture systems. The therapeutic efficacy of its systemic administration was then evaluated during the establishment of colonic inflammation in vivo. LCAR treatment significantly inhibited both APC and CD4+ T cell function, as assessed by the expression of classical activation markers, proliferation and cytokine production. Carnitine deficiency resulted in the hyperactivation of CD4+ T cells and enhanced cytokine production. In vivo, protection from trinitrobenzene sulphonic acid colitis was observed in LCAR-treated mice and was attributed to the abrogation of both innate [interleukin (IL)-1beta and IL-6 production] and adaptive (T cell proliferation in draining lymph nodes) immune responses. LCAR therapy may therefore represent a novel alternative therapeutic strategy and highlights the role of diet in CD.

  14. Evaluation of organic cation transporter 3 (SLC22A3) inhibition as a potential mechanism of antidepressant action.

    Science.gov (United States)

    Zhu, Hao-Jie; Appel, David I; Gründemann, Dirk; Richelson, Elliott; Markowitz, John S

    2012-04-01

    Organic cation transporter 3 (OCT3, SLC22A3) is a low-affinity, high-capacity transporter widely expressed in the central nervous system (CNS) and other major organs in both humans and rodents. It is postulated that OCT3 has a role in the overall regulation of neurotransmission and maintenance of homeostasis within the CNS. It is generally believed that all antidepressant drugs in current clinical use exert their primary therapeutic effects through inhibition of one or more of the high-affinity neuronal plasma membrane monoamine transporters, such as the norepinephrine transporter and the serotonin transporter. In the present study, we investigated the inhibitory effects of selected antidepressants on OCT3 activity in OCT3-transfected cells to evaluate whether OCT3 inhibition may at least in part contribute to the pharmacological effects of tested antidepressants. The studies demonstrated that all examined antidepressants inhibited OCT3-mediated uptake of the established OCT3 substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (4-Di-1-ASP) in a concentration-dependent manner. The IC(50) values were determined to be 4.7 μM, 7.4 μM, 12.0 μM, 18.6 μM, 11.2 μM, and 21.9 μM for desipramine, sertraline, paroxetine, amitriptyline, imipramine, and fluoxetine, respectively. Additionally, desipramine had an IC(50) value of 0.7 μM for the uptake of NE by OCT3, while the IC(50) value of sertraline was 2.3 μM for 5-HT uptake. Both desipramine and sertraline appeared to inhibit OCT3 activity via a non-competitive mechanism. In vivo studies are warranted to determine whether such effects on OCT3 inhibition are of sufficient magnitude to contribute to the overall therapeutic effects of antidepressants.

  15. Determinants of substrate and cation transport in the human Na+/dicarboxylate cotransporter NaDC3.

    Science.gov (United States)

    Schlessinger, Avner; Sun, Nina N; Colas, Claire; Pajor, Ana M

    2014-06-13

    Metabolic intermediates, such as succinate and citrate, regulate important processes ranging from energy metabolism to fatty acid synthesis. Cytosolic concentrations of these metabolites are controlled, in part, by members of the SLC13 gene family. The molecular mechanism underlying Na(+)-coupled di- and tricarboxylate transport by this family is understood poorly. The human Na(+)/dicarboxylate cotransporter NaDC3 (SLC13A3) is found in various tissues, including the kidney, liver, and brain. In addition to citric acid cycle intermediates such as α-ketoglutarate and succinate, NaDC3 transports other compounds into cells, including N-acetyl aspartate, mercaptosuccinate, and glutathione, in keeping with its dual roles in cell nutrition and detoxification. In this study, we construct a homology structural model of NaDC3 on the basis of the structure of the Vibrio cholerae homolog vcINDY. Our computations are followed by experimental testing of the predicted NaDC3 structure and mode of interaction with various substrates. The results of this study show that the substrate and cation binding domains of NaDC3 are composed of residues in the opposing hairpin loops and unwound portions of adjacent helices. Furthermore, these results provide a possible explanation for the differential substrate specificity among dicarboxylate transporters that underpin their diverse biological roles in metabolism and detoxification. The structural model of NaDC3 provides a framework for understanding substrate selectivity and the Na(+)-coupled anion transport mechanism by the human SLC13 family and other key solute carrier transporters.

  16. The effect of monovalent and divalent cations on the ATP-dependent Ca2+-binding and phosphorylation during the reaction cycle of the sarcoplasmic reticulum Ca2+-transport ATPase.

    Science.gov (United States)

    Medda, P; Fassold, E; Hasselbach, W

    1987-06-01

    The coupling of Ca2+ movements and phosphate fluxes as well as the time-dependent occurrence of sequential reaction intermediates in the forward mode of the Ca,Mg-dependent ATPase reaction have been investigated using leaky vesicles (A23187) in the presence of varying Ca2+, Mg2+, and K+ concentrations. The employed ATP concentration of 2 microM does not allow more than one reaction cycle to occur. The respective fractions of ADP-sensitive and ADP-insensitive phosphoenzyme have been determined. The chosen experimental conditions (0-1 degree C, pH 6.0, absence of solubilizers) allow a prolonged time of observation and exclude interfering alterations of coupling and binding parameters, respectively. It is shown that under the experimental conditions K+ interacts with at least four different reaction steps (phosphoenzyme formation, E1P----E2P transition, E2P hydrolysis, and E2----E1 transformation). Mg2+ represents the sole ionic co-factor for the formation of the substrate MgATP if it is present in high concentrations (5 mM). Additional Ca2+ is bound to the substrate as well as to unspecific sites otherwise occupied by Mg2+ if Mg2+ is reduced to 0.1 mM. In this case the E1P----E2P transition rate (including Ca2+ translocation and Ca2+ release from low-affinity sites) is little diminished. If, in the absence of K+, both Mg2+ and Ca2+ are deficient E2P hydrolysis is vastly retarded. We find Ca2+ release to occur time-coincidently with E1P formation and not concomitantly with the comparably slow appearance of E2P; the molar amount of Ca2+ released, however, rather agreed with that of E2P formed. This suggests that under the prevailing conditions of a high proton concentration, phosphoenzyme states containing occluded Ca2+ or Ca2+ bound to low-affinity sites are transitional and not detectable. Preliminary findings on this subject have been published by us and colleagues from this laboratory [Hasselbach, W., Agostini, B., Medda, P., Migala, A. & Waas, W. (1985) in The sarcoplasmic reticulum calcium pump: Early and recent developments critically overviewed (Fleischer, S. & Tonomura, Y., eds) pp. 19-49, Academic Press, Orlando].

  17. Aldosterone-induced signalling and cation transport in the distal nephron.

    LENUS (Irish Health Repository)

    Thomas, Warren

    2008-10-01

    Aldosterone is an important regulator of Na(+) and K(+) transport in the distal nephron modulating the surface expression of transporters through the action of the mineralocorticoid receptor as a ligand-dependent transcription factor. Aldosterone stimulates the rapid activation of protein kinase-based signalling cascades that modulate the genomic effects of the hormone. Evidence is accumulating about the multi-factorial regulation of the epithelial sodium channel (ENaC) by aldosterone. Recent published data suggests that the activation of a novel PKC\\/PKD signalling pathway through the c-Src-dependent trans-activation of epidermal growth factor receptor contributes to early ENaC trafficking in response to aldosterone.

  18. Bile canalicular cationic dye secretion as a model for P-glycoprotein mediated transport.

    Science.gov (United States)

    Thalhammer, T; Stapf, V; Gajdzik, L; Graf, J

    1994-04-01

    This study explores properties of P-glycoprotein dependent membrane transport in rat liver with the use of acridine orange as the substrate. We studied the biliary secretion of the dye, its binding to canalicular membrane P-glycoprotein, and effects of the inhibitor cyclosporin A: acridine orange is excreted into bile together with less hydrophobic and glucuronidated metabolites. Cyclosporin A inhibited both the secretion of acridine orange and of its metabolites. In TR- animals, a rat strain that is deficient of the canalicular multi-specific organic anion transport system, non-metabolized acridine orange is the predominant species in bile and its secretion is also inhibited by cyclosporin A. Binding of acridine orange to liver P-glycoprotein was analyzed by photoaffinity labeling with azidopine, a substrate of P-glycoprotein dependent transport in multi-drug resistant tumor cells. Labeling of the immunoprecipitated P-glycoprotein was inhibited by acridine orange, verapamil, and by cyclosporin A. The results show that biliary secretion of acridine orange is highly analogous to P-glycoprotein mediated membrane drug transport in tumor cells that exhibit multi-drug resistance.

  19. Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients

    NARCIS (Netherlands)

    G. Ciarimboli (Giuliano); C.S. Lancaster (Cynthia); E. Schlatter (Eberhard); R.M. Franke (Ryan); J.A. Sprowl (Jason); H. Pavenstädt (Hermann); V. Massmann (Vivian); D. Guckel (Denise); A.H.J. Mathijssen (Ron); W. Yang (Wenjian); C.H. Pui (Ching-Hon); M.V. Relling (Mary); E. Herrmann (Eva); A. Sparreboom (Alex)

    2012-01-01

    textabstractPurpose: Knowledge of transporters responsible for the renal secretion of creatinine is key to a proper interpretation of serum creatinine and/or creatinine clearance as markers of renal function in cancer patients receiving chemotherapeutic agents. Experimental Design: Creatinine transp

  20. Connecting Structural and Transport Properties of Ionic Liquids with Cationic Oligoether Chains

    Energy Technology Data Exchange (ETDEWEB)

    Lall-Ramnarine, Sharon I.; Zhao, Man; Rodriguez, Chanele; Fernandez, Rahonel; Zmich, Nicole; Fernandez, Eddie D.; Dhiman, Surajdevprakash B.; Castner, Edward W.; Wishart, James F.

    2017-01-01

    X-ray diffraction and molecular dynamics simulations were used to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidinium ILs increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. The results point to specific aspects that could be useful for researchers designing ILs for specific applications.

  1. Choline acetyltransferase and organic cation transporters are responsible for synthesis and propionate-induced release of acetylcholine in colon epithelium.

    Science.gov (United States)

    Bader, Sandra; Klein, Jochen; Diener, Martin

    2014-06-15

    Acetylcholine is not only a neurotransmitter, but is found in a variety of non-neuronal cells. For example, the enzyme choline acetyltransferase (ChAT), catalyzing acetylcholine synthesis, is expressed by the colonic epithelium of different species. These cells release acetylcholine across the basolateral membrane after luminal exposure to propionate, a short-chain fatty acid. The functional consequence is the induction of chloride secretion, measurable as increase in short-circuit current (Isc) in Ussing chamber experiments. It is unclear how acetylcholine is produced and released by colonic epithelium. Therefore, the aim of the present study was the identification (on mRNA and protein level) and functional characterization (in Ussing chamber experiments combined with HPLC detection of acetylcholine) of transporters/enzymes in the cholinergic system of rat colonic epithelium. Immunohistochemical staining as well as RT-PCR revealed the expression of high-affinity choline transporter, ChAT, carnitine acetyltransferase (CarAT), vesicular acetylcholine transporter (VAChT), and organic cation transporters (OCT 1, 2, 3) in colonic epithelium. In contrast to blockade of ChAT with bromoacetylcholine, inhibition of CarAT with mildronate did not inhibit the propionate-induced increase in Isc, suggesting a predominant synthesis of epithelial acetylcholine by ChAT. Although being expressed, blockade of VAChT with vesamicol was ineffective, whereas inhibition of OCTs with omeprazole and corticosterone inhibited propionate-induced Isc and the release of acetylcholine into the basolateral compartment. In summary, OCTs seem to be involved in regulated acetylcholine release by colonic epithelium, which is assumed to be involved in chemosensing of luminal short-chain fatty acids by the intestinal epithelium. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Neodymium cations Nd3+ were transported to the interior of Euglena gracilis 277

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Euglena gracilis 277, a unicellular green alga, demonstrated remarkable ability to transport Nd3+ to the cell compartments. For a given amount of Nd3+ and cells, the results of ICP-AES indicated that the cellular uptake of Nd3+ was independent of Nd3+ concentration in the bulk solution. The average uptake of Nd3+ per cell (mNd) is proportional to a parameter ζ -- the ratio of neodymium content to the cell counts of the system. A novel approach for probing cellular neodymium by tetraiodotetra chlorofluorescein (I4TCF) has been devised. Data derived from the cryosections of I4TCF-Nd3+ stained cells and EDAX of the fast freezing ultrathin cryosections indicate that Nd3+ is distributed over the cell compartments. Chloroplasts are the major compartments as the residence of Nd3+ in the alga. The transport should be against a concentration gradient of Nd3+ on the order of five, even higher. It is proposed that a calcium ion channel would play an important role in the Nd3+ transportation.

  3. Manipulating the drug/proton antiport stoichiometry of the secondary multidrug transporter MdfA.

    Science.gov (United States)

    Tirosh, Osnat; Sigal, Nadejda; Gelman, Amir; Sahar, Nadav; Fluman, Nir; Siemion, Shira; Bibi, Eitan

    2012-07-31

    Multidrug transporters are integral membrane proteins that use cellular energy to actively extrude antibiotics and other toxic compounds from cells. The multidrug/proton antiporter MdfA from Escherichia coli exchanges monovalent cationic substrates for protons with a stoichiometry of 1, meaning that it translocates only one proton per antiport cycle. This may explain why transport of divalent cationic drugs by MdfA is energetically unfavorable. Remarkably, however, we show that MdfA can be easily converted into a divalent cationic drug/≥ 2 proton-antiporter, either by random mutagenesis or by rational design. The results suggest that exchange of divalent cationi c drugs with two (or more) protons requires an additional acidic residue in the multidrug recognition pocket of MdfA. This outcome further illustrates the exceptional promiscuous capabilities of multidrug transporters.

  4. Hydration of cations: a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers.

    Science.gov (United States)

    Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie

    2013-09-05

    This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.

  5. Discovery of Novel SPAK Inhibitors That Block WNK Kinase Signaling to Cation Chloride Transporters.

    Science.gov (United States)

    Kikuchi, Eriko; Mori, Takayasu; Zeniya, Moko; Isobe, Kiyoshi; Ishigami-Yuasa, Mari; Fujii, Shinya; Kagechika, Hiroyuki; Ishihara, Tomoaki; Mizushima, Tohru; Sasaki, Sei; Sohara, Eisei; Rai, Tatemitsu; Uchida, Shinichi

    2015-07-01

    Upon activation by with-no-lysine kinases, STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) phosphorylates and activates SLC12A transporters such as the Na(+)-Cl(-) cotransporter (NCC) and Na(+)-K(+)-2Cl(-) cotransporter type 1 (NKCC1) and type 2 (NKCC2); these transporters have important roles in regulating BP through NaCl reabsorption and vasoconstriction. SPAK knockout mice are viable and display hypotension with decreased activity (phosphorylation) of NCC and NKCC1 in the kidneys and aorta, respectively. Therefore, agents that inhibit SPAK activity could be a new class of antihypertensive drugs with dual actions (i.e., NaCl diuresis and vasodilation). In this study, we developed a new ELISA-based screening system to find novel SPAK inhibitors and screened >20,000 small-molecule compounds. Furthermore, we used a drug repositioning strategy to identify existing drugs that inhibit SPAK activity. As a result, we discovered one small-molecule compound (Stock 1S-14279) and an antiparasitic agent (Closantel) that inhibited SPAK-regulated phosphorylation and activation of NCC and NKCC1 in vitro and in mice. Notably, these compounds had structural similarity and inhibited SPAK in an ATP-insensitive manner. We propose that the two compounds found in this study may have great potential as novel antihypertensive drugs. Copyright © 2015 by the American Society of Nephrology.

  6. Paddle-wheel versus percolation mechanism for cation transport in some sulphate phases

    DEFF Research Database (Denmark)

    Andersen, N.H.; Bandaranyake, P.W.S.K.; Careem, M.A.

    1992-01-01

    at the tetrahedral 8c-sites (1/4, 1/4, 1/4), although significantly distorted in the directions of the four neighbouring sulphate ions. The remaining 10% of the lithium ions are refined as an evenly distributed spherical shell which is surrounding the sulphate ions. The lithium ions are transported along a slightly...... in these phases. A single-crystal neutron diffraction study has been performed for cubic lithium sulphate. The refinement of the data gives a very complex model for the location of the lithium ions. There is definitely a void at and near the octahedral (1/2, 1/2, 1/2) position. 90% of the lithium ions are located...... curved pathway of continuous lithium occupation corresponding to a distance of about 3.7 angstrom. Thus, lithium transport occurs in one of the six directions [110], [110BAR], [101] etc. The electrical conductivity has been studied for solid solutions of lithium tungstate in cubic lithium sulphate...

  7. The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family.

    Science.gov (United States)

    Dos Santos Pereira, Joao N; Tadjerpisheh, Sina; Abu Abed, Manar; Saadatmand, Ali R; Weksler, Babette; Romero, Ignacio A; Couraud, Pierre-Olivier; Brockmöller, Jürgen; Tzvetkov, Mladen V

    2014-11-01

    Variations in influx transport at the blood-brain barrier might affect the concentration of psychotropic drugs at their site of action and as a consequence might alter therapy response. Furthermore, influx transporters in organs such as the gut, liver and kidney may influence absorption, distribution, and elimination. Here, we analyzed 30 commonly used psychotropic drugs using a parallel artificial membrane permeability assay. Amisulpride and sulpiride showed the lowest membrane permeability (P e sulpiride by the organic cation transporters of the SLC22 family OCT1, OCT2, OCT3, OCTN1, and OCTN2 Amisulpride was found to be transported by all five transporters studied. In contrast, sulpiride was only transported by OCT1 and OCT2. OCT1 showed the highest transport ability both for amisulpride (CLint = 1.9 ml/min/mg protein) and sulpiride (CLint = 4.2 ml/min/mg protein) and polymorphisms in OCT1 significantly reduced the uptake of both drugs. Furthermore, we observed carrier-mediated uptake that was inhibitable by known OCT inhibitors in the immortalized human brain microvascular endothelial cell line hCMEC/D3. In conclusion, this study demonstrates that amisulpride and sulpiride are substrates of organic cation transporters of the SLC22 family. SLC22 transporters may play an important role in the distribution of amisulpride and sulpiride, including their ability to penetrate the blood-brain barrier.

  8. Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons.

    Directory of Open Access Journals (Sweden)

    Takahiro Ishimoto

    Full Text Available The aim of the present study is to clarify the functional expression and physiological role in neural progenitor cells (NPCs of carnitine/organic cation transporter OCTN1/SLC22A4, which accepts the naturally occurring food-derived antioxidant ergothioneine (ERGO as a substrate in vivo. Real-time PCR analysis revealed that mRNA expression of OCTN1 was much higher than that of other organic cation transporters in mouse cultured cortical NPCs. Immunocytochemical analysis showed colocalization of OCTN1 with the NPC marker nestin in cultured NPCs and mouse embryonic carcinoma P19 cells differentiated into neural progenitor-like cells (P19-NPCs. These cells exhibited time-dependent [(3H]ERGO uptake. These results demonstrate that OCTN1 is functionally expressed in murine NPCs. Cultured NPCs and P19-NPCs formed neurospheres from clusters of proliferating cells in a culture time-dependent manner. Exposure of cultured NPCs to ERGO or other antioxidants (edaravone and ascorbic acid led to a significant decrease in the area of neurospheres with concomitant elimination of intracellular reactive oxygen species. Transfection of P19-NPCs with small interfering RNA for OCTN1 markedly promoted formation of neurospheres with a concomitant decrease of [(3H]ERGO uptake. On the other hand, exposure of cultured NPCs to ERGO markedly increased the number of cells immunoreactive for the neuronal marker βIII-tubulin, but decreased the number immunoreactive for the astroglial marker glial fibrillary acidic protein (GFAP, with concomitant up-regulation of neuronal differentiation activator gene Math1. Interestingly, edaravone and ascorbic acid did not affect such differentiation of NPCs, in contrast to the case of proliferation. Knockdown of OCTN1 increased the number of cells immunoreactive for GFAP, but decreased the number immunoreactive for βIII-tubulin, with concomitant down-regulation of Math1 in P19-NPCs. Thus, OCTN1-mediated uptake of ERGO in NPCs inhibits

  9. Comparing Nafion and ceramic separators used in electrochemical purification of spent chromium plating solutions: cationic impurity removal and transport.

    Science.gov (United States)

    Huang, Kuo-Lin; Holsen, Thomas M; Chou, Tse-Chuan; Selman, J Robert

    2003-05-01

    This study focuses on the electrolytic regeneration of spent chromium plating solutions. These solutions contain a significant amount of chromium and a lesser amount of other heavy metals, which makes them a significant environmental concern and an obvious target for recycling and reuse. The type of separator used is extremely critical to the performance of the process because they are the major resistance in the transport-related impurity (Cu(II), Ni(II), and Fe(III)) removals from contaminated chromic acid solutions. A Nafion 117 membrane and a ceramic diaphragm separator traditionally used in the industry were tested for comparison. It was found that the mobilities of Cu(II) and Ni(II) were similar and higher than that of Fe(III) using both separators. The mobility of each cation was smaller in the Nafion membrane than in the ceramic diaphragm. The measured conductivity of the ceramic diaphragm was slightly higher than that of Nafion membrane. However, the Nafion membrane was much thinner than the ceramic diaphragm resulting in the system using the Nafion membrane having higher impurity removal rates than the system using the ceramic diaphragm. The removal rates were approximately equal for Cu(II) and Ni(II) and lowest for Fe(III). Both current and initial concentration affected the removal rates of the impurities. Modeling results indicated that a system using a Nafion separator and a small catholyte/anolyte volume ratio was better than a system using a ceramic separator for removing impurities from concentrated plating solutions if the impurities transported into the catholyte are deposited or precipitated.

  10. Equilibrative nucleoside (ENTs) and cationic amino acid (CATs) transporters: implications in foetal endothelial dysfunction in human pregnancy diseases.

    Science.gov (United States)

    Casanello, Paola; Escudero, Carlos; Sobrevia, Luis

    2007-01-01

    Gestational diabetes (GD, characterized by abnormal D-glucose metabolism), intrauterine growth restriction (IUGR, a disease associated with reduced oxygen delivery (hypoxia) to the foetus), and preeclampsia (PE, a pregnancy complication characterized by high blood pressure, proteinuria and increased vascular resistance), induce foetal endothelial dysfunction with implications in adult life and increase the risk of vascular diseases. Synthesis of nitric oxide (NO) and uptake of L-arginine (the NO synthase (NOS) substrate) and adenosine (a vasoactive endogenous nucleoside) by the umbilical vein endothelium is altered in pregnancies with GD, IUGR or PE. Mechanisms underlying these alterations include differential expression of equilibrative nucleoside transporters (ENTs), cationic amino acid transporters (CATs), and NOS. Modulation of ENTs, CATs, and NOS expression and activity in endothelium involves protein kinase C (PKC), mitogen-activated protein kinases p42 and p44 (p42/44(mapk)), calcium, and phosphatidyl inositol 3 kinase (PI3k), among others. Elevated extracellular D-glucose and hypoxia alter human endothelial function. However, information regarding the transcriptional modulation of ENTs, CATs, and NOS is limited. This review focuses on the effect of transcriptional and post-transcriptional regulatory mechanisms involved in the modulation of ENTs and CATs, and NOS expression and activity, and the consequences for foetal endothelial function in GD, IUGR and PE. The available information will contribute to a better understanding of the cell and molecular basis of the altered vascular endothelial function in these pregnancy diseases and will emphasize the key role of this type of epithelium in placental function and the normal foetal development and growth.

  11. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions

    Science.gov (United States)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho

    2011-01-01

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  12. Poisson-Helmholtz-Boltzmann model of the electric double layer: analysis of monovalent ionic mixtures.

    Science.gov (United States)

    Bohinc, Klemen; Shrestha, Ahis; Brumen, Milan; May, Sylvio

    2012-03-01

    In the classical mean-field description of the electric double layer, known as the Poisson-Boltzmann model, ions interact exclusively through their Coulomb potential. Ion specificity can arise through solvent-mediated, nonelectrostatic interactions between ions. We employ the Yukawa pair potential to model the presence of nonelectrostatic interactions. The combination of Yukawa and Coulomb potential on the mean-field level leads to the Poisson-Helmholtz-Boltzmann model, which employs two auxiliary potentials: one electrostatic and the other nonelectrostatic. In the present work we apply the Poisson-Helmholtz-Boltzmann model to ionic mixtures, consisting of monovalent cations and anions that exhibit different Yukawa interaction strengths. As a specific example we consider a single charged surface in contact with a symmetric monovalent electrolyte. From the minimization of the mean-field free energy we derive the Poisson-Boltzmann and Helmholtz-Boltzmann equations. These nonlinear equations can be solved analytically in the weak perturbation limit. This together with numerical solutions in the nonlinear regime suggests an intricate interplay between electrostatic and nonelectrostatic interactions. The structure and free energy of the electric double layer depends sensitively on the Yukawa interaction strengths between the different ion types and on the nonelectrostatic interactions of the mobile ions with the surface.

  13. Molecular physiology of the insect K-activated amino acid transporter 1 (KAAT1) and cation-anion activated amino acid transporter/channel 1 (CAATCH1) in the light of the structure of the homologous protein LeuT.

    Science.gov (United States)

    Castagna, M; Bossi, E; Sacchi, V F

    2009-06-01

    K-activated amino acid transporter 1 (KAAT1) and cation-anion-activated amino acid transporter/channel 1 (CAATCH1) are amino acid cotransporters, belonging to the Na/Cl-dependent neurotransmitter transporter family (also called SLC6/NSS), that have been cloned from Manduca sexta midgut. They have been thoroughly studied by expression in Xenopus laevis oocytes, and structure/function analyses have made it possible to identify the structural determinants of their cation and amino acid selectivity. About 40 mutants of these proteins have been studied by measuring amino acid uptake and current/voltage relationships. The results obtained since the cloning of KAAT1 and CAATCH1 are here discussed in the light of the 3D model of the first crystallized member of the family, the leucine transporter LeuT.

  14. Roles of organic anion/cation transporters at the blood-brain and blood-cerebrospinal fluid barriers involving uremic toxins.

    Science.gov (United States)

    Hosoya, Ken-ichi; Tachikawa, Masanori

    2011-08-01

    The blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) play key roles in the influx and efflux transport of endogenous substrates in the brain and cerebrospinal fluid. The organic anion transporter (OAT) 3 and organic cation transporter (OCT) 3, which belong to the solute carrier (SLC) 22A family, are expressed at the BBB and BCSFB, and regulate the excretion of endogenous and exogenous organic anions and cations. Our recent research provides novel molecular and functional evidence that indoxyl sulfate, an anionic uremic toxin, undergoes efflux transport at the BBB via OAT3 and creatinine, a uremic guanidino compound, undergoes efflux transport at the BCSFB via OCT3. Renal impairment is associated with the accumulation of uremic toxins in blood and uremic encephalopathy. It is conceivable that uremic encephalopathy is related to inhibition or dysfunction of efflux transport systems for uremic toxins in the brain. Here, we review the function of OAT3 and OCT3 at the BBB and BCSFB in the context of their roles in the progression of renal failure.

  15. Polyelectrolyte-like behaviour of poly(ethylene-oxide) solutions with added monovalent salt

    Science.gov (United States)

    Lal, Jyotsana; Hakem, Ilhem-Faiza

    2004-03-01

    Solvent effects on the conformation of poly(ethylene-oxide) (PEO) and complexation of PEO by monovalent cations, have been examined by using small-angle neutron scattering. In methanol and acetonitrile, a big change in interchain interaction, osmotic compressibility and local chain conformation have been observed upon addition of small amounts of potassium iodide. The amplitude of the total intensity decreases significantly and a peak at a certain value of the wavevector q* appears as signature of a polyelectrolyte-like behaviour. With further addition of salt, the ionic strength of the solution increases and potassium binding becomes less favorable: the binding constant decreases with the ionic strength and PEO behaves as a neutral polymer with excluded volume. No association between PEO and potassium iodide was observed in aqueous solutions. Reference: I.F. Hakem and J. Lal. Europhysics letters, 64 (2), 204, 2003

  16. Multivalent Protein Assembly Using Monovalent Self-Assembling Building Blocks

    Directory of Open Access Journals (Sweden)

    Katja Petkau-Milroy

    2013-10-01

    Full Text Available Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard to streptavidin. Next to tetravalent streptavidin, monovalent streptavidin was used to study the protein assembly along the supramolecular polymer in detail without the interference of cross-linking. Upon self-assembly of the monovalent biotinylated discotics, multivalent proteins can be assembled along the supramolecular polymer. The concentration of discotics, which influences the length of the final polymers at the same time dictates the amount of assembled proteins.

  17. Measuring cation transport by Na,K- and H,K-ATPase in Xenopus oocytes by atomic absorption spectrophotometry: an alternative to radioisotope assays.

    Science.gov (United States)

    Dürr, Katharina L; Tavraz, Neslihan N; Spiller, Susan; Friedrich, Thomas

    2013-02-19

    Whereas cation transport by the electrogenic membrane transporter Na(+),K(+)-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H(+),K(+)-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb(+) or Li(+) transport by Na(+),K(+)- or gastric H(+),K(+)-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb(+) (Li(+)) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb(+) uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na(+)/2K(+) transport stoichiometry of the Na(+),K(+)-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H(+),K(+)-ATPase. In

  18. L-arginine uptake by cationic amino acid transporter 2 is essential for colonic epithelial cell restitution

    Science.gov (United States)

    Singh, Kshipra; Coburn, Lori A.; Barry, Daniel P.; Boucher, Jean-Luc; Chaturvedi, Rupesh

    2012-01-01

    Restoration of the colonic epithelial barrier is an important response during colitis. L-arginine (L-Arg) is a semiessential amino acid that reduces murine colitis induced by Citrobacter rodentium. Cationic amino acid transporter (CAT) proteins increase L-Arg uptake into cells. L-Arg is utilized to produce nitric oxide (NO), by inducible NO synthase (iNOS), or L-ornithine (L-Orn) by arginase (Arg) enzymes. The latter is followed by generation of polyamines by ornithine decarboxylase (ODC) and L-proline (L-Pro) by ornithine aminotransferase (OAT). We show that L-Arg enhanced epithelial restitution in conditionally immortalized young adult mouse colon (YAMC) cells in a wound repair model, and in isolated mouse colonic epithelial cells (CECs), using a cell migration assay. Restitution was impaired by C. rodentium. Wounding induced CAT2, and inhibition of L-Arg uptake by the competitive inhibitor L-lysine (L-Lys) or by CAT2 shRNA, but not CAT1 shRNA, decreased restitution. Migration was impaired in CECs treated with L-Lys or from CAT2−/− mice. Wounding increased Arg1 expression, and inhibition of arginase with S-(2-boronoethyl)-L-cysteine (BEC) or Arg1 shRNA inhibited restitution in YAMC cells; cell migration in CECs was also impaired by BEC. Inhibition of ODC or iNOS did not alter restitution. L-Orn or L-Pro restored restitution in cells treated with BEC or Arg1 shRNA, whereas the polyamine putrescine had no benefit. Wounding increased OAT levels, OAT shRNA inhibited restitution, and L-Pro restored restitution in cells with OAT knockdown. Uptake of L-Arg, and its metabolism by Arg1 to L-Orn and conversion to L-Pro by OAT is essential for colonic epithelial wound repair. PMID:22361732

  19. Effect of ethanol on hepatobiliary transport of cationic drugs. A study in the isolated perfused rat liver, rat hepatocytes and rat mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Steen, H.; Merema, M.; Meijer, D.K.F. (Department of Pharmacology and Therapeutics, University Centre for Pharmacy, Groningen State Univrsity, Groningen (Netherlands))

    1994-01-01

    The effect of ethanol on the hepatic uptake of various cationic drugs was studied in isolated perfused rat livers, isolated rat hepatocytes and isolated rat liver mitochondria. In isolated rat hepatocytes and in isolated perfused rat livers, the uptake of the model organic cation tri-n-butylmethylammonium was found to be markedly stimulated by ethanol in a concentration-dependent fashion. The uptake of tri-n-butylmethylammonium at 1 [mu]M was increased to 120% and 137% at 0.5% (v/v, (=87 mM)) and 1% (v/v, (=174 mM)) ethanol, respectively. At 25 [mu]M, tri-n-butylmethylamonium uptake was increased to 124% and 152% at 0.5% (v/v) and 1% (v/v) of ethanol, respectively. The uptake of the organic cations azidoprocainamide methoiodide, vecuronium, ORG 9426 and ORG 6368, the anionic compound taurocholate and the uncharge compound ouabain was not markedly increased at these ethanol concentrations. The mechanism of action of ethanol on the uptake of tri-n-butylmethylammonium was further studied. Competitive inhibitors for the type I organic cation uptake system, procainamide ethobromide and verapamil, almost completely blocked uptake of tri-n-butyl-methylammonium (1 [mu]M) in the presence of 1% (v/v) ethanol, indicating that carrier-mediated uptake is still involved and that additional passive diffusion is unlikely. Neither the plasma membrane potential nor the accumulation of the cation in mitochondria was altered after ethanol treatment, suggesting that potential driving forces for uptake and sequestration were not affected. The results of our study indicate that ethanol selectively stimulates the uptake of the aliphatic organic cation tri-n-butylmethylammonium rather than through generally alterated hepatobiliary transport processes. (EG) (28 refs.).

  20. Dressed counterions: Polyvalent and monovalent ions at charged dielectric interfaces

    Science.gov (United States)

    Kanduč, Matej; Naji, Ali; Forsman, Jan; Podgornik, Rudolf

    2011-07-01

    We investigate the ion distribution and overcharging at charged interfaces with dielectric inhomogeneities in the presence of asymmetric electrolytes containing polyvalent and monovalent ions. We formulate an effective “dressed counterion” approach by integrating out the monovalent salt degrees of freedom and show that it agrees with results of explicit Monte Carlo simulations. We then apply the dressed counterion approach within the framework of the generalized strong-coupling theory, valid for polyvalent ions at low concentrations, which enables an analytical description for salt effects as well as dielectric inhomogeneities in the limit of strong Coulomb interactions. Limitations and applicability of this theory are examined by comparing the results with simulations.

  1. Engineering of CH3 NH3 PbI3 Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties.

    Science.gov (United States)

    Peng, Wei; Miao, Xiaohe; Adinolfi, Valerio; Alarousu, Erkki; El Tall, Omar; Emwas, Abdul-Hamid; Zhao, Chao; Walters, Grant; Liu, Jiakai; Ouellette, Olivier; Pan, Jun; Murali, Banavoth; Sargent, Edward H; Mohammed, Omar F; Bakr, Osman M

    2016-08-26

    The number of studies on organic-inorganic hybrid perovskites has soared in recent years. However, the majority of hybrid perovskites under investigation are based on a limited number of organic cations of suitable sizes, such as methylammonium and formamidinium. These small cations easily fit into the perovskite's three-dimensional (3D) lead halide framework to produce semiconductors with excellent charge transport properties. Until now, larger cations, such as ethylammonium, have been found to form 2D crystals with lead halide. Here we show for the first time that ethylammonium can in fact be incorporated coordinately with methylammonium in the lattice of a 3D perovskite thanks to a balance of opposite lattice distortion strains. This inclusion results in higher crystal symmetry, improved material stability, and markedly enhanced charge carrier lifetime. This crystal engineering strategy of balancing opposite lattice distortion effects vastly increases the number of potential choices of organic cations for 3D perovskites, opening up new degrees of freedom to tailor their optoelectronic and environmental properties.

  2. Engineering of CH 3 NH 3 PbI 3 Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties

    KAUST Repository

    Peng, Wei

    2016-07-28

    The number of studies on organic–inorganic hybrid perovskites has soared in recent years. However, the majority of hybrid perovskites under investigation are based on a limited number of organic cations of suitable sizes, such as methylammonium and formamidinium. These small cations easily fit into the perovskite\\'s three-dimensional (3D) lead halide framework to produce semiconductors with excellent charge transport properties. Until now, larger cations, such as ethylammonium, have been found to form 2D crystals with lead halide. Here we show for the first time that ethylammonium can in fact be incorporated coordinately with methylammonium in the lattice of a 3D perovskite thanks to a balance of opposite lattice distortion strains. This inclusion results in higher crystal symmetry, improved material stability, and markedly enhanced charge carrier lifetime. This crystal engineering strategy of balancing opposite lattice distortion effects vastly increases the number of potential choices of organic cations for 3D perovskites, opening up new degrees of freedom to tailor their optoelectronic and environmental properties.

  3. Transport behavior of hairless mouse skin during constant current DC iontophoresis I: baseline studies.

    Science.gov (United States)

    Liddell, Mark R; Li, S Kevin; Higuchi, William I

    2011-04-01

    The fluxes of charged and nonionic molecules across hairless mouse skin (HMS) were induced by direct current iontophoresis and used to characterize the transport pathways of the epidermal membrane. Experimental data were used to determine permeability coefficients from which the effective pore radii (Rp) of the transport pathways were calculated. Permeants used in these experiments were nonionic permeants (urea, mannitol, and raffinose), monovalent cationic permeants (sodium, tetraethylammonium, and tetraphenylphosphonium ions), and monovalent anionic permeants (chloride, salicylate, and taurocholate ions). The Rp estimates obtained by the anionic permeant pairs were 49, 22, and 20 Å for the chloride/salicylate (Cl:SA), chloride/taurocholate (Cl:TC), and salicylate/taurocholate (SA:TC) pairs, respectively; with the cationic permeant pairs, the Rp values obtained were 19, 30, and 24 Å for the sodium/tetraethylammonium (Na:TEA), sodium/tetraphenylphosphonium (Na:TPP), and the tetraethylammonium/tetraphenylphosphonium (TEA:TPP) pairs, respectively. Rp estimates for HMS obtained from nonionic permeant experiments ranged from 6.7 to 13.4 Å. When plotted versus their respective diffusion coefficients, all of the permeability coefficients for the cationic permeants were greater than those of the anionic permeants. Additionally, the magnitudes of permeability coefficients determined in the current study with HMS were of the same order of magnitude as those previously determined in our laboratory using human epidermal membrane under similar iontophoresis conditions.

  4. The mechanism of excretion of trientine from the rat kidney: trientine is not recognized by the H+/organic cation transporter.

    Science.gov (United States)

    Kobayashi, M; Tanabe, R; Sugawara, M; Iseki, K; Miyazaki, K

    1997-04-01

    Trientine dihydrochloride is used to treat Wilson's disease by chelating copper and increasing its urinary excretion. The mechanism of renal excretion of trientine has been investigated in-vivo and in-vitro. Trientine clearance in the rat-was significantly faster than creatinine clearance. When trientine and the same number of moles of copper ions were administered simultaneously to the rat, however, trientine clearance decreased to almost the same level as the creatinine clearance. To clarify this active excretion system for trientine, the uptake of trientine and a physiological polyamine compound, spermine, was investigated using rat renal brush-border membrane vesicles. Although, because trientine and spermine are organic cations, the H+/organic cation transporter is expected to recognize these compounds, neither an outwardly directed H+ gradient nor an inward Na+ gradient stimulated trientine uptake. [14C]Spermine uptake was, nevertheless, trans-stimulated by both unlabelled spermine and trientine and the trans-stimulating effect of spermine on trientine uptake was, furthermore, completely abolished by addition of copper ions to the incubation medium. These results suggest that there is a specific transport system for spermine and trientine on the renal brushborder membrane. This transport system contributes to the secretion of trientine in the kidney proximal tubule but does not recognize the trientine-copper complex.

  5. Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii.

    Directory of Open Access Journals (Sweden)

    Metka Lenassi

    Full Text Available Hortaea werneckii, ascomycetous yeast from the order Capnodiales, shows an exceptional adaptability to osmotically stressful conditions. To investigate this unusual phenotype we obtained a draft genomic sequence of a H. werneckii strain isolated from hypersaline water of solar saltern. Two of its most striking characteristics that may be associated with a halotolerant lifestyle are the large genetic redundancy and the expansion of genes encoding metal cation transporters. Although no sexual state of H. werneckii has yet been described, a mating locus with characteristics of heterothallic fungi was found. The total assembly size of the genome is 51.6 Mb, larger than most phylogenetically related fungi, coding for almost twice the usual number of predicted genes (23333. The genome appears to have experienced a relatively recent whole genome duplication, and contains two highly identical gene copies of almost every protein. This is consistent with some previous studies that reported increases in genomic DNA content triggered by exposure to salt stress. In hypersaline conditions transmembrane ion transport is of utmost importance. The analysis of predicted metal cation transporters showed that most types of transporters experienced several gene duplications at various points during their evolution. Consequently they are present in much higher numbers than expected. The resulting diversity of transporters presents interesting biotechnological opportunities for improvement of halotolerance of salt-sensitive species. The involvement of plasma P-type H⁺ ATPases in adaptation to different concentrations of salt was indicated by their salt dependent transcription. This was not the case with vacuolar H⁺ ATPases, which were transcribed constitutively. The availability of this genomic sequence is expected to promote the research of H. werneckii. Studying its extreme halotolerance will not only contribute to our understanding of life in hypersaline

  6. Actinide cation-cation complexes

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Nancy Jane [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO2+) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO2+; therefore, cation-cation complexes indicate something unique about AnO2+ cations compared to actinide cations in general. The first cation-cation complex, NpO2+•UO22+, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO2+ species, the cation-cation complexes of NpO2+ have been studied most extensively while the other actinides have not. The only PuO2+ cation-cation complexes that have been studied are with Fe3+ and Cr3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO2+•UO22+, NpO2+•Th4+, PuO2+•UO22+, and PuO2+•Th4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ~0.8 M-1.

  7. The GPA-dependent, spherostomatocytosis mutant AE1 E758K induces GPA-independent, endogenous cation transport in amphibian oocytes.

    Science.gov (United States)

    Stewart, Andrew K; Vandorpe, David H; Heneghan, John F; Chebib, Fouad; Stolpe, Kathleen; Akhavein, Arash; Edelman, E Jennifer; Maksimova, Yelena; Gallagher, Patrick G; Alper, Seth L

    2010-02-01

    The previously undescribed heterozygous missense mutation E758K was discovered in the human AE1/SLC4A1/band 3 gene in two unrelated patients with well-compensated hereditary spherostomatocytic anemia (HSt). Oocyte surface expression of AE1 E758K, in contrast to that of wild-type AE1, required coexpressed glycophorin A (GPA). The mutant polypeptide exhibited, in parallel, strong GPA dependence of DIDS-sensitive (36)Cl(-) influx, trans-anion-dependent (36)Cl(-) efflux, and Cl(-)/HCO(3)(-) exchange activities at near wild-type levels. AE1 E758K expression was also associated with GPA-dependent increases of DIDS-sensitive pH-independent SO(4)(2-) uptake and oxalate uptake with altered pH dependence. In marked contrast, the bumetanide- and ouabain-insensitive (86)Rb(+) influx associated with AE1 E758K expression was largely GPA-independent in Xenopus oocytes and completely GPA-independent in Ambystoma oocytes. AE1 E758K-associated currents in Xenopus oocytes also exhibited little or no GPA dependence. (86)Rb(+) influx was higher but inward cation current was lower in oocytes expressing AE1 E758K than previously reported in oocytes expressing the AE1 HSt mutants S731P and H734R. The pharmacological inhibition profile of AE1 E758K-associated (36)Cl(-) influx differed from that of AE1 E758K-associated (86)Rb(+) influx, as well as from that of wild-type AE1-mediated Cl(-) transport. Thus AE1 E758K-expressing oocytes displayed GPA-dependent surface polypeptide expression and anion transport, accompanied by substantially GPA-independent, pharmacologically distinct Rb(+) flux and by small, GPA-independent currents. The data strongly suggest that most of the increased cation transport associated with the novel HSt mutant AE1 E758K reflects activation of endogenous oocyte cation permeability pathways, rather than cation translocation through the mutant polypeptide.

  8. Competitive interaction of monovalent cations with DNA from 3D-RISM

    OpenAIRE

    Giambaşu, George M.; Gebala, Magdalena K.; Panteva, Maria T.; Luchko, Tyler; Case, David A.; York, Darrin M.

    2015-01-01

    The composition of the ion atmosphere surrounding nucleic acids affects their folding, condensation and binding to other molecules. It is thus of fundamental importance to gain predictive insight into the formation of the ion atmosphere and thermodynamic consequences when varying ionic conditions. An early step toward this goal is to benchmark computational models against quantitative experimental measurements. Herein, we test the ability of the three dimensional reference interaction site mo...

  9. Supplemental leucine and isoleucine affect expression of cationic amino acid transporters and myosin, serum concentration of amino acids, and growth performance of pigs.

    Science.gov (United States)

    Cervantes-Ramírez, M; Mendez-Trujillo, V; Araiza-Piña, B A; Barrera-Silva, M A; González-Mendoza, D; Morales-Trejo, A

    2013-01-24

    Leucine (Leu) participates in the activity of cationic amino acid (aa) transporters. Also, branched-chain aa [Leu, isoleucine (Ile), and valine (Val)] share intestinal transporters for absorption. We conducted an experiment with 16 young pigs (body weight of about 16 kg) to determine whether Leu and Ile affect expression of aa transporters b(0,+) and CAT-1 in the jejunum and expression of myosin in muscle, as well as serum concentration of essential aa, and growth performance in pigs. Dietary treatments were: wheat-based diets fortified with Lys, Thr, and Met; basal diet plus 0.50% Leu; basal diet plus 0.50% Ile, and basal diet plus 0.50% Leu and 0.50% Ile. After 28 days, the pigs were sacrificed to collect blood, jejunum, and semitendinosus and longissimus muscle samples. The effects of single and combined addition of Leu and Ile were analyzed. Leu alone or combined with Ile significantly decreased daily weight gain and reduced feed conversion. Leu and Ile, alone or in combination, significantly decreased expression of b(0,+) and significantly increased CAT-1. Ile alone or combined with Leu significantly decreased myosin expression in semitendinosus and significantly decreased it in longissimus muscle. Leu alone significantly decreased Lys, Ile and Thr serum concentrations; Ile significantly decreased Thr serum concentration; combined Leu and Ile significantly decreased Thr and significantly increased Val serum concentration. We conclude that dietary levels of Leu and Ile affect growth performance, expression of aa transporters and myosin, and aa serum concentrations in pigs.

  10. Identification of the endogenous key substrates of the human organic cation transporter OCT2 and their implication in function of dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Dirk Taubert

    Full Text Available BACKGROUND: The etiology of neurodegenerative disorders, such as the accelerated loss of dopaminergic neurons in Parkinson's disease, is unclear. Current hypotheses suggest an abnormal function of the neuronal sodium-dependent dopamine transporter DAT to contribute to cell death in the dopaminergic system, but it has not been investigated whether sodium-independent amine transporters are implicated in the pathogenesis of Parkinson's disease. METHODOLOGY/PRINCIPAL FINDINGS: By the use of a novel tandem-mass spectrometry-based substrate search technique, we have shown that the dopaminergic neuromodulators histidyl-proline diketopiperazine (cyclo(his-pro and salsolinol were the endogenous key substrates of the sodium-independent organic cation transporter OCT2. Quantitative real-time mRNA expression analysis revealed that OCT2 in contrast to its related transporters was preferentially expressed in the dopaminergic regions of the substantia nigra where it colocalized with DAT and tyrosine hydroxylase. By assessing cell viability with the MTT reduction assay, we found that salsolinol exhibited a selective toxicity toward OCT2-expressing cells that was prevented by cyclo(his-pro. A frequent genetic variant of OCT2 with the amino acid substitution R400C reduced the transport efficiency for the cytoprotective cyclo(his-pro and thereby increased the susceptibility to salsolinol-induced cell death. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that the OCT2-regulated interplay between cyclo(his-pro and salsolinol is crucial for nigral cell integrity and that a shift in transport efficiency may impact the risk of Parkinson's disease.

  11. Effect of quantum entanglement on Aharonov–Bohm oscillations, spin-polarized transport and current magnification effect

    Indian Academy of Sciences (India)

    A M Jayannavar

    2002-02-01

    We present a simple model of transmission across a metallic mesoscopic ring. In one of its arm an electron interacts with a single magnetic impurity via an exchange coupling. We show that entanglement between electron and spin impurity states leads to reduction of Aharonov–Bohm oscillations in the transmission coefficient. The spin-conductance is asymmetric in the flux reversal as opposed to the two-probe electrical conductance which is symmetric. In the same model, in contradiction to the naive expectation of a current magnification effect, we observe enhancement as well as suppression of this effect depending on the system parameters. The limitations of this model to the general notion of dephasing or decoherence in quantum systems are pointed out.

  12. Polarized spectral complexes of optical functions of monovalent mercury iodide

    Science.gov (United States)

    Sobolev, V. V.; Sobolev, V. Val.; Anisimov, D. V.

    2015-12-01

    Spectral complexes of optical functions of monovalent mercury iodide Hg2I2 were determined for E ⊥ c and E || c polarizations in the range from 2 to 5.5 eV at 4.2 K. The permittivity and characteristic electron energy loss spectra were expanded in simple components with the determination of their main parameters, including the energy of the maximum and the oscillator strength. The calculations were performed based on known reflectance spectra. Computer programs based on Kramers-Kronig relations and the improved parameter-free method of Argand diagrams were used.

  13. Competitive bulk liquid membrane transport of Co(Ⅱ),Ni(Ⅱ),Zn(Ⅱ),Cd(Ⅱ),Ag(Ⅰ),Cu(Ⅱ)and Mn(Ⅱ),cations using 2,2'-dithio(bis)benzothiazole as carrier

    Institute of Scientific and Technical Information of China (English)

    A.Nezhadali; N.Rabani

    2011-01-01

    A series of competitive metal-ion transport experiments has been performed.Each involved transport from an aqueous source phase across an organic membrane phase into an aqueous receiving phase.The source phase contained equimolar concentration of Co(Ⅱ),Ni(Ⅱ),Zn(Ⅱ),Cd(Ⅱ),Ag(Ⅰ),Cu(Ⅱ)and Mn(Ⅱ)metal cations.The transport experiments of metal cations were carried out by2,2'-dithio(bis)benzothiazole(DTB)in chloroform(CHCl3).The source phase being buffered at range pH of 4-6.5 and receiving phase being buffered at pH 3.The obtained results show that the selectivity and the efficiency of Ag(Ⅰ)transport from aqueous solutions are observed in this investigation.The effect of concentration of palmitic acid in the transport efficiency of Ag(Ⅰ)ion was also conformed.

  14. Functional and molecular effects of mercury compounds on the human OCTN1 cation transporter: C50 and C136 are the targets for potent inhibition.

    Science.gov (United States)

    Galluccio, Michele; Pochini, Lorena; Peta, Valentina; Iannì, Maria; Scalise, Mariafrancesca; Indiveri, Cesare

    2015-03-01

    The effect of mercury compounds has been tested on the organic cation transporter, hOCTN1. MeHg(+), Hg(2+), or Cd(2+) caused strong inhibition of transport. 1,4-Dithioerythritol (DTE), cysteine (Cys), and N-acetyl-l-cysteine reversed (NAC) the inhibition at different extents. 2-Aminoethyl methanethiosulfonate hydrobromide (MTSEA), a prototype SH reagent, exerted inhibition of transport similar to that observed for the mercurial agents. To investigate the mechanism of action of mercurials, mutants of hOCTN1 in which each of the Cys residues was substituted by Ala have been constructed, over-expressed in Escherichia coli, and purified. Tetraethylammonium chloride (TEA) uptake mediated by each mutant in proteoliposomes was comparable to that of wild type (WT). IC50 values of the WT and mutants for the mercury compounds were derived from dose-response analyses. The mutants C50A and C136A showed significant increase of IC50 indicating that the 2 Cys residues were involved in the interaction with the mercury compounds and inhibition of the transporter. The double mutant C50A/C136A was constructed; the lack of inhibition confirmed that the 2 Cys residues are the targets of mercury compounds. MTSEA showed similar behavior with respect to the mercurial reagents with the difference that increased IC50 was observed also in the C81A mutant. Similar results were obtained when transport was measured as acetylcholine uptake. Ethyl mercury (Thimerosal) inhibited hOCTN1 as well. C50A, C50A/C136A and, at very lower extent, C136A showed increased IC50 indicating that C50 was the major target of this mercury compound. The homology model of hOCTN1 was built using as template PiPT and validated by the experimental data on mutant proteins.

  15. Organic anion and cation SLC22 "drug" transporter (Oat1, Oat3, and Oct1) regulation during development and maturation of the kidney proximal tubule.

    Science.gov (United States)

    Gallegos, Thomas F; Martovetsky, Gleb; Kouznetsova, Valentina; Bush, Kevin T; Nigam, Sanjay K

    2012-01-01

    Proper physiological function in the pre- and post-natal proximal tubule of the kidney depends upon the acquisition of selective permeability, apical-basolateral epithelial polarity and the expression of key transporters, including those involved in metabolite, toxin and drug handling. Particularly important are the SLC22 family of transporters, including the organic anion transporters Oat1 (originally identified as NKT) and Oat3 as well as the organic cation transporter Oct1. In ex vivo cultures of metanephric mesenchyme (MM; the embryonic progenitor tissue of the nephron) Oat function was evident before completion of nephron segmentation and corresponded with the maturation of tight junctions as measured biochemically by detergent extractability of the tight junction protein, ZO-1. Examination of available time series microarray data sets in the context of development and differentiation of the proximal tubule (derived from both in vivo and in vitro/ex vivo developing nephrons) allowed for correlation of gene expression data to biochemically and functionally defined states of development. This bioinformatic analysis yielded a network of genes with connectivity biased toward Hnf4α (but including Hnf1α, hyaluronic acid-CD44, and notch pathways). Intriguingly, the Oat1 and Oat3 genes were found to have strong temporal co-expression with Hnf4α in the cultured MM supporting the notion of some connection between the transporters and this transcription factor. Taken together with the ChIP-qPCR finding that Hnf4α occupies Oat1, Oat3, and Oct1 proximal promoters in the in vivo differentiating rat kidney, the data suggest a network of genes with Hnf4α at its center plays a role in regulating the terminal differentiation and capacity for drug and toxin handling by the nascent proximal tubule of the kidney.

  16. Organic anion and cation SLC22 "drug" transporter (Oat1, Oat3, and Oct1 regulation during development and maturation of the kidney proximal tubule.

    Directory of Open Access Journals (Sweden)

    Thomas F Gallegos

    Full Text Available Proper physiological function in the pre- and post-natal proximal tubule of the kidney depends upon the acquisition of selective permeability, apical-basolateral epithelial polarity and the expression of key transporters, including those involved in metabolite, toxin and drug handling. Particularly important are the SLC22 family of transporters, including the organic anion transporters Oat1 (originally identified as NKT and Oat3 as well as the organic cation transporter Oct1. In ex vivo cultures of metanephric mesenchyme (MM; the embryonic progenitor tissue of the nephron Oat function was evident before completion of nephron segmentation and corresponded with the maturation of tight junctions as measured biochemically by detergent extractability of the tight junction protein, ZO-1. Examination of available time series microarray data sets in the context of development and differentiation of the proximal tubule (derived from both in vivo and in vitro/ex vivo developing nephrons allowed for correlation of gene expression data to biochemically and functionally defined states of development. This bioinformatic analysis yielded a network of genes with connectivity biased toward Hnf4α (but including Hnf1α, hyaluronic acid-CD44, and notch pathways. Intriguingly, the Oat1 and Oat3 genes were found to have strong temporal co-expression with Hnf4α in the cultured MM supporting the notion of some connection between the transporters and this transcription factor. Taken together with the ChIP-qPCR finding that Hnf4α occupies Oat1, Oat3, and Oct1 proximal promoters in the in vivo differentiating rat kidney, the data suggest a network of genes with Hnf4α at its center plays a role in regulating the terminal differentiation and capacity for drug and toxin handling by the nascent proximal tubule of the kidney.

  17. Effects of dietary protein and amino acid levels on the expression of selected cationic amino acid transporters and serum amino acid concentration in growing pigs.

    Science.gov (United States)

    García-Villalobos, Héctor; Morales-Trejo, Adriana; Araiza-Piña, Benedicto A; Htoo, John K; Cervantes-Ramírez, Miguel

    2012-08-01

    The absorption of lysine is facilitated by leucine, but there is no information regarding the effect of crude protein, lysine and leucine levels on the expression of cationic amino acid transporters in pigs. Therefore, an experiment was conducted with 20 pigs (14.9 +/- 0.62 kg initial body weight) to evaluate the effect of two protein levels, and the content of lysine, threonine, methionine and leucine in low crude protein diets on the expression of b(0,+) and CAT-1 mRNA in jejunum, Longissimus dorsi and Semitendinosus muscles and serum concentration of amino acids. Treatments were as follows: (i) wheat-soybean meal diet, 20% crude protein (Control); (ii) wheat diet deficient in lysine, threonine and methionine (Basal diet); (iii) Basal diet plus 0.70% L-lysine, 0.27% L-threonine, 0.10% DL-methionine (Diet LTM); (iv) Diet LTM plus 0.80% L-leucine (Diet LTM + Leu). Despite the Basal diet, all diets were formulated to meet the requirements of lysine, threonine and methionine; Diet LTM + Leu supplied 60% excess of leucine. The addition of lysine, threonine and methionine in Diet LTM increased the expression of b(0,+) in jejunum and CAT-1 in the Semitendinosus and Longissiums muscles and decreased CAT-1 in jejunum; the serum concentration of lysine was also increased (p Pigs fed the Control diet expressed less b(0,+) in jejunum, and CAT-1 in the Semitendinosus and Longissiums muscles expressed more CAT-1 in jejunum (p dietary amino acids, affect the expression of cationic amino acid transporters in pigs fed wheat-based diets.

  18. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez

    2012-01-01

    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  19. Determinants of Substrate and Cation Transport in the Human Na+/Dicarboxylate Cotransporter NaDC3*

    OpenAIRE

    Schlessinger, A; Sun, NN; Colas, C; Pajor, AM

    2014-01-01

    Metabolic intermediates, such as succinate and citrate, regulate important processes ranging from energy metabolism to fatty acid synthesis. Cytosolic concentrations of these metabolites are controlled, in part, by members of the SLC13 gene family. The molecular mechanism underlying Na+-coupled di- and tricarboxylate transport by this family is understood poorly. The human Na+/dicarboxylate cotransporter NaDC3 (SLC13A3) is found in various tissues, including the kidney, liver, and brain. In a...

  20. Influence of preparation procedure and ferric oxide nanoparticles addition on transport properties of homogeneous cation-exchange SPPO/SPVC membrane

    Indian Academy of Sciences (India)

    FARHAD HEIDARY; ALI NEMATI KHARAT; ALIREZA KHODABAKHSHI; SAYED SIAVASH MADAENI

    2017-08-01

    Homogeneous cation-exchange membranes were prepared through evaporation and phase inversion methodsusing sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) and sulfonated polyvinylchloride as binders. The effectof polymers blend’s ratio and preparation method on structure and electrochemical properties of the prepared membraneswere evaluated. The microstructures of the membranes were investigated by scanning electron microscopy (SEM) andthe sulfonation of polyvinylchloride was confirmed by elemental analyses. Moreover, the membranes performance wasevaluated by ion-exchange capacity (IEC), fixed ion concentration, membrane potential, transport number, permselectivity,areal resistance, ionic permeability, flux of ions, current efficiency, membrane oxidative stability, mechanical properties andwater content tests. The results indicated that IEC and water content were affected by the SPPO content and microstructuresof the membranes. The results showed increased efficiency and suitable electrochemical properties for membranes preparedby the evaporation method in comparison with others. Also, Fe$_2$O$_3$ nanoparticles were synthesized at room temperature by a simple sonochemical reaction between ferric chloride and NaOH. The results revealed that the addition of different amounts of Fe$_2$O$_3$ nanoparticles to the polymeric matrix could affect the hydrophilicity and transport properties of ion-exchange membranes.

  1. Renoprotective Effects of Metformin are Independent of Organic Cation Transporters 1 &2 and AMP-activated Protein Kinase in the Kidney.

    Science.gov (United States)

    Christensen, Michael; Jensen, Jonas B; Jakobsen, Steen; Jessen, Niels; Frøkiær, Jørgen; Kemp, Bruce E; Marciszyn, Allison L; Li, Hui; Pastor-Soler, Núria M; Hallows, Kenneth R; Nørregaard, Rikke

    2016-10-26

    The type-2 diabetes drug metformin has proven to have protective effects in several renal disease models. Here, we investigated the protective effects in a 3-day unilateral ureteral obstruction (3dUUO) mouse model. Compared with controls, ureteral obstructed animals displayed increased tubular damage and inflammation. Metformin treatment attenuated inflammation, increased the anti-oxidative response and decreased tubular damage. Hepatic metformin uptake depends on the expression of organic cation transporters (OCTs). To test whether the effects of metformin in the kidney are dependent on these transporters, we tested metformin treatment in OCT1/2(-/-) mice. Even though exposure of metformin in the kidney was severely decreased in OCT1/2(-/-) mice when evaluated with [(11)C]-Metformin and PET/MRI, we found that the protective effects of metformin were OCT1/2 independent when tested in this model. AMP-activated protein kinase (AMPK) has been suggested as a key mediator of the effects of metformin. When using an AMPK-β1 KO mouse model, the protective effects of metformin still occurred in the 3dUUO model. In conclusion, these results show that metformin has a beneficial effect in early stages of renal disease induced by 3dUUO. Furthermore, these effects appear to be independent of the expression of OCT1/2 and AMPK-β1, the most abundant AMPK-β isoform in the kidney.

  2. Different involvement of promoter methylation in the expression of organic cation/carnitine transporter 2 (OCTN2 in cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Qiang Qu

    Full Text Available Organic cation/carnitine transporter 2 (OCTN2 is responsible for the cellular uptake of the antineoplastic agent, oxaliplatin. Epigenetic modification is a possible mechanism of altered drug-transporter expression in cancers, leading to altered efficacy of chemotherapeutic drugs. However, the mechanisms governing OCTN2 regulation are not completely understood. In this study, the low levels of OCTN2 in HepG2 and LS174T cells were elevated by the demethylating reagent, decitabine (DCA. To further reveal the epigenetic mechanism of down-regulation of OCTN2, we found that Region-1 within the OCTN2 promoter (spanning -354 to +85 was a determinant of OCTN2 expression in a luciferase reporter assay. Moreover, methylation-specific PCR (MSP and bisulfite genomic sequencing showed that the degree of individual methylated CpG sites within this region was inversely correlated with the levels of OCTN2 in different cancer cells. Application of DCA to HepG2 and LS174T cells reversed the hypermethylation status of the OCTN2 promoter and increased OCTN2 expression, enhancing cellular uptake of oxaliplatin. Thus, we identified that promoter methylation is responsible for epigenetic down-regulation of OCTN2 in HepG2 and LS174T cells. Given the essential role of OCTN2 in cancer cell uptake of chemotherapeutics, and thus treatment efficacy, pretreatment with a demethylating reagent is a possible strategy for optimizing pharmacotherapies against cancers.

  3. Comparison of the cellular transport mechanism of cationic, star-shaped polymers and liposomes in HaCat cells

    Directory of Open Access Journals (Sweden)

    Luo H

    2017-02-01

    Full Text Available Heng-Cong Luo,1,2,* Na Li,1,* Li Yan,1 Kai-jin Mai,3 Kan Sun,1 Wei Wang,1 Guo-Juan Lao,1 Chuan Yang,1 Li-Ming Zhang,3 Meng Ren1 1Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen University, Guangzhou, People’s Republic of China; 2Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China; 3School of Materials Science and Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Several biological barriers must be overcome to achieve efficient nonviral gene delivery. These barriers include target cell uptake, lysosomal degradation, and dissociation from the carrier. In this study, we compared the differences in the uptake mechanism of cationic, star-shaped polymer/MMP-9siRNA complexes (β-CD-(D37/MMP-9siRNA complexes: polyplexes and commercial liposome/MMP-9siRNA complexes (Lipofectamine® 2000/MMP-9siRNA complexes: liposomes. The uptake pathway and transfection efficiency of the polyplexes and liposomes were determined by fluorescence microscopy, flow cytometry, and reverse transcriptase-polymerase chain reaction. The occurrence of intracellular processing was assessed by confocal laser scanning microscopy. Endosomal acidification inhibitors were used to explore the endosomal escape mechanisms of the polyplexes and lysosomes. We concluded that the polyplexes were internalized by non-caveolae- and non-clathrin-mediated pathways, with no lysosomal trafficking, thereby inducing successful transfection, while the majority of liposomes were internalized by clathrin-dependent endocytosis (CDE, caveolae-mediated endocytosis, and macropinocytosis, and only CDE induced successful transfection. Liposomes might escape more quickly than polyplexes, and

  4. Downregulation of organic cation transporters OCT1 (SLC22A1 and OCT3 (SLC22A3 in human hepatocellular carcinoma and their prognostic significance

    Directory of Open Access Journals (Sweden)

    Heise Michael

    2012-03-01

    Full Text Available Abstract Background Organic cation transporters (OCT are responsible for the uptake and intracellular inactivation of a broad spectrum of endogenous substrates and detoxification of xenobiotics and chemotherapeutics. The transporters became pharmaceutically interesting, because OCTs are determinants of the cytotoxicity of platin derivates and the transport activity has been shown to correlate with the sensitivity of tumors towards tyrosine kinase inhibitors. No data exist about the relevance of OCTs in hepatocellular carcinoma (HCC. Methods OCT1 (SLC22A1 and OCT3 (SLC22A3 mRNA expression was measured in primary human HCC and corresponding non neoplastic tumor surrounding tissue (TST by real time PCR (n = 53. Protein expression was determined by western blot analysis and immunofluorescence. Data were correlated with the clinicopathological parameters of HCCs. Results Real time PCR showed a downregulation of SLC22A1 and SLC22A3 in HCC compared to TST (p ≤ 0.001. A low SLC22A1 expression was associated with a worse patient survival (p SLC22A1 was less frequently downregulated in tumors with lower stages who underwent transarterial chemoembolization (p SLC22A1 expression (SLC22A3 expression compared to HCC with high SLC22A1 expression (p SLC22A3 expression. In the western blot analysis we found a different protein expression pattern in tumor samples with a more diffuse staining in the immunofluorescence suggesting that especially OCT1 is not functional in advanced HCC. Conclusion The downregulation of OCT1 is associated with tumor progression and a worse patient survival.

  5. Fructose-1,6-diphosphate protects against epileptogenesis by modifying cation-chloride co-transporters in a model of amygdaloid-kindling temporal epilepticus.

    Science.gov (United States)

    Ding, Yao; Wang, Shan; Jiang, Yan; Yang, Yi; Zhang, Manman; Guo, Yi; Wang, Shuang; Ding, Mei-ping

    2013-11-20

    Fructose-1,6-diphosphate (FDP) shifts the metabolism of glucose from glycolysis to the pentose phosphate pathway and has anticonvulsant activity in several acute seizure animal models. In the present study, we investigated the anti-epileptogenic effects of FDP in an amygdaloid-kindling seizure model, which is an animal model of the most common form of human temporal lobe epilepsy. We found that 1.0 g/kg FDP slowed seizure progression and shortened the corresponding after-discharge duration (ADD). FDP increased the number of stimulations needed to reach seizure stages 2-5 and prolonged the cumulative ADD prior to reaching stages 3-5. It also shortened staying days and cumulative ADD in stages 4-5. However, it demonstrated no significant protective effect when administered after the animals were fully kindled. In hippocampal neurons, cation-chloride co-transporters (CCCs) are suggested to play interesting roles in epilepsy by modulating γ-aminobutyric acid (GABA)ergic activity through controlling GABAA receptor-mediated reversal potential. We examined the potential link between FDP and the hippocampal expression of two main members of the CCCs: the neuron-specific K(+)-Cl(-)co-transporter 2 (KCC2) and Na(+)-K(+)-Cl(-)co-transporter 1 (NKCC1). FDP inhibited the kindling-induced downregulation of KCC2 expression and decreased NKCC1 expression during the kindling session. Taken together, our data reveal that FDP may have protective activity against epileptogenesis, from partial to generalized tonic-clonic seizures. Furthermore, our findings suggest that the FDP-induced imbalance between KCC2 and NKCC1 expression may be involved in the neuroprotective effect.

  6. In-cell Western™ detection of organic cation transporters in bronchial epithelial cell layers cultured at an air-liquid interface on Transwell(®) inserts.

    Science.gov (United States)

    Mukherjee, M; Latif, M L; Pritchard, D I; Bosquillon, C

    2013-01-01

    Organic cation transporters (OCT) have been shown to mediate the transport of inhaled drugs in bronchial epithelial cells and might have important physiological functions in the airway epithelium. However, a quantitative method to evaluate OCT protein expression in physiologically relevant airway epithelial cell culture models is currently lacking. In-cell Western™ (ICW) techniques might fill that gap but to date, have only been performed on cells grown on 96 or 384-well microplates. An ICW assay was designed for measuring levels of the different OCT subtypes in intact layers of the human bronchial epithelial Calu-3 cell line cultured at an air-liquid interface on Transwell(®) inserts. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the internal standard for normalisation of cell number between the layers. The protocol was subsequently validated by exposing cell layers to compounds known to cause variations in OCT expression. Antibody signals above the background fluorescence were detected for OCT1, OCT3, OCTN1 and OCTN2 but not for OCT2 in 21day old Calu-3 layers, in agreement with previous studies which had reported OCT2 was absent in the Calu-3 cell line. Furthermore, increases in the fluorescence signal associated with OCT1, OCTN1 and OCTN2 were obtained following treatment of the layers with, respectively, the nitric oxide inducer sodium nitroprusside, the peroxisome proliferator activated receptor α (PPARα) agonist fenofibrate or the PPARγ agonist rosiglitazone, confirming the reliability of the ICW method developed. However, a suitable positive control for OCT3 could not be identified. This novel ICW assay can be exploited to quantify basal OCT protein expression as well as changes in transporter levels following external stimuli in various in vitro models. It can also be easily adapted to probe any protein in epithelial layers maintained on permeable filters. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Possible involvement of cationic-drug sensitive transport systems in the blood-to-brain influx and brain-to-blood efflux of amantadine across the blood-brain barrier.

    Science.gov (United States)

    Suzuki, Toyofumi; Fukami, Toshiro; Tomono, Kazuo

    2015-03-01

    The purpose of this study was to characterize the brain-to-blood efflux transport of amantadine across the blood-brain barrier (BBB). The apparent in vivo efflux rate constant for [(3) H]amantadine from the rat brain (keff ) was found to be 1.53 × 10(-2) min(-1) after intracerebral microinjection using the brain efflux index method. The efflux of [(3) H]amantadine was inhibited by 1-methyl-4-phenylpyridinium (MPP(+) ), a cationic neurotoxin, suggesting that amantadine transport from the brain to the blood across the BBB potentially involves the rat plasma membrane monoamine transporter (rPMAT). On the other hand, other selected substrates for organic cation transporters (OCTs) and organic anion transporters (OATs), as well as inhibitors of P-glycoprotein (P-gp), did not affect the efflux transport of [(3) H]amantadine. In addition, in vitro studies using an immortalized rat brain endothelial cell line (GPNT) showed that the uptake and retention of [(3) H]amantadine by the cells was not changed by the addition of cyclosporin, which is an inhibitor of P-gp. However, cyclosporin affected the uptake and retention of rhodamine123. Finally, the initial brain uptake of [(3) H]amantadine was determined using an in situ mouse brain perfusion technique. Notably, the brain uptake clearance for [(3) H]amantadine was significantly decreased with the co-perfusion of quinidine or verapamil, which are cationic P-gp inhibitors, while MPP(+) did not have a significant effect. It is thus concluded that while P-gp is not involved, it is possible that rPMAT and the cationic drug-sensitive transport system participate in the brain-to-blood efflux and the blood-to-brain influx of amantadine across the BBB, respectively.

  8. Effects of Hofmeister salt series on gluten network formation: Part I. Cation series.

    Science.gov (United States)

    Tuhumury, H C D; Small, D M; Day, L

    2016-12-01

    Different cationic salts were used to investigate the effects of the Hofmeister salt series on gluten network formation. The effects of cationic salts on wheat flour dough mixing properties, the rheological and the chemical properties of the gluten extracted from the dough with different respective salts, were investigated. The specific influence of different cationic salts on the gluten structure formation during dough mixing, compared to the sodium ion, were determined. The effects of different cations on dough and gluten of different flours mostly followed the Hofmeister series (NH4(+), K(+), Na(+), Mg(2+) and Ca(2+)). The impacts of cations on gluten structure and dough rheology at levels tested were relatively small. Therefore, the replacement of sodium from a technological standpoint is possible, particularly by monovalent cations such as NH4(+), or K(+). However the levels of replacement need to take into account sensory attributes of the cationic salts.

  9. Effect of initial ion positions on the interactions of monovalent and divalent ions with a DNA duplex as revealed with atomistic molecular dynamics simulations.

    Science.gov (United States)

    Robbins, Timothy J; Wang, Yongmei

    2013-01-01

    Monovalent (Na(+)) and divalent (Mg(2+)) ion distributions around the Dickerson-Drew dodecamer were studied by atomistic molecular dynamics (MD) simulations with AMBER molecular modeling software. Different initial placements of ions were tried and the resulting effects on the ion distributions around DNA were investigated. For monovalent ions, results were found to be nearly independent of initial cation coordinates. However, Mg(2+) ions demonstrated a strong initial coordinate dependent behavior. While some divalent ions initially placed near the DNA formed essentially permanent direct coordination complexes with electronegative DNA atoms, Mg(2+) ions initially placed further away from the duplex formed a full, nonexchanging, octahedral first solvation shell. These fully solvated cations were still capable of binding with DNA with events lasting up to 20 ns, and in comparison were bound much longer than Na(+) ions. Force field parameters were also investigated with modest and little differences arising from ion (ions94 and ions08) and nucleic acid description (ff99, ff99bsc0, and ff10), respectively. Based on known Mg(2+) ion solvation structure, we conclude that in most cases Mg(2+) ions retain their first solvation shell, making only solvent-mediated contacts with DNA duplex. The proper way to simulate Mg(2+) ions around DNA duplex, therefore, should begin with ions placed in the bulk water.

  10. The hydrogen-bridged radical cation [NH 2C dbnd O⋯H⋯O dbnd CHCH 3] rad + and its dissociation by proton-transport catalysis

    Science.gov (United States)

    Jobst, Karl J.; Terlouw, Johan K.

    2012-01-01

    The title ion (HBRC-1) is an easily accessible hydrogen-bridged radical cation when generated by the decarbonylation of ionized ethyl oxamate, NH2COCOOC2H5. Tandem mass spectrometry experiments and CBS-QB3 model chemistry calculations agree that HBRC-1 dissociates into HC(OH)NH2+ + CH3COrad by proton-transport catalysis. Its CH3CHO component catalyzes the isomerization NH2-C-OHrad + → NH2C(O)Hrad + and the ensuing intermediate [NH2C(O)H⋯OCHCH3]rad + loses CH3COrad by a facile proton transfer. In support of this, lactamide ions ND2C(O)CH(OD)CH3rad + dissociate into DC(OH)ND2+ + CH3COrad via the HBRC-1 isotopologue [ND2CO⋯D⋯OCHCH3]rad +. HBRC-1 also plays a key role in the decarbonylation of its isomer ionized urethan, NH2COOC2H5.

  11. Inhibition of Gene Expression of Organic Cation/Carnitine Transporter and Antioxidant Enzymes in Oxazaphosphorines-Induced Acute Cardiomyopathic Rat Models

    Directory of Open Access Journals (Sweden)

    Mohamed M. Sayed-Ahmed

    2012-01-01

    Full Text Available It is well documented that high therapeutic doses of oxazaphosphorines, cyclophosphamide (CP and ifosfamide (IFO, are associated with cardiomyopathy. This study investigated whether oxazaphosphorines alter the expression of organic cation/carnitine transporter (OCTN2 and antioxidant genes and if so, whether these alterations contribute to CP and IFO-induced cardiotoxicity. Adult male Wistar albino rats were assigned to one of six treatment groups namely, control, L carnitine, CP, IFO, CP plus L carnitine and IFO plus L carnitine. In cardiac and kidney tissues, CP and IFO significantly decreased mRNA and protein expression of OCTN2. Oxazaphosphorines significantly increased serum acyl-carnitine/free carnitine ratio and urinary carnitine excretion and significantly decreased total carnitine in cardiac tissues. Interestingly, carnitine supplementation completely reversed the biochemical and gene expression changes-induced by oxazaphosphorines to the control values, except OCTN2 expression remained inhibited by IFO. Data from this study suggest that: (1 Oxazaphosphorines decreased myocardial carnitine content following the inhibition of OCTN2 mRNA and protein expression in cardiac tissues. (2 Oxazaphosphorine therapy increased urinary loss of carnitine secondary to the inhibition of OCTN2 mRNA and protein expression in proximal tubules of the kidney. (3 Carnitine supplementation attenuates CP but not IFO-induced inhibition of OCTN2 mRNA and protein expression in heart and kidney tissues.

  12. Expression of organic cation transporter SLC22A16 in human epithelial ovarian cancer: a possible role of the adriamycin importer.

    Science.gov (United States)

    Ota, Kyoko; Ito, Kiyoshi; Akahira, Jun-ichi; Sato, Naoko; Onogawa, Tohru; Moriya, Takuya; Unno, Michiaki; Abe, Takaaki; Niikura, Hitoshi; Takano, Tadao; Yaegashi, Nobuo

    2007-07-01

    The SLC22A16 is one of the newly isolated organic cation transporters, which is responsible for uptake and transport of adriamycin into cells. Adriamycin is considered to be an active agent for ovarian cancer. Recently, the benefit of adding adriamycin to the current standard regimen, paclitaxel and platinum, is evaluated to improve the outcome of patients with ovarian cancer. Therefore, we examined the expression of SLC22A16 in ovarian cancers. Twelve ovarian carcinoma cell lines were used for immunoblotting and reverse transcription-polymerase chain reaction to confirm the expression of SLC22A16 mRNA and protein. Five normal ovaries, 12 ovarian adenomas, and 94 ovarian cancer cases were obtained from patients after surgical therapy. The specimens were used for immunohistochemistry. The median value of relative SLC22A16 gene expression in cell lines derived from clear-cell adenocarcinoma was significantly higher than that in cell lines from other histologies (P < 0.001). Expression of SLC22A16 protein was also detected in cell lines derived from clear-cell adenocarcinoma. The SLC22A16 immunoreactivity was detected in 15 (16%) of 94 epithelial ovarian cancer, 1 (8.3%) of 12 benign adenomas, but 0 (0%) of 5 normal ovary cases. In ovarian cancer tissues, SLC22A16 immunoreactivity was detected in 2 (5%) of 38 serous adenocarcinoma, 1 (6.7%) of 15 endometrioid adenocarcinoma, 0 (0%) of 14 mucinous adenocarcinoma, and 12 (46.2%) of 26 clear-cell adenocarcinoma (P < 0.0001, clear-cell vs other histologies). In conclusion, SLC22A16 was abundantly expressed in clear-cell adenocarcinoma. Our results suggest that adriamycin-related chemicals that are taken up via SLC22A16 may have the potential to be effective against clear-cell adenocarcinoma.

  13. Metal Cations in G-Quadruplex Folding and Stability

    Science.gov (United States)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-01-01

    This review is focused on the structural and physicochemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location, and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy, and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in the presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm. PMID:27668212

  14. Metal Cations in G-Quadruplex Folding and Stability

    Science.gov (United States)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-09-01

    This review is focused on the structural and physico-chemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-Quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.

  15. Metal Cations in G-Quadruplex Folding and Stability

    Directory of Open Access Journals (Sweden)

    Debmalya Bhattacharyya

    2016-09-01

    Full Text Available This review is focused on the structural and physico-chemical aspects of metal cation coordination to G-Quadruplexes (GQ and their effects on GQ stability and conformation. G-Quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.

  16. Comparison of the kinetic characteristics of inhibitory effects exerted by biguanides and H2-blockers on human and rat organic cation transporter-mediated transport: Insight into the development of drug candidates.

    Science.gov (United States)

    Umehara, K-I; Iwatsubo, T; Noguchi, K; Kamimura, H

    2007-06-01

    In this study, the comparison of the transport of substrates (1-methyl-4-phenylpydinium (MPP) and tetraethyl ammonium (TEA)) and the inhibition potency of the inhibitors (biguanides and H(2)-blockers) for human and rat organic cation transporters (hOCTs and rOcts), and the inhibition type of inhibitors for these transporters were investigated using HEK293 cells that stably express hOCT/rOct. The concentration-dependent uptake of [(3)H]-MPP and [(14)C]-TEA by hOCT1-3/rOct1-3 had K(m) values similar to those in the literature. It was also deduced that MPP and TEA are competitive inhibitors for hOCT1-2/rOct1-2. The K(i) values for phenformin inhibition of [(3)H]-MPP and [(14)C]-TEA uptake by hOCT1-3/rOct1-3 were lower than that for metformin. The [(3)H]-MPP uptake by hOCT1/rOct1 and hOCT3/rOct3 was inhibited by famotidine and ranitidine whereas that by hOCT2/rOct2 was not. The inhibitory potency of cimetidine for hOCT1-2 was very weak. In most cases, the differences in the V(max)/K(m) values of substrates and the K(i) values of inhibitors between hOCT and rOct were minor. The acquisition of information on OCT/Oct mediated-transport and/or inhibition such as that presented in this report is very useful for further understanding of certain aspects of uptake, distribution, and excretion for drug candidates.

  17. EFFECT OF ETHANOL ON HEPATOBILIARY TRANSPORT OF CATIONIC DRUGS - A STUDY IN THE ISOLATED-PERFUSED RAT-LIVER, RAT HEPATOCYTES AND RAT MITOCHONDRIA

    NARCIS (Netherlands)

    STEEN, H; MEIJER, DKF; Merema, M.T.

    1994-01-01

    The effect of ethanol on the hepatic uptake of various cationic drugs was studied in isolated perfused rat livers, isolated rat hepatocytes and isolated rat liver mitochondria. In isolated rat hepatocytes and in isolated perfused rat livers, the uptake of the model organic cation tri-n-butylmethylam

  18. Column experiments to investigate transport of colloidal humic acid through porous media during managed aquifer recharge

    Science.gov (United States)

    Liu, Dan; Zhou, Jingjing; Zhang, Wenjing; Huan, Ying; Yu, Xipeng; Li, Fulin; Chen, Xuequn

    2016-09-01

    Colloids act as vectors for pollutants in groundwater, thereby creating a series of environmental problems. While managed aquifer recharge plays an important role in protecting groundwater resources and controlling land subsidence, it has a significant effect on the transport of colloids. In this study, particle size and zeta potential of colloidal humic acid (HA) have been measured to determine the effects of different hydrochemistry conditions. Column experiments were conducted to examine the effects on the transport of colloidal HA under varying conditions of pH (5, 7, 9), ionic strength (<0.0005, 0.02, 0.05 M), cation valence (Na+, Ca2+) and flow rate (0.1, 0.2, 0.4 ml/min) through collectors (glass beads) to model the properties and quality of artificial recharge water and changes in the hydrodynamic field. Breakthrough curves showed that the behavior of colloidal HA being transported varied depending on the conditions. Colloid transport was strongly influenced by hydrochemical and hydrodynamic conditions. With decreasing pH or increasing ionic strength, a decrease in the peak effluent concentration of colloidal HA and increase in deposition could be clearly seen. Comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca2+ than with monovalent Na+. Changes in hydrodynamic field (flow rate) also had an impact on transportation of colloidal HA. The results of this study highlight the need for further research in this area.

  19. Competitive Effects of 2+ and 3+ Cations on DNA Compaction

    CERN Document Server

    Tongu, C; Yoshikawa, Y; Zinchenko, A A; Chen, N; Yoshikawa, K

    2016-01-01

    By using single-DNA observation with fluorescence microscopy, we observed the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA with 166 kbp). It was found that divalent cations, such as Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. These experimental observations are inconsistent with the well-established Debye-Huckel scheme regarding the shielding effect of counter ions, which is given as the additivity of contributions of cations with different valences. We interpreted the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counter ions before and after the folding transition of DNA. For the compaction with SPD(3+), we considered the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly-charged polyelectrolyte, double-st...

  20. A comparative study on the effect of Curcumin and Chlorin-p6 on the transport of the LDS cation across a negatively charged POPG bilayer: Effect of pH

    Science.gov (United States)

    Varshney, G. K.; Kintali, S. R.; Gupta, P. K.; Das, K.

    2017-02-01

    We report the use of interface selective Second Harmonic generation technique to investigate the transport of the LDS cation across POPG liposomes in the pH range of 4.0 to 8.0 in the presence and absence of two amphiphilic drugs, Curcumin and Chlorin-p6 (Cp6). Our results show that bilayer permeability of liposomes is significantly affected by the presence of the drugs and pH of the medium as evidenced by significant changes in the transport kinetics of the LDS. Studies carried out in the pH range 4.0-8.0 show that while Cp6 significantly enhanced the transport of LDS at pH 4.0, the transport of the cation was seen to increase with increasing pH, with maximum effect at pH 7.4 for Curcumin. The pH dependent bilayer localization of both the drugs was investigated by conducting steady state FRET studies using DPH labeled lipids as donors. The FRET results and the relative population of the various ionic/nonionic species of the drugs at different pH suggest that distance dependent interaction between the various ionic species of the drugs and polar head groups of the lipid is responsible for the observed pH dependence enhancement of the drug induced membrane permeability. Another interesting observation was that the stability of Curcumin in presence of POPG liposomes was observed to degrade significantly near physiological pH (7.4 and 8.0). Although this degradation did not affect the liposome integrity, interestingly this was observed to enhance the transport of the LDS cation across the bilayer. That the degradation products of Curcumin are equally effective as the drug itself in enhancing the membrane permeability lends additional support to the current opinion that the bioactive degradation products of the drug may have a significant contribution to its observed pharmacological effects.

  1. Transport of cerium oxide nanoparticles in saturated silica media: influences of operational parameters and aqueous chemical conditions

    Science.gov (United States)

    Zhang, Zhaohan; Gao, Peng; Qiu, Ye; Liu, Guohong; Feng, Yujie; Wiesner, Mark

    2016-10-01

    This paper aimed to investigate the influences of operational parameters and aqueous chemical conditions on transport behaviors of cerium oxides nanoparticles (CeO2-NPs) in saturated silica media. Results indicated that increasing rates of attachment efficiency (α) were related with cationic types, and critical deposition concentration (CDC) for divalent cation (Ca2+ and Mg2+) were more than 31-fold of that for monovalent cation (Na+ and K+). Increase or reduction of electrolyte pH could both promote the mobility of CeO2-NPs in glass beads, while influence was more evident at alkaline conditions. α increased linearly with NPs concentrations, while decreased linearly with flow velocity in the column, and effects were related with electrolyte contents. Presence of surfactants could sharply decreased α, and SDS was more effective to facilitate CeO2-NPs transport than Triton X-100. With DOMs concentrations increasing, α firstly kept constant, then sharply declined, and finally reduced very slowly. The influence of DOMs on NPs deposition was in order of SA > HA > TA >  BSA. Overall, this study revealed that aqueous chemical conditions was crucial to NPs transport in porous media, and would provide significant information for our understanding on the fate and transport of nanoparticles in natural environment.

  2. Rapid Method To Determine Intracellular Drug Concentrations in Cellular Uptake Assays: Application to Metformin in Organic Cation Transporter 1-Transfected Human Embryonic Kidney 293 Cells.

    Science.gov (United States)

    Chien, Huan-Chieh; Zur, Arik A; Maurer, Tristan S; Yee, Sook Wah; Tolsma, John; Jasper, Paul; Scott, Dennis O; Giacomini, Kathleen M

    2016-03-01

    Because of the importance of intracellular unbound drug concentrations in the prediction of in vivo concentrations that are determinants of drug efficacy and toxicity, a number of assays have been developed to assess in vitro unbound concentrations of drugs. Here we present a rapid method to determine the intracellular unbound drug concentrations in cultured cells, and we apply the method along with a mechanistic model to predict concentrations of metformin in subcellular compartments of stably transfected human embryonic kidney 293 (HEK293) cells. Intracellular space (ICS) was calculated by subtracting the [(3)H]-inulin distribution volume (extracellular space, ECS) from the [(14)C]-urea distribution volume (total water space, TWS). Values obtained for intracellular space (mean ± S.E.M.; μl/10(6) cells) of monolayers of HEK cells (HEK-empty vector [EV]) and cells overexpressing human organic cation transporter 1 (HEK-OCT1), 1.21± 0.07 and 1.25±0.06, respectively, were used to determine the intracellular metformin concentrations. After incubation of the cells with 5 µM metformin, the intracellular concentrations were 26.4 ± 7.8 μM and 268 ± 11.0 μM, respectively, in HEK-EV and HEK-OCT1. In addition, intracellular metformin concentrations were lower in high K(+) buffer (140 mM KCl) compared with normal K(+) buffer (5.4 mM KCl) in HEK-OCT1 cells (54.8 ± 3.8 μM and 198.1 ± 11.2 μM, respectively; P < 0.05). Our mechanistic model suggests that, depending on the credible range of assumed physiologic values, the positively charged metformin accumulates to particularly high levels in endoplasmic reticulum and/or mitochondria. This method together with the computational model can be used to determine intracellular unbound concentrations and to predict subcellular accumulation of drugs in other complex systems such as primary cells.

  3. Emissions, transport, deposition and effects of base cations in relation to acidification. Report from the UNECE LRTAP workshop in Gothenburg November 2003

    Energy Technology Data Exchange (ETDEWEB)

    Westling, Olle; Loevblad, Gun (eds.)

    2004-06-01

    The workshop on base cation deposition took place in Gothenburg on 26-28 November 2003. It was an official workshop of the Co-operative Programme for Monitoring and Evaluation of the Long Range Transboundary Air Pollution, EMEP and Working Group on Effects under the UNECE/CLRTAP. The workshop report summarises the state-of-knowledge of emissions, dispersion and deposition of base cations over Europe. The workshop evaluated in particular the knowledge with respect to mapping the base cation deposition over Europe as a basis for the application of dynamic models in the coming air pollution abatement strategies in Europe. The knowledge reflects the present situation, historical development and prospects for the coming 10-20 years.

  4. Short communication: the pharmacological peroxisome proliferator-activated receptor α agonist WY-14,643 increases expression of novel organic cation transporter 2 and carnitine uptake in bovine kidney cells.

    Science.gov (United States)

    Zhou, X; Wen, G; Ringseis, R; Eder, K

    2014-01-01

    Recent studies in rodents demonstrated that peroxisome proliferator-activated receptor α (PPARα), a central regulator of energy homeostasis, is an important transcriptional regulator of the gene encoding the carnitine transporter novel organic cation transporter 2 (OCTN2). Less is known with regard to the regulation of OCTN2 by PPARα and its role for carnitine transport in cattle, even though PPARα activation physiologically occurs in the liver of high-producing cows during early lactation. To explore the role of PPARα for OCTN2 expression and carnitine transport in cattle, we studied the effect of the PPARα activator WY-14,643 on the expression of OCTN2 in the presence and absence of PPARα antagonists and on OCTN2-mediated carnitine transport in the Madin-Darby bovine kidney (MDBK) cell line. The results show that WY-14,643 increases mRNA and protein levels of OCTN2, whereas co-treatment of MDBK cells with WY-14,643 and the PPARα antagonist GW6471 blocks the WY-14,643-induced increase in mRNA and protein levels of OCTN2 in bovine cells. In addition, treatment of MDBK cells with WY-14,643 stimulates specifically Na(+)-dependent carnitine uptake in MDBK cells, which is likely the consequence of the increased carnitine transport capacity of cells due to the elevated expression of OCTN2. In conclusion, our results indicate that OCTN2 expression and carnitine transport in cattle, as in rodents, are regulated by PPARα.

  5. Neutralizing capacity of a new monovalent anti-Bothrops atrox antivenom: comparison with two commercial antivenoms

    Directory of Open Access Journals (Sweden)

    R. Otero

    1997-03-01

    Full Text Available Three horse-derived antivenoms were tested for their ability to neutralize lethal, hemorrhagic, edema-forming, defibrinating and myotoxic activities induced by the venom of Bothrops atrox from Antioquia and Chocó (Colombia. The following antivenoms were used: a polyvalent (crotaline antivenom produced by Instituto Clodomiro Picado (Costa Rica, b monovalent antibothropic antivenom produced by Instituto Nacional de Salud-INS (Bogotá, and c a new monovalent anti-B. atrox antivenom produced with the venom of B. atrox from Antioquia and Chocó. The three antivenoms neutralized all toxic activities tested albeit with different potencies. The new monovalent anti-B. atrox antivenom showed the highest neutralizing ability against edema-forming and defibrinating effects of B. atrox venom (41 ± 2 and 100 ± 32 µl antivenom/mg venom, respectively, suggesting that it should be useful in the treatment of B. atrox envenomation in Antioquia and Chocó

  6. Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions

    Science.gov (United States)

    Shi, Ya-Zhou; Jin, Lei; Wang, Feng-Hua; Zhu, Xiao-Long; Tan, Zhi-Jie

    2015-01-01

    A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility, and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we further develop the model by improving the implicit-salt electrostatic potential and including a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. The model presented here can predict 3D structures of RNA hairpins with bulges/internal loops (RNA hairpins with bulge loops of different lengths at several divalent/monovalent ion conditions. In addition, the model successfully predicts the stability of RNA hairpins with various loops/stems in divalent/monovalent ion solutions. PMID:26682822

  7. The role of aspartate-235 in the binding of cations to an artificial cavity at the radical site of cytochrome c peroxidase.

    OpenAIRE

    Fitzgerald, M. M.; Trester, M. L.; Jensen, G M; McRee, D. E.; Goodin, D B

    1995-01-01

    The activated state of cytochrome c peroxidase, compound ES, contains a cation radical on the Trp-191 side chain. We recently reported that replacing this tryptophan with glycine creates a buried cavity at the active site that contains ordered solvent and that will specifically bind substituted imidazoles in their protonated cationic forms (Fitzgerald MM, Churchill MJ, McRee DE, Goodin DB, 1994, Biochemistry 33:3807-3818). Proposals that a nearby carboxylate, Asp-235, and competing monovalent...

  8. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in the Phosphonium Cation.

    Science.gov (United States)

    Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F

    2016-06-30

    A series of room-temperature ionic liquids (ILs) composed of triethyl(alkyl)phosphonium cations paired with three different aprotic heterocyclic anions (AHAs) (alkyl = butyl ([P2224](+)) and octyl ([P2228](+))) were prepared to investigate the effect of cationic alkyl chain length on transport properties. The transport properties and density of these ILs were measured from 283.15 to 343.15 K at ambient pressure. The dependence of the transport properties (viscosity, ionic conductivity, diffusivity, and molar conductivity) on temperature can be described by the Vogel-Fulcher-Tamman (VFT) equation. The ratio of the molar conductivity obtained from the molar concentration and ionic conductivity measurements to that calculated from self-diffusion coefficients (measured by pulsed gradient spin-echo nuclear magnetic resonance spectroscopy) using the Nernst-Einstein equation was used to quantify the ionicity of these ILs. The molar conductivity ratio decreases with increasing number of carbon atoms in the alkyl chain, indicating that the reduced Coulombic interactions resulting from lower density are more than balanced by the increased van der Waals interactions between the alkyl chains. The results of this study may provide insight into the design of ILs with enhanced dynamics that may be suitable as electrolytes in lithium ion batteries and other electrochemical applications.

  9. Extraction mechanism of monovalent ion-pairs by polyurethane foams.

    Science.gov (United States)

    Fong, P; Chow, A

    1992-07-01

    The extractability sequence of K(+) approximately Rb(+) > Cs(+) > Na(+) > Li(+) for the extraction with polyether foam suggests that the cation chelation mechanism might be operative. However, the same order was obtained for the extraction with 100% polypropylene oxide polyether foam which does not normally adopt a helical structure to form oxygen-rich cavities as easily or as effectively as polyethylene oxide to accommodate alkali metal ions. This result indicates that a hole-size/cation-diameter relationship may not be required for the high extraction of K(+). The extraction of alkali metal DPAs and hydroxides from methanol demonstrates the importance of the solvent effect. It indicates that the water-structure enforced ion-pairing (WSEIP) is the driving force for extraction of the ion-pairs. The extraction mechanism for ionic species can be described as an ion-pair extraction process. The overall effect of ion-pair formation in water and interaction of the extracted ions with foam appears to determine the extractability of the ions of the extractable ion-pair.

  10. The pro-inflammatory cytokine tumor necrosis factor α stimulates expression of the carnitine transporter OCTN2 (novel organic cation transporter 2) and carnitine uptake via nuclear factor-κB in Madin-Darby bovine kidney cells.

    Science.gov (United States)

    Zhou, X; Ringseis, R; Wen, G; Eder, K

    2015-06-01

    Carnitine uptake into tissues is mediated mainly by the novel organic cation transporter 2 (OCTN2), whose expression is upregulated in the liver of early-lactating dairy cows. It has been shown recently that pro-inflammatory cytokines, including tumor necrosis factor α (TNFα), stimulate OCTN2 expression and carnitine uptake in intestinal cells and inflamed intestinal mucosa. Given that many early-lactating dairy cows show typical signs of hepatic and systemic inflammation, such as elevated concentrations of circulating TNFα and activation of the key regulator of inflammation, nuclear factor κB (NF-κB), in tissues, it is possible that upregulation of OCTN2 and increase of carnitine uptake by TNFα is mediated by NF-κB, a mechanism that might contribute to the upregulation of OCNT2 in the liver of early-lactating dairy cows. Thus, in the present study, we tested the hypothesis that TNFα stimulates OCTN2 gene expression and carnitine uptake via NF-κB in the bovine Madin-Darby bovine kidney (MDBK) cell line. Treatment with TNFα caused activation of NF-κB, increased the mRNA and protein concentration of OCTN2, and stimulated the uptake of carnitine in MDBK cells. In contrast, combined treatment of MDBK cells with TNFα and the NF-κB inhibitor BAY 11-7085 completely blocked the effect of TNFα on OCTN2 mRNA and protein concentration and uptake of carnitine. These findings suggest that the bovine OCTN2 gene and carnitine uptake are regulated by NF-κB. Future studies are required to show the in vivo relevance of this regulatory mechanism in cattle.

  11. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells.

    Directory of Open Access Journals (Sweden)

    Igor A Vereninov

    Full Text Available Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1-10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential.

  12. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells.

    Science.gov (United States)

    Vereninov, Igor A; Yurinskaya, Valentina E; Model, Michael A; Vereninov, Alexey A

    2016-01-01

    Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1-10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential.

  13. Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Cation Mediation on Asp Adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chunya [Harbin Institute of Technology; Skelton, Adam [Vanderbilt University; Chen, Mingjun [Harbin Institute of Technology; Vlcek, Lukas [ORNL; Cummings, Peter T [ORNL

    2012-01-01

    The binding of a negatively charged residue, aspartic acid (Asp) in tripeptide arginine-glycine-aspartic acid, onto a negatively charged hydroxylated rutile (110) surface in aqueous solution, containing divalent (Mg{sup 2+}, Ca{sup 2+}, or Sr{sup 2+}) or monovalent (Na{sup +}, K{sup +}, or Rb{sup +}) cations, was studied by molecular dynamics (MD) simulations. The results indicate that ionic radii and charges will significantly affect the hydration, adsorption geometry, and distance of cations from the rutile surface, thereby regulating the Asp/rutile binding mode. The adsorption strength of monovalent cations on the rutile surface in the order Na{sup +} > K{sup +} > Rb{sup +} shows a 'reverse' lyotropic trend, while the divalent cations on the same surface exhibit a 'regular' lyotropic behavior with decreasing crystallographic radii (the adsorption strength of divalent cations: Sr{sup 2+} > Ca{sup 2+} > Mg{sup 2+}). The Asp side chain in NaCl, KCl, and RbCl solutions remains stably H-bonded to the surface hydroxyls and the inner-sphere adsorbed compensating monovalent cations act as a bridge between the COO{sup -} group and the rutile, helping to 'trap' the negatively charged Asp side chain on the negatively charged surface. In contrast, the mediating divalent cations actively participate in linking the COO{sup -} group to the rutile surface; thus the Asp side chain can remain stably on the rutile (110) surface, even if it is not involved in any hydrogen bonds with the surface hydroxyls. Inner- and outer-sphere geometries are all possible mediation modes for divalent cations in bridging the peptide to the rutile surface.

  14. Mechanism of interaction of monovalent ions with phosphatidylcholine lipid membranes.

    Science.gov (United States)

    Vácha, Robert; Jurkiewicz, Piotr; Petrov, Michal; Berkowitz, Max L; Böckmann, Rainer A; Barucha-Kraszewska, Justyna; Hof, Martin; Jungwirth, Pavel

    2010-07-29

    Interactions of different anions with phospholipid membranes in aqueous salt solutions were investigated by molecular dynamics simulations and fluorescence solvent relaxation measurements. Both approaches indicate that the anion-membrane interaction increases with the size and softness of the anion. Calculations show that iodide exhibits a genuine affinity for the membrane, which is due to its pairing with the choline group and its propensity for the nonpolar region of the acyl chains, the latter being enhanced in polarizable calculations showing that the iodide number density profile is expanded toward the glycerol level. Solvent relaxation measurements using Laurdan confirm the influence of large soft ions on the membrane organization at the glycerol level. In contrast, chloride exhibits a peak at the membrane surface only in the presence of a surface-attracted cation, such as sodium but not potassium, suggesting that this behavior is merely a counterion effect.

  15. Monovalent RIVM meningococcal B OMP vesicle F91 vaccines in toddlers

    NARCIS (Netherlands)

    Lafeber AB; Limpt CJP van; Labadie J; Berbers GAM; Kleijn ED de; Groot R de; Rumke HC; Alphen AJW; Sophia Kinderziekenhuis /; LVO

    2001-01-01

    This report gives the results of a randomised phase-II clinical study into the safety and immunogenicity of a monovalent MenB OMV vaccine expressing P1.7h,4 PorA (MonoMen) in toddlers. Safety and immunogenicity are compared for two types of vaccine that are differently adjuvated (either aluminium ph

  16. Anion recognition and cation-induced molecular motion in a heteroditopic [2]rotaxane.

    Science.gov (United States)

    Leontiev, Alexandre V; Jemmett, Charlotte A; Beer, Paul D

    2011-01-17

    A heteroditopic [2]rotaxane consisting of a calix[4]diquinone-isophthalamide macrocycle and 3,5-bis-amide pyridinium axle components with the capability of switching between two positional isomers in response to barium cation recognition is synthesised. The anion binding properties of the rotaxane's interlocked cavity together with Na(+) , K(+) , NH(4) (+) and Ba(2+) cation recognition capabilities are elucidated by (1) H NMR and UV-visible spectroscopic titration experiments. Upon binding of Ba(2+) , molecular displacement of the axle's positively charged pyridinium group from the rotaxane's macrocyclic cavity occurs, whereas the monovalent cations Na(+) , K(+) and NH(4) (+) are bound without causing significant co-conformational change. The barium cation induced shuttling motion can be reversed on addition of tetrabutylammonium sulfate.

  17. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations.

    Science.gov (United States)

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard

    2014-05-01

    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel.

  18. Ion transport with charge-protected and non-charge-protected cations using the compensated Arrhenius formalism. Part 2. Relationship between ionic conductivity and diffusion.

    Science.gov (United States)

    Petrowsky, Matt; Fleshman, Allison; Bopege, Dharshani N; Frech, Roger

    2012-08-09

    Temperature-dependent ionic conductivities and cation/anion self-diffusion coefficients are measured for four electrolyte families: TbaTf-linear primary alcohols, LiTf-linear primary alcohols, TbaTf-n-alkyl acetates, and LiTf-n-alkyl acetates. The Nernst-Einstein equation does not adequately describe the data. Instead, the compensated Arrhenius formalism is applied to both conductivity and diffusion data. General trends based on temperature and alkyl chain length are observed when conductivity is plotted against cation or anion diffusion coefficient, but there is no clear pattern to the data. However, plotting conductivity exponential prefactors against those for diffusion results in four distinct curves, one each for the alcohol and acetate families described above. Furthermore, the TbaTf-alcohol and TbaTf-acetate data are "in line" with each other. The conductivity prefactors for the LiTf-alcohol data are smaller than those for the TbaTf data. The LiTf-acetate data have the lowest conductivity prefactors. This trend in prefactors mirrors the observed trend in degree of ionic association for these electrolytes.

  19. l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis.

    Science.gov (United States)

    Mandal, Abhishek; Das, Sushmita; Kumar, Ajay; Roy, Saptarshi; Verma, Sudha; Ghosh, Ayan Kumar; Singh, Ruby; Abhishek, Kumar; Saini, Savita; Sardar, Abul Hasan; Purkait, Bidyut; Kumar, Ashish; Mandal, Chitra; Das, Pradeep

    2017-01-01

    The survival of intracellular protozoan parasite, Leishmania donovani, the causative agent of Indian visceral leishmaniasis (VL), depends on the activation status of macrophages. l-Arginine, a semi-essential amino acid plays a crucial regulatory role for activation of macrophages. However, the role of l-arginine transport in VL still remains elusive. In this study, we demonstrated that intra-macrophage survival of L. donovani depends on the availability of extracellular l-arginine. Infection of THP-1-derived macrophage/human monocyte-derived macrophage (hMDM) with Leishmania, resulted in upregulation of l-arginine transport. While investigating the involvement of the transporters, we observed that Leishmania survival was greatly impaired when the transporters were blocked either using inhibitor or siRNA-mediated downregulation. CAT-2 was found to be the main isoform associated with l-arginine transport in L. donovani-infected macrophages. l-arginine availability and its transport regulated the host arginase in Leishmania infection. Arginase and inducible nitric oxide synthase (iNOS) expression were reciprocally regulated when assayed using specific inhibitors and siRNA-mediated downregulation. Interestingly, induction of iNOS expression and nitric oxide production were observed in case of inhibition of arginase in infected macrophages. Furthermore, inhibition of l-arginine transport as well as arginase resulted in decreased polyamine production, limiting parasite survival inside macrophages. l-arginine availability and transport regulated Th1/Th2 cytokine levels in case of Leishmania infection. Upregulation of l-arginine transport, induction of host arginase, and enhanced polyamine production were correlated with increased level of IL-10 and decreased level of IL-12 and TNF-α in L. donovani-infected macrophages. Our findings provide clear evidence for targeting the metabolism of l-arginine and l-arginine-metabolizing enzymes as an important therapeutic and

  20. Cations and hydration in catalytic RNA: molecular dynamics of the hepatitis delta virus ribozyme.

    Science.gov (United States)

    Krasovska, Maryna V; Sefcikova, Jana; Réblová, Kamila; Schneider, Bohdan; Walter, Nils G; Sponer, Jirí

    2006-07-15

    The hepatitis delta virus (HDV) ribozyme is an RNA enzyme from the human pathogenic HDV. Cations play a crucial role in self-cleavage of the HDV ribozyme, by promoting both folding and chemistry. Experimental studies have revealed limited but intriguing details on the location and structural and catalytic functions of metal ions. Here, we analyze a total of approximately 200 ns of explicit-solvent molecular dynamics simulations to provide a complementary atomistic view of the binding of monovalent and divalent cations as well as water molecules to reaction precursor and product forms of the HDV ribozyme. Our simulations find that an Mg2+ cation binds stably, by both inner- and outer-sphere contacts, to the electronegative catalytic pocket of the reaction precursor, in a position to potentially support chemistry. In contrast, protonation of the catalytically involved C75 in the precursor or artificial placement of this Mg2+ into the product structure result in its swift expulsion from the active site. These findings are consistent with a concerted reaction mechanism in which C75 and hydrated Mg2+ act as general base and acid, respectively. Monovalent cations bind to the active site and elsewhere assisted by structurally bridging long-residency water molecules, but are generally delocalized.

  1. Effect of cation site-disorder on the structure and magneto-transport properties of Ln5/8M3/8MnO 3 manganites

    Science.gov (United States)

    Collado, J. A.; Frontera, C.; García-Muñoz, J. L.; Aranda, M. A. G.

    2005-06-01

    Five members of Ln5/8M3/8MnO 3 series with A-cation size variance ( σ2) ranging between 3×10 -4 and 71×10 -4 Å 2, and the same A-cation size =1.2025 Å, have been synthesized by the ceramic method. The five manganites are single phase and they crystallize in the Pnma perovskite superstructure. The five compositions display ferromagnetic-paramagnetic transitions at temperatures ranging between 130 and 270 K, for the highest and lowest variance sample, respectively. The samples with smaller variances show sharp magnetization transitions and the samples with the larger variances display broad transitions. These transitions have also been studied by differential scanning calorimetry, DSC, and some enthalpy changes are reported. The resistivity study indicates that all samples display the expected metal-to-insulator transitions at temperatures ranging between 140 and 270 K. The samples have been analysed at room temperature by ultra-high-resolution synchrotron powder diffraction and the structural and microstructural features are reported. Furthermore, Nd 5/8Sr 0.255Ca 0.12MnO 3 ( σ2=40×10-4 Å2) and Sm 0.225Nd 0.4Sr 0.308Ca 0.067MnO 3 ( σ2=53×10-4 Å2) samples have also been studied by synchrotron powder diffraction at 140 K, below the transition temperatures. Both samples are found to be single phase above and below the transition by ultra-high-resolution synchrotron powder diffraction. The microstructure of the samples has been investigated through Williamson-Hall plots. Sample broadenings are markedly anisotropic and strongly dominated by microstrains with average values of the Δ d/ d term close to 14×10 -4. A direct correlation is found between the microstrain values and the widths of the magnetization transitions.

  2. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  3. The relationship between gene expression of cationic and neutral amino acid transporters in the small intestine of chick embryos and chick breed, development, sex, and egg amino acid concentration.

    Science.gov (United States)

    Zeng, P L; Li, X G; Wang, X Q; Zhang, D X; Shu, G; Luo, Q B

    2011-11-01

    This study was conducted to investigate the gene expression of cationic and neutral amino acid (AA) transporters in the small intestine of chick embryos with different genetic backgrounds [Wenshi Yellow-Feathered chick (WYFC) and White Recessive Rock chick (WRRC)]. The study also investigated the correlation between the abundance of AA transporter mRNA and the AA content of fertilized eggs. Intestinal samples were collected on embryonic d 9, 12, 14, 17, and 19 and the day of hatch. The results showed that, before incubation, the AA content of WRRC eggs was lower (P CAT-1 [solute carrier (SLC) family 7 member 1], CAT-4 (SLC family 7 member 4), rBAT (SLC family 3 member 1), y(+)LAT-1 (SLC family 7 member 7), y(+)LAT-2 (SLC family 7 member 6), LAT-4 (SLC family 43 member 2), and SNAT-2 (SLC family 38 member 2), as detected by real-time reverse transcriptase PCR, was greater (P CAT-1, CAT-4, y(+)LAT-2, and LAT-4 in WYFC and on CAT-4 and B(0)AT-1 (SLC family 6 member 19) mRNA expression in WRRC. In WYFC, only CAT-1 mRNA expression was negatively correlated (r = -0.68 to -0.84, P < 0.05) with all AA content. However, few correlations were detected between AA content and the mRNA expression of multiple transporters in WRRC. These findings provide a comprehensive profile of the temporal and spatial mRNA expression of AA transporters in the small intestine of chick embryos. Few correlations were detected between the AA content of the eggs and mRNA expression of specific AA transporters in the small intestine.

  4. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney.

    Science.gov (United States)

    Ito, Sumito; Kusuhara, Hiroyuki; Yokochi, Miyu; Toyoshima, Junko; Inoue, Katsuhisa; Yuasa, Hiroaki; Sugiyama, Yuichi

    2012-02-01

    Cimetidine, an H₂ receptor antagonist, has been used to investigate the tubular secretion of organic cations in human kidney. We report a systematic comprehensive analysis of the inhibition potency of cimetidine for the influx and efflux transporters of organic cations [human organic cation transporter 1 (hOCT1) and hOCT2 and human multidrug and toxin extrusion 1 (hMATE1) and hMATE2-K, respectively]. Inhibition constants (K(i)) of cimetidine were determined by using five substrates [tetraethylammonium (TEA), metformin, 1-methyl-4-phenylpyridinium, 4-(4-(dimethylamino)styryl)-N-methylpyridinium, and m-iodobenzylguanidine]. They were 95 to 146 μM for hOCT2, providing at most 10% inhibition based on its clinically reported plasma unbound concentrations (3.6-7.8 μM). In contrast, cimetidine is a potent inhibitor of MATE1 and MATE2-K with K(i) values (μM) of 1.1 to 3.8 and 2.1 to 6.9, respectively. The same tendency was observed for mouse Oct1 (mOct1), mOct2, and mouse Mate1. Cimetidine showed a negligible effect on the uptake of metformin by mouse kidney slices at 20 μM. Cimetidine was administered to mice by a constant infusion to achieve a plasma unbound concentration of 21.6 μM to examine its effect on the renal disposition of Mate1 probes (metformin, TEA, and cephalexin) in vivo. The kidney- and liver-to-plasma ratios of metformin both were increased 2.4-fold by cimetidine, whereas the renal clearance was not changed. Cimetidine also increased the kidney-to-plasma ratio of TEA and cephalexin 8.0- and 3.3-fold compared with a control and decreased the renal clearance from 49 to 23 and 11 to 6.6 ml/min/kg, respectively. These results suggest that the inhibition of MATEs, but not OCT2, is a likely mechanism underlying the drug-drug interactions with cimetidine in renal elimination.

  5. Intracellular NHX-Type Cation/H+ Antiporters inPlants

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Cells depend on the homeostatic maintenance of pHwithin specific cellular compartments to ensure optimalconditions for metabolic and enzymatic processes as wellas protein structure and function. In the animal secre-tory pathway, cells maintain distinct luminal pHs withinvarious compartments (Paroutis et al., 2004). Among themany molecular players that contribute to pH and ionhomeostasis in plants, Na+(K+)/H+ exchangers (also knownas NHX-type cation/H+ antiporters) appear to be particu-larly important for the regulation of a wide variety ofphysiological processes, including cell expansion, cellvolume regulation, osmotic adjustment, pH regulation,membrane trafficking, protein processing, and cellularstress responses (Pardo et al., 2006; Rodriguez-Rosaleset al., 2009; Bassil et al., 2012). In plants, NHX antiportersappeared early in evolution and are ubiquitously encodedmembers of the CPA1 cation/H+ antiporters subgroupthat belongs to the large family of monovalent cation/H+ transporters CPA (Brett et al., 2005). NHX antiport-ers are found, thus far, in all sequenced plant genomes(Bassil et al., 2012; Chanroj et al., 2012). In Arabidopsis,the NHX family consists of eight isoforms, six of whichare intracellular (AtNHXl-AtNHX6), located either to thevacuole (AtNHXl to AtNHX4) or endosomes (AtNHX5 andAtNHX6) and an additional two more divergent members(AtNHX7/SOSl and AtNHX8) at the plasma membrane(Bassil et al., 2012). Orthologous sequences in each of thethree classes (plasma membrane, vacuolar, or endosomal)appear in all sequenced genomes, suggesting that distinctfunctional NHX classes appeared early in evolution andmay have conserved roles that are compartment-specific(Bassil et al., 2012). Emerging new evidence highlightsthe importance of particular intracellular NHX antiport-ers in the regulation of vesicular and vacuolar pH andK+ homeostasis. Vacuolar NHXs are needed to maintainK+ homeostasis

  6. Roles of cation valance and exchange on the retention and colloid-facilitated transport of functionalized multi-walled carbon nanotubes in a natural soil

    Science.gov (United States)

    Saturated soil column experiments were conducted to investigate the transport, retention, and release behavior of a low concentration (1 mg L-1) of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNTs) in a natural soil under various solution chemistries. Breakthrough curves (BTCs) for M...

  7. Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties.

    Science.gov (United States)

    Sehaqui, Houssine; Mautner, Andreas; Perez de Larraya, Uxua; Pfenninger, Numa; Tingaut, Philippe; Zimmermann, Tanja

    2016-01-01

    Cationic cellulose nanofibers (CNF) having 3 different contents of positively charged quaternary ammonium groups have been prepared from waste pulp residues according to a water-based modification method involving first the etherification of the pulp with glycidyltrimethylammonium chloride followed by mechanical disintegration. The cationic nanofibers obtained were observed by scanning electron microscopy and the extent of the reaction was evaluated by conductometric titration, ζ-potential measurements, and thermogravimetric analyses. The cationic CNF had a maximum cationic charge content of 1.2mmolg(-1) and positive ζ-potential at various pH values. Sorption of negatively charged contaminants (fluoride, nitrate, phosphate and sulphate ions) and their selectivity onto cationic CNF have been evaluated. Maximum sorption of ∼0.6mmolg(-1) of these ions by CNF was achieved and selectivity adsorption studies showed that cationic CNF are more selective toward multivalent ions (PO4(3-) and SO4(2-)) than monovalent ions (F(-) and NO3(-)). In addition, we demonstrated that cationic CNF can be manufactured into permeable membranes capable of dynamic nitrate adsorption by utilizing a simple paper-making process.

  8. Quantitative mapping of intracellular cations in the human amniotic membrane

    Science.gov (United States)

    Moretto, Ph.; Llabador, Y.; Simonoff, M.; Razafindrabe, L.; Bara, M.; Guiet-Bara, A.

    1993-05-01

    The effect of magnesium and taurine on the permeability of cell membranes to monovalent cations has been investigated using the Bordeaux nuclear microprobe. PIXE and RBS techniques have been used to provide quantitative measurements and ion distributions in the isolated amniotic membrane. This physiological model for cellular exchanges allowed us to reveal the distribution of most elements involved in cellular pathways and the modifications under different experimental conditions of incubation in physiological fluids. The PIXE microanalysis provided an original viewpoint on these mechanisms. Following this first study, the amnion compact lamina was found to play a role which was not, up to now, taken into account in the interpretation of electrophysiological experimentations. The release of some ionic species, such as K +, from the epithelial cells, during immersion in isotonic fluids, could have been hitherto underestimated.

  9. Dilution thermodynamics of the biologically relevant cation mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kaczyński, Marek, E-mail: marek.kaczynski@pwr.wroc.pl; Borowik, Tomasz, E-mail: office@novel-id.pl; Przybyło, Magda, E-mail: magdalena.przybylo@pwr.wroc.pl; Langner, Marek, E-mail: marek.langner@pwr.wroc.pl

    2014-01-10

    Graphical abstract: - Highlights: • Dilution energetics of Ca{sup 2+} can be altered by the aqueous phase ionic composition. • Dissipated heat upon Ca{sup 2+} dilution is drastically reduced in the K{sup +} presence. • Reduction of the enthalpy change upon Ca{sup 2+} dilution is K{sup +} concentration dependent. • The cooperativity of Ca{sup 2+} hydration might be of great biological relevance providing a thermodynamic argument for the specific ionic composition of the intracellular environment. - Abstract: The ionic composition of intracellular space is rigorously controlled by a variety of processes consuming large quantities of energy. Since the energetic efficiency is an important evolutional criterion, therefore the ion fluxes within the cell should be optimized with respect to the accompanying energy consumption. In the paper we present the experimental evidence that the dilution enthalpies of the biologically relevant ions; i.e. calcium and magnesium depend on the presence of monovalent cations; i.e. sodium and potassium. The heat flow generated during the dilution of ionic mixtures was measured with the isothermal titration calorimetry. When calcium was diluted together with potassium the dilution enthalpy was drastically reduced as the function of the potassium concentration present in the solution. No such effect was observed when the potassium ions were substituted with sodium ones. When the dilution of magnesium was investigated the dependence of the dilution enthalpy on the accompanying monovalent cation was much weaker. In order to interpret experimental evidences the ionic cluster formation is postulated. The specific organization of such cluster should depend on ions charges, sizes and organization of the hydration layers.

  10. Mixed polyvalent-monovalent metal coating for carbon-graphite fibers

    Science.gov (United States)

    Harper-Tervet, J.; Tervet, F. W.; Humphrey, M. F. (Inventor)

    1982-01-01

    An improved coating of gasification catalyst for carbon-graphite fibers is provided comprising a mixture of a polyvalent metal such as calcium and a monovalent metal such as lithium. The addition of lithium provides a lighter coating and a more flexible coating when applied to a coating of a carboxyl containing resin such as polyacrylic acid since it reduces the crosslink density. Furthermore, the presence of lithium provides a glass-like substance during combustion which holds the fiber together resulting in slow, even combustion with much reduced evolution of conductive fragments. The coated fibers are utilized as fiber reinforcement for composites.

  11. Coupled-cluster calculations of properties of Boron atom as a monovalent system

    CERN Document Server

    Gharibnejad, H

    2015-01-01

    We present relativistic coupled-cluster (CC) calculations of energies, magnetic-dipole hyperfine constants, and electric-dipole transition amplitudes for low-lying states of atomic boron. The trivalent boron atom is computationally treated as a monovalent system. We explore performance of the CC method at various approximations. Our most complete treatment involves singles, doubles and the leading valence triples. The calculations are done using several approximations in the coupled-cluster (CC) method. The results are within 0.2-0.4% of the energy benchmarks. The hyperfine constants are reproduced with 1-2% accuracy.

  12. Methodological study of the diffusion of interacting cations through clays. Application: experimental tests and simulation of coupled chemistry-diffusion transport of alkaline ions through a synthetical bentonite; Etude methodologique de la diffusion de cations interagissants dans les argiles. Application: mise en oeuvre experimentale et modelisation du couplage chimie-diffusion d'alcalins dans une bentonite synthetique

    Energy Technology Data Exchange (ETDEWEB)

    Melkior, Th

    2000-07-01

    The subject of this work deals with the project of underground disposal of radioactive wastes in deep geological formations. It concerns the study of the migration of radionuclides through clays. In these materials, the main transport mechanism is assumed to be diffusion under natural conditions. Therefore, some diffusion experiments are conducted. With interacting solutes which present a strong affinity for the material, the duration of these tests will be too long, for the range of concentrations of interest. An alternative is to determine on one hand the geochemical retention properties using batch tests and crushed rock samples and, on the other hand, to deduce the transport parameters from diffusion tests realised with a non-interacting tracer, tritiated water. These data are then used to simulate the migration of the reactive elements with a numerical code which can deal with coupled chemistry-diffusion equations. The validity of this approach is tested by comparing the numerical simulations with the results of diffusion experiments of cations through a clay. The subject is investigated in the case of the diffusion of cesium, lithium and sodium through a compacted sodium bentonite. The diffusion tests are realised with the through-diffusion method. The comparison between the experimental results and the simulations shows that the latter tends to under estimate the propagation of the considered species. The differences could be attributed to surface diffusion and to a decrease of the accessibility to the sites of fixation of the bentonite, from the conditions of clay suspensions in batch tests to the situation of compacted samples. The influence of the experimental apparatus used during the diffusion tests on the results of the measurement has also been tested. It showed that these apparatus have to be taken into consideration when the experimental data are interpreted. A specific model has been therefore developed with the numerical code CASTEM 2000. (author)

  13. The Hydroxyl Side Chain of a Highly Conserved Serine Residue Is Required for Cation Selectivity and Substrate Transport in the Glial Glutamate Transporter GLT-1/SLC1A2.

    Science.gov (United States)

    Simonin, Alexandre; Montalbetti, Nicolas; Gyimesi, Gergely; Pujol-Giménez, Jonai; Hediger, Matthias A

    2015-12-18

    Glutamate transporters maintain synaptic concentration of the excitatory neurotransmitter below neurotoxic levels. Their transport cycle consists of cotransport of glutamate with three sodium ions and one proton, followed by countertransport of potassium. Structural studies proposed that a highly conserved serine located in the binding pocket of the homologous GltPh coordinates L-aspartate as well as the sodium ion Na1. To experimentally validate these findings, we generated and characterized several mutants of the corresponding serine residue, Ser-364, of human glutamate transporter SLC1A2 (solute carrier family 1 member 2), also known as glutamate transporter GLT-1 and excitatory amino acid transporter EAAT2. S364T, S364A, S364C, S364N, and S364D were expressed in HEK cells and Xenopus laevis oocytes to measure radioactive substrate transport and transport currents, respectively. All mutants exhibited similar plasma membrane expression when compared with WT SLC1A2, but substitutions of serine by aspartate or asparagine completely abolished substrate transport. On the other hand, the threonine mutant, which is a more conservative mutation, exhibited similar substrate selectivity, substrate and sodium affinities as WT but a lower selectivity for Na(+) over Li(+). S364A and S364C exhibited drastically reduced affinities for each substrate and enhanced selectivity for L-aspartate over D-aspartate and L-glutamate, and lost their selectivity for Na(+) over Li(+). Furthermore, we extended the analysis of our experimental observations using molecular dynamics simulations. Altogether, our findings confirm a pivotal role of the serine 364, and more precisely its hydroxyl group, in coupling sodium and substrate fluxes.

  14. Serial incorporation of a monovalent GalNAc phosphoramidite unit into hepatocyte-targeting antisense oligonucleotides.

    Science.gov (United States)

    Yamamoto, Tsuyoshi; Sawamura, Motoki; Wada, Fumito; Harada-Shiba, Mariko; Obika, Satoshi

    2016-01-01

    The targeting of abundant hepatic asialoglycoprotein receptors (ASGPR) with trivalent N-acetylgalactosamine (GalNAc) is a reliable strategy for efficiently delivering antisense oligonucleotides (ASOs) to the liver. We here experimentally demonstrate the high systemic potential of the synthetically-accessible, phosphodiester-linked monovalent GalNAc unit when tethered to the 5'-terminus of well-characterised 2',4'-bridged nucleic acid (also known as locked nucleic acid)-modified apolipoprotein B-targeting ASO via a bio-labile linker. Quantitative analysis of the hepatic disposition of the ASOs revealed that phosphodiester is preferable to phosphorothioate as an interunit linkage in terms of ASGPR binding of the GalNAc moiety, as well as the subcellular behavior of the ASO. The flexibility of this monomeric unit was demonstrated by attaching up to 5 GalNAc units in a serial manner and showing that knockdown activity improves as the number of GalNAc units increases. Our study suggests the structural requirements for efficient hepatocellular targeting using monovalent GalNAc and could contribute to a new molecular design for suitably modifying ASO.

  15. [Safety and tolerability of monovalent measles and combined measles, mumps, rubella, and varicella vaccines].

    Science.gov (United States)

    Mentzer, D; Meyer, H; Keller-Stanislawski, B

    2013-09-01

    Although effective monovalent and combined measles vaccines have been available for several decades in Germany, measles outbreaks continue to occur leading to severe cases of measles and even death. Possible reasons for the low acceptance of the measles vaccination are concerns about adverse events and serious complications following vaccination. In this report, we have summarized and assessed all adverse events reported in Germany from 2001 to 2012 after vaccination with monovalent- and combined measles-containing vaccines. A total of 1,696 suspected adverse reaction reports describing 5,297 adverse events were sent to the Paul Ehrlich Institute (PEI) between 1 January 2001 and 31 December 2012. The calculated mean reporting rate was 5.7 reports per 100,000 vaccine doses released by the PEI. Analysis of the reports indicates that measles-containing vaccines are well tolerated with a constantly low rate of adverse events reported. Compared to the high rate of serious complications following wild-type measles infection, the benefit of measles-containing vaccines clearly outweighs the anticipated risks of adverse events.

  16. Predicting 3D structure, flexibility and stability of RNA hairpins in monovalent and divalent ion solutions

    CERN Document Server

    Shi, Ya-Zhou; Wang, Feng-Hua; Zhu, Xiao-Long; Tan, Zhi-Jie

    2015-01-01

    A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we will further develop the model by improving the implicit-salt electrostatic potential and involving a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. As compared with the experimental data, the present model can predict 3D structures of RNA hairpins with bulge/internal loops (<77nt) from their sequences at the corresponding experimental ion conditions with an overall improved accuracy, and the model also makes reliable predictions for the flexibility of RNA hairpins with bulge loops of different length at extensive divalent/monovalent ion conditions. In addition, the model successfully pred...

  17. Uptake of mIBG and catecholamines in noradrenaline- and organic cation transporter-expressing cells: potential use of corticosterone for a preferred uptake in neuroblastoma- and pheochromocytoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Melanie [Department of Hematology and Oncology, Children' s University Hospital, D-72072 Tuebingen (Germany)], E-mail: melanie.bayer@med.uni-tuebingen.de; Kuci, Zyrafete [Department of Hematology and Oncology, Children' s University Hospital, D-72072 Tuebingen (Germany); Schoemig, Edgar; Gruendemann, Dirk [Department of Pharmacology, University of Koeln, D-50924 Koeln (Germany); Dittmann, Helmut [Department of Nuclear Medicine, University of Tuebingen, D-72072 Tuebingen (Germany); Handgretinger, Rupert; Bruchelt, Gernot [Department of Hematology and Oncology, Children' s University Hospital, D-72072 Tuebingen (Germany)

    2009-04-15

    For imaging of neuroblastoma and phaeochromocytoma, [{sup 123}I]meta-iodobenzylguanidine ([{sup 123}I]mIBG) is routinely used, whereas [{sup 18}F]6-fluorodopamine ([{sup 18}F]6-FDA) is sporadically applied for positron emission tomography in pheochromocytoma. Both substances are taken up by catecholamine transporters (CATs). In competition, some other cell types are able to take up catecholamines and related compounds probably by organic cation (OCT) [extraneuronal monoamine (EMT)] transporters (OCT1, OCT2, OCT3=EMT). In this study, we investigated the uptake of radioiodine-labeled meta-iodobenzylguanidine (mIBG) as well as [{sup 3}H]dopamine (mimicring 6-fluorodopamine) and [{sup 3}H]noradrenaline. SK-N-SH (neuroblastoma) and PC-12 (phaeochromocytoma) cells were used and compared with HEK-293 cells transfected with OCT1, OCT2 and OCT3, respectively. In order to gain a more selective uptake in CAT expressing tumor cells, different specific inhibitors were measured. Uptake of mIBG into OCT-expressing cells was similar or even better as into both CAT-expressing cell lines, whereas dopamine and noradrenaline uptake was much lower in OCT-expressing cells. In presence of corticosterone (f.c. 10{sup -4} M], catecholamine and mIBG uptake into SK-N-SH and PC-12 cells was only slightly reduced. In contrast, this process was significantly inhibited in OCT2 and OCT3 transfected HEK-293 as well as in Caki-1 cells, which naturally express OCT3. We conclude that the well-known corticosteroid corticosterone might be used in combination with [{sup 18}F]6-FDA or [{sup 123}I]mIBG to improve specific imaging of neuroblastoma and pheochromocytoma and to reduce irradiation dose to nontarget organs in [{sup 131}I]mIBG treatment.

  18. Cation-cation interaction in neptunyl(V) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krot, N.N. [Russian Academy of Sciences, Institute of Physical Chemistry (Russian Federation); Saeki, Masakatsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The original manuscript was prepared by Professor N.N. Krot of Institute of Physical Chemistry, Russian Academy of Sciences, in 1997. Saeki tried to translate that into Japanese and to add some new data since 1997. The contents include the whole picture of cation-cation interactions mainly in 5-valence neptunium compounds. Firstly, characteristic structures of neptunium are summarized of the cation-cation bonding in compounds. Secondly, it is mentioned how the cation-cation bonding affects physical and chemical properties of the compounds. Then, characterization-methods for the cation-cation bonding in the compounds are discussed. Finally, the cation-cation interactions in compounds of other actinide-ions are shortly reviewed. (author)

  19. International collaboration to assess the risk of Guillain Barre Syndrome following Influenza A (H1N1) 2009 monovalent vaccines

    NARCIS (Netherlands)

    Dodd, Caitlin N.; Romio, Silvana A.; Black, Steven; Vellozzi, Claudia; Andrews, Nick; Sturkenboom, Miriam; Zuber, Patrick; Hua, Wei; Bonhoeffer, Jan; Buttery, Jim; Crawford, Nigel; Deceuninck, Genevieve; de Vries, Corinne; De Wals, Philippe; Gutierrez-Gimeno, M. Victoria; Heijbel, Harald; Hughes, Hayley; Hur, Kwan; Hviid, Anders; Kelman, Jeffrey; Kilpi, Tehri; Chuang, S. K.; Macartney, Kristine; Rett, Melisa; Lopez-Callada, Vesta Richardson; Salmon, Daniel; Sanchez, Francisco Gimenez; Sanz, Nuria; Silverman, Barbara; Storsaeter, Jann; Thirugnanam, Umapathi; van der Maas, Nicoline; Yih, Katherine; Zhang, Tao; Izurieta, Hector

    2013-01-01

    Background: The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barre syndrome (GBS), which has been an

  20. In vitro neutralisation of rotavirus infection by two broadly specific recombinant monovalent llama-derived antibody fragments

    NARCIS (Netherlands)

    F. Aladin (Farah); A.W.C. Einerhand (Sandra); J. Bouma (Janneke); S. Bezemer (Sandra); P. Hermans (Pim); D. Wolvers (Danielle); K. Bellamy (Kate); L.G.J. Frenken (Leon); J. Gray (Jim); M. Iturriza-Gómara (Miren)

    2012-01-01

    textabstractRotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment (refe

  1. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity.

    Science.gov (United States)

    Boder, E T; Midelfort, K S; Wittrup, K D

    2000-09-26

    Single-chain antibody mutants have been evolved in vitro with antigen-binding equilibrium dissociation constant K(d) = 48 fM and slower dissociation kinetics (half-time > 5 days) than those for the streptavidin-biotin complex. These mutants possess the highest monovalent ligand-binding affinity yet reported for an engineered protein by over two orders of magnitude. Optimal kinetic screening of randomly mutagenized libraries of 10(5)-10(7) yeast surface-displayed antibodies enabled a >1,000-fold decrease in the rate of dissociation after four cycles of affinity mutagenesis and screening. The consensus mutations are generally nonconservative by comparison with naturally occurring mouse Fv sequences and with residues that do not contact the fluorescein antigen in the wild-type complex. The existence of these mutants demonstrates that the antibody Fv architecture is not intrinsically responsible for an antigen-binding affinity ceiling during in vivo affinity maturation.

  2. The interactions between cationic cellulose and Gemini surfactant in aqueous solution.

    Science.gov (United States)

    Zhao, Shaojing; Cheng, Fa; Chen, Yu; Wei, Yuping

    2016-05-05

    Due to the extensive application of cationic cellulose in cosmetic, drug delivery and gene therapy, combining the improvement effect of surfactant-cellulose complexes, to investigate the properties of cellulose in aqueous solution is an important topic from both scientific and technical views. In this study, the phase behavior, solution properties and microstructure of Gemini surfactant sodium 5-nonyl-2-(4-(4-nonyl-2-sulfonatophenoxy)butoxy)phenyl sulfite (9-4-9)/cationic cellulose (JR400, the ammonium groups are directly bonded to the hydroxyethyl substituent with a degree substitution of 0.37) mixture was investigated using turbidity, fluorescence spectrophotometer and shear rheology techniques. As a control, the interaction of corresponding monovalent surfactant, sodium 2-ethoxy-5-nonylbenzenesulfonate (9-2) with JR400 in aqueous solution was also studied. Experimental results showed that 9-4-9/JR400 mixture has lower critical aggregation concentration (CAC) and critical micelle concentration (CMC) (about one order of magnitude) than 9-2/JR400 mixture. A low concentration of Gemini surfactant 9-4-9 appeared to induce an obvious micropolarity and viscosity value variation of the mixture, while these effects required a high concentration of corresponding monovalent one. Furthermore, dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements illuminated the formation and collapse procedure of network structure of the 9-4-9/JR400 mixture, which resulted in the increase and decrease of viscosity. These results suggest that the molecular structure of the surfactant has a great effect on its interaction with cationic cellulose. Moreover, the Gemini surfactant/cationic cellulose mixture may be used as a potencial stimuli-responsive drug delivery vector which not only load hydrophilic drugs, but also deliver hydrophobic substances.

  3. Monovalent metal ions play an essential role in catalysis and intersubunit communication in the tryptophan synthase bienzyme complex.

    Science.gov (United States)

    Woehl, E U; Dunn, M F

    1995-07-25

    This investigation shows that the alpha 2 beta 2 tryptophan synthase bienzyme complex from Salmonella typhimurium is subject to monovalent metal ion activation. The effects of the monovalent metal ions Na+ and K+ were investigated using rapid scanning stopped-flow (RSSF), single-wavelength stopped-flow (SWSF), and steady-state techniques. RSSF measurements of individual steps in the reaction of L-serine and indole to give L-trytophan (the beta-reaction) as well as the reaction of 3-indole-D-glycerol 3'-phosphate (IGP) with L-serine (the alpha beta-reaction) demonstrate that monovalent metal ions such as Na+ and K+ change the distribution of intermediates in both the transient and steady states. Therefore the metal ion effect alters relative ground-state energies and the relative positions of ground- and transition-state energies. The RSSF spectra and SWSF time courses show that the turnover of indole is significantly reduced in the absence of either Na+ or K+. The alpha-aminoacrylate Schiff base species, E(A-A), is in a less active state in the absence of monovalent metal ions. Na+ decreases the steady-state rate of IGP cleavage (the alpha-reaction) to about 30% of the value obtained in the absence of metal ions. Steady-state investigations show that in the absence of monovalent metal ions the alpha- and alpha beta-reactions have the same activity. Na+ binding gives a 30-fold stimulation of the alpha-reaction when the beta-site is in the E(A-A) form.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Change Color Effect and Spectral Properties of Gold Nanoparticle-cationic Surfactants System

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-liang; PAN Hong-cheng; YUAN Wei-en

    2004-01-01

    The change color effect of gold nanoparticle solutions was studied by means of resonance scattering and absorption spectrometry and scan electron microscopy. The red Au nanoparticles with a size of 10 nm exhibit a resonance absorption peak and a resonance scattering peak all at 525 nm. After some inorganic electrolyte was added to a red Au nanoparticles solution, the color of the solution became blue and the absorbance at 600-700 nm was significantly increased. The ratio of the concentration of monovalent cations, at which the resonance scattering of the system at 525 nm is maximal to that of divalent cations, is in the range of 100 : 1 -100 : 1.8. It is in good agreement with the Schulze-Hardy rule of the coagulation value of electrolyte. After adding some cationic surfactants to the above solution, the color of the solution is in deep blue, with two resonance absorption peaks at 550 and 680 nm, and a greatly enhanced resonance scattering peak at 525 nm.The experiments demonstrate that the stronger the hydrophobicity of the cationic surfactant is, the stronger the change color effect of the Au nanoparticle solution promoted by cationic surfactant is. The change color effect of Au nanoparticle solution is resulted from the increased diameter of Au nanoparticles, and the changes of resonance absorption peak and resonance scattering.

  5. Transport studies of ions across polystyrene based composite membrane: Evaluation of fixed charge density using theoretical models

    Science.gov (United States)

    Imteyaz, Shahla; Rafiuddin

    2016-11-01

    Polystyrene (PS) dispersed tin molybdate (TM) composite was prepared by sol-gel method. The membrane was characterized for its thermal stability by TG-DTA. SEM reveals the formation of composite material with uniform surface morphology. Crystallinity and phosphorylation of the membrane was confirmed by X-RD and FT-IR. Membrane potential of different monovalent electrolytes with varying concentration followed the order LiCl > NaCl > NH4Cl > KCl. Membrane potential increases with dilution of electrolytes confirming it to be cation selective in nature. The theoretical value of fixed charge density for the membrane was also evaluated from membrane potential using different approaches proposed by (a) Teorell-Meyer-Sievers (b) Kobatake and (c) Nagasawa, which are comparable with the experimental values. Fixed charge density examined for the electrolytes follows the order LiCl > NaCl > NH4Cl > KCl. Li+ ion shows highest value of fixed charge density in all the methods as the Donnan exclusion is highest for the electrolyte of smaller cation size. Transport number and mobility ratio for ion selectivity also increases with dilution. Membrane shows the lowest permselectivity for K+ while highest for Li+. The strong binding affinity of K+ counter-ion with fixed charge groups on the polymer decreases the membrane charge density and permselectivity. Thus, the membrane shows its applicability in various electro-membrane processes.

  6. Role of extracellular cations in cell motility, polarity, and chemotaxis

    Directory of Open Access Journals (Sweden)

    Soll D

    2011-04-01

    Full Text Available David R Soll1, Deborah Wessels1, Daniel F Lusche1, Spencer Kuhl1, Amanda Scherer1, Shawna Grimm1,21Monoclonal Antibody Research Institute, Developmental Studies, Hybridoma Bank, Department of Biology, University of Iowa, Iowa City; 2Mercy Medical Center, Surgical Residency Program, Des Moines, Iowa, USAAbstract: The concentration of cations in the aqueous environment of free living organisms and cells within the human body influence motility, shape, and chemotaxis. The role of extracellular cations is usually perceived to be the source for intracellular cations in the process of homeostasis. The role of surface molecules that interact with extracellular cations is believed to be that of channels, transporters, and exchangers. However, the role of Ca2+ as a signal and chemoattractant and the discovery of the Ca2+ receptor have demonstrated that extracellular cations can function as signals at the cell surface, and the plasma membrane molecules they interact with can function as bona fide receptors that activate coupled signal transduction pathways, associated molecules in the plasma membrane, or the cytoskeleton. With this perspective in mind, we have reviewed the cationic composition of aqueous environments of free living cells and cells that move in multicellular organisms, most notably humans, the range of molecules interacting with cations at the cell surface, the concept of a cell surface cation receptor, and the roles extracellular cations and plasma membrane proteins that interact with them play in the regulation of motility, shape, and chemotaxis. Hopefully, the perspective of this review will increase awareness of the roles extracellular cations play and the possibility that many of the plasma membrane proteins that interact with them could also play roles as receptors.Keywords: extracellular cations, chemotaxis, transporters, calcium, receptors

  7. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    Science.gov (United States)

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  8. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution.

    Science.gov (United States)

    Prelot, Benedicte; Ayed, Imen; Marchandeau, Franck; Zajac, Jerzy

    2014-01-01

    Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.

  9. Metal-Organic Frameworks (MOFs) as Multivalent Materials: Size Control and Surface Functionalization by Monovalent Capping Ligands.

    Science.gov (United States)

    Rijnaarts, Timon; Mejia-Ariza, Raquel; Egberink, Richard J M; van Roosmalen, Wies; Huskens, Jurriaan

    2015-07-13

    Control over particle size and composition are pivotal to tune the properties of metal organic frameworks (MOFs), for example, for biomedical applications. Particle-size control and functionalization of MIL-88A were achieved by using stoichiometric replacement of a small fraction of the divalent fumarate by monovalent capping ligands. A fluorine-capping ligand was used to quantify the surface coverage of capping ligand at the surface of MIL-88A. Size control at the nanoscale was achieved by using a monovalent carboxylic acid-functionalized poly(ethylene glycol) (PEG-COOH) ligand at different concentrations. Finally, a biotin-carboxylic acid capping ligand was used to functionalize MIL-88A to bind fluorescently labeled streptavidin as an example towards bioapplications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?

    Science.gov (United States)

    Gebala, Magdalena; Bonilla, Steve; Bisaria, Namita; Herschlag, Daniel

    2016-08-31

    Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation. However, the computational models have not been independently tested, and the experimentally observed effects were small. Here, we evaluate a computational model of ion size effects by experimentally testing a blind prediction made from that model, and we present additional experimental results that extend our understanding of the ion atmosphere. Giambasu et al. developed and implemented a three-dimensional reference interaction site (3D-RISM) model for monovalent cations surrounding DNA and RNA helices, and this model predicts that Na(+) would outcompete Cs(+) by 1.8-2.1-fold; i.e., with Cs(+) in 2-fold excess of Na(+) the ion atmosphere would contain an equal number of each cation (Nucleic Acids Res. 2015, 43, 8405). However, our ion counting experiments indicate that there is no significant preference for Na(+) over Cs(+). There is an ∼25% preferential occupancy of Li(+) over larger cations in the ion atmosphere but, counter to general expectations from existing models, no size dependence for the other alkali metal ions. Further, we followed the folding of the P4-P6 RNA and showed that differences in folding with different alkali metal ions observed at high concentration arise from cation-anion interactions and not cation size effects. Overall, our results provide a critical test of a computational prediction, fundamental information about ion atmosphere properties, and parameters that will aid in the

  11. Competition by meperidine for the organic cation renal excretory system.

    Science.gov (United States)

    Acara, M; Gessner, T; Trudnowski, R J

    1981-07-01

    Renal tubular excretory transport of meperidine was studied using the Sperber preparation in chickens. When urine samples from infused and uninfused kidneys were analyzed for meperidine by gas chromatography, meperidine was always present in greater amounts in the urine from the infused kidney, demonstrating active tubular excretion. Meperidine at an infusion rate of 1 mumole/min, also inhibited the excretion of the organic cations choline and acetylcholine, indicating occupation of the renal organic cation excretory system in the chicken.

  12. Migration of Cations and Anions in Amorphous Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    N.A.Stolwijk; S.H.Obeidi; M.Wiencierz

    2007-01-01

    1 Results Polymer electrolytes are used as ion conductors in batteries and fuel cells.Simple systems consist of a polymer matrix complexing an inorganic salt and are fully amorphous at the temperatures of interest.Both cations and anions are mobile and contribute to charge transport.Most studies on polymer electrolytes use the electrical conductivity to characterize the ion mobility.However,conductivity measurements cannot discriminate between cations and anions.This paper reports some recent results fr...

  13. How accurate is Poisson-Boltzmann theory for monovalent ions near highly charged interfaces?

    Science.gov (United States)

    Bu, Wei; Vaknin, David; Travesset, Alex

    2006-06-20

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface. A lipid phosphate (dihexadecyl hydrogen-phosphate) was spread as a monolayer at the air-water interface to control surface charge density. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. Five decades in bulk concentrations are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. The increase of Cs+ concentration modifies the contact value potential, thereby causing proton release. This process effectively modifies surface charge density and enables exploration of ion distributions as a function of effective surface charge-density. The experimentally obtained ion distributions are compared to distributions calculated by Poisson-Boltzmann theory accounting for the variation of surface charge density due to proton release and binding. We also discuss the accuracy of our experimental results in discriminating possible deviations from Poisson-Boltzmann theory.

  14. Differences on the conversion of celestite in solutions bearing monovalent ions under hydrothermal conditions

    Science.gov (United States)

    Rendón-Angeles, J. C.; Pech-Canul, M. I.; López-Cuevas, J.; Matamoros-Veloza, Z.; Yanagisawa, K.

    2006-12-01

    The replacement of SO 42- ions by monovalent ions in mineral SrSO 4 crystals was investigated under hydrothermal conditions by using aqueous solutions bearing F - and OH - ions. Experiments were conducted at various temperatures (150-250 °C) for different reaction intervals (1-96 h), with M-/SO 42- molar ratios of 1, 5 and 10, where M-=F - or OH -. The celestite crystals were completely converted into SrF 2 crystals, at 200 °C using a F -/SO 42- molar ratio=5 for 24 h. The morphology of the converted SrF 2 crystals indicated that the heteroionic conversion proceeded by a pseudomorphic replacement process, because the transformed crystals maintained their original shape and dimensions. In contrast, the SrSO 4 crystals were instantaneously converted into the Sr(OH) 2 phase by a bulk dissolution-recrystallization mechanism, resulting in the formation of large transparent acicular Sr(OH) 2 crystals. The differences on the conversion process are mainly associated with the chemical interaction between the mineral crystal and the hydrothermal fluid. In addition, the chemical stability of the converted phase with low solubility is also essential for the heteroionic conversion to proceed by the pseudomorphic replacement process.

  15. Aqueous batteries based on mixed monovalence metal ions: a new battery family.

    Science.gov (United States)

    Chen, Liang; Zhang, Leyuan; Zhou, Xufeng; Liu, Zhaoping

    2014-08-01

    As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, new concepts are urgently needed to build batteries with high energy density, low cost, and good safety. Here, we demonstrate two new aqueous batteries based on two monovalence metal ions (Li(+) /K(+) and Na(+) /K(+) ) as charge-transfer ions, Ni1 Zn1 HCF/TiP2 O7 and Ni1 Zn1 HCF/NaTi2 (PO4 )3 . These new batteries are unlike the conventional "rocking-chair" aqueous metal-ion batteries based on the migration of one type of shuttle ion between cathode and anode. They can deliver specific energy of 46 Wh kg(-1) and 53 Wh kg(-1) based on the total mass of active materials; this is superior to current aqueous battery systems based on sodium-ion and/or potassium-ion technologies. These two new batteries together with the previously developed Li(+) /Na(+) mixed-ion battery not only constitute a new battery family for energy storage, but also greatly broaden our horizons for battery research.

  16. Potent dengue virus neutralization by a therapeutic antibody with low monovalent affinity requires bivalent engagement.

    Directory of Open Access Journals (Sweden)

    Melissa A Edeling

    2014-04-01

    Full Text Available We recently described our most potently neutralizing monoclonal antibody, E106, which protected against lethal Dengue virus type 1 (DENV-1 infection in mice. To further understand its functional properties, we determined the crystal structure of E106 Fab in complex with domain III (DIII of DENV-1 envelope (E protein to 2.45 Å resolution. Analysis of the complex revealed a small antibody-antigen interface with the epitope on DIII composed of nine residues along the lateral ridge and A-strand regions. Despite strong virus neutralizing activity of E106 IgG at picomolar concentrations, E106 Fab exhibited a ∼20,000-fold decrease in virus neutralization and bound isolated DIII, E, or viral particles with only a micromolar monovalent affinity. In comparison, E106 IgG bound DENV-1 virions with nanomolar avidity. The E106 epitope appears readily accessible on virions, as neutralization was largely temperature-independent. Collectively, our data suggest that E106 neutralizes DENV-1 infection through bivalent engagement of adjacent DIII subunits on a single virion. The isolation of anti-flavivirus antibodies that require bivalent binding to inhibit infection efficiently may be a rare event due to the unique icosahedral arrangement of envelope proteins on the virion surface.

  17. Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins

    Energy Technology Data Exchange (ETDEWEB)

    Won, JaeSeon; Nam, PilWon; Lee, YongChan [College of Life Sciences and Graduate School of Biotechnology, Korea University, 5-ga Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Choe, MuHyeon, E-mail: choemh@korea.ac.kr [College of Life Sciences and Graduate School of Biotechnology, Korea University, 5-ga Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of)

    2009-04-24

    Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G{sub 4}S) between the Fab fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38]{sub 2}) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.

  18. Antigenic specificity of a monovalent versus polyvalent MOMP based Chlamydia pecorum vaccine in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Kollipara, Avinash; Wan, Charles; Rawlinson, Galit; Brumm, Jacqui; Nilsson, Karen; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2013-02-06

    Chlamydia continues to be a major pathogen of koalas. The bacterium is associated with ocular, respiratory and urogenital tract infections and a vaccine is considered the best option to limit the decline of mainland koala populations. Over the last 20 years, efforts to develop a chlamydial vaccine in humans have focussed on the use of the chlamydial major outer membrane protein (MOMP). Potential problems with the use of MOMP-based vaccines relate to the wide range of genetic diversity in its four variable domains. In the present study, we evaluated the immune response of koalas vaccinated with a MOMP-based C. pecorum vaccine formulated with genetically and serologically diverse MOMPs. Animals immunised with individual MOMPs developed strong antibody and lymphocyte proliferation responses to both homologous as well as heterologous MOMP proteins. Importantly, we also showed that vaccine induced antibodies which effectively neutralised various heterologous strains of koala C. pecorum in an in vitro assay. Finally, we also demonstrated that the immune responses in monovalent as well as polyvalent MOMP vaccine groups were able to recognise whole chlamydial elementary bodies, illustrating the feasibility of developing an effective MOMP based C. pecorum vaccine that could protect against a range of strains. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Impact of universal mass vaccination with monovalent inactivated hepatitis A vaccines – A systematic review

    Science.gov (United States)

    Stuurman, Anke L.; Marano, Cinzia; Bunge, Eveline M.; De Moerlooze, Laurence; Shouval, Daniel

    2017-01-01

    ABSTRACT The WHO recommends integration of universal mass vaccination (UMV) against hepatitis A virus (HAV) in national immunization schedules for children aged ≥1 year, if justified on the basis of acute HAV incidence, declining endemicity from high to intermediate and cost-effectiveness. This recommendation has been implemented in several countries. Our aim was to assess the impact of UMV using monovalent inactivated hepatitis A vaccines on incidence and persistence of anti-HAV (IgG) antibodies in pediatric populations. We conducted a systematic review of literature published between 2000 and 2015 in PubMed, Cochrane Library, LILACS, IBECS identifying a total of 27 studies (Argentina, Belgium, China, Greece, Israel, Panama, the United States and Uruguay). All except one study showed a marked decline in the incidence of hepatitis A post introduction of UMV. The incidence in non-vaccinated age groups decreased as well, suggesting herd immunity but also rising susceptibility. Long-term anti-HAV antibody persistence was documented up to 17 y after a 2-dose primary vaccination. In conclusion, introduction of UMV in countries with intermediate endemicity for HAV infection led to a considerable decrease in the incidence of hepatitis A in vaccinated and in non-vaccinated age groups alike. PMID:27786671

  20. Monovalency Unleashes the Full Therapeutic Potential of the DN-30 Anti-Met Antibody*

    Science.gov (United States)

    Pacchiana, Giovanni; Chiriaco, Cristina; Stella, Maria C.; Petronzelli, Fiorella; De Santis, Rita; Galluzzo, Maria; Carminati, Paolo; Comoglio, Paolo M.; Michieli, Paolo; Vigna, Elisa

    2010-01-01

    Met, the high affinity receptor for hepatocyte growth factor, is one of the most frequently activated tyrosine kinases in human cancer and a validated target for cancer therapy. We previously developed a mouse monoclonal antibody directed against the extracellular portion of Met (DN-30) that induces Met proteolytic cleavage (receptor “shedding”) followed by proteasome-mediated receptor degradation. This translates into inhibition of hepatocyte growth factor/Met-mediated biological activities. However, DN-30 binding to Met also results in partial activation of the Met kinase due to antibody-mediated receptor homodimerization. To safely harness the therapeutic potential of DN-30, its shedding activity must be disassociated from its agonistic activity. Here we show that the DN-30 Fab fragment maintains high affinity Met binding, elicits efficient receptor shedding and down-regulation, and does not promote kinase activation. In Met-addicted tumor cell lines, DN-30 Fab displays potent cytostatic and cytotoxic activity in a dose-dependent fashion. DN-30 Fab also inhibits anchorage-independent growth of several tumor cell lines. In mouse tumorigenesis assays using Met-addicted carcinoma cells, intratumor administration of DN-30 Fab or systemic delivery of a chemically stabilized form of the same molecule results in reduction of Met phosphorylation and inhibition of tumor growth. These data provide proof of concept that monovalency unleashes the full therapeutic potential of the DN-30 antibody and point at DN-30 Fab as a promising tool for Met-targeted therapy. PMID:20833723

  1. Monovalency unleashes the full therapeutic potential of the DN-30 anti-Met antibody.

    Science.gov (United States)

    Pacchiana, Giovanni; Chiriaco, Cristina; Stella, Maria C; Petronzelli, Fiorella; De Santis, Rita; Galluzzo, Maria; Carminati, Paolo; Comoglio, Paolo M; Michieli, Paolo; Vigna, Elisa

    2010-11-12

    Met, the high affinity receptor for hepatocyte growth factor, is one of the most frequently activated tyrosine kinases in human cancer and a validated target for cancer therapy. We previously developed a mouse monoclonal antibody directed against the extracellular portion of Met (DN-30) that induces Met proteolytic cleavage (receptor "shedding") followed by proteasome-mediated receptor degradation. This translates into inhibition of hepatocyte growth factor/Met-mediated biological activities. However, DN-30 binding to Met also results in partial activation of the Met kinase due to antibody-mediated receptor homodimerization. To safely harness the therapeutic potential of DN-30, its shedding activity must be disassociated from its agonistic activity. Here we show that the DN-30 Fab fragment maintains high affinity Met binding, elicits efficient receptor shedding and down-regulation, and does not promote kinase activation. In Met-addicted tumor cell lines, DN-30 Fab displays potent cytostatic and cytotoxic activity in a dose-dependent fashion. DN-30 Fab also inhibits anchorage-independent growth of several tumor cell lines. In mouse tumorigenesis assays using Met-addicted carcinoma cells, intratumor administration of DN-30 Fab or systemic delivery of a chemically stabilized form of the same molecule results in reduction of Met phosphorylation and inhibition of tumor growth. These data provide proof of concept that monovalency unleashes the full therapeutic potential of the DN-30 antibody and point at DN-30 Fab as a promising tool for Met-targeted therapy.

  2. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels

    KAUST Repository

    Zelman, Alice K.

    2012-05-29

    Ligand-gated cation channels are a frequent component of signaling cascades in eukaryotes. Eukaryotes contain numerous diverse gene families encoding ion channels, some of which are shared and some of which are unique to particular kingdoms. Among the many different types are cyclic nucleotide-gated channels (CNGCs). CNGCs are cation channels with varying degrees of ion conduction selectivity. They are implicated in numerous signaling pathways and permit diffusion of divalent and monovalent cations, including Ca2+ and K+. CNGCs are present in both plant and animal cells, typically in the plasma membrane; recent studies have also documented their presence in prokaryotes. All eukaryote CNGC polypeptides have a cyclic nucleotide-binding domain and a calmodulin binding domain as well as a six transmembrane/one pore tertiary structure. This review summarizes existing knowledge about the functional domains present in these cation-conducting channels, and considers the evidence indicating that plant and animal CNGCs evolved separately. Additionally, an amino acid motif that is only found in the phosphate binding cassette and hinge regions of plant CNGCs, and is present in all experimentally confirmed CNGCs but no other channels was identified. This CNGC-specific amino acid motif provides an additional diagnostic tool to identify plant CNGCs, and can increase confidence in the annotation of open reading frames in newly sequenced genomes as putative CNGCs. Conversely, the absence of the motif in some plant sequences currently identified as probable CNGCs may suggest that they are misannotated or protein fragments. 2012 Zelman, Dawe, Gehring and Berkowitz.

  3. Multi-scale simulation studies on interaction between anionic surfactants and cations

    Directory of Open Access Journals (Sweden)

    Siwei Meng

    2014-12-01

    Full Text Available In this paper, a dissipative particle dynamics (DPD simulation method was used to investigate the impact of cations on the rheological properties of dodecyl sulfonate surfactant solutions. In order to obtain reasonable interaction between head groups of the surfactant, the geometric structure and interaction between dodecyl sulfonate and cations are optimized using density function theory (DFT at the B3LYP/6-31G level. The DFT calculated results indicate that α-methylene nearest the head group can be classified as a part of the polar head. After binding, the charge on polar head decreases, thus greatly reduces the repulsion between the head groups. It is found that the presence of counterions is one of induction factors on the formation of wormlike micelles, thus greatly enhances the viscosity of surfactant solution. With the increasing in shear strengthen, the wormlike micelles are gradually oriented in the x direction and then broken up into small spherical micelles. This process is also shown by the decrease of viscosity, which decreases quickly at the low shear rates, then keeps almost a constant at the moderate shear rates and at last decreases again at the shear rates larger than a critical value. Compared with monovalent cations, divalent cations have a stronger effect on the rheological properties of dodecyl sulfonate solutions.

  4. Paralytic poliomyelitis associated with Sabin monovalent and bivalent oral polio vaccines in Hungary.

    Science.gov (United States)

    Estívariz, Concepción F; Molnár, Zsuzsanna; Venczel, Linda; Kapusinszky, Beatrix; Zingeser, James A; Lipskaya, Galina Y; Kew, Olen M; Berencsi, György; Csohán, Agnes

    2011-08-01

    Historical records of patients with vaccine-associated paralytic poliomyelitis (VAPP) in Hungary during 1961-1981 were reviewed to assess the risk of VAPP after oral polio vaccine (OPV) administration. A confirmed VAPP case was defined as a diagnosis of paralytic poliomyelitis and residual paralysis at 60 days in a patient with an epidemiologic link to the vaccine. Archived poliovirus isolates were retested using polymerase chain reaction and sequencing of the viral protein 1 capsid region. This review confirmed 46 of 47 cases previously reported as VAPP. Three cases originally linked to monovalent OPV (mOPV) 3 and one case linked to mOPV1 presented after administration of bivalent OPV 1 + 3 (bOPV). The adjusted VAPP risk per million doses administered was 0.18 for mOPV1 (2 cases/11.13 million doses), 2.96 for mOPV3 (32 cases/10.81 million doses), and 12.82 for bOPV (5 cases/390,000 doses). Absence of protection from immunization with inactivated poliovirus vaccine or exposure to OPV virus from routine immunization and recent injections could explain the higher relative risk of VAPP in Hungarian children. In polio-endemic areas in which mOPV3 and bOPV are needed to achieve eradication, the higher risk of VAPP would be offset by the high risk of paralysis due to wild poliovirus and higher per-dose efficacy of mOPV3 and bOPV compared with trivalent OPV.

  5. Deposition kinetics of extracellular polymeric substances (EPS) on silica in monovalent and divalent salts.

    Science.gov (United States)

    Zhu, Pingting; Long, Guoyu; Ni, Jinren; Tong, Meiping

    2009-08-01

    The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.

  6. Ion transport with charge-protected and non-charge-protected cations in alcohol-based electrolytes using the compensated Arrhenius formalism. Part I: ionic conductivity and the static dielectric constant.

    Science.gov (United States)

    Petrowsky, Matt; Fleshman, Allison; Frech, Roger

    2012-05-17

    The temperature dependence of ionic conductivity and the static dielectric constant is examined for 0.30 m TbaTf- or LiTf-1-alcohol solutions. Above ambient temperature, the conductivity increases with temperature to a greater extent in electrolytes whose salt has a charge-protected cation. Below ambient temperature, the dielectric constant changes only slightly with temperature in electrolytes whose salt has a cation that is not charge-protected. The compensated Arrhenius formalism is used to describe the temperature-dependent conductivity in terms of the contributions from both the exponential prefactor σo and Boltzmann factor exp(-Ea/RT). This analysis explains why the conductivity decreases with increasing temperature above 65 °C for the LiTf-dodecanol electrolyte. At higher temperatures, the decrease in the exponential prefactor is greater than the increase in the Boltzmann factor.

  7. Cell volume-regulated cation channels.

    Science.gov (United States)

    Wehner, Frank

    2006-01-01

    Considering the enormous turnover rates of ion channels when compared to carriers it is quite obvious that channel-mediated ion transport may serve as a rapid and efficient mechanism of cell volume regulation. Whenever studied in a quantitative fashion the hypertonic activation of non-selective cation channels is found to be the main mechanism of regulatory volume increase (RVI). Some channels are inhibited by amiloride (and may be related to the ENaC), others are blocked by Gd(3) and flufenamate (and possibly linked to the group of transient receptor potential (TRP) channels). Nevertheless, the actual architecture of hypertonicity-induced cation channels remains to be defined. In some preparations, hypertonic stress decreases K(+) channel activity so reducing the continuous K(+) leak out of the cell; this is equivalent to a net gain of cell osmolytes facilitating RVI. The hypotonic activation of K(+) selective channels appears to be one of the most common principles of regulatory volume decrease (RVD) and, in most instances, the actual channels involved could be identified on the molecular level. These are BKCa (or maxi K(+)) channels, IK(Ca) and SK(Ca) channels (of intermediate and small conductance, respectively), the group of voltage-gated (Kv) channels including their Beta (or Kv ancilliary) subunits, two-pore K(2P) channels, as well as inwardly rectifying K(+) (Kir) channels (also contributing to K(ATP) channels). In some cells, hypotonicity activates non-selective cation channels. This is surprising, at first sight, because of the inside negative membrane voltage and the sum of driving forces for Na(+) and K(+) diffusion across the cell membrane rather favouring net cation uptake. Some of these channels, however, exhibit a P(K)/P(Na) significantly higher than 1, whereas others are Ca(++) permeable linking hypotonic stress to the activation of Ca(++) dependent ion channels. In particular, the latter holds for the group of TRPs which are specialised in the

  8. Regulation of Cation Balance in Saccharomyces cerevisiae

    Science.gov (United States)

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  9. On the selective adsorption of cations in the cell wall of the green alga Valonia utricularis

    Science.gov (United States)

    Kesseler, H.

    1980-06-01

    The selective adsorption of the cations Na+, K+, Mg++ and Ca++ by the cell wall of the Mediterranean alga Valonia utricularis (Siphonocladales, Chlorophyceae) from sea water of 40 %. S was investigated by extraction of cell-wall preparations, eluted before in 1.1 mol methanol (adjusted to pH 8) with 0.1 n formic acid in a Soxhlet apparatus. Na+ and K+ were determined by flame photometry, Mg++ and Ca++ by complexometric titration with EDTA. From calculation of the dry weight:fresh weight ratios and the chloride determinations in the eluates, the Donnan free-space fraction of the total cell-wall volume was calculated to about 35 %, and the analytical results of the cation concentrations in the extracts expressed as μVal cm-3 DFS. This calculation is based on the assumption that the acidic groups of the noncellulosic matrix material, carrying negative charges by dissociation at the reaction of sea water (ph about 8) are responsible for the adsorption of cations by exhibition of a Donnan effect. The results obtained show clearly that besides the divalent cations Mg++ and Ca++, which according to the physico-chemical laws of the Donnan distribution must be relatively accumulated to the second power of the monovalent ones, potassium is also enriched by selective adsorption, and the K+:Na+ ratio increased significantly compared with that in sea water. This seems to indicate that the strength of attraction between the cations and the negative sites is dependent on the radii of the ions and the state of hydration and/or polarisation of the ions and binding sites.

  10. Stability and transport of graphene oxide nanoparticles in groundwater and surface water

    Science.gov (United States)

    A transport study investigating the effects of natural organic matter (NOM) in the presence of monovalent (KCl) and divalent (CaCl2) salts was performed in a packed bed column. The electrophoretic mobility (EPM) and effective diameter of the graphene oxide nanoparticles (GONPs) were measured as a fu...

  11. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems.

    NARCIS (Netherlands)

    Havinga, R; Vonk, RJ; Kuipers, F

    1996-01-01

    In the present study we compared, in vivo in rats, the hepatobiliary transport of monovalent (silver:Ag) and divalent metals (zinc:Zn; cadmium:Cd) with that of copper (Cu). Cu can have two oxidation states in vivo, i.e. Cu(I) and Cu(II). Studies were performed in normal Wistar (NW) rats and mutant G

  12. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl‑/SO42‑ separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl‑/SO42‑ permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  13. Investigating the efficacy of monovalent and tetravalent dengue vaccine formulations against DENV-4 challenge in AG129 mice.

    Science.gov (United States)

    Fuchs, Jeremy; Chu, Haiyan; O'Day, Peter; Pyles, Richard; Bourne, Nigel; Das, Subash C; Milligan, Gregg N; Barrett, Alan D T; Partidos, Charalambos D; Osorio, Jorge E

    2014-11-12

    Dengue (DEN) is the most important mosquito-borne viral disease, with a major impact on global health and economics, caused by four serologically and distinct viruses termed DENV-1 to DENV-4. Currently, there is no licensed vaccine to prevent DEN. We have developed a live attenuated tetravalent DENV vaccine candidate (TDV) (formally known as DENVax) that has shown promise in preclinical and clinical studies and elicits neutralizing antibody responses to all four DENVs. As these responses are lowest to DENV-4 we have used the AG129 mouse model to investigate the immunogenicity of monovalent TDV-4 or tetravalent TDV vaccines, and their efficacy against lethal DENV-4 challenge. Since the common backbone of TDV is based on an attenuated DENV-2 strain (TDV-2) we also tested the efficacy of TDV-2 against DENV-4 challenge. Single doses of the tetravalent or monovalent vaccines elicited neutralizing antibodies, anti-NS1 antibodies, and cellular responses to both envelope and nonstructural proteins. All vaccinated animals were protected against challenge at 60 days post-immunization, whereas all control animals died. Investigation of DENV-4 viremias post-challenge showed that only the control animals had high viremias on day 3 post-challenge, whereas vaccinated mice had no detectable viremia. Overall, these data highlight the excellent immunogenicity and efficacy profile of our candidate dengue vaccine in AG129 mice.

  14. Establishment of an in vivo potency assay for the recombinant hepatit is B surface antigen in monovalent and combined vaccines

    Directory of Open Access Journals (Sweden)

    Mabel Izquierdo-López

    2014-12-01

    Full Text Available In this paper the development of potency assay in animals (mice was made, with the objective of demonstrating the immunogenic power of the recombinant Hepatitis B surface antigen in monovalent and combined vaccines, produced at the Center of Genetic Engineering and Biotechnology. The potency test is a parameter in quality control and it is also a tool to demonstrate the consistency of the production process. Parameters such as duration of the test, number of animals in the test, as well as different areas for the maintenance of the animals were evaluated. The results on the applicability of the potency test, to two presentations of the vaccines; monovalent Heberbiovac HB and pentavalent liquid in one vial Heberpenta-L are shown, for which specificity studies, evaluating different vaccine lots, the behavior of linearity, and parallelism, as well as establishing quality specification of the test were performed. This assay led to the obtainment of reliable results for the vaccines evaluated, the consistent evaluation of the immunogenic power and the monitoring of different production processes.

  15. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu

    2017-04-27

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  16. Transport and aggregation of rutile titanium dioxide nanoparticles in saturated porous media in the presence of ammonium.

    Science.gov (United States)

    Xu, Xiaoting; Xu, Nan; Cheng, Xueying; Guo, Peng; Chen, Zhigang; Wang, Dongtian

    2017-02-01

    The widely used artificial nanoparticles (NPs) and the excess of ammonium (NH4(+)) fertilizers are easily released into the natural environment. So, clarifying the mobility of NPs in the presence of NH4(+) is therefore of great urgency and high priority. Currently, few studies focus on the transport and deposition of nanoparticle titanium dioxide (nTiO2) in single and binary systems containing NH4(+), especially describing this process by a mathematical model. In this work, the comparison between the transport and retention of rutile nTiO2 in single and binary electrolyte solutions of NH4Cl and/or NaCl (0.5-50 mM) were conducted at pH 6.0 and 8.0 through running the column experiments. Experimental results show that the aggregation and retention of nTiO2 in solution containing mono-valence cations obeys the order as follows: NH4(+) > Na(+) > Na(+) + NH4(+) at the same ion strength (IS). It is attributed to the lower critical coagulation concentration (CCC) of rutile nTiO2 in NH4(+) than that in Na(+) solution. In particular, the simultaneous presence of NH4(+) and Na(+) favors the transportability of nTiO2 due to the strong competitive adsorption on the surface of NPs. The two-site kinetic retention model provides the good simulation for their transport behavior. The likely mechanism is that the secondary energy minimum of nTiO2 in NH4(+) system associated with the greater K2 at surface Site 2 (from model) on sand can be explained for the more reversible deposition. Ammonium leachate associated with NPs can thus be considered a serious concern.

  17. Cationic Nitrogen Doped Helical Nanographenes.

    Science.gov (United States)

    Xu, Kun; Feng, Xinliang; Berger, Reinhard; Popov, Alexey A; Weigand, Jan J; Vincon, Ilka; Machata, Peter; Hennersdorf, Felix; Zhou, Youjia; Fu, Yubin

    2017-09-13

    Herein, we report on the synthesis of a series of novel cationic nitrogen doped nanographenes (CNDN) by rhodium catalyzed annulation reactions. This powerful method allows for the synthesis of cationic nanographenes with non-planar, axial chiral geometries. Single-crystal X-ray analysis reveals helical and cove-edged structures. Compared to their all-carbon analogues, the CNDN exhibit energetically lower lying frontier orbitals with a reduced optical energy gap and an electron accepting behavior. All derivatives show quasi reversible reductions in cyclic voltammetry. Depending on the number of nitrogen dopant, in situ spectroelectrochemistry proves the formation of neutral radicals (one nitrogen dopant) or radical cations (two nitrogen dopants) upon reduction. The developed synthetic protocol paves the way for the design and synthesis of expanded nanographenes or even graphene nanoribbons containing cationic nitrogen doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  19. Immunogenicity and safety of monovalent RIVM meningococcal B OMP vesicle F91 vaccine administered to children that received hexavalent meningococcal B vaccine 2.5 years ago

    NARCIS (Netherlands)

    Lafeber AB; Limpt CJP van; Berbers GAM; Labadie J; Kleijn ED de; Groot R de; Rumke HC; Alphen AJW van; Sophia Kinderziekenhuis /; LVO

    2000-01-01

    This report describes the results with respect to immunogenicity as well as reactogenicity of a monovalent P1.7h,4 OMV vaccine (MonoMen) used as booster vaccination in children previously vaccinated with a hexavalent MenB vaccine. The participants in this study were immunised in 1995-1996 with hexav

  20. International collaboration to assess the risk of Guillain Barré Syndrome following Influenza A (H1N1) 2009 monovalent vaccines

    NARCIS (Netherlands)

    C. Dodd (Caitlin); S.A. Romio (Silvana); S. Black (Steve); C. Vellozzi (Claudia); N.J. Andrews (Nick); M.C.J.M. Sturkenboom (Miriam); P. Zuber (Patrick); W. Hua (Wei); J. Bonhoeffer (Jan); J. Buttery (Jim); N. Crawford (Nigel); G. Deceuninck (Genevieve); C.S. de Vries (Corinne); P. de Wals (Philippe); D. Gimeno (David); H. Heijbel (Harald); H. Hughes (Hayley); K. Hur (Kwan); A. Hviid (Anders); J. Kelman (Jeffrey); T. Kilpi (Tehri); S.K. Chuang (S.); T. Macartney (Thomas); M. Rett (Melisa); V.R. Lopez-Callada (Vesta Richardson); D. Salmon (Daniel); F.G. Sanchez (Francisco Gimenez); N. Sanz (Nuria); B. Silverman (Bernard); J. Storsaeter (Jann); U. Thirugnanam (Umapathi); N.A.T. van der Maas (Nicoline); K. Yih (Katherine); T. Zhang (Teng Fei); H.S. Izurieta (Hector); B.J. Addis; A. Akhtar (Aysha); J. Cope (Judith); R.L. Davis (Robert); P. Gargiullo (Paul); X. Kurz (Xavier); B. Law (Barbara); I. Sahinovic (Isabelle); J. Tokars (Jerry); P. Serrano (Pedro); A. Cheng (Aixin); N.J. Andrews (Nick); P. Charles (Pat); H. Clothier (Hazel); B. Day (Bruce); T. Day (Timothy); P. Gates (Peter); R. MacDonnell (Richard); L. Roberts (Les); V. Rodriguez-Casero (Vic-toria); T. Wijeratne (Tissa); H.A.L. Kiers (Henk); C. Blyth (Christopher); R. Booy (Robert); E. Elliott (Elizabeth); M.R. Gold (Michael); H. Marshall; P. McIntyre (Peter); P. Richmond (Peter); J. Royle (Jenny); N.W. Wood (Nicholas); Y. Zurynski (Yvonne); G. Calvo (Gonzalo); M. Campins (Magda); N. Corominas (Nuria); F. Torres (Ferran); V. Valls; A. Vilella (Ángels); A. Dutra (Amalia); A. Eick-Cost (Angelia); H.M. Jackson (Henry); K. Garman (Katherine); Z. Hu (Zheng); J. Rigo; J. Badoo (Judith); D Cho (David); L.L. Polakowski (Laura); S.K. Sandhu (Sukhminder); G. Sun (Guoying); H.-S.S. Chan (Hoi-Shan Sophelia); K.-Y. Chan (Kwok-Yin); R. Cheung (Raymond); Y-F. Cheung (Yuk-Fai); S. Cherk (Sharon); S.K Chuang (S.); D. Fok (Dennis); B.-H. Fung (Bun-Hey); K.-F. Ko (Kwai-Fu); K.W. Lau (Ka Wing); K.-K. Lau (Kwok-Kwong); P. Li (Pulin); H.-T. Liu (Hui-Tung); S.-H. Liu (Shao-Haei); K. Mok (Kin); J. So (Joanna); W. Wong (Winnie); S.-P. Wu (Shun-Ping); V. Avagyan (Vardan); R. Ball (Robert); D. Burwen (Dale); R.L. Franks (Riley); J.M. Gibbs (Jonathan); R.E. Kliman (Rebecca); S. Kropp (Silke); T.E. MaCurdy (Thomas); D.B. Martin (David); S.-D.K. Sandhu (Sukhmin-Der); B.B. Worrall (Bradford B.); D.E.F. Fuentes (Dra. Elvira Fuentes); P.C.O. González (Paola Carolina Ojeda); V.F. Reyna (Valerie ); M. Kulldorff (Martin); G. Lee (Grace); T.A. Lieu (Tracy); S. Platt; G.D. Serres (Gaston De); K. Jabin (Kamilah); B.L.S. Soh (Bee Leng Sally); L. Arnheim-Dahlström (Lisen); A. Castot (Anne); H.E. de Melker (Hester); J.P. Dieleman (Jeanne); J. Hallgren (Jonal); B.C. Jacobs (Bart); K. Johansen (Kari); P Kramarz (Piotr); M. Lapeyre (Maryse); T. Leino (Tuija); D. Mølgaard-Nielsen (Ditte); M. Mosseveld (Mees); H.K. Olberg (Henning K); C.-M. Sammon (Cor-Mac); C. Saussier (Christel); M.J. Schuemie (Martijn); A. Sommet (Agnès); P. Sparen (Pär); H. Svanström (Henrik); A.M. Vanrolleghem (Ann M.); D.M. Weibel (Daniel); J.D. Domingo (Javier Diez); J.L. Esparza (José LuísMicó); R.M.O. Lucas (Rafael M. Ortí); J.B.M. Maseres (Juan B. Mollar); J.L.A. Sánchez (José Luís Alfonso); M.G. Sánchez (Mercedes Garcés); V.Z. Viguer (Vicente Zanón); F. Cunningham (Francesca); B. Thakkar (Bharat); R. Zhang (Rongping)

    2013-01-01

    textabstractBackground: The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barré syndrome (GBS), which

  1. Immunogenicity and safety of monovalent RIVM meningococcal B OMP vesicle F91 vaccine administered to children that received hexavalent meningococcal B vaccine 2.5 years ago

    NARCIS (Netherlands)

    Lafeber AB; van Limpt CJP; Berbers GAM; Labadie J; de Kleijn ED; de Groot R; Rumke HC; van Alphen AJW; LVO

    2000-01-01

    Dit rapport beschrijft een follow-up studie naar veiligheid en immunogeniciteit van monovalent P1.7h,4 OMV vaccin (MonoMen) gebruikt als boostervaccinatie in kinderen eerder gevaccineerd met hexavalent MenB vaccin. De deelnemers aan deze studie zijn in het kader van een eerdere studie gevaccineerd

  2. International collaboration to assess the risk of Guillain Barré Syndrome following Influenza A (H1N1) 2009 monovalent vaccines

    NARCIS (Netherlands)

    C. Dodd (Caitlin); S.A. Romio (Silvana); S. Black (Steve); C. Vellozzi (Claudia); N.J. Andrews (Nick); M.C.J.M. Sturkenboom (Miriam); P. Zuber (Patrick); W. Hua (Wei); J. Bonhoeffer (Jan); J. Buttery (Jim); N. Crawford (Nigel); G. Deceuninck (Genevieve); C.S. de Vries (Corinne); P. de Wals (Philippe); D. Gimeno (David); H. Heijbel (Harald); H. Hughes (Hayley); K. Hur (Kwan); A. Hviid (Anders); J. Kelman (Jeffrey); T. Kilpi (Tehri); S.K. Chuang (S.); T. Macartney (Thomas); M. Rett (Melisa); V.R. Lopez-Callada (Vesta Richardson); D. Salmon (Daniel); F.G. Sanchez (Francisco Gimenez); N. Sanz (Nuria); B. Silverman (Bernard); J. Storsaeter (Jann); U. Thirugnanam (Umapathi); N.A.T. van der Maas (Nicoline); K. Yih (Katherine); T. Zhang (Teng Fei); H.S. Izurieta (Hector); B.J. Addis; A. Akhtar (Aysha); J. Cope (Judith); R.L. Davis (Robert); P. Gargiullo (Paul); X. Kurz (Xavier); B. Law (Barbara); I. Sahinovic (Isabelle); J. Tokars (Jerry); P. Serrano (Pedro); A. Cheng (Aixin); N.J. Andrews (Nick); P. Charles (Pat); H. Clothier (Hazel); B. Day (Bruce); T. Day (Timothy); P. Gates (Peter); R. MacDonnell (Richard); L. Roberts (Les); V. Rodriguez-Casero (Vic-toria); T. Wijeratne (Tissa); H.A.L. Kiers (Henk); C. Blyth (Christopher); R. Booy (Robert); E. Elliott (Elizabeth); M.R. Gold (Michael); H. Marshall; P. McIntyre (Peter); P. Richmond (Peter); J. Royle (Jenny); N.W. Wood (Nicholas); Y. Zurynski (Yvonne); G. Calvo (Gonzalo); M. Campins (Magda); N. Corominas (Nuria); F. Torres (Ferran); V. Valls; A. Vilella (Ángels); A. Dutra (Amalia); A. Eick-Cost (Angelia); H.M. Jackson (Henry); K. Garman (Katherine); Z. Hu (Zheng); J. Rigo; J. Badoo (Judith); D Cho (David); L.L. Polakowski (Laura); S.K. Sandhu (Sukhminder); G. Sun (Guoying); H.-S.S. Chan (Hoi-Shan Sophelia); K.-Y. Chan (Kwok-Yin); R. Cheung (Raymond); Y-F. Cheung (Yuk-Fai); S. Cherk (Sharon); S.K Chuang (S.); D. Fok (Dennis); B.-H. Fung (Bun-Hey); K.-F. Ko (Kwai-Fu); K.W. Lau (Ka Wing); K.-K. Lau (Kwok-Kwong); P. Li (Pulin); H.-T. Liu (Hui-Tung); S.-H. Liu (Shao-Haei); K. Mok (Kin); J. So (Joanna); W. Wong (Winnie); S.-P. Wu (Shun-Ping); V. Avagyan (Vardan); R. Ball (Robert); D. Burwen (Dale); R.L. Franks (Riley); J.M. Gibbs (Jonathan); R.E. Kliman (Rebecca); S. Kropp (Silke); T.E. MaCurdy (Thomas); D.B. Martin (David); S.-D.K. Sandhu (Sukhmin-Der); B.B. Worrall (Bradford B.); D.E.F. Fuentes (Dra. Elvira Fuentes); P.C.O. González (Paola Carolina Ojeda); V.F. Reyna (Valerie ); M. Kulldorff (Martin); G. Lee (Grace); T.A. Lieu (Tracy); S. Platt; G.D. Serres (Gaston De); K. Jabin (Kamilah); B.L.S. Soh (Bee Leng Sally); L. Arnheim-Dahlström (Lisen); A. Castot (Anne); H.E. de Melker (Hester); J.P. Dieleman (Jeanne); J. Hallgren (Jonal); B.C. Jacobs (Bart); K. Johansen (Kari); P Kramarz (Piotr); M. Lapeyre (Maryse); T. Leino (Tuija); D. Mølgaard-Nielsen (Ditte); M. Mosseveld (Mees); H.K. Olberg (Henning K); C.-M. Sammon (Cor-Mac); C. Saussier (Christel); M.J. Schuemie (Martijn); A. Sommet (Agnès); P. Sparen (Pär); H. Svanström (Henrik); A.M. Vanrolleghem (Ann M.); D.M. Weibel (Daniel); J.D. Domingo (Javier Diez); J.L. Esparza (José LuísMicó); R.M.O. Lucas (Rafael M. Ortí); J.B.M. Maseres (Juan B. Mollar); J.L.A. Sánchez (José Luís Alfonso); M.G. Sánchez (Mercedes Garcés); V.Z. Viguer (Vicente Zanón); F. Cunningham (Francesca); B. Thakkar (Bharat); R. Zhang (Rongping)

    2013-01-01

    textabstractBackground: The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barré syndrome (GBS), which

  3. Monovalent rotavirus vaccine provides protection against an emerging fully heterotypic G9P[4] rotavirus strain in Mexico.

    Science.gov (United States)

    Yen, Catherine; Figueroa, Jesùs Reyna; Uribe, Edgar Sánchez; Carmen-Hernández, Luz Del; Tate, Jacqueline E; Parashar, Umesh D; Patel, Manish M; Richardson López-Collado, Vesta

    2011-09-01

    After the introduction of monovalent rotavirus vaccine (RV1) in Mexico in 2006-2007, diarrhea mortality and morbidity declined substantially among Mexican children under 5 years of age. In January 2010, surveillance identified the emergence of a novel G9P[4] rotavirus strain nationwide. We conducted a case-control study to assess the field effectiveness of RV1 against severe rotavirus gastroenteritis caused by this unusual strain and to determine whether the G9P[4] emergence was related to vaccine failure or failure to vaccinate. RV1 was 94% effective (95% confidence interval, 16%-100%) against G9P[4] rotavirus-related hospitalization, indicating that its emergence was likely unrelated to vaccine pressure.

  4. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition.

    Science.gov (United States)

    Weidman, Mark C; Seitz, Michael; Stranks, Samuel D; Tisdale, William A

    2016-08-23

    Colloidal perovskite nanoplatelets are a promising class of semiconductor nanomaterials-exhibiting bright luminescence, tunable and spectrally narrow absorption and emission features, strongly confined excitonic states, and facile colloidal synthesis. Here, we demonstrate the high degree of spectral tunability achievable through variation of the cation, metal, and halide composition as well as nanoplatelet thickness. We synthesize nanoplatelets of the form L2[ABX3]n-1BX4, where L is an organic ligand (octylammonium, butylammonium), A is a monovalent metal or organic molecular cation (cesium, methylammonium, formamidinium), B is a divalent metal cation (lead, tin), X is a halide anion (chloride, bromide, iodide), and n-1 is the number of unit cells in thickness. We show that variation of n, B, and X leads to large changes in the absorption and emission energy, while variation of the A cation leads to only subtle changes but can significantly impact the nanoplatelet stability and photoluminescence quantum yield (with values over 20%). Furthermore, mixed halide nanoplatelets exhibit continuous spectral tunability over a 1.5 eV spectral range, from 2.2 to 3.7 eV. The nanoplatelets have relatively large lateral dimensions (100 nm to 1 μm), which promote self-assembly into stacked superlattice structures-the periodicity of which can be adjusted based on the nanoplatelet surface ligand length. These results demonstrate the versatility of colloidal perovskite nanoplatelets as a material platform, with tunability extending from the deep-UV, across the visible, into the near-IR. In particular, the tin-containing nanoplatelets represent a significant addition to the small but increasingly important family of lead- and cadmium-free colloidal semiconductors.

  5. Arg-425 of the citrate transporter CitP is responsible for high affinity binding of di- and tricarboxylatese

    NARCIS (Netherlands)

    Bandell, M; Lolkema, JS

    2000-01-01

    The citrate transporter of Leuconostoc mesenteroides (CitP) catalyzes exchange of divalent anionic citrate from the medium for monovalent anionic lactate, which is an end product of citrate degradation. The exchange generates a membrane potential and thus metabolic energy for the cell. The mechanism

  6. Arg-425 of the Citrate Transporter CitP Is Responsible for High Affinity Binding of Di- and Tricarboxylates

    NARCIS (Netherlands)

    Bandell, Michael; Lolkema, Juke S.

    2000-01-01

    The citrate transporter of Leuconostoc mesenteroides (CitP) catalyzes exchange of divalent anionic citrate from the medium for monovalent anionic lactate, which is an end product of citrate degradation. The exchange generates a membrane potential and thus metabolic energy for the cell. The mechanism

  7. Cation Dependence, pH Tolerance, and Dosage Requirement of a Bioflocculant Produced by Bacillus spp. UPMB13: Flocculation Performance Optimization through Kaolin Assays

    Science.gov (United States)

    Zulkeflee, Zufarzaana; Aris, Ahmad Zaharin; Shamsuddin, Zulkifli H.; Yusoff, Mohd Kamil

    2012-01-01

    A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na+, Ca2+, and Mg2+, while Fe2+ and Al3+ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P < 0.05), respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v) CaCl2 and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements. PMID:22997497

  8. Cation Dependence, pH Tolerance, and Dosage Requirement of a Bioflocculant Produced by Bacillus spp. UPMB13: Flocculation Performance Optimization through Kaolin Assays

    Directory of Open Access Journals (Sweden)

    Zufarzaana Zulkeflee

    2012-01-01

    Full Text Available A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na+, Ca2+, and Mg2+, while Fe2+ and Al3+ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P<0.05, respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v CaCl2 and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements.

  9. Chemical Surface, Thermal and Electrical Characterization of Nafion Membranes Doped with IL-Cations

    Directory of Open Access Journals (Sweden)

    María del Valle Martínez de Yuso

    2014-04-01

    Full Text Available Surface and bulk changes in a Nafion membrane as a result of IL-cation doping (1-butyl-3-methylimidazolium tetrafluoroborate or BMIM+BF4 and phenyltrimethylammonium chloride or TMPA+Cl− were studied by X-ray photoelectron spectroscopy (XPS, contact angle, differential scanning calorimetry (DSC and impedance spectroscopy (IS measurements performed with dry samples after 24 h in contact with the IL-cations BMIM+ and TMPA+. IL-cations were selected due to their similar molecular weight and molar volume but different shape, which could facilitate/obstruct the cation incorporation in the Nafion membrane structure by proton/cation exchange mechanism. The surface coverage of the Nafion membrane by the IL-cations was confirmed by XPS analysis and contact angle, while the results obtained by the other two techniques (DSC and IS seem to indicate differences in thermal and electrical behaviour depending on the doping-cation, being less resistive the Nafion/BMIM+ membrane. For that reason, determination of the ion transport number was obtained for this membrane by measuring the membrane or concentration potential with the samples in contact with HCl solutions at different concentrations. The comparison of these results with those obtained for the original Nafion membrane provides information on the effect of IL-cation BMIM+ on the transport of H+ across wet Nafion/BMIM+ doped membranes.

  10. Humic Substances-dependent Aggregation and Transport of Cerium Oxide Nanoparticles in Porous Media at Different pHs and Ionic Strengths

    Science.gov (United States)

    Mu, L.; Jacobson, A. R.; Darnault, C. J. G.

    2015-12-01

    Cerium oxide nanoparticles (CeO2 NPs) are commonly used in several fields and industries, such as chemical and pharmaceutical, due to both their physical and chemical properties. For example, they are employed in the manufacturing of catalysts, as fuel additives, and as polishing agents. The release and exposure to CeO2 NPs can occur during their fabrication, application, and waste disposal, as well as through their life-cycle and accidents. Therefore, the assessment of the dynamic nature of CeO2 NPs stability and mobilty in the environment is of paramount importance to establish the environmental and public health risks associated with their inevitable release in the environment. Humic substances are a key element of soils and have been revealed to possibly affect the fate and transport of nanoparticles in soils. Consequently, our present research aims at investigating the influence that different pHs, monovalent and divalent cations, Suwannee River humic acid, and Suwanee River fulvic acid have on the aggregation, transport, and deposition of CeO2 NPs. Batch studies performed with different concentrations of humic and fulvic acids associated with a wide spectrum of pHs and ionic strengths were examined. Key variables from these batch studies were then examined to simulate experimental conditions commonly encountered in the soil-water system to conduct column transport experiments in order to establish the fate and transport of CeO2 NPs in saturated porous media, which is a critical phase in characterizing the behavior of CeO2 NPs in subsurface environmental systems.

  11. Regulation of free cytosolic Ca2+ concentration in the outer segments of bovine retinal rods by Na-Ca-K exchange measured with fluo-3. I. Efficiency of transport and interactions between cations.

    Science.gov (United States)

    Schnetkamp, P P; Li, X B; Basu, D K; Szerencsei, R T

    1991-12-05

    Regulation of free cytosolic Ca2+ concentration in the rod outer segments (ROS) isolated from bovine retinas was examined with the fluorescent Ca(2+)-indicating dye fluo-3. In situ calibration of cytosolic fluo-3 was done in the presence of the Ca2+ ionophore A23187 and yielded a dissociation constant of 500 nM for the Ca(2+)-fluo-3 complex. Ca2+ influx in Ca(2+)-depleted ROS was completely abolished when internal Na+ was removed suggesting that Ca2+ influx exclusively occurred via Na-Ca-K exchange. The most striking observation was that Na-Ca-K exchange could mediate a rapid increase in cytosolic free Ca2+ over the most of the usable indicating range of fluo-3 (from 10 nM to 2 microM), even when exposed to free external Ca2+ concentrations as low as 10 nM. From a comparison between changes in free Ca2+ and changes in total Ca2+, we conclude that physiologically occurring changes in cytosolic free Ca2+ are mediated by exchange fluxes less than 1% of the maximal Na-Ca-K exchange flux. The Na-Ca-K exchanger could mediate both K(+)-dependent and K(+)-independent Ca2+ influx; Li+ caused a complete inhibition of K(+)-independent Ca2+ influx, but had no effect on K(+)-dependent Ca2+ influx. We examined the complex interactions of alkali cations with Ca2+ influx and discuss the results in terms of a three-site model for the Na-Ca-K exchanger (Schnetkamp, P. P. M. and Szerencsei, R. T. (1991) J. Biol. Chem. 266, 189-197). Ca2+ competed with one Mg2+ ion or two Na+ ions for binding to a common site. High K+ concentration greatly diminished the ability of Na+ and Mg2+ to compete with Ca2+ for this common site on the exchanger protein. As a result, high internal K+ induced a conformation of the exchange protein that kinetically favoured Ca2+ extrusion.

  12. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; LUO XiaoMin; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang; ZHU WeiLiang

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system, which has been viewed as a new kind of binding force, as being compared with the classical interac-tions (e.g. hydrogen bonding, electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper, we present an overview of the typi-cal cation-π interactions in biological systems, the experimental and theoretical investigations on cation-π interactions, as well as the research results on cation-π interactions in our group.

  13. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  14. Centrifuge-induced hypergravity and glutamate efflux by reversal of high-affinity, sodium-dependent transporters from rat brain synaptosomes.

    Science.gov (United States)

    Borisova, T.; Himmelreich, N.

    Glutamate uptake by high affinity sodium-dependent glutamate transporters is essential for termination of the synaptic transmission. Glutamate transporters may also contribute to an increase in extracellular glutamate. Glutamate efflux can occur by reversal of the sodium-dependent glutamate transporters during ATP depletion and dissipation of the sodium gradient across the cell membrane. Depolarization-induced calcium independent release of neurotransmitter from synaptosomal cytosolic pool is Na+-dependent and due to reverse of the neurotransmitter transporters also. We used monovalent organic cations N-methyl-D-glucamine (NMDG) to replace extracellular sodium, suggesting that the reducing of Na+ elucidate further the mechanism underlying Ca2+-independent glutamate release. A reduction in extracellular sodium would facilitate reversal of sodium-dependent transporters with extrusion of glutamate. We have compared the basal release of glutamate in Ca2+-free Na+-supplemented and NMDG-supplemented medium in control and after exposure of animals to long-arm centrifuge-induced hypergravity (ten G, during one hour). Replacement of sodium by NMDG enhanced basal level of neurotransmitter. The value of basal level increased to 110± 4% and 140± 2% in the medium with NMDG in comparison with Na+ under the control and hypergravity conditions, respectively. It is likely to reflect the enhancement of the neurotransmitter level in cytosolic pool. Thermodynamic considerations show that the extracellular level of a amino acid neurotransmitter, such as glutamate, that can be generated by transporter reversal are directly proportional to the intracellular concentration of the intracellular concentration of amino acid. KCl-stimulated glutamate release from cytosolic pool increased not statistically after hypergravity loading. We examined the effects of transporter inhibitors DL-threo-beta-benzyloxyaspartate ( DL-TBOA) on the release to elucidate whether reverse transport via the

  15. Impact of sediment-seawater cation exchange on Himalayan chemical weathering fluxes

    Science.gov (United States)

    Lupker, Maarten; France-Lanord, Christian; Lartiges, Bruno

    2016-08-01

    Continental-scale chemical weathering budgets are commonly assessed based on the flux of dissolved elements carried by large rivers to the oceans. However, the interaction between sediments and seawater in estuaries can lead to additional cation exchange fluxes that have been very poorly constrained so far. We constrained the magnitude of cation exchange fluxes from the Ganga-Brahmaputra river system based on cation exchange capacity (CEC) measurements of riverine sediments. CEC values of sediments are variable throughout the river water column as a result of hydrological sorting of minerals with depth that control grain sizes and surface area. The average CEC of the integrated sediment load of the Ganga-Brahmaputra is estimated ca. 6.5 meq 100 g-1. The cationic charge of sediments in the river is dominated by bivalent ions Ca2+ (76 %) and Mg2+ (16 %) followed by monovalent K+ (6 %) and Na+ (2 %), and the relative proportion of these ions is constant among all samples and both rivers. Assuming a total exchange of exchangeable Ca2+ for marine Na+ yields a maximal additional Ca2+ flux of 28 × 109 mol yr-1 of calcium to the ocean, which represents an increase of ca. 6 % of the actual river dissolved Ca2+ flux. In the more likely event that only a fraction of the adsorbed riverine Ca2+ is exchanged, not only for marine Na+ but also Mg2+ and K+, estuarine cation exchange for the Ganga-Brahmaputra is responsible for an additional Ca2+ flux of 23 × 109 mol yr-1, while ca. 27 × 109 mol yr-1 of Na+, 8 × 109 mol yr-1 of Mg2+ and 4 × 109 mol yr-1 of K+ are re-absorbed in the estuaries. This represents an additional riverine Ca2+ flux to the ocean of 5 % compared to the measured dissolved flux. About 15 % of the dissolved Na+ flux, 8 % of the dissolved K+ flux and 4 % of the Mg2+ are reabsorbed by the sediments in the estuaries. The impact of estuarine sediment-seawater cation exchange appears to be limited when evaluated in the context of the long-term carbon cycle and

  16. Cation size effects in mixed-ion metaphosphate glasses: structural characterization by multinuclear solid state NMR spectroscopy.

    Science.gov (United States)

    Schneider, J; Tsuchida, J; Eckert, H

    2013-09-14

    Metaphosphate glasses with two monovalent species A(1-x)B(x)PO3 (0 ≤x≤ 1) show mixed-ion effects (MIE) in the dc conductivities and glass transition temperatures, which are strongly dependent on the cation size mismatch between the two mobile species. In the present contribution, mixed-ion metaphosphate glasses based on the cation combinations Cs-Li, Rb-Li, and Cs-Ag, exhibiting particularly large size mismatches, are analyzed by (31)P, (87)Rb, (109)Ag and (133)Cs NMR to determine possible correlations between this mismatch and some of the structural properties critical to the development of the MIE: the local environments around the mobile species and their spatial distribution relative to each other. The results are compared with those obtained in the Na-Ag metaphosphate series, which serves as a reference system, with minimized cation mismatch MIE. The local coordination environments of the Ag(+), Rb(+) and Cs(+) ions follow analogous compositional trends as previously observed in Na-based mixed-ion metaphosphate glasses: for a given cation species A, the average A-O distance shows an expansion/compression when this cation is replaced by a second species B with smaller/bigger ionic radius, respectively. This compositional differentiation of the structural sites for the mobile species may contribute to the MIE. Concerning the relative spatial distribution of the mobile ions, results from (7)Li-(133)Cs (SEDOR) experiments indicate a random mixture of Cs and Li in Cs-Li metaphosphate glasses. While this result is in agreement with one of the fundamental hypotheses of the models proposed to describe the MIE, it is at variance with the observation of various partial cation segregation phenomena observed in Na-based mixed alkali glasses. This result suggests that cation size mismatch is not the decisive parameter in determining segregation or non-statistical mixing of cations in the glass. In the Cs-Ag and Na-Ag glasses, (109)Ag spin-echo NMR reveals a progressive

  17. Ru(CO)3Cl(Glycinate) (CORM-3): A Carbon Monoxide–Releasing Molecule with Broad-Spectrum Antimicrobial and Photosensitive Activities Against Respiration and Cation Transport in Escherichia coli

    Science.gov (United States)

    Wilson, Jayne Louise; Jesse, Helen E.; Hughes, Bethan; Lund, Victoria; Naylor, Kathryn; Davidge, Kelly S.; Cook, Gregory M.; Mann, Brian E.

    2013-01-01

    Abstract Aims: Carbon monoxide (CO) delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial and toxic effects not mimicked by CO gas. The metal carbonyl Ru(CO)3Cl(glycinate) (CORM-3) is a novel, potent antimicrobial agent. Here, we established its mode of action. Results: CORM-3 inhibits respiration in several bacterial and yeast pathogens. In anoxic Escherichia coli suspensions, CORM-3 first stimulates, then inhibits respiration, but much higher concentrations of CORM-3 than of a classic protonophore are required for stimulation. Proton translocation measurements (H+/O quotients, i.e., H+ extrusion on pulsing anaerobic cells with O2) show that respiratory stimulation cannot be attributed to true “uncoupling,” that is, dissipation of the protonmotive force, or to direct stimulation of oxidase activity. Our data are consistent with CORM-3 facilitating the electrogenic transmembrane movement of K+ (or Na+), causing a stimulation of respiration and H+ pumping to compensate for the transient drop in membrane potential (ΔΨ). The effects on respiration are not mimicked by CO gas or control Ru compounds that do not release CO. Inhibition of respiration and loss of bacterial viability elicited by CORM-3 are reversible by white light, unambiguously identifying heme-containing oxidase(s) as target(s). Innovation: This is the most complete study to date of the antimicrobial action of a CO-RM. Noteworthy are the demonstration of respiratory stimulation, electrogenic ion transport, and photosensitive activity, establishing terminal oxidases and ion transport as primary targets. Conclusion: CORM-3 has multifaceted effects: increased membrane permeability, inhibition of terminal oxidases, and perhaps other unidentified mechanisms underlie its effectiveness in tackling microbial pathogenesis. Antioxid. Redox Signal. 19, 497–509. PMID:23186316

  18. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  19. Localization and Function of Carnitine/Organic Cation Transporter OCTN1/2 in Ocular Epithelium%肉碱/有机阳离子转运体OCTN1/2在眼表上皮细胞的定位及功能

    Institute of Scientific and Technical Information of China (English)

    安翠平; 毕建成; 李宝全; 许顺江; 宋国威

    2014-01-01

    Objective To investigate the localization and transport function of carnitine/organic cation transporter 1/2(OC‐TN1/2) in ocular epithelium ,and to provide a structural and functional basis for further study of transport mechanism of L‐carnitine in human ocular epithelium.Methods Immunofluorescence staining was performed to investigate the localization of OCTN1 or OCTN2 in human ocular epithelial cells or rabbit corneal and conjunctival epithelium.Apical or basal uptake of [3 H]‐L‐carnitine was determined by using the polarized epithelial cells grown onto collagen‐coated porous filter support.Results OCTN1 and OCTN2 proteins were detected in HCLE and HCjE cells ,rabbit corneal and conjunctival epithelium ,and they were predominately located in the membranes of the cells. HCLE and HCjE cells were able to transfer [3 H]‐L‐carnitine and most L‐carnitine was uptaken through the apical part of the cells.Conclusion OCTN1 and OCTN2 are mainly located in the apical part of human corneal and conjunctival epithelial cells ,and they are potentially involved in the transport of L‐carnitine in ocular tis‐sues.%目的:检测肉碱/有机阳离子转运体1/2(carnitine/organic cation transporter 1/2,OCTN1/2)在眼表上皮细胞的表达定位及转运功能,为进一步阐明左旋肉碱在人眼表上皮细胞的转运机制提供实验依据。方法采用免疫细胞化学的方法分别检测人角膜缘上皮(human corneal limbal epithelia ,HCLE)细胞和人结膜上皮(human conjunctival epithe‐lia ,HCjE)细胞以及兔眼角膜和结膜上皮组织中OCTN1和OCTN2的表达定位;利用Ⅰ型胶原蛋白包被的双层培养板培养HCLE和 HCjE细胞,并使之建立紧密连结,采用放射摄入实验检测其基底端和顶端转运[3 H]‐L‐carnitine的功能。结果 OCTN1和OCTN2蛋白在HCLE和HCjE细胞及兔眼角膜和结膜上皮组织中均有表达,且主要分布在细胞膜上;

  20. The protective efficacy of cloned Moraxella bovis pili in monovalent and multivalent vaccine formulations against experimentally induced infectious bovine keratoconjunctivitis (IBK).

    Science.gov (United States)

    Lepper, A W; Atwell, J L; Lehrbach, P R; Schwartzkoff, C L; Egerton, J R; Tennent, J M

    1995-07-01

    Calves were vaccinated with cloned Moraxella bovis pili of serogroup C (experiment 1) or B (experiment 2) either as a monovalent formulation or as part of a multivalent preparation with pili of six other serogroups. Within 4 weeks of the second vaccine dose vaccinated calves and non-vaccinated controls were challenged via the ocular route with either virulent M. bovis strain Dal2d (serogroup C) or M. bovis strain 3WO7 (serogroup B) in experiments 1 and 2, respectively. Calves vaccinated with multivalent vaccines had significantly lower antibody titres than those vaccinated with monovalent preparations. Nevertheless, the levels of protection against infectious bovine keratoconjunctivitis (IBK) achieved with multivalent vaccines were 72% and 83% for the groups challenged with M. bovis strains of serogroups B and C, respectively. The serogroup C monovalent vaccine gave 100% protection against experimentally induced IBK and M. bovis isolates cultured from the eyes 6 days post-challenge were identified as belonging solely to serogroup C. Unexpectedly, only 25% protection was achieved against homologous strain challenge of calves that received the monovalent serogroup B vaccine. Furthermore, the majority of M. bovis isolates recovered from calves in this group belonged to serogroup C, as did half of those isolates cultured from the multivalent vaccinates. The remaining bacterial isolates from the latter group, together with all isolates from the non-vaccinated controls, belonged to serogroup B. Results are consistent with the hypothesis that derivatives of the serogroup B challenge inoculum had expressed serogroup C pilus antigen within 6 days of the challenge, possibly as a result of pilus gene inversion occurring in response to the presence of specific antibody in eye tissues and tears.

  1. A non-invasive method of measuring concentrations of rubidium in rat skeletal muscle in vivo by 87Rb nuclear magnetic resonance spectroscopy: implications for the measurement of cation transport activity in vivo.

    Science.gov (United States)

    Syme, P D; Dixon, R M; Allis, J L; Aronson, J K; Grahame-Smith, D G; Radda, G K

    1990-03-01

    1. We have used n.m.r. spectroscopy to measure rubidium concentrations in the skeletal muscle of live intact rats. Using a 1.9 T superconducting magnet and an ear-phone coil tuned to both protons (1H) and rubidium (87Rb), it was possible to make measurements of both tissue rubidium content and water content, and from these measurements to obtain the rubidium concentration. 2. The n.m.r. estimate of rubidium concentration in muscle in vivo was found to be a constant 31% (SEM 4%) of that estimated by flame atomic absorption spectroscopy in an extract of excised muscle. This is close to the predicted theoretical n.m.r. visibility of 33%. The visibility was constant for muscle rubidium concentrations ranging between 10 and 34 mmol/l. 3. Rubidium concentration measurement by this method is unaffected by variations in sample geometry, sample volume, tissue conductivity, coil tuning and amplifier gain. 4. By using this method to measure changes in tissue rubidium concentration with time in the same animal, it should now be possible to assess the activity of ion transport systems, such as sodium- and potassium-activated adenosine triphosphatase in vivo, by measuring the rates of change of tissue rubidium concentrations during the administration of rubidium salts. 5. This method could also be used to measure the absolute concentration of any n.m.r.-visible nucleus and could be applied to man.

  2. Non-covalent ligand conjugation to biotinylated DNA nanoparticles using TAT peptide genetically fused to monovalent streptavidin.

    Science.gov (United States)

    Sun, Wenchao; Fletcher, David; van Heeckeren, Rolf Christiaan; Davis, Pamela B

    2012-09-01

    DNA nanoparticles (DNA NPs), which self-assemble from DNA plasmids and poly-L-lysine (pLL)-polyethylene glycol (PEG) block copolymers, transfect several cell types in vitro and in vivo with minimal toxicity and immune response. To further enhance the gene transfer efficiency of DNA NP and control its tropism, we established a strategy to efficiently attach peptide ligands to DNA NPs. The non-covalent biotin-streptavidin (SA) interaction was used for ligand conjugation to overcome problems associated with covalent conjugation methods. A fusion protein of SA with the HIV-1 TAT peptide was cloned, expressed, purified and attached to biotinylated DNA NPs. A modified SA system with tetrameric structure but monovalent biotin binding capacity was adopted and shown to reduce the aggregation of biotinylated DNA NPs compared to neutravidin. Compared to unmodified DNA NPs, TAT modified DNA NPs significantly enhanced in vitro gene transfer, particularly at low DNA concentrations. Studies of cellular uptake and cellular distribution of the DNA NPs indicated that attaching TAT enhanced binding of DNA NPs to cell surface but not internalization at high DNA concentrations. In vivo studies showed that TAT modified DNA NPs mediated equal level of gene transfer to the mouse airways via the luminal route compared to unmodified DNA NPs.

  3. Monovalent Ions and Water Dipoles in Contact with Dipolar Zwitterionic Lipid Headgroups-Theory and MD Simulations

    Directory of Open Access Journals (Sweden)

    Aljaž Velikonja

    2013-01-01

    Full Text Available The lipid bilayer is a basic building block of biological membranes and can be pictured as a barrier separating two compartments filled with electrolyte solution. Artificial planar lipid bilayers are therefore commonly used as model systems to study the physical and electrical properties of the cell membranes in contact with electrolyte solution. Among them the glycerol-based polar phospholipids which have dipolar, but electrically neutral head groups, are most frequently used in formation of artificial lipid bilayers. In this work the electrical properties of the lipid layer composed of zwitterionic lipids with non-zero dipole moments are studied theoretically. In the model, the zwitterionic lipid bilayer is assumed to be in contact with aqueous solution of monovalent salt ions. The orientational ordering of water, resulting in spatial variation of permittivity, is explicitly taken into account. It is shown that due to saturation effect in orientational ordering of water dipoles the relative permittivity in the zwitterionic headgroup region is decreased, while the corresponding electric potential becomes strongly negative. Some of the predictions of the presented mean-field theoretical consideration are critically evaluated using the results of molecular dynamics (MD simulation.

  4. The role of aspartate-235 in the binding of cations to an artificial cavity at the radical site of cytochrome c peroxidase.

    Science.gov (United States)

    Fitzgerald, M M; Trester, M L; Jensen, G M; McRee, D E; Goodin, D B

    1995-09-01

    The activated state of cytochrome c peroxidase, compound ES, contains a cation radical on the Trp-191 side chain. We recently reported that replacing this tryptophan with glycine creates a buried cavity at the active site that contains ordered solvent and that will specifically bind substituted imidazoles in their protonated cationic forms (Fitzgerald MM, Churchill MJ, McRee DE, Goodin DB, 1994, Biochemistry 33:3807-3818). Proposals that a nearby carboxylate, Asp-235, and competing monovalent cations should modulate the affinity of the W191G cavity for ligand binding are addressed in this study. Competitive binding titrations of the imidazolium ion to W191G as a function of [K+] show that potassium competes weakly with the binding of imidazoles. The dissociation constant observed for potassium binding (18 mM) is more than 3,000-fold higher than that for 1,2-dimethylimidazole (5.5 microM) in the absence of competing cations. Significantly, the W191G-D235N double mutant shows no evidence for binding imidazoles in their cationic or neutral forms, even though the structure of the cavity remains largely unperturbed by replacement of the carboxylate. Refined crystallographic B-values of solvent positions indicate that the weakly bound potassium in W191G is significantly depopulated in the double mutant. These results demonstrate that the buried negative charge of Asp-235 is an essential feature of the cation binding determinant and indicate that this carboxylate plays a critical role in stabilizing the formation of the Trp-191 radical cation.

  5. In-vitro Neurotoxicity of Two Malaysian Krait Species (Bungarus candidus and Bungarus fasciatus Venoms: Neutralization by Monovalent and Polyvalent Antivenoms from Thailand

    Directory of Open Access Journals (Sweden)

    Muhamad Rusdi Ahmad Rusmili

    2014-03-01

    Full Text Available Bungarus candidus and Bungarus fasciatus are two species of krait found in Southeast Asia. Envenoming by these snakes is often characterized by neurotoxicity and, without treatment, causes considerable morbidity and mortality. In this study, the in vitro neurotoxicity of each species, and the effectiveness of two monovalent antivenoms and a polyvalent antivenom, against the neurotoxic effects of the venoms, were examined in a skeletal muscle preparation. Both venoms caused concentration-dependent inhibition of indirect twitches, and attenuated responses to exogenous nicotinic receptor agonists, in the chick biventer preparation, with B. candidus venom being more potent than B. fasciatus venom. SDS-PAGE and western blot analysis indicated different profiles between the venoms. Despite these differences, most proteins bands were recognized by all three antivenoms. Antivenom, added prior to the venoms, attenuated the neurotoxic effect of the venoms. Interestingly, the respective monovalent antivenoms did not neutralize the effects of the venom from the other Bungarus species indicating a relative absence of cross-neutralization. Addition of a high concentration of polyvalent antivenom, at the t90 time point after addition of venom, partially reversed the neurotoxicity of B. fasciatus venom but not B. candidus venom. The monovalent antivenoms had no significant effect when added at the t90 time point. This study showed that B. candidus and B. fasciatus venoms display marked in vitro neurotoxicity in the chick biventer preparation and administration of antivenoms at high dose is necessary to prevent or reverse neurotoxicity.

  6. In-vitro neurotoxicity of two Malaysian krait species (Bungarus candidus and Bungarus fasciatus) venoms: neutralization by monovalent and polyvalent antivenoms from Thailand.

    Science.gov (United States)

    Rusmili, Muhamad Rusdi Ahmad; Yee, Tee Ting; Mustafa, Mohd Rais; Othman, Iekhsan; Hodgson, Wayne C

    2014-03-12

    Bungarus candidus and Bungarus fasciatus are two species of krait found in Southeast Asia. Envenoming by these snakes is often characterized by neurotoxicity and, without treatment, causes considerable morbidity and mortality. In this study, the in vitro neurotoxicity of each species, and the effectiveness of two monovalent antivenoms and a polyvalent antivenom, against the neurotoxic effects of the venoms, were examined in a skeletal muscle preparation. Both venoms caused concentration-dependent inhibition of indirect twitches, and attenuated responses to exogenous nicotinic receptor agonists, in the chick biventer preparation, with B. candidus venom being more potent than B. fasciatus venom. SDS-PAGE and western blot analysis indicated different profiles between the venoms. Despite these differences, most proteins bands were recognized by all three antivenoms. Antivenom, added prior to the venoms, attenuated the neurotoxic effect of the venoms. Interestingly, the respective monovalent antivenoms did not neutralize the effects of the venom from the other Bungarus species indicating a relative absence of cross-neutralization. Addition of a high concentration of polyvalent antivenom, at the t90 time point after addition of venom, partially reversed the neurotoxicity of B. fasciatus venom but not B. candidus venom. The monovalent antivenoms had no significant effect when added at the t90 time point. This study showed that B. candidus and B. fasciatus venoms display marked in vitro neurotoxicity in the chick biventer preparation and administration of antivenoms at high dose is necessary to prevent or reverse neurotoxicity.

  7. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chih-Jen [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, University of Wisconsin - Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jean, Jiin-Shuh; Liu, Chia-Chuan [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca{sup 2+} as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK{sub a2} (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d{sub 001}) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  8. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite.

    Science.gov (United States)

    Wang, Chih-Jen; Li, Zhaohui; Jiang, Wei-Teh; Jean, Jiin-Shuh; Liu, Chia-Chuan

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca(2+) as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK(a2) (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d(001)) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Alkali ion transport of primycin modified erythrocytes.

    Science.gov (United States)

    Blaskó, K; Györgyi, S

    1981-01-01

    The effects of the antibiotic primycin on alkali cation transport of human erythrocytes were investigated. Primycin selectively increases the permeability of erythrocytes to alkali-cations according to the sequence: Cs+ greater than Rb+ approximately K+ greater than Na+. The time course of the cation effluxes depends on the antibiotic concentration and can be altered by negatively charged SDS. Some evidence is given for the mechanism of primycin-membrane interaction.

  10. Separation study of some heavy metal cations through a bulk liquid membrane containing 1,13-bis(8-quinolyl-1,4,7,10,13-pentaoxatridecane

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Rounaghi

    2016-09-01

    Full Text Available Competitive permeation of seven metal cations from an aqueous source phase containing equimolar concentrations of Co2+, Fe3+, Cd2+, Cu2+, Zn2+, Ag+ and Pb2+ metal ions at pH 5 into an aqueous receiving phase at pH 3 through an organic phase facilitated by 1,13-bis(8-quinolyl-1,4,7,10,13-pentaoxatridecane (Kryptofix5 as a carrier was studied as bulk liquid membrane transport. The obtained results show that the carrier is highly selective for Ag+ cation and under the employed experimental conditions, it transports only this metal cation among the seven studied metal cations. The effects of various organic solvents on cation transport rates have been demonstrated. Among the organic solvents involving nitrobenzene (NB, chloroform (CHCl3, dichloromethane (DCM and 1,2-dichloroethane (1,2-DCE which were used as liquid membrane, the most transport rate was obtained for silver (I cation in DCM. The sequence of transport rate for this cation in organic solvents was: DCM > CHCl3 > 1,2-DCE > NB. The competitive transport of these seven metal cations was also studied in CHCl3–NB and CHCl3–DCM binary solvents as membrane phase. The results show that the transport rate of Ag+ cation is sensitive to the solvent composition and a non-linear relationship was observed between the transport rate of Ag+ and the composition of these binary mixed non-aqueous solvents. The influence of the stearic acid, palmitic acid and oleic acid as surfactant in the membrane phase on the transport of the metal cations was also investigated.

  11. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.

    2010-03-01

    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  12. Explorations of a series of second order nonlinear optical materials based on monovalent metal gold(III) iodates.

    Science.gov (United States)

    Huang, Chao; Hu, Chun-Li; Xu, Xiang; Yang, Bing-Ping; Mao, Jiang-Gao

    2013-10-07

    The syntheses, crystal structures, and characterizations of a series of monovalent metal gold(III) iodates, namely, α-NaAu(IO3)4, β-NaAu(IO3)4, RbAu(IO3)4, α-CsAu(IO3)4, β-CsAu(IO3)4, and AgAu(IO3)4 are reported. Their structures feature Au(IO3)4(-) anions that are separated by alkali metal ions or silver(I) ions. The Au(IO3)4(-) anions in the polar α-NaAu(IO3)4, RbAu(IO3)4, and α-CsAu(IO3)4 are polar with all four iodate groups being located only above (or below) the AuO4 square plane (cis- configuration). α-NaAu(IO3)4, RbAu(IO3)4, and α-CsAu(IO3)4 display moderate strong Second-Hamonic Generation (SHG) responses of 1.17 ×, 1.33 ×, and 1.17 × KTP (KTiOPO4), respectively, and all three materials are type-I phase-matchable. The Au(IO3)4(-) anions in centrysymmetric β-NaAu(IO3)4, β-CsAu(IO3)4, and AgAu(IO3)4 are nonpolar with the four iodate groups of the Au(IO3)4(-) anion being located both above and below the AuO4 square plane (trans- configuration). IR and UV spectra, luminescent and ferroelectric properties have also been measured. Theoretical calculations of their optical properties based on density functional theory (DFT) methods were performed by using the CASTEP total-energy code.

  13. Neutralizing antibody responses in macaques induced by human immunodeficiency virus type 1 monovalent or trivalent envelope glycoproteins.

    Directory of Open Access Journals (Sweden)

    Gerald V Quinnan

    Full Text Available A major goal of efforts to develop a vaccine to prevent HIV-1 infection is induction of broadly cross-reactive neutralizing antibodies (bcnAb. In previous studies we have demonstrated induction of neutralizing antibodies that did cross-react among multiple primary and laboratory strains of HIV-1, but neutralized with limited potency. In the present study we tested the hypothesis that immunization with multiple HIV-1 envelope glycoproteins (Envs would result in a more potent and cross-reactive neutralizing response. One Env, CM243(N610Q, was selected on the basis of studies of the effects of single and multiple mutations of the four gp41 glycosylation sites. The other two Envs included R2 (subtype B and 14/00/4 (subtype F, both of which were obtained from donors with bcnAb. Rhesus monkeys were immunized using a prime boost regimen as in previous studies. Individual groups of monkeys were immunized with either one of the three Envs or all three. The single N610Q and N615Q mutations of CM243 Env did not disrupt protein secretion, processing into, or reactivity with mAbs, unlike other single or multiple deglycosylation mutations. In rabbit studies the N610Q mutation alone or in combination was associated with an enhanced neutralizing response against homologous and heterologous subtype E viruses. In the subsequent monkey study the response induced by the R2 Env regimen was equivalent to the trivalent regimen and superior to the other monovalent regimens against the virus panel used for testing. The 14/00/4 Env induced responses superior to CM243(N610Q. The results indicate that elimination of the glycosylation site near the gp41 loop results in enhanced immunogenicity, but that immunization of monkeys with these three distinct Envs was not more immunogenic than with one.

  14. Group a rotavirus and norovirus genotypes circulating in the northeastern Brazil in the post-monovalent vaccination era.

    Science.gov (United States)

    Sá, Ana Caroline C; Gómez, Mariela M; Lima, Ila Fernanda N; Quetz, Josiane S; Havt, Alexandre; Oriá, Reinaldo B; Lima, Aldo A; Leite, José Paulo G

    2015-09-01

    Group A rotaviruses (RVA) and noroviruses (NoV) are the leading cause of acute gastroenteritis (AGE) worldwide. Childhood diarrhea deaths and hospital admissions have declined since the introduction of the monovalent (G1P[8]) vaccine (Rotarix(®) [RV1]) in the National Immunization Program in Brazil in 2006. This study aims to investigate the epidemiological profile of NoV and RVA infections from children with AGE in the Northeastern region of Brazil in the post vaccine season. Two-hundred fecal samples collected from children up to 10 years old in Fortaleza, Ceará between 2008-2009 were screened for the presence of RVA and NoV. Positive samples were genotyped and sequenced. The RVA screening revealed 12% prevalence and all RVA strains belonged to G2P[4] genotype. Phylogenetic analysis based on the 11 RVA genome segments sequenced from eight samples revealed a DS-1-like genotype constellation: I2-R2-C2-M2-A2-N2-T2-E2-H2. For NoV screening, the prevalence observed was 17% and the following genotypes were detected: GII.4 (59%), GII.12 (17%), GII.6 (9%), GII.3 (6%), and GII.? (9%). At least four different NoVs genotypes and two RVA G2P[4] variants were identified circulating in the Northeastern region of Brazil. RVA phylogenetic analysis suggests that the RVA G2P[4] strains might have originated from intragenogroup reassortment events. Whether the genetic modifications observed in these contemporary G2P[4] RVA strains may impact the long-term effectiveness of the current vaccination programs remains to be explored. These data reinforce the importance of surveillance for monitoring the emergence of new strains of RVA and NoV and their impact on cases of acute gastroenteritis.

  15. Policy statement—Prevention of varicella: update of recommendations for use of quadrivalent and monovalent varicella vaccines in children.

    Science.gov (United States)

    2011-09-01

    Two varicella-containing vaccines are licensed for use in the United States: monovalent varicella vaccine (Varivax [Merck & Co, Inc, West Point, PA]) and quadrivalent measles-mumps-rubella-varicella vaccine (MMRV) (ProQuad [Merck & Co, Inc]). It is estimated from postlicensure data that after vaccination at 12 through 23 months of age, 7 to 9 febrile seizures occur per 10,000 children who receive the MMRV, and 3 to 4 febrile seizures occur per 10,000 children who receive the measles-mumps-rubella (MMR) and varicella vaccines administered concurrently but at separate sites. Thus, 1 additional febrile seizure is expected to occur per approximately 2300 to 2600 children 12 to 23 months old vaccinated with the MMRV, when compared with separate MMR and varicella vaccine administration. The period of risk for febrile seizures is from 5 through 12 days after receipt of the vaccine(s). No increased risk of febrile seizures is seen among patients 4 to 6 years of age receiving MMRV. Febrile seizures do not predispose to epilepsy or neurodevelopmental delays later in life and are not associated with long-term health impairment. The American Academy of Pediatrics recommends that either MMR and varicella vaccines separately or the MMRV be used for the first dose of measles, mumps, rubella, and varicella vaccines administered at 12 through 47 months of age. For the first dose of measles, mumps, rubella, and varicella vaccines administered at ages 48 months and older, and for dose 2 at any age (15 months to 12 years), use of MMRV generally is preferred over separate injections of MMR and varicella vaccines.

  16. The laws governing ionic liquid extraction of cations: partition of 1-ethylpyridinium monocation and paraquat dication in ionic liquid/water biphasic systems.

    Science.gov (United States)

    Hamamoto, Takuya; Okai, Miho; Katsuta, Shoichi

    2015-05-21

    To find the laws governing the extraction of cations from aqueous solutions into hydrophobic ionic liquids (ILs), we investigated the partition of 1-ethylpyridinium monocation and paraquat (1,1'-dimethyl-4,4'-bipyridinium) dication in various IL/water biphasic systems. Ten different ILs of 1-butyl-3-methylimidazolium-based or bis(trifluoromethanesulfonyl)amide-based salts were used. The distribution ratio of the target cations (T(n+)) was dependent on the initial concentration in the aqueous phase and also very sensitive to the kind of IL. The behavior was quantitatively explained on the basis of a model in which the extraction goes through both the ion exchange and ion pair transfer processes, while keeping the product of the aqueous concentrations of the IL constituent ions a constant value (solubility product, Ksp). The distribution ratio of T(n+) is expressed as a function of the difference between the initial and equilibrium concentrations of T(n+) in the aqueous phase (Δ[T(n+)]W), the aqueous solubility of IL (Ksp(1/2)), and the cation valence n. The distribution ratio is a nearly constant value (D0) when Δ[T(n+)]W ≪ Ksp(1/2)/n and decreases inversely proportional to the nth power of Δ[T(n+)]W when Δ[T(n+)]W ≫ Ksp(1/2)/n. The log D0 versus log Ksp(1/2) plot gives a linear relationship with a slope of +n for the ILs with the same anion but different cations and that with a slope of nearly -n for the ILs with the same cation but different anions. This means that the extractability dependence on the kinds of IL constituent ions is greater for the divalent cation than for the monovalent one.

  17. Cation Defects and Conductivity in Transparent Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Exarhos, Gregory J.; Windisch, Charles F.; Ferris, Kim F.; Owings, Robert R.

    2007-10-24

    High quality doped zinc oxide and mixed transition metal spinel oxide films have been deposited by means of sputter deposition from metal and metal oxide targets, and by spin casting from aqueous or alcoholic precursor solutions. Deposition conditions and post-deposition processing are found to alter cation oxidation states and their distributions in both oxide materials resulting in marked changes to both optical transmission and electrical response. For ZnO, partial reduction of the neat or doped material by hydrogen treatment of the heated film or by electrochemical processing renders the oxide n-type conducting. Continued reduction was found to diminish conductivity. In contrast, oxidation of the infrared transparent p-type spinel conductors typified by NiCo2O4 was found to increase conductivity. The disparate behavior of these two materials is caused in part by the sign of the charge carrier and by the existence of two different charge transport mechanisms that are identified as free carrier conduction and polaron hopping. While much work has been reported concerning structure/property relationships in the free carrier conducting oxides, there is a significantly smaller body of information on transparent polaron conductors. In this paper, we identify key parameters that promote conductivity in mixed metal spinel oxides and compare their behavior with that of the free carrier TCO’s.

  18. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate.

    Science.gov (United States)

    Nilius, Bernd; Mahieu, Frank; Prenen, Jean; Janssens, Annelies; Owsianik, Grzegorz; Vennekens, Rudi; Voets, Thomas

    2006-02-08

    Transient receptor potential (TRP) channel, melastatin subfamily (TRPM)4 is a Ca2+-activated monovalent cation channel that depolarizes the plasma membrane and thereby modulates Ca2+ influx through Ca2+-permeable pathways. A typical feature of TRPM4 is its rapid desensitization to intracellular Ca2+ ([Ca2+]i). Here we show that phosphatidylinositol 4,5-biphosphate (PIP2) counteracts desensitization to [Ca2+]i in inside-out patches and rundown of TRPM4 currents in whole-cell patch-clamp experiments. PIP2 shifted the voltage dependence of TRPM4 activation towards negative potentials and increased the channel's Ca2+ sensitivity 100-fold. Conversely, activation of the phospholipase C (PLC)-coupled M1 muscarinic receptor or pharmacological depletion of cellular PIP2 potently inhibited currents through TRPM4. Neutralization of basic residues in a C-terminal pleckstrin homology (PH) domain accelerated TRPM4 current desensitization and strongly attenuated the effect of PIP2, whereas mutations to the C-terminal TRP box and TRP domain had no effect on the PIP2 sensitivity. Our data demonstrate that PIP2 is a strong positive modulator of TRPM4, and implicate the C-terminal PH domain in PIP2 action. PLC-mediated PIP2 breakdown may constitute a physiologically important brake on TRPM4 activity.

  19. Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation.

    Science.gov (United States)

    Zhao, Xin-Gang; Yang, Ji-Hui; Fu, Yuhao; Yang, Dongwen; Xu, Qiaoling; Yu, Liping; Wei, Su-Huai; Zhang, Lijun

    2017-02-22

    Hybrid organic-inorganic halide perovskites with the prototype material of CH3NH3PbI3 have recently attracted intense interest as low-cost and high-performance photovoltaic absorbers. Despite the high power conversion efficiency exceeding 20% achieved by their solar cells, two key issues-the poor device stabilities associated with their intrinsic material instability and the toxicity due to water-soluble Pb(2+)-need to be resolved before large-scale commercialization. Here, we address these issues by exploiting the strategy of cation-transmutation to design stable inorganic Pb-free halide perovskites for solar cells. The idea is to convert two divalent Pb(2+) ions into one monovalent M(+) and one trivalent M(3+) ions, forming a rich class of quaternary halides in double-perovskite structure. We find through first-principles calculations this class of materials have good phase stability against decomposition and wide-range tunable optoelectronic properties. With photovoltaic-functionality-directed materials screening, we identify 11 optimal materials with intrinsic thermodynamic stability, suitable band gaps, small carrier effective masses, and low excitons binding energies as promising candidates to replace Pb-based photovoltaic absorbers in perovskite solar cells. The chemical trends of phase stabilities and electronic properties are also established for this class of materials, offering useful guidance for the development of perovskite solar cells fabricated with them.

  20. Aggregation kinetics of inorganic colloids in eutrophic shallow lakes: Influence of cyanobacterial extracellular polymeric substances and electrolyte cations.

    Science.gov (United States)

    Xu, Huacheng; Yang, Changming; Jiang, Helong

    2016-12-01

    The stability/aggregation propensity of inorganic colloids in eutrophic shallow lakes is of great essence in governing the water transparency and contaminant behavior. In this study, time-resolved dynamic light scattering was employed to investigate the aggregation kinetics of Al2O3 inorganic colloids over a wide range of cyanobacterial extracellular polymeric substance (EPS) concentrations in the absence and presence of electrolyte cations. The results showed that EPS adsorption alone greatly decreased the hydrodynamic diameters of colloidal particles, whose stability behavior followed closely the predictions of the classical DLVO theory. Electrolyte cations, however, can induce the aggregation of colloidal particles, and divalent Ca(2+) were found to be more efficient in destabilizing the colloids than monovalent Na(+), as indicated by the considerably lower critical coagulation concentrations (2.5 mM for Ca(2+) vs. 170 mM for Na(+)). Further addition of Ca(2+), i.e., >2.5 mM, caused an extremely high aggregation degree and rate. High resolution transmission electron microscopy revealed that this enhanced aggregation should be attributed to the gel-like bridging between colloidal particles, which were verified to be the amorphous EPS-Ca(2+) complexes. Field-emission scanning electron microscopy coupled with elemental mapping provided additional evidence that the bridging interaction of EPS with Ca(2+) was the predominant mechanism for the aggregation enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other Rosaceae species.

    Science.gov (United States)

    Zhou, Hongsheng; Qi, Kaijie; Liu, Xing; Yin, Hao; Wang, Peng; Chen, Jianqing; Wu, Juyou; Zhang, Shaoling

    2016-08-01

    The monovalent cation proton antiporters (CPAs) play essential roles in plant nutrition, development, and signal transduction by regulating ion and pH homeostasis of the cell. The CPAs of plants include the Na(+)/H(+) exchanger, K(+) efflux antiporter, and cation/H(+) exchanger families. However, currently, little is known about the CPA genes in Rosaceae species. In this study, 220 CPA genes were identified from five Rosaceae species (Pyrus bretschneideri, Malus domestica, Prunus persica, Fragaria vesca, and Prunus mume), and 53 of which came from P. bretschneideri. Phylogenetic, structure, collinearity, and gene expression analyses were conducted on the entire CPA genes of pear. Gene expression data showed that 35 and 37 CPA genes were expressed in pear fruit and pollen tubes, respectively. The transcript analysis of some CPA genes under abiotic stress conditions revealed that CPAs may play an important role in pollen tubes growth. The results presented here will be useful in improving understanding of the complexity of the CPA gene family and will promote functional characterization in future studies.

  2. In vitro inhibition of rat small intestinal absorption by lipophilic organic cations.

    Science.gov (United States)

    Elsenhans, B; Blume, R; Lembcke, B; Caspary, W F

    1985-02-28

    Cationic, lipid-soluble organic compounds may interfere with cation-mediated membrane transport processes. Thus, small intestinal absorption may be influenced by lipophilic organic cations. Therefore a series of arylalkylamines was studied in the concentration range from 0.5 to 20 mmol/l for their effect on the transport of various monosaccharides and leucine in the rat small intestine in vitro by means of the tissue accumulation technique. Whereas the monophenyl substituted monoamines (e.g. benzylamine, 2-phenylethylamine, 3-phenylpropylamine) did not show a significant effect on the active transport, the corresponding omega,omega-diphenyl derivatives exhibited a strong inhibition of the active transport of the sugars and the amino acid. These monoamines and drugs of similar structure (e.g. benzoctamine, diphenydramine) exhibited a mixed or non-competitive type of inhibition which correlated quite well with their octanol-water partition coefficients. In contrast, di- or triamines (e.g. harmaline, imipramine, pyrilamine) revealed a rather pure competitive type of inhibition. These findings tentatively suggest a different mode of action on the active transport by lipid-soluble organic amines according to the molecular charge distribution. In addition, membrane vesicles were used to examine the effect of the different amines on the sucrase activity. Regarding the cation-dependent hydrolysis of sucrose, however, no distinct pattern developed.

  3. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick

    2010-01-01

    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  4. Transport numbers in transdermal iontophoresis.

    Science.gov (United States)

    Mudry, Blaise; Guy, Richard H; Delgado-Charro, M Begoña

    2006-04-15

    Parameters determining ionic transport numbers in transdermal iontophoresis have been characterized. The transport number of an ion (its ability to carry charge) is key to its iontophoretic delivery or extraction across the skin. Using small inorganic ions, the roles of molar fraction and mobility of the co- and counterions present have been demonstrated. A direct, constant current was applied across mammalian skin in vitro. Cations were anodally delivered from either simple M(+)Cl(-) solutions (single-ion case, M(+) = sodium, lithium, ammonium, potassium), or binary and quaternary mixtures thereof. Transport numbers were deduced from ion fluxes. In the single-ion case, maximum cationic fluxes directly related to the corresponding ionic aqueous mobilities were found. Addition of co-ions decreased the transport numbers of all cations relative to the single-ion case, the degree of effect depending upon the molar fraction and mobility of the species involved. With chloride as the principal counterion competing to carry current across the skin (the in vivo situation), a maximum limit on the single or collective cation transport number was 0.6-0.8. Overall, these results demonstrate how current flowing across the skin during transdermal iontophoresis is distributed between competing ions, and establish simple rules with which to optimize transdermal iontophoretic transport.

  5. Assessment of epicutaneous testing of a monovalent Influenza A (H1N1 2009 vaccine in egg allergic patients

    Directory of Open Access Journals (Sweden)

    Pitt Tracy

    2011-02-01

    Full Text Available Abstract Background H1N1 is responsible for the first influenza pandemic in 41 years. In the fall of 2009, an H1N1 vaccine became available in Canada with the hopes of reducing the overall effect of the pandemic. The purpose of this study was to assess the safety of administering 2 different doses of a monovalent split virus 2009 H1N1 vaccine in egg allergic patients. Methods Patients were skin tested to the H1N1 vaccine in the outpatient paediatric and adult allergy and immunology clinics of the Health Sciences Centre and Children's Hospital of Winnipeg, Manitoba Canada. Individuals Results A total of 61 patients with egg allergy (history of an allergic reaction to egg with either positive skin test &/or specific IgE to egg >0.35 Ku/L were referred to our allergy clinics for skin testing to the H1N1 vaccine. 2 patients were excluded, one did not have a skin prick test to the H1N1 vaccine (only vaccine administration and the other passed an egg challenge during the study period. Ages ranged from 1 to 27 years (mean 5.6 years. There were 41(69.5% males and 18(30.5% females. All but one patient with a history of egg allergy, positive skin test to egg and/or elevated specific IgE level to egg had negative skin tests to the H1N1 vaccine. The 58 patients with negative skin testing to the H1N1 vaccine were administered the vaccine and observed for 30 minutes post vaccination with no adverse results. The patient with the positive skin test to the H1N1 vaccine was also administered the vaccine intramuscularly with no adverse results. Conclusions Despite concern regarding possible anaphylaxis to the H1N1 vaccine in egg allergic patients, in our case series 1/59(1.7% patients with sensitization to egg were also sensitized to the H1N1 vaccine. Administration of the H1N1 vaccine in egg allergic patients with negative H1N1 skin tests and observation is safe. Administering the vaccine in a 1 or 2 dose protocol without skin testing is a reasonable alternative

  6. Transport processes of the legume symbiosome membrane

    Directory of Open Access Journals (Sweden)

    Victoria C Clarke

    2014-12-01

    Full Text Available The symbiosome membrane (SM is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume-rhizobium symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologues of transporters of sulfate, calcium, peptides and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.

  7. Advancements in Anion Exchange Membrane Cations

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, Hai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Park, Andrew M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pivovar, Bryan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  8. Cation diffusion in the natural zeolite clinoptilolite

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, A.; White, K.J. [Science Research Institute, Chemistry Division, Cockcroft Building, University of Salford, Salford (United Kingdom)

    1999-12-14

    The natural zeolite clinoptilolite is mined commercially in many parts of the world. It is a selective exchanger for the ammonium cation and this has prompted its use in waste water treatment, swimming pools and in fish farming. It is also used to scavenge radioisotopes in nuclear waste clean-up. Further potential uses for clinoptilolite are in soil amendment and remediation. The work described herein provides thermodynamic data on cation exchange processes in clinoptilolite involving the NH{sub 4}, Na, K, Ca, and Mg cations. The data includes estimates of interdiffusion coefficients together with free energies, entropies and energies of activation for the cation exchanges studied. Suggestions are made as to the mechanisms of cation-exchanges involved.

  9. Cation selectivity by the CorA Mg2+ channel requires a fully hydrated cation.

    Science.gov (United States)

    Moomaw, Andrea S; Maguire, Michael E

    2010-07-27

    The CorA Mg(2+) channel is the primary uptake system in about half of all bacteria and archaea. However, the basis for its Mg(2+) selectivity is unknown. Previous data suggested that CorA binds a fully hydrated Mg(2+) ion, unlike other ion channels. The crystal structure of Thermotoga maritima CorA shows a homopentamer with two transmembrane segments per monomer connected by a short periplasmic loop. This highly conserved loop, (281)EFMPELKWS(289) in Salmonella enterica serovar Typhimurium CorA, is the only portion of the channel outside of the cell, suggesting a role in cation selectivity. Mutation of charged residues in the loop, E281 and K287, to any of several amino acids had little effect, demonstrating that despite conservation electrostatic interactions with these residues are not essential. While mutation of the universally conserved E285 gave a minimally functional channel, E285A and E285K mutants were the most functional, again indicating that the negative charge at this position is not a determining factor. Several mutations at K287 and W288 behaved anomalously in a transport assay. Analysis indicated that mutation of K287 and W288 disrupts cooperative interactions between distinct Mg(2+) binding sites. Overall, these results are not compatible with electrostatic interaction of the Mg(2+) ion with the periplasmic loop. Instead, the loop appears to form an initial binding site for hydrated Mg(2+), not for the dehydrated cation. The loop residues may function to accelerate dehydration of the before entry of Mg(2+) into the pore of the channel.

  10. Cationic Bolaamphiphiles for Gene Delivery

    Science.gov (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  11. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  12. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  13. Molecular Dynamics Study of a Dual-Cation Ionomer Electrolyte.

    Science.gov (United States)

    Chen, Xingyu; Chen, Fangfang; Jónsson, Erlendur; Forsyth, Maria

    2017-01-18

    The poly(N1222 )x Li1-x [AMPS] ionomer system (AMPS=2-acrylamido-2-methylpropane sulfonic acid) with dual cations has previously shown decoupled Li ion dynamics from polymer segmental motions, characterized by the glass-transition temperature, which can result in a conductive electrolyte material whilst retaining an appropriate modulus (i.e. stiffness) so that it can suppress dendrite formation, thereby improving safety when used in lithium-metal batteries. To understand this ion dynamics behavior, molecular dynamics techniques have been used in this work to simulate structure and dynamics in these materials. These simulations confirm that the Li ion transport is decoupled from the polymer particularly at intermediate N1222(+) concentrations. At 50 mol % N1222(+) concentration, the polymer backbone is more rigid than for higher N1222(+) concentrations, but with increasing temperature Li ion dynamics are more significant than polymer or quaternary ammonium cation motions. Herein we suggest an ion-hopping mechanism for Li(+) , arising from structural rearrangement of ionic clusters that could explain its decoupled behavior. Higher temperatures favor an aggregated ionic structure as well as enhancing these hopping motions. The simulations discussed here provide an atomic-level understanding of ion dynamics that could contribute to designing an improved ionomer with fast ion transport and mechanical robustness.

  14. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    Science.gov (United States)

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  15. Cation locations and dislocations in zeolites

    Science.gov (United States)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  16. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    Science.gov (United States)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2016-11-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  17. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    Science.gov (United States)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2017-04-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms . Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  18. Sulfate transport in Penicillium chrysogenum plasma membranes.

    OpenAIRE

    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J. M.; Konings, Wil N.

    1996-01-01

    Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded that the sulfate transport system catalyzes the symport of two protons with one sulfate anion.

  19. Low-dose aspirin use does not diminish the immune response to monovalent H1N1 influenza vaccine in older adults.

    Science.gov (United States)

    Jackson, M L; Bellamy, A; Wolff, M; Hill, H; Jackson, L A

    2016-03-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) may inhibit antibody production by peripheral blood mononuclear cells; one consequence of this could be decreased effectiveness of vaccines in NSAID users. Because many older adults use low-dose aspirin for primary or secondary prevention of coronary events, any inhibitory effect of aspirin on vaccine immune response could reduce the benefits of vaccination programmes in older adults. We tested whether immune response to vaccination differed between users vs. non-users of low-dose aspirin, using data from four randomized trials of monovalent 2009 pandemic influenza A(H1N1) vaccine. Geometric mean haemagglutination inhibition antibody titres were not significantly lower in low-dose aspirin users compared to non-users. Our results provide reassurance that influenza vaccination effectiveness is probably not reduced in older adults taking chronic low-dose aspirin.

  20. The effect of primycin on the intracellular monovalent ion and water contents of rat hepatocytes as revealed by energy dispersive X-ray microanalysis and interference microscopy.

    Science.gov (United States)

    Horváth, I; Nagy, I; Lustyik, G; Váradi, G

    1983-01-01

    Using energy-dispersive X-ray microanalytic and interference microscopic techniques, the intracellular concentration of the monovalent ions (Na+, K+, Cl+) as well as the intracytoplasmic and intracellular water contents were studied in normal and adrenalectomized rat hepatocytes with and without primycin treatment. Although primycin influenced significantly only the intracellular potassium content of the adrenalectomized group, it exerted a marked influence on the intranuclear water content in both the normal and adrenalectomized rats. The intranuclear water content increased significantly in the primycin-treated animals. The conclusion is drawn that the increased level of hydration of the nuclear substances reflects a 'decondensation' of the chromatin which on the other hand, may represent the basis for the various effects of primycin on the induction of certain hepatic enzymes.

  1. Concerted action of two cation filters in the aquaporin water channel

    DEFF Research Database (Denmark)

    Wu, Binghua; Steinbronn, Christina; Alsterfjord, Magnus

    2009-01-01

    Aquaporin (AQP) facilitated water transport is common to virtually all cell membranes and is marked by almost perfect specificity and high flux rates. Simultaneously, protons and cations are strictly excluded to maintain ionic transmembrane gradients. Yet, the AQP cation filters have not been...... identified experimentally. We report that three point mutations turned the water-specific AQP1 into a proton/alkali cation channel with reduced water permeability and the permeability sequence: H(+) >>K(+) >Rb(+) >Na(+) >Cs(+) >Li(+). Contrary to theoretical models, we found that electrostatic repulsion...... of alkali-leaking AQPs depolarized membrane potentials and compromised cell survival. Our results hint at the alkali-tight but solute-unselective NPA region as a feature of primordial channels and the proton-tight and solute-selective ar/R constriction variants as later adaptations within the AQP...

  2. The sequence to hydrogenate coronene cations: A journey guided by magic numbers

    CERN Document Server

    Cazaux, Stéphanie; Rougeau, Nathalie; Reitsma, Geert; Hoekstra, Ronnie; Teillet-Billy, Dominique; Morisset, Sabine; Spaans, Marco; Schlathölter, Thomas

    2016-01-01

    The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms att...

  3. Application of mixed-organic-cation for high performance hole-conductor-free perovskite solar cells.

    Science.gov (United States)

    Xiao, Meng; Zhao, Li; Wei, Shoubin; Li, Yanyan; Dong, Binghai; Xu, Zuxun; Wan, Li; Wang, Shimin

    2017-09-15

    ABX3-type organic lead halide perovskites have gained increasing attention as light harvester for solar cells due to their high power conversion efficiency (PCE). Recently, it has become a trend to avoid the use of expensive hole-transport materials (HTMs) and precious metals, such as Au, to be competitive in future commercial development. In this study, we fabricated mixed-cation perovskite-based solar cells through one-step spin-coating using methylammonium (CH3NH3(+)) and formamidinium (HN=CHNH3(+)) cations to extend the optical absorption range into the red region and enhance the utilization of solar light. The synthesized hole-conductor-free cells with carbon electrode and mixed cations exhibited increased short-circuit current, outperforming the cells prepared with pure methylammonium, and PCE of 10.55%. This paper proposes an efficient approach for fabricating high-performance and low-cost perovskite solar cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Comparative investigation on cation-cation (Al-Sn) and cation-anion (Al-F) co-doping in RF sputtered ZnO thin films: Mechanistic insight

    Science.gov (United States)

    Mallick, Arindam; Basak, Durga

    2017-07-01

    Herein, we report a comparative mechanistic study on cation-cation (Al-Sn) and cation-anion (Al-F) co-doped nanocrystalline ZnO thin films grown on glass substrate by RF sputtering technique. Through detailed analyses of crystal structure, surface morphology, microstructure, UV-VIS-NIR transmission-reflection and electrical transport property, the inherent characteristics of the co-doped films were revealed and compared. All the nanocrystalline films retain the hexagonal wurtzite structure of ZnO and show transparency above 90% in the visible and NIR region. As opposed to expectation, Al-Sn (ATZO) co-doped film show no enhanced carrier concentration consistent with the probable formation of SnO2 clusters supported by the X-ray photoelectron spectroscopy study. Most interestingly, it has been found that Al-F (AFZO) co-doped film shows three times enhanced carrier concentration as compared to Al doped and Al-Sn co-doped films attaining a value of ∼9 × 1020 cm-3 due to the respective cation and anion substitution. The carrier relaxation time increases in AFZO while it decreases significantly for ATZO film consistent with the concurrence of the impurity scattering in the latter.

  5. 尾加压素Ⅱ对大鼠血管外膜阳离子氨基酸转运体的影响%Effect of Urotendin Ⅱ on Cationic Amino Acid Transporter ( CAT - 1 and CAT -2B) in Isolated Aortic Adventitia of Rats

    Institute of Scientific and Technical Information of China (English)

    闫琳; 梁颖; 薛立华; 黎济荣; 贾月霞

    2011-01-01

    Objective To assess the gene expression of cationic amino acid transporter - 1 ( CAT - 1 ), CAT2B and inducible nitric oxide synthase (iNOS) in urotensin Ⅱ (UⅡ) - stimulated rat vascular adventitia.Methods The aortic adventitia were incubated in vitro.24 rats were randomly divided into normal group ,2U Ⅱ groups and LPS group.The aortic adventitia NO production was determined.Semi -quantitative RT- PCR was used to determine the mRNA concentrations of iNOS and CAT - 1 and CAT - 2B in aortic adventitia.Resuits After incubation of aorta for 6 hours, nitrite production in U Ⅱ group significantly increased (27% ,P < 0.05,49%, P <0.01 ).UⅡ - induced CAT - 1 、CAT -2B and iNOS mRNA increased significantly in aortic adventitia.Conclusion The results illustrate that U Ⅱ induces the transcription of high - affinity CAT - 1 and CAT-2B in aortic adventitia.Transcription of CAT- 1 and CAT-2B are correlated well with aortic NO biosynthesis.%目的:观察尾加压素Ⅱ(UⅡ)对大鼠主动脉血管外膜阳离子氨基酸转运体(CAT-1、CAT-2B)和诱导型一氧化氮合酶(iNOS)基因表达影响.方法:SD大鼠24只,250-3009,随机分为空白对照组、UⅡ组(10(-9)和10(-8)mol·L(-1))和脂多糖(LPS)阳性对照组,每组6只.分离雄性SD大鼠胸主动脉外膜,分别加入单纯孵育液、不同浓度UⅡ和LPS孵育6h.测定孵育液中亚硝酸盐(NO2)含量;RT-PCR方法测定CAT-1、CAT-2B和iNOS mRNA基因表达.结果:与对照组比较UⅡ(10(-9)-10(-8)·L(-1))刺激血管外膜NO2;生成增加(27%,P<0.05,和49%,P<0.01);UⅡ组血管外膜阳离子氨基酸转运体(CAT-1和CAT-2B)mRNA水平增加(均P<0.01),iNOS mRNA表达增加(P<0.01).结论:UⅡ可激活血管外膜CAT-1和CAT-2B基因表达,其变化可能参与了NO释放从而引起血管的扩张.

  6. Anisotropic ionic transport in quartz: the effect of twin boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, Mark [Mineral Physics Group, Department of Earth Sciences, University of Cambridge, Cambridge (United Kingdom)). E-mail: mcal00@esc.cam.ac.uk; Dove, Martin T.; Salje, Ekhard K.H. [Mineral Physics Group, Department of Earth Sciences, University of Cambridge, Cambridge (United Kingdom)

    2001-10-22

    Transport of Na{sup +} and Li{sup +} under the influence of an electric field in twinned quartz is simulated using molecular dynamics techniques. Comparison between bulk transport and transport along twin boundaries shows that the cations are trapped inside twin walls for weak fields along the crystallographic c-axis. Stronger fields lead to transport along twin walls with significantly lower mobility than in the bulk. With E along [110], transport in the wall is faster than in the bulk. We observe cation trapping preferentially in the twin walls when E is applied out of the plane of the wall. (author)

  7. Human NKCC2 cation–Cl– co-transporter complements lack of Vhc1 transporter in yeast vacuolar membranes.

    Science.gov (United States)

    Petrezselyova, Silvia; Dominguez, Angel; Herynkova, Pavla; Macias, Juan F; Sychrova, Hana

    2013-10-01

    Cation–chloride co-transporters serve to transport Cl– and alkali metal cations. Whereas a large family of these exists in higher eukaryotes, yeasts only possess one cation–chloride co-transporter, Vhc1, localized to the vacuolar membrane. In this study, the human cation–chloride co-transporter NKCC2 complemented the phenotype of VHC1 deletion in Saccharomyces cerevisiae and its activity controlled the growth of salt-sensitive yeast cells in the presence of high KCl, NaCl and LiCl. A S. cerevisiae mutant lacking plasma-membrane alkali–metal cation exporters Nha1 and Ena1-5 and the vacuolar cation–chloride co-transporter Vhc1 is highly sensitive to increased concentrations of alkali–metal cations, and it proved to be a suitable model for characterizing the substrate specificity and transport activity of human wild-type and mutated cation–chloride co-transporters.

  8. The effect of cations on the aggregation of commercial ZnO nanoparticle suspension

    Science.gov (United States)

    Liu, Wei-Szu; Peng, Yu-Huei; Shiung, Chia-En; Shih, Yang-hsin

    2012-12-01

    Nanoscale ZnO materials have been largely used in many products due to their distinct properties. However, ZnO nanoparticles (NPs) are hazardous to human health and the ecosystem. The characteristics and the stability of ZnO NPs are relevant to their fate in the environment and their potential toxicities. In this study, a stable commercial ZnO NP suspension was chosen to investigate its aggregation under various salt additions. Different concentrations of NaCl, KCl and CaCl2 were chosen to represent various environmental conditions. Under pH 8-9, the surface charge of commercial ZnO NPs was negative. The behavior of the stabilized ZnO NPs in water was affected by ionic combinations and ionic strength; that is, divalent cations were more effective than monovalent ones in promoting aggregation formation. The attachment efficiencies of ZnO aggregates were calculated based upon the aggregation kinetics. The critical coagulation concentration values for this commercial ZnO NPs were higher than previous reported for ZnO NPs, indicating this ZnO NP could be stable in the aquatic environment and might have increased hazardous potentials. Based upon the Derjaguin-Landau-Verwey-Overbeek theory, interactions between ZnO NPs in the presence of different ions were evaluated to illustrate the aggregation mechanism. Our results indicated that critical ionic type and concentration promote the aggregation of stable ZnO NPs. These understandings also can facilitate the design of the precipitation treatment to remove NPs from water.

  9. The effects of cationic contamination on the physio-chemical properties of perfluoroionomer membranes

    Science.gov (United States)

    Molter, Trent M.

    Proton Exchange Membrane (PEM) technology cannot meet fuel cell and electrolyzer durability standards for stationary and transportation applications. Cell designs are not of sufficient maturity to demonstrate more than several thousand hours of invariant performance. One of the limiting factors is the operational lifetime of membrane electrode assemblies (MEA's) because of pin-holing, dry-out, mechanical breeches, chemical attack and contamination. This program investigated the role of contamination on the degradation of perfluorinated membranes in fuel cell and electrolysis environments. Tests were conducted to develop an understanding of the effects of cationic contaminants on fundamental design parameters for these membranes including water content, ion exchange capacity, gas diffusion, ionic conductivity, and mechanical properties. Tests showed that cations rapidly transport into the membrane and disperse throughout its structure achieving high equilibrium concentrations. Ion charge density appears to govern membrane water content with small ions demonstrating the highest water content. Permeability studies showed transport in accordance with Fick's law in the following order: H2>O2>N 2>H2O. Cations negatively affect gas and water transport, with charge density affecting transport rates. Unique diffusion coefficients were calculated for each contaminating species suggesting that the contaminant is an integral participant in the transport process. AC resistance measurements showed that size of the ion charge carrier is an important factor in the conduction mechanism and that membrane area specific resistance correlates well with water content. Increases in membrane yield strength and the modulus of elasticity were demonstrated with increased contamination. Tensile tests showed that cation size plays an important role in determining the magnitude of this increase, indicating that larger ions interfere more with strain than smaller ones. Contaminants reduced

  10. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting...... apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage...... conductances, the variation of the rate coefficient for sulfate influx (y) was positively correlated with the rate coefficient for Cl- influx (x), y = 0.035 x - 0.0077 cm/sec (r = 0.9935, n = 15). 5. Addition of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine to the serosal bath of short...

  11. Quantitative characterization of non-classic polarization of cations on clay aggregate stability.

    Directory of Open Access Journals (Sweden)

    Feinan Hu

    Full Text Available Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+ at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability.

  12. Effect of alkali-treated lipopolysaccharide on the intracellular cations of human erythrocytes.

    Science.gov (United States)

    Warren, J R; Kowalski, M M; Wallas, C H

    1977-08-01

    The adsorption to human erythrocytes of Escherichia coli lipopolysaccharide treated by mild alkaline hydrolysis (h-LPS) stimulated an increase in the intracellular Na+ concentration and a decrease in the intracellular K+ concentration of the erythrocytes. Erythrocytes treated by h-LPS remained responsive to the membrane adenosine triphosphatase inhibitors ouabain and ethacrynic acid, indicating that hLPS did not alter erythrocyte cations be depleting energy intermediates or uncoupling energy metabolism from active cation transport. The h-LPS-treated erythrocytes became non-agglutinable by the lectin concanavalin A prior to the development of changes in intracellular cations. In addition, h-LPS-treated erythrocytes demonstrated a three-fold greater cation response to ethacrynic acid than the untreated erythrocytes; this greater response was probably due to local membrane effects by h-LPS on the ethacrynic acid-sensitive adenosine triphosphatase. It is suggested that the h-LPS-induced alteration of erythrocyte cation content was secondary to an increase in ion permeability localized to the concanavalin A receptor regions of the erythrocyte membrane, possibly combined with indirect effects of membrane-bound h-LPS on ethacrynic acid-sensitive adenosine triphosphatase.

  13. Cationically polymerizable monomers derived from renewable sources

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.

    1992-10-01

    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  14. Metalated Nitriles: Cation-Controlled Cyclizations

    Science.gov (United States)

    Fleming, Fraser F.; Wei, Yunjing; Liu, Wang; Zhang, Zhiyu

    2008-01-01

    Judicious choice of cation allows the selective cyclization of substituted γ-hydroxynitriles to trans- or cis-decalins and trans- or cis-bicyclo[5.4.0]-undecanes. The stereoselectivities are consistent with deprotonations generating two distinctly different metalated nitriles: an internally coordinated nitrile anion with BuLi, and a C-magnesiated nitrile with i-PrMgCl. Employing cations to control the geometry of metalated nitriles permits stereodivergent cyclizations with complete control over the stereochemistry of the quaternary, nitrile-bearing carbon. PMID:17579448

  15. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin

    2009-01-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  16. Cation Effect on Copper Chemical Mechanical Polishing

    Science.gov (United States)

    Wang, Liang-Yong; Liu, Bo; Song, Zhi-Tang; Feng, Song-Lin

    2009-02-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demonstrates the worst performance. These results reveal a mechanism that small molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  17. Cationically polymerizable monomers derived from renewable sources

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.

    1992-10-01

    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  18. 不同环境因子对纳米羟基磷灰石在饱和填充柱中迁移规律的影响%Transport of Hydroxyapatite Nanoparticles in Saturated Packed Column:Effects of Humic acid,pH and Ionic Strengths

    Institute of Scientific and Technical Information of China (English)

    褚灵阳; 汪登俊; 王玉军; 司友斌; 周东美

    2011-01-01

    选用石英砂填充柱模拟土壤体系,通过测量纳米羟基磷灰石(Nano-HAP)ζ电位、出流比等来考察不同环境因素(腐殖酸浓度、pH和离子强度)对其在饱和石英砂柱中迁移规律的影响.结果表明,随着腐殖酸浓度的增加,Nano-HAP胶体的ζ电位相应增加(绝对值增加),吸附效率(α)相应降低,当溶液中腐殖酸浓度由0增加为10 mg/L时,Nano-HAP胶体的ζ电位由-15mV增加至-55 mV,吸附效率由1.0减小为0.012,迁移能力增加;此外,随着本体溶液pH增加,Nano-HAP胶体的ζ电位亦随之增加,吸附效率%Quartz sand was selected as collector and saturated packed column was constructed to explore the effects of environmental factors(humic acid,pH and ionic strengths of the bulk solution) on the transport and fate of hydroxyapatite nanoparticles(Nano-HAP) through measuring ζ potentials and representative ci/c0 of Nano-HAP.It was suggested that ζ potentials of Nano-HAP colloids became more negative with increasing humic acid concentration and the change in solution composition from 0 to 10 mg/L humic acid yielded an increase in the ζ potentials of Nano-HAP colloids from-15 mV to-55 mV and a sharp decrease in α(attachment efficiency) from 1.0 to 0.012,meanwhile,the increase in bulk solution pH yielded a slight decrease in α which enhancing its transportation in saturated packed column.However,ζ potentials of Nano-HAP colloids became less negative as the ionic strength of bulk solution increased due to the compression of diffuse double layer and yielded an increase in α which greatly impeded its mobility during the pore-water solution,meanwhile,divalent cations have significantly stronger influence on the transport of Nano-HAP than monovalent cations of the bulk solution.The increase in the concentration of monovalent cation(Na+) from 1 to 100 mmol/L yielded an increase in α from 0.030 to 0.13,and divalent cations(Ca2+) from 0.2 to 10 mmol

  19. Experimental study on desorption of soluble matter as influenced by cations in static water

    Institute of Scientific and Technical Information of China (English)

    Wen-sheng XU; Li CHEN; Xiao-xia TONG; Xiao-ping CHEN; Ping-cang ZHANG

    2014-01-01

    With variation of drainage basin environments, desorption of soluble matter has become one of the significant erosion processes in rivers. It has a considerable impact on flow and sediment transport, as well as processes of river bed deformation and landform evolution throughout a watershed. In this study, considering influences on sediment movement, especially on cohesive sediment transport, Ca2+ and H+ were chosen as characteristic ions of soluble matter, and the total desorption quantity of Ca2+ and pH value when the desorption equilibrium is reached were employed as two indexes representing the desorption of soluble matter. By means of an indoor experiment, desorption of soluble matter as influenced by cations in static water was investigated. The results show that the total desorption quantity of soluble matter increases with the initial cation concentration until a maximum desorption quantity value is obtained and maintained. The total desorption quantity of soluble matter depends on properties of the specific cations in static water, and the stronger the affinity is between the cation and sediment surface, the higher the total desorption quantity will be. Finally, a strong approximate linear relationship between desorption quantities for different kinds of soluble matters was obtained, which means that variation of pH values can accurately reflect the desorption results of soluble matter.

  20. Drosophila TRPML forms PI(3,5)P2-activated cation channels in both endolysosomes and plasma membrane.

    Science.gov (United States)

    Feng, Xinghua; Huang, Yu; Lu, Yungang; Xiong, Jian; Wong, Ching-On; Yang, Pu; Xia, Jintang; Chen, De; Du, Guangwei; Venkatachalam, Kartik; Xia, Xuefeng; Zhu, Michael X

    2014-02-14

    Transient Receptor Potential mucolipin (TRPML) channels are implicated in endolysosomal trafficking, lysosomal Ca(2+) and Fe(2+) release, lysosomal biogenesis, and autophagy. Mutations in human TRPML1 cause the lysosome storage disease, mucolipidosis type IV (MLIV). Unlike vertebrates, which express three TRPML genes, TRPML1-3, the Drosophila genome encodes a single trpml gene. Although the trpml-deficient flies exhibit cellular defects similar to those in mammalian TRPML1 mutants, the biophysical properties of Drosophila TRPML channel remained uncharacterized. Here, we show that transgenic expression of human TRPML1 in the neurons of Drosophila trpml mutants partially suppressed the pupal lethality phenotype. When expressed in HEK293 cells, Drosophila TRPML was localized in both endolysosomes and plasma membrane and was activated by phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) applied to the cytoplasmic side in whole lysosomes and inside-out patches excised from plasma membrane. The PI(3,5)P2-evoked currents were blocked by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), but not other phosphoinositides. Using TRPML A487P, which mimics the varitint-waddler (Va) mutant of mouse TRPML3 with constitutive whole-cell currents, we show that TRPML is biphasically regulated by extracytosolic pH, with an optimal pH about 0.6 pH unit higher than that of human TRPML1. In addition to monovalent cations, TRPML exhibits high permeability to Ca(2+), Mn(2+), and Fe(2+), but not Fe(3+). The TRPML currents were inhibited by trivalent cations Fe(3+), La(3+), and Gd(3+). These features resemble more closely to mammalian TRPML1 than TRPML2 and TRPML3, but with some obvious differences. Together, our data support the use of Drosophila for assessing functional significance of TRPML1 in cell physiology.

  1. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery.

    Science.gov (United States)

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2015-01-28

    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  2. STXM / NEXAFS investigation of humic acid metal cation interaction

    Science.gov (United States)

    Plaschke, M.; Rothe, J.; Denecke, M. A.; Geckeis, H.

    2009-04-01

    the segregated metal cation/HA fractions exhibits a distinct complexation effect in the HA dense zones: a strong decrease of the carboxyl transition intensity is accompanied by the appearance of a new absorption feature at slightly lower energy adjacent to the carboxyl resonance. This interpretation is confirmed by comparison to similar observations obtained for metal ion complexes of polyacrylic acid used as a reference compound. Quantum chemical calculations show that the extent of the energy shift is primarily dependent on the metal cation and the resulting complex geometry. By laser scanning luminescence microscopy we were able to demonstrate that metal cations (e.g., Eu(III)) are enriched in the HA optically dense zones These zones presumably consist of HA fractions with increased amounts of complexing sites, thus playing a dominant role in the colloid mediated transport of actinides or lanthanides in aquatic systems. References: M. Plaschke, J. Rothe, M. Altmaier, M.A. Denecke, Th. Fanghänel, J. Electron Spectrosc. Relat. Phenom., 148 (2005) 151. A. Naber, M. Plaschke, J. Rothe, H. Hofmann, Th. Fanghänel, J. Electron Spectrosc. Relat. Phenom. 153 (2006) 71. M. K. Armbruster, B. Schimmelpfennig, M. Plaschke, J. Rothe, M. A. Denecke, R. Klenze, J. Electron Spectrosc. Relat. Phenom., doi:10.1016/j.elspec.2008.10.007

  3. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation.

    Science.gov (United States)

    Finnerty, Justin John; Peyser, Alexander; Carloni, Paolo

    2015-01-01

    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.

  4. Controlled Cationic Polymerization of N-Vinylcarbazol

    NARCIS (Netherlands)

    Nuyken, O.; Rieß, G.; Loontjens, J.A.

    1995-01-01

    Cationic polymerization of N-Vinylcarbazol (NVC) was initiated with 1-iodo-1-(2-methylpropyloxy)ethane in the presence of N(n-Bu)4ClO4 and without addition of this activator. Furthermore, 1-chloro-1-(2-methylpropyloxy) ethane, with and without activator has been applied as initiator for NVC. These i

  5. Anionic/cationic complexes in hair care.

    Science.gov (United States)

    O'Lenick, Tony

    2011-01-01

    The formulation of cosmetic products is always more complicated than studying the individual components in aqueous solution. This is because there are numerous interactions between the components, which make the formulation truly more than the sum of the parts. This article will look at interactions between anionic and cationic surfactants and offer insights into how to use these interactions advantageously in making formulations.

  6. Resonance raman studies of phenylcyclopropane radical cations

    NARCIS (Netherlands)

    Godbout, J.T.; Zuilhof, H.; Heim, G.; Gould, I.R.; Goodman, J.L.; Dinnocenzo, J.P.; Myers Kelley, A.

    2000-01-01

    Resonance Raman spectra of the radical cations of phenylcyclopropane and trans-1-phenyl-2-methylcyclopropane are reported. A near-UV pump pulse excites a photosensitizer which oxidizes the species of interest, and a visible probe pulse delayed by 35 ns obtains the spectrum of the radical ion. The tr

  7. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  8. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M...... alkali metal chlorides as well as BaCl2, NaBr and (CH3CH2CH2)(4)NBr were used to investigate the effects of both the ionic charge, size and shape. In 1: 1 electrolytes using small ions only three peaks are present: a sharp cathodic peak at ca. - 0.6 V vs, SCE representing both the insertion of cations...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  9. Cationic lipids and cationic ligands induce DNA helix denaturation: detection of single stranded regions by KMnO4 probing.

    Science.gov (United States)

    Prasad, T K; Gopal, Vijaya; Rao, N Madhusudhana

    2003-09-25

    Cationic lipids and cationic polymers are widely used in gene delivery. Using 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid, we have investigated the stability of the DNA in DOTAP:DNA complexes by probing with potassium permanganate (KMnO4). Interestingly, thymidines followed by a purine showed higher susceptibility to cationic ligand-mediated melting. Similar studies performed with other water-soluble cationic ligands such as polylysine, protamine sulfate and polyethyleneimine also demonstrated melting of the DNA but with variations. Small cations such as spermine and spermidine and a cationic detergent, cetyl trimethylammonium bromide, also rendered the DNA susceptible to modification by KMnO4. The data presented here provide direct proof for melting of DNA upon interaction with cationic lipids. Structural changes subsequent to binding of cationic lipids/ligands to DNA may lead to instability and formation of DNA bubbles in double-stranded DNA.

  10. Effect of the background solution and material composition on the transport of silver nanoparticles in saturated aquifer materials

    Science.gov (United States)

    Adrian, Yorck; Schneidewind, Uwe; Fernandez-Steeger, Tomas; Azzam, Rafig

    2016-04-01

    Engineered silver nanoparticles (AgNP) are used in various consumer products such as cloth or personal care products due to their antimicrobial properties (Benn et al., 2010). Their transport behavior in the environment is still under investigation. Previous studies have been focusing on the transport of AgNP in simple test systems with glass beads or soil materials (Braun et al., 2015), but studies investigating aquifer material are rare. However, the protection of fresh water resources in the subsurface is an important part in the protection of human health and the assurance of future economic activities. Therefore, expert knowledge regarding the transport and fate of engineered nanoparticles as potential contaminants in aquifers is essential. Within the scope of the research project NanoMobil funded by German Federal Ministry of Education and Research, the transport and retention behavior of AgNP in aquifer material was investigated under saturated conditions in laboratory columns for different flow velocities, ionic strengths (IS) and background solutions. The used aquifer material consisted mainly of quartz and albite. The quartz grains were partially coated with iron hydroxides and oxides. Furthermore, 1% hematite was present in the silicate dominated aquifer material. The experiments were conducted using NaNO3 and Ca(NO3)2 background solutions to examine the effects of monovalent and divalent cations on the transport of AgNP. Flow velocities in the columns were chosen to represent typical flow velocities of groundwater in the subsurface. For the experiments two mean grain sizes of 0.3 and 0.7 mm were used to investigate the effect of the grain size on the transport behavior. Particle concentration was measured using ICP-MS and particle size was determined using flow field-flow fractionation (FlFFF). HYDRUS-1D (Šimůnek et al., 2013) was used to elucidate the transport and retention processes of the AgNP in the aquifer material. The obtained results show

  11. Seawater transport during coral biomineralization

    Science.gov (United States)

    Gagnon, Alexander C.; Adkins, Jess F.; Erez, Jonathan

    2012-05-01

    Cation transport during skeletal growth is a key process controlling metal/calcium (Me/Ca) paleoproxy behavior in coral. To characterize this transport, cultured corals were transferred into seawater enriched in the rare earth element Tb3 + as well as stable isotopes of calcium, strontium, and barium. Subsequent NanoSIMS ion images of each coral skeleton were used to follow uptake dynamics. These images show a continuous region corresponding to new growth that is homogeneously enriched in each tracer. Isotope ratio profiles across the new growth boundary transition rapidly from natural abundance ratios to a ratio matching the enriched culture solution. The location of this transition is the same for each element, within analytical resolution. The synchronous incorporation of all these cations, including the dissimilar ion terbium, which has no known biological function in coral, suggests that: (1) there is cation exchange between seawater and the calcifying fluid, and (2) these elements are influenced by similar transport mechanisms consistent with direct and rapid seawater transport to the site of calcification. Measured using isotope ratio profiles, seawater transport rates differ from place to place on the growing coral skeleton, with calcifying fluid turnover times from 30 min to 5.7 h. Despite these differences, all the elements measured in this study show the same transport dynamics at each location. Using an analytical geochemical model of biomineralization that includes direct seawater transport we constrain the role of active calcium pumping during calcification and we show that the balance between seawater transport and precipitation can explain observed Me/Ca variability in deep-sea coral.

  12. Dendritic Cells Stimulated by Cationic Liposomes.

    Science.gov (United States)

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola

    2016-01-01

    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy.

  13. Energy-resolved collision-induced dissociation studies of 1,10-phenanthroline complexes of the late first-row divalent transition metal cations: determination of the third sequential binding energies.

    Science.gov (United States)

    Nose, Holliness; Chen, Yu; Rodgers, M T

    2013-05-23

    The third sequential binding energies of the late first-row divalent transition metal cations to 1,10-phenanthroline (Phen) are determined by energy-resolved collision-induced dissociation (CID) techniques using a guided ion beam tandem mass spectrometer. Five late first-row transition metal cations in their +2 oxidation states are examined including: Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+). The kinetic energy dependent CID cross sections for loss of an intact Phen ligand from the M(2+)(Phen)3 complexes are modeled to obtain 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of the internal energy of the complexes, multiple ion-neutral collisions, and unimolecular decay rates. Electronic structure theory calculations at the B3LYP, BHandHLYP, and M06 levels of theory are employed to determine the structures and theoretical estimates for the first, second, and third sequential BDEs of the M(2+)(Phen)x complexes. B3LYP was found to deliver results that are most consistent with the measured values. Periodic trends in the binding of these complexes are examined and compared to the analogous complexes to the late first-row monovalent transition metal cations, Co(+), Ni(+), Cu(+), and Zn(+), previously investigated.

  14. Close Approximation of Putative α-Helices II, IV, VII, X, and XI in the Translocation Pathway of the Lactose Transport Protein of Streptococcus thermophilus

    NARCIS (Netherlands)

    Veenhoff, L.M.; Geertsma, E.R.; Poolman, B.; Knol, J.

    2000-01-01

    The lactose transport protein (LacS) of Streptococcus thermophilus belongs to a family of transporters in which putative α-helices II and IV have been implicated in cation binding and the coupled transport of the substrate and the cation. Here, the analysis of site-directed mutants shows that a posi

  15. Effect of Clay Mineralogy and Exchangeable Cations on Permeability of Saudi Sandstone Reservoirs Effet de la minéralogie des argiles et des cations échangeables sur la perméabilité des réservoirs gréseux d'Arabie Saoudite

    Directory of Open Access Journals (Sweden)

    Dahab A. S.

    2006-11-01

    Full Text Available Reservoir rocks are susceptible to formation damage during secondary recovery operations due to the particular mineralogical, textural and electrochemical properties of the clay minerals they contain. This damage can be explained by the swelling of indigeneous clays present, resulting in the constricting of pores, or by the dispersion of indigeneous nonswelling particle rearrangements during fluid flow, resulting in the plugging of the pore system, or by a combination of the two. This article describes a laboratory study showing the effect of clay mineralogy on the permeability of actual Saudi sandstone reservoirs during water flooding operations. The study shows that the permeability damage of Saudi sandstone reservoirs depends upon the amount of swelling clays and exchangeable ions as well as on the nature of these ions. Monovalent cations cause more damage than multivalent ones but within the same group of metals, those with smaller atomic mass cause more damage. Les roches réservoirs peuvent être endommagées pendant les opérations de récupération secondaire à cause des propriétés minéralogiques, texturales et électrochimiques particulières des minéraux argileux qu'elles contiennent. Cet endommagement peut s'expliquer, soit par le gonflement des argiles qui conduit à un rétrécissement des pores, soit par la migration de particules non gonflantes pendant l'écoulement des fluides qui entraîne le colmatage des milieux poreux, soit par une combinaison des deux mécanismes. Cet article présente une étude de laboratoire montrant l'effet de la minéralogie des argiles sur la perméabilité des roches réservoirs réelles d'Arabie Saoudite pendant des opérations d'injection d'eau. L'étude montre que l'endommagement de la perméabilité des roches réservoirs d'Arabie Saoudite dépend de la quantité d'argiles gonflantes et d'ions échangeables, ainsi que de la nature de ces ions. Les cations monovalents provoquent plus d

  16. Proton-Coupled Organic Cation Antiporter Contributes to the Hepatic Uptake of Matrine.

    Science.gov (United States)

    Wu, Chunyong; Sun, Xiaomin; Feng, Chao; Liu, Xiaoying; Wang, Hufang; Feng, Fang; Zhang, Junying

    2016-03-01

    Matrine is the major bioactive alkaloid found in certain Sophora plants and has been used for the treatment of liver diseases and protection of liver function. The aim of this study was to investigate the human liver uptake mechanism of matrine by using HepG2 cells as the in vitro model. Matrine was transported into HepG2 cells in a time- and temperature-dependent manner. The cellular uptake was saturable and was significantly reduced by the metabolic inhibitors, such as sodium azide and rotenone. Furthermore, the uptake of matrine was found to be regulated by a protonophore (carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone) and pH, indicating that this influx transporter may be a proton-coupled antiporter. The uptake of matrine was sensitive to inhibition by the cationic drugs including pyrilamine, quinidine, verapamil, amantadine, diphenhydramine, and cimetidine but insensitive to other typical substrates or inhibitors of well-known organic cation transport systems. The present study reveals that, for the first time, in HepG2 cells, the existence of a proton-coupled organic cation antiporter that contributes substantially to the hepatic uptake of matrine.

  17. Effects of ionic liquids on cation dynamics in amorphous polyethylene oxide electrolytes

    Science.gov (United States)

    Chattoraj, Joyjit; Diddens, Diddo; Heuer, Andreas

    2014-01-01

    We perform extensive molecular dynamics simulations of a poly(ethylene oxide)-based polymer electrolyte material containing lithium bis(trifluoromethanesulfonyl)imide salt for a wide temperature regime above and below the experimental crystallization temperature with and without N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid (IL). The impact of the IL-concentration on the cation dynamics is studied. The increase of the cation mobility upon addition of IL is significant but temperature-independent. This can be related to distinct variations of the underlying transport properties as expressed within the previously introduced transport model of polymer electrolytes. Even for the largest IL concentration the transport model perfectly predicts the non-trivial time-dependence of the cationic mean square displacement for all temperatures. Finally, we compare our numerical and theoretical findings with the results of recent nuclear magnetic resonance experiments. In this way we can exclusively relate the strong experimentally observed dependence of the low-temperature Li-diffusivity on the IL concentration to the impact of IL on crystallization.

  18. Effects of ionic liquids on cation dynamics in amorphous polyethylene oxide electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Chattoraj, Joyjit, E-mail: jchat-01@uni-muenster.de; Diddens, Diddo; Heuer, Andreas [Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, D-48149 Münster (Germany)

    2014-01-14

    We perform extensive molecular dynamics simulations of a poly(ethylene oxide)-based polymer electrolyte material containing lithium bis(trifluoromethanesulfonyl)imide salt for a wide temperature regime above and below the experimental crystallization temperature with and without N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid (IL). The impact of the IL-concentration on the cation dynamics is studied. The increase of the cation mobility upon addition of IL is significant but temperature-independent. This can be related to distinct variations of the underlying transport properties as expressed within the previously introduced transport model of polymer electrolytes. Even for the largest IL concentration the transport model perfectly predicts the non-trivial time-dependence of the cationic mean square displacement for all temperatures. Finally, we compare our numerical and theoretical findings with the results of recent nuclear magnetic resonance experiments. In this way we can exclusively relate the strong experimentally observed dependence of the low-temperature Li-diffusivity on the IL concentration to the impact of IL on crystallization.

  19. THE CATIONIC ADDITIVES USED IN COATED INK-JET PAPER

    Institute of Scientific and Technical Information of China (English)

    Dongmei Yu; Chuanshan Zhao; Kefu Chen

    2004-01-01

    This study investigated the effects of several different cationic additives on the viscosity 、zeta potential and printing properties of the ink-jet coating. The cationic additives have greatly improved sheet's gloss and printabilities.

  20. Bithiophene radical cation: Resonance Raman spectroscopy and molecular orbital calculations

    DEFF Research Database (Denmark)

    Grage, M.M.-L.; Keszthelyi, T.; Offersgaard, J.F.

    1998-01-01

    The resonance Raman spectrum of the photogenerated radical cation of bithiophene is reported. The bithiophene radical cation was produced via a photoinduced electron transfer reaction between excited bithiophene and the electron acceptor fumaronitrile in a room temperature acetonitrile solution a...

  1. Ion dynamics in cationic lipid bilayer systems in saline solutions

    DEFF Research Database (Denmark)

    Miettinen, Markus S; Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    mixture of cationic dimyristoyltrimethylammoniumpropane (DMTAP) and zwitterionic (neutral) dimyristoylphosphatidylcholine (DMPC) lipids. Using atomistic molecular dynamics simulations, we address the effects of bilayer composition (cationic to zwitterionic lipid fraction) and of NaCl electrolyte...

  2. Phosphate absorption and efflux of three ectomycorrhizal fungi as affected by external phosphate, cation and carbohydrate concentrations.

    Science.gov (United States)

    Bücking, Heike

    2004-06-01

    A prerequisite for symbiotic phosphate transfer in an ectomycorrhizal (ECM) association is hypothesized to be conditions in the interface between both symbiotic partners, that either promote the release of inorganic phosphate (P) from the Hartig net into the interfacial apoplast and/or decrease the fungal reabsorption from this location. To get more information about conditions, which might be involved in the regulation of P efflux or P reabsorption, the effect of various external conditions on 33P-orthophosphate (33P) uptake or efflux by axenic cultures of the ECM basidiomycetes Hebeloma crustliniforme, Amanita muscaria and Laccaria laccata was analysed. In short-time experiments the following external conditions were analysed: an external supply of (1) P in the preculture, (2) cations (0.1-100 mM K, 0.1-50 mM Na, Mg and Ca), and (3) carbohydrates (0.5-50 mM glucose, fructose or sucrose). The P absorption was generally reduced in cultures previously supplied with an abundant P supply and with increased P concentrations in their tissues. The P uptake was also affected by an external supply of cations, whereas carbohydrates had only a slight effect. Compared to Na, Mg and Ca, the P absorption by H. crustuliniforme and L. laccata was increased by 0.1 mM K in the labelling solution but decreased after a supply of 100 mM K and then did not differ from the other cation treatments. Compared to other cations, an addition of 50 mM Ca led to a decrease of P absorption by A. muscaria, whereas 50 mM Mg increased the P uptake by H. crustuliniforme. The P efflux from the fungi was affected by both the cation and carbohydrate concentration of the bathing solution. High concentrations of the monovalent cations K and Na (5 mM or 50 mM) in the bathing solution increased the P efflux by H. crustuliniforme (only Na) and L. laccata (K and Na), but had little effects on A. muscaria. By contrast, the same concentrations of the divalent cation Mg reduced the P efflux from all fungal

  3. Production of sulfonated cation-exchangers from petroleum asphaltites

    Energy Technology Data Exchange (ETDEWEB)

    Pokonova, Yu.V.; Pol' kin, G.B.; Proskuryakov, V.A.; Vinogradov, M.V.

    1982-02-10

    Continuing our studies of the preparation of products of practical value from asphaltite, a new by-product of oil refining, we obtained sulfonated cation-exchangers from a mixture of asphaltite and acid tar. It is shown that these cation-exchangers have good kinetic properties and are superior in thermal and thermohydrolytic stability to the commercial cation-exchange resin KU-2.

  4. Complementation of the Yeast Model System Reveals that Caenorhabditis elegans OCT-1 Is a Functional Transporter of Anthracyclines

    OpenAIRE

    Nicolas Brosseau; Emil Andreev; Dindial Ramotar

    2015-01-01

    The yeast plasma membrane protein Agp2 belongs to the family of amino acid transporters. It acts as a regulator that controls the expression of several uptake transporter genes such as DUR3 and SAM3 encoding two high-affinity polyamine permeases. agp2Δ mutants display extreme resistance to several cationic compounds including polyamines, the anticancer agent bleomycin, and cationic antifungal peptides. We propose that Agp2 might be involved in regulating the uptake of other cationic anticance...

  5. Asymmetric Aminalization via Cation-Binding Catalysis

    DEFF Research Database (Denmark)

    Park, Sang Yeon; Liu, Yidong; Oh, Joong Suk

    2017-01-01

    Asymmetric cation-binding catalysis, in principle, can generate "chiral" anionic nucleophiles, where the counter cations are coordinated within chiral environments. Nitrogen-nucleophiles are intrinsically basic, therefore, its use as nucleophiles is often challenging and limiting the scope...... of the reaction. Particularly, a formation of configurationally labile aminal centers with alkyl substituents has been a formidable challenge due to the enamine/imine equilibrium of electrophilic substrates. Herein, we report enantioselective nucleophilic addition reactions of potassium phthalimides to Boc......-protected alkyl- and aryl-substituted α-amido sulfones. In-situ generated imines smoothly reacted with the nitrogen nucleophiles to corresponding aminals with good to excellent enantioselectivitiy under mild reaction conditions. In addition, transformation of aminal products gave biologically relevant...

  6. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes

    DEFF Research Database (Denmark)

    Korsholm, Karen Smith; Agger, Else Marie; Foged, Camilla

    2007-01-01

    Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes...... concentrations. This efficient adsorption onto the liposomes led to an enhanced uptake of OVA by BM-DCs as assessed by flow cytometry and confocal fluorescence laser-scanning microscopy. This was an active process, which was arrested at 4 degrees and by an inhibitor of actin-dependent endocytosis, cytochalasin D....... In vivo studies confirmed the observed effect because adsorption of OVA onto DDA liposomes enhanced the uptake of the antigen by peritoneal exudate cells after intraperitoneal injection. The liposomes targeted antigen preferentially to antigen-presenting cells because we only observed a minimal uptake...

  7. Organic cation secretion by Cancer borealis urinary bladder

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.S.; Holliday, C.W.

    1987-01-01

    In the crab, Cancer borealis, initial clearance studies showed a potent renal excretory system for the model organic cation, tetraethylammonium (TEA). (/sup 14/C)-TEA clearance averaged 145 +/- 32 ml/day, which was 18 times the paired polyethylene glycol clearance. TEA uptake by slices of urinary bladder was concentrative, saturable, inhibitable by N/sup 1/-methylnicotinamide chloride, and dependent on glycolytic, but not oxidative, metabolism. When mounted in flux chambers, bladders exhibited a large net secretory flux. For 0.1 mM TEA, the ratio of secretory to reabsorptive fluxes was 65. Urinary bladders from another crab, Cancer irroratus, and a lobster, Homarus americanus, also exhibited net TEA secretion. In C. borealis bladder, secretory transport was concentrative, saturable, and nearly abolished by addition of 1 mM quinine to the serosol bath. Reabsorptive transport was not concentrative and was not reduced by luminal quinine. The data are consistent with a secretory pathway that is transcellular and mediated by carriers at both the serosal and luminal membranes.

  8. Cation Permeability in Soybean Aleurone Layer

    OpenAIRE

    Noda, Hiroko; Fukuda, Mitsuru

    1998-01-01

    The permeation of water and ions into bean seeds is essential for processing and cooking of beans. The permeability of cations, K, Na, Ca, and Mg ions, into soybean seed tissue, especially aleurone layer, during water uptake was investigated to characterize the ion permeation into soybeans. Aleurone layers and seed coats contained relatively high concentration of endogenous K and Ca ions, and endogenous Ca ion, respectively. The amounts of Ca ion entered seed coats and aleurone layers were gr...

  9. Cu and Zn adsorption to a heterogeneous natural sediment: Influence of leached cations and natural organic matter.

    Science.gov (United States)

    Fisher-Power, Leanne M; Cheng, Tao; Rastghalam, Zahra Sadat

    2016-02-01

    Adsorption of heavy metals by natural sediments has important implications to the fate and transport of contaminants in subsurface environments. Although the importance of major multivalent cations and dissolved organic matter (DOM) in heavy metal adsorption had been previously demonstrated, the leaching of major cations and DOM from sediments and its influence on heavy metal adsorption have not been fully examined. In this study, the concentrations of Ca, Mg, Al, Fe, and natural organic matter that leached from a natural sediment in Cu and Zn adsorption experiments were measured and used in surface complexation models to elucidate their effects on Cu and Zn adsorption. Experimental results showed that the leaching of cations and DOM was substantial and pH-dependent. The leached concentrations of Ca and Mg were reasonably simulated based on BaCl2 extractable Ca and Mg at pH MINTEQ simulations showed that the leached cations markedly decreased Cu adsorption at pH 6 due to formation of Cu-DOM aqueous complexes, but increase Zn adsorption at pH 4-7 due to formation of aqueous complexes between DOM and major cations, which reduced competition from these cations against Zn for binding sites on the sediment.

  10. Controlling chemistry with cations: photochemistry within zeolites.

    Science.gov (United States)

    Ramamurthy, V; Shailaja, J; Kaanumalle, Lakshmi S; Sunoj, R B; Chandrasekhar, J

    2003-08-21

    The alkali ions present in the supercages of zeolites X and Y interact with included guest molecules through quadrupolar (cation-pi), and dipolar (cation-carbonyl) interactions. The presence of such interactions can be inferred through solid-state NMR spectra of the guest molecules. Alkali ions, as illustrated in this article, can be exploited to control the photochemical and photophysical behaviors of the guest molecules. For example, molecules that rarely phosphoresce can be induced to do so within heavy cation-exchanged zeolites. The nature (electronic configuration) of the lowest triplet state of carbonyl compounds can be altered with the help of light alkali metal ions. This state switch (n pi*-pi pi*) helps to bring out reactivity that normally remains dormant. Selectivity obtained during the singlet oxygen oxidation of olefins within zeolites illustrates the remarkable control that can be exerted on photoreactions with the help of a confined medium that also has active sites. The reaction cavities of zeolites, like enzymes, are not only well-defined and confined, but also have active sites that closely guide the reactant molecule from start to finish. The examples provided here illustrate that zeolites are far more useful than simple shape-selective catalysts.

  11. Limited data speaker identification

    Indian Academy of Sciences (India)

    H S Jayanna; S R Mahadeva Prasanna

    2010-10-01

    In this paper, the task of identifying the speaker using limited training and testing data is addressed. Speaker identification system is viewed as four stages namely, analysis, feature extraction, modelling and testing. The speaker identification performance depends on the techniques employed in these stages. As demonstrated by different experiments, in case of limited training and testing data condition, owing to less data, existing techniques in each stage will not provide good performance. This work demonstrates the following: multiple frame size and rate (MFSR) analysis provides improvement in the analysis stage, combination of mel frequency cepstral coefficients (MFCC), its temporal derivatives $(\\Delta,\\Delta \\Delta)$, linear prediction residual (LPR) and linear prediction residual phase (LPRP) features provides improvement in the feature extraction stage and combination of learning vector quantization (LVQ) and gaussian mixture model – universal background model (GMM–UBM) provides improvement in the modelling stage. The performance is further improved by integrating the proposed techniques at the respective stages and combining the evidences from them at the testing stage. To achieve this, we propose strength voting (SV), weighted borda count (WBC) and supporting systems (SS) as combining methods at the abstract, rank and measurement levels, respectively. Finally, the proposed hierarchical combination (HC) method integrating these three methods provides significant improvement in the performance. Based on these explorations, this work proposes a scheme for speaker identification under limited training and testing data.

  12. Renal transepithelial transport of nucleosides.

    Science.gov (United States)

    Nelson, J A; Vidale, E; Enigbokan, M

    1988-01-01

    Previous work from this and other laboratories has suggested that the mammalian kidney has unique mechanisms for handling purine nucleosides. For example, in humans and in mice, adenosine undergoes net renal reabsorption whereas deoxyadenosine is secreted [Kuttesch and Nelson: Cancer Chemother. Pharmacol. 8, 221 (1982)]. The relationships between these renal transport systems and classical renal organic cation and anion, carbohydrate, and cell membrane nucleoside transport carriers are not established. To investigate possible relationships between such carriers, we have tested effects of selected classical transport inhibitors on the renal clearances of adenosine, deoxyadenosine, 5'-deoxy-5-fluorouridine (5'-dFUR), and 5-fluorouracil in mice. The secretion of deoxyadenosine and 5'-dFUR, but not the reabsorption of adenosine or 5-fluorouracil, was prevented by the classical nucleoside transport inhibitors, dipyridamole and nitrobenzylthioinosine. Cimetidine, an inhibitor of the organic cation secretory system, also inhibited the secretion of 5'-dFUR, although it did not inhibit deoxyadenosine secretion in earlier studies [Nelson et al.: Biochem. Pharmacol. 32, 2323 (1983)]. The specific inhibitor of glucose renal reabsorption, phloridzin, failed to inhibit the reabsorption of adenosine or the secretion of deoxyadenosine. Failure of the nucleoside transport inhibitors and phloridzin to prevent adenosine reabsorption suggests that adenosine reabsorption may occur via a unique process. On the other hand, inhibition of the net secretion of deoxyadenosine and 5'-dFUR by dipyridamole and nitrobenzylthioinosine implies a role for the carrier that is sensitive to these compounds in the renal secretion (active transport) of these nucleosides.

  13. Enhanced Mixed Electronic-Ionic Conductors through Cation Ordering

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Allan J. [Univ. of Houston, TX (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Grey, Clare [Stony Brook Univ., NY (United States)

    2014-08-31

    The performance of many energy conversion and storage devices depend on the properties of mixed ionic-electronic conducting (miec) materials. Mixed or ambipolar conductors simultaneously transport ions and electrons and provide the critical interface between chemical and electrical energy in devices such as fuel cells, ion transport membranes, and batteries. Enhancements in storage capacity, reversibility, power density and device lifetime all require new materials and a better understanding of the fundamentals of ambipolar conductivity and surface reactivity.The high temperature properties of the ordered perovksites AA’B2O5+x, where A = rare earth ion, Y and B = Ba, Sr were studied. The work was motivated by the high oxygen transport and surface exchange rates observed for members of this class of mixed ionic and electronic conductors. A combined experimental and computational approach, including structural, electrochemical, and transport characterization and modeling was used. The approach attacks the problem simultaneously at global (e.g., neutron diffraction and impedance spectroscopy), local (e.g., pair distribution function, nuclear magnetic resonance) and molecular (ab initio thermokinetic modeling) length scales. The objectives of the work were to understand how the cation and associated anion order lead to exceptional ionic and electronic transport properties and surface reactivity in AA’B2O5+x perovskites. A variety of compounds were studied by X-ray and neutron diffraction, measurements of thermodynamics and transport and theoretically. These included PrBaCo2O5+x and NdBaCo2O5+x, PrBaCo2-xFexO6- δ (x = 0, 0.5, 1.0, 1.5 and 2) and LnBaCoFeO6- δ (Ln = La, Pr, Nd, Sm, Eu and Gd), Sr3YCo4O10.5, YBaMn2O5+x. A0.5A’0.5BO3 (where A=Y, Sc, La, Ce, Pr, Nd, Pm, Sm; A’= Sr

  14. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    Science.gov (United States)

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  15. Potassium transport of Salmonella is important for type III secretion and pathogenesis.

    Science.gov (United States)

    Liu, Yehao; Ho, Katharina Kim; Su, Jing; Gong, Hao; Chang, Alexander C; Lu, Sangwei

    2013-08-01

    Intracellular cations are essential for the physiology of all living organisms including bacteria. Cations such as potassium ion (K(+)), sodium ion (Na(+)) and proton (H(+)) are involved in nearly all aspects of bacterial growth and survival. K(+) is the most abundant cation and its homeostasis in Escherichia coli and Salmonella is regulated by three major K(+) transporters: high affinity transporter Kdp and low affinity transporters Kup and Trk. Previous studies have demonstrated the roles of cations and cation transport in the physiology of Escherichia coli; their roles in the virulence and physiology of pathogenic bacteria are not well characterized. We have previously reported that the Salmonella K(+) transporter Trk is important for the secretion of effector proteins of the type III secretion system (TTSS) of Salmonella pathogenicity island 1 (SPI-1). Here we further explore the role of Salmonella cation transport in virulence in vitro and pathogenesis in animal models. Impairment of K(+) transport through deletion of K(+) transporters or exposure to the chemical modulators of cation transport, gramicidin and valinomycin, results in a severe defect in the TTSS of SPI-1, and this defect in the TTSS was not due to a failure to regulate intrabacterial pH or ATP. Our results also show that K(+) transporters are critical to the pathogenesis of Salmonella in mice and chicks and are involved in multiple growth and virulence characteristics in vitro, including protein secretion, motility and invasion of epithelial cells. These results suggest that cation transport of the pathogenic bacterium Salmonella, especially K(+) transport, contributes to its virulence in addition to previously characterized roles in maintaining homeostasis of bacteria.

  16. [Antioxidant activity of cationic whey protein isolate].

    Science.gov (United States)

    titova, M E; Komolov, S A; Tikhomirova, N A

    2012-01-01

    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (pwhey protein isolate has an

  17. Uptake of photosensitizers by bacteria is influenced by the presence of cations

    Science.gov (United States)

    Kishen, A.; George, S.

    2007-05-01

    This investigation studies the influence of cations on photosensitizer uptake by Enterococcus faecalis (gram positive) and Actinobacillus actinomycetemcomitans (gram negative). Methods- The uptake of Methylene blue (MB) and Indocyanine Green (ICG), by bacteria were studied under the influence of divalent cations (CaCl II & MgCl II) and EDTA. Further, E. faecalis cells subjected to trypsinisation and calcium channel blocker (verapamil) were also analysed for MB and ICG uptake inorder to understand the mechanism of photosensitizer uptake. Results- Uptake of ICG was enhanced in the presence of divalent cations in E. faecalis and A. actinomycetemcomitans. Treating cells with EDTA had no significant effect on the photosensitizer uptake, although the highest concentration tested showed an enhancement of uptake. In contrast to ICG, MB showed a decreased uptake by bacterial cells on subjecting them to divalent cations and EDTA. Calcium channel blocker had no significant inhibitory effect on photosensitizers uptake. However, trypsin treatment resulted in significant reduction of ICG uptake. The result suggested that ICG uptake by bacteria is mediated through specific transporter protein while MB is associated with the outer surface structures of bacterial cells.

  18. Liquid-like cationic sub-lattice in copper selenide clusters

    Science.gov (United States)

    White, Sarah L.; Banerjee, Progna; Jain, Prashant K.

    2017-02-01

    Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, `liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.

  19. Interaction between alginates and manganese cations: identification of preferred cation binding sites.

    Science.gov (United States)

    Emmerichs, N; Wingender, J; Flemming, H-C; Mayer, C

    2004-04-01

    Algal and bacterial alginates have been studied by means of 13C NMR spectroscopy in presence of paramagnetic manganese ions in order to reveal the nature of their interaction with bivalent cations. It is found that the mannuronate blocks bind manganese cations externally near their carboxylate groups, while guluronate blocks show the capability to integrate Mn2+ into pocket-like structures formed by adjacent guluronate residues. In alternating mannuronate-guluronate blocks, manganese ions preferentially locate in a concave structure formed by guluronate-mannuronate pairs. Partial acetylation of the alginate generally reduces its capability to interact with bivalent cations, however, the selectivity of the binding geometry is conserved. The results may serve as a hint for the better understanding of the alginate gelation in presence of calcium ions.

  20. Induction of morphogenesis in Geodermatophilus by inorganic cations and by organic nitrogenous cations.

    Science.gov (United States)

    Ishiguro, E E; Wolfe, R S

    1974-01-01

    Morphogenesis of Geodermatophilus strain 22-68 involves two stages, a motile rod (R form) and an irregularly shaped cluster of coccoid cells (C form). A variety of mono- and divalent cations have been found to induce R-form to C-form morphogenesis and to maintain the organism in the C form. Concentration optima for all cations exceeded 100 mM. Results indicated that uptake of cations was accompanied by extrusion of intracellular protons, causing an increase in intracellular pH. A variety of organic amines also induced morphogenesis. Organic amines were taken up in the dissociated free base form, causing the intracellular pH to rise. None of these compounds was utilized as a carbon or nitrogen source.

  1. Quantitative assessment of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos XXI Consulting S.L., Barcelona (Spain))

    2007-12-15

    The main objective of this work is to assess the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark, with special focus on the evaluation of the capacity of the Quaternary deposits and sediments for radionuclide retention. The work reported here is based on data and information from Forsmark Site Descriptive Model version 1.2. From the geological point of view, the near-surface systems in the Forsmark area consist of Quaternary deposits and sediments that overlay the granitic bedrock. Glacial till is the more abundant outcropping Quaternary deposit and the remainder is made of clayey deposits. These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time horizons considered in this work, is calcium carbonate together with minor amounts of clay minerals (e.g. illite). The till deposits forms aquifers with relatively high hydraulic conductivities. In contrast, glacial and post-glacial clays are basically composed of illite with low to very low amounts of calcium carbonate, and containing organic matter-rich layers (gyttja), which can promote reducing conditions in the porewaters. All these clays exhibits relatively low hydraulic conductivity values. Five radionuclides have been selected for conceptualization and qualitative evaluation of retention process: U as an actinide, Se as a redox-sensitive radionuclide, Cs as a monovalent cation, Sr as a divalent cation, and I as an anion radionuclide. Overall, radionuclide retention capacity in the surface systems at Forsmark can be provided by sorption on charged surfaces of clays and oxyhydroxides, co-precipitation with sulphates, sulphides, oxyhydroxides and carbonates, and sorption on organic matter. Two-dimensional coupled hydrogeological and reactive solute transport models have been developed to simulate the geochemical behaviour of U, Cs and Sr. These three radionuclides have

  2. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    Science.gov (United States)

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  3. Adverse events following pandemic A (H1N1 2009 monovalent vaccines in pregnant women--Taiwan, November 2009-August 2010.

    Directory of Open Access Journals (Sweden)

    Wan-Ting Huang

    Full Text Available BACKGROUND: During the 2009 H1N1 pandemic, pregnant women were prioritized to receive the unadjuvanted or MF59®-adjuvanted pandemic A (H1N1 2009 monovalent vaccines ("2009 H1N1 vaccines" in Taiwan regardless of stage of pregnancy. Monitoring adverse events following 2009 H1N1 vaccination in pregnant women was a priority for the mass immunization campaign beginning November 2009. METHODS/FINDINGS: We characterized reports to the national passive surveillance from November 2009 through August 2010 involving adverse events following 2009 H1N1 vaccines among pregnant women. Reports from the passive surveillance were matched to a large-linked database on a unique identifier, date of vaccination, and date of diagnosis in a capture-recapture analysis to estimate the true number of spontaneous abortion after 2009 H1N1 vaccination. We verified 16 spontaneous abortions, 11 stillbirths, 4 neonatal deaths, 4 nonpregnancy-specific adverse events, and 2 inadvertent immunizations in recipients who were unaware of pregnancy at time of vaccination. The Chapman capture-recapture estimator of true number of spontaneous abortion after 2009 H1N1 vaccination was 329 (95% confidence interval [CI] 196-553. Of the 14,474 pregnant women who received the 2009 H1N1 vaccines, the estimated risk of spontaneous abortion was 2.3 (95% CI, 1.4-3.8 per 100 pregnancies, compared with a local background rate of 12.8 (95% CI, 12.8-12.9 per 100 pregnancies. CONCLUSIONS: The passive surveillance provided rapid initial assessment of adverse events after 2009 H1N1 vaccination among pregnant women. Its findings were reassuring for the safety of 2009 H1N1 vaccines in pregnancy.

  4. Comparison of accelerated and rapid schedules for monovalent hepatitis B and combined hepatitis A/B vaccines in children with cancer.

    Science.gov (United States)

    Köksal, Yavuz; Varan, Ali; Aydin, G Burca; Sari, Neriman; Yazici, Nalan; Yalcin, Bilgehan; Kutluk, Tezer; Akyuz, Canan; Büyükpamukçu, Münevver

    2007-12-01

    The aim of this study was to determine the efficacy of immunization against hepatitis A and B infections with "rapid" or "accelerated" schedules in children with cancer receiving chemotherapy. Fifty-one children were recruited to receive either vaccination schedule, in the "rapid vaccination schedule"; hepatitis B (group I) or combined hepatitis A/B vaccines (group III) were administered at months 0, 1, 2, and 12; in the "accelerated vaccination schedule," hepatitis B (group II) or combined hepatitis A/B (group IV) vaccines were administered on days 0, 7, 21, and 365 intramuscularly. The seroconversion rates at months 1 and 3 were 35.7 and 57.1% in group I and 25 and 18.8% in group II, respectively. Group I developed higher seroconversion rates at month 3. In group III the seroconversion rates for hepatitis B at months 1 and 3 were 54.5 and 60% and in group IV 50 and 70%, respectively. For hepatitis A, the seroconversion rates at months 1 and 3 were 81.8 and 90% in group III and 80 and 88.9% in group IV, respectively. The accelerated vaccination schedule seems to have no advantage in children receiving cancer chemotherapy except for high antibody levels at month 1. In conclusion, the accelerated vaccination schedules are not good choices for cancer patients. The combined hepatitis A/B vaccine is more effective than monovalent vaccine in cancer patients, which probably can be explained by an adjuvant effect of the antigens. The seroconversion of hepatitis A by the combined hepatitis A/B vaccination is very good in cancer patients.

  5. Enantioselective Transport by a Steroidal Guanidinium Receptor

    NARCIS (Netherlands)

    Baragaña, Beatriz; Blackburn, Adrian G.; Breccia, Perla; Davis, Anthony P.; Mendoza, Javier de; Padrón-Carrillo, José M.; Prados, Pilar; Riedner, Jens; Vries, Johannes G. de

    2002-01-01

    The cationic steroidal receptors 9 and 11 have been synthesized from cholic acid 3. Receptor 9 extracts N-acetyl-α-amino acids from aqueous media into chloroform with enantioselectivities (L:D) of 7-10:1. The lipophilic variant 11 has been employed for the enantioselective transport of N-acetylpheny

  6. Sulfate transport in Penicillium chrysogenum plasma membranes

    NARCIS (Netherlands)

    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J.M.; Konings, Wil N.

    1996-01-01

    Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded th

  7. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.

    Science.gov (United States)

    Rapp, Micah; Schein, Jessica; Hunt, Kevin A; Nalam, Vamsi; Mourad, George S; Schultes, Neil P

    2016-03-01

    The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.

  8. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  9. Heart imaging with cationic complexes of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, E.; Bushong, W.; Glavan, K.A.; Elder, R.C.; Sodd, V.J.; Scholz, K.L.; Fortman, D.L.; Lukes, S.J.

    1981-10-02

    The cationic technetium-99 complex trans-(99TC(dmpe)2Cl2)+, where dmpe is bis(1,2-dimethylphosphino)ethane or (CH3)2P-CH2-P(CH3)2, has been prepared and characterized by single-crystal, x-ray structural analysis. The technetium-99m analog, trans-(99mTc(dmpe) 2Cl2)+, has also been prepared and shown to yield excellent gamma-ray images of the heart. The purposeful design, characterization, and synthesis of this technetium-99m radiopharmaceutical represents a striking application of fundamental inorganic chemistry to a problem in applied nuclear medicine.

  10. Aggregate Formed by a Cationic Fluorescence Probe

    Institute of Scientific and Technical Information of China (English)

    TIAN, Juan; SANG, Da-Yong; JI, Guo-Zhen

    2007-01-01

    The aggregation behavior of a cationic fluorescence probe 10-(4,7,10,13,16-pentaoxa-1-azacyclooctadecyl-methyl)anthracen-9-ylmethyl dodecanoate (1) was observed and studied by a fluorescence methodology in acidic and neutral conditions. By using the Py scale, differences between simple aggregates and micelles have been discussed. The stability of simple aggregates was discussed in terms of hydrophobic interaction and electrostatic repulsion. The absence of excimer emission of the anthrancene moiety of probe 1 in neutral condition was attributed to the photoinduced electron transfer mechanism instead of photodimerization.

  11. Fixation and transport of uranium by humic substances (1962); Fixation et transport de l'uranium par les substances humiques (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1962-03-15

    One enter upon the study of the part taken by organic substances in ores that contain uranium in a disseminated form, without mineralization, being considered the reaction between uranium and humus. 'Humic acids' are extracted from the peat by ammonia. By the fact of their ability to cationic exchange, these are forming humates with metal cations; monovalent humates, normally soluble in water, can become insoluble after treatment of humic acids with methanal. The polyvalent humates are insoluble in water, especially humates of U (IV) and uranyl U (VI). Action of Li, Na, K, Mg, Ca uranyl carbonates solutions on the humic acids results in the formation of humates containing uranyl and the other cation. 100 g of humic acids give a fixation of no more than 38 g of uranium as uranyl. In contact with uraniferous weakly concentrated solutions, they fix 4 to 8 g according to pH, with a yield in the extraction greater than 95 per cent. The action of a sodium humate solution on a humate of uranyl give a solution containing a soluble sodium and uranyl humate. The solution is precipitated at various degrees by the polyvalent cations and insoluble humic substances. In all cases, the fixation of uranium with such prepared humic acids corresponds to a chemisorption of uranyl cations. (author) [French] L'etude du role des matieres organiques dans les minerais contenant de l'uranium sous une forme disseminee, sans mineralisation, est abordee en envisageant les reactions de l'uranium et de l'humus. Des 'acides humiques' sont extraits de la tourbe par l'ammoniaque. Par leur capacite d'echange cationique, ils forment des humates avec les cations metalliques; les humates de metaux monovalents, normalement solubles dans l'eau, peuvent etre rendus insolubles apres traitement des acides humiques par le methanal. Les humates de metaux plurivalents sont insolubles dans l'eau, en particulier ceux de U (IV) et d'uranyle U (VI

  12. Multidimensional Perovskites: A Mixed Cation Approach Towards Ambient Stable and Tunable Perovskite Photovoltaics.

    Science.gov (United States)

    Koh, Teck Ming; Thirumal, Krishnamoorthy; Soo, Han Sen; Mathews, Nripan

    2016-09-22

    Although halide perovskites are able to deliver high power conversion efficiencies, their ambient stability still remains an obstacle for commercialization. Thus, promoting the ambient stability of perovskites has become a key research focus. In this review, we highlight the sources of instability in conventional 3 D perovskites, including water intercalation, ion migration, and thermal decomposition. Recently, the multidimensional perovskites approach has become one of the most promising strategies to enhance the stability of perovskites. As compared to pure 2 D perovskites, multidimensional perovskites typically possess more ideal band gaps, better charge transport, and lower exciton binding energy, which are essential for photovoltaic applications. The larger organic cations in multidimensional perovskites could also be more chemically stable at higher temperatures than the commonly used methylammonium cation. By combining 3 D and 2 D perovskites to form multidimensional perovskites, halide perovskite photovoltaics can attain both high efficiency and increased stability.

  13. Inhibition of hepatic fibrosis with artificial microRNA using ultrasound and cationic liposome-bearing microbubbles.

    Science.gov (United States)

    Yang, D; Gao, Y-H; Tan, K-B; Zuo, Z-X; Yang, W-X; Hua, X; Li, P-J; Zhang, Y; Wang, G

    2013-12-01

    We sought to investigate the antifibrotic effects of an artificial microRNA (miRNA) targeting connective tissue growth factor (CTGF) using the ultrasound-targeted cationic liposome-bearing microbubble destruction gene delivery system. Cationic liposomes were conjugated with microbubbles using a biotin-avidin system. Plasmids carrying the most effective artificial miRNA sequences were delivered by ultrasound-targeted cationic liposome-bearing microbubble destruction gene delivery system to rats with hepatic fibrosis. The results show that this method of gene delivery effectively transported the plasmids to the rat liver. The artificial miRNA reduced hepatic fibrosis pathological alterations as well as the protein and mRNA expressions of CTGF and transforming growth factor β1. Furthermore, the CTGF gene silencing decreased the levels of type I collagen and α-smooth muscle actin (Pliposome-bearing microbubble destruction may be an efficacious therapeutic method to ameliorate hepatic fibrosis.

  14. Electronic absorptions of the benzylium cation

    Science.gov (United States)

    Dryza, Viktoras; Chalyavi, Nahid; Sanelli, Julian A.; Bieske, Evan J.

    2012-11-01

    The electronic transitions of the benzylium cation (Bz+) are investigated over the 250-550 nm range by monitoring the photodissociation of mass-selected C7H7+-Arn (n = 1, 2) complexes in a tandem mass spectrometer. The Bz+-Ar spectrum displays two distinct band systems, the S1←S0 band system extending from 370 to 530 nm with an origin at 19 067 ± 15 cm-1, and a much stronger S3←S0 band system extending from 270 to 320 nm with an origin at 32 035 ± 15 cm-1. Whereas the S1←S0 absorption exhibits well resolved vibrational progressions, the S3←S0 absorption is broad and relatively structureless. Vibronic structure of the S1←S0 system, which is interpreted with the aid of time-dependent density functional theory and Franck-Condon simulations, reflects the activity of four totally symmetric ring deformation modes (ν5, ν6, ν9, ν13). We find no evidence for the ultraviolet absorption of the tropylium cation, which according to the neon matrix spectrum should occur over the 260 - 275 nm range [A. Nagy, J. Fulara, I. Garkusha, and J. Maier, Angew. Chem., Int. Ed. 50, 3022 (2011)], 10.1002/anie.201008036.

  15. Photodissociation of Cerium Oxide Nanocluster Cations.

    Science.gov (United States)

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)).

  16. Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers.

    Science.gov (United States)

    Wang, Hui; Shi, Xuefeng; Yu, Danfeng; Zhang, Jian; Yang, Guang; Cui, Yingxian; Sun, Keji; Wang, Jinben; Yan, Haike

    2015-12-22

    The current study is aimed at investigating the effect of cationic charge density and hydrophobicity on the antibacterial and hemolytic activities. Two kinds of cationic surfmers, containing single or double hydrophobic tails (octyl chains or benzyl groups), and the corresponding homopolymers were synthesized. The antimicrobial activity of these candidate antibacterials was studied by microbial growth inhibition assays against Escherichia coli, and hemolysis activity was carried out using human red blood cells. It was interestingly found that the homopolymers were much more effective in antibacterial property than their corresponding monomers. Furthermore, the geminized homopolymers had significantly higher antibacterial activity than that of their counterparts but with single amphiphilic side chains in each repeated unit. Geminized homopolymers, with high positive charge density and moderate hydrophobicity (such as benzyl groups), combine both advantages of efficient antibacterial property and prominently high selectivity. To further explain the antibacterial performance of the novel polymer series, the molecular interaction mechanism is proposed according to experimental data which shows that these specimens are likely to kill microbes by disrupting bacterial membranes, leading them unlikely to induce resistance.

  17. Transition-Metal Hydride Radical Cations.

    Science.gov (United States)

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  18. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  19. Cations and anions as modifiers of ryanodine binding to the skeletal muscle calcium release channel.

    Science.gov (United States)

    Hasselbach, W; Migala, A

    1998-08-01

    Rate and equilibrium measurements of ryanodine binding to terminal cysternae fractions of heavy sarcoplasmic reticulum vesicles demonstrate that its activation by high concentrations of monovalent salts is based on neither elevated osmolarity nor ionic strength. The effect of the ions specifically depends on their chemical nature following the Hofmeister ion series for cations (Li+ < NH+4 < K- approximately Cs+

  20. Phosphate transporters: a tale of two solute carrier families.

    Science.gov (United States)

    Virkki, Leila V; Biber, Jürg; Murer, Heini; Forster, Ian C

    2007-09-01

    Phosphate is an essential component of life and must be actively transported into cells against its electrochemical gradient. In vertebrates, two unrelated families of Na+ -dependent P(i) transporters carry out this task. Remarkably, the two families transport different P(i) species: whereas type II Na+/P(i) cotransporters (SCL34) prefer divalent HPO(4)(2-), type III Na(+)/P(i) cotransporters (SLC20) transport monovalent H2PO(4)(-). The SCL34 family comprises both electrogenic and electroneutral members that are expressed in various epithelia and other polarized cells. Through regulated activity in apical membranes of the gut and kidney, they maintain body P(i) homeostasis, and in salivary and mammary glands, liver, and testes they play a role in modulating the P(i) content of luminal fluids. The two SLC20 family members PiT-1 and PiT-2 are electrogenic and ubiquitously expressed and may serve a housekeeping role for cell P(i) homeostasis; however, also more specific roles are emerging for these transporters in, for example, bone mineralization. In this review, we focus on recent advances in the characterization of the transport kinetics, structure-function relationships, and physiological implications of having two distinct Na+/P(i) cotransporter families.

  1. Nature as a source of inspiration for cationic lipid synthesis.

    Science.gov (United States)

    Labas, Romain; Beilvert, Fanny; Barteau, Benoit; David, Stéphanie; Chèvre, Raphaël; Pitard, Bruno

    2010-02-01

    Synthetic gene delivery systems represent an attractive alternative to viral vectors for DNA transfection. Cationic lipids are one of the most widely used non-viral vectors for the delivery of DNA into cultured cells and are easily synthesized, leading to a large variety of well-characterized molecules. This review discusses strategies for the design of efficient cationic lipids that overcome the critical barriers of in vitro transfection. A particular focus is placed on natural hydrophilic headgroups and lipophilic tails that have been used to synthesize biocompatible and non-toxic cationic lipids. We also present chemical features that have been investigated to enhance the transfection efficiency of cationic lipids by promoting the escape of lipoplexes from the endosomal compartment and DNA release from DNA-liposome complexes. Transfection efficiency studies using these strategies are likely to improve the understanding of the mechanism of cationic lipid-mediated gene delivery and to help the rational design of novel cationic lipids.

  2. Impact of metal cations on the electrocatalytic properties of Pt/C nanoparticles at multiple phase interfaces.

    Science.gov (United States)

    Durst, Julien; Chatenet, Marian; Maillard, Frédéric

    2012-10-05

    Proton-exchange membrane fuel cells (PEMFCs) use carbon-supported nanoparticles based on platinum and its alloys to accelerate the rate of the sluggish oxygen-reduction reaction (ORR). The most common metals alloyed to Pt include Co, Ni and Cu, and are thermodynamically unstable in the PEMFC environment. Their dissolution yields the formation and redistribution of metal cations (M(y+)) within the membrane electrode assembly (MEA). Metal cations can also contaminate the MEA when metallic bipolar plates are used as current collectors. In each case, the electrical performance of the PEMFC severely decreases, an effect that is commonly attributed to the poisoning of the sulfonic acid groups of the perfluorosulfonated membrane (PEM) and the resulting decrease of the proton transport properties. However, the impact of metal cations on the kinetics of electrochemical reactions involving adsorption/desorption and bond-breaking processes remains poorly understood. In this paper, we use model electrodes to highlight the effect of metal cations on Pt/C nanoparticles coated or not with a perfluorosulfonated ionomer for the CO electrooxidation reaction and the oxygen reduction reaction. We show that metal cations negatively impact the ORR kinetics and the mass-transport resistance of molecular oxygen. However, the specific adsorption of sulfonate groups of the Nafion® ionomer locally modifies the double layer structure and increases the tolerance to metal cations, even in the presence of sulphate ions in the electrolyte. The survey is extended by using an ultramicroelectrode with cavity and a solid state cell (SSC) specifically developed for this study.

  3. Mechanism of ochratoxin A transport in kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sokol, P.P.; Ripich, G.; Holohan, P.D.; Ross, C.R.

    1988-08-01

    The effect of the fungal metabolite (mycotoxin) Ochratoxin A (OTA) on the transport of p-amino(/sup 3/H)hippurate (PAH), a prototypic organic anion, was examined in renal brush border (BBMV) and basolateral membrane vesicles (BLMV). OTA was as effective an inhibitor of PAH uptake in both membranes as probenecid. The dose response curves for OTA in BBMV and BLMV gave IC50 values of 20 +/- 6 and 32 +/- 7 microM, respectively. The effect was specific since the transport of the organic cation N1-methylnicotinamide was not affected. The phenomenon of counterflow was studied to establish that OTA is translocated. OTA produced trans stimulation of PAH transport in both BBMV and BLMV, demonstrating that OTA is transported across both these membranes. The data suggest that OTA interacts with the PAH transport system in both BBMV and BLMV. We conclude that OTA transport in the kidney is mediated via the renal organic anion transport system.

  4. Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  5. Nonbonded interactions in membrane active cyclic biopolymers. IV - Cation dependence

    Science.gov (United States)

    Radhakrishnan, R.; Srinivasan, S.; Prasad, C. V.; Brinda, S. R.; Macelroy, R. D.; Sundaram, K.

    1980-01-01

    Interactions of valinomycin and form of its analogs in several conformations with the central ions Li(+), Na(+), K(+), Rb(+) and Cs(+) are investigated as part of a study of the specific preference of valinomycin for potassium and the mechanisms of carrier-mediated ion transport across membranes. Ion binding energies and conformational potential energies are calculated taking into account polarization energy formulas and repulsive energy between the central ion and the ligand atoms for conformations representing various stages in ion capture and release for each of the two ring chiralities of valinomycin and its analogs. Results allow the prediction of the chirality and conformation most likely to be observed for a given analog, and may be used to synthesize analogs with a desired rigidity or flexibility. The binding energies with the alkali metal cations are found to decrease with increasing ion size, and to be smaller than the corresponding ion hydration energies. It is pointed out that the observed potassium preference may be explainable in terms of differences between binding and hydration energies. Binding energies are also noted to depend on ligand conformation.

  6. An Overview on Metal Cations Extraction by Azocalixarenes

    Directory of Open Access Journals (Sweden)

    Hasalettin Deligöz

    2011-12-01

    Full Text Available In this overview, our main aim is to present the design, preparation, characterization, and extraction/sorption properties of chromogenic azocalix[4]arenes (substituted with different groups toward metal cations. Azocalixarenes, which contain a conjugated chromophore, i.e. azo (-N=N- group are synthesized in “one-pot” procedures in satisfactory yields. A wide variety of applications is expected by the functionalization of the side arms. Some of them are used to complex with metal ions. These macrocycles due to their bowl-shaped geometry are indeed used as hosts allowing ionic or organic guests to coordinate onto their cavity. The azocalixarene based ionophores are generally applied in various fields such as catalyst recovery, power plant, agriculture, metals finishing, microelectonics, biotechnology processes, rare earths speciation, and potable water purification. Besides these, they find applications in the area of selective ion extractions, receptors, optical devices, chemical sensor devices, the stationary phase for capillary chromatography, ion transport membranes, and luminescence probes etc. This survey is focused to provide overview an of the versatile nature of azocalix[n]arenes as highly efficient extractants for metal ions treated as pollutants.

  7. Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors.

    Science.gov (United States)

    Förstner, Philip; Bayer, Fabienne; Kalu, Nnanya; Felsen, Susanne; Förtsch, Christina; Aloufi, Abrar; Ng, David Y W; Weil, Tanja; Nestorovich, Ekaterina M; Barth, Holger

    2014-07-14

    Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.

  8. Choline transport via choline transporter-like protein 1 in conditionally immortalized rat syncytiotrophoblast cell lines TR-TBT.

    Science.gov (United States)

    Lee, N-Y; Choi, H-M; Kang, Y-S

    2009-04-01

    Choline is an essential nutrient for phospholipids and acetylcholine biosynthesis in normal development of fetus. In the present study, we investigated the functional characteristics of choline transport system and inhibitory effect of cationic drugs on choline transport in rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT). Choline transport was weakly Na(+) dependent and significantly influenced by extracellular pH and by membrane depolarization. The transport process of choline is saturable with Michaelis-Menten constants (K(m)) of 68microM and 130microM in TR-TBT 18d-1 and TR-TBT 18d-2 respectively. Choline uptake in the cells was inhibited by unlabeled choline and hemicholinium-3 as well as various organic cations including guanidine, amiloride and acetylcholine. However, the prototypical organic cation tetraethylammonium and cimetidine showed very little inhibitory effect of choline uptake in TR-TBT cells. RT-PCR revealed that choline transporter-like protein 1 (CTL1) and organic cation transporter 2 (OCT2) are expressed in TR-TBT cells. The transport properties of choline in TR-TBT cells were similar or identical to that of CTL1 but not OCT2. CTL1 was also detected in human placenta. In addition, several cationic drugs such as diphenhydramine and verapamil competitively inhibited choline uptake in TR-TBT 18d-1 with K(i) of 115microM and 55microM, respectively. Our results suggest that choline transport system, which has intermediate affinity and weakly Na(+) dependent, in TR-TBT seems to occur through a CTL1 and this system may have relevance with the uptake of pharmacologically important organic cation drugs.

  9. Redox Active Cation Intercalation/Deintercalation in Two-Dimensional Layered MnO2 Nanostructures for High-Rate Electrochemical Energy Storage.

    Science.gov (United States)

    Xiong, Pan; Ma, Renzhi; Sakai, Nobuyuki; Bai, Xueyin; Li, Shen; Sasaki, Takayoshi

    2017-02-22

    Two-dimensional (2D) layered materials with a high intercalation pseudocapacitance have long been investigated for Li(+)-ion-based electrochemical energy storage. By contrast, the exploration of guest ions other than Li(+) has been limited, although promising. The present study investigates intercalation/deintercalation behaviors of various metal ions in 2D layered MnO2 with various interlayer distances, K-birnessite nanobelt (K-MnO2), its protonated form (H-MnO2), and a freeze-dried sample of exfoliated nanosheets. Series of metal ions, such as monovalent Li(+), Na(+), and K(+) and divalent Mg(2+), exhibit reversible intercalation during charge/discharge cycling, delivering high-rate pseudocapacitances. In particular, the freeze-dried MnO2 of exfoliated nanosheets restacked with the largest interlayer spacing and a less compact 3D network exhibits the best rate capability and a stable cyclability over 5000 cycles. Both theoretical calculation and kinetic analysis reveal that the increased interlayer distance facilitates the fast diffusion of cations in layered MnO2 hosts. The results presented herein provide a basis for the controllable synthesis of layered nanostructures for high-rate electrochemical energy storage using various single- and multivalent ions.

  10. Effects of different cations on properties of ionomers of maleated styrene-butadiene-styrene triblock copolymer%阳离子对顺酐化苯乙烯-丁二烯-苯乙烯三嵌段共聚物离聚体性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘大刚; 谢洪泉; 高玉

    2011-01-01

    The ionomers containing different cations, such as sodium, lithium, potassium, calcium,zinc, lead, magnesium, and ethyl ammonium were synthesized from the ionization of maleated styrenebutadiene-styrene triblock copolymer ( SBS ) .Effects of different cations on the thermal, mechanical, oil resistance and adhesive properties of the ionomers were studied. The results showed that, in addition to the glass transition temperatures (Tg) of butadiene and styrene blocks, the ionomers exhibited third Tg, which is due to the dissociation of the ionic domains. For the monovalent alkali metal cation neutralized ionomers, the higher the ionic potential, the higher the dissociation temperature of ionic domains, tensile strength and lap shear strength to iron plates and the order from large to small was Li+ > Na+> K+; for the divalent cation neutralized ionomers, the dissociation temperature of ionic domains decreased in the order of Ca2+> Zn2+>Pb2+ , whereas the tensile strength decreased in the order of Ca2+> Zn2 + > Mg2 + , but all were lower than those of the monovalent alkali metal cation neutralized ionomers. The oil resistance of the divalent cation neutralized ionomers was better than that of the monovalent cation neutralized ionomers or SBS.The lap shear strength of zinc ion neutralized ionomer to iron plates was the highest of all, being 0. 594 MPa.%将顺酐化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SBS)离子化得到含不同阳离子的离聚体,考察了不同阳离子对离聚体热性能、物理机械性能、耐油性能和粘接性能的影响.结果表明,离聚体有3个玻璃化转变温度(Tg),其中2个是SBS固有的Tg,另一个是离子微区的离解温度;对于含1价阳离子的离聚体,离子电离势越高,离聚体的离解温度、拉伸强度和搭接剪切强度基本越高,即从大到小依次为含锂离聚体、含钠离聚体、含钾离聚体;含2价阳离子离聚体的离解温度从大到小依次为含钙离聚

  11. Cocktail-Dosing Microdialysis Study to Simultaneously Assess Delivery of Multiple Organic-Cationic Drugs to the Brain.

    Science.gov (United States)

    Kitamura, Atsushi; Okura, Takashi; Higuchi, Kei; Deguchi, Yoshiharu

    2016-02-01

    Brain microdialysis is a powerful tool to estimate brain-to-plasma unbound concentration ratio at the steady state (Kp,uu) of compounds by direct measurement of the unbound concentration in brain interstitial fluid. Here, we evaluated a method to estimate Kp,uu values of multiple organic-cationic drugs simultaneously, by means of brain microdialysis combined with cocktail dosing. Five cationic drugs (diphenhydramine, memantine, oxycodone, pyrilamine, and tramadol), substrates of the proton-coupled organic cation antiport system, were selected as model drugs, and compared under single-dosing and cocktail-dosing conditions. We selected doses of the drugs at which no significant drug-drug interaction occurs at the proton-coupled organic cation antiport system in the blood-brain barrier (BBB). This was confirmed by uptake studies in hCMEC/D3 cells, an in vitro BBB model. The Kp,uu values after cocktail administration were in the range of 1.8-5.2, and were in good agreement with those after single administration. These results suggest that the microdialysis method with cocktail dosing is suitable to estimate Kp,uu values of several cationic drugs simultaneously, if there is no drug-drug interaction during BBB transport. The method could be useful for evaluating drug candidates with high Kp,uu values at an early stage in the development of central nervous system-acting drugs.

  12. Synthesis and Preliminary Investigations of the siRNA Delivery Potential of Novel, Single-Chain Rigid Cationic Carotenoid Lipids

    Directory of Open Access Journals (Sweden)

    Philip L. Leopold

    2012-03-01

    Full Text Available The success of nucleic acid delivery requires the development of safe and efficient delivery vectors that overcome cellular barriers for effective transport. Herein we describe the synthesis of a series of novel, single-chain rigid cationic carotenoid lipids and a study of their preliminary in vitro siRNA delivery effectiveness and cellular toxicity. The efficiency of siRNA delivery by the single-chain lipid series was compared with that of known cationic lipid vectors, 3β-[N-(N',N'-dimethylaminoethanecarbamoyl]-cholesterol (DC-Chol and 1,2-dimyristoyl-sn-glyceryl-3-phosphoethanolamine (EPC as positive controls. All cationic lipids (controls and single-chain lipids were co-formulated into liposomes with the neutral co-lipid, 1,2-dioleolyl-sn-glycerol-3-phosphoethanolamine (DOPE. Cationic lipid-siRNA complexes of varying (+/− molar charge ratios were formulated for delivery into HR5-CL11 cells. Of the five single-chain carotenoid lipids investigated, lipids 1, 2, 3 and 5 displayed significant knockdown efficiency with HR5-CL11 cells. In addition, lipid 1 exhibited the lowest levels of cytotoxicity with cell viability greater than 80% at all (+/− molar charge ratios studied. This novel, single-chain rigid carotenoid-based cationic lipid represents a new class of transfection vector with excellent cell tolerance, accompanied with encouraging siRNA delivery efficiency.

  13. Imperatorin is Transported through Blood-Brain Barrier by Carrier-Mediated Transporters

    Science.gov (United States)

    Tun, Temdara; Kang, Young-Sook

    2017-01-01

    Imperatorin, a major bioactive furanocoumarin with multifunctions, can be used for treating neurodegenerative diseases. In this study, we investigated the characteristics of imperatorin transport in the brain. Experiments of the present study were designed to study imperatorin transport across the blood-brain barrier both in vivo and in vitro. In vivo study was performed in rats using single intravenous injection and in situ carotid artery perfusion technique. Conditionally immortalized rat brain capillary endothelial cells were as an in vitro model of blood-brain barrier to examine the transport mechanism of imperatorin. Brain distribution volume of imperatorin was about 6 fold greater than that of sucrose, suggesting that the transport of imperatorin was through the blood-brain barrier in physiological state. Both in vivo and in vitro imperatorin transport studies demonstrated that imperatorin could be transported in a concentration-dependent manner with high affinity. Imperatorin uptake was dependent on proton gradient in an opposite direction. It was significantly reduced by pretreatment with sodium azide. However, its uptake was not inhibited by replacing extracellular sodium with potassium or N-methylglucamine. The uptake of imperatorin was inhibited by various cationic compounds, but not inhibited by TEA, choline and organic anion substances. Transfection of plasma membrane monoamine transporter, organic cation transporter 2 and organic cation/carnitine transporter 2/1 siRNA failed to alter imperatorin transport in brain capillary endothelial cells. Especially, tramadol, clonidine and pyrilamine inhibited the uptake of [3H]imperatorin competitively. Therefore, imperatorin is actively transported from blood to brain across the blood-brain barrier by passive and carrier-mediated transporter. PMID:28554202

  14. Chamber transport

    Energy Technology Data Exchange (ETDEWEB)

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  15. Cation-π interaction of the univalent silver cation with meso-octamethylcalix[4]pyrrole: Experimental and theoretical study

    Science.gov (United States)

    Polášek, Miroslav; Kvíčala, Jaroslav; Makrlík, Emanuel; Křížová, Věra; Vaňura, Petr

    2017-02-01

    By using electrospray ionization mass spectrometry (ESI-MS), it was proven experimentally that the univalent silver cation Ag+ forms with meso-octamethylcalix[4]pyrrole (abbrev. 1) the cationic complex species 1·Ag+. Further, applying quantum chemical DFT calculations, four different conformations of the resulting complex 1·Ag+ were derived. It means that under the present experimental conditions, this ligand 1 can be considered as a macrocyclic receptor for the silver cation.

  16. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting.

    Science.gov (United States)

    Amat, Anna; Mosconi, Edoardo; Ronca, Enrico; Quarti, Claudio; Umari, Paolo; Nazeeruddin, Md K; Grätzel, Michael; De Angelis, Filippo

    2014-06-11

    Organohalide lead perovskites have revolutionized the scenario of emerging photovoltaic technologies. The prototype MAPbI3 perovskite (MA = CH3NH3(+)) has dominated the field, despite only harvesting photons above 750 nm (∼1.6 eV). Intensive research efforts are being devoted to find new perovskites with red-shifted absorption onset, along with good charge transport properties. Recently, a new perovskite based on the formamidinium cation ((NH2)2CH(+) = FA) has shown potentially superior properties in terms of band gap and charge transport compared to MAPbI3. The results have been interpreted in terms of the cation size, with the larger FA cation expectedly delivering reduced band-gaps in Pb-based perovskites. To provide a full understanding of the interplay among size, structure, and organic/inorganic interactions in determining the properties of APbI3 perovskites, in view of designing new materials and fully exploiting them for solar cells applications, we report a fully first-principles investigation on APbI3 perovskites with A = Cs(+), MA, and FA. Our results evidence that the tetragonal-to-quasi cubic structural evolution observed when moving from MA to FA is due to the interplay of size effects and enhanced hydrogen bonding between the FA cations and the inorganic matrix altering the covalent/ionic character of Pb-I bonds. Most notably, the observed cation-induced structural variability promotes markedly different electronic and optical properties in the MAPbI3 and FAPbI3 perovskites, mediated by the different spin-orbit coupling, leading to improved charge transport and red-shifted absorption in FAPbI3 and in general in pseudocubic structures. Our theoretical model constitutes the basis for the rationale design of new and more efficient organohalide perovskites for solar cells applications.

  17. Preliminary results: surveillance for Guillain-Barré syndrome after receipt of influenza A (H1N1) 2009 monovalent vaccine - United States, 2009-2010.

    Science.gov (United States)

    2010-06-01

    Guillain-Barré syndrome (GBS) is an uncommon peripheral neuropathy causing paralysis and in severe cases respiratory failure and death. GBS often follows an antecedent gastrointestinal or upper respiratory illness but, in rare cases, can follow vaccination. In 1976, vaccination against a novel swine-origin influenza A (H1N1) virus was associated with a statistically significant increased risk for GBS in the 42 days after vaccination (approximately 10 excess cases per 1 million vaccinations), a consideration in halting the vaccination program in the context of limited influenza virus transmission. To monitor influenza A (H1N1) 2009 monovalent vaccine safety, several federal surveillance systems, including CDC's Emerging Infections Program (EIP), are being used. In October 2009, EIP began active surveillance to assess the risk for GBS after 2009 H1N1 vaccination. Preliminary results from an analysis in EIP comparing GBS patients hospitalized through March 31, 2010, who did and did not receive 2009 H1N1 vaccination showed an estimated age-adjusted rate ratio of 1.77 (GBS incidence of 1.92 per 100,000 person-years among vaccinated persons and 1.21 per 100,000 person-years among unvaccinated persons). If end-of-surveillance analysis confirms this finding, this would correspond to 0.8 excess cases of GBS per 1 million vaccinations, similar to that found in seasonal influenza vaccines. No other federal system to date has detected a statistically significant association between GBS and 2009 H1N1 vaccination. Surveillance and further analyses are ongoing. The 2009 H1N1 vaccine safety profile is similar to that for seasonal influenza vaccines, which have an excellent safety record. Vaccination remains the most effective method to prevent serious illness and death from 2009 H1N1 influenza infection; illness from the 2009 H1N1 influenza virus has been associated with a hospitalization rate of 222 per 1 million and a death rate of 9.7 per 1 million population.

  18. Coupled ion Binding and Structural Transitions Along the Transport Cycle of Glutamate Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Verdon, Gregory [Weill Cornell Medical College, New York, NY (United States); Oh, SeCheol [Weill Cornell Medical College, New York, NY (United States); Serio, Ryan N. [Weill Cornell Medical College, New York, NY (United States); Boudker, Olga [Weill Cornell Medical College, New York, NY (United States)

    2014-05-19

    Membrane transporters that clear the neurotransmitter glutamate from synapses are driven by symport of sodium ions and counter-transport of a potassium ion. Previous crystal structures of a homologous archaeal sodium and aspartate symporter showed that a dedicated transport domain carries the substrate and ions across the membrane. We report new crystal structures of this homologue in ligand-free and ions-only bound outward- and inward-facing conformations. We then show that after ligand release, the apo transport domain adopts a compact and occluded conformation that can traverse the membrane, completing the transport cycle. Sodium binding primes the transport domain to accept its substrate and triggers extracellular gate opening, which prevents inward domain translocation until substrate binding takes place. Moreover, we describe a new cation-binding site ideally suited to bind a counter-transported ion. We suggest that potassium binding at this site stabilizes the translocation-competent conformation of the unloaded transport domain in mammalian homologues.

  19. Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk

    NARCIS (Netherlands)

    Guskov, Albert; Jensen, Sonja; Faustino, Ignacio; Marrink, Siewert J.; Slotboom, Dirk Jan

    2016-01-01

    Glutamate transporters catalyse the thermodynamically unfavourable transport of anionic amino acids across the cell membrane by coupling it to the downhill transport of cations. This coupling mechanism is still poorly understood, in part because the available crystal structures of these transporters

  20. Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk

    NARCIS (Netherlands)

    Guskov, Albert; Jensen, Sonja; Faustino, Ignacio; Marrink, Siewert J.; Slotboom, Dirk Jan

    2016-01-01

    Glutamate transporters catalyse the thermodynamically unfavourable transport of anionic amino acids across the cell membrane by coupling it to the downhill transport of cations. This coupling mechanism is still poorly understood, in part because the available crystal structures of these transporters

  1. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    DEFF Research Database (Denmark)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C.

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We...... then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients...... with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any...

  2. Electron spectra of radical cations of heteroanalogs

    Energy Technology Data Exchange (ETDEWEB)

    Petrushenko, K.B.; Turchaninov, V.K.; Vokin, A.I.; Ermikov, A.F.; Frolov, Yu.L.

    1985-12-01

    Radical cation spectra of indazole and benzothiophene in the visible region were obtained by laser photolysis during the reaction of photoexcited quinones with these compounds in acetonitrile. The charge transfer bands of the complexes of the test compounds with p-chloranil and 7,7,8,8-tetracyanoquinodimethane in dioxane were recorded on a Specord M-40. Photoelectron spectra were obtained on a ES-3201 electron spectrometer. The He(I) resonance band (21.21 eV) was used for excitation. Measurements were carried out in the 60-120/sup 0/C range. The energy scale was calibrated form the first ionization potentials of Ar (15.76 eV) and chlorobenzene (9.06 eV). The error in the determination of the ionization potentials for the first four photoelectron bands was 0.05 eV.

  3. Structural and cytotoxic studies of cationic thiosemicarbazones

    Science.gov (United States)

    Sinniah, Saravana Kumar; Sim, Kae Shin; Ng, Seik Weng; Tan, Kong Wai

    2017-06-01

    Schiff bases from the thiosemicarbazones family with variable N4 substituents are known to show enhanced growth inhibitory properties. In view of these facts and as a part of our continuous interest in cationic Schiff bases, we have developed several Schiff base ligands from (3-formyl-4-hydroxyphenyl)methyltriphenylphosphonium (T) in present study. The compounds were characterized by various spectroscopic methods (infrared spectra, 1H NMR, 13C NMR, HRESIMS and X-ray crystallography). Three of the N4 substituents, namely P(tsc)T, FP(tsc)T and EP(tsc)T exerted strong growth inhibitory properties by inhibiting the highly metastasis prostate cancer growth (PC-3). The thiosemicarbazone with ethylphenyl (EP) moiety displayed most potent activity against all cell lines tested. The MTT data obtained from analysis establishes that phenyl substituent enhances the growth inhibitory properties of the compound. The result affirms that EP(tsc)T would serve as a lead scaffold for rational anticancer agent development.

  4. Heart imaging with cationic complexes of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, E. (Univ. of Cincinnati, Cincinnati, OH); Bushong, W.; Glavan, K.A.; Elder, R.C.; Sodd, V.J.; Scholz, K.L.; Fortman, D.L.; Lukes, S.J.

    1981-10-02

    The cationic technetium-99 complex trans-(/sup 99/Tc(dmpe)/sub 2/Cl/sub 2/)/sup +/, where dmpe is bis(1,2-dimethylphosphino)ethane or (CH/sub 3/)/sub 2/P-CH/sub 2/CH/sub 2/-P(CH/sub 3/)/sub 2/, has been prepared and characterized by single-crystal, x-ray structural analysis. The technetium-99m analog, trans-(/sup 99m/Tc (dmpe)/sub 2/Cl/sub 2/)/sup +/, has also been prepared and shown to yield excellent gamma-ray images of the heart. The purposeful design, characterization, and synthesis of this technetium-99m radiopharmaceutical represents a striking application of fundamental inorganic chemistry to a problem in applied nuclear medicine.

  5. Retention of Cationic Starch onto Cellulose Fibres

    Science.gov (United States)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur

    2008-08-01

    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  6. Capturing dynamic cation hopping in cubic pyrochlores

    Science.gov (United States)

    Brooks Hinojosa, Beverly; Asthagiri, Aravind; Nino, Juan C.

    2011-08-01

    In direct contrast to recent reports, density functional theory predicts that the most stable structure of Bi2Ti2O7 pyrochlore is a cubic Fd3¯m space group by accounting for atomic displacements. The displaced Bi occupies the 96g(x,x,z) Wyckoff position with six equivalent sites, which create multiple local minima. Using nudged elastic band method, the transition states of Bi cation hopping between equivalent minima were investigated and an energy barrier between 0.11 and 0.21 eV was determined. Energy barriers associated with the motion of Bi between equivalent sites within the 96g Wyckoff position suggest the presence of dielectric relaxation in Bi2Ti2O7.

  7. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo

    2010-11-25

    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  8. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    Science.gov (United States)

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (Kd). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (Kd) decreasing as follows: Kd(Na(+)) > Kd(NH4(+)) ≥ Kd(K(+)) > Kd(Ca(2+)) ≥ Kd(Mg(2+)) > Kd(Al(3+)). This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium Kd values, allowed for

  9. Antiviral effect of cationic compounds on bacteriophages

    Directory of Open Access Journals (Sweden)

    Mai Huong eChatain-Ly

    2013-03-01

    Full Text Available The antiviral activity of several cationic compounds - cetytrimethylammonium (CTAB, chitosan, nisin and lysozyme - was investigated on the bacteriophage c2 (DNA head and non-contractile tail infecting Lactococcus strains and the bacteriophage MS2 (F-specific RNA infecting E.coli. Firstly, these activities were evaluated in a phosphate buffer pH 7- 10 mM. The CTAB had a virucidal effect on the Lactococcus bacteriophages, but not on the MS2. After 1 min of contact with 0.125 mM CTAB, the c2 population was reduced from 6 log(pfu/mL to 1,5 log(pfu/mL and completely deactivated at 1 mM. On the contrary, chitosan inhibited the MS2 more than it did the bacteriophages c2. No antiviral effect was observed for the nisin or the lysozyme on bacteriophages after 1 min of treatment. A 1 and 2.5 log reduction was respectively observed for nisin and lysozyme when the treatment time increased (5 or 10 min. These results showed that the antiviral effect depended both on the virus and structure of the antimicrobial compounds. The antiviral activity of these compounds was also evaluated in different physico-chemical conditions and in complex matrices. The antiviral activity of CTAB was impaired in acid pH and with an increase of the ionic strength. These results might be explained by the electrostatic interactions between cationic compounds and negatively charged particles such as bacteriophages or other compounds in a matrix. Milk proved to be protective suggesting the components of food could interfere with antimicrobial compounds.

  10. The Effect of Hydration on the Cation-π Interaction Between Benzene and Various Cations

    Indian Academy of Sciences (India)

    VIKASH DHINDHWAL; N SATHYAMURTHY

    2016-10-01

    The effect of hydration on cation-π interaction in Mq+ BmWn (B = benzene; W = water; Mq+ =Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, 0 ≤ n,m ≤ 4, 1≤ m + n ≤ 4) complexes has been investigated using ab initio quantum chemical methods. Interaction energy values computed at the MP2 level of theory using the 6-31G(d,p) basis set reveal a qualitative trend in the relative affinity of different cations for benzene and water in these complexes. The π–cloud thickness values for benzene have also been estimated for these systems.

  11. Cation-Stitching Cascade”: exquisite control of terpene cyclization in cyclooctatin biosynthesis

    Science.gov (United States)

    Sato, Hajime; Teramoto, Kazuya; Masumoto, Yui; Tezuka, Noriyuki; Sakai, Kenta; Ueda, Shota; Totsuka, Yusuke; Shinada, Tetsuro; Nishiyama, Makoto; Wang, Chao; Kuzuyama, Tomohisa; Uchiyama, Masanobu

    2015-12-01

    Terpene cyclization is orchestrated by terpene cyclases, which are involved in the biosynthesis of various cyclic natural products, but understanding the origin and mechanism of the selectivity of terpene cyclization is challenging. In this work, we describe an in-depth mechanistic study on cyclooctatin biosynthesis by means of theoretical calculations combined with experimental methods. We show that the main framework of cyclooctatin is formed through domino-type carbocation transportation along the terpene chain, which we call a “cation-stitching cascade”, including multiple hydrogen-shifts and a ring rearrangement that elegantly determine the stereoselectivity.

  12. Water-soluble cationic conjugated polymers: response to electron-rich bioanalytes.

    Science.gov (United States)

    Rochat, Sébastien; Swager, Timothy M

    2013-11-27

    We report the concise synthesis of a symmetrical monomer that provides a head-to-head pyridine building block for the preparation of cationic conjugated polymers. The obtained poly(pyridinium-phenylene) polymers display appealing properties such as high electron affinity, charge-transport upon n-doping, and optical response to electron-donating analytes. A simple assay for the optical detection of low micromolar amounts of a variety of analytes in aqueous solution was developed. In particular, caffeine could be measured at a 25 μM detection limit. The reported polymers are also suitable for layer-by-layer film formation.

  13. How mobile are sorbed cations in clays and clay rocks?

    Science.gov (United States)

    Gimmi, T; Kosakowski, G

    2011-02-15

    Diffusion of cations and other contaminants through clays is of central interest, because clays and clay rocks are widely considered as barrier materials for waste disposal sites. An intriguing experimental observation has been made in this context: Often, the diffusive flux of cations at trace concentrations is much larger and the retardation smaller than expected based on their sorption coefficients. So-called surface diffusion of sorbed cations has been invoked to explain the observations but remains a controversial issue. Moreover, the corresponding surface diffusion coefficients are largely unknown. Here we show that, by an appropriate scaling, published diffusion data covering a broad range of cations, clays, and chemical conditions can all be modeled satisfactorily by a surface diffusion model. The average mobility of sorbed cations seems to be primarily an intrinsic property of each cation that follows inversely its sorption affinity. With these surface mobilities, cation diffusion coefficients can now be estimated from those of water tracers. In pure clays at low salinities, surface diffusion can reduce the cation retardation by a factor of more than 1000.

  14. In vivo toxicity of cationic micelles and liposomes

    DEFF Research Database (Denmark)

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar

    2015-01-01

    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the last...

  15. Electronic structures of one-dimensional poly-fused selenophene radical cations: density functional theory study

    Directory of Open Access Journals (Sweden)

    Hiroshi Kawabata et al

    2008-01-01

    Full Text Available Hybrid density functional theory (DFT calculations have been carried out for neutral and radical cation species of a fused selenophene oligomer, denoted by Se(n, where n represents the number of selenophene rings in the oligomer, to elucidate the electronic structures at ground and low-lying excited states. A polymer of fused selenophene was also investigated using one-dimensional periodic boundary conditions (PBC for comparison. It was found that the reorganization energy of a radical cation of Se(n from a vertical hole trapping point to its relaxed structure is significantly small. Also, the reorganization energy decreased gradually with increasing n, indicating that Se(n has an effective intramolecular hole transport property. It was found that the radical cation species of Se(n has a low-energy band in the near-IR region, which is strongly correlated to hole conductivity. The relationship between the electronic states and intramolecular hole conductivity was discussed on the basis of theoretical calculations.

  16. Interactions between cationic liposomes and drugs or biomolecules

    Directory of Open Access Journals (Sweden)

    ANA MARIA CARMONA-RIBEIRO

    2000-03-01

    Full Text Available Multiple uses for synthetic cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB bilayer vesicles are presented. Drugs or biomolecules can be solubilized or incorporated in the cationic bilayers. The cationic liposomes themselves can act as antimicrobial agents causing death of bacteria and fungi at concentrations that barely affect mammalian cells in culture. Silica particles or polystyrene microspheres can be functionalized by coverage with DODAB bilayers or phospholipid monolayers. Negatively charged antigenic proteins can be carried by the cationic liposomes which generate a remarkable immunoadjuvant action. Nucleotides or DNA can be physically adsorbed to the cationic liposomes to be transferred to mammalian cells for gene therapy. An overview of the interactions between DODAB vesicles and some biomolecules or drugs clearly points out their versatility for useful applications in a near future.

  17. Interactions between cationic liposomes and drugs or biomolecules.

    Science.gov (United States)

    Carmona-Ribeiro, A M

    2000-01-01

    Multiple uses for synthetic cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB) bilayer vesicles are presented. Drugs or biomolecules can be solubilized or incorporated in the cationic bilayers. The cationic liposomes themselves can act as antimicrobial agents causing death of bacteria and fungi at concentrations that barely affect mammalian cells in culture. Silica particles or polystyrene microspheres can be functionalized by coverage with DODAB bilayers or phospholipid monolayers. Negatively charged antigenic proteins can be carried by the cationic liposomes which generate a remarkable immunoadjuvant action. Nucleotides or DNA can be physically adsorbed to the cationic liposomes to be transferred to mammalian cells for gene therapy. An overview of the interactions between DODAB vesicles and some biomolecules or drugs clearly points out their versatility for useful applications in a near future.

  18. Do Cation-π Interactions Exist in Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    HU Kun-Sheng; WANG Guang-Yu; HE Jin-An

    2001-01-01

    Metal ions are essential to the structure and physiological functions of bacteriorhodopsin. Experimental evidence suggests the existence of specific cation binding to the negatively charged groups of Asp85 and Asp212 via an electrostatic interaction. However, only using electrostatic force is not enough to explain the role of the metal cations because the carboxylate of Asp85 is well known to be protonated in the M intermediate. Considering the presence of some aromatic amino acid residues in the vicinity of the retinal pocket, the existence of cation-π interactions between the metal cation and aromatic amino acid residues is suggested. Obviously, introduction of this kind of interaction is conducive to understanding the effects of the metal cations and aromatic amino acid residues inside the protein on the structural stability and proton pumping of bacteriorhodopsin.

  19. Magnetic susceptibility and electron magnetic resonance study of monovalent potassium doped manganites Pr{sub 0.6}Sr{sub 0.4−x}K{sub x}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thaljaoui, R., E-mail: thaljaoui@gmail.com [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax (Tunisia); Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Department of Chemistry, University of Warsaw, Al. Żwirki i Wigury 101, 02-089 Warsaw (Poland); Pękała, K. [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Pękała, M. [Department of Chemistry, University of Warsaw, Al. Żwirki i Wigury 101, 02-089 Warsaw (Poland); Boujelben, W. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax (Tunisia); Szydłowska, J. [Department of Chemistry, University of Warsaw, Al. Żwirki i Wigury 101, 02-089 Warsaw (Poland); Fagnard, J.-F.; Vanderbemden, P. [SUPRATEC, Department of Electrical Engineering and Computer Science (B28), University of Liege (Belgium); Cheikhrouhou, A. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax (Tunisia)

    2013-12-15

    Highlights: •Orthorhombic monovalent doped manganites Pr0.6Sr0.4-xKxMnO3 (x = 0.05 to 0.2). •Unit cell volume decreases with K content. •Curie temperature decreases with K content. •Electron magnetic resonance determines low temperature limit of paramagnetic phase. -- Abstract: The monovalent potassium doped manganites Pr{sub 0.6}Sr{sub 0.4−x}K{sub x}MnO{sub 3} (x = 0.05–0.2) are characterized using the complementary magnetic susceptibility and electron resonance methods. In paramagnetic phase the temperature variations of the inverse magnetic susceptibility and the inverse intensity of resonance signal obey the Curie–Weiss law. A similarity in temperature variation of resonance signal width and the adiabatic polaron conductivity points to the polaron mechanism controlling the resonance linewidth. The low temperature limit of the pure paramagnetic phase is determined from the electron resonance spectra revealing the mixed phase spread down to the Curie temperature.

  20. Non-bridging Oxygen and Five-coordinated Aluminum in Aluminosilicate Glasses: A Cation Field Strength Study

    Science.gov (United States)

    Thompson, L. M.; Stebbins, J. F.

    2011-12-01

    Linda M. Thompson Jonathan F. Stebbins Dept. of Geological and Environmental Sciences, Stanford University, Stanford CA 94305 Although it is understood in aluminosilicate melts and glasses that non-bridging oxygens (NBO) have significant influence on thermodynamic and transport properties, questions remain about its role and the extent of its influence, particularly in metaluminous and peraluminous compositions. One major question persists regarding whether the formation of NBO is in any way coupled with the formation of VAl (AlO5), which is significantly impacted by cation field strength (defined as the cation charge divided by the square of the distance between the cation and oxygen atoms) (Kelsey et al., 2009). Previous work on calcium and potassium aluminosilicate glasses has shown the presence of NBO on the metaluminous join and persisting into the peraluminous region, with significantly more NBO present in Ca glasses compared to K glasses of similar composition (Thompson and Stebbins, 2011). However, it is unclear if there is any systematic impact on NBO content by cation field strength similar to the impact on VAl. Expanding on the previous study, barium aluminosilicate glasses were synthesized covering a range of compositions crossing the metaluminous (e.g. BaAl2O4-SiO2) join to observe changes in the NBO for comparison against the calcium aluminosilicate glasses, thus looking at the impact of cation size on NBO versus cation charge. In the barium glasses on the 30 mol% SiO2 isopleth, the highest NBO content was 6.9% for the barium rich glass (R = 0.51, where R is Ba2+ / (Ba2+ + 2Al3+)) while the most peraluminous glass (R = 0.45) had an NBO content of 1.9%. Comparison of these results to earlier data shows these numbers are similar to what is observed in the Ca glasses, indicating cation size alone does not have a significant impact on NBO content. However the VAl content does show a decrease (compared to calcium aluminosilicate glasses at similar R values

  1. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both simi

  2. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Lihong Chen

    2016-01-01

    Full Text Available The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na+/glucose cotransporter (SGLT1, although glucose transporter type 2 (GLUT2 may also play a role. The membrane potential of small intestinal epithelial cells (IEC is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca2+]cyt can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca2+ in IEC are regulated by cation channels and transporters, such as Ca2+ channels, K+ channels, Na+/Ca2+ exchangers, and Na+/H+ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes.

  3. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters.

    Science.gov (United States)

    Chen, Lihong; Tuo, Biguang; Dong, Hui

    2016-01-14

    The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na⁺/glucose cotransporter (SGLT1), although glucose transporter type 2 (GLUT2) may also play a role. The membrane potential of small intestinal epithelial cells (IEC) is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca(2+)]cyt) can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca(2+) in IEC are regulated by cation channels and transporters, such as Ca(2+) channels, K⁺ channels, Na⁺/Ca(2+) exchangers, and Na⁺/H⁺ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes.

  4. Anaerobic toxicity of cationic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gitipour, Alireza; Thiel, Stephen W. [Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Scheckel, Kirk G. [USEPA, Office of Research and Development, Cincinnati, OH (United States); Tolaymat, Thabet, E-mail: tolaymat.thabet@epa.gov [USEPA, Office of Research and Development, Cincinnati, OH (United States)

    2016-07-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag{sup +} under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L{sup −1}, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L{sup −1} as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag{sup +}. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L{sup −1} as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L{sup −1}), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  5. Electromembrane extraction of heavy metal cations followed by capillary electrophoresis with capacitively coupled contactless conductivity detection.

    Science.gov (United States)

    Kubáň, Pavel; Strieglerová, Lenka; Gebauer, Petr; Boček, Petr

    2011-04-01

    Electromembrane extraction (EME) was used as an off-line sample pre-treatment method for the determination of heavy metal cations in aqueous samples using CE with capacitively coupled contactless conductivity detection (CE-C(4) D). A short segment of porous polypropylene hollow fibre was penetrated with 1-octanol and 0.5% v/v bis(2-ethylhexyl)phosphonic acid and constituted a low cost, single use, disposable supported liquid membrane, which selectively transported and pre-concentrated heavy metal cations into the fibre lumen filled with 100 mM acetic acid acceptor solution. Donor solutions were standard solutions and real samples dissolved in deionized water at neutral pH. At optimized EME conditions (penetration time, 5 s; applied voltage, 75 V; and stirring rate, 750 rpm), 15-42% recoveries of heavy metal cations were achieved for a 5 min extraction time. Repeatability of the EME pre-treatment was examined for six independent EME runs and ranged from 6.6 to 11.1%. Limits of detection for the EME-CE-C(4) D method ranged from 25 to 200 nM, resulting into one to two orders of magnitude improvement compared with CE-C(4) D without sample treatment. The developed EME sample pre-treatment procedure was applied to the analysis of heavy metal cations in tap water and powdered milk samples. Zinc in the real samples was identified and quantified in a background electrolyte solution consisting of 20 mM L-histidine and 30 mM acetic acid at pH 4.95 in about 3 min.

  6. Ciprofloxacin Is Actively Transported across Bronchial Lung Epithelial Cells Using a Calu-3 Air Interface Cell Model

    Science.gov (United States)

    Ong, Hui Xin; Traini, Daniela; Bebawy, Mary

    2013-01-01

    Ciprofloxacin is a well-established broad-spectrum fluoroquinolone antibiotic that penetrates well into the lung tissues; still, the mechanisms of its transepithelial transport are unknown. The contributions of specific transporters, including multidrug efflux transporters, organic cation transporters, and organic anion-transporting polypeptide transporters, to the uptake of ciprofloxacin were investigated in vitro using an air interface bronchial epithelial model. Our results demonstrate that ciprofloxacin is subject to predominantly active influx and a slight efflux component. PMID:23507281

  7. Hydrogen motion in proton sponge cations: a theoretical study.

    Science.gov (United States)

    Horbatenko, Yevhen; Vyboishchikov, Sergei F

    2011-04-18

    This work presents a study of intramolecular NHN hydrogen bonds in cations of the following proton sponges: 2,7-bis(trimethylsilyl)-1,8-bis(dimethylamino)naphthalene (1), 1,6-diazabicyclo[4.4.4.]tetradecane (2), 1,9-bis(dimethylamino)dibenzoselenophene (3), 1,9-bis(dimethylamino)dibenzothiophene (4), 4,5-bis(dimethylamino)fluorene (5), quino[7,8-h]quinoline (6) 1,2-bis(dimethylamino)benzene (7), and 1,12-bis(dimethylamino)benzo[c]phenantrene (8). Three different patterns were found for proton motion: systems with a single-well potential (cations 1-2), systems with a double-well potential and low proton transfer barrier, ΔEe (cations 3-5), and those with a double-well potential and a high barrier (cations 6-8). Tests of several density functionals indicate that the PBEPBE functional reproduces the potential-energy surface (PES) obtained at the MP2 level well, whereas the B3LYP, MPWB1K, and MPW1B95 functionals overestimate the barrier. Three-dimensional PESs were constructed and the vibrational Schrödinger equation was solved for selected cases of cation 1 (with a single-well potential), cation 4 (with a ΔEe value of 0.1 kcal mol(-1) at the MP2 level), and cations 6 (ΔEe = 2.4 kcal mol(-1)) and 7 (ΔEe=3.4 kcal mol(-1)). The PES is highly anharmonic in all of these cases. The analysis of the three-dimensional ground-state vibrational wave function shows that the proton is delocalized in cations 1 and 4, but is rather localized around the energy minima for cation 7. Cation 6 is an intermediate case, with two weakly pronounced maxima and substantial tunneling. This allows for classification of proton sponge cations into those with localized and those with delocalized proton behavior, with the borderline between them at ΔEe values of about 1.5 kcal mol(-1). The excited vibrational states of proton sponge cations with a low barrier can be described within the framework of a simple particle-in-a-box model. Each cation can be assigned an effective box width.

  8. Hepatobiliary and intestinal clearance of amphiphilic cationic drugs in mice in which both mdr1a and mdr1b genes have been disrupted

    NARCIS (Netherlands)

    Smit, JW; Schinkel, AH; Weert, B; Meijer, DKF

    1998-01-01

    1 We have used mice with homozygously disrupted mdr1a and mdr1b genes (mdr1a/1b (-/-) mice) to study the role of the mdr1-type beta-glycoprotein (P-gp) in the elimination of cationic amphiphilic compounds from the body. These mice lack drug-transporting P-gps, but show no physiological abnormalities

  9. Respiratory adaptations in carp blood. Influences of hypoxia, red cell organic phosphates, divalent cations and CO2 on hemoglobin-oxygen affinity

    DEFF Research Database (Denmark)

    Weber, Roy E.; Lykkeboe, G.

    1978-01-01

    This study concerns the adaptation of oxygen transporting function of carp blood to environment hypoxia, tracing the roles played by erythrocytic cofactors, inorganic cations, carbon dioxide and hemoglobin multiplicity. Carp acclimated to hypoxia ( 30 mmHg) display striking increases in blood oxy...

  10. Respiratory adaptations in carp blood. Influences of hypoxia, red cell organic phosphates, divalent cations and CO2 on hemoglobin-oxygen affinity

    DEFF Research Database (Denmark)

    Weber, Roy E.; Lykkeboe, G.

    1978-01-01

    This study concerns the adaptation of oxygen transporting function of carp blood to environment hypoxia, tracing the roles played by erythrocytic cofactors, inorganic cations, carbon dioxide and hemoglobin multiplicity. Carp acclimated to hypoxia ( 30 mmHg) display striking increases in blood...

  11. The influence of cationic lipid type on in-vitro release kinetic profiles of antisense oligonucleotide from cationic nanoemulsions.

    Science.gov (United States)

    Hagigit, Tal; Nassar, Taher; Behar-Cohen, Francine; Lambert, Gregory; Benita, Simon

    2008-09-01

    Novel formulations of cationic nanoemulsions based on three different lipids were developed to strengthen the attraction of the polyanionic oligonucleotide (ODN) macromolecules to the cationic moieties on the oil nanodroplets. These formulations were developed to prolong the release of the ODN from the nanoemulsion under appropriate physiological dilutions as encountered in the eye following topical application. Increasing the concentration of the new cationic lipid exhibiting two cationic amine groups (AOA) in the emulsion from 0.05% to 0.4% did not alter markedly the particle size or zeta potential value of the blank cationic nanoemulsion. The extent of ODN association did not vary significantly when the initial concentration of ODN remained constant at 10 microM irrespective of the cationic lipid nature. However, the zeta potential value dropped consistently with the low concentrations of 0.05% and 0.1% of AOA in the emulsions suggesting that an electrostatic attraction occurred between the cationic lipids and the polyanionic ODN molecules at the o/w interface. Only the nanoemulsion prepared with N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium salts (DOTAP) remained physically stable over time. DOTAP cationic lipid nanoemulsion was the most efficient formulation capable of retaining the ODN despite the high dilution of 1:100 with simulated tear solution (STS). Less than 10% of the ODN was exchanged in contrast to 40-50% with the other cationic nanoemulsions. The in-vitro release kinetic behavior of ODN exchange with physiological anions present in the STS appears to be complex and difficult to characterize using mathematical fitting model equations. Further pharmacokinetic studies are needed to verify our kinetic assumptions and confirm the in-vitro ODN release profile from DOTAP cationic nanoemulsions.

  12. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Anne-Marie Ellegaard

    2016-07-01

    Full Text Available Non-small cell lung cancer (NSCLC is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy.

  13. Cationic Noncovalent Interactions: Energetics and Periodic Trends.

    Science.gov (United States)

    Rodgers, M T; Armentrout, P B

    2016-05-11

    In this review, noncovalent interactions of ions with neutral molecules are discussed. After defining the scope of the article, which excludes anionic and most protonated systems, methods associated with measuring thermodynamic information for such systems are briefly recounted. An extensive set of tables detailing available thermodynamic information for the noncovalent interactions of metal cations with a host of ligands is provided. Ligands include small molecules (H2, NH3, CO, CS, H2O, CH3CN, and others), organic ligands (O- and N-donors, crown ethers and related molecules, MALDI matrix molecules), π-ligands (alkenes, alkynes, benzene, and substituted benzenes), miscellaneous inorganic ligands, and biological systems (amino acids, peptides, sugars, nucleobases, nucleosides, and nucleotides). Hydration of metalated biological systems is also included along with selected proton-based systems: 18-crown-6 polyether with protonated peptides and base-pairing energies of nucleobases. In all cases, the literature thermochemistry is evaluated and, in many cases, reanchored or adjusted to 0 K bond dissociation energies. Trends in these values are discussed and related to a variety of simple molecular concepts.

  14. INTERACTIONS BETWEEN CATIONIC POLYELECTROLYTE AND PULP FINES

    Directory of Open Access Journals (Sweden)

    Elina Orblin

    2011-05-01

    Full Text Available Papermaking pulps are a mixture of fibres, fibre fragments, and small cells (parenchyma or ray cells, usually called pulp fines. The interactions between pulp fines and a cationic copolymer of acrylamide and acryloxyethyltrimethyl ammonium chloride were investigated based on solid-liquid isotherms prepared under different turbulence, and subsequent advanced surface characterization using X-ray photoelectron spectroscopy (XPS and time-of-flight secondary ion mass spectrometry (ToF-SIMS. The surface charge and surface area of pulp fine substrates were measured by methylene blue sorption-XPS analysis and nitrogen adsorption combined with mercury porosimetry, respectively. The driving force behind polyelectrolyte adsorption was the amount of the surface anionic charge, whereas surface area appeared to be of less importance. Based on a comparison of solid-liquid and XPS sorption isotherms, different polyelectrolyte conformations were suggested, depending on the types of fines: A flatter conformation and partial cell-wall penetration of polyelectrolytes on kraft fines from freshly prepared pulp, and a more free conformation with extended loops and tails on lignocellulosic fines from recycled pulp. Additionally, ToF-SIMS imaging proved that recycled pulp fines contained residual de-inking chemicals (primarily palmitic acid salts that possibly hinder the electrostatic interactions with polyelectrolytes.

  15. Inactivation of Heparin by Cationically Modified Chitosan

    Directory of Open Access Journals (Sweden)

    Barbara Lorkowska-Zawicka

    2014-06-01

    Full Text Available This study was performed to evaluate the ability of N-(2-hydroxypropyl-3-tri methylammonium chitosan chloride (HTCC, the cationically modified chitosan, to form biologically inactive complexes with unfractionated heparin and thereby blocking its anticoagulant activity. Experiments were carried out in rats in vivo and in vitro using the activated partial thromboplastin time (APTT and prothrombin time (PT tests for evaluation of heparin anticoagulant activity. For the first time we have found that HTCC effectively neutralizes anticoagulant action of heparin in rat blood in vitro as well as in rats in vivo. The effect of HTCC on suppression of heparin activity is dose-dependent and its efficacy can be comparable to that of protamine-the only agent used in clinic for heparin neutralization. HTCC administered i.v. alone had no direct effect on any of the coagulation tests used. The potential adverse effects of HTCC were further explored using rat experimental model of acute toxicity. When administered i.p. at high doses (250 and 500 mg/kg body weight, HTCC induced some significant dose-dependent structural abnormalities in the liver. However, when HTCC was administered at low doses, comparable to those used for neutralization of anticoagulant effect of heparin, no histopathological abnormalities in liver were observed.

  16. Radical Cations and Acid Protection during Radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Bruce J. Mincher; Christopher A. Zarzana; Stephen P. Mezyk

    2016-09-01

    Ligand molecules for used nuclear fuel separation schemes are exposed to high radiation fields and high concentrations of acid. Thus, an understanding of the complex interactions between extraction ligands, diluent, and acid is critical to understanding the performance of a separation process. The diglycolamides are ligands with important structural similarities to CMPO; however, previous work has shown that their radiolytic degradation has important mechanistic differences from CMPO. The DGAs do not enjoy radioprotection by HNO3 and the kinetics of DGA radiolytic degradation are different. CMPO degrades with pseudo-zero-order kinetics in linear fashion with absorbed dose while the DGAs degrade in pseudo-first-order, exponential fashion. This suggests that the DGAs degrade by simple reaction with some product of direct diluent radiolysis, while CMPO degradation is probably multi-step, with a slow step that is not dependent on the CMPO concentration, and mitigated by HNO3. It is thus believed that radio-protection and the zero-order radiolytic degradation kinetics are related, and that these phenomena are a function of either the formation of strong acid complexes with CMPO and/or to the presence of the CMPO phenyl ring. Experiments to test both these hypotheses have been designed and partially conducted. This report summarizes findings related to these phenomena for FY16, in satisfaction of milestone M3FT-16IN030104053. It also reports continued kinetic measurements for the reactions of the dodecane radical cation with solvent extraction ligands.

  17. Neutron diffraction investigations of kesterites: cation order and disorder

    Energy Technology Data Exchange (ETDEWEB)

    Schorr, Susan [Free University Berlin, Institute of Geological Sciences (Germany); Tovar, Michael [Helmholtz Zentrum Berlin fuer Materialien und Energie (Germany); Levcenco, Sergej; Napetrov, Alexander; Arushanov, Ernest [Academy of Sciences of Moldova Republic, Institute of Applied Physics, Chisinau (Moldova)

    2010-07-01

    The quaternary chalcogenides Cu{sub 2}ZnSnS{sub 4} and Cu{sub 2}ZnSnSe{sub 4} have newly attracted attention as possible absorber materials in thin film solar cells. They crystallize in the kesterite type (space group I anti 4) or stannite type structure (space group I anti 42m), which are described as an ordered distribution of the cations on different structural sites. Cation disorder may cause site defects and hence influences the electronic properties of the material. Thus the degree of cation order/disorder plays a crucial role and was therefor in the focus of the presented investigations. A differentiation between the isoelectronic cations Cu{sup +} and Zn{sup 2+} is not possible using X-ray diffraction due to their similar scattering power. But their neutron scattering lengths are different, thus neutron diffraction opens the possibility to determine the cation distribution in these compounds. A simultaneous Rietveld analysis of neutron and X-ray powder diffraction data revealed that in dependence on the thermal history of the samples cation disorder appears. The correlation trend between cation order/disorder and the sample growth method (solid state synthesis, Bridgman method) are discussed.

  18. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    Science.gov (United States)

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-03

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  19. Lipopolysaccharide Neutralization by Cationic-Amphiphilic Polymers through Pseudoaggregate Formation.

    Science.gov (United States)

    Uppu, Divakara S S M; Haldar, Jayanta

    2016-03-14

    Synthetic polymers incorporating the cationic charge and hydrophobicity to mimic the function of antimicrobial peptides (AMPs) have been developed. These cationic-amphiphilic polymers bind to bacterial membranes that generally contain negatively charged phospholipids and cause membrane disintegration resulting in cell death; however, cationic-amphiphilic antibacterial polymers with endotoxin neutralization properties, to the best of our knowledge, have not been reported. Bacterial endotoxins such as lipopolysaccharide (LPS) cause sepsis that is responsible for a great amount of mortality worldwide. These cationic-amphiphilic polymers can also bind to negatively charged and hydrophobic LPS and cause detoxification. Hence, we envisaged that cationic-amphiphilic polymers can have both antibacterial as well as LPS binding properties. Here we report synthetic amphiphilic polymers with both antibacterial as well as endotoxin neutralizing properties. Levels of proinflammatory cytokines in human monocytes caused by LPS stimulation were inhibited by >80% when coincubated with these polymers. These reductions were found to be dependent on concentration and, more importantly, on the side-chain chemical structure due to variations in the hydrophobicity profiles of these polymers. These cationic-amphiphilic polymers bind and cause LPS neutralization and detoxification. Investigations of polymer interaction with LPS using fluorescence spectroscopy and dynamic light scattering (DLS) showed that these polymers bind but neither dissociate nor promote LPS aggregation. We show that polymer binding to LPS leads to sort of a pseudoaggregate formation resulting in LPS neutralization/detoxification. These findings provide an unusual mechanism of LPS neutralization using novel synthetic cationic-amphiphilic polymers.

  20. Atmospheric CO2 enrichment facilitates cation release from soil.

    Science.gov (United States)

    Cheng, L; Zhu, J; Chen, G; Zheng, X; Oh, N-H; Rufty, T W; Richter, D deB; Hu, S

    2010-03-01

    Atmospheric CO(2) enrichment generally stimulates plant photosynthesis and nutrient uptake, modifying the local and global cycling of bioactive elements. Although nutrient cations affect the long-term productivity and carbon balance of terrestrial ecosystems, little is known about the effect of CO(2) enrichment on cation availability in soil. In this study, we present evidence for a novel mechanism of CO(2)-enhancement of cation release from soil in rice agricultural systems. Elevated CO(2) increased organic C allocation belowground and net H(+) excretion from roots, and stimulated root and microbial respiration, reducing soil redox potential and increasing Fe(2+) and Mn(2+) in soil solutions. Increased H(+), Fe(2+), and Mn(2+) promoted Ca(2+) and Mg(2+) release from soil cation exchange sites. These results indicate that over the short term, elevated CO(2) may stimulate cation release from soil and enhance plant growth. Over the long-term, however, CO(2)-induced cation release may facilitate cation losses and soil acidification, negatively feeding back to the productivity of terrestrial ecosystems.

  1. A fixed cations and low Tg polymer: the poly(4-vinyl-pyridine) quaternized by poly(ethylene oxide) links. Conductivity study; Un electrolyte polymere a cations fixes et bas Tg: les poly(4-vinylpyridine) quaternisees par des chainons de poly(oxyde d`ethylene). Etude de la conductivite

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph. [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Frere, Y. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron

    1996-12-31

    The spontaneous ionic polymerization of 4-vinyl-pyridine in presence of mono-tosylated or bromated short chains of poly(ethylene oxide)-(PEO) is used to prepare amorphous comb-like poly-cations with low Tg. The polymer electrolyte properties of these new structures have been studied without any addition of salts. The ionic conductivity of these fixed cation poly-electrolytes depends on the length of the grafted PEO and varies from 10{sup -7} to 10{sup -4} S/cm between 25 and 80 deg. C. It is only weakly dependent on the nature of the cation but it is controlled by the movements of the pyridinium cation which are facilitated by the plastifying effect of the POE chains which do not directly participate to the ionic transport. (J.S.) 17 refs.

  2. Neurotransmitter transporters

    DEFF Research Database (Denmark)

    Gether, Ulrik; Andersen, Peter H; Larsson, Orla M

    2006-01-01

    The concentration of neurotransmitters in the extracellular space is tightly controlled by distinct classes of membrane transport proteins. This review focuses on the molecular function of two major classes of neurotransmitter transporter that are present in the cell membrane of neurons and....../or glial cells: the solute carrier (SLC)1 transporter family, which includes the transporters that mediate the Na(+)-dependent uptake of glutamate, and the SLC6 transporter family, which includes the transporters that mediate the Na(+)-dependent uptake of dopamine, 5-HT, norepinephrine, glycine and GABA....... Recent research has provided substantial insight into the structure and function of these transporters. In particular, the recent crystallizations of bacterial homologs are of the utmost importance, enabling the first reliable structural models of the mammalian neurotransmitter transporters...

  3. Cations bind only weakly to amides in aqueous solutions.

    Science.gov (United States)

    Okur, Halil I; Kherb, Jaibir; Cremer, Paul S

    2013-04-01

    We investigated salt interactions with butyramide as a simple mimic of cation interactions with protein backbones. The experiments were performed in aqueous metal chloride solutions using two spectroscopic techniques. In the first, which provided information about contact pair formation, the response of the amide I band to the nature and concentration of salt was monitored in bulk aqueous solutions via attenuated total reflection Fourier transform infrared spectroscopy. It was found that molar concentrations of well-hydrated metal cations (Ca(2+), Mg(2+), Li(+)) led to the rise of a peak assigned to metal cation-bound amides (1645 cm(-1)) and a decrease in the peak associated with purely water-bound amides (1620 cm(-1)). In a complementary set of experiments, the effect of cation identity and concentration was investigated at the air/butyramide/water interface via vibrational sum frequency spectroscopy. In these studies, metal ion-amide binding led to the ordering of the adjacent water layer. Such experiments were sensitive to the interfacial partitioning of cations in either a contact pair with the amide or as a solvent separated pair. In both experiments, the ordering of the interactions of the cations was: Ca(2+) > Mg(2+) > Li(+) > Na(+) ≈ K(+). This is a direct cationic Hofmeister series. Even for Ca(2+), however, the apparent equilibrium dissociation constant of the cation with the amide carbonyl oxygen was no tighter than ∼8.5 M. For Na(+) and K(+), no evidence was found for any binding. As such, the interactions of metal cations with amides are far weaker than the analogous binding of weakly hydrated anions.

  4. NMR studies on Na+ transport in Synechococcus PCC 6311

    Science.gov (United States)

    Nitschmann, W. H.; Packer, L.

    1992-01-01

    The freshwater cyanobacterium Synechococcus PCC 6311 is able to adapt to grow after sudden exposure to salt (NaCl) stress. We have investigated the mechanism of Na+ transport in these cells during adaptation to high salinity. Na+ influx under dark aerobic conditions occurred independently of delta pH or delta psi across the cytoplasmic membrane, ATPase activity, and respiratory electron transport. These findings are consistent with the existence of Na+/monovalent anion cotransport or simultaneous Na+/H+ +anion/OH- exchange. Na+ influx was dependent on Cl-, Br-, NO3-, or NO2-. No Na+ uptake occurred after addition of NaI, NaHCO3, or Na2SO4. Na+ extrusion was absolutely dependent on delta pH and on an ATPase activity and/or on respiratory electron transport. This indicates that Na+ extrusion via Na+/H+ exchange is driven by primary H+ pumps in the cytoplasmic membrane. Cells grown for 4 days in 0.5 m NaCl medium, "salt-grown cells," differ from control cells by a lower maximum velocity of Na+ influx and by lower steady-state ratios of [Na+]in/[Na+]out. These results indicate that cells grown in high-salt medium increase their capacity to extrude Na+. During salt adaptation Na+ extrusion driven by respiratory electron transport increased from about 15 to 50%.

  5. School Transportation.

    Science.gov (United States)

    Executive Educator, 1990

    1990-01-01

    This special section on student transportation offers a case study of a school system that recycles buses for safety drills; articles on fuel-saving strategies, the pros and cons of contracting for transportation services or operating a publicly owned bus fleet, and advice on full cost accounting for transportation costs; and a transportation…

  6. Competitive Solvation of the Imidazolium Cation by Water and Methanol

    CERN Document Server

    Chaban, Vitaly

    2014-01-01

    Imidazolium-based ionic liquids are widely used in conjunction with molecular liquids for various applications. Solvation, miscibility and similar properties are of fundamental importance for successful implementation of theoretical schemes. This work reports competitive solvation of the 1,3-dimethylimidazolium cation by water and methanol. Employing molecular dynamics simulations powered by semiempirical Hamiltonian (electronic structure level of description), the local structure nearly imidazolium cation is described in terms of radial distribution functions. Although water and methanol are chemically similar, water appears systematically more successful in solvating the 1,3-dimethylimidazolium cation. This result fosters construction of future applications of the ternary ion-molecular systems.

  7. Infrared Spectroscopic Study for the Hydrated Clusters of Pentane Cation

    Science.gov (United States)

    Endo, Tomoya; Matsuda, Yoshiyuki; Fujii, Asuka

    2016-06-01

    We performed infrared predissociation spectroscopy of size-selected pentane-water cluster cations, [pentane-(H2O)n]+, n=1-3, generated through the vacuum-ultraviolet photoionization. In the infrared spectra of the di- and tri-hydrated clusters, there appear broad features which spread to the lower frequency region from 2800 cm-1. These broad features are assigned to vibrations of a proton, which is transferred from CH of the pentane cation to the water molecules. These results indicate that the pentane cation has high proton donor ability. We will discuss these results based on theoretical conputations.

  8. Electrostatic charge confinement using bulky tetraoctylammonium cation and four anions

    Science.gov (United States)

    Andreeva, Nadezhda A.; Chaban, Vitaly V.

    2016-04-01

    Thanks to large opposite electrostatic charges, cations and anions establish strong ionic bonds. However, applications of ionic systems - electrolytes, gas capture, solubilization, etc. - benefit from weaker non-covalent bonds. The common approaches are addition of cosolvents and delocalization of electron charge density via functionalization of ions. We report fine tuning of closest-approach distances, effective radii, and cation geometry by different anions using the semi-empirical molecular dynamics simulations. We found that long fatty acid chains employed in the tetraalkylammonium cation are largely inefficient and new substituents must be developed. The reported results foster progress of task-specific ionic liquids.

  9. Pyridine radical cation and its fluorine substituted derivatives

    Science.gov (United States)

    Bondybey, V.E.; English, J.H.; Shiley, R.H.

    1982-01-01

    The spectra and relaxation of the pyridine cation and of several of its fluorinated derivatives are studied in low temperature Ne matrices. The ions are generated by direct photoionization of the parent compounds. Of the compounds studied, laser induced → and → fluorescence is observed only for the 2, 6‐difluoropyridine cation. The analysis of the spectrum indicates that the ion is planar both in the and states. The large variety in the spectroscopic and relaxation behavior of fluoropyridine radical cations is explained in terms of their electronic structure and of the differential shifts of the individual electronic states caused by the fluorine substitution.

  10. Cationic starches on cellulose surfaces. A study of polyelectrolyte adsorption.

    OpenAIRE

    Steeg, van der, P.A.H.

    1992-01-01

    Cationic starches are used on a large scale in paper industry as wet-end additives. They improve dry strength. retention of fines and fillers, and drainage. Closure of the white water systems in the paper mills hase increased the concentration of detrimental substances. This might be the reason for the poor retention of cationic starches observed in the last few years.The purpose of the research described in this thesis was to obtain a better understanding of the adsorption of cationic starch...

  11. Novel cationic polyelectrolyte coatings for capillary electrophoresis.

    Science.gov (United States)

    Duša, Filip; Witos, Joanna; Karjalainen, Erno; Viitala, Tapani; Tenhu, Heikki; Wiedmer, Susanne K

    2016-01-01

    The use of bare fused silica capillary in CE can sometimes be inconvenient due to undesirable effects including adsorption of sample or instability of the EOF. This can often be avoided by coating the inner surface of the capillary. In this work, we present and characterize two novel polyelectrolyte coatings (PECs) poly(2-(methacryloyloxy)ethyl trimethylammonium iodide) (PMOTAI) and poly(3-methyl-1-(4-vinylbenzyl)-imidazolium chloride) (PIL-1) for CE. The coated capillaries were studied using a series of aqueous buffers of varying pH, ionic strength, and composition. Our results show that the investigated polyelectrolytes are usable as semi-permanent (physically adsorbed) coatings with at least five runs stability before a short coating regeneration is necessary. Both PECs showed a considerably decreased stability at pH 11.0. The EOF was higher using Good's buffers than with sodium phosphate buffer at the same pH and ionic strength. The thickness of the PEC layers studied by quartz crystal microbalance was 0.83 and 0.52 nm for PMOTAI and PIL-1, respectively. The hydrophobicity of the PEC layers was determined by analysis of a homologous series of alkyl benzoates and expressed as the distribution constants. Our result demonstrates that both PECs had comparable hydrophobicity, which enabled separation of compounds with log Po/w > 2. The ability to separate cationic drugs was shown with β-blockers, compounds often misused in doping. Both coatings were also able to separate hydrolysis products of the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene acetate at highly acidic conditions, where bare fused silica capillaries failed to accomplish the separation.

  12. IRMPD action spectroscopy of alkali metal cation-cytosine complexes: effects of alkali metal cation size on gas phase conformation.

    Science.gov (United States)

    Yang, Bo; Wu, R R; Polfer, N C; Berden, G; Oomens, J; Rodgers, M T

    2013-10-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both similar and distinctive spectral features over the range of ~1000-1900 cm(-1). The IRMPD spectra of the Li(+)(cytosine), Na(+)(cytosine), and K(+)(cytosine) complexes are relatively simple but exhibit changes in the shape and shifts in the positions of several bands that correlate with the size of the alkali metal cation. The IRMPD spectra of the Rb(+)(cytosine) and Cs(+)(cytosine) complexes are much richer as distinctive new IR bands are observed, and the positions of several bands continue to shift in relation to the size of the metal cation. The measured IRMPD spectra are compared to linear IR spectra of stable low-energy tautomeric conformations calculated at the B3LYP/def2-TZVPPD level of theory to identify the conformations accessed in the experiments. These comparisons suggest that the evolution in the features in the IRMPD action spectra with the size of the metal cation, and the appearance of new bands for the larger metal cations, are the result of the variations in the intensities at which these complexes can be generated and the strength of the alkali metal cation-cytosine binding interaction, not the presence of multiple tautomeric conformations. Only a single tautomeric conformation is accessed for all five alkali metal cation-cytosine complexes, where the alkali metal cation binds to the O2 and N3 atoms of the canonical amino-oxo tautomer of cytosine, M(+)(C1).

  13. Sustainable Transportation

    DEFF Research Database (Denmark)

    Hall, Ralph P.; Gudmundsson, Henrik; Marsden, Greg

    2014-01-01

    The transportation system is the backbone of economic and social progress and the means by which humans access goods and services and connect with one another. Yet, as the scale of transportation activities has grown worldwide, so too have the negative environmental, social, and economic impacts...... that relate to the construction and maintenance of transportation infrastructure and the operation or use of the different transportation modes. The concept of sustainable transportation emerged in response to these concerns as part of the broader notion of sustainable development. Given the transportation...... sector’s significant contribution to global challenges such as climate change, it is often said that sustainable development cannot be achieved without sustainable transportation....

  14. Synthesis and characterization of the first 2 d neptunyl structure stabilized by side-on cation-cation interactions

    Energy Technology Data Exchange (ETDEWEB)

    Vlaisavljevich, Bess; Miro, Pere; Ma, Dongxia; Cramer, Christopher J.; Gagliardi, Laura [Department of Chemistry, Supercomputing Institute and Chemical Theory Center, University of Minnesota, Minneapolis, MN (United States); Sigmon, Ginger E.; Burns, Peter C. [Department of Civil and Environmental Engineering and Earth Sciences, and Department of Chemistry and Biochemistry, University of Notre Dame, IN (United States)

    2013-02-25

    A new 2 D sheet structure containing a side-on cation-cation interaction (CCI) has been synthesized and characterized. Unprecedentedly, no chelating ligands between the cations are present. The nature of the side-on interaction and ligand effects has been explored by using a variety of quantum chemical methods. The spin-orbit-coupled ground state mixes singlet, triplet, and quintet-pure spin states. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Cation-Cation Interactions in [(UO2)2(OH)n](4-n) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Odoh, Samuel O.; Govind, Niranjan; Schreckenbach, Georg; De Jong, Wibe A.

    2013-10-07

    The structures and bonding of gas-phase [(UO2)2(OH)n]4-n (n=2-6) complexes have been studied using density functional theory (DFT), MP2 and CCSD(T) methods with particular emphasis on ground state structures featuring cation-cation interactions (CCIs) between the uranyl groups. An interesting trend is observed in the stabilities of members of this series of complexes. The structures of [(UO2)2(OH)2]2+, [(UO2)2(OH)4] and [(UO2)2(OH)6]2- featuring CCIs are found at higher energies (by 3-20 kcal/mol) in comparison to their conventional μ2-dihydroxo structures. In contrast, the CCI structures of [(UO2)2(OH)3]+ and [(UO2)2(OH)5]- are respectively almost degenerate with and lower in energy than the structures with the μ2-dihydroxo format. The origin of this trend lies in the ‘symmetry’-based need to balance the coordination numbers and effective atomic charges of each uranium center. The calculated IR vibrational frequencies provide signature probes that can be used in differentiating the lowenergy structures and in experimentally confirming the existence of the structures featuring CCIs. Analysis of the bonding in the structures of [(UO2)2(OH)3]+ and [(UO2)2(OH)5]- shows that the CCIs and bridging hydroxo between the dioxo-uranium units are mainly electrostatic in nature.

  16. Isomerization of propargyl cation to cyclopropenyl cation: Mechanistic elucidations and effects of lone pair donors

    Indian Academy of Sciences (India)

    Zodinpuia Pachuau; Kiew S Kharnaior; R H Duncan Lyngdoh

    2013-03-01

    This ab initio study examines two pathways (one concerted and the other two-step) for isomerization of the linear propargyl cation to the aromatic cyclopropenyl cation, also probing the phenomenon of solvation of this reaction by simple lone pair donors (NH3, H2O, H2S and HF) which bind to the substrate at two sites. Fully optimized geometries at the B3LYP/6-31G(d) level were used, along with single point QCISD(T)/6-311+G(d,p) and accurate G3 level calculations upon the DFT optimized geometries. For the unsolvated reaction, the two-step second pathway is energetically favoured over the one-step first pathway. Lone pair donor affinity for the various C3H$^{+}_{3}$ species follows the uniform order NH3 > H2S>H2O>HF. The activation barriers for the solvated isomerizations decrease in the order HF>H2O>H2S>NH3 for both pathways. The number of lone pairs on the donor heteroatom as well as the heteroatom electronegativity are factors related to both these trends. Compared to the unsolvated cases, the solvated reactions have transition states which are usually ‘later’ in position along the reaction coordinate, validating the Hammond postulate.

  17. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    Science.gov (United States)

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange.

  18. DFT study on the cycloreversion of thietane radical cations.

    Science.gov (United States)

    Domingo, Luis R; Pérez-Ruiz, Raúl; Argüello, Juan E; Miranda, Miguel A

    2011-06-01

    The molecular mechanism of the cycloreversion (CR) of thietane radical cations has been analyzed in detail at the UB3LYP/6-31G* level of theory. Results have shown that the process takes place via a stepwise mechanism leading to alkenes and thiobenzophenone; alternatively, formal [4+2] cycloadducts are obtained. Thus, the CR of radical cations 1a,b(•+) is initiated by C2-C3 bond breaking, giving common intermediates INa,b. At this stage, two reaction pathways are feasible involving ion molecule complexes IMCa,b (i) or radical cations 4a,b(•+) (ii). Calculations support that 1a(•+) follows reaction pathway ii (leading to the formal [4+2] cycloadducts 5a). By contrast, 1b(•+) follows pathway i, leading to trans-stilbene radical cation (2b(•+)) and thiobenzophenone.

  19. CATION-EXCHANGE SOLID-PHASE AND LIQUID-LIQUID ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    cation exchange-solid phase extraction (SCX-SPE) was investigated as an .... Stock solutions, with a concentration of 1.00 mg/mL were prepared ... Johannesburg, South Africa) connected to a vacuum pump (Vacuubrand, GMBH, Germany).

  20. Degradation Mechanism of Cationic Red X-GRL by Ozonation

    Institute of Scientific and Technical Information of China (English)

    Wei Rong ZHAO; Xin Hua XU; Hui Xiang SHI; Da Hui WANG

    2003-01-01

    The degradation mechanism of Cationic Red X-GRL was investigated when the intermediates, the nitrate ion and the pH were analyzed in the ozonation. The degradation of the Cationic Red X-GRL includes the de-auxochrome stage, the decolour stage, and the decomposition of fragment stage. During the degradation process, among the six nitrogen atoms of Cationic Red X-GRL, one is transferred into a nitrate ion, one becomes the form of an amine compound, and the rest four are transformed into two molecules of nitrogen. In the course of the ozonation of Cationic Red X-GRL, the direct attack of ozone is the main decolour effect.