WorldWideScience

Sample records for mononuclear zinc sites

  1. Synergic approach to XAFS analysis for the identification of most probable binding motifs for mononuclear zinc sites in metalloproteins.

    Science.gov (United States)

    Giachini, Lisa; Veronesi, Giulia; Francia, Francesco; Venturoli, Giovanni; Boscherini, Federico

    2010-01-01

    In the present work a data analysis approach, based on XAFS data, is proposed for the identification of most probable binding motifs of unknown mononuclear zinc sites in metalloproteins. This approach combines multiple-scattering EXAFS analysis performed within the rigid-body refinement scheme, non-muffin-tin ab initio XANES simulations, average structural information on amino acids and metal binding clusters provided by the Protein Data Bank, and Debye-Waller factor calculations based on density functional theory. The efficiency of the method is tested by using three reference zinc proteins for which the local structure around the metal is already known from protein crystallography. To show the applicability of the present analysis to structures not deposited in the Protein Data Bank, the XAFS spectra of six mononuclear zinc binding sites present in diverse membrane proteins, for which we have previously proposed the coordinating amino acids by applying a similar approach, is also reported. By comparing the Zn K-edge XAFS features exhibited by these proteins with those pertaining to the reference structures, key spectral characteristics, related to specific binding motifs, are observed. These case studies exemplify the combined data analysis proposed and further support its validity.

  2. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis

    DEFF Research Database (Denmark)

    Khare, Sagar D.; Kipnis, Yakov; Greisen, Per Junior;

    2012-01-01

    The ability to redesign enzymes to catalyze noncognate chemical transformations would have wide-ranging applications. We developed a computational method for repurposing the reactivity of metalloenzyme active site functional groups to catalyze new reactions. Using this method, we engineered a zinc...

  3. Mononuclear Phenolate Diamine Zinc Hydride Complexes and Their Reactions With CO2.

    Science.gov (United States)

    Brown, Neil J; Harris, Jonathon E; Yin, Xinning; Silverwood, Ian; White, Andrew J P; Kazarian, Sergei G; Hellgardt, Klaus; Shaffer, Milo S P; Williams, Charlotte K

    2014-03-10

    The synthesis, characterization, and zinc coordination chemistry of the three proligands 2-tert-butyl-4-[tert-butyl (1)/methoxy (2)/nitro (3)]-6-{[(2'-dimethylaminoethyl)methylamino]methyl}phenol are described. Each of the ligands was reacted with diethylzinc to yield zinc ethyl complexes 4-6; these complexes were subsequently reacted with phenylsilanol to yield zinc siloxide complexes 7-9. Finally, the zinc siloxide complexes were reacted with phenylsilane to produce the three new zinc hydride complexes 10-12. The new complexes 4-12 have been fully characterized by NMR spectroscopy, mass spectrometry, and elemental analyses. The structures of the zinc hydride complexes have been probed using VT-NMR spectroscopy and X-ray diffraction experiments. These data indicate that the complexes exhibit mononuclear structures at 298 K, both in the solid state and in solution (d8-toluene). At 203 K, the NMR signals broaden, consistent with an equilibrium between the mononuclear and dinuclear bis(μ-hydrido) complexes. All three zinc hydride complexes react rapidly and quantitatively with carbon dioxide, at 298 K and 1 bar of pressure over 20 min, to form the new zinc formate complexes 13-15. The zinc formate complexes have been analyzed by NMR spectroscopy and VT-NMR studies, which reveal a temperature-dependent monomer-dimer equilibrium that is dominated by the mononuclear species at 298 K.

  4. On the active site of mononuclear B1 metallo β-lactamases: a computational study

    Science.gov (United States)

    Sgrignani, Jacopo; Magistrato, Alessandra; Dal Peraro, Matteo; Vila, Alejandro J.; Carloni, Paolo; Pierattelli, Roberta

    2012-04-01

    Metallo-β-lactamases (MβLs) are Zn(II)-based bacterial enzymes that hydrolyze β-lactam antibiotics, hampering their beneficial effects. In the most relevant subclass (B1), X-ray crystallography studies on the enzyme from Bacillus Cereus point to either two zinc ions in two metal sites (the so-called `3H' and `DCH' sites) or a single Zn(II) ion in the 3H site, where the ion is coordinated by Asp120, Cys221 and His263 residues. However, spectroscopic studies on the B1 enzyme from B. Cereus in the mono-zinc form suggested the presence of the Zn(II) ion also in the DCH site, where it is bound to an aspartate, a cysteine, a histidine and a water molecule. A structural model of this enzyme in its DCH mononuclear form, so far lacking, is therefore required for inhibitor design and mechanistic studies. By using force field based and mixed quantum-classical (QM/MM) molecular dynamics (MD) simulations of the protein in aqueous solution we constructed such structural model. The geometry and the H-bond network at the catalytic site of this model, in the free form and in complex with two common β-lactam drugs, is compared with experimental and theoretical findings of CphA and the recently solved crystal structure of new B2 MβL from Serratia fonticola (Sfh-I). These are MβLs from the B2 subclass, which features an experimentally well established mono-zinc form, in which the Zn(II) is located in the DCH site. From our simulations the ɛɛδ and δɛδ protomers emerge as possible DCH mono-zinc reactive species, giving a novel contribution to the discussion on the MβL reactivity and to the drug design process.

  5. Four-site cooperative spin crossover in a mononuclear FeII complex

    DEFF Research Database (Denmark)

    Lennartson, Anders; Bond, Andrew; Piligkos, Stergios;

    2012-01-01

    Round and round: A mononuclear Fe(II) complex (see picture) with an N(4)S(2) coordination set has been characterized in four polymorphic forms. Two of the polymorphs display four-site cooperative spin crossover (SCO), shown conclusively by the crystal structure of a fully ordered 1:3 high-spin/lo...

  6. Synthesis and DNA cleavage activities of mononuclear macrocyclic polyamine zinc(II), copper(II), cobalt(II) complexes which linked with uracil.

    Science.gov (United States)

    Wang, Xiao-Yan; Zhang, Ji; Li, Kun; Jiang, Ning; Chen, Shan-Yong; Lin, Hong-Hui; Huang, Yu; Ma, Li-Jian; Yu, Xiao-Qi

    2006-10-01

    Mononuclear macrocyclic polyamine zinc(II), copper(II), cobalt(II) complexes, which could attach to peptide nucleic acid (PNA), were synthesized as DNA cleavage agents. The structures of these new mononuclear complexes were identified by MS and (1)H NMR spectroscopy. The catalytic activities on DNA cleavage of these mononuclear complexes with different central metals were subsequently studied, which showed that copper complex was better catalyst in the DNA cleavage process than zinc and cobalt complexes. The effects of reaction time, concentration of complexes were also investigated. The results indicated that the copper(II) complexes could catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA) (Form I) under physiological conditions to produce selectively nicked DNA (Form II, no Form III produced) with high yields. The mechanism of the cleavage process was also studied.

  7. In vitro effects of zinc on the cytokine production from peripheral blood mononuclear cells in patients with zinc allergy

    National Research Council Canada - National Science Library

    Yoshihisa, Yoko; Rehman, Mati Ur; Yamakoshi-Shibutani, Takako; Shimizu, Tadamichi

    2015-01-01

    .... The diagnosis of sensitivity to metal was made based on the results of a metal patch test. The PBMCs were stimulated with various concentrations (5–100 μM) of zinc sulfate (ZnSO4) for 24 h...

  8. Minimal functional sites allow a classification of zinc sites in proteins.

    Directory of Open Access Journals (Sweden)

    Claudia Andreini

    Full Text Available Zinc is indispensable to all forms of life as it is an essential component of many different proteins involved in a wide range of biological processes. Not differently from other metals, zinc in proteins can play different roles that depend on the features of the metal-binding site. In this work, we describe zinc sites in proteins with known structure by means of three-dimensional templates that can be automatically extracted from PDB files and consist of the protein structure around the metal, including the zinc ligands and the residues in close spatial proximity to the ligands. This definition is devised to intrinsically capture the features of the local protein environment that can affect metal function, and corresponds to what we call a minimal functional site (MFS. We used MFSs to classify all zinc sites whose structures are available in the PDB and combined this classification with functional annotation as available in the literature. We classified 77% of zinc sites into ten clusters, each grouping zinc sites with structures that are highly similar, and an additional 16% into seven pseudo-clusters, each grouping zinc sites with structures that are only broadly similar. Sites where zinc plays a structural role are predominant in eight clusters and in two pseudo-clusters, while sites where zinc plays a catalytic role are predominant in two clusters and in five pseudo-clusters. We also analyzed the amino acid composition of the coordination sphere of zinc as a function of its role in the protein, highlighting trends and exceptions. In a period when the number of known zinc proteins is expected to grow further with the increasing awareness of the cellular mechanisms of zinc homeostasis, this classification represents a valuable basis for structure-function studies of zinc proteins, with broad applications in biochemistry, molecular pharmacology and de novo protein design.

  9. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    Science.gov (United States)

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.

  10. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites

    OpenAIRE

    Zahid, Henna; Miah, Layeque; Lau, Andy; Brochard, Lea; Hati, Debolina; Bui, T. T.; Drake, A. F.; Gor, Jayesh; Perkins, Stephen J.; McDermott, Lindsay C.

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigate...

  11. ZFN-Site searches genomes for zinc finger nuclease target sites and off-target sites

    Directory of Open Access Journals (Sweden)

    Iseli Christian

    2011-05-01

    Full Text Available Abstract Background Zinc Finger Nucleases (ZFNs are man-made restriction enzymes useful for manipulating genomes by cleaving target DNA sequences. ZFNs allow therapeutic gene correction or creation of genetically modified model organisms. ZFN specificity is not absolute; therefore, it is essential to select ZFN target sites without similar genomic off-target sites. It is important to assay for off-target cleavage events at sites similar to the target sequence. Results ZFN-Site is a web interface that searches multiple genomes for ZFN off-target sites. Queries can be based on the target sequence or can be expanded using degenerate specificity to account for known ZFN binding preferences. ZFN off-target sites are outputted with links to genome browsers, facilitating off-target cleavage site screening. We verified ZFN-Site using previously published ZFN half-sites and located their target sites and their previously described off-target sites. While we have tailored this tool to ZFNs, ZFN-Site can also be used to find potential off-target sites for other nucleases, such as TALE nucleases. Conclusions ZFN-Site facilitates genome searches for possible ZFN cleavage sites based on user-defined stringency limits. ZFN-Site is an improvement over other methods because the FetchGWI search engine uses an indexed search of genome sequences for all ZFN target sites and possible off-target sites matching the half-sites and stringency limits. Therefore, ZFN-Site does not miss potential off-target sites.

  12. Effect of in vitro zinc supplementation on HSPs expression and Interleukin 10 production in heat treated peripheral blood mononuclear cells of transition Sahiwal and Karan Fries cows.

    Science.gov (United States)

    Sheikh, Aasif Ahmad; Aggarwal, Anjali; Aarif, Ovais

    2016-02-01

    The changing climatic scenario with apprehended rise in global temperature is likely to affect the livestock adversely vis-à-vis production and reproduction. This has prompted more focus in addressing the unfavorable effects of thermal stress in livestock system. Presuming that the trace element zinc is indispensible for cellular antioxidant system and immune function, the present study was designed to investigate the effect of zinc treatment on heat stress alleviation and immune modulation in peripheral blood mononuclear cells (PBMC) of indigenous and crossbred transition cows. Twelve cows, six each of Sahiwal and Karan Fries (KF) in their second parity with confirmed pregnancy were selected for the experiment. The blood samples were collected at -21, 0 and +21 days in relation to expected date of calving. The experiment was carried out in vitro after isolating PBMC from whole blood. The 48h cultured PBMC were subjected to assorted levels of exposures viz. 37°C, 42°C to impose heat stress and 42°C+zinc to alleviate heat stress and modulate immunity. The PBMC viability was 86%, 69% and 78%, respectively. The mRNA expression of heat shock proteins (HSP 40, 70 and 90α) and Interleukin-10 (IL-10) production varied between the two breeds vis-à-vis days and levels of exposure. The mRNA expression of HSP40 and HSP70 was significantly (PZinc treatment to heat stressed PBMC caused a significant (PZinc treatment reduced the IL-10 concentration. From the study, it could be concluded that the zinc supplementation in heat stressed PBMC can ameliorate thermal stress and modulate immune response which can act as a model for reducing heat stress during the periparturient period in tropical livestock.

  13. Atomically Resolved Site-Isolated Catalyst on MgO: Mononuclear Osmium Dicarbonyls formed from Os3(CO)12.

    Science.gov (United States)

    Aydin, Ceren; Kulkarni, Apoorva; Chi, Miaofang; Browning, Nigel D; Gates, Bruce C

    2012-07-19

    Supported triosmium clusters, formed from Os3(CO)12 on MgO, were treated in helium at 548 K for 2 h, causing fragmentation of the cluster frame and the formation of mononuclear osmium dicarbonyls. The cluster breakup and the resultant fragmented species were characterized by infrared and X-ray absorption spectroscopies, and the fragmented species were imaged by scanning transmission electron microscopy. The spectra identify the surface osmium complexes as Os(CO)2{Osupport}n (n = 3 or 4) (where the braces denote support surface atoms). The images show site-isolated Os atoms in mononuclear osmium species on MgO. The intensity analysis on the images of the MgO(110) face showed that the Os atoms were located atop Mg columns. This information led to a model of the Os(CO)2 on MgO(110), with the distances approximated as those determined by EXAFS spectroscopy, which are an average over the whole MgO surface; the results imply that these complexes were located at Mg vacancies.

  14. Ordered Nucleation Sites for the Growth of Zinc Oxide Nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Ginley, D.S.; Shaheen, S.

    2006-01-01

    Organic photovoltaics (OPVs) offer a promising route to low cost photovoltaic (PV) technology that can be inexpensively manufactured on a large scale for use in power generation and commercial products. Solar power conversion efficiencies of laboratory scale OPV devices have recently reached ~5%; however, projected efficiencies of at least 10% will be required for commercialization. An analogous approach that has arisen recently that can potentially increase efficiencies employs metal oxide semiconductors as the electron acceptor, creating a hybrid organic-inorganic device. This approach offers the advantage that the conduction band of the oxide can be tuned in a systematic way through doping, thus potentially achieving higher photovoltages in the device. Additionally, nanostructures of these materials can be easily grown from precursor solutions, providing a technique to precisely control the nanoscale geometry. This work focuses on using ZnO, which is known to have high electron mobility (>100 cm2/Vs), as the electron acceptor. Nanofibers of ZnO can be grown from precursors such as zinc acetate or zinc nitrate to form arrays of nanofibers into which a conjugated polymer can be intercalated to form a composite PV device. The morphology of the nanofiber array is critical to the performance of the device, but current methods of nanofiber growth from a flat, polycrystalline nucleation layer allow for little morphological control. To overcome this limitation, we have created ordered arrays of ZnO nucleation sites with controllable size and spacing. Toluene solutions of diblock copolymer micelles with ZnCl2 incorporated into the micellar cores were spin-coated onto glass substrates and etched with an O2 plasma to yield hexagonally ordered arrays of ZnO nanoparticles that functioned as nucleation sites. Changing the concentration of ZnCl2 and the molecular weight and ratio of the diblock copolymer resulted in systematic variation in the size and spacing of the

  15. Solvolysis mechanisms of RNA phosphodiester analogues promoted by mononuclear zinc(II) complexes: mechanisic determination upon solvent medium and ligand effects.

    Science.gov (United States)

    Zhang, Xuepeng; Zhu, Yajie; Gao, Hui; Zhao, Cunyuan

    2014-11-17

    The solvolysis mechanisms of RNA phosphodiester model 2-(hydroxypropyl)-4-nitrophenyl phosphate (HpPNP) catalyzed by mononuclear zinc(II) complexes are investigated in the paper via a theoretical approach. The general-base-catalyzed (GBC) and specific-base-catalyzed (SBC) mechanisms are thoroughly discussed in the paper, and the calculations indicate a SBC mechanism (also named as the direct nucleophilic attack mechanism) when the cyclization of HpPNP is promoted by the Zn:[12]aneN3 complex ([12]aneN3 = 1,5,9-triazacyclododecane). The ligand effect is considered by involving two different catalysts, and the results show that the increasing size catalyst provides a lower energy barrier and a significant mechanistic preference to the SBC mechanism. The solvent medium effect is also explored, and reduced polarity/dielectric constant solvents, such as light alcohols methanol and ethanol, are more favorable. Ethanol is proven to be a good solvent medium because of its low dielectric constant. The computational results are indicative of concerted pathways. Our theoretical results are consistent with and well interpret the experimental observations and, more importantly, provide practical suggestions on the catalyst design and selection of reaction conditions.

  16. Structural Diversity Within the Mononuclear and Binuclear Active Sites of N-Acetyl-D-Glucosamine-6-Phosphate Deacetylase

    Energy Technology Data Exchange (ETDEWEB)

    Hall,R.; Brown, S.; Fedorov, A.; Fedorov, E.; Xu, C.; Babbitt, P.; Almo, S.; Raushel, F.

    2007-01-01

    NagA catalyzes the hydrolysis of N-acetyl-D-glucosamine-6-phosphate to D-glucosamine-6-phosphate and acetate. X-ray crystal structures of NagA from Escherichia coli were determined to establish the number and ligation scheme for the binding of zinc to the active site and to elucidate the molecular interactions between the protein and substrate. The three-dimensional structures of the apo-NagA, Zn-NagA, and the D273N mutant enzyme in the presence of a tight-binding N-methylhydroxyphosphinyl-D-glucosamine-6-phosphate inhibitor were determined. The structure of the Zn-NagA confirms that this enzyme binds a single divalent cation at the beta-position in the active site via ligation to Glu-131, His-195, and His-216. A water molecule completes the ligation shell, which is also in position to be hydrogen bonded to Asp-273. In the structure of NagA bound to the tight binding inhibitor that mimics the tetrahedral intermediate, the methyl phosphonate moiety has displaced the hydrolytic water molecule and is directly coordinated to the zinc within the active site. The side chain of Asp-273 is positioned to activate the hydrolytic water molecule via general base catalysis and to deliver this proton to the amino group upon cleavage of the amide bond of the substrate. His-143 is positioned to help polarize the carbonyl group of the substrate in conjunction with Lewis acid catalysis by the bound zinc. The inhibitor is bound in the {alpha}-configuration at the anomeric carbon through a hydrogen bonding interaction of the hydroxyl group at C-1 with the side chain of His-251. The phosphate group of the inhibitor attached to the hydroxyl at C-6 is ion paired with Arg-227 from the adjacent subunit. NagA from Thermotoga maritima was shown to require a single divalent cation for full catalytic activity.

  17. 78 FR 46948 - Proposed Agreement Regarding Site Costs and Covenants Not To Sue for American Lead and Zinc Mill...

    Science.gov (United States)

    2013-08-02

    ... AGENCY Proposed Agreement Regarding Site Costs and Covenants Not To Sue for American Lead and Zinc Mill... response costs incurred at the American Lead and Zinc Mill Superfund Site near Ouray, Colorado. The... via electric mail at rudy.mike@epa.gov and should reference the American Lead and Zinc Mill Site,...

  18. Kv3 channel assembly, trafficking and activity are regulated by zinc through different binding sites.

    Science.gov (United States)

    Gu, Yuanzheng; Barry, Joshua; Gu, Chen

    2013-05-15

    Zinc, a divalent heavy metal ion and an essential mineral for life, regulates synaptic transmission and neuronal excitability via ion channels. However, its binding sites and regulatory mechanisms are poorly understood. Here, we report that Kv3 channel assembly, localization and activity are regulated by zinc through different binding sites. Local perfusion of zinc reversibly reduced spiking frequency of cultured neurons most likely by suppressing Kv3 channels. Indeed, zinc inhibited Kv3.1 channel activity and slowed activation kinetics, independent of its site in the N-terminal T1 domain. Biochemical assays surprisingly identified a novel zinc-binding site in the Kv3.1 C-terminus, critical for channel activity and axonal targeting, but not for the zinc inhibition. Finally, mutagenesis revealed an important role of the junction between the first transmembrane (TM) segment and the first extracellular loop in sensing zinc. Its mutant enabled fast spiking with relative resistance to the zinc inhibition. Therefore, our studies provide novel mechanistic insights into the multifaceted regulation of Kv3 channel activity and localization by divalent heavy metal ions.

  19. Coordination and conformational isomers in mononuclear iron complexes with pertinence to the [FeFe] hydrogenase active site.

    Science.gov (United States)

    Orthaber, Andreas; Karnahl, Michael; Tschierlei, Stefanie; Streich, Daniel; Stein, Matthias; Ott, Sascha

    2014-03-21

    A series of six mononuclear iron complexes of the type [Fe(X-bdt)(P(R)2N(Ph)2)(CO)] (P(R)2N(Ph)2 = 1,5-diaza-3,7-diphosphaoctane, bdt = benzenedithiolate with X = H, Cl2 or Me and R = Ph, Bn, Cyc or tert-Bu) was prepared. This new class of penta-coordinate iron complexes contains a free coordination site and a pendant base as essential structural features of the [FeFe]-hydrogenase active site. The bidentate nature of the P(R)2N(Ph)2 ligands was found to be crucial for the preferential formation of coordinatively unsaturated penta-coordinate complexes, which is supported by first principle calculations. IR-spectroscopic data suggest the presence of coordination isomers around the metal center, as well as multiple possible conformers of the P(R)2N(Ph)2 ligand. This finding is further corroborated by X-ray crystallographic and computational studies. (31)P{(1)H}-NMR- and IR-spectroscopic as well as electrochemical measurements show that the electronic properties of the complexes are strongly, and independently, influenced by the P-substituents at the P(R)2N(Ph)2 ligand as well as by modifications of the bdt bridge. These results illustrate the advantages of this modular platform, which allows independent and selective tuning through site specific modifications. Potential catalytic intermediates, namely singly reduced and protonated complexes, have been further investigated by spectroscopic methods and exhibit remarkable stability. Finally, their general capacity for electro-catalytic reduction of protons to molecular hydrogen was verified.

  20. Structural characterization of a high affinity mononuclear site in the copper(II)-α-synuclein complex.

    Science.gov (United States)

    Bortolus, Marco; Bisaglia, Marco; Zoleo, Alfonso; Fittipaldi, Maria; Benfatto, Maurizio; Bubacco, Luigi; Maniero, Anna Lisa

    2010-12-29

    Human α-Synuclein (aS), a 140 amino acid protein, is the main constituent of Lewy bodies, the cytoplasmatic deposits found in the brains of Parkinson's disease patients, where it is present in an aggregated, fibrillar form. Recent studies have shown that aS is a metal binding protein. Moreover, heavy metal ions, in particular divalent copper, accelerate the aggregation process of the protein. In this work, we investigated the high affinity binding mode of truncated aS (1-99) (aS99) with Cu(II), in a stoichiometric ratio, to elucidate the residues involved in the binding site and the role of copper ions in the protein oligomerization. We used Electron Paramagnetic Resonance spectroscopy on the Cu(II)-aS99 complex at pH 6.5, performing both multifrequency continuous wave experiments and pulsed experiments at X-band. The comparison of 9.5 and 95 GHz data showed that at this pH only one binding mode is present. To identify the nature of the ligands, we performed Electron Spin Echo Envelope Modulation, Hyperfine Sublevel Correlation Spectroscopy, and pulsed Davies Electron-Nuclear Double Resonance (Davies-ENDOR) experiments. We determined that the EPR parameters are typical of a type-II copper complex, in a slightly distorted square planar geometry. Combining the results from the different pulsed techniques, we obtained that the equatorial coordination is {N(Im), N(-), H(2)O, O}, where N(im) is the imino nitrogen of His50, N(-) a deprotonated amido backbone nitrogen that we attribute to His50, H(2)O an exchangeable water molecule, and O an unidentified oxygen ligand. Moreover, we propose that the free amino terminus (Met1) participates in the complex as an axial ligand. The MXAN analysis of the XAS k-edge absorption data allowed us to independently validate the structural features proposed on the basis of the magnetic parameters of the Cu(II)-aS99 complex and then to further refine the quality of the proposed structural model.

  1. Zinc

    Science.gov (United States)

    ... slow wound healing, poor sense of taste and smell, diarrhea, and nausea. Moderate zinc deficiency is associated ... nose, as it might cause permanent loss of smell. In June 2009, the US Food and Drug ...

  2. THE ZN-SITE IN BOVINE COPPER, ZINC SUPEROXIDE-DISMUTASE STUDIED BY CD-111 PAC

    DEFF Research Database (Denmark)

    Kofod, Pauli; Bjerrum, Morten J.; Bauer, Rogert

    1991-01-01

    The active site in bovine copper, zinc superoxide dismutase (Cu2. Zn2 SOD) has been studied by 111Cd time differential Perturbed Angular Correlation (PAC) on enzyme with Zn2+ replaced by excited 'Cd2+. The PAC spectra obtained for both the oxidized and the reduced form of Cu2Cd2SOD show no asymme......The active site in bovine copper, zinc superoxide dismutase (Cu2. Zn2 SOD) has been studied by 111Cd time differential Perturbed Angular Correlation (PAC) on enzyme with Zn2+ replaced by excited 'Cd2+. The PAC spectra obtained for both the oxidized and the reduced form of Cu2Cd2SOD show...

  3. Human glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site

    Directory of Open Access Journals (Sweden)

    Misquitta Stephanie A

    2004-02-01

    Full Text Available Abstract Background Glutaminyl cyclase (QC forms the pyroglutamyl residue at the amino terminus of numerous secretory peptides and proteins. We previously proposed the mammalian QC has some features in common with zinc aminopeptidases. We now have generated a structural model for human QC based on the aminopeptidase fold (pdb code 1AMP and mutated the apparent active site residues to assess their role in QC catalysis. Results The structural model proposed here for human QC, deposited in the protein databank as 1MOI, is supported by a variety of fold prediction programs, by the circular dichroism spectrum, and by the presence of the disulfide. Mutagenesis of the six active site residues present in both 1AMP and QC reveal essential roles for the two histidines (140 and 330, QC numbering and the two glutamates (201 and 202, while the two aspartates (159 and 248 appear to play no catalytic role. ICP-MS analysis shows less than stoichiometric zinc (0.3:1 in the purified enzyme. Conclusions We conclude that human pituitary glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site residues. In contrast to the aminopeptidase, however, QC does not appear to require zinc for enzymatic activity.

  4. [Zinc].

    Science.gov (United States)

    Couinaud, C

    1984-10-01

    Zinc is indispensable for life from bacteria to man. As a trace element it is included in numerous enzymes or serves as their activator (more than 80 zinc metallo-enzymes). It is necessary for nucleic acid and protein synthesis, the formation of sulphated molecules (insulin, growth hormone, keratin, immunoglobulins), and the functioning of carbonic anhydrase, aldolases, many dehydrogenases (including alcohol-dehydrogenase, retinal reductase indispensable for retinal rod function), alkaline phosphatase, T cells and superoxide dismutase. Its lack provokes distinctive signs: anorexia, diarrhea, taste, smell and vision disorders, skin lesions, delayed healing, growth retardation, delayed appearance of sexual characteristics, diminished resistance to infection, and it may be the cause of congenital malformations. Assay is now simplified by atomic absorption spectrophotometry in blood or hair. There is a latent lack prior to any disease because of the vices of modern eating habits, and this increases during stress, infections or tissue healing processes. Its lack is accentuated during long-term parenteral feeding or chronic gastrointestinal affections. Correction is as simple as it is innocuous, and zinc supplements should be given more routinely during surgical procedures.

  5. Syntheses, spectral, electrochemical and thermal studies of mononuclear manganese(III) complexes with ligands derived from 1,2-propanediamine and 2-hydroxy-3 or 5-methoxybenzaldehyde: Self-assembled monolayer formation on nanostructure zinc oxide thin film

    Science.gov (United States)

    Habibi, Mohammad Hossein; Askari, Elham; Amirnasr, Mehdi; Amiri, Ahmad; Yamane, Yuki; Suzuki, Takayoshi

    2011-08-01

    Mononuclear Mn(III) complexes have been prepared via the Mn(II) reaction of an equimolar of Schiff-bases derived from reaction of 2-hydroxy-3-methoxybenzaldehyde or 2-hydroxy-5-methoxybenzaldehyde with 1,2-diaminopropane. Axial ligands L include: pyridine (py) and H 2O. The resulting complexes have been characterized by FT-IR and UV-vis spectroscopy. The crystal structures of the complexes were determined and indicate that in the solid state the complex adopts a slightly distorted octahedral environment of the imine N and hydroxo O with the two axial ligands. The electrochemical reduction of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to Mn III-Mn II is electrochemically quasi-reversible. Thermal stability of these complexes was determined by TG and DTG. Layers of these complexes were formed on nanostructure zinc oxide thin film and a red shift was observed when zinc oxide thin film is modified by complex.

  6. Unidirectional cloning by cleaving heterogeneous sites with a single sandwiched zinc finger nuclease.

    Science.gov (United States)

    Shinomiya, Kazuki; Mori, Tomoaki; Aoyama, Yasuhiro; Sera, Takashi

    2011-11-04

    We previously developed a novel type of zinc finger nucleases (ZFNs), sandwiched ZFNs that can discriminate DNA substrates from cleavage products and thus cleave DNA much more efficiently than conventional ZFNs as well as perform with multiple turnovers like restriction endonucleases. In the present study, we used the sandwiched ZFN to unidirectionally clone exogenous genes into target vectors by cleaving heterogeneous sites that contained heterogeneous spacer DNAs between two zinc-finger protein binding sites with a single sandwiched ZFN. We demonstrated that the sandwiched ZFN cleaved a 40-fold excess of both insert and vector plasmids within 1h and confirmed by sequencing that the resulting recombinants harbored the inserted DNA fragment in the desired orientation. Because sandwiched ZFNs can recognize and cleave a variety of long (≥ 26-bp) target DNAs, they may not only expand the utility of ZFNs for construction of recombinant plasmids, but also serve as useful meganucleases for synthesis of artificial genomes.

  7. ZFNGenome: A comprehensive resource for locating zinc finger nuclease target sites in model organisms

    Directory of Open Access Journals (Sweden)

    Voytas Daniel F

    2011-01-01

    Full Text Available Abstract Background Zinc Finger Nucleases (ZFNs have tremendous potential as tools to facilitate genomic modifications, such as precise gene knockouts or gene replacements by homologous recombination. ZFNs can be used to advance both basic research and clinical applications, including gene therapy. Recently, the ability to engineer ZFNs that target any desired genomic DNA sequence with high fidelity has improved significantly with the introduction of rapid, robust, and publicly available techniques for ZFN design such as the Oligomerized Pool ENgineering (OPEN method. The motivation for this study is to make resources for genome modifications using OPEN-generated ZFNs more accessible to researchers by creating a user-friendly interface that identifies and provides quality scores for all potential ZFN target sites in the complete genomes of several model organisms. Description ZFNGenome is a GBrowse-based tool for identifying and visualizing potential target sites for OPEN-generated ZFNs. ZFNGenome currently includes a total of more than 11.6 million potential ZFN target sites, mapped within the fully sequenced genomes of seven model organisms; S. cerevisiae, C. reinhardtii, A. thaliana, D. melanogaster, D. rerio, C. elegans, and H. sapiens and can be visualized within the flexible GBrowse environment. Additional model organisms will be included in future updates. ZFNGenome provides information about each potential ZFN target site, including its chromosomal location and position relative to transcription initiation site(s. Users can query ZFNGenome using several different criteria (e.g., gene ID, transcript ID, target site sequence. Tracks in ZFNGenome also provide "uniqueness" and ZiFOpT (Zinc Finger OPEN Targeter "confidence" scores that estimate the likelihood that a chosen ZFN target site will function in vivo. ZFNGenome is dynamically linked to ZiFDB, allowing users access to all available information about zinc finger reagents, such as the

  8. Construction of a family of Cys2His2 zinc binding sites in the hydrophobic core of thioredoxin by structure-based design.

    Science.gov (United States)

    Wisz, M S; Garrett, C Z; Hellinga, H W

    1998-06-01

    A semi-automated, rational design strategy has been used to introduce a family of seven single, mononuclear Cys2His2 zinc sites at various locations in the hydrophobic core of Escherichia colithioredoxin, a protein that is normally devoid of metal centers. The electronic absorption spectra of the CoII complexes show that five of these designed proteins bind metal with the intended tetrahedral geometry. The designed sites differ in their metal-binding constants and effects on protein stability. Since these designs are constructed within the same host protein framework, comparison of their behavior allows a qualitative evaluation of dominant factors that contribute to metal-binding and metal-mediated protein stabilization. Metal-binding constants are dominated by steric interactions between the buried, designed coordination sphere and the surrounding protein matrix. Metal-mediated stability is the consequence of differential binding to the native and unfolded states. Increased interactions with the unfolded state decrease the stabilizing effect of metal binding. The affinity for the unfolded state is dependent on the placement of the primary coordination sphere residues within the linear protein sequence. These results indicate that a protein fold can have a remarkably broad potential for accommodating metal-mediated cross-links and suggest strategies for engineering protein stability by constructing metal sites that maximize metal binding to the native state and minimize binding to the unfolded state.

  9. Lactam hydrolysis catalyzed by mononuclear metallo-ß-bactamases

    DEFF Research Database (Denmark)

    Olsen, Lars; Antony, J; Ryde, U

    2003-01-01

    . For most studied systems, the tetrahedral structure is a stable intermediate. Moreover, the C-N bond in the lactam ring is intact in this intermediate, as well as in the following transition state-its cleavage is induced by proton transfer to the nitrogen atom in the lactam ring. However, for the model...... with Asp as a proton shuttle, attack of the zinc-bond hydroxide ion seems to be concerted with the proton transfer. We have also studied the effect of replacing one of the histidine ligands by an asparagine or glutamine residue, giving a zinc site representative of other subclasses of metallo......Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two metal...

  10. A mononuclear zinc(II) complex with piroxicam: crystal structure, DNA- and BSA-binding studies; in vitro cell cytotoxicity and molecular modeling of oxicam complexes.

    Science.gov (United States)

    Jannesari, Zahra; Hadadzadeh, Hassan; Amirghofran, Zahra; Simpson, Jim; Khayamian, Taghi; Maleki, Batool

    2015-02-05

    A new mononuclear Zn(II) complex, trans-[Zn(Pir)2(DMSO)2], where Pir(-) is 4-hydroxy-2-methyl-N-2-pyridyl-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (piroxicam), has been synthesized and characterized. The crystal structure of the complex was obtained by the single crystal X-ray diffraction technique. The interaction of the complex with DNA and BSA was investigated. The complex interacts with FS-DNA by two binding modes, viz., electrostatic and groove binding (major and minor). The microenvironment and the secondary structure of BSA are changed in the presence of the complex. The anticancer effects of the seven complexes of oxicam family were also determined on the human K562 cell lines and the results showed reasonable cytotoxicities. The interactions of the oxicam complexes with BSA and DNA were modeled by molecular docking and molecular dynamic simulation methods.

  11. A mononuclear zinc(II) complex with piroxicam: Crystal structure, DNA- and BSA-binding studies; in vitro cell cytotoxicity and molecular modeling of oxicam complexes

    Science.gov (United States)

    Jannesari, Zahra; Hadadzadeh, Hassan; Amirghofran, Zahra; Simpson, Jim; Khayamian, Taghi; Maleki, Batool

    2015-02-01

    A new mononuclear Zn(II) complex, trans-[Zn(Pir)2(DMSO)2], where Pir- is 4-hydroxy-2-methyl-N-2-pyridyl-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (piroxicam), has been synthesized and characterized. The crystal structure of the complex was obtained by the single crystal X-ray diffraction technique. The interaction of the complex with DNA and BSA was investigated. The complex interacts with FS-DNA by two binding modes, viz., electrostatic and groove binding (major and minor). The microenvironment and the secondary structure of BSA are changed in the presence of the complex. The anticancer effects of the seven complexes of oxicam family were also determined on the human K562 cell lines and the results showed reasonable cytotoxicities. The interactions of the oxicam complexes with BSA and DNA were modeled by molecular docking and molecular dynamic simulation methods.

  12. Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model.

    Directory of Open Access Journals (Sweden)

    Thomas Stockner

    Full Text Available The high-resolution crystal structure of the leucine transporter (LeuT is frequently used as a template for homology models of the dopamine transporter (DAT. Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii LeuT and DAT share a rather low overall sequence identity (22% and (iii the extracellular loop 2 (EL2 of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter's movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle.

  13. Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model.

    Science.gov (United States)

    Stockner, Thomas; Montgomery, Therese R; Kudlacek, Oliver; Weissensteiner, Rene; Ecker, Gerhard F; Freissmuth, Michael; Sitte, Harald H

    2013-01-01

    The high-resolution crystal structure of the leucine transporter (LeuT) is frequently used as a template for homology models of the dopamine transporter (DAT). Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i) when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii) LeuT and DAT share a rather low overall sequence identity (22%) and (iii) the extracellular loop 2 (EL2) of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter's movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle.

  14. Predicting success of oligomerized pool engineering (OPEN for zinc finger target site sequences

    Directory of Open Access Journals (Sweden)

    Goodwin Mathew J

    2010-11-01

    Full Text Available Abstract Background Precise and efficient methods for gene targeting are critical for detailed functional analysis of genomes and regulatory networks and for potentially improving the efficacy and safety of gene therapies. Oligomerized Pool ENgineering (OPEN is a recently developed method for engineering C2H2 zinc finger proteins (ZFPs designed to bind specific DNA sequences with high affinity and specificity in vivo. Because generation of ZFPs using OPEN requires considerable effort, a computational method for identifying the sites in any given gene that are most likely to be successfully targeted by this method is desirable. Results Analysis of the base composition of experimentally validated ZFP target sites identified important constraints on the DNA sequence space that can be effectively targeted using OPEN. Using alternate encodings to represent ZFP target sites, we implemented Naïve Bayes and Support Vector Machine classifiers capable of distinguishing "active" targets, i.e., ZFP binding sites that can be targeted with a high rate of success, from those that are "inactive" or poor targets for ZFPs generated using current OPEN technologies. When evaluated using leave-one-out cross-validation on a dataset of 135 experimentally validated ZFP target sites, the best Naïve Bayes classifier, designated ZiFOpT, achieved overall accuracy of 87% and specificity+ of 90%, with an ROC AUC of 0.89. When challenged with a completely independent test set of 140 newly validated ZFP target sites, ZiFOpT performance was comparable in terms of overall accuracy (88% and specificity+ (92%, but with reduced ROC AUC (0.77. Users can rank potentially active ZFP target sites using a confidence score derived from the posterior probability returned by ZiFOpT. Conclusion ZiFOpT, a machine learning classifier trained to identify DNA sequences amenable for targeting by OPEN-generated zinc finger arrays, can guide users to target sites that are most likely to function

  15. Communication between the Zinc and Nickel Sites in Dimeric HypA: Metal Recognition and pH Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, R.; Perovic, I; Martin-Diaconescu, V; O’Brien, K; Chivers, P; Sondej Pochapsky, S; Pochapsky, T; Maroney, M

    2010-01-01

    Helicobacter pylori, a pathogen that colonizes the human stomach, requires the nickel-containing metalloenzymes urease and NiFe-hydrogenase to survive this low pH environment. The maturation of both enzymes depends on the metallochaperone, HypA. HypA contains two metal sites, an intrinsic zinc site and a low-affinity nickel binding site. X-ray absorption spectroscopy (XAS) shows that the structure of the intrinsic zinc site of HypA is dynamic and able to sense both nickel loading and pH changes. At pH 6.3, an internal pH that occurs during acid shock, the zinc site undergoes unprecedented ligand substitutions to convert from a Zn(Cys){sub 4} site to a Zn(His){sub 2}(Cys){sub 2} site. NMR spectroscopy shows that binding of Ni(II) to HypA results in paramagnetic broadening of resonances near the N-terminus. NOEs between the {beta}-CH{sub 2} protons of Zn cysteinyl ligands are consistent with a strand-swapped HypA dimer. Addition of nickel causes resonances from the zinc binding motif and other regions to double, indicating more than one conformation can exist in solution. Although the structure of the high-spin, 5-6 coordinate Ni(II) site is relatively unaffected by pH, the nickel binding stoichiometry is decreased from one per monomer to one per dimer at pH = 6.3. Mutation of any cysteine residue in the zinc binding motif results in a zinc site structure similar to that found for holo-WT-HypA at low pH and is unperturbed by the addition of nickel. Mutation of the histidines that flank the CXXC motifs results in a zinc site structure that is similar to holo-WT-HypA at neutral pH (Zn(Cys){sub 4}) and is no longer responsive to nickel binding or pH changes. Using an in vitro urease activity assay, it is shown that the recombinant protein is sufficient for recovery of urease activity in cell lysate from a HypA deletion mutant, and that mutations in the zinc-binding motif result in a decrease in recovered urease activity. The results are interpreted in terms of a model

  16. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site.

    Science.gov (United States)

    Mendez, Monica O; Neilson, Julia W; Maier, Raina M

    2008-06-01

    Bacterial diversity in mine tailing microbial communities has not been thoroughly investigated despite the correlations that have been observed between the relative microbial diversity and the success of revegetation efforts at tailing sites. This study employed phylogenetic analyses of 16S rRNA genes to compare the bacterial communities present in highly disturbed, extremely (pH 2.7) and moderately (pH 5.7) acidic lead-zinc mine tailing samples from a semiarid environment with those from a vegetated off-site (OS) control sample (pH 8). Phylotype richness in these communities decreased from 42 in the OS control to 24 in the moderately acidic samples and 8 in the extremely acidic tailing samples. The clones in the extremely acidic tailing sample were most closely related to acidophiles, none of which were detected in the OS control sample. The comparison generated by this study between the bacteria present in extremely acidic tailing and that in moderately acidic tailing communities with those in an OS control soil provides a reference point from which to evaluate the successful restoration of mine tailing disposal sites by phytostabilization.

  17. The Electronic Behavior of Zinc-Finger Protein Binding Sites in the Context of the DNA Extended Ladder Model

    Science.gov (United States)

    Oiwa, Nestor; Cordeiro, Claudette; Heermann, Dieter

    2016-05-01

    Instead of ATCG letter alignments, typically used in bioinformatics, we propose a new alignment method using the probability distribution function of the bottom of the occupied molecular orbital (BOMO), highest occupied molecular orbital (HOMO) and lowest unoccupied orbital (LUMO). We apply the technique to transcription factors with Cys2His2 zinc fingers. These transcription factors search for binding sites, probing for the electronic patterns at the minor and major DNA groves. The eukaryotic Cys2His2 zinc finger proteins bind to DNA ubiquitously at highly conserved domains. They are responsible for gene regulation and the spatial organization of DNA. To study and understand these zinc finger DNA-protein interactions, we use the extended ladder in the DNA model proposed by Zhu, Rasmussen, Balatsky & Bishop (2007) te{Zhu-2007}. Considering one single spinless electron in each nucleotide π-orbital along a double DNA chain (dDNA), we find a typical pattern for the bottom of BOMO, HOMO and LUMO along the binding sites. We specifically looked at two members of zinc finger protein family: specificity protein 1 (SP1) and early grown response 1 transcription factors (EGR1). When the valence band is filled, we find electrons in the purines along the nucleotide sequence, compatible with the electric charges of the binding amino acids in SP1 and EGR1 zinc finger.

  18. Dynamic HypA zinc site is essential for acid viability and proper urease maturation in Helicobacter pylori

    Science.gov (United States)

    Johnson, Ryan C.; Hu, Heidi Q.; Merrell, D. Scott; Maroney, Michael J.

    2015-01-01

    Helicobacter pylori requires urease activity in order to survive in the acid environment of the human stomach. Urease is regulated in part by nickelation, a process that requires the HypA protein, which is a putative nickel metallochaperone that is generally associated with hydrogenase maturation. However, in H. pylori, HypA plays a dual role. In addition to an N-terminal nickel binding site, HypA proteins also contain a structural zinc site that is coordinated by two rigorously conserved CXXC sequences, which in H. pylori are flanked by His residues. These structural Zn sites are known to be dynamic, converting from Zn(Cys)4 centers at pH 7.2 to Zn(Cys)2(His)2 centers at pH 6.3 in the presence of Ni(II) ions. In this study, mutant strains of H. pylori that express zinc site variants of the HypA protein are used to show that the structural changes in the zinc site are important for the acid viability of the bacterium, and that a reduction in acid viability in these variants can be traced in large measure to deficient urease activity. This in turn leads to a model that connects the Zn(Cys)4 coordination to urease maturation. PMID:25608738

  19. Lactam hydrolysis catalyzed by mononuclear metallo-beta-lactamases: A density functional study

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Olsen, L.; Antony, J.

    2003-01-01

    . For most studied systems, the tetrahedral structure is a stable intermediate. Moreover, the C-N bond in the lactam ring is intact in this intermediate, as well as in the following transition state-its cleavage is induced by proton transfer to the nitrogen atom in the lactam ring. However, for the model...... with Asp as a proton shuttle, attack of the zinc-bond hydroxide ion seems to be concerted with the proton transfer. We have also studied the effect of replacing one of the histidine ligands by an asparagine or glutamine residue, giving a zinc site representative of other subclasses of metallo......Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two metal...

  20. An MSC2 Promoter-lacZ Fusion Gene Reveals Zinc-Responsive Changes in Sites of Transcription Initiation That Occur across the Yeast Genome

    Science.gov (United States)

    Wu, Yi-Hsuan; Taggart, Janet; Song, Pamela Xiyao; MacDiarmid, Colin; Eide, David J.

    2016-01-01

    The Msc2 and Zrg17 proteins of Saccharomyces cerevisiae form a complex to transport zinc into the endoplasmic reticulum. ZRG17 is transcriptionally induced in zinc-limited cells by the Zap1 transcription factor. In this report, we show that MSC2 mRNA also increases (~1.5 fold) in zinc-limited cells. The MSC2 gene has two in-frame ATG codons at its 5’ end, ATG1 and ATG2; ATG2 is the predicted initiation codon. When the MSC2 promoter was fused at ATG2 to the lacZ gene, we found that unlike the chromosomal gene this reporter showed a 4-fold decrease in lacZ mRNA in zinc-limited cells. Surprisingly, β-galactosidase activity generated by this fusion gene increased ~7 fold during zinc deficiency suggesting the influence of post-transcriptional factors. Transcription of MSC2ATG2-lacZ was found to start upstream of ATG1 in zinc-replete cells. In zinc-limited cells, transcription initiation shifted to sites just upstream of ATG2. From the results of mutational and polysome profile analyses, we propose the following explanation for these effects. In zinc-replete cells, MSC2ATG2-lacZ mRNA with long 5’ UTRs fold into secondary structures that inhibit translation. In zinc-limited cells, transcripts with shorter unstructured 5’ UTRs are generated that are more efficiently translated. Surprisingly, chromosomal MSC2 did not show start site shifts in response to zinc status and only shorter 5’ UTRs were observed. However, the shifts that occur in the MSC2ATG2-lacZ construct led us to identify significant transcription start site changes affecting the expression of ~3% of all genes. Therefore, zinc status can profoundly alter transcription initiation across the yeast genome. PMID:27657924

  1. Conformational changes of active site of copper zinc superoxide dismutase can be detected sensitively by electron-transfer reaction

    Institute of Scientific and Technical Information of China (English)

    舒占永

    1996-01-01

    The electron-transfer (ET) reaction between Fe(CN)64- and copper zinc superoxide dismutase (CuZn-SOD) occurs at the active site of the enzyme. The ET parameters which are sensitive to the denaturation have been used to determine the conformational changes of the active site induced by guanidine hydrochloride and thermal denaturation. The decreases of ET rates for all the denatured enzyme samples reflect the collapse of the active cavity of enzyme in the unfolding processes. The interesting changes of ET amplitude for the enzyme denatured at different pH values suggest that electrostatic interaction plays an important role in the conformational changes of active site. From the results of the kinetic analyses, it is concluded that the conformational changes of the active site are parallel with the inactivation.

  2. Surface magnetic contribution in zinc ferrite thin films studied by element- and site-specific XMCD hysteresis-loops

    Science.gov (United States)

    Mendoza Zélis, P.; Pasquevich, G. A.; Salcedo Rodríguez, K. L.; Sánchez, F. H.; Rodríguez Torres, C. E.

    2016-12-01

    Element- and site-specific magnetic hysteresis-loops measurements on a zinc ferrite (ZnFe2O4) thin film were performed by X-ray magnetic circular dichroism. Results show that iron in octahedral and tetrahedral sites of spinel structure are coupled antiferromagnetically between them, and when magnetic field is applied the magnetic moment of the ion located at octahedral sites aligns along the field direction. The magnetic measurements reveal a distinctive response of the surface with in-plane anisotropy and an effective anisotropy constant value of 12.6 kJ/m3. This effective anisotropy is due to the combining effects of demagnetizing field and, volume and surface magnetic anisotropies KV =3.1 kJ/m3 and KS =16 μJ/m2.

  3. Identification of off-target cleavage sites of zinc finger nucleases and TAL effector nucleases using predictive models.

    Science.gov (United States)

    Fine, Eli J; Cradick, Thomas J; Bao, Gang

    2014-01-01

    Using engineered nucleases, such as Zinc Finger Nucleases (ZFNs) or Transcription Activator-Like Effector Nucleases (TALENs), to make targeted genomic modifications has become a common technique to create new model organisms and custom cell lines, and has shown great promise for disease treatment. However, these nucleases have the potential for off-target cleavage that could confound interpretation of experimental results and be detrimental for therapeutic use. Here, we describe a method to test for nuclease cleavage at potential off-target sites predicted by bioinformatics models.

  4. Accounting for both local aquatic community composition and bioavailability in setting site-specific quality standards for zinc.

    Science.gov (United States)

    Peters, Adam; Simpson, Peter; Moccia, Alessandra

    2014-01-01

    Recent years have seen considerable improvement in water quality standards (QS) for metals by taking account of the effect of local water chemistry conditions on their bioavailability. We describe preliminary efforts to further refine water quality standards, by taking account of the composition of the local ecological community (the ultimate protection objective) in addition to bioavailability. Relevance of QS to the local ecological community is critical as it is important to minimise instances where quality classification using QS does not reconcile with a quality classification based on an assessment of the composition of the local ecology (e.g. using benthic macroinvertebrate quality assessment metrics such as River InVertebrate Prediction and Classification System (RIVPACS)), particularly where ecology is assessed to be at good or better status, whilst chemical quality is determined to be failing relevant standards. The alternative approach outlined here describes a method to derive a site-specific species sensitivity distribution (SSD) based on the ecological community which is expected to be present at the site in the absence of anthropogenic pressures (reference conditions). The method combines a conventional laboratory ecotoxicity dataset normalised for bioavailability with field measurements of the response of benthic macroinvertebrate abundance to chemical exposure. Site-specific QSref are then derived from the 5%ile of this SSD. Using this method, site QSref have been derived for zinc in an area impacted by historic mining activities. Application of QSref can result in greater agreement between chemical and ecological metrics of environmental quality compared with the use of either conventional (QScon) or bioavailability-based QS (QSbio). In addition to zinc, the approach is likely to be applicable to other metals and possibly other types of chemical stressors (e.g. pesticides). However, the methodology for deriving site-specific targets requires

  5. Pedological Characterisation of Sites Along a Transect from a Primary Cadmium/ Lead/ Zinc Smelting Works

    NARCIS (Netherlands)

    Filzek, P.D.B.; Spurgeon, D.J.; Broll, G.E.; Svendsen, C.; Hankard, P.K.; Kammenga, J.E.; Donker, M.H.; Weeks, J.M.

    2004-01-01

    A pedological characterisation of seven sites along a transect from a smelter at Avonmouth, UK, was undertaken. Site locations comprised a mixture of both grassland (5 sites) and oak tree dominated (2 sites) areas. Geographically, sites were either low lying or on adjacent elevated ground. Across th

  6. Site-Specific Editing of the Plasmodium falciparum Genome Using Engineered Zinc-Finger Nucleases

    OpenAIRE

    Straimer, Judith; Lee, Marcus CS; Lee, Andrew H.; Zeitler, Bryan; Williams, April E.; Pearl, Jocelynn R.; Zhang, Lei; Rebar, Edward J.; Gregory, Philip D.; Llinás, Manuel; Urnov, Fyodor D; David A Fidock

    2012-01-01

    Malaria afflicts over 200 million people worldwide and its most lethal etiologic agent, Plasmodium falciparum, is evolving to resist even the latest-generation therapeutics. Efficient tools for genome-directed investigations of P. falciparum pathogenesis, including drug resistance mechanisms, are clearly required. Here we report rapid and targeted genetic engineering of this parasite, using zinc-finger nucleases (ZFNs) that produce a double-strand break in a user-defined locus and trigger hom...

  7. An integrative computational framework based on a two-step random forest algorithm improves prediction of zinc-binding sites in proteins.

    Directory of Open Access Journals (Sweden)

    Cheng Zheng

    Full Text Available Zinc-binding proteins are the most abundant metalloproteins in the Protein Data Bank where the zinc ions usually have catalytic, regulatory or structural roles critical for the function of the protein. Accurate prediction of zinc-binding sites is not only useful for the inference of protein function but also important for the prediction of 3D structure. Here, we present a new integrative framework that combines multiple sequence and structural properties and graph-theoretic network features, followed by an efficient feature selection to improve prediction of zinc-binding sites. We investigate what information can be retrieved from the sequence, structure and network levels that is relevant to zinc-binding site prediction. We perform a two-step feature selection using random forest to remove redundant features and quantify the relative importance of the retrieved features. Benchmarking on a high-quality structural dataset containing 1,103 protein chains and 484 zinc-binding residues, our method achieved >80% recall at a precision of 75% for the zinc-binding residues Cys, His, Glu and Asp on 5-fold cross-validation tests, which is a 10%-28% higher recall at the 75% equal precision compared to SitePredict and zincfinder at residue level using the same dataset. The independent test also indicates that our method has achieved recall of 0.790 and 0.759 at residue and protein levels, respectively, which is a performance better than the other two methods. Moreover, AUC (the Area Under the Curve and AURPC (the Area Under the Recall-Precision Curve by our method are also respectively better than those of the other two methods. Our method can not only be applied to large-scale identification of zinc-binding sites when structural information of the target is available, but also give valuable insights into important features arising from different levels that collectively characterize the zinc-binding sites. The scripts and datasets are available at http://protein.cau.edu.cn/zincidentifier/.

  8. Surface magnetic contribution in zinc ferrite thin films studied by element- and site-specific XMCD hysteresis-loops

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Zélis, P.; Pasquevich, G.A. [IFLP-CCT-La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Salcedo Rodríguez, K.L.; Sánchez, F.H. [IFLP-CCT-La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Rodríguez Torres, C.E., E-mail: torres@fisica.unlp.edu.ar [IFLP-CCT-La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina)

    2016-12-01

    Element- and site-specific magnetic hysteresis-loops measurements on a zinc ferrite (ZnFe{sub 2}O{sub 4}) thin film were performed by X-ray magnetic circular dichroism. Results show that iron in octahedral and tetrahedral sites of spinel structure are coupled antiferromagnetically between them, and when magnetic field is applied the magnetic moment of the ion located at octahedral sites aligns along the field direction. The magnetic measurements reveal a distinctive response of the surface with in-plane anisotropy and an effective anisotropy constant value of 12.6 kJ/m{sup 3}. This effective anisotropy is due to the combining effects of demagnetizing field and, volume and surface magnetic anisotropies K{sub V} =3.1 kJ/m{sup 3} and K{sub S} =16 μJ/m{sup 2}. - Highlights: • Surface magnetic response in ZnFe{sub 2}O{sub 4} film (thickness t ∼57 nm) by XMCD is studied. • Measurements of magnetic moment vs. applied field cycles via XMCD are presented. • Fe{sup 3+} at A- and B-sites are coupled antiferromagnetically between them. • A distinctive response of the surface with in-plane magnetic anisotropy is determined. • Volume and surface magnetic anisotropy are determined: 3.1 kJ/m{sup 3} and 16 μJ/m{sup 2}.

  9. Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases.

    Science.gov (United States)

    Straimer, Judith; Lee, Marcus C S; Lee, Andrew H; Zeitler, Bryan; Williams, April E; Pearl, Jocelynn R; Zhang, Lei; Rebar, Edward J; Gregory, Philip D; Llinás, Manuel; Urnov, Fyodor D; Fidock, David A

    2012-10-01

    Malaria afflicts over 200 million people worldwide, and its most lethal etiologic agent, Plasmodium falciparum, is evolving to resist even the latest-generation therapeutics. Efficient tools for genome-directed investigations of P. falciparum-induced pathogenesis, including drug-resistance mechanisms, are clearly required. Here we report rapid and targeted genetic engineering of this parasite using zinc-finger nucleases (ZFNs) that produce a double-strand break in a user-defined locus and trigger homology-directed repair. Targeting an integrated egfp locus, we obtained gene-deletion parasites with unprecedented speed (2 weeks), both with and without direct selection. ZFNs engineered against the parasite gene pfcrt, responsible for escape under chloroquine treatment, rapidly produced parasites that carried either an allelic replacement or a panel of specified point mutations. This method will enable a diverse array of genome-editing approaches to interrogate this human pathogen.

  10. Plasmodium and mononuclear phagocytes.

    Science.gov (United States)

    Mac-Daniel, Laura; Ménard, Robert

    2015-01-01

    Plasmodium, the causative agent of malaria, initially multiplies inside liver cells and then in successive cycles inside erythrocytes, causing the symptoms of the disease. In this review, we discuss interactions between the extracellular and intracellular forms of the Plasmodium parasite and innate immune cells in the mammalian host, with a special emphasis on mononuclear phagocytes. We overview here what is known about the innate immune cells that interact with parasites, mechanisms used by the parasite to evade them, and the protective or detrimental contribution of these interactions on parasite progression through its life cycle and pathology in the host.

  11. Characterization of zinc-binding sites in human stromelysin-1: stoichiometry of the catalytic domain and identification of a cysteine ligand in the proenzyme.

    Science.gov (United States)

    Salowe, S P; Marcy, A I; Cuca, G C; Smith, C K; Kopka, I E; Hagmann, W K; Hermes, J D

    1992-05-19

    A determination of the zinc stoichiometry of the catalytic domain of the human matrix metalloproteinase stromelysin-1 has been carried out using enzyme purified from recombinant Escherichia coli that express C-terminally truncated protein. Atomic absorption spectrometry revealed that both the proenzyme (prostrom255) and the mature active form (strom255) contained nearly 2 mol of Zn/mol of protein. Full-length prostromelysin purified from a mammalian cell culture line also contained zinc in excess of 1 equiv. While zinc in prostrom255 could not be removed by dialysis against o-phenanthroline, similar treatment of mature strom255 resulted in the loss of one-half of the original zinc content. The peptidase activity of the zinc-depleted protein was reduced by greater than 85% but could be restored upon addition of Zn2+ or Co2+. Addition of a thiol-containing inhibitor to a CoZn hybrid enzyme resulted in marked spectral changes in both the visible and ultraviolet regions characteristic of sulfur ligation to Co2+. This direct evidence for an integral role in catalysis and inhibitor binding confirms the location of the exchangeable metal at the active site. To examine the environment of zinc in the proenzyme, a fully cobalt-substituted proenzyme was prepared by in vivo metal replacement. The absorbance features of dicobalt prostrom255 were consistent with metal coordination by the single cysteine present in the propeptide, although the data do not allow assignment to a particular zinc site.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Site-specific changes in zinc levels in the epididymis of rats exposed to ionizing radiation

    Science.gov (United States)

    Homma-Takeda, S.; Nishimura, Y.; Watanabe, Y.; Yukawa, M.

    2007-07-01

    The epididymis is an accessory sex organ that plays an important role in sperm maturation and storage. Trace elements, such as copper (Cu), manganese (Mn), zinc (Zn) and selenium (Se), have a pivotal role in spermatogenesis. We studied the effects of radiation on trace element levels in the epididymis in male Wistar rats using inductively coupled plasma-mass spectrometry (ICP-MS). We determined trace element concentration in segment-dissected specimens and used micro-PIXE analysis to determine Zn in epididymal sections in situ. Zn concentrations in the caput and cauda epididymis of control rats were 37.7 ± 6.5 μg/g wet weight and 18.7 ± 4.1 μg/g wet weight, respectively. At 6 h after irradiation at a single dose of 5Gy, the Zn level decreased by 33% in the caput epididymis, whereas the level did not change in the cauda segment. Similar results were obtained for Se, but not both Cu and Mn. PIXE spot analysis revealed that Zn in the lumen of the epididymal tubules decreased after irradiation.

  13. Site-specific changes in zinc levels in the epididymis of rats exposed to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Homma-Takeda, S. [Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku Chiba 263-8555 (Japan)]. E-mail: shino_ht@nirs.go.jp; Nishimura, Y. [Fundamental Technology Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku Chiba 263-8555 (Japan); Watanabe, Y. [Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku Chiba 263-8555 (Japan); Yukawa, M. [Fundamental Technology Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku Chiba 263-8555 (Japan)

    2007-07-15

    The epididymis is an accessory sex organ that plays an important role in sperm maturation and storage. Trace elements, such as copper (Cu), manganese (Mn), zinc (Zn) and selenium (Se), have a pivotal role in spermatogenesis. We studied the effects of radiation on trace element levels in the epididymis in male Wistar rats using inductively coupled plasma-mass spectrometry (ICP-MS). We determined trace element concentration in segment-dissected specimens and used micro-PIXE analysis to determine Zn in epididymal sections in situ. Zn concentrations in the caput and cauda epididymis of control rats were 37.7 {+-} 6.5 {mu}g/g wet weight and 18.7 {+-} 4.1 {mu}g/g wet weight, respectively. At 6 h after irradiation at a single dose of 5Gy, the Zn level decreased by 33% in the caput epididymis, whereas the level did not change in the cauda segment. Similar results were obtained for Se, but not both Cu and Mn. PIXE spot analysis revealed that Zn in the lumen of the epididymal tubules decreased after irradiation.

  14. Inter-site differences of zinc susceptibility of the oyster Crassostrea hongkongensis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fengjie [Division of Life Science, State Key Laboratory of Marine Pollution, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Rainbow, Philip S. [Department of Life Sciences, The Natural History Museum, Cromwell Rd., London SW7 5BD (United Kingdom); Wang, Wen-Xiong, E-mail: wwang@ust.hk [Division of Life Science, State Key Laboratory of Marine Pollution, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2013-05-15

    Highlights: ► Zn sensitivity and detoxification in oysters are related to the history of metal exposure. ► The lethal threshold concentration of total body Zn varied significantly among oyster populations. ► Total body Zn concentration could not serve as a suitable toxicity indicator in oysters. ► Zn toxicity is related to a threshold concentration of metabolically available metal. -- Abstract: Understanding the underlying mechanisms governing metal toxicity is crucial for predicting the risks and effects of metal pollutants. We hypothesized that metal toxicity is related to a threshold concentration of metabolically available metal but not to the total body metal concentration. Following a two-month laboratory Zn exposure, we characterized mortality and Zn bioaccumulation and subcellular partitioning in the oyster Crassostrea hongkongensis sampled from three sites with contrasting histories of Zn exposure and one multiple-metal contaminated site. Large differences in Zn sensitivity, lethal body concentration, and detoxification capability between sites were observed. Specifically, the oysters from the highly Zn-contaminated site were more tolerant to Zn exposure than those from the relatively clean ones, and the former accumulated and detoxified more Zn and had a significantly higher lethal body Zn concentration. The accumulation of Zn in the metabolically available pool (operationally defined as the metal-sensitive fraction) in the oysters from the multiple-metal contaminated site was relatively fast, and correspondingly they were highly sensitive to Zn exposure. The lethal threshold concentration of total body Zn varied significantly within the four sites, and thus total body Zn concentration could not serve as a suitable toxicity indicator. Importantly, Zn accumulation within the operationally defined metabolically available pool better explained variances in mortality than Zn accumulation in the whole body. Our results suggested that Zn toxicity is

  15. Structural characterization of S100A15 reveals a novel zinc coordination site among S100 proteins and altered surface chemistry with functional implications for receptor binding

    Directory of Open Access Journals (Sweden)

    Murray Jill I

    2012-07-01

    Full Text Available Abstract Background S100 proteins are a family of small, EF-hand containing calcium-binding signaling proteins that are implicated in many cancers. While the majority of human S100 proteins share 25-65% sequence similarity, S100A7 and its recently identified paralog, S100A15, display 93% sequence identity. Intriguingly, however, S100A7 and S100A15 serve distinct roles in inflammatory skin disease; S100A7 signals through the receptor for advanced glycation products (RAGE in a zinc-dependent manner, while S100A15 signals through a yet unidentified G-protein coupled receptor in a zinc-independent manner. Of the seven divergent residues that differentiate S100A7 and S100A15, four cluster in a zinc-binding region and the remaining three localize to a predicted receptor-binding surface. Results To investigate the structural and functional consequences of these divergent clusters, we report the X-ray crystal structures of S100A15 and S100A7D24G, a hybrid variant where the zinc ligand Asp24 of S100A7 has been substituted with the glycine of S100A15, to 1.7 Å and 1.6 Å resolution, respectively. Remarkably, despite replacement of the Asp ligand, zinc binding is retained at the S100A15 dimer interface with distorted tetrahedral geometry and a chloride ion serving as an exogenous fourth ligand. Zinc binding was confirmed using anomalous difference maps and solution binding studies that revealed similar affinities of zinc for S100A15 and S100A7. Additionally, the predicted receptor-binding surface on S100A7 is substantially more basic in S100A15 without incurring structural rearrangement. Conclusions Here we demonstrate that S100A15 retains the ability to coordinate zinc through incorporation of an exogenous ligand resulting in a unique zinc-binding site among S100 proteins. The altered surface chemistry between S100A7 and S100A15 that localizes to the predicted receptor binding site is likely responsible for the differential recognition of distinct

  16. Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: biosorption of zinc.

    Science.gov (United States)

    Monteiro, Cristina M; Marques, Ana P G C; Castro, Paula M L; Xavier Malcata, F

    2009-09-01

    Microalgae have been proven efficient biological vectors for heavy metal uptake. In order to further study their biosorption potential, a strain of Desmodesmus pleiomorphus (L) was isolated from a strongly contaminated industrial site in Portugal. Under different initial Zn(2+) concentrations, metal removal by that strain reached a maximum of 360 mg Zn/g biomass after 7 days, at 30 mg Zn/l, after an initial rapid phase of uptake. Comparative studies were carried out using a strain of the same microalgal species that is commercially available (ACOI 561): when exposed to 30 mg Zn/l, it could remove only 81.8 mg Zn/g biomass. Biosorption experiments using inactivated biomass of the isolated strain reached a maximum Zn(2+) uptake of 103.7 mg/g. Metal removal at various initial pH values was studied as well; higher removal was obtained at pH 5.0. The microalga strain L, isolated from the contaminated site, exhibited a much higher removal capacity than the commercial strain, and the living biomass yielded higher levels of metal removal than its inactivated form.

  17. CHRONIC ZINC SCREENING WATER EFFECT RATIO FOR THE H-12 OUTFALL, SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, D.; Looney, B.; Millings, M.

    2009-01-13

    In response to proposed Zn limits for the NPDES outfall H-12, a Zn screening Water Effects Ratio (WER) study was conducted to determine if a full site-specific WER is warranted. Using standard assumptions for relating the lab results to the stream, the screening WER data were consistent with the proposed Zn limit and suggest that a full WER would result in a similar limit. Addition of a humate amendment to the outfall water reduced Zn toxicity, but the toxicity reduction was relatively small and unlikely to impact proposed Zn limits. The screening WER data indicated that the time and expense required to perform a full WER for Zn is not warranted.

  18. Zinc distribution in blood components, inflammatory status, and clinical indexes of disease activity during zinc supplementation in inflammatory rheumatic diseases.

    Science.gov (United States)

    Peretz, A; Nève, J; Jeghers, O; Pelen, F

    1993-05-01

    The effects of zinc supplementation on zinc status and on clinical and biological indicators of inflammation were investigated in 18 patients with chronic inflammatory rheumatic diseases and in 9 healthy control subjects. Patients with mild and recent onset disease were assigned to a 60-d trial to receive either 45 mg Zn (as gluconate)/d or a placebo, while control subjects received the zinc supplement. Baseline mean plasma zinc of the patients was low whereas mononuclear cell zinc content was elevated, suggesting a redistribution of the element related to the inflammatory process rather than to a zinc-deficient state. Zinc supplementation increased plasma zinc to a similar extent in patients and in control subjects, which suggested no impairment of zinc intestinal absorption as a result of the inflammatory process. On the contrary, erythrocyte and leukocyte zinc concentrations were not modified in the two groups examined. No beneficial effect of zinc treatment could be demonstrated on either clinical or inflammation indexes.

  19. An ECVAG inter-laboratory validation study of the comet assay: inter-laboratory and intra-laboratory variations of DNA strand breaks and FPG-sensitive sites in human mononuclear cells.

    Science.gov (United States)

    Ersson, Clara; Møller, Peter; Forchhammer, Lykke; Loft, Steffen; Azqueta, Amaya; Godschalk, Roger W L; van Schooten, Frederik-Jan; Jones, George D D; Higgins, Jennifer A; Cooke, Marcus S; Mistry, Vilas; Karbaschi, Mahsa; Phillips, David H; Sozeri, Osman; Routledge, Michael N; Nelson-Smith, Kirsty; Riso, Patrizia; Porrini, Marisa; Matullo, Giuseppe; Allione, Alessandra; Stepnik, Maciej; Ferlińska, Magdalena; Teixeira, João Paulo; Costa, Solange; Corcuera, Laura-Ana; López de Cerain, Adela; Laffon, Blanca; Valdiglesias, Vanessa; Collins, Andrew R; Möller, Lennart

    2013-05-01

    The alkaline comet assay is an established, sensitive method extensively used in biomonitoring studies. This method can be modified to measure a range of different types of DNA damage. However, considerable differences in the protocols used by different research groups affect the inter-laboratory comparisons of results. The aim of this study was to assess the inter-laboratory, intra-laboratory, sample and residual (unexplained) variations in DNA strand breaks and formamidopyrimidine DNA glycosylase (FPG)-sensitive sites measured by the comet assay by using a balanced Latin square design. Fourteen participating laboratories used their own comet assay protocols to measure the level of DNA strand breaks and FPG-sensitive sites in coded samples containing peripheral blood mononuclear cells (PBMC) and the level of DNA strand breaks in coded calibration curve samples (cells exposed to different doses of ionising radiation) on three different days of analysis. Eleven laboratories found dose-response relationships in the coded calibration curve samples on two or three days of analysis, whereas three laboratories had technical problems in their assay. In the coded calibration curve samples, the dose of ionising radiation, inter-laboratory variation, intra-laboratory variation and residual variation contributed to 60.9, 19.4, 0.1 and 19.5%, respectively, of the total variation. In the coded PBMC samples, the inter-laboratory variation explained the largest fraction of the overall variation of DNA strand breaks (79.2%) and the residual variation (19.9%) was much larger than the intra-laboratory (0.3%) and inter-subject (0.5%) variation. The same partitioning of the overall variation of FPG-sensitive sites in the PBMC samples indicated that the inter-laboratory variation was the strongest contributor (56.7%), whereas the residual (42.9%), intra-laboratory (0.2%) and inter-subject (0.3%) variations again contributed less to the overall variation. The results suggest that the

  20. Solution NMR Structure of the Iron-Sulfur Cluster Assembly Protein U (IscU) with Zinc Bound at the Active Site

    Energy Technology Data Exchange (ETDEWEB)

    Ramelot, Theresa A.; Cort, John R.; Goldsmith-Fischman, Sharon; Kornhaber, Greg J.; Xiao, Rong; Shastry, Ritu; Acton, Thomas; Honig, Barry; Montelione, Gaetano; Kennedy, Michael A.

    2004-11-19

    IscU is a highly conserved protein that serves as the scaffold for IscS-mediated assembly of iron-sulfur ([Fe-S]) clusters. We report the NMR solution structure of monomeric Haemophilus influenzae IscU with zinc bound at the [Fe-S] cluster assembly site. The compact core of the globular structure has an {alpha}-{beta} sandwich architecture with a three-stranded antiparallel {beta}-sheet and four {alpha}-helices. A nascent helix is located N-terminal to the core structure. The zinc is ligated by three cysteines and one histidine that are located in and near conformationally dynamic loops at one end of the IscU structure. Removal of the zinc metal by chelation results in widespread loss of structure in the apo form. The zinc-bound IscU may be a good model for iron-loaded IscU and may demonstrate structural features found in the iron-sulfur cluster bound form. Structural and functional similarities, genomic context in operons containing other homologous genes, and distributions of conserved surface residues support the hypothesis that IscU protein domains are homologous (i.e. derived from a common ancestor) with the SufE/YgdK family of iron sulfur cluster assembly proteins.

  1. Synthesis, crystal structure and investigation of mononuclear copper(II) and zinc(II) complexes of a new carboxylate rich tripodal ligand and their interaction with carbohydrates in alkaline aqueous solution.

    Science.gov (United States)

    Stewart, Christopher D; Pedraza, Mayra; Arman, Hadi; Fan, Hua-Jun; Schilling, Eduardo Luiz; Szpoganicz, Bruno; Musie, Ghezai T

    2015-08-01

    A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV-Vis and (13)C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI-MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1(-) and 2(-). Complexes 1(-) and 2(-) showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pK(app), between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pK(app) and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported.

  2. Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L. grown at four international field sites.

    Directory of Open Access Journals (Sweden)

    Gareth J Norton

    Full Text Available The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ∼ 300 accessions and 36.9 k single nucleotide polymorphisms (SNPs. The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel. This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.

  3. The Influence of Crystal Structure on the Lattice Sites and Formation Energies of Hydrogen in Wurtzite and Zinc-Blende GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.F.

    1999-02-01

    Charge-state calculations based on density-functional theory are used to study the formation energy of hydrogen in wurtzite and zinc-blende GaN as a function of Fermi level Comparison of these results reveals notable differences including a 0.56 eV lower formation energy for H2 in wurtzite, and different configurations for H2 and H- in the two crystal structures. Furthermore, H+ is found to be equally stable at bond-centered and anti-bonding sites in wurtzite, whereas it is unstable at a bond-centered site in zinc blende. These differences are due to distinct features of the two crystal structures including: the lower symmetry of wurtzite which provides a wider selection of bonding sites for H+, and the existence of extended three-fold symmetric channels oriented along the c-axis in wurtzite which provide more favorable bonding configurations for H2 and H-.N-H+ stretch-mode vibration frequencies, clustering of ?3+ in p-type material, and diffusion barriers for H" are also investigated in wurtzite GaN. A diffusion barrier of 1.6 eV is found for H- in wurtzite GaN, significantly lower than a previous estimate, and a tendency for H+ clustering in p-type material is found.

  4. Zinc-finger domains of the transcriptional repressor KLF15 bind multiple sites in rhodopsin and IRBP promoters including the CRS-1 and G-rich repressor elements

    Directory of Open Access Journals (Sweden)

    Lai Hong

    2005-06-01

    Full Text Available Abstract Background In the retina, many of the genes that encode components of the visual transduction cascade and retinoid recycling are exclusively expressed in photoreceptor cells and show highly stereotyped temporal and spatial expression patterns. Multiple transcriptional activators of photoreceptor-specific genes have been identified, but little is known about negative regulation of gene expression in the retina. We recently identified KLF15, a member of the Sp/Krüppel-like Factor family of zinc-finger containing transcription factors, as an in vitro repressor of the promoters of the photoreceptor-specific genes rhodopsin and IRBP/Rbp3. To gain further insight into the mechanism of KLF15-mediated regulation of gene expression, we have characterized the binding characteristics and specificity of KLF15's DNA binding domains and defined the KLF15 binding sites in the rhodopsin and IRBP promoters. Results In EMSA and DNAseI footprinting assays, a KLF15-GST fusion protein containing the C-terminal zinc-finger domains (123 amino acids showed zinc-dependent and sequence-specific binding to a 9 bp consensus sequence containing a core CG/TCCCC. Both the bovine rhodopsin and IRBP promoters contained multiple KLF15 binding sites that included the previously identified CRS-1 and G-rich repressor elements. KLF15 binding sites were highly conserved between the bovine, human, chimp and dog rhodopsin promoters, but less conserved in rodents. KLF15 reduced luciferase expression by bRho130-luc (containing 4 KLF15 sites and repressed promoter activation by CRX (cone rod homeobox and/or NRL (neural retina leucine zipper, although the magnitude of the reduction was smaller than previously reported for a longer bRho225-luc (containing 6 KFL15 sites. Conclusion KLF15 binds to multiple 9 bp consensus sites in the Rhodospin and IRBP promoters including the CRS-1 and G-rich repressor elements. Based on the known expression pattern of KLF15 in non

  5. The zinc binuclear cluster activator AlcR is able to bind to single sites but requires multiple repeated sites for synergistic activation of the alcA gene in Aspergillus nidulans.

    Science.gov (United States)

    Panozzo, C; Capuano, V; Fillinger, S; Felenbok, B

    1997-09-01

    The alcA gene which is part of the recently identified ethanol regulon, is one of the most strongly inducible genes in Aspergillus nidulans. Its transcriptional activation is mediated by the AlcR transactivator which contains a DNA-binding domain belonging to the C6 zinc binuclear cluster family. AlcR differs from the other members of this family by several features, the most striking characteristic being its binding to both symmetric and asymmetric DNA sites with the same apparent affinity. However, AlcR is also able to bind to a single site with high affinity, suggesting that unlike the other C6 proteins, AlcR binds as a monomer. In this report, we show that AlcR targets, to be functional in vivo, have to be organized as inverted or direct repeats. In addition, we show a strong synergistic activation of alcA transcription in which the number and the position of the AlcR-binding sites are crucial. The fact that the AlcR unit for in vitro binding is a single site whereas the in vivo functional unit is a repeat opens the question of the mechanism of the strong alcA transactivation. These results show that AlcR displays both in vitro and in vivo a new range of binding specificity and provides a novel example in the C6 zinc cluster protein family.

  6. Two Zn coordination polymers with meso-helical chains based on mononuclear or dinuclear cluster units

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Ling, E-mail: qinling@hfut.edu.cn [Department of Chemical Engineering and Food Processing, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, Anhui (China); Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials (CEM), School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology (China); State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Qiao, Wen-Cheng; Zuo, Wei-Juan; Zeng, Si-Ying; Mei, Cao; Liu, Chang-Jiang [Department of Chemical Engineering and Food Processing, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, Anhui (China)

    2016-07-15

    Two zinc coordination polymers {[Zn_2(TPPBDA)(oba)_2]·DMF·1.5H_2O}{sub n} (1), {[Zn(TPPBDA)_1_/_2(tpdc)]·DMF}{sub n} (2) have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. These complexes were characterized by elemental analyses and X-ray single-crystal diffraction analyses. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. These mononuclear or dinuclear cluster units are linked by mix-ligands, resulting in various degrees of interpenetration. In addition, the photoluminescent properties for TPPBDA ligand under different state and coordination polymers have been investigated in detail. - Graphical abstract: Two zinc coordination polymers have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. In addition, the photoluminescent properties for TPPBDA ligand under different status and coordination polymers have been investigated in detail. Display Omitted - Highlights: • Two Zn coordination polymers based on mononuclear or dinuclear cluster units have been synthesized. • Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. • Compound 2 is a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. • The photoluminescent properties for TPPBDA with different state and two coordination polymers have been investigated.

  7. Two Zn coordination polymers with meso-helical chains based on mononuclear or dinuclear cluster units

    Science.gov (United States)

    Qin, Ling; Qiao, Wen-Cheng; Zuo, Wei-Juan; Zeng, Si-Ying; Mei, Cao; Liu, Chang-Jiang

    2016-07-01

    Two zinc coordination polymers {[Zn2(TPPBDA)(oba)2]·DMF·1.5H2O}n (1), {[Zn(TPPBDA)1/2(tpdc)]·DMF}n (2) have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. These complexes were characterized by elemental analyses and X-ray single-crystal diffraction analyses. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn2(CO2)4] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn2+. These mononuclear or dinuclear cluster units are linked by mix-ligands, resulting in various degrees of interpenetration. In addition, the photoluminescent properties for TPPBDA ligand under different state and coordination polymers have been investigated in detail.

  8. Diel cycles in dissolved barium, lead, iron, vanadium, and nitrite in a stream draining a former zinc smelter site near Hegeler, Illinois

    Science.gov (United States)

    Kay, R.T.; Groschen, G.E.; Cygan, G.; Dupre, David H.

    2011-01-01

    Diel variations in the concentrations of a number of constituents have the potential to substantially affect the appropriate sampling regimen in acidic streams. Samples taken once during the course of the day cannot adequately reflect diel variations in water quality and may result in an inaccurate understanding of biogeochemical processes, ecological conditions, and of the threat posed by the water to human health and the associated wildlife. Surface water and groundwater affected by acid drainage were sampled every 60 to 90. min over a 48-hour period at a former zinc smelter known as the Hegeler Zinc Superfund Site, near Hegeler, Illinois. Diel variations related to water quality in the aquifer were not observed in groundwater. Diel variations were observed in the temperature, pH, and concentration of dissolved oxygen, nitrite, barium, iron, lead, vanadium, and possibly uranium in surface water. Temperature, dissolved oxygen, nitrite, barium, lead, and uranium generally attained maximum values during the afternoon and minimum values during the night. Iron, vanadium, and pH generally attained minimum values during the afternoon and maximum values during the night. Concentrations of dissolved oxygen were affected by the intensity of photosynthetic activity and respiration, which are dependent upon insolation. Nitrite, an intermediary in many nitrogen reactions, may have been formed by the oxidation of ammonium by dissolved oxygen and converted to other nitrogen species as part of the decomposition of organic matter. The timing of the pH cycles was distinctly different from the cycles found in Midwestern alkaline streams and likely was the result of the photoreduction of Fe3+ to Fe 2+ and variations in the intensity of precipitation of hydrous ferric oxide minerals. Diel cycles of iron and vanadium also were primarily the result of variations in the intensity of precipitation of hydrous ferric oxide minerals. The diel variation in the concentrations of lead, uranium

  9. Zinc cysteine active sites of metalloproteins: A density functional theory and x-ray absorption fine structure study

    Science.gov (United States)

    Dimakis, Nicholas; Farooqi, Mohammed Junaid; Garza, Emily Sofia; Bunker, Grant

    2008-03-01

    Density functional theory (DFT) and x-ray absorption fine structure (XAFS) spectroscopy are complementary tools for the biophysical study of active sites in metalloproteins. DFT is used to compute XAFS multiple scattering Debye Waller factors, which are then employed in genetic algorithm-based fitting process to obtain a global fit to the XAFS in the space of fitting parameters. Zn-Cys sites, which serve important functions as transcriptional switches in Zn finger proteins and matrix metalloproteinases, previously have proven intractable by this method; here these limitations are removed. In this work we evaluate optimal DFT nonlocal functionals and basis sets for determining optimal geometries and vibrational densities of states of mixed ligation Zn(His)4-n(Cys)n sites. Theoretical results are compared to experimental XAFS measurements and Raman spectra from the literature and tabulated for use.

  10. Zinc cysteine active sites of metalloproteins: a density functional theory and x-ray absorption fine structure study.

    Science.gov (United States)

    Dimakis, Nicholas; Farooqi, Mohammed Junaid; Garza, Emily Sofia; Bunker, Grant

    2008-03-21

    Density functional theory (DFT) and x-ray absorption fine structure (XAFS) spectroscopy are complementary tools for the biophysical study of active sites in metalloproteins. DFT is used to compute XAFS multiple scattering Debye Waller factors, which are then employed in genetic algorithm-based fitting process to obtain a global fit to the XAFS in the space of fitting parameters. Zn-Cys sites, which serve important functions as transcriptional switches in Zn finger proteins and matrix metalloproteinases, previously have proven intractable by this method; here these limitations are removed. In this work we evaluate optimal DFT nonlocal functionals and basis sets for determining optimal geometries and vibrational densities of states of mixed ligation Zn(His)(4-n)(Cys)(n) sites. Theoretical results are compared to experimental XAFS measurements and Raman spectra from the literature and tabulated for use.

  11. Bis-imidazoles as Molecular Probes for Peripheral Sites of the Zinc Endopeptidase of Botulinum Neurotoxin Serotype A

    Science.gov (United States)

    2006-02-02

    favorably with the carboxylate of Glu54 (Fig. 2). The computa- tionally predicted ionic interaction of 2e with Glu54 is supported by our measured pKa...acidic pKa value of 3h impairs the ionic interaction of 3h with Glu54 thus disabling the two-site binding of 3h. Like imidazole alone, 3h and its

  12. Construction of a high affinity zinc binding site in the metabotropic glutamate receptor mGluR1

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Sheppard, P O; Jensen, L B

    2001-01-01

    and the loops connecting these. The findings offer valuable insight into the mechanism of ATD closure and family C receptor activation. Furthermore, the findings demonstrate that ATD regions other than those participating in agonist binding could be potential targets for new generations of ligands......The metabotropic glutamate receptors (mGluRs) belong to family C of the G-protein-coupled receptor (GPCR) superfamily. The receptors are characterized by having unusually long amino-terminal domains (ATDs), to which agonist binding has been shown to take place. Previously, we have constructed...... of a "closed" conformation, and thus stabilizing a more or less inactive "open" form of the ATD. This study presents the first metal ion site constructed in a family C GPCR. Furthermore, it is the first time a metal ion site has been created in a region outside of the seven transmembrane regions of a GPCR...

  13. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus.

    Science.gov (United States)

    Lu, Qiping; Haragopal, Hariprakash; Slepchenko, Kira G; Stork, Christian; Li, Yang V

    2016-01-01

    Zinc (Zn(2+)) is required for numerous cellular functions. As such, the homeostasis and distribution of intracellular zinc can influence cellular metabolism and signaling. However, the exact distribution of free zinc within live cells remains elusive. Previously we showed the release of zinc from thapsigargin/IP3-sensitive endoplasmic reticulum (ER) storage in cortical neurons. In the present study, we investigated if other cellular organelles also contain free chelatable zinc and function as organelle storage for zinc. To identify free zinc within the organelles, live cells were co-stained with Zinpyr-1, a zinc fluorescent dye, and organelle-specific fluorescent dyes (MitoFluor Red 589: mitochondria; ER Tracker Red: endoplasmic reticulum; BODIPY TR ceramide: Golgi apparatus; Syto Red 64: nucleus). We examined organelles that represent potential storing sites for intracellular zinc. We showed that zinc fluorescence staining was co-localized with MitoFluor Red 589, ER Tracker Red, and BODIPY TR ceramide respectively, suggesting the presence of free zinc in mitochondria, endoplasmic reticulum, and the Golgi apparatus. On the other hand, cytosol and nucleus had nearly no detectable zinc fluorescence. It is known that nucleus contains high amount of zinc binding proteins that have high zinc binding affinity. The absence of zinc fluorescence suggests that there is little free zinc in these two regions. It also indicates that the zinc fluorescence detected in mitochondria, ER and Golgi apparatus represents free chelatable zinc. Taken together, our results support that these organelles are potential zinc storing organelles during cellular zinc homeostasis.

  14. Natural agonist enhancing bis-His zinc-site in transmembrane segment V of the tachykinin NK3 receptor

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Lucibello, M; Holst, B;

    1998-01-01

    In the wild-type tachykinin NK3A receptor histidyl residues are present at two positions in TM-V, V:01 and V:05, at which Zn2+ functions as an antagonist in NK1 and kappa-opioid receptors with engineered metal-ion sites. Surprisingly, in the NK3A receptor Zn2+ instead increased the binding...... of the agonist 125I-[MePhe7]neurokinin B to 150%. [MePhe7]neurokinin B bound to the NK3A receptor in a two-component mode of which Zn2+ eliminated the subnanomolar binding mode but induced a higher binding capacity of the nanomolar binding mode. Signal transduction was not induced by ZnCl2 but 10 microM ZnCl2...... enhanced the effect of neurokinin B. Ala-substitution of HisV:01 eliminated the enhancing effect of Zn2+ on peptide binding. It is concluded that physiological concentrations of Zn2+ have a positive modulatory effect on the binding and function of neurokinin B on the NK3A receptor through a bis-His site...

  15. The potential of phytoremediation using hyperaccumulator plants: a case study at a lead-zinc mine site.

    Science.gov (United States)

    Lorestani, Bahareh; Cheraghi, Mehrdad; Yousefi, Nafiseh

    2012-09-01

    Contamination with heavy metals is one of the most pressing threats to water and soil resources, as well as human health. Phytoremediation might potentially be used to remediate metal-contaminated sites. A major advance in the development of phytoremediation for heavy metal affected soils was the discovery of heavy metal hyperaccumulation in plants. This study applied several established criteria to identify hyperaccumulator plants. A case study was conducted at a mining area in the Hamedan province in the west central region of Iran. The results indicated that plant metal accumulation differed among species and plant parts. Plant species grown in substrata with elevated metal levels contained significantly higher metal levels. Using the most common criteria, Euphorbia macroclada and Centaurea virgata can be classified as hyperaccumulators of specific heavy metals measured in this study and they might potentially be used for the phytoremediation of contaminated soils.

  16. Scientific opinion addressing the safety assessment of plants developed using Zinc Finger Nuclease 3 and other Site-Directed Nucleases with similar function

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Genetically Modified Organisms (GMO

    2012-10-01

    Full Text Available

    The European Commission requested that the EFSA Panel on Genetically Modified Organisms deliver a scientific opinion related to risk assessment of plants developed using the zinc finger nuclease 3 technique (ZFN-3 which allows the integration of gene(s in a predefined insertion site in the genome of the recipient species. Since other nucleases with a similar function to ZFN are considered in this opinion the term site-directed nuclease 3 (SDN-3 is used to describe the technique rather than ZFN-3 specifically. The EFSA GMO Panel considers that its guidance documents are applicable for the evaluation of food and feed products derived from plants developed using the SDN-3 technique and for performing an environmental risk assessment. However, on a case-by-case basis lesser amounts of event specific data may be needed for the risk assessment of plants developed using the SDN-3 technique. The EFSA GMO Panel compared the hazards associated with plants produced by the SDN-3 technique with those obtained by conventional plant breeding techniques and by currently used transgenesis. With respect to the genes introduced, the SDN-3 technique does not differ from transgenesis or from the other genetic modification techniques currently used, and can be used to introduce transgenes, intragenes or cisgenes. The main difference between the SDN-3 technique and transgenesis is that the insertion of DNA is targeted to a predefined region of the genome. Therefore, the SDN-3 technique can minimise hazards associated with the disruption of genes and/or regulatory elements in the recipient genome. Whilst the SDN-3 technique can induce off-target changes in the genome of the recipient plant these would be fewer than those occurring with most mutagenesis techniques. Furthermore, where such changes occur they would be of the same types as those produced by conventional breeding techniques.

  17. Evolutionary conservation of zinc finger transcription factor binding sites in promoters of genes co-expressed with WT1 in prostate cancer

    Directory of Open Access Journals (Sweden)

    Brett Adina

    2008-07-01

    Full Text Available Abstract Background Gene expression analyses have led to a better understanding of growth control of prostate cancer cells. We and others have identified the presence of several zinc finger transcription factors in the neoplastic prostate, suggesting a potential role for these genes in the regulation of the prostate cancer transcriptome. One of the transcription factors (TFs identified in the prostate cancer epithelial cells was the Wilms tumor gene (WT1. To rapidly identify coordinately expressed prostate cancer growth control genes that may be regulated by WT1, we used an in silico approach. Results Evolutionary conserved transcription factor binding sites (TFBS recognized by WT1, EGR1, SP1, SP2, AP2 and GATA1 were identified in the promoters of 24 differentially expressed prostate cancer genes from eight mammalian species. To test the relationship between sequence conservation and function, chromatin of LNCaP prostate cancer and kidney 293 cells were tested for TF binding using chromatin immunoprecipitation (ChIP. Multiple putative TFBS in gene promoters of placental mammals were found to be shared with those in human gene promoters and some were conserved between genomes that diverged about 170 million years ago (i.e., primates and marsupials, therefore implicating these sites as candidate binding sites. Among those genes coordinately expressed with WT1 was the kallikrein-related peptidase 3 (KLK3 gene commonly known as the prostate specific antigen (PSA gene. This analysis located several potential WT1 TFBS in the PSA gene promoter and led to the rapid identification of a novel putative binding site confirmed in vivo by ChIP. Conversely for two prostate growth control genes, androgen receptor (AR and vascular endothelial growth factor (VEGF, known to be transcriptionally regulated by WT1, regulatory sequence conservation was observed and TF binding in vivo was confirmed by ChIP. Conclusion Overall, this targeted approach rapidly identified

  18. Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site - a hydroponics experiment.

    Science.gov (United States)

    Li, Siliang; Wang, Fengping; Ru, Mei; Ni, Wuzhong

    2014-01-01

    In this study, a hydroponics experiment was conducted to investigate the characteristics of Cd tolerance and accumulation of Elsholtzia argyi natively growing on the soil with high levels of heavy metals in a Zn/Pb mining site. Seedlings of E. argyi grown for 4 weeks and then were treated with 0(CK), 5,10,15, 20, 25, 30, 40, 50,100 umM Cd for 21 days. Each treatment had three replications. No visual toxic symptoms on shoots of E. argyi were observed at Cd level < or = 50 muM. The results indicated that the dry biomass of each tissue and the whole plants of the treatments with < or =40 umM cadmium were similar to that of the control, implying that E. argyi was a cadmium tolerant plant. The results also showed that the shoot Cd concentration significantly (P < 0.05) increased with the increase in the Cd level in nutrient solution. The shoot Cd concentration of the treatment with 40 umM Cd was as high as 237.9 mg kg(-1), which was higher than 100 mg kg(-1), normally used as the threshold concentration for identifying the Cd hyperaccumulating plant. It could be concluded that E. argyi was a Cd tolerant and accumulating plant species.

  19. MTF-1-mediated repression of the zinc transporter Zip10 is alleviated by zinc restriction.

    Directory of Open Access Journals (Sweden)

    Louis A Lichten

    Full Text Available The regulation of cellular zinc uptake is a key process in the overall mechanism governing mammalian zinc homeostasis and how zinc participates in cellular functions. We analyzed the zinc transporters of the Zip family in both the brain and liver of zinc-deficient animals and found a large, significant increase in Zip10 expression. Additionally, Zip10 expression decreased in response to zinc repletion. Moreover, isolated mouse hepatocytes, AML12 hepatocytes, and Neuro 2A cells also respond differentially to zinc availability in vitro. Measurement of Zip10 hnRNA and actinomycin D inhibition studies indicate that Zip10 was transcriptionally regulated by zinc deficiency. Through luciferase promoter constructs and ChIP analysis, binding of MTF-1 to a metal response element located 17 bp downstream of the transcription start site was shown to be necessary for zinc-induced repression of Zip10. Furthermore, zinc-activated MTF-1 causes down-regulation of Zip10 transcription by physically blocking Pol II movement through the gene. Lastly, ZIP10 is localized to the plasma membrane of hepatocytes and neuro 2A cells. Collectively, these results reveal a novel repressive role for MTF-1 in the regulation of the Zip10 zinc transporter expression by pausing Pol II transcription. ZIP10 may have roles in control of zinc homeostasis in specific sites particularly those of the brain and liver. Within that context ZIP10 may act as an important survival mechanism during periods of zinc inadequacy.

  20. Variation of DNA damage levels in peripheral blood mononuclear cells isolated in different laboratories

    DEFF Research Database (Denmark)

    Godschalk, Roger W L; Ersson, Clara; Stępnik, Maciej

    2014-01-01

    This study investigated the levels of DNA strand breaks and formamidopyrimidine DNA glycosylase (FPG) sensitive sites, as assessed by the comet assay, in peripheral blood mononuclear cells (PBMC) from healthy women from five different countries in Europe. The laboratory in each country (referred ...

  1. Increased oxidative DNA damage in mononuclear leukocytes in vitiligo

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, Lisa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)]. E-mail: lisag@pharm.unifi.it; Bellandi, Serena [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Pitozzi, Vanessa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Fabbri, Paolo [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Dolara, Piero [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Moretti, Silvia [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)

    2004-11-22

    Vitiligo is an acquired pigmentary disorder of the skin of unknown aetiology. The autocytotoxic hypothesis suggests that melanocyte impairment could be related to increased oxidative stress. Evidences have been reported that in vitiligo oxidative stress might also be present systemically. We used the comet assay (single cell alkaline gel electrophoresis) to evaluate DNA strand breaks and DNA base oxidation, measured as formamidopyrimidine DNA glycosylase (FPG)-sensitive sites, in peripheral blood cells from patients with active vitiligo and healthy controls. The basal level of oxidative DNA damage in mononuclear leukocytes was increased in vitiligo compared to normal subjects, whereas DNA strand breaks (SBs) were not changed. This alteration was not accompanied by a different capability to respond to in vitro oxidative challenge. No differences in the basal levels of DNA damage in polymorphonuclear leukocytes were found between patients and healthy subjects. Thus, this study supports the hypothesis that in vitiligo a systemic oxidative stress exists, and demonstrates for the first time the presence of oxidative alterations at the nuclear level. The increase in oxidative DNA damage shown in the mononuclear component of peripheral blood leukocytes from vitiligo patients was not particularly severe. However, these findings support an adjuvant role of antioxidant treatment in vitiligo.

  2. Synthesis, characterization, thermal and DNA-binding properties of new zinc complexes with 2-hydroxyphenones.

    Science.gov (United States)

    Mrkalić, Emina; Zianna, Ariadni; Psomas, George; Gdaniec, Maria; Czapik, Agnieszka; Coutouli-Argyropoulou, Evdoxia; Lalia-Kantouri, Maria

    2014-05-01

    The neutral mononuclear zinc complexes with 2-hydroxyphenones (ketoH) having the formula [Zn(keto)2(H2O)2] and [Zn(keto)2(enR)], where enR stands for a N,N'-donor heterocyclic ligand such as 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen) or 2,2'-dipyridylamine (dpamH), have been synthesized and characterized by IR, UV and (1)H NMR spectroscopies. The 2-hydroxyphenones are chelated to the metal ion through the phenolate and carbonyl oxygen atoms. The crystal structures of [bis(2-hydroxy-4-methoxy-benzophenone)(2,2'-bipyridine)zinc(II)] dimethanol solvate and [bis(2-hydroxy-benzophenone)(2,2'-bipyridine)zinc(II)] dimethanol solvate have been determined by X-ray crystallography. The thermal stability of the zinc complexes has been investigated by simultaneous TG/DTG-DTA technique. The ability of the complexes to bind to calf-thymus DNA (CT DNA) has been studied by UV-absorption and fluorescence emission spectroscopy as well as viscosity measurements. UV studies of the interaction of the complexes with DNA have shown that they can bind to CT DNA and the corresponding binding constants to DNA have been calculated and evaluated. The complexes most probably bind to CT DNA via intercalation as concluded by studying the viscosity of a DNA solution in the presence of the complexes. Competitive studies with ethidium bromide (EB) have shown that the reported complexes can displace the DNA-bound EB, suggesting strong competition with EB for the intercalation site.

  3. Copper(II) and zinc(II) complexes of the peptides Ac-HisValHis-NH2 and Ac-HisValGlyAsp-NH2 related to the active site of the enzyme CuZnSOD.

    Science.gov (United States)

    Bóka, Beáta; Myari, Alexandra; Sóvágó, Imre; Hadjiliadis, Nick

    2004-01-01

    Copper(II) and zinc(II) complexes of the peptides Ac-HisValHis-NH2 and Ac-HisValGlyAsp-NH2 related to the active site of the enzyme CuZnSOD were studied by potentiometric and spectroscopic (UV-Vis, CD and EPR) techniques. The results reveal that both ligands have effective metal binding sites, but the tripeptide is a much stronger complexing agent than the tetrapeptide. The formation of a macrochelate via the coordination of the imidazolyl residues is suggested in the copper(II)-Ac-HisValHis-NH2 system in the acidic pH range, while a 4N complex predominates at physiological pH. The interaction of Ac-HisValHis-NH2 with zinc(II) results in the formation of a precipitate indicating polynuclear complex formation. Both copper(II)-Ac-HisValHis-NH2 and copper(II)-HisValHis systems exhibit catalytic activity toward the dismutation of superoxide anion at physiological pH, but the saturated coordination sphere of the metal ions in both systems results in low reactivity as compared to the native enzyme.

  4. The DNA methylome of human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Li, Yingrui; Zhu, Jingde; Tian, Geng

    2010-01-01

    DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per...... strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found...... that 68.4% of CpG sites and 80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic...

  5. TNF-α gene expression is increased following zinc supplementation in type 2 diabetes mellitus.

    Science.gov (United States)

    Chu, Anna; Foster, Meika; Hancock, Dale; Bell-Anderson, Kim; Petocz, Peter; Samman, Samir

    2015-01-01

    Chronic low-grade inflammation in type 2 diabetes mellitus (DM) can elicit changes in whole-body zinc metabolism. The interaction among the expression of inflammatory cytokines, zinc transporter and metallothionein (MT) genes in peripheral blood mononuclear cells in type 2 DM remains unclear. In a 12-week randomized controlled trial, the effects of zinc (40 mg/day) supplementation on the gene expression of cytokines, zinc transporters and MT in women with type 2 DM were examined. In the zinc-supplemented group, gene expression of tumour necrosis factor (TNF)-α tended to be upregulated by 27 ± 10 % at week 12 compared to baseline (P = 0.053). TNF-α fold change in the zinc-treated group was higher than in those without zinc supplementation (P zinc transporters, including ZnT7 with IL-1β (P zinc transporters and MT measured at baseline (r (2) = 0.495, P zinc supplementation increases cytokine gene expression in type 2 DM. The relationships found among zinc transporters, MT and cytokines suggest close  interactions between zinc homeostasis and inflammation.

  6. Crystal Structure of Mammalian Cysteine dioxygenase: A Novel Mononuclear Iron Center for Cysteine Thiol Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons,C.; Liu, Q.; Huang, Q.; Hao, Q.; Begley, T.; Karplus, P.; Stipanuk, M.

    2006-01-01

    Cysteine dioxygenase is a mononuclear iron-dependent enzyme responsible for the oxidation of cysteine with molecular oxygen to form cysteinesulfinate. This reaction commits cysteine to either catabolism to sulfate and pyruvate or to the taurine biosynthetic pathway. Cysteine dioxygenase is a member of the cupin superfamily of proteins. The crystal structure of recombinant rat cysteine dioxygenase has been determined to 1.5 Angstroms resolution, and these results confirm the canonical cupin {beta}-sandwich fold and the rare cysteinyl-tyrosine intramolecular crosslink (between Cys93 and Tyr157) seen in the recently reported murine cysteine dioxygenase structure. In contrast to the catalytically inactive mononuclear Ni(II) metallocenter present in the murine structure, crystallization of a catalytically competent preparation of rat cysteine dioxygenase revealed a novel tetrahedrally coordinated mononuclear iron center involving three histidines (His86, His88, and His140) and a water molecule. Attempts to acquire a structure with bound ligand using either co-crystallization or soaks with cysteine revealed the formation of a mixed disulfide involving Cys164 near the active site, which may explain previously observed substrate inhibition. This work provides a framework for understanding the molecular mechanisms involved in thiol dioxygenation and sets the stage for exploring the chemistry of both the novel mononuclear iron center and the catalytic role of the cysteinyl-tyrosine linkage.

  7. Transcriptional regulation of mononuclear phagocyte development

    Directory of Open Access Journals (Sweden)

    Roxane eTussiwand

    2015-10-01

    Full Text Available IntroductionThe mononuclear-phagocyte system (MPS, which comprises dendritic cells (DCs, macrophages and monocytes, is a heterogeneous group of myeloid cells. The complexity of the MPS is equally reflected by the plasticity in function and phenotype that characterizes each subset depending on their location and activation state. Specialized subsets of Mononuclear Phagocytes (MP reside in defined anatomical locations, are critical for the homeostatic maintenance of tissues, and provide the link between innate and adaptive immune responses during infections. The ability of MP to maintain or to induce the correct tolerogenic or inflammatory milieu also resides in their complex subset specialization. Such subset heterogeneity is obtained through lineage diversification and specification, which is controlled by defined transcriptional networks and programs. Understanding the MP biology means to define their transcriptional signature, which is required during lineage commitment, and which characterizes each subset’s features. This review will focus on the transcriptional regulation of the MPS; in particular what determines lineage commitment and functional identity; we will emphasizes recent advances in the field of single cell analysis and highlight unresolved questions in the field.

  8. Integrated criteria document Zinc

    NARCIS (Netherlands)

    Cleven RFMJ; Janus JA; Annema JA; Slooff W

    1993-01-01

    This report contains information on zinc and zinc compounds concerning standards, emissions, exposure levels and effect levels. It includes a risk evaluation and presents proposals for maximum permissible concentrations of zinc in the environment. This study indicates that the concentration of zinc

  9. Update on zinc biology.

    Science.gov (United States)

    Solomons, Noel W

    2013-01-01

    Zinc has become a prominent nutrient of clinical and public health interest in the new millennium. Functions and actions for zinc emerge as increasingly ubiquitous in mammalian anatomy, physiology and metabolism. There is undoubtedly an underpinning in fundamental biology for all of the aspects of zinc in human health (clinical and epidemiological) in pediatric and public health practice. Unfortunately, basic science research may not have achieved a full understanding as yet. As a complement to the applied themes in the companion articles, a selection of recent advances in the domains homeostatic regulation and transport of zinc is presented; they are integrated, in turn, with findings on genetic expression, intracellular signaling, immunity and host defense, and bone growth. The elements include ionic zinc, zinc transporters, metallothioneins, zinc metalloenzymes and zinc finger proteins. In emerging basic research, we find some plausible mechanistic explanations for delayed linear growth with zinc deficiency and increased infectious disease resistance with zinc supplementation. Copyright © 2013 S. Karger AG, Basel.

  10. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    Science.gov (United States)

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex

  11. Krüppel-like factor 4 regulates adaptive expression of the zinc transporter Zip4 in mouse small intestine

    OpenAIRE

    Liuzzi, Juan P.; Guo, Liang; Chang, Shou-Mei; Cousins, Robert J.

    2009-01-01

    Epithelial cells of the small intestine are the site of zinc absorption. Intestinal uptake of zinc is inversely proportional to the dietary supply of this essential micronutrient. The mechanism responsible for this adaptive differential in apical zinc transport is not known. The zinc transporter Zip4 (Slc39a4) is essential for adequate enteric zinc uptake. In mice, Zip4 expression is upregulated at low zinc intakes with a concomitant ZIP4 localization to the apical enterocyte plasma membrane....

  12. Controlled exposure to diesel exhaust and traffic noise - Effects on oxidative stress and activation in mononuclear blood cells

    DEFF Research Database (Denmark)

    Hemmingsen, Jette Gjerke; Møller, Peter; Jantzen, Kim

    2015-01-01

    unaltered in peripheral blood mononuclear cells (PBMCs). No significant differences in DNA damage levels, measured by the comet assay, were observed after DE exposure, whereas exposure to high noise levels was associated with significantly increased levels of hOGG1-sensitive sites in PBMCs. Urinary levels...

  13. Iron metabolism in the mononuclear phagocyte system

    Institute of Scientific and Technical Information of China (English)

    Weina Kong; Xianglin Duan; Zhenhua Shi; Yanzhong Chang

    2008-01-01

    The maintenance of body iron homeostasis requires the coordination of multiple regulatory mechanisms of iron metabolism.The mononuclear phagocyte system (MPS,composed of monocytes,macrophages,and their precursor cells) is crucial in the maintenance of iron homeostasis.Recycling of iron is carried out by specialized macrophages via engulfment of aged erythrocytes.The iron stores of macrophages depend on the levels of recovered and exported iron.However,the molecular mechanisms underlying iron homeostasis in macrophages are poorly understood.Recent studies characterizing the function and regulation of natural resistance-associated macrophage protein 1 (Nrampl),divalent metal transporter 1 (DMTI),HLA-linked hemechromatosis gene (HFE),ferroportin 1 (FPN1),and hepcidin are rapidly expanding our knowledge on the molecular level of MPS iron handling.These studies are deepening our understanding about the molecular mechanism of iron homeostasis and iron-related diseases.

  14. Homeostasis in the mononuclear phagocyte system.

    Science.gov (United States)

    Jenkins, Stephen J; Hume, David A

    2014-08-01

    The mononuclear phagocyte system (MPS) is a family of functionally related cells including bone marrow precursors, blood monocytes, and tissue macrophages. We review the evidence that macrophages and dendritic cells (DCs) are separate lineages and functional entities, and examine whether the traditional view that monocytes are the immediate precursors of tissue macrophages needs to be refined based upon evidence that macrophages can extensively self-renew and can be seeded from yolk sac/foetal liver progenitors with little input from monocytes thereafter. We review the role of the growth factor colony-stimulating factor (CSF)1, and present a model consistent with the concept of the MPS in which local proliferation and monocyte recruitment are connected to ensure macrophages occupy their well-defined niche in most tissues.

  15. Mononuclear Cells and Vascular Repair in HHT

    Directory of Open Access Journals (Sweden)

    Calinda eDingenouts

    2015-03-01

    Full Text Available Hereditary hemorrhagic telangiectasia (HHT or Rendu-Osler-Weber disease is a rare genetic vascular disorder known for its endothelial dysplasia causing arteriovenous malformations and severe bleedings. HHT-1 and HHT-2 are the most prevalent variants and are caused by heterozygous mutations in endoglin and ALK1, respectively. An undervalued aspect of the disease is that HHT patients experience persistent inflammation. Although endothelial and mural cells have been the main research focus trying to unravel the mechanism behind the disease, wound healing is a process with a delicate balance between inflammatory and vascular cells. Inflammatory cells are part of the mononuclear cells (MNCs fraction, and can, next to eliciting an immune response, also have angiogenic potential. This biphasic effect of MNC can hold a promising mechanism to further elucidate treatment strategies for HHT patients. Before MNC are able to contribute to repair, they need to home to and retain in ischemic and damaged tissue. Directed migration (homing of mononuclear cells following tissue damage is regulated by the stromal cell derived factor 1 (SDF1. MNCs that express the C-X-C chemokine receptor 4 (CXCR4 migrate towards the tightly regulated gradient of SDF1. This directed migration of monocytes and lymphocytes can be inhibited by dipeptidyl peptidase 4 (DPP4. Interestingly, MNC of HHT patients express elevated levels of DPP4 and show impaired homing towards damaged tissue. Impaired homing capacity of the MNCs might therefore contribute to the impaired angiogenesis and tissue repair observed in HHT patients. This review summarizes recent studies regarding the role of MNCs in the etiology of HHT and vascular repair, and evaluates the efficacy of DPP4 inhibition in tissue integrity and repair.

  16. Method of capturing or trapping zinc using zinc getter materials

    Energy Technology Data Exchange (ETDEWEB)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  17. Zinc: the neglected nutrient.

    Science.gov (United States)

    Shambaugh, G E

    1989-03-01

    Zinc was first recognized as essential for animals at the University of Illinois School of Agriculture in 1916, when it was found that zinc-deficient baby pigs were runty, developed dermatitis on their legs, and were sterile. Zinc deficiency was first recognized in man by Dr. Ananda Prasad of Detroit 26 years ago when he measured serum and hair zinc levels in young male Egyptian dwarfs who had failed to mature and were small in stature. By simply adding zinc to their regular diet, they grew in height and became sexually mature. It is now recognized that dwarfism in males is frequent around the Mediterranean, where wheat is the staple of life and has been grown for 4,000 years on the same soil, thereby resulting in the depletion of zinc. Professor Robert Henkin first suggested that zinc deficiency might cause hearing-nerve impairment. Assay of the soft tissues of the cochlea and vestibule revealed a zinc level higher than that of any other part of the body. Previously, the eye was considered to have the highest level of zinc of any organ. To diagnose zinc deficiency clinically, we use serum zinc assays made at the Mayo Clinic Trace Element Laboratory. With zinc supplementation in patients who are marginally zinc deficient, there has been improvement in tinnitus and sensorineural hearing loss in about one-third of elderly adults. We believe zinc deficiency is one causation of presbycusis; by recognizing and correcting it, a progressive hearing loss can be arrested.

  18. Zinc and biotin deficiencies after pancreaticoduodenectomy.

    Science.gov (United States)

    Yazbeck, N; Muwakkit, S; Abboud, M; Saab, R

    2010-01-01

    We report zinc and biotin deficiencies after pancreaticoduodenectomy in a 16 year old female presenting clinically with marked alopecia, total body hair loss, dry skin with scales, and maculopathy with significant vision loss. These micronutrient deficiencies likely occurred due to resection of the duodenum and proximal jejunum, sites of primary absorption of several micronutrients and their protein carriers, including zinc and biotin. Early diagnosis is essential to prevent irreversible sequelae. Adequate supplementation of zinc and biotin as well as dietary advice is needed for clinical improvement.

  19. Construction of Insulin 18-mer Nanoassemblies Driven by Coordination to Iron(II) and Zinc(II) Ions at Distinct Sites

    DEFF Research Database (Denmark)

    Munch, Henrik K.; Nygaard, Jesper; Christensen, Niels Johan;

    2016-01-01

    Controlled self-assembly (SA) of proteins offers the possibility to tune their properties or to create new materials. Herein, we present the synthesis of a modified human insulin (HI) with two distinct metal-ion binding sites, one native, the other abiotic, enabling hierarchical SA through coordi...

  20. The DNA methylome of human peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Yingrui Li

    Full Text Available DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand, we report a comprehensive (92.62% methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and 80% displayed allele-specific expression (ASE. These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies.

  1. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  2. Zinc coordination spheres in protein structures.

    Science.gov (United States)

    Laitaoja, Mikko; Valjakka, Jarkko; Jänis, Janne

    2013-10-07

    Zinc metalloproteins are one of the most abundant and structurally diverse proteins in nature. In these proteins, the Zn(II) ion possesses a multifunctional role as it stabilizes the fold of small zinc fingers, catalyzes essential reactions in enzymes of all six classes, or assists in the formation of biological oligomers. Previously, a number of database surveys have been conducted on zinc proteins to gain broader insights into their rich coordination chemistry. However, many of these surveys suffer from severe flaws and misinterpretations or are otherwise limited. To provide a more comprehensive, up-to-date picture on zinc coordination environments in proteins, zinc containing protein structures deposited in the Protein Data Bank (PDB) were analyzed in detail. A statistical analysis in terms of zinc coordinating amino acids, metal-to-ligand bond lengths, coordination number, and structural classification was performed, revealing coordination spheres from classical tetrahedral cysteine/histidine binding sites to more complex binuclear sites with carboxylated lysine residues. According to the results, coordination spheres of hundreds of crystal structures in the PDB could be misinterpreted due to symmetry-related molecules or missing electron densities for ligands. The analysis also revealed increasing average metal-to-ligand bond length as a function of crystallographic resolution, which should be taken into account when interrogating metal ion binding sites. Moreover, one-third of the zinc ions present in crystal structures are artifacts, merely aiding crystal formation and packing with no biological significance. Our analysis provides solid evidence that a minimal stable zinc coordination sphere is made up by four ligands and adopts a tetrahedral coordination geometry.

  3. Solvent induced reactivity of 3,5-dimethylpyrazole towards zinc (II) carboxylates.

    Science.gov (United States)

    Sarma, Rupam; Kalita, Dipjyoti; Baruah, Jubaraj B

    2009-09-28

    The reactions of 3,5-dimethylpyrazole with zinc(II)acetate dihydrate and varieties of aromatic carboxylic acids led to formation of mono-nuclear zinc complexes of composition [Zn(HDMP)2(RCO2)2] (R = C6H5, p-CH3-C6H4, p-NO2-C6H4 etc. HDMP = 3,5-dimethylpyrazole) in methanol, whereas the same reactants in dimethylformamide (DMF) gave binuclear 3,5-dimethylpyrazolato bridged zinc carboxylate complexes containing monodentate 3,5-dimethylpyraozole ligands with composition [Zn2(mu-DMP)2(HDMP)2(RCO2)2]. The mononuclear complexes can be converted to the corresponding binuclear complexes by simply dissolving in DMF. The reaction of zinc(II)acetate dihydrate with p-nitrobenzoic acid and 3,5-dimethylpyrazole in different solvents gave solvated mononuclear complexes of the corresponding solvent. All these solvated complexes having the core [Zn(HDMP)2(p-NO2-C6H4CO2)2] contain two structurally independent molecules in the asymmetric unit (Z' = 2).

  4. PLASMA ZINC LEVEL IN LACTATING WOMEN: ISFAHAN – 2001

    Directory of Open Access Journals (Sweden)

    A MAHMOUDIAN

    2002-03-01

    Full Text Available Introduction. Zinc is an important trace mineral for human health specially in children. The zinc of nursing mothers affects on their milk and so health of their childs. This study assesses the serum zinc level in lactating women of Isfahan city. Methods. In a cross sectional study, 100 lactating women who were sited under care of Isfahan rural and urban health centers were selected by multistage cluster and simple random sampling. The food recall questionnair was completed and 10 ml blood sample was obtained from each subject. Serum zinc level was measered by atomic absorption. Results. Mean age of participants was 24.7 ± 4.9 years. Mean zinc concentration was 70.4±8.01 µg/dl. About 63 percent of subjects had serum zinc level less than 75 µg/dl (significant zinc deficiency and of this group 19/1 percent had severe zinc deficiency (less than 60 µg/dl. The mean of serum zinc level by BMI (< 20, 20-25, > 25 were 63.1, 70 and 75.7 (P < 0.0001. In person s that eat more frequency of meat and dairy products weekly, zinc levels were more than others (P < 0.01. Discussion. Zinc deficiency was common problem in lactating women of Isfahsn and this have harm effects on their childrens. Zinc deiifciency in children is one of causes responsible for growth retardation, suscebtibility to infections and learning disabilities. The nutrition of our people aren"t sufficient for lactating women"s needs. Other data indicated for zinc deficiency of soils. Planning such as fortification of soils, subside to meat the important source of zinc and using of zinc supplements for lactating women and other high risk groups must be done by responsible structures.

  5. Zinc is an antioxidant and anti-inflammatory agent: Its role in human health

    Directory of Open Access Journals (Sweden)

    Ananda S Prasad

    2014-09-01

    Full Text Available Zinc supplementation trials in the elderly showed that the incidence of infections was decreased by approximately 66% in the zinc group. Zinc supplementation also decreased oxidative stress biomarkers and decreased inflammatory cytokines in the elderly. In our studies in the experimental model of zinc deficiency in humans, we showed that zinc deficiency per se increased the generation of IL-1β and its mRNA in human mononuclear cells following LPS stimulation. Zinc supplementation upregulated A20, a zinc transcription factor, which inhibited the activation of NF-κB, resulting in decreased generation of inflammatory cytokines. Oxidative stress and chronic inflammation are important contributing factors for several chronic diseases attributed to aging, such as atherosclerosis and related cardiac disorders, cancer, neurodegeneration, immunologic disorders and the aging process itself. Zinc is very effective in decreasing reactive oxygen species (ROS. In this review, the mechanism of zinc actions on oxidative stress and generation of inflammatory cytokines and its impact on health in humans will be presented.

  6. Cadmium and zinc relationships

    Energy Technology Data Exchange (ETDEWEB)

    Elinder, C.; Piscator, M.

    1978-08-01

    Higher mammals, such as homo sapiens, accumulate zinc in kidney cortex almost equimolarly with cadmium. A different pattern seems to be present in liverthere is a limited increase of zinc in two species of large farm animals compared with a marked increase in the laboratory. In large farm animals, an equimolar increase of zinc with cadmium in renal cortex seems to indicate that the form of metallothionein that binds equal amounts of cadmium and zinc in present. Differences in cadmium and zinc relationships in large animals and humans compared with laboratory animals must be carefully considered. (4 graphs, 26 references)

  7. Zinc and skin biology.

    Science.gov (United States)

    Ogawa, Youichi; Kawamura, Tatsuyoshi; Shimada, Shinji

    2016-12-01

    Of all tissues, the skin has the third highest abundance of zinc in the body. In the skin, the zinc concentration is higher in the epidermis than in the dermis, owing to a zinc requirement for the active proliferation and differentiation of epidermal keratinocytes. Here we review the dynamics and functions of zinc in the skin as well as skin disorders associated with zinc deficiency, zinc finger domain-containing proteins, and zinc transporters. Among skin disorders associated with zinc deficiency, acrodermatitis enteropathica is a disorder caused by mutations in the ZIP4 transporter and subsequent zinc deficiency. The triad acrodermatitis enteropathica is characterized by alopecia, diarrhea, and skin lesions in acral, periorificial, and anogenital areas. We highlight the underlying mechanism of the development of acrodermatitis because of zinc deficiency by describing our new findings. We also discuss the accumulating evidence on zinc deficiency in alopecia and necrolytic migratory erythema, which is typically associated with glucagonomas. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Cadmium and zinc relationships.

    Science.gov (United States)

    Elinder, C G; Piscator, M

    1978-08-01

    Cadmium and zinc concentrations in kidney and liver have been measured under different exposure situations in different species including man. The results show that zinc increases almost equimolarly with cadmium in kidney after long-term low-level exposure to cadmium, e.g., in man, horse, pig, and lamb. In contrast, the increase of zinc follows that of cadmium to only a limited extent, e.g., in guinea pig, rabbit, rat, mouse, and chicks. In liver, the cadmium--zinc relationship seems to be reversed in such a way that zinc increases with cadmium more markedly in laboratory animals than in higher mammals. These differences between cadmium and zinc relationships in humans and large farm animals and those in commonly used laboratory animals must be considered carefully before experimental data on cadmium and zinc relationships in laboratory animals can be extrapolated to humans.

  9. ZINC SERUM LEVEL AND PERIPHERAL BLOOD MONOCYTE COUNT OF MULTIBACILAR LEPROSY PATIENT LOWER THAN PAUCIBACILAR LEPROSY IN RSUP SANGLAH

    Directory of Open Access Journals (Sweden)

    Putu Kurniawan Dhana

    2013-04-01

    Full Text Available Zinc has been known to have important role in the immune system. Zinc deficiency can inhibit activation and production cytokine of Th1 and  may cause cellular immunity dysfunction. This conditon also may cause changes of lymphopoiesis and hematopoiesis also peripheral blood of mononuclear cell as mononuclear fagocyte. The Aim of this study is to know zinc serum status and peripheral blood monocyte count of leprosy patient in Dermato Venerologi policlinic Sanglah hospital Denpasar. This study use cross sectional design. Sample of study take by consecutive sampling with sample size contains 75 patient.  Mean of zinc serum status on multibacillary leprosy patient is 5.66  (SB 11.74 found lower compare to paucibacillary leprosy patient 19.38 (SB 18.21 and statistically significant with P < 0.05. Mean of peripheral blood monocyte count in multibacillary patient is 7.12 (SB 2.53 lower compare to paucibacillary leprosy patient with 7.88 (SB 3.08, but statistically not significant with P > 0.05. Binary logistic analysis show the influence of zinc serum status to probability to have leprosy. This study suggest correction of serum zinc level in leprosy patient through nutritional approach or the granting of a supplement of zinc

  10. Construction of Insulin 18-mer Nanoassemblies Driven by Coordination to Iron(II) and Zinc(II) Ions at Distinct Sites.

    Science.gov (United States)

    Munch, Henrik K; Nygaard, Jesper; Christensen, Niels Johan; Engelbrekt, Christian; Østergaard, Mads; Porsgaard, Trine; Hoeg-Jensen, Thomas; Zhang, Jingdong; Arleth, Lise; Thulstrup, Peter W; Jensen, Knud J

    2016-02-12

    Controlled self-assembly (SA) of proteins offers the possibility to tune their properties or to create new materials. Herein, we present the synthesis of a modified human insulin (HI) with two distinct metal-ion binding sites, one native, the other abiotic, enabling hierarchical SA through coordination with two different metal ions. Selective attachment of an abiotic 2,2'-bipyridine (bipy) ligand to HI, yielding HI-bipy, enabled Zn(II)-binding hexamers to SA into trimers of hexamers, [[HI-bipy]6]3, driven by octahedral coordination to a Fe(II)  ion. The structures were studied in solution by small-angle X-ray scattering and on surfaces with AFM. The abiotic metal ligand had a higher affinity for Fe(II) than Zn(II)  ions, enabling control of the hexamer formation with Zn(II) and the formation of trimers of hexamers with Fe(II)  ions. This precise control of protein SA to give oligomers of oligomers provides nanoscale structures with potential applications in nanomedicine.

  11. [Zinc and type 2 diabetes].

    Science.gov (United States)

    Fukunaka, Ayako; Fujitani, Yoshio

    2016-07-01

    Pancreatic β cells contain the highest amount of zinc among cells within the human body, and hence, the relationship between zinc and diabetes has been a topic of great interest. While many studies demonstrating possible involvement of zinc deficiency in diabetes have been reported, precise mechanisms how zinc regulates glucose metabolism are still far from understood. Recent studies revealed that zinc can transmit signals that are driven by a variety of zinc transporters in a tissue and cell-type specific manner and deficiency in some zinc transporters may cause human diseases. Here, we review the role of zinc in metabolism particularly focusing on the emerging role of zinc transporters in diabetes.

  12. The zinc dyshomeostasis hypothesis of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Travis J A Craddock

    Full Text Available Alzheimer's disease (AD is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ, intracellular neurofibrillary tangles (NFTs composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau, and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1 used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2 performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3 used metallomic imaging mass spectrometry (MIMS to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of

  13. Improved zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  14. Zinc as an adjunct for childhood pneumonia - interpreting early results.

    Science.gov (United States)

    Natchu, Uma Chandra Mouli; Fataki, Maulidi R; Fawzi, Wafaie W

    2008-07-01

    Zinc supplementation has been consistently shown to reduce the incidence of childhood pneumonia, but its effect on the course of pneumonia when administered as an adjunct to antibiotic therapy is still unclear. Three trials published to date have shown mixed results, and a recent trial from India raises the possibility that zinc may be detrimental in some circumstances. Study sites and designs differ, particularly in the timing of zinc treatment and in determining recovery from pneumonia, which can explain the differences in study findings. Serum zinc concentrations are unreliable indicators of zinc status, particularly during acute infectious illnesses. Subgroup analyses, especially using serum zinc levels, must be cautioned against. Future studies are needed that are large enough to be sufficiently powered to accommodate larger treatment failure rates, an issue that ongoing trials will hopefully address.

  15. The Association between Provider Practice and Knowledge of ORS and Zinc Supplementation for the Treatment of Childhood Diarrhea in Bihar, Gujarat and Uttar Pradesh, India: A Multi-Site Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Laura M Lamberti

    Full Text Available Programs aimed at reducing the burden of diarrhea among children under-five in low-resource settings typically allocate resources to training community-level health workers, but studies have suggested that provider knowledge does not necessarily translate into adequate practice. A diarrhea management program implemented in Bihar, Gujarat and Uttar Pradesh, India trained private sector rural medical practitioners (RMPs and public sector Accredited Social Health Activists (ASHAs and Anganwadi workers (AWWs in adequate treatment of childhood diarrhea with oral rehydration salts (ORS and zinc. We used cross-sectional program evaluation data to determine the association between observed diarrhea treatment practices and reported knowledge of ORS and zinc among each provider cadre.We conducted principal components analysis on providers' responses to diarrhea treatment questions in order to generate a novel scale assessing ORS/zinc knowledge. We subsequently regressed a binary indicator of whether ORS/zinc was prescribed during direct observation onto the resulting knowledge scores, controlling for other relevant knowledge predictors.There was a positive association between ORS/zinc knowledge score and prescribing ORS and zinc to young children with diarrhea among private sector RMPs (aOR: 2.32; 95% CI: 1.29-4.17 and public sector ASHAs and AWWs (aOR 2.48; 95% CI: 1.90-3.24. Controlling for knowledge score, receipt of training in the preceding 6 months was a good predictor of adequate prescribing in the public but not the private sector. In the public sector, direct access to ORS and zinc supplies was also highly associated with prescribing.To enhance the management of childhood diarrhea in India, programmatic activities should center on increasing knowledge of ORS and zinc among public and private sector providers through biannual trainings but should also focus on ensuring sustained access to an adequate supply chain.

  16. Electrochemical evidence that pyranopterin redox chemistry controls the catalysis of YedY, a mononuclear Mo enzyme

    OpenAIRE

    Adamson, Hope; Simonov, Alexandr N.; Kierzek, Michelina; Rothery, Richard A.; Weiner, Joel H.; Bond, Alan M.; Parkin, Alison

    2015-01-01

    A long-standing contradiction in the field of mononuclear Mo enzyme research is that small-molecule chemistry on active-site mimic compounds predicts ligand participation in the electron transfer reactions, but biochemical measurements only suggest metal-centered catalytic electron transfer. With the simultaneous measurement of substrate turnover and reversible electron transfer that is provided by Fourier-transformed alternating-current voltammetry, we show that Escherichia coli YedY is a mo...

  17. Cytotoxicity of bovine and porcine collagen membranes in mononuclear cells.

    Science.gov (United States)

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Carneiro, Karine Fernandes; Souza, Maria Aparecida de; Magalhães, Denildo

    2012-01-01

    This study compared the cytotoxicity and the release of nitric oxide induced by collagen membranes in human mononuclear cells. Peripheral blood was collected from each patient and the separation of mononuclear cells was performed by Ficoll. Then, 2x10(5) cells were plated in 48-well culture plates under the membranes in triplicate. The polystyrene surface was used as negative control. Cell viability was assessed by measuring mitochondrial activity (MTT) at 4, 12 and 24 h, with dosage levels of nitrite by the Griess method for the same periods. Data had non-normal distribution and were analyzed by the Kruskal-Wallis test (pporcine membrane induced a higher release of nitrite compared with the control and bovine membrane, respectively (pporcine collagen membrane induces an increased production of proinflammatory mediators by mononuclear cells in the first hours of contact, decreasing with time.

  18. Iron, copper, zinc and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence

    Directory of Open Access Journals (Sweden)

    Gaëlle ePorcheron

    2013-12-01

    Full Text Available For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect.

  19. Zinc Deficiency Impacts CO2 Assimilation and Disrupts Copper Homeostasis in Chlamydomonas reinhardtii*

    Science.gov (United States)

    Malasarn, Davin; Kropat, Janette; Hsieh, Scott I.; Finazzi, Giovanni; Casero, David; Loo, Joseph A.; Pellegrini, Matteo; Wollman, Francis-André; Merchant, Sabeeha S.

    2013-01-01

    Zinc is an essential nutrient because of its role in catalysis and in protein stabilization, but excess zinc is deleterious. We distinguished four nutritional zinc states in the alga Chlamydomonas reinhardtii: toxic, replete, deficient, and limited. Growth is inhibited in zinc-limited and zinc-toxic cells relative to zinc-replete cells, whereas zinc deficiency is visually asymptomatic but distinguished by the accumulation of transcripts encoding ZIP family transporters. To identify targets of zinc deficiency and mechanisms of zinc acclimation, we used RNA-seq to probe zinc nutrition-responsive changes in gene expression. We identified genes encoding zinc-handling components, including ZIP family transporters and candidate chaperones. Additionally, we noted an impact on two other regulatory pathways, the carbon-concentrating mechanism (CCM) and the nutritional copper regulon. Targets of transcription factor Ccm1 and various CAH genes are up-regulated in zinc deficiency, probably due to reduced carbonic anhydrase activity, validated by quantitative proteomics and immunoblot analysis of Cah1, Cah3, and Cah4. Chlamydomonas is therefore not able to grow photoautotrophically in zinc-limiting conditions, but supplementation with 1% CO2 restores growth to wild-type rates, suggesting that the inability to maintain CCM is a major consequence of zinc limitation. The Crr1 regulon responds to copper limitation and is turned on in zinc deficiency, and Crr1 is required for growth in zinc-limiting conditions. Zinc-deficient cells are functionally copper-deficient, although they hyperaccumulate copper up to 50-fold over normal levels. We suggest that zinc-deficient cells sequester copper in a biounavailable form, perhaps to prevent mismetallation of critical zinc sites. PMID:23439652

  20. Chelators for investigating zinc metalloneurochemistry.

    Science.gov (United States)

    Radford, Robert J; Lippard, Stephen J

    2013-04-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals of hippocampal mossy fiber buttons.

  1. Influence of concentration of zinc ions on electrocrystallization process of zinc

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao

    2005-01-01

    Cyclic voltammetry, chronoamperometry and scanning electron microscopy were employed to study the influence of Zn2+ ion concentration in electrolyte solutions on zinc electroplating process. The results show that, at high overpotentials, the nucleation of zinc is instantaneous, and nuclear density increases with the overpotentials increasing. While at low overpotentials, the zinc may be preferentially electrodeposited on surface inhomogeneities such as emergence points of edge, screw dislocations, atomic disorder, kink sites, or monoatomic steps, and no distinguished nucleation current can be observed. The major dissolution peak in cyclic voltammogram drifts positively due to the change of the rate-determining step of zinc electroplating processes from diffusion to the electrochemical reaction with the increase of Zn2+ ion concentration.

  2. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Directory of Open Access Journals (Sweden)

    Francisco Andrés Peralta

    2016-07-01

    Full Text Available Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.

  3. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Science.gov (United States)

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  4. ACTIVATION OF HUMAN BLOOD MONONUCLEARS BY LIPOPOLYSACCHARIDE OF DIFFERENT COMPOSITION

    Directory of Open Access Journals (Sweden)

    S. V. Zubova

    2010-01-01

    Full Text Available Influence of lipopolysaccharide (LPS composition upon activation of human blood mononuclears was investigated, by measuring levels of pro-inflammatory TNFα and IL-6 cytokines released by the cells. It is shown that LPS from Rhodobacter capsulatus PG, in contrast to E. coli LPS, did not activate the target cells for synthesis of the cytokines.

  5. Mononuclear spin-transition materials based on the bapbpy scaffold

    NARCIS (Netherlands)

    Zheng, Sipeng

    2014-01-01

    Spin-crossover compounds showing thermal hysteresis exhibit magnetic and colourmetric bistablility, which is of interest for a number of applications such as information storage and optical displays. Mononuclear iron(II) complexes hold considerable potential in this field, and their cooperative prop

  6. [Association between intracellular zinc levels and nutritional status in HIV-infected and uninfected children exposed to the virus].

    Science.gov (United States)

    Gómez G, Erika María; Maldonado C, María Elena; Rojas L, Mauricio; Posada J, Gladys

    2015-01-01

    Malnutrition, growth retardation and opportunistic infections outlast the metabolic, immune and gastrointestinal disorders produced by HIV. Zinc deficiency has been associated with deteriorating nutritional status, growth failure, and risk of infection. The aim of this study is to determine the association between zinc levels in peripheral blood mononuclear cells (PBMC) and the nutritional status of HIV-infected and uninfected children exposed to the virus. An analytical, observational, cross-sectional study was conducted on 17 infected and 17 exposed children, aged 2-10 years. Anthropometric measurements, clinical and nutritional history, 24h recall, measurement of physical activity, and zinc in PBMC by flow cytometry analysis were recorded. Height according to age, energy consumption and adequacy of energy, protein and dietary zinc were significantly higher in children exposed to the virus compared to those infected with HIV (P .05). However, the median levels of zinc in monocytes of infected patients was higher (218.6) compared to the control group (217.0). No association was found between zinc intake and levels of intracellular zinc. The deterioration of nutritional status and growth retardation in children were associated with HIV, but not with the levels of intracellular zinc. The dietary intake of this nutrient was not associated with levels of zinc in monocytes or CD4 + and CD4- lymphocytes. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  7. Exploring zinc coordination in novel zinc battery electrolytes.

    Science.gov (United States)

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2014-06-14

    The coordination of zinc ions by tetraglyme has been investigated here to support the development of novel electrolytes for rechargeable zinc batteries. Zn(2+) reduction is electrochemically reversible from tetraglyme. The spectroscopic data, molar conductivity and thermal behavior as a function of zinc composition, between mole ratios [80 : 20] and [50 : 50] [tetraglyme : zinc chloride], all suggest that strong interactions take place between chloro-zinc complexes and tetraglyme. Varying the concentration of zinc chloride produces a range of zinc-chloro species (ZnClx)(2-x) in solution, which hinder full interaction between the zinc ion and tetraglyme. Both the [70 : 30] and [50 : 50] mixtures are promising electrolyte candidates for reversible zinc batteries, such as the zinc-air device.

  8. Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases.

    Science.gov (United States)

    Ramalingam, Sivaprakash; London, Viktoriya; Kandavelou, Karthikeyan; Cebotaru, Liudmila; Guggino, William; Civin, Curt; Chandrasegaran, Srinivasan

    2013-02-15

    Zinc finger nucleases (ZFNs) have become powerful tools to deliver a targeted double-strand break at a pre-determined chromosomal locus in order to insert an exogenous transgene by homology-directed repair. ZFN-mediated gene targeting was used to generate both single-allele chemokine (C-C motif) receptor 5 (CCR5)-modified human induced pluripotent stem cells (hiPSCs) and biallele CCR5-modified hiPSCs from human lung fibroblasts (IMR90 cells) and human primary cord blood mononuclear cells (CBMNCs) by site-specific insertion of stem cell transcription factor genes flanked by LoxP sites into the endogenous CCR5 locus. The Oct4 and Sox2 reprogramming factors, in combination with valproic acid, induced reprogramming of human lung fibroblasts to form CCR5-modified hiPSCs, while 5 factors, Oct4/Sox2/Klf4/Lin28/Nanog, induced reprogramming of CBMNCs. Subsequent Cre recombinase treatment of the CCR5-modified IMR90 hiPSCs resulted in the removal of the Oct4 and Sox2 transgenes. Further genetic engineering of the single-allele CCR5-modified IMR90 hiPSCs was achieved by site-specific addition of the large CFTR transcription unit to the remaining CCR5 wild-type allele, using CCR5-specific ZFNs and a donor construct containing tdTomato and CFTR transgenes flanked by CCR5 homology arms. CFTR was expressed efficiently from the endogenous CCR5 locus of the CCR5-modified tdTomato/CFTR hiPSCs. These results suggest that it might be feasible to use ZFN-evoked strategies to (1) generate precisely targeted genetically well-defined patient-specific hiPSCs, and (2) then to reshape their function by targeted addition and expression of therapeutic genes from the CCR5 chromosomal locus for autologous cell-based transgene-correction therapy to treat various recessive monogenic human diseases in the future.

  9. Mononuclear Ni(III) complexes [NiIII(L)(P(C6H3-3-SiMe3-2-S)3)]0/1- (L = thiolate, selenolate, CH2CN, Cl, PPh3): relevance to the nickel site of [NiFe] hydrogenases.

    Science.gov (United States)

    Lee, Chien-Ming; Chuang, Ya-Lan; Chiang, Chao-Yi; Lee, Gene-Hsiang; Liaw, Wen-Feng

    2006-12-25

    The stable mononuclear Ni(III)-thiolate complexes [NiIII(L)(P(C6H3-3-SiMe3-2-S)3)]- (L = SePh (2), Cl (3), SEt (4), 2-S-C4H3S (5), CH2CN (7)) were isolated and characterized by UV-vis, EPR, IR, SQUID, CV, 1H NMR, and single-crystal X-ray diffraction. The increased basicity (electronic density) of the nickel center of complexes [NiIII(L)(P(C6H3-3-SiMe3-2-S)3)]- modulated by the monodentate ligand L and the substituted groups of the phenylthiolate rings promotes the stability and reactivity. In contrast to the irreversible reduction at -1.17 V (vs Cp2Fe/Cp2Fe+) for complex 3, the cyclic voltammograms of complexes [NiIII(SePh)(P(o-C6H4S)3)]-, 2, 4, and 7 display reversible NiIII/II redox processes with E(1/2) = -1.20, -1.26, -1.32, and -1.34 V (vs Cp2Fe/Cp2Fe+), respectively. Compared to complex 2 containing a phenylselenolate-coordinated ligand, complex 4 with a stronger electron-donating ethylthiolate coordinated to the Ni(III) promotes dechlorination of CH2Cl2 to yield complex 3 (kobs = (6.01 +/- 0.03) x 10-4 s-1 for conversion of complex 4 into 3 vs kobs = (4.78 +/- 0.02) x 10-5 s-1 for conversion of complex 2 into 3). Interestingly, addition of CH3CN into complex 3 in the presence of sodium hydride yielded the stable Ni(III)-cyanomethanide complex 7 with a NiIII-CH2CN bond distance of 2.037(3) A. The NiIII-SEt bond length of 2.273(1) A in complex 4 is at the upper end of the 2.12-2.28 A range for the NiIII-S bond lengths of the oxidized-form [NiFe] hydrogenases. In contrast to the inertness of complexes 3 and 7 under CO atmosphere, carbon monoxide triggers the reductive elimination of the monodentate chalcogenolate ligand of complexes 2, 4, and 5 to produce the trigonal bipyramidal complex [NiII(CO)(P(C6H3-3-SiMe3-2-S)3]- (6).

  10. Zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  11. Zinc in diet

    Science.gov (United States)

    ... Zinc is also needed for the senses of smell and taste. During pregnancy, infancy, and childhood the ... sense of taste Problems with the sense of smell Skin sores Slow growth Trouble seeing in the ...

  12. Zinc level and obesity

    Directory of Open Access Journals (Sweden)

    Doaa S.E. Zaky

    2013-01-01

    Conclusion Plasma zinc concentration in obese individuals showed an inverse relationship with the waist circumference and BMI as well as serum low-density lipoprotein-cholesterol and correlated positively with high-density lipoprotein.

  13. Zinc level and obesity

    OpenAIRE

    Doaa S.E Zaky; Eman A Sultan; Mahmoud F Salim; Rana S Dawod

    2013-01-01

    Background Obesity is a chronic condition that is associated with disturbances in the metabolism of zinc. Therefore, the aim of this study was to investigate the relationship between serum zinc level and different clinical and biochemical parameters in obese individuals. Patients and methods Twenty-four individuals with BMI more than 30 kg/m 2 and 14 healthy controls (BMI < 24 kg/m 2 ) were assessed for BMI and waist circumference using anthropometric measurements. Colorimetric tes...

  14. Predicting zinc binding at the proteome level

    Directory of Open Access Journals (Sweden)

    Rosato Antonio

    2007-02-01

    Full Text Available Abstract Background Metalloproteins are proteins capable of binding one or more metal ions, which may be required for their biological function, for regulation of their activities or for structural purposes. Metal-binding properties remain difficult to predict as well as to investigate experimentally at the whole-proteome level. Consequently, the current knowledge about metalloproteins is only partial. Results The present work reports on the development of a machine learning method for the prediction of the zinc-binding state of pairs of nearby amino-acids, using predictors based on support vector machines. The predictor was trained using chains containing zinc-binding sites and non-metalloproteins in order to provide positive and negative examples. Results based on strong non-redundancy tests prove that (1 zinc-binding residues can be predicted and (2 modelling the correlation between the binding state of nearby residues significantly improves performance. The trained predictor was then applied to the human proteome. The present results were in good agreement with the outcomes of previous, highly manually curated, efforts for the identification of human zinc-binding proteins. Some unprecedented zinc-binding sites could be identified, and were further validated through structural modelling. The software implementing the predictor is freely available at: http://zincfinder.dsi.unifi.it Conclusion The proposed approach constitutes a highly automated tool for the identification of metalloproteins, which provides results of comparable quality with respect to highly manually refined predictions. The ability to model correlations between pairwise residues allows it to obtain a significant improvement over standard 1D based approaches. In addition, the method permits the identification of unprecedented metal sites, providing important hints for the work of experimentalists.

  15. Modulation of zinc toxicity by tissue plasminogen activator.

    Science.gov (United States)

    Siddiq, Mustafa M; Tsirka, Stella E

    2004-01-01

    The tissue plasminogen activator (tPA)-plasmin proteolytic system mediates excitotoxin-induced neurodegeneration in vivo and in cell culture. tPA also confers neuroprotection from zinc toxicity in cell culture through a proteolysis-independent mechanism. This raises two questions: what is this non-enzymatic mechanism, and why tPA does not synergize with zinc to promote neuronal cell death? We show here that zinc binds to tPA and inhibits its activity in a dose-dependent fashion, thus terminating its protease-dependent neurotoxic capacity. We extend the previously reported culture findings to demonstrate that elevated zinc is neurotoxic in vivo, and even more so when tPA is absent. Thus, physiological levels of tPA confer protection from elevated free zinc. Mechanistically, tPA promotes movement of zinc into hippocampal neuron cells through voltage-sensitive Ca(2+) channels and Ca(2+)-permeable AMPA/KA channels. Therefore, zinc and tPA each appear to be able to limit the potential of the other to facilitate neurodegeneration, a reciprocal set of actions that may be critical in the hippocampus where tPA is secreted during the nonpathological conditions of learning and memory at sites known to be repositories of free and sequestered zinc.

  16. Synthesis and structural determination of zinc complexes based on an anilido-aldimine ligand containing an O-donor pendant arm: zinc alkoxide derivative as an efficient initiator for ring-opening polymerization of cyclic esters.

    Science.gov (United States)

    Wang, Chao-Hsiang; Li, Chen-Yu; Huang, Bor-Hunn; Lin, Chu-Chieh; Ko, Bao-Tsan

    2013-08-14

    Zinc complexes bearing the anilido-aldiminate AA(OMe) ligand (AA(OMe)-H = (E)-2,6-diisopropyl-N-(2-(((2-methoxyethyl)imino)methyl)phenyl)aniline) were synthesized in a stepwise method and were structurally characterized. The reaction of AA(OMe)-H (1) with one equivalent of diethyl zinc (ZnEt2) furnishes a three-coordinated and mononuclear zinc complex [(AA(OMe))ZnEt] (2). Further reaction of 2 with a stoichiometric amount of benzyl alcohol (BnOH) affords a four-coordinated and dinuclear zinc benzylalkoxide complex [(AA(OMe))Zn(μ-OBn)]2 (3). In the presence of two equivalents of AA(OMe)-H with ZnEt2, a homoleptic and four-coordinated zinc complex [(AA(OMe))2Zn] (4) is formed. The geometry around the zinc centres of 3 and 4 are both distorted tetrahedrals, while 2 adopts a different coordination mode with a slightly distorted trigonal planar geometry. The variable-temperature (1)H NMR studies of 3 illustrate that 3 exhibits a dinuclear structure in solution at low temperature as well as in the solid state. While raising the temperature, it drifts towards dissociation to form a mononuclear zinc benzylalkoxide species, which coexists in solution. The ring-opening polymerizations of ε-caprolactone (ε-CL) and β-butyrolactone (β-BL) catalyzed by complexes 3 and 4 are investigated. The ε-CL and β-BL polymerizations initiated by zinc alkoxide 3 were demonstrated to have living characteristics and to proceed in a controlled manner with narrow polydispersity indices (PDIs high monomer-to-initiator ratio (1200/1) initiated by 3 has also been reported.

  17. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    OpenAIRE

    Veldkamp, T.; Diepen, van, C.A.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Livestock Research to determine the bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens. A precise estimate of the bioavailability of zinc sources is required both for fulf...

  18. Treatment of zinc deficiency without zinc fortification

    Institute of Scientific and Technical Information of China (English)

    Donald OBERLEAS; Barbara F. HARLAND

    2008-01-01

    Zinc (Zn) deficiency in animals became of interest until the 1950s. In this paper, progresses in researches on physi-ology of Zn deficiency in animals, phytate effect on bioavailability of Zn, and role of phytase in healing Zn deficiency of animals were reviewed. Several studies demonstrated that Zn is recycled via the pancreas; the problem of Zn deficiency was controlled by Zn homeostasis. The endogenous secretion of Zn is considered as an important factor influencing Zn deficiency, and the critical molar ratio is 10. Phytate (inositol hexaphosphate) constituted up to 90% of the organically bound phosphorus in seeds. Great improvement has been made in recent years on isolating and measuring phytate, and its structure is clear. Phytate is considered to reduce Zn bioavailability in animal. Phytase is the enzyme that hydrolyzes phytate and is present in yeast, rye bran, wheat bran, barley, triticale, and many bacteria and fungi. Zinc nutrition and bioavailability can be enhanced by addition of phytase to animal feeds. Therefore, using phytase as supplements, the most prevalent Zn deficiency in animals may be effectively corrected without the mining and smelting of several tons of zinc daily needed to correct this deficiency by fortification worldwide.

  19. Hepatitis B virus (HBV) variants fluctuate in paired plasma and peripheral blood mononuclear cells among patient cohorts during different chronic hepatitis B (CHB) disease phases.

    Science.gov (United States)

    Coffin, C S; Osiowy, C; Gao, S; Nishikawa, S; van der Meer, F; van Marle, G

    2015-04-01

    Hepatitis B virus is classically considered a hepatotropic virus but also infects peripheral blood mononuclear cells. Chronic hepatitis B has different disease phases modulated by host immunity. We compared HBV variability, drug resistance and immune escape mutations in the overlapping HBV polymerase/surface gene in plasma and peripheral blood mononuclear cells in different disease phases. Plasma and peripheral blood mononuclear cells were isolated from 22 treatment naïve patient cohorts (five inactive, six immune-active, nine HBeAg negative and two immune-tolerant). HBV was genotyped via line probe assay, hepatitis B surface antigen titres were determined by an in-house immunoassay, and HBV DNA was quantified by kinetic PCR. The HBV polymerase/surface region, including full genome in some, was PCR-amplified and cloned, and ~20 clones/sample were sequenced. The sequences were subjected to various mutational and phylogenetic analyses. Clonal sequencing showed that only three of 22 patients had identical HBV genotype profiles in both sites. In immune-active chronic hepatitis B, viral diversity in plasma was higher compared with peripheral blood mononuclear cells. Mutations at residues, in a minority of clones, associated with drug resistance, and/or immune escape were found in both compartments but were more common in plasma. Immune escape mutations were more often observed in the peripheral blood mononuclear cells of immune-active CHB carriers, compared with other disease phases. During all CHB disease phases, differences exist between HBV variants found in peripheral blood mononuclear cells and plasma. Moreover, these data indicate that HBV evolution occurs in a compartment and disease phase-specific fashion.

  20. Bone marrow mononuclears from murine tibia after spaceflight on biosatellite

    Science.gov (United States)

    Andreeva, Elena; Roe, Maria; Buravkova, Ludmila; Andrianova, Irina; Goncharova, Elena; Gornostaeva, Alexandra

    Elucidation of the space flight effects on the adult stem and progenitor cells is an important goal in space biology and medicine. A unique opportunity for this is provided by project "BION -M1". The purpose of this study was to evaluate the effects of a 30-day flight on biosatellite "BION - M1" and the subsequent 7-day recovery on the quantity, viability, immunophenotype of mononuclears from murine tibia bone marrow. Also the in vitro characterization of functional capacity of multipotent mesenchymal stromal cells (MSCs) was scheduled. Under the project, the S57black/6 mice were divided into groups: spaceflight/vivarium control, recovery after spaceflight/ vivarium control to recovery. Bone marrow mononuclears were isolated from the tibia and immunophenotyped using antibodies against CD45, CD34, CD90 on a flow cytometer Epics XL (Beckman Coulter). A part of the each pool was frozen for subsequent estimation of hematopoietic colony-forming units (CFU), the rest was used for the evaluation of fibroblast CFU (CFUf) number, MSC proliferative activity and osteogenic potency. The cell number in the flight group was significantly lower than in the vivarium control group. There were no differences in this parameter between flight and control groups after 7 days of recovery. The mononuclears viability was more than 95 percent in all examined groups. Flow cytometric analysis showed no differences in the bone marrow cell immunophenotype (CD45, CD34, CD90.1 (Thy1)), but the flight animals had more large-sized CD45+mononuclears, than the control groups of mice. There was no difference in the CFUf number between groups. After 7 days in vitro the MSC number in flight group was twice higher than in vivarium group, after 10 days - 4 times higher. These data may indicate a higher proliferative activity of MSCs after spaceflight. MSCs showed the same and high alkaline phosphatase activity, both in flight and in the control groups, suggesting no effect of spaceflight factors on early

  1. Supramolecular control of a mononuclear biomimetic copper(II) center: bowl complexes vs funnel complexes.

    Science.gov (United States)

    Gout, Jérôme; Višnjevac, Aleksandar; Rat, Stéphanie; Parrot, Arnaud; Hessani, Assia; Bistri, Olivia; Le Poul, Nicolas; Le Mest, Yves; Reinaud, Olivia

    2014-06-16

    Modeling the mononuclear site of copper enzymes is important for a better understanding of the factors controlling the reactivity of the metal center. A major difficulty stems from the difficult control of the nuclearity while maintaining free sites open to coordination of exogenous ligands. A supramolecular approach consists in associating a hydrophobic cavity to a tripodal ligand that will define the coordination spheres as well as access to the metal ion. Here, we describe the synthesis of a bowl Cu(II) complex based on the resorcinarene scaffold. This study supplements a previous work on Cu(I) coordination. It provides a complete picture of the cavity-copper system in its two oxidation states. The first XRD structure of such a bowl complex was obtained, evidencing a 5-coordinate Cu(II) ion with the three imidazole donors bound to the metal (two in the base of the pyramid, one in the apical position) and with an acetate anion, completing the base of the pyramid, and deeply included in the bowl. Solution studies conducted by EPR and UV-vis absorption spectroscopies as well as cyclic voltammetry highlighted interaction with coordinating solvents, various carboxylates that can sit either in the endo or in the exo position depending on their size as well as possible stabilization of hydroxo species in a mononuclear state. A comparison of the binding and redox properties of the bowl complex with funnel complexes based on the calix[6]arene core further highlights the importance of supramolecular features defining the first, second, and third coordination sphere for control of the metal ion.

  2. Zinc Determination in Pleural Fluid

    OpenAIRE

    Nazan DEMİR; DEMİR, Yaşar

    2000-01-01

    In this study, an enzymatic zinc determination method was applied to pleural fluid, the basis of which was the regaining of the activity of apo carbonic anhydrase by the zinc present in the sample. The method was used for pleural fluid zinc determination in order to show the application to body fluids other than serum. For this purpose, pleural fluids were obtained from 20 patients and zinc concentrations were determined. Carbonic anhydrase was purified by affinity chromatography from bovine ...

  3. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    NARCIS (Netherlands)

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR

  4. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    NARCIS (Netherlands)

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Live

  5. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs refer

  6. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs ref

  7. Zinc Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Erdal Doğan

    2014-01-01

    Full Text Available Zinc phosphide has been used widely as a rodenticide. Upon ingestion, it gets converted to phosphine gas in the body, which is subsequently absorbed into the bloodstream through the stomach and the intestines and gets captured by the liver and the lungs. Phosphine gas produces various metabolic and nonmetabolic toxic effects. Clinical symptoms are circulatory collapse, hypotension, shock symptoms, myocarditis, pericarditis, acute pulmonary edema, and congestive heart failure. In this case presentation, we aim to present the intensive care process and treatment resistance of a patient who ingested zinc phosphide for suicide purposes.

  8. Fetal hemoglobin accumulation in vitro. Effect of adherent mononuclear cells.

    OpenAIRE

    Javid, J; Pettis, P K

    1983-01-01

    In clonal cultures of erythroid burst-forming units (BFU-E) obtained from blood, the accumulation of fetal and adult hemoglobins (Hb F and Hb A) was measured by radioligand immunoassay. Inclusion of adherent mononuclear cells in the culture promoted a striking increase in the relative amount of Hb F in each of 44 experiments with 14 donors. In two-thirds of the instances, this was accounted for by a selective increase in the absolute amount of Hb F. The differential effect on Hb F and Hb A ac...

  9. Zinc finger recombinases with adaptable DNA sequence specificity.

    Directory of Open Access Journals (Sweden)

    Chris Proudfoot

    Full Text Available Site-specific recombinases have become essential tools in genetics and molecular biology for the precise excision or integration of DNA sequences. However, their utility is currently limited to circumstances where the sites recognized by the recombinase enzyme have been introduced into the DNA being manipulated, or natural 'pseudosites' are already present. Many new applications would become feasible if recombinase activity could be targeted to chosen sequences in natural genomic DNA. Here we demonstrate efficient site-specific recombination at several sequences taken from a 1.9 kilobasepair locus of biotechnological interest (in the bovine β-casein gene, mediated by zinc finger recombinases (ZFRs, chimaeric enzymes with linked zinc finger (DNA recognition and recombinase (catalytic domains. In the "Z-sites" tested here, 22 bp casein gene sequences are flanked by 9 bp motifs recognized by zinc finger domains. Asymmetric Z-sites were recombined by the concomitant action of two ZFRs with different zinc finger DNA-binding specificities, and could be recombined with a heterologous site in the presence of a third recombinase. Our results show that engineered ZFRs may be designed to promote site-specific recombination at many natural DNA sequences.

  10. Lactam hydrolysis catalyzed by mononuclear metallo-beta-lactamases: A density functional study

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Olsen, L.; Antony, J.

    2003-01-01

    coordinating to the zinc ion. Potential proton shuttles from the second (unoccupied) metal-binding site (water, Asp, or Cys) are included in some calculations. The calculated reaction barrier for formation of the tetrahedral intermediate is 13 kcal/mol, close to what is observed experimentally for the rate....... For most studied systems, the tetrahedral structure is a stable intermediate. Moreover, the C-N bond in the lactam ring is intact in this intermediate, as well as in the following transition state-its cleavage is induced by proton transfer to the nitrogen atom in the lactam ring. However, for the model...

  11. Doped zinc oxide microspheres

    Science.gov (United States)

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  12. Zinc in multiple sclerosis

    DEFF Research Database (Denmark)

    Bredholt, Mikkel; Fredriksen, Jette Lautrup

    2016-01-01

    In the last 35 years, zinc (Zn) has been examined for its potential role in the disease multiple sclerosis (MS). This review gives an overview of the possible role of Zn in the pathogenesis of MS as well as a meta-analysis of studies having measured Zn in serum or plasma in patients with MS...

  13. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  14. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  15. Zinc in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Bredholt, Mikkel; Frederiksen, Jette Lautrup

    2016-01-01

    In the last 35 years, zinc (Zn) has been examined for its potential role in the disease multiple sclerosis (MS). This review gives an overview of the possible role of Zn in the pathogenesis of MS as well as a meta-analysis of studies having measured Zn in serum or plasma in patients with MS...

  16. Studies on nanocrystalline zinc coating

    Indian Academy of Sciences (India)

    H B Muralidhara; Y Arthoba Naik

    2008-08-01

    Nano zinc coatings were deposited on mild steel by electrodeposition. The effect of additive on the morphology of crystal size on zinc deposit surface and corrosion properties were investigated. Corrosion tests were performed for dull zinc deposits and bright zinc deposits in aqueous NaCl solution (3.5 wt.%) using electrochemical measurements. The results showed that addition of additive in the deposition process of zinc significantly increased the corrosion resistance. The surface morphology of the zinc deposits was studied by scanning electron microscopy (SEM). The preferred orientation and average size of the zinc electrodeposited particles were obtained by X-ray diffraction analysis. The particles size was also characterized by TEM analysis.

  17. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.P. [Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Iglesias, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Nicola, F.C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Steffens, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Valentim, L.; Witczak, A.; Zanatta, G. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Achaval, M. [Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Pranke, P. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Netto, C.A. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2011-12-23

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10{sup 6} cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10{sup 6} cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  18. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Directory of Open Access Journals (Sweden)

    L.P. Rodrigues

    2012-01-01

    Full Text Available Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a 1 h after surgery, into the injury site at a concentration of 5 x 10(6 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group; b into the cisterna magna, 9 days after lesion at a concentration of 5 x 10(6 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group. The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day. The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05. The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  19. Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Giovanni Nardo

    Full Text Available BACKGROUND: Amyotrophic lateral sclerosis (ALS is a fatal progressive motor neuron disease, for which there are still no diagnostic/prognostic test and therapy. Specific molecular biomarkers are urgently needed to facilitate clinical studies and speed up the development of effective treatments. METHODOLOGY/PRINCIPAL FINDINGS: We used a two-dimensional difference in gel electrophoresis approach to identify in easily accessible clinical samples, peripheral blood mononuclear cells (PBMC, a panel of protein biomarkers that are closely associated with ALS. Validations and a longitudinal study were performed by immunoassays on a selected number of proteins. The same proteins were also measured in PBMC and spinal cord of a G93A SOD1 transgenic rat model. We identified combinations of protein biomarkers that can distinguish, with high discriminatory power, ALS patients from healthy controls (98%, and from patients with neurological disorders that may resemble ALS (91%, between two levels of disease severity (90%, and a number of translational biomarkers, that link responses between human and animal model. We demonstrated that TDP-43, cyclophilin A and ERp57 associate with disease progression in a longitudinal study. Moreover, the protein profile changes detected in peripheral blood mononuclear cells of ALS patients are suggestive of possible intracellular pathogenic mechanisms such as endoplasmic reticulum stress, nitrative stress, disturbances in redox regulation and RNA processing. CONCLUSIONS/SIGNIFICANCE: Our results indicate that PBMC multiprotein biomarkers could contribute to determine amyotrophic lateral sclerosis diagnosis, differential diagnosis, disease severity and progression, and may help to elucidate pathogenic mechanisms.

  20. Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells.

    Science.gov (United States)

    Nardo, Giovanni; Pozzi, Silvia; Pignataro, Mauro; Lauranzano, Eliana; Spano, Giorgia; Garbelli, Silvia; Mantovani, Stefania; Marinou, Kalliopi; Papetti, Laura; Monteforte, Marta; Torri, Valter; Paris, Luca; Bazzoni, Gianfranco; Lunetta, Christian; Corbo, Massimo; Mora, Gabriele; Bendotti, Caterina; Bonetto, Valentina

    2011-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal progressive motor neuron disease, for which there are still no diagnostic/prognostic test and therapy. Specific molecular biomarkers are urgently needed to facilitate clinical studies and speed up the development of effective treatments. We used a two-dimensional difference in gel electrophoresis approach to identify in easily accessible clinical samples, peripheral blood mononuclear cells (PBMC), a panel of protein biomarkers that are closely associated with ALS. Validations and a longitudinal study were performed by immunoassays on a selected number of proteins. The same proteins were also measured in PBMC and spinal cord of a G93A SOD1 transgenic rat model. We identified combinations of protein biomarkers that can distinguish, with high discriminatory power, ALS patients from healthy controls (98%), and from patients with neurological disorders that may resemble ALS (91%), between two levels of disease severity (90%), and a number of translational biomarkers, that link responses between human and animal model. We demonstrated that TDP-43, cyclophilin A and ERp57 associate with disease progression in a longitudinal study. Moreover, the protein profile changes detected in peripheral blood mononuclear cells of ALS patients are suggestive of possible intracellular pathogenic mechanisms such as endoplasmic reticulum stress, nitrative stress, disturbances in redox regulation and RNA processing. Our results indicate that PBMC multiprotein biomarkers could contribute to determine amyotrophic lateral sclerosis diagnosis, differential diagnosis, disease severity and progression, and may help to elucidate pathogenic mechanisms.

  1. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remains unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.

  2. Runoff of copper and zinc caused by atmospheric corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Leuenberger-Minger, A.U.; Faller, M.; Richner, P. [Swiss Federal Labs. for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2002-03-01

    Runoff and total corrosion loss for copper and zinc were investigated at seven sites in Switzerland. The exposure sites were chosen near the stations of the national air pollution monitoring network (NABEL), where climatic and air pollution data are measured. Runoff and corrosion rates were investigated after 0.5, 1, 2 and 4 years of exposure. Runoff rates differ from corrosion rates depending on the material, the exposure time and the sampling site. (orig.)

  3. Molecular Basis of Transient Neonatal Zinc Deficiency: NOVEL ZnT2 MUTATIONS DISRUPTING ZINC BINDING AND PERMEATION.

    Science.gov (United States)

    Golan, Yarden; Itsumura, Naoya; Glaser, Fabian; Berman, Bluma; Kambe, Taiho; Assaraf, Yehuda G

    2016-06-24

    A gradually increasing number of transient neonatal zinc deficiency (TNZD) cases was recently reported, all of which were associated with inactivating ZnT2 mutations. Here we characterized the impact of three novel heterozygous ZnT2 mutations G280R, T312M, and E355Q, which cause TNZD in exclusively breastfed infants of Japanese mothers. We used the bimolecular fluorescence complementation (BiFC) assay to provide direct visual evidence for the in situ dimerization of these ZnT2 mutants, and to explore their subcellular localization. Moreover, using three complementary functional assays, zinc accumulation using BiFC-Zinquin and Zinpyr-1 fluorescence as well as zinc toxicity assay, we determined the impact of these ZnT2 mutations on vesicular zinc accumulation. Although all three mutants formed homodimers with the wild type (WT) ZnT2 and retained substantial vesicular localization, as well as vesicular zinc accumulation, they had no dominant-negative effect over the WT ZnT2. Furthermore, using advanced bioinformatics, structural modeling, and site-directed mutagenesis we found that these mutations localized at key residues, which play an important physiological role in zinc coordination (G280R and E355Q) and zinc permeation (T312M). Collectively, our findings establish that some heterozygous loss of function ZnT2 mutations disrupt zinc binding and zinc permeation, thereby suggesting a haploinsufficiency state for the unaffected WT ZnT2 allele in TNZD pathogenesis. These results highlight the burning need for the development of a suitable genetic screen for the early diagnosis of TNZD to prevent morbidity.

  4. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  5. Zinc homeostasis and neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Bernadeta eSzewczyk

    2013-07-01

    Full Text Available Zinc is an essential trace element, whose importance to the function of the central nervous system (CNS is increasingly being appreciated. Alterations in zinc dyshomeostasis has been suggested as a key factor in the development of several neuropsychiatric disorders. In the CNS, zinc occurs in two forms: the first being tightly bound to proteins and, secondly, the free, cytoplasmic or extracellular form found in presynaptic vesicles. Under normal conditions, zinc released from the synaptic vesicles modulates both ionotropic and metabotropic post-synaptic receptors. While under clinical conditions such as traumatic brain injury, stroke or epilepsy, the excess influx of zinc into neurons has been found to result in neurotoxicity and damage to postsynaptic neurons. On the other hand, a growing body of evidence suggests that a deficiency, rather than an excess, of zinc leads to an increased risk for the development of neurological disorders. Indeed, zinc deficiency has been shown to affect neurogenesis and increase neuronal apoptosis, which can lead to learning and memory deficits. Altered zinc homeostasis is also suggested as a risk factor for depression, Alzheimer’s disease, aging and other neurodegenerative disorders. Under normal CNS physiology, homeostatic controls are put in place to avoid the accumulation of excess zinc or its deficiency. This cellular zinc homeostasis results from the actions of a coordinated regulation effected by different proteins involved in the uptake, excretion and intracellular storage/trafficking of zinc. These proteins include membranous transporters (ZnT and Zip and metallothioneins (MT which control intracellular zinc levels. Interestingly, alterations in ZnT and MT have been recently reported in both aging and Alzheimer’s disease. This paper provides an overview of both clinical and experimental evidence that implicates a dysfunction in zinc homeostasis in the pathophysiology of depression, Alzheimer

  6. Electrochemical evidence that pyranopterin redox chemistry controls the catalysis of YedY, a mononuclear Mo enzyme.

    Science.gov (United States)

    Adamson, Hope; Simonov, Alexandr N; Kierzek, Michelina; Rothery, Richard A; Weiner, Joel H; Bond, Alan M; Parkin, Alison

    2015-11-24

    A long-standing contradiction in the field of mononuclear Mo enzyme research is that small-molecule chemistry on active-site mimic compounds predicts ligand participation in the electron transfer reactions, but biochemical measurements only suggest metal-centered catalytic electron transfer. With the simultaneous measurement of substrate turnover and reversible electron transfer that is provided by Fourier-transformed alternating-current voltammetry, we show that Escherichia coli YedY is a mononuclear Mo enzyme that reconciles this conflict. In YedY, addition of three protons and three electrons to the well-characterized "as-isolated" Mo(V) oxidation state is needed to initiate the catalytic reduction of either dimethyl sulfoxide or trimethylamine N-oxide. Based on comparison with earlier studies and our UV-vis redox titration data, we assign the reversible one-proton and one-electron reduction process centered around +174 mV vs. standard hydrogen electrode at pH 7 to a Mo(V)-to-Mo(IV) conversion but ascribe the two-proton and two-electron transition occurring at negative potential to the organic pyranopterin ligand system. We predict that a dihydro-to-tetrahydro transition is needed to generate the catalytically active state of the enzyme. This is a previously unidentified mechanism, suggested by the structural simplicity of YedY, a protein in which Mo is the only metal site.

  7. Electrochemical evidence that pyranopterin redox chemistry controls the catalysis of YedY, a mononuclear Mo enzyme

    Science.gov (United States)

    Adamson, Hope; Simonov, Alexandr N.; Kierzek, Michelina; Rothery, Richard A.; Weiner, Joel H.; Bond, Alan M.

    2015-01-01

    A long-standing contradiction in the field of mononuclear Mo enzyme research is that small-molecule chemistry on active-site mimic compounds predicts ligand participation in the electron transfer reactions, but biochemical measurements only suggest metal-centered catalytic electron transfer. With the simultaneous measurement of substrate turnover and reversible electron transfer that is provided by Fourier-transformed alternating-current voltammetry, we show that Escherichia coli YedY is a mononuclear Mo enzyme that reconciles this conflict. In YedY, addition of three protons and three electrons to the well-characterized “as-isolated” Mo(V) oxidation state is needed to initiate the catalytic reduction of either dimethyl sulfoxide or trimethylamine N-oxide. Based on comparison with earlier studies and our UV-vis redox titration data, we assign the reversible one-proton and one-electron reduction process centered around +174 mV vs. standard hydrogen electrode at pH 7 to a Mo(V)-to-Mo(IV) conversion but ascribe the two-proton and two-electron transition occurring at negative potential to the organic pyranopterin ligand system. We predict that a dihydro-to-tetrahydro transition is needed to generate the catalytically active state of the enzyme. This is a previously unidentified mechanism, suggested by the structural simplicity of YedY, a protein in which Mo is the only metal site. PMID:26561582

  8. Pinacol Coupling Reactions Catalyzed by Active Zinc

    Institute of Scientific and Technical Information of China (English)

    Hui ZHAO; Wei DENG; Qing Xiang GUO

    2005-01-01

    Pinacol coupling reactions catalyzed by active zinc revealed high activity and extensive suitability. The efficiency of the reaction was improved apparently owing to decreasing reductive potential of zinc. In addition, the results indicated that the zinc activity has a direct relation to the coupling reactivity compared to untreated zinc or other general active zinc.

  9. Immunohistochemical demonstration of lysozyme in normal, reactive and neoplastic cells of the mononuclear phagocyte system.

    Directory of Open Access Journals (Sweden)

    Motoi,Makoto

    1984-04-01

    Full Text Available Using the peroxidase antiperoxidase (PAP method, lysozyme (LZM was shown to exist in normal, reactive and neoplastic cells belonging to the mononuclear phagocyte system (MPS, but was not detected in histiocytosis X cells. Immunostaining for cytoplasmic LZM by the PAP method is useful for identification of mononuclear phagocytes and for diagnosis of the diseases in which these cells participate.

  10. DMPD: Zinc in human health: effect of zinc on immune cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18385818 Zinc in human health: effect of zinc on immune cells. Prasad AS. Mol Med. ...2008 May-Jun;14(5-6):353-7. (.png) (.svg) (.html) (.csml) Show Zinc in human health: effect of zinc on immun...e cells. PubmedID 18385818 Title Zinc in human health: effect of zinc on immune cells. Authors Prasad AS. Pu

  11. Human skin penetration and local effects of topical nano zinc oxide after occlusion and barrier impairment.

    Science.gov (United States)

    Leite-Silva, V R; Sanchez, W Y; Studier, H; Liu, D C; Mohammed, Y H; Holmes, A M; Ryan, E M; Haridass, I N; Chandrasekaran, N C; Becker, W; Grice, J E; Benson, H A E; Roberts, M S

    2016-07-01

    Public health concerns continue to exist over the safety of zinc oxide nanoparticles that are commonly used in sunscreen formulations. In this work, we assessed the effects of two conditions which may be encountered in everyday sunscreen use, occlusion and a compromised skin barrier, on the penetration and local toxicity of two topically applied zinc oxide nanoparticle products. Caprylic/capric triglyceride (CCT) suspensions of commercially used zinc oxide nanoparticles, either uncoated or with a silane coating, were applied to intact and barrier impaired skin of volunteers, without and with occlusion for a period of six hours. The exposure time was chosen to simulate normal in-use conditions. Multiphoton tomography with fluorescence lifetime imaging was used to noninvasively assess zinc oxide penetration and cellular metabolic changes that could be indicative of toxicity. We found that zinc oxide nanoparticles did not penetrate into the viable epidermis of intact or barrier impaired skin of volunteers, without or with occlusion. We also observed no apparent toxicity in the viable epidermis below the application sites. These findings were validated by ex vivo human skin studies in which zinc penetration was assessed by multiphoton tomography with fluorescence lifetime imaging as well as Zinpyr-1 staining and toxicity was assessed by MTS assays in zinc oxide treated skin cryosections. In conclusion, applications of zinc oxide nanoparticles under occlusive in-use conditions to volunteers are not associated with any measurable zinc oxide penetration into, or local toxicity in the viable epidermis below the application site.

  12. The micronutrient element zinc modulates sperm activation through the SPE-8 pathway in Caenorhabditis elegans.

    Science.gov (United States)

    Liu, Zhiyu; Chen, Lianwan; Shang, Yunlong; Huang, Ping; Miao, Long

    2013-05-01

    Immotile spermatids produced in the testis must undergo a series of poorly understood morphological, physiological and biochemical processes called sperm activation to become motile, fertilization-competent spermatozoa. In Caenorhabditis elegans, the spe-8 group contains sperm-specific genes active in both males and hermaphrodites, although their activity is required only for hermaphrodite self-sperm activation. The activating signal upstream of the SPE-8 signaling cascade remains unknown. Here, we show that the micronutrient zinc is sufficient to trigger sperm activation in vitro, and that extracellular zinc induces the intracellular redistribution of labile zinc. We demonstrate that other activating signals promote the similar redistribution of labile zinc, indicating that zinc might have first and/or second messenger roles during sperm activation. Moreover, zinc-induced sperm activation is SPE-8 pathway dependent. Labile zinc was enriched in the spermatheca, the normal site for self-sperm activation in hermaphrodites. High levels of zinc were also found in the secretory cells in the male gonad, suggesting that zinc might be secreted from these cells during copulation and become a component of seminal fluid, to modulate sperm activation post-copulation. These data indicate that zinc regulates sperm activation in both male and hermaphrodite C. elegans, a finding with important implications for understanding hermaphroditic evolution.

  13. Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus.

    Science.gov (United States)

    Foster, Meika; Samman, Samir

    2010-11-15

    Cellular signal transduction pathways are influenced by the zinc and redox status of the cell. Numerous chronic diseases, including cardiovascular disease (CVD) and diabetes mellitus (DM), have been associated with impaired zinc utilization and increased oxidative stress. In humans, mutations in the MT-1A and ZnT8 genes, both of which are involved in the maintenance of zinc homeostasis, have been linked with DM development. Changes in levels of intracellular free zinc may exacerbate oxidative stress in CVD and DM by impacting glutathione homeostasis, nitric oxide signaling, and nuclear factor-kappa B-dependent cellular processes. Zinc ions have been shown to influence insulin and leptin signaling via the phosphoinositide 3′-kinase/Akt pathway, potentially linking an imbalance of zinc at the cellular level to insulin resistance and dyslipidemia. The oxidative modification of cysteine residues in zinc coordination sites in proteins has been implicated in cellular signaling and regulatory pathways. Despite the many interactions between zinc and cellular stress responses, studies investigating the potential therapeutic benefit of zinc supplementation in the prevention and treatment of oxidative stress-related chronic disease in humans are few and inconsistent. Further well-designed randomized controlled trials are needed to determine the effects of zinc supplementation in populations at various stages of CVD and DM progression.

  14. Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter.

    Science.gov (United States)

    Park, Hyeong Cheol; Kim, Man Lyang; Lee, Sang Min; Bahk, Jeong Dong; Yun, Dae-Jin; Lim, Chae Oh; Hong, Jong Chan; Lee, Sang Yeol; Cho, Moo Je; Chung, Woo Sik

    2007-01-01

    Calmodulin (CaM) is involved in defense responses in plants. In soybean (Glycine max), transcription of calmodulin isoform 4 (GmCaM4) is rapidly induced within 30 min after pathogen stimulation, but regulation of the GmCaM4 gene in response to pathogen is poorly understood. Here, we used the yeast one-hybrid system to isolate two cDNA clones encoding proteins that bind to a 30-nt A/T-rich sequence in the GmCaM4 promoter, a region that contains two repeats of a conserved homeodomain binding site, ATTA. The two proteins, GmZF-HD1 and GmZF-HD2, belong to the zinc finger homeodomain (ZF-HD) transcription factor family. Domain deletion analysis showed that a homeodomain motif can bind to the 30-nt GmCaM4 promoter sequence, whereas the two zinc finger domains cannot. Critically, the formation of super-shifted complexes by an anti-GmZF-HD1 antibody incubated with nuclear extracts from pathogen-treated cells suggests that the interaction between GmZF-HD1 and two homeodomain binding site repeats is regulated by pathogen stimulation. Finally, a transient expression assay with Arabidopsis protoplasts confirmed that GmZF-HD1 can activate the expression of GmCaM4 by specifically interacting with the two repeats. These results suggest that the GmZF-HD1 and -2 proteins function as ZF-HD transcription factors to activate GmCaM4 gene expression in response to pathogen.

  15. Autologous bone marrow mononuclear cells in ischemic cerebrovascular accident paves way for neurorestoration: a case report.

    Science.gov (United States)

    Sharma, Alok; Sane, Hemangi; Nagrajan, Anjana; Gokulchandran, Nandini; Badhe, Prerna; Paranjape, Amruta; Biju, Hema

    2014-01-01

    In response to acute ischemic stroke, large numbers of bone marrow stem cells mobilize spontaneously in peripheral blood that home onto the site of ischemia activating the penumbra. But with chronicity, the numbers of mobilized cells decrease, reducing the degree and rate of recovery. Cellular therapy has been explored as a new avenue to restore the repair process in the chronic stage. A 67-year-old Indian male with a chronic right middle cerebral artery ischemic stroke had residual left hemiparesis despite standard management. Recovery was slow and partial resulting in dependence to carry out activities of daily living. Our aim was to enhance the speed of recovery process by providing an increased number of stem cells to the site of injury. We administered autologous bone marrow mononuclear cells intrathecally alongwith rehabilitation and regular follow up. The striking fact was that the hand functions, which are the most challenging deficits, showed significant recovery. Functional Independence Measure scores and quality of life improved. This could be attributed to the neural tissue restoration. We hypothesize that cell therapy may be safe, novel and appealing treatment for chronic ischemic stroke. Further controlled trials are indicated to advance the concept of Neurorestoration.

  16. Autologous Bone Marrow Mononuclear Cells in Ischemic Cerebrovascular Accident Paves Way for Neurorestoration: A Case Report

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2014-01-01

    Full Text Available In response to acute ischemic stroke, large numbers of bone marrow stem cells mobilize spontaneously in peripheral blood that home onto the site of ischemia activating the penumbra. But with chronicity, the numbers of mobilized cells decrease, reducing the degree and rate of recovery. Cellular therapy has been explored as a new avenue to restore the repair process in the chronic stage. A 67-year-old Indian male with a chronic right middle cerebral artery ischemic stroke had residual left hemiparesis despite standard management. Recovery was slow and partial resulting in dependence to carry out activities of daily living. Our aim was to enhance the speed of recovery process by providing an increased number of stem cells to the site of injury. We administered autologous bone marrow mononuclear cells intrathecally alongwith rehabilitation and regular follow up. The striking fact was that the hand functions, which are the most challenging deficits, showed significant recovery. Functional Independence Measure scores and quality of life improved. This could be attributed to the neural tissue restoration. We hypothesize that cell therapy may be safe, novel and appealing treatment for chronic ischemic stroke. Further controlled trials are indicated to advance the concept of Neurorestoration.

  17. Characteristics of spontaneously proliferating mononuclear cells in rheumatoid arthritis.

    Science.gov (United States)

    Froebel, K; Dickson, R; Lewis, D; Jasani, M K; Sturrock, R D

    1984-10-01

    The phenomenon of increased spontaneous incorporation of 3H-thymidine (3H-TdR) into peripheral blood mononuclear cells in rheumatoid arthritis (RA) has been investigated. The activity was found to be short lived and affected less than 1% of cells. Using a Percoll density gradient we identified two populations of active cells. RA patients with active synovitis and increased 3H-TdR incorporation in the low density population of cells have higher overall 3H-TdR incorporation than normal controls and patients with inactive RA. The low density cell population is enriched for Ia+ cells. The data are consistent with raised spontaneous 3H-TdR incorporation being due to an in-vivo cell mediated immune response.

  18. Metabolic reprogramming of mononuclear phagocytes and progressive multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Stefano ePluchino

    2015-03-01

    Full Text Available Multiple sclerosis (MS is an inflammatory and demyelinating disease of the central nervous system (CNS. Accumulation of brain damage in progressive MS is partly the result of mononuclear phagocytes (MPs attacking myelin sheaths in the CNS. Although there is no cure yet for MS, significant advances have been made in the development of disease modifying agents. Unfortunately, most of these drugs fail to reverse established neurological deficits and can have adverse effects. Recent evidence suggests that MPs polarisation is accompanied by profound metabolic changes, whereby pro-inflammatory MPs (M1 switch toward glycolysis, whereas anti-inflammatory MPs (M2 become more oxidative. It is therefore possible that reprogramming MPs metabolism could affect their function and repress immune cell activation. This minireview describes the metabolic changes underpinning macrophages polarisation and anticipates how metabolic re-education of MPs could be used for the treatment of MS.

  19. Use of cryopreserved peripheral mononuclear blood cells in biomonitoring

    DEFF Research Database (Denmark)

    Risom, Lotte; Knudsen, Lisbeth E.

    1999-01-01

    This study was performed to investigate the effect of storing blood samples by freezing on selected biomarkers and possible implications for biomonitoring. Comparative measurements were performed in order to investigate the use of cryopreserved vs. freshly separated peripheral mononuclear blood c....... We measured the DNA repair activity as dimethylsulfate induced unscheduled DNA synthesis (UDS) in PMBC incubated with either autologous plasma or fetal bovine serum (FBS). Comparison of the hprt mutant frequency by the T cell cloning assay was made in parallel. Finally the content of B....../T-lymphocytes and monocytes was measured in phytohemaglutinin (PHA)-stimulated cultures at different time intervals. The results showed a higher DNA repair activity in cryopreserved samples compared with fresh samples. We also found differences in mutant frequencies with higher values in fresh samples. A significant...

  20. Influence of acute renal failure on the mononuclear phagocytic system

    Directory of Open Access Journals (Sweden)

    V.R.A. Sousa

    2001-09-01

    Full Text Available Several studies show the ability of macrophages to remove particles injected into the bloodstream. This function seems to be increased in the presence of acute renal failure. The objective of the present study was to assess the phagocytic function of the main organs (spleen, liver and lung of the mononuclear phagocytic system in renal and postrenal failures. Fifteen rats (250-350 g were divided into three groups (N = 5: group I - control; group II - ligature of both ureters, and group III - bilateral nephrectomy. On the third postoperative day, all animals received an iv injection of 1 ml/kg 99mTc sulfur colloid. Blood samples were collected for the assessment of plasma urea, creatinine, sodium, and potassium concentrations and arterial gasometry. Samples of liver, spleen, lung and blood clots were obtained and radioactivity was measured. Samples of liver, spleen, lung and kidney were prepared for routine histopathological analysis. Plasma urea, creatinine and potassium concentrations in groups II and III were higher than in group I (P<0.05. Plasma sodium concentrations in groups II and III were lower than in group I (P<0.05. Compensated metabolic acidosis was observed in the presence of postrenal failure. Group II animals showed a lower level of radioactivity in the spleen (0.98 and lung (2.63, and a higher level in the liver (105.51 than control. Group III animals showed a lower level of radioactivity in the spleen (11.94 and a higher level in the liver (61.80, lung (11.30 and blood clot (5.13 than control. In groups II and III liver steatosis and bronchopneumonia were observed. Renal and postrenal failures seem to interfere with blood clearance by the mononuclear phagocytic system.

  1. Autologous Intravenous Mononuclear Stem Cell Therapy in Chronic Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Bhasin A

    2012-01-01

    Full Text Available Background: The regenerative potential of brain has led to emerging therapies that can cure clinico-motor deficits after neurological diseases. Bone marrow mononuclear cell therapy is a great hope to mankind as these cells are feasible, multipotent and aid in neurofunctional gains in Stroke patients. Aims: This study evaluates safety, feasibility and efficacy of autologous mononuclear (MNC stem cell transplantation in patients with chronic ischemic stroke (CIS using clinical scores and functional imaging (fMRI and DTI. Design: Non randomised controlled observational study Study: Twenty four (n=24 CIS patients were recruited with the inclusion criteria as: 3 months–2years of stroke onset, hand muscle power (MRC grade at least 2; Brunnstrom stage of recovery: II-IV; NIHSS of 4-15, comprehendible. Fugl Meyer, modified Barthel Index (mBI and functional imaging parameters were used for assessment at baseline, 8 weeks and at 24 weeks. Twelve patients were administered with mean 54.6 million cells intravenously followed by 8 weeks of physiotherapy. Twelve patients served as controls. All patients were followed up at 24 weeks. Outcomes: The laboratory and radiological outcome measures were within normal limits in MNC group. Only mBI showed statistically significant improvement at 24 weeks (p<0.05 whereas the mean FM, MRC, Ashworth tone scores in the MNC group were high as compared to control group. There was an increased number of cluster activation of Brodmann areas BA 4, BA 6 post stem cell infusion compared to controls indicating neural plasticity. Cell therapy is safe and feasible which may facilitate restoration of function in CIS.

  2. CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Trebst, C; Sørensen, Torben Lykke; Kivisäkk, P

    2001-01-01

    Mononuclear phagocytes (monocytes, macrophages, and microglia) are considered central to multiple sclerosis (MS) pathogenesis. Molecular cues that mediate mononuclear phagocyte accumulation and activation in the central nervous system (CNS) of MS patients may include chemokines RANTES/CCL5...

  3. Deficiencia de zinc y sus implicaciones funcionales Zinc deficiency and its functional implications

    Directory of Open Access Journals (Sweden)

    JORGE L ROSADO

    1998-03-01

    Full Text Available El presente trabajo tiene por objeto revisar los aspectos teóricos y los estudios realizados en México que sugieren la existencia de la deficiencia moderada de zinc en niños de población rural, así como algunas de las consecuencias de dicha deficiencia en la salud. El zinc es un nutrimento indispensable para el organismo de los humanos y juega un papel importante en una serie de procesos metabólicos: participa en el sitio catalítico de varios sistemas enzimáticos; participa como ion estructural en membranas biológicas, y guarda una estrecha relación con la síntesis de proteínas, entre otras cosas. Es por esto que la deficiencia de zinc está asociada con consecuencias importantes en la salud y la funcionalidad de los individuos, especialmente durante las primeras etapas de la vida. De relevancia para México es la existencia de una deficiencia moderada de zinc en los niños y las consecuencias que ésta pueda tener en la salud de los mismos. Los estudios realizados sugieren que la deficiencia moderada de zinc se presenta asociada con la ingestión de dietas basadas en alimentos de origen vegetal, las cuales contienen cantidades importantes de inhibidores de la absorción de zinc. Este tipo de dietas se consume habitualmente en las zonas rurales y en la población marginal de las ciudades en el país. Entre las consecuencias más importantes de esta deficiencia se encontró un aumento en la presencia de enfermedades infecciosas, especialmente de diarrea, y posibles alteraciones en el desarrollo de la capacidad cognoscitiva.The purpose of this article is to review theoretical aspects and research performed in Mexico suggesting the existence of marginal zinc deficiency in rural children and its consequences on health. Zinc is an indispensable nutrient for humans since it plays an important role in several metabolic pathways: it participates in the catalytic site of several enzymes, as a structural ion of biological membranes and is

  4. Zinc ions modulate protein tyrosine phosphatase 1B activity.

    Science.gov (United States)

    Bellomo, Elisa; Massarotti, Alberto; Hogstrand, Christer; Maret, Wolfgang

    2014-07-01

    Protein tyrosine phosphatases (PTPs) are key enzymes in cellular regulation. The 107 human PTPs are regulated by redox signalling, phosphorylation, dimerisation, and proteolysis. Recent findings of very strong inhibition of some PTPs by zinc ions at concentrations relevant in a cellular environment suggest yet another mechanism of regulation. One of the most extensively investigated PTPs is PTP1B (PTPN1). It regulates the insulin and leptin signalling pathway and is implicated in cancer and obesity/diabetes. The development of novel assay conditions to investigate zinc inhibition of PTP1B provides estimates of about 5.6 nM affinity for inhibitory zinc(II) ions. Analysis of three PTP1B 3D structures (PDB id: 2CM2, 3I80 and 1A5Y) identified putative zinc binding sites and supports the kinetic studies in suggesting an inhibitory zinc only in the closed and cysteinyl-phosphate intermediate forms of the enzyme. These observations gain significance with regard to recent findings of regulatory roles of zinc ions released from the endoplasmic reticulum.

  5. Depleted zinc: Properties, application, production.

    Science.gov (United States)

    Borisevich, V D; Pavlov, A V; Okhotina, I A

    2009-01-01

    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  6. Chloroquine is a zinc ionophore.

    Directory of Open Access Journals (Sweden)

    Jing Xue

    Full Text Available Chloroquine is an established antimalarial agent that has been recently tested in clinical trials for its anticancer activity. The favorable effect of chloroquine appears to be due to its ability to sensitize cancerous cells to chemotherapy, radiation therapy, and induce apoptosis. The present study investigated the interaction of zinc ions with chloroquine in a human ovarian cancer cell line (A2780. Chloroquine enhanced zinc uptake by A2780 cells in a concentration-dependent manner, as assayed using a fluorescent zinc probe. This enhancement was attenuated by TPEN, a high affinity metal-binding compound, indicating the specificity of the zinc uptake. Furthermore, addition of copper or iron ions had no effect on chloroquine-induced zinc uptake. Fluorescent microscopic examination of intracellular zinc distribution demonstrated that free zinc ions are more concentrated in the lysosomes after addition of chloroquine, which is consistent with previous reports showing that chloroquine inhibits lysosome function. The combination of chloroquine with zinc enhanced chloroquine's cytotoxicity and induced apoptosis in A2780 cells. Thus chloroquine is a zinc ionophore, a property that may contribute to chloroquine's anticancer activity.

  7. Zinc In CCl4 Toxicity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To investigate the protective effect of zinc in CCl4-induced hepatotoxicity. Methods Rats were treated with zinc acetate for four days. The zinc doses were 5 mg Zn/kg and 10 mg Zn/kg body weight respectively. Two groups of the zinc acetate-treated rats were later challenged with a single dose of CCl4 (1.5 mL/kg body weight). Results Compared to control animals, the plasma of rats treated with CCl4 showed hyperbilirubinaemia, hypoglycaemia, hypercreatinaemia and hypoproteinaemia. When the animals were however supplemented with zinc in form of zinc acetate before being dosed with CCl4, the 5 mg Zn/kg body weight of zinc acetate reversed the hypoproteinaemia induced by CCl4, whereas the 10mg Zn/kg body weight of zinc acetate reversed the hypoglycaemia, hyperbilimbinaemia and hypercreatinaemia induced by CCl4. Conclusion The 10mug Zn/kg body weight of zinc acetate is more consistent in protecting against CCl4 hepatotoxicity. The possible mechanisms of protection are highlighted.

  8. Enterococcus faecalis zinc-responsive proteins mediate bacterial defence against zinc overload, lysozyme and oxidative stress.

    Science.gov (United States)

    Abrantes, Marta C; Kok, Jan; Silva Lopes, Maria de Fátima

    2014-12-01

    Two Enterococcus faecalis genes encoding the P-type ATPase EF1400 and the putative SapB protein EF0759 were previously shown to be strongly upregulated in the presence of high concentrations of zinc. In the present work, we showed that a Zn(2+)-responsive DNA-binding motif (zim) is present in the promoter regions of these genes. Both proteins were further studied with respect to their involvement in zinc homeostasis and invasion of the host. EF0759 contributed to intramacrophage survival by an as-yet unknown mechanism(s). EF1400, here renamed ZntAEf, is an ATPase with specificity for zinc and plays a role in dealing with several host defences, i.e. zinc overload, oxidative stress and lysozyme; it provides E. faecalis cells with the ability to survive inside macrophages. As these three host defence mechanisms are important at several sites in the host, i.e. inside macrophages and in saliva, this work suggested that ZntAEf constitutes a crucial E. faecalis defence mechanism that is likely to contribute to the ability of this bacterium to endure life inside its host.

  9. A Long-Lived Mononuclear Cyclopentadienyl Ruthenium Complex Grafted onto Anatase TiO2 for Efficient CO2 Photoreduction.

    Science.gov (United States)

    Huang, Haowei; Lin, Jinjin; Zhu, Gangbei; Weng, Yuxiang; Wang, Xuxu; Fu, Xianzhi; Long, Jinlin

    2016-07-11

    This work shows a novel artificial donor-catalyst-acceptor triad photosystem based on a mononuclear C5 H5 -RuH complex oxo-bridged TiO2 hybrid for efficient CO2 photoreduction. An impressive quantum efficiency of 0.56 % for CH4 under visible-light irradiation was achieved over the triad photocatalyst, in which TiO2 and C5 H5 -RuH serve as the electron collector and CO2 -reduction site and the photon-harvester and water-oxidation site, respectively. The fast electron injection from the excited Ru(2+) cation to TiO2 in ca. 0.5 ps and the slow backward charge recombination in half-life of ca. 9.8 μs result in a long-lived D(+) -C-A(-) charge-separated state responsible for the solar-fuel production.

  10. Principles of bone marrow processing and progenitor cell/mononuclear cell concentrate collection in a continuous flow blood cell separation system.

    Science.gov (United States)

    Hester, J P; Rondón, G; Huh, Y O; Lauppe, M J; Champlin, R E; Deisseroth, A B

    1995-08-01

    The application of continuous flow apheresis technology to processing bone marrow for collection of the mononuclear progenitor cell population appears to follow the same principles as collection of mononuclear cells from peripheral blood. Unlike peripheral blood, however, where mobilization of cells from extravascular sites during the procedures contributes significantly to the final cell yield, the entire quantity of progenitor cells available for recovery from marrow is present in the original marrow when it is pooled. The process then becomes one of attempting optimal recovery of the cells of interest while excluding contaminating erythrocytes and cells of the myeloid series. This study reports the development of a protocol for recovery of MNC, CD33+, CD34+, and CD34+/DR- cells from harvested marrow for autologous and allogeneic transplants using a continuous flow blood cell separator, the variables influencing the recovery of the cells of interest and the clinical response to infusion of the processed cells.

  11. Zinc supplementation for tinnitus.

    Science.gov (United States)

    Person, Osmar C; Puga, Maria Es; da Silva, Edina Mk; Torloni, Maria R

    2016-11-23

    Tinnitus is the perception of sound without external acoustic stimuli. Patients with severe tinnitus may have physical and psychological complaints and their tinnitus can cause deterioration in their quality of life. At present no specific therapy for tinnitus has been found to be satisfactory in all patients. In recent decades, a number of reports have suggested that oral zinc supplementation may be effective in the management of tinnitus. Since zinc has a role in cochlear physiology and in the synapses of the auditory system, there is a plausible mechanism of action for this treatment. To evaluate the effectiveness and safety of oral zinc supplementation in the management of patients with tinnitus. The Cochrane ENT Information Specialist searched the ENT Trials Register; Central Register of Controlled Trials (CENTRAL 2016, Issue 6); PubMed; EMBASE; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 14 July 2016. Randomised controlled trials comparing zinc supplementation versus placebo in adults (18 years and over) with tinnitus. We used the standard methodological procedures recommended by Cochrane. Our primary outcome measures were improvement in tinnitus severity and disability, measured by a validated tinnitus-specific questionnaire, and adverse effects. Secondary outcomes were quality of life, change in socioeconomic impact associated with work, change in anxiety and depression disorders, change in psychoacoustic parameters, change in tinnitus loudness, change in overall severity of tinnitus and change in thresholds on pure tone audiometry. We used GRADE to assess the quality of the evidence for each outcome; this is indicated in italics. We included three trials involving a total of 209 participants. The studies were at moderate to high risk of bias. All included studies had differences in participant selection criteria, length of follow-up and outcome measurement

  12. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E;

    2001-01-01

    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution...

  13. Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide.

    Science.gov (United States)

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnic, Marica; Hurrell, Richard F

    2014-02-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with (67)Zn and (70)Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6-71.0) and was not different from that from zinc gluconate with 60.9% (50.6-71.7). Absorption from zinc oxide at 49.9% (40.9-57.7) was significantly lower than from both other supplements (P zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627.

  14. El zinc: oligoelemento esencial

    Directory of Open Access Journals (Sweden)

    C. Rubio

    Full Text Available En este artículo se hace una revisión exhaustiva del zinc, elemento metálico esencial para el funcionamiento del organismo. Repasamos y reflejamos aspectos relacionados con la farmacocinética, con las fuentes dietéticas más importantes, así como las IDR (Ingestas Dietéticas Recomendadas del mismo. También se hace mención a los signos y síntomas relacionados tanto con una ingesta deficiente, como con posibles efectos tóxicos, derivados de ingestas excesivas.

  15. Zinc Base Die Castings

    Science.gov (United States)

    1935-01-31

    183 B86- 33T SAE N.J .zn Co. B86-33T 1934 SAE N.J.Zn Cc,. Zamak 3N AllO;E Cl C2 Allo~ XXI 221 Zarnak 2 .A.llo;z XXIII .Allol XXIII 202 Zamak 2 O...2 includ.es Pb ,Fe, Cd, C:’. 3 special high gra1e ?:inc. • t • • ; -J TABLE II Chemical Composition for Zinc Alloy Nuuber Zam.ak 2 Zamak 3...was alco given regarding the aging of the alloys. The a1loy3 Aupplied were: Zamak 2, Zamak 3, Zamak 3-S (Stabilized to hasten contraction which

  16. Nanostructures of zinc oxide

    Directory of Open Access Journals (Sweden)

    Zhong Lin Wang

    2004-06-01

    Full Text Available Zinc oxide (ZnO is a unique material that exhibits semiconducting, piezoelectric, and pyroelectric multiple properties. Using a solid-vapor phase thermal sublimation technique, nanocombs, nanorings, nanohelixes/nanosprings, nanobows, nanobelts, nanowires, and nanocages of ZnO have been synthesized under specific growth conditions. These unique nanostructures unambiguously demonstrate that ZnO is probably the richest family of nanostructures among all materials, both in structures and properties. The nanostructures could have novel applications in optoelectronics, sensors, transducers, and biomedical science because it is bio-safe.

  17. Danxia Zinc Smelter started construction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Zinc smelting project of Danxia Smelting Plant has a total investment of about RMB 4 billion, which is designed by Changsha Engineering & Research Institute of Nonferrous Metallurgy and planned to be implemented in three stages. The first stage 100,000 tons of electrolytic zinc improvement work is planned to be completed by the end of 2008. The second and third stages

  18. Potent Anti-Inflammatory Activity of Carbohydrate Polymer with Oxide of Zinc

    Science.gov (United States)

    Moreno-Eutimio, Mario Adan; Nieto-Velázquez, Nayeli Goreti; Espinosa-Monroy, Lorena; Torres-Ramos, Yessica; Montoya-Estrada, Araceli; Cueto, Jorge; Hicks, Juan Jose; Acosta-Altamirano, Gustavo

    2014-01-01

    Pebisut is a biological adhesive composed of naturally occurring carbohydrates combined with zinc oxide (ZnO) initially used as a coadjutant for healing of anastomoses. Likewise some works demonstrated that carbohydrate complexes exerts anti-inflammatory activity and it is widely known that ZnO modulate inflammation. However, the direct effects of Pebisut on isolated cells and acute inflammatory responses remained to be investigated. The present study evaluated anti-inflammatory effect of Pebisut using lipopolysaccharide (LPS) stimulated human mononuclear cells, chemotaxis, and cell infiltration in vivo in a murine model of peritonitis. Our data show that human cells treated with different dilutions of Pebisut release less IL-6, IL-1β, and IL-8 after LPS stimuli compared with the control treated cells. In addition, Pebisut lacked chemotactic activity in human mononuclear cells but was able to reduce chemotaxis towards CCL2, CCL5, and CXCL12 that are representative mononuclear cells chemoattractants. Finally, in a murine model of peritonitis, we found less number of macrophages (F4/80+) and T lymphocytes (CD3+) in peritoneal lavages from animals treated with Pebisut. Our results suggest that Pebisut has anti-inflammatory activity, which might have a beneficial effect during anastomoses healing or wounds associated with excessive inflammation. PMID:24757670

  19. Prolactin stimulates integrin-mediated adhesion of circulating mononuclear cells to endothelial cells.

    Science.gov (United States)

    Montes de Oca, Pável; Macotela, Yazmín; Nava, Gabriel; López-Barrera, Fernando; de la Escalera, Gonzalo Martínez; Clapp, Carmen

    2005-05-01

    Attachment of leukocytes to endothelial cells is an essential step for the extravasation and recruitment of cells at sites of inflammation. The pituitary hormone prolactin (PRL) is involved in the inflammatory process. Here, we show that treatment with PRL of human peripheral blood mononuclear cells (PBMC) stimulates their adhesion to human umbilical vein endothelial cells (HUVEC) activated by interleukin-1beta. Stimulation of adhesion by PRL is mediated via integrins leukocyte functional antigen-1 (LFA-1) and very late antigen-4 (VLA-4), because immunoneutralization of both integrins prevents PRL action. Also, PRL promotes the adhesion of PBMC to immobilized intercellular adhesion molecule-1 and fibronectin, ligands for LFA-1 and VLA-4, respectively. Stimulation of integrin-mediated cell adhesion by PRL may involve the activation of chemokine receptors, because PRL upregulates the expression of the G-protein-coupled chemokine receptor CXCR3 in PBMC, and pertussis toxin, a specific G-protein inhibitor, blocks PRL stimulation of PBMC adhesion to HUVEC. In addition, PRL stimulates tyrosine phosphorylation pathways leading to leukocyte adhesion. PRL triggered the tyrosine phosphorylation of Janus kinase-2, of signal transducer and activator of transcription-3 and 5, and of the focal adhesion protein paxillin. Furthermore, genistein, a tyrosine kinase inhibitor, blocked PRL-stimulated adhesion of PBMC and Jurkat T-cells to HUVEC. These results suggest that PRL promotes integrin-mediated leukocyte adhesion to endothelial cells via chemokine receptors and tyrosine phosphorylation signaling pathways.

  20. 10th NTES Conference: Nickel and Arsenic Compounds Alter the Epigenome of Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Brocato, Jason; Costa, Max

    2015-01-01

    The mechanisms that underlie metal carcinogenesis are the subject of intense investigation; however, data from in vitro and in vivo studies are starting to piece together a story that implicates epigenetics as a key player. Data from our lab has shown that nickel compounds inhibit dioxygenase enzymes by displacing iron in the active site. Arsenic is hypothesized to inhibit these enzymes by diminishing ascorbate levels--an important co-factor for dioxygenases. Inhibition of histone demethylase dioxygenases can increase histone methylation levels, which also may affect gene expression. Recently, our lab conducted a series of investigations in human subjects exposed to high levels of nickel or arsenic compounds. Global levels of histone modifications in peripheral blood mononuclear cells (PBMCs) from exposed subjects were compared to low environmentally exposed controls. Results showed that nickel increased H3K4me3 and decreased H3K9me2 globally. Arsenic increased H3K9me2 and decreased H3K9ac globally. Other histone modifications affected by arsenic were sex-dependent. Nickel affected the expression of 2756 genes in human PBMCs and many of the genes were involved in immune and carcinogenic pathways. This review will describe data from our lab that demonstrates for the first time that nickel and arsenic compounds affect global levels of histone modifications and gene expression in exposed human populations.

  1. ZINC: a free tool to discover chemistry for biology.

    Science.gov (United States)

    Irwin, John J; Sterling, Teague; Mysinger, Michael M; Bolstad, Erin S; Coleman, Ryan G

    2012-07-23

    ZINC is a free public resource for ligand discovery. The database contains over twenty million commercially available molecules in biologically relevant representations that may be downloaded in popular ready-to-dock formats and subsets. The Web site also enables searches by structure, biological activity, physical property, vendor, catalog number, name, and CAS number. Small custom subsets may be created, edited, shared, docked, downloaded, and conveyed to a vendor for purchase. The database is maintained and curated for a high purchasing success rate and is freely available at zinc.docking.org.

  2. Differences in the nature of the interaction of insulin and proinsulin with zinc.

    Science.gov (United States)

    Grant, P T; Coombs, T L; Frank, B H

    1972-01-01

    1. The reversible interaction of zinc with pig insulin and proinsulin has been studied at pH7 by equilibrium dialysis (ultrafiltration) and by sedimentation equilibrium and velocity measurements in the ultracentrifuge. Binding values calculated from equilibria, where the ratio of free to bound zinc was varied in the range 0.01:1-10:1, indicated that proinsulin and insulin each contained two main orders of zinc binding with very different affinities for the metal. 2. In equilibria containing low concentrations of free zinc (free: bound ratios of 0.01-0.1:1) both insulin and proinsulin aggregated to form soluble hexamers containing firmly bound zinc (up to 0.284g-atom/monomer) with an apparent intrinsic association constant of 1.9x10(6)m(-1). 3. Higher concentrations of zinc (free: bound ratios of 0.1-10.0:1) resulted in a progressive difference in the zinc binding, aggregation and solubility properties of the metal complexes of insulin and proinsulin. At the highest concentration of free zinc, proinsulin bound a total of more than 5.0g-atom/monomer and aggregated to form a mixture of soluble polymers (mainly 5.1S). In contrast, insulin bound a total of only 1.0g-atom/monomer and was almost completely precipitated from solution. 4. These results would indicate that the presence of the peptide segment connecting the insulin moiety in proinsulin does not prevent the firm binding of zinc to the insulin moiety and the formation of hexamers of zinc-proinsulin. At the same time although the connecting peptide contains additional sites of lower affinity for zinc, which should facilitate inter- and intra-molecular cross-linking, the general conformation of the zinc-proinsulin hexamer must preclude the formation of very large and close-packed aggregates that are insoluble in solutions at equilibrium.

  3. Fish peripheral blood mononuclear cells preparation for future monitoring applications.

    Science.gov (United States)

    Pierrard, Marie-Aline; Roland, Kathleen; Kestemont, Patrick; Dieu, Marc; Raes, Martine; Silvestre, Frédéric

    2012-07-15

    Fish species possess many specific characteristics that support their use in ecotoxicology. Widely used in clinical research, peripheral blood mononuclear cells (PBMCs) can reasonably be exploited as relevant target cells in the assessment of environmental chemical toxicity. The current article focuses on the methods necessary to isolate, characterize, and culture fish PBMCs. These procedures were successfully applied on an endangered species, the European eel (Anguilla anguilla L.), and on an economically important and worldwide exported species, the Asian catfish (Pangasianodon hypophthalmus S.). Proteomic approaches can be useful to screen xenobiotic exposure at the protein expression level, giving the opportunity to develop early warning signals thanks to molecular signatures of toxicity. To date, a major limitation of proteomic analyses is that most protein expression profiles often reveal the same predominant and frequently differentially expressed families of proteins regardless of the experimental stressing conditions. The current study describes a methodology to get a postnuclear fraction of high quality isolated from fish PBMCs in order to perform subsequent subproteomic analyses. Applied on samples from eel, the subproteomic analysis (two-dimensional differential in-gel electrophoresis) allowed the identification by liquid chromatography-tandem mass spectrometry and searches in the full NCBInr (National Center for Biotechnology Information nonredundant) database of 66 proteins representing 36 different proteins validated through Peptide and Protein Prophet of Scaffold software.

  4. MicroRNA Expression in Alzheimer Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Hyman M. Schipper

    2007-01-01

    Full Text Available Various coding genes representing multiple functional categories are downregulated in blood mononuclear cells (BMC of patients with sporadic Alzheimer disease (AD. Noncoding microRNAs (miRNA regulate gene expression by degrading messages or inhibiting translation. Using BMC as a paradigm for the study of systemic alterations in AD, we investigated whether peripheral miRNA expression is altered in this condition. MicroRNA levels were assessed using the microRNA microarray (MMChip containing 462 human miRNA, and the results validated by real time PCR. Sixteen AD patients and sixteen normal elderly controls (NEC were matched for ethnicity, age, gender and education. The expression of several BMC miRNAs was found to increase in AD relative to NEC levels, and may differ between AD subjects bearing one or two APOE4 alleles. As compared to NEC, miRNAs signifi cantly upregulated in AD subjects and confi rmed by qPCR were miR-34a and 181b. Predicted target genes downregulated in Alzheimer BMC that correlated with the upregulated miRNAs were largely represented in the functional categories of Transcription/Translation and Synaptic Activity. Several miRNAs targeting the same genes were within the functional category of Injury response/Redox homeostasis. Taken together, induction of microRNA expression in BMC may contribute to the aberrant systemic decline in mRNA levels in sporadic AD.

  5. Autologous Bone Marrow Mononuclear Cells Intrathecal Transplantation in Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2014-01-01

    Full Text Available Cell therapy is being widely explored in the management of stroke and has demonstrated great potential. It has been shown to assist in the remodeling of the central nervous system by inducing neurorestorative effect through the process of angiogenesis, neurogenesis, and reduction of glial scar formation. In this study, the effect of intrathecal administration of autologous bone marrow mononuclear cells (BMMNCs is analyzed on the recovery process of patients with chronic stroke. 24 patients diagnosed with chronic stroke were administered cell therapy, followed by multidisciplinary neurorehabilitation. They were assessed on functional independence measure (FIM objectively, along with assessment of standing and walking balance, ambulation, and hand functions. Out of 24 patients, 12 improved in ambulation, 10 in hand functions, 6 in standing balance, and 9 in walking balance. Further factor analysis was done. Patients of the younger groups showed higher percentage of improvement in all the areas. Patients who underwent cell therapy within 2 years after the stroke showed better changes. Ischemic type of stroke had better recovery than the hemorrhagic stroke. This study demonstrates the potential of autologous BMMNCs intrathecal transplantation in improving the prognosis of functional recovery in chronic stage of stroke. Further clinical trials are recommended. This trial is registered with NCT02065778.

  6. Zinc-Induced Polymerization of Killer-Cell Ig-like Receptor into Filaments Promotes Its Inhibitory Function at Cytotoxic Immunological Synapses.

    Science.gov (United States)

    Kumar, Santosh; Rajagopalan, Sumati; Sarkar, Pabak; Dorward, David W; Peterson, Mary E; Liao, Hsien-Shun; Guillermier, Christelle; Steinhauser, Matthew L; Vogel, Steven S; Long, Eric O

    2016-04-07

    The inhibitory function of killer cell immunoglobulin-like receptors (KIR) that bind HLA-C and block activation of human natural killer (NK) cells is dependent on zinc. We report that zinc induced the assembly of soluble KIR into filamentous polymers, as detected by electron microscopy, which depolymerized after zinc chelation. Similar KIR filaments were isolated from lysates of cells treated with zinc, and membrane protrusions enriched in zinc were detected on whole cells by scanning electron microscopy and imaging mass spectrometry. Two independent mutations in the extracellular domain of KIR, away from the HLA-C binding site, impaired zinc-driven polymerization and inhibitory function. KIR filaments formed spontaneously, without the addition of zinc, at functional inhibitory immunological synapses of NK cells with HLA-C(+) cells. Adding to the recent paradigm of signal transduction through higher order molecular assemblies, zinc-induced polymerization of inhibitory KIR represents an unusual mode of signaling by a receptor at the cell surface.

  7. 21 CFR 73.1991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc...). It is principally composed of Zn. (2) Color additive mixtures for drug use made with zinc oxide...

  8. The inhibitory binding site(s) of Zn2+ in cytochrome c oxidase.

    Science.gov (United States)

    Francia, Francesco; Giachini, Lisa; Boscherini, Federico; Venturoli, Giovanni; Capitanio, Giuseppe; Martino, Pietro Luca; Papa, Sergio

    2007-02-20

    EXAFS analysis of Zn binding site(s) in bovine-heart cytochrome c oxidase and characterization of the inhibitory effect of internal zinc on respiratory activity and proton pumping of the liposome reconstituted oxidase are presented. EXAFS identifies tetrahedral coordination site(s) for Zn(2+) with two N-histidine imidazoles, one N-histidine imidazol or N-lysine and one O-COOH (glutamate or aspartate), possibly located at the entry site of the proton conducting D pathway in the oxidase and involved in inhibition of the oxygen reduction catalysis and proton pumping by internally trapped zinc.

  9. Zinc-bromine battery development

    Science.gov (United States)

    Richards, Lew; Vanschalwijk, Walter; Albert, George; Tarjanyi, Mike; Leo, Anthony; Lott, Stephen

    1990-05-01

    This report describes development activities on the zinc-bromine battery system conducted by Energy Research Corporation (ERC). The project was a cost-shared program supported by the U.S. Department of Energy and managed through Sandia. The project began in September 1985 and ran through January 1990. The zinc-bromine battery has been identified as a promising alternative to conventional energy storage options for many applications. The low cost of the battery reactants and the potential for long life make the system an attractive candidate for bulk energy storage applications, such as utility load leveling. The battery stores energy by the electrolysis of an aqueous zinc bromide salt to zinc metal and dissolved bromine. Zinc is plated as a layer on the electrode surface while bromine is dissolved in the electrolyte and carried out of the stack. The bromine is then extracted from the electrolyte with an organic complexing agent in the positive electrolyte storage tank. On discharge the zinc and bromine are consumed, regenerating the zinc bromide salt.

  10. Effect of nutrient deficiencies on in vitro Th1 and Th2 cytokine response of peripheral blood mononuclear cells to Plasmodium falciparum infection

    Directory of Open Access Journals (Sweden)

    McCall Matthew

    2010-06-01

    Full Text Available Abstract Background An appropriate balance between pro-inflammatory and anti-inflammatory cytokines that mediate innate and adaptive immune responses is required for effective protection against human malaria and to avoid immunopathology. In malaria endemic countries, this immunological balance may be influenced by micronutrient deficiencies. Methods Peripheral blood mononuclear cells from Tanzanian preschool children were stimulated in vitro with Plasmodium falciparum-parasitized red blood cells to determine T-cell responses to malaria under different conditions of nutrient deficiencies and malaria status. Results The data obtained indicate that zinc deficiency is associated with an increase in TNF response by 37%; 95% CI: 14% to 118% and IFN-γ response by 74%; 95% CI: 24% to 297%. Magnesium deficiency, on the other hand, was associated with an increase in production of IL-13 by 80%; 95% CI: 31% to 371% and a reduction in IFN-γ production. These results reflect a shift in cytokine profile to a more type I cytokine profile and cell-cell mediated responses in zinc deficiency and a type II response in magnesium deficiency. The data also reveal a non-specific decrease in cytokine production in children due to iron deficiency anaemia that is largely associated with malaria infection status. Conclusions The pathological sequels of malaria potentially depend more on the balance between type I and type II cytokine responses than on absolute suppression of these cytokines and this balance may be influenced by a combination of micronutrient deficiencies and malaria status.

  11. Cytotoxicity of zinc in vitro.

    Science.gov (United States)

    Borovanský, J; Riley, P A

    1989-01-01

    The effect of zinc ions on B16 mouse melanoma lines, HeLa cells and I-221 epithelial cells was investigated in vitro in order to ascertain whether sensitivity to Zn2+ is a general feature of cells in vitro and in an attempt to elucidate the mechanism(s) of zinc cytotoxicity. The proliferation of B16, HeLa and I-221 cell lines was inhibited by 1.25 x 10(-4), 1.50 x 10(-4) and 1.50 x 10(-4) mol/l Zn2+, respectively. The free radical scavengers, methimazole and ethanol, did not suppress the toxicity of Zn2+, neither did superoxide dismutase or catalase. The addition of the chelating agent EDTA reduced the zinc cytotoxicity. It was possible to suppress the cytotoxicity of zinc by increasing the concentration of either Fe2+ or Ca2+ but not Mg2+, which suggests that a prerequisite for the toxic action of zinc is entry into cells using channels that are shared with iron or calcium. This view was supported by experiments in which transferrin intensified the cytotoxic action of zinc in serum-free medium. Another agent facilitating zinc transport, prostaglandin E2, inhibited the proliferation of the B16 melanoma cell line. There were no conspicuous differences in zinc toxicity to pigmented and unpigmented cells. The toxic effect of zinc in the cell systems studied exceeded that of iron, copper, manganese and cobalt in the same concentration range. In vitro, Zn2+ should be regarded as a dangerous cation.

  12. Transcriptional Profiling of Human Peripheral Blood Mononuclear Cells Exposed to Bacillus anthracis in vitro

    Science.gov (United States)

    2013-03-11

    Bacillus cereus group of bacteria, are attributed to poly- γ-D-glutamate acid (PGA) capsule, lethal toxin (LT) and edema toxin (ET) [10-12]. These toxins...M, Hellman M, Muhie S, et al. (2013) Transcriptional Profiling of Human Peripheral Blood Mononuclear Cells Exposed to Bacillus anthracis in vitro...author and source are credited. Transcriptional Profiling of Human Peripheral Blood Mononuclear Cells Exposed to Bacillus anthracis in vitro Rasha

  13. Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus.

    Science.gov (United States)

    Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic

    2016-01-01

    This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.

  14. Zinc Oxide Nanoparticle Photodetector

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available A zinc oxide (ZnO nanoparticle photodetector was fabricated using a simple method. Under a 5 V applied bias, its dark current and photocurrent were 1.98×10-8 and 9.42×10-7 A, respectively. In other words, a photocurrent-to-dark-current contrast ratio of 48 was obtained. Under incident light at a wavelength of 375 nm and a 5 V applied bias, the detector’s measured responsivity was 3.75 A/W. The transient time constants measured during the turn-ON and turn-OFF states were τON=204 s and τOFF=486 s, respectively.

  15. Zinc and cadmium monosalicylates

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K. (Moskovskij Khimiko-Tekhnologicheskij Inst. (USSR))

    1984-06-01

    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC/sub 6/H/sub 4/COOH (H/sub 2/Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC/sub 6/H/sub 4/COO) and products of their thermal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure.

  16. Human and mouse mononuclear phagocyte networks: a tale of two species?

    Directory of Open Access Journals (Sweden)

    Gary eReynolds

    2015-06-01

    Full Text Available Dendritic cells (DCs, monocytes and macrophages are a heterogeneous population of mononuclear phagocytes that are involved in antigen processing and presentation to initiate and regulate immune responses to pathogens, vaccines, tumour and tolerance to self. In addition to their afferent sentinel function, DCs and macrophages are also critical as effectors and coordinators of inflammation and homeostasis in peripheral tissues. Harnessing DCs and macrophages for therapeutic purposes has major implications for infectious disease, vaccination, transplantation, tolerance induction, inflammation and cancer immunotherapy. There has been a paradigm shift in our understanding of the developmental origin and function of the cellular constituents of the mononuclear phagocyte system. Significant progress has been made in tandem in both human and mouse mononuclear phagocyte biology. This progress has been accelerated by comparative biology analysis between mouse and human, which has proved to be an exceptionally fruitful strategy to harmonise findings across species. Such analyses have provided unexpected insights and facilitated productive reciprocal and iterative processes to inform our understanding of human and mouse mononuclear phagocytes. In this review, we discuss the strategies, power and utility of comparative biology approaches to integrate recent advances in human and mouse mononuclear phagocyte biology and its potential to drive forward clinical translation of this knowledge. We also present a functional framework on the parallel organisation of human and mouse mononuclear phagocyte networks.

  17. Use of serum zinc concentration as an indicator of population zinc status.

    Science.gov (United States)

    Hess, Sonja Y; Peerson, Janet M; King, Janet C; Brown, Kenneth H

    2007-09-01

    Assessing the prevalence and severity of zinc deficiency in populations is critical to determine the need for and appropriate targeting of zinc intervention programs and to assess their effectiveness for improving the health and well-being of high-risk populations. However, there is very little information on the zinc status of populations worldwide due to the lack of consensus on appropriate biochemical indicators of zinc status. The objective of this review was to evaluate the use of serum zinc concentration as an indicator of population zinc status. We have reviewed the response of serum zinc concentration to dietary zinc restriction and zinc supplementation. In addition, we completed pooled analyses of nine zinc intervention trials in young children to assess the relations between serum zinc concentration of individuals before treatment and their responses to zinc supplementation. Also, in updated combined analyses of previously published data, we investigated the relation between the mean initial serum zinc concentration of a study population and their mean growth responses to zinc supplementation in randomized intervention trials among children. The results from depletion/repletion studies indicate that serum zinc concentrations respond appreciably to severe dietary zinc restriction, although there is considerable interindividual variation in these responses. There is also clear evidence that both individual and population mean serum zinc concentrations increase consistently during zinc supplementation, regardless of the initial level of serum zinc concentration. By contrast, an individual's serum zinc concentration does not reliably predict that person's response to zinc supplementation. Serum zinc concentration can be considered a useful biomarker of a population's risk of zinc deficiency and response to zinc interventions, although it may not be a reliable indicator of individual zinc status.

  18. A Mononuclear Mn(II) Pseudoclathrochelate Complex Studied by Multi-Frequency Electron-Paramagnetic-Resonance Spectroscopy.

    Science.gov (United States)

    Azarkh, Mykhailo; Penkova, Larysa V; Kats, Svitlana V; Varzatskii, Oleg A; Voloshin, Yan Z; Groenen, Edgar J J

    2014-03-06

    Knowledge of the correlation between structural and spectroscopic properties of transition-metal complexes is essential to deepen the understanding of their role in catalysis, molecular magnetism, and biological inorganic chemistry. It provides topological and, sometimes, functional insight with respect to the active site properties of metalloproteins. The electronic structure of a high-spin mononuclear Mn(II) pseudoclathrochelate complex has been investigated by electron-paramagnetic-resonance (EPR) spectroscopy at 9.5 and 275.7 GHz. A substantial, virtually axial zero-field splitting with D = -9.7 GHz (-0.32 cm(-1)) is found, which is the largest one reported to date for a Mn(II) complex with six nitrogen atoms in the first coordination sphere.

  19. [Cloning and structure analysis of zinc finger protein gene in Populus euphratica Oliv].

    Science.gov (United States)

    Wang, Jun-Ying; Yin, Wei-Lun; Xia, Xin-Li

    2005-03-01

    Zinc finger proteins belong to a family of nuclear transcription factors which function is to regulate gene expression in both prokaryotic and eukaryotic cells. A pair of primers was designed after analyzing the conservation of salt-tolerant zinc protein Alfin-1 in such diverse plants as alfalfa and Arabidopsis. The zinc finger protein gene is isolated from total RNA with RT-PCR in aquaculture leaves of Populus euphratica . Its full cDNA length is 924bp. Analysis of its amino acid sequence showed it has a typical Cys(2)/His(2) zinc finger structure and a G-rich promoter binding site GTGGGG, starting from position 556. Since transcrptional factors which have the same function show conservation in structure and amino acid sequence of DNA binding region, the structure analysis in this paper indicates the cloned zinc finger protein gene may have functional correlation to Alfin-1.

  20. Absence of peripheral blood mononuclear cells priming in hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Santos B.C.

    2003-01-01

    Full Text Available As a consequence of the proinflammatory environment occurring in dialytic patients, cytokine overproduction has been implicated in hemodialysis co-morbidity. However, there are discrepancies among the various studies that have analyzed TNF-alpha synthesis and the presence of peripheral blood mononuclear cell (PBMC priming in this clinical setting. We measured bioactive cytokine by the L929 cell bioassay, and evaluated PBMC TNF-alpha production by 32 hemodialysis patients (HP and 51 controls. No difference in TNF-alpha secretion was observed between controls and HP (859 ± 141 vs 697 ± 130 U/10(6 cells. Lipopolysaccharide (5 µg/ml did not induce any further TNF-alpha release, showing no PBMC priming. Paraformaldehyde-fixed HP PBMC were not cytotoxic to L929 cells, suggesting the absence of membrane-anchored TNF-alpha. Cycloheximide inhibited PBMC cytotoxicity in HP and controls, indicating lack of a PBMC TNF-alpha pool, and dependence on de novo cytokine synthesis. Actinomycin D reduced TNF-alpha production in HP, but had no effect on controls. Therefore, our data imply that TNF-alpha production is an intrinsic activity of normal PBMC and is not altered in HP. Moreover, TNF-alpha is a product of de novo synthesis by PBMC and is not constitutively expressed on HP cell membranes. The effect of actinomycin D suggests a putative tighter control of TNF-alpha mRNA turnover in HP. This increased dependence on TNF-alpha RNA transcription in HP may reflect an adaptive response to hemodialysis stimuli.

  1. Redox properties of a mononuclear copper(II)-superoxide complex.

    Science.gov (United States)

    Tano, Tetsuro; Okubo, Yuri; Kunishita, Atsushi; Kubo, Minoru; Sugimoto, Hideki; Fujieda, Nobutaka; Ogura, Takashi; Itoh, Shinobu

    2013-09-16

    Redox properties of a mononuclear copper(II) superoxide complex, (L)Cu(II)-OO(•), supported by a tridentate ligand (L = 1-(2-phenethyl)-5-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane) have been examined as a model compound of the putative reactive intermediate of peptidylglycine α-hydroxylating monooxygenase (PHM) and dopamine β-monooxygenase (DβM) (Kunishita et al. J. Am. Chem. Soc. 2009, 131, 2788-2789; Inorg. Chem. 2012, 51, 9465-9480). On the basis of the reactivity toward a series of one-electron reductants, the reduction potential of (L)Cu(II)-OO(•) was estimated to be 0.19 ± 0.07 V vs SCE in acetone at 298 K (cf. Tahsini et al. Chem.-Eur. J. 2012, 18, 1084-1093). In the reaction of TEMPO-H (2,2,6,6-tetramethylpiperidine-N-hydroxide), a simple HAT (hydrogen atom transfer) reaction took place to give the corresponding hydroperoxide complex LCu(II)-OOH, whereas the reaction with phenol derivatives ((X)ArOH) gave the corresponding phenolate adducts, LCu(II)-O(X)Ar, presumably via an acid-base reaction between the superoxide ligand and the phenols. The reaction of (L)Cu(II)-OO(•) with a series of triphenylphosphine derivatives gave the corresponding triphenylphosphine oxides via an electrophilic ionic substitution mechanism with a Hammett ρ value as -4.3, whereas the reaction with thioanisole (sulfide) only gave a copper(I) complex. These reactivities of (L)Cu(II)-OO(•) are different from those of a similar end-on superoxide copper(II) complex supported by a tetradentate TMG3tren ligand (1,1,1-Tris{2-[N(2)-(1,1,3,3-tetramethylguanidino)]ethyl}amine (Maiti et al. Angew. Chem., Int. Ed. 2008, 47, 82-85).

  2. Zinc tolerance and zinc removal ability of living and dried biomass of Desmodesmus communis.

    Science.gov (United States)

    Novák, Zoltán; Jánószky, Mihály; B-Béres, Viktória; Nagy, Sándor Alex; Bácsi, István

    2014-12-01

    Effects of zinc on growth, cell morphology, oxidative stress, and zinc removal ability of the common phytoplankton species Desmodesmus communis were investigated at a concentration range of 0.25-160 mg L(-1) zinc. Cell densities and chlorophyll content decreased in treated cultures, changes in coenobia morphology and elevated lipid peroxidation levels appeared above 2.5 mg L(-1) zinc. The most effective zinc removal was observed at 5 mg L(-1) zinc concentration, while maximal amount of removed zinc appeared in 15 mg L(-1) zinc treated culture. Removed zinc is mainly bound on the cell surface. Dead biomass adsorbed more zinc than living biomass relative to unit of dry mass, but living biomass was more effective, relative to initial zinc content. This study comprehensively examines the zinc tolerance and removal ability of D. communis and demonstrates, in comparison with published literature, that these characteristics of different isolates of the same species can vary within a wide range.

  3. Zinc toxicology following particulate inhalation

    Directory of Open Access Journals (Sweden)

    Cooper Ross

    2008-01-01

    Full Text Available The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl 2 inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection.

  4. Prevalence of Zinc Deficiency by “ Zinc Taste Test” in Pre School Children in Yazd.

    Directory of Open Access Journals (Sweden)

    Gh Maleki

    2004-10-01

    Full Text Available Introduction: Zinc deficiency is a health problem in many communities, especially among children because of growth spurt. Zinc deficiency can cause;growth limitation, delay in sexuel maturity, behavior disorders and abnormalities of immune system,susceptibility to respiratory and gasterointestinal infections and impairment of taste and smell perception. Material and Method: One of the methods of assessment the zinc defeciency is “ Zinc taste test” using zinc sulfate solution 0.1% , this test performed used to assess the zinc deficiency among preshool childeren in Yazd. The results were evaluated with measurments of weight,height and demographic data. 400 preschool children were selected by multi stage random sampling.Having good taste perception of zinc sulfate 0.1% was used as impaired taste test ( zinc deficiency and having bad taste perception as normal zinc level. Results: Regarding to zinc taste test 73.9% of study group had zinc deficiency (77.6%femal, 69.7% male There were no significant relation between zinc deficiency and measurment of weight and height,but there was higher prevalence of zinc deficiency in children who were below the 5th percentile in height and weight by age. Conclusion: 70% of preschool children in yazd had zinc deficiency assessed by “ zinc taste test”,31% of adolecents in Tehran have had zinc deficiency based on plasma , erythrocyte and hairindex. There is no significant relation between zinc deficiency and antropometric and demographic data, in this study and the study that had been done on adolescents in Tehran.Considering the prevalnce of zinc deficiency with “ Zinc taste test” ;it seems more accurate studies need to be done like zinc measurment in WBC,RBC and Platelets and zinc taste test at the same time,if correlation coefficients between zinc taste test and other tests were very strong , we can used zinc tase test in the different age for assessment of zinc body.

  5. Morphology study of electrodeposited zinc from zinc sulfate solutions as anode for zinc-air and zinc-carbon batteries

    OpenAIRE

    Nurhaswani Alias; Ahmad Azmin Mohamad

    2015-01-01

    The morphology of Zinc (Zn) deposits was investigated as anode for aqueous batteries. The Zn was deposited from zinc sulfate solution in direct current conditions on a copper surface at different current densities. The morphology characterization of Zn deposits was performed via field emission scanning electron microscopy. The Zn deposits transformed from a dense and compact structure to dendritic form with increasing current density. The electrodeposition of Zn with a current density of 0.02...

  6. Zinc deficiency leads to lipofuscin accumulation in the retinal pigment epithelium of pigmented rats.

    Directory of Open Access Journals (Sweden)

    Sylvie Julien

    Full Text Available BACKGROUND: Age-related macular degeneration (AMD is associated with lipofuscin accumulation whereas the content of melanosomes decreases. Melanosomes are the main storage of zinc in the pigmented tissues. Since the elderly population, as the most affected group for AMD, is prone to zinc deficit, we investigated the chemical and ultrastructural effects of zinc deficiency in pigmented rat eyes after a six-month zinc penury diet. METHODOLOGY/PRINCIPAL FINDINGS: Adult Long Evans (LE rats were investigated. The control animals were fed with a normal alimentation whereas the zinc-deficiency rats (ZD-LE were fed with a zinc deficient diet for six months. Quantitative Energy Dispersive X-ray (EDX microanalysis yielded the zinc mole fractions of melanosomes in the retinal pigment epithelium (RPE. The lateral resolution of the analysis was 100 nm. The zinc mole fractions of melanosomes were significantly smaller in the RPE of ZD-LE rats as compared to the LE control rats. Light, fluorescence and electron microscopy, as well as immunohistochemistry were performed. The numbers of lipofuscin granules in the RPE and of infiltrated cells (Ø>3 µm found in the choroid were quantified. The number of lipofuscin granules significantly increased in ZD-LE as compared to control rats. Infiltrated cells bigger than 3 µm were only detected in the choroid of ZD-LE animals. Moreover, the thickness of the Bruch's membrane of ZD-LE rats varied between 0.4-3 µm and thin, rangy ED1 positive macrophages were found attached at these sites of Bruch's membrane or even inside it. CONCLUSIONS/SIGNIFICANCE: In pigmented rats, zinc deficiency yielded an accumulation of lipofuscin in the RPE and of large pigmented macrophages in the choroids as well as the appearance of thin, rangy macrophages at Bruch's membrane. Moreover, we showed that a zinc diet reduced the zinc mole fraction of melanosomes in the RPE and modulated the thickness of the Bruch's membrane.

  7. Sensitivity to zinc of Mediterranean woody species important for restoration.

    Science.gov (United States)

    Disante, Karen B; Fuentes, David; Cortina, Jordi

    2010-04-15

    Heavy metals have increased in natural woodlands and shrublands over the last several decades as a consequence of anthropogenic activities. However, our knowledge of the effects of these elements on woody species is scarce. In this study, we examined the responses of six Mediterranean woody species to increasing levels of zinc in hydroponic culture and discussed the possible implications for the restoration of contaminated sites. The species used, Pinus pinea L., Pinus pinaster Ait., Pinus halepensis Mill., Tetraclinis articulata (Vahl) Mast., Rhamnus alaternus L. and Quercus suber L. represent a climatic gradient from dry sub-humid to semi-arid conditions. Zinc concentrations in shoots ranged from 53 microg g(-1) in Q. suber to 382 microg g(-1) in T. articulata and were well below the levels found in roots. Zinc inhibited root elongation and root biomass and changed the root length distribution per diameter class, but the magnitude of the effects was species-specific. Only P. halepensis and Q. suber showed toxicity symptoms in aboveground parts. Species more characteristic from xeric environments (T. articulata, R. alaternus and P. halepensis) were more sensitive to zinc than species from mesic environments (Q. suber, P. pinaster and P. pinea). According to the Zn responses and bioaccumulation, Q. suber P. pinea and P. halepensis are the best candidates for field trials to test the value of woody species to restore contaminated sites. None of the species tested seemed suitable for phytoremediation.

  8. Spectroscopic characterization of copper(I) binding to apo and metal-reconstituted zinc finger peptides.

    Science.gov (United States)

    Doku, Reginald T; Park, Grace; Wheeler, Korin E; Splan, Kathryn E

    2013-08-01

    Cu(I) exhibits high affinity for thiolate ligands, suggesting that thiol-rich zinc or iron binding sites may be subject to disruption during copper stress conditions. Zinc fingers constitute a large class of metalloproteins that use a combination of cysteine and histidine residues that bind Zn(II) as a structural element. Despite the shared preference of both copper and zinc for thiolate and amine coordination, the susceptibility of zinc finger domains toward copper substitution is not well studied. We report spectroscopic studies that characterize the Cu(I) binding properties of the zinc finger consensus peptides CP-CCHH, CP-CCHC, and CP-CCCC and the C-terminal zinc finger domain of HIV-1 nucleocapsid protein p7 (NCp7_C). Cu(I) binds to both the apopeptides and the Co(II)-substituted peptides, and the stoichiometry of Cu(I) binding is dependent on the number of cysteine thiols at the metal binding site. Fluorescence studies of the Zn(II)-NCp7_C complex indicate that Cu(I) also effectively competes with Zn(II) at the metal binding site, despite the high affinity of Zn(II) for the CCHC binding motif. Circular dichroism studies on both CP-CCHC and NCp7_C show that the conformations of the Cu(I)-bound complexes differ substantially from those of the Zn(II) species, implying that Cu(I) substitution is likely to impact zinc finger function. These results show that for the peptides studied here, Cu(I) is the thermodynamically favored metal despite the known high Zn(II) affinity of zinc finger domains, suggesting that Cu(I)-substituted zinc finger domains might be relevant in the context of both copper toxicity mechanisms and copper-responsive transcription factors.

  9. [Role of zinc in type 2 diabetes].

    Science.gov (United States)

    Tamaki, Motoyuki; Fujitani, Yoshio

    2014-01-01

    Pancreatic β cells contain the highest amount of zinc among cells within the human body, and hence, the relationship between zinc and diabetes has been of great interest. To date, many studies of zinc and diabetes have been reported, including studies demonstrating that diabetic patients and mice have a decreased amount of zinc in the pancreas. Zinc may counteract the deleterious effects of oxidative stress, which contributes to reduced insulin resistance, and may also protect pancreatic β cells from glucolipotoxicity. Recently, we have shown that SLC30A8/zinc transporter 8, which is a transporter expressed on the surface of insulin granules, plays a key role in zinc transport into insulin granules and in the regulation of hepatic insulin clearance. Here, we review the role of zinc in whole-body maintenance and the latest information on the relationship between zinc and diabetes.

  10. Change in the site of electron-transfer reduction of a zinc-quinoxalinoporphyrin/gold-quinoxalinoporphyrin dyad by binding of scandium ions and the resulting remarkable elongation of the charge-shifted-state lifetime.

    Science.gov (United States)

    Ohkubo, Kei; Garcia, Rachel; Sintic, Paul J; Khoury, Tony; Crossley, Maxwell J; Kadish, Karl M; Fukuzumi, Shunichi

    2009-10-12

    The site of electron-transfer reduction of AuPQ(+) (PQ = 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)quino-xalino[2, 3-b']porphyrin) and AuQPQ(+) (QPQ = 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)bisquinoxalino[2,3-b':12,13-b'']porphyrin) is changed from the Au(III) center to the quinoxaline part of the PQ macrocycle in the presence of Sc(3+) in benzonitrile because of strong binding of Sc(3+) to the two nitrogen atoms of the quinoxaline moiety. Strong binding of Sc(3+) to the corresponding nitrogen atoms on the quinoxaline unit of ZnPQ also occurs for the neutral form. The effects of Sc(3+) on the photodynamics of an electron donor-acceptor compound containing a linked Zn(II) and Au(III) porphyrin ([ZnPQ-AuPQ]PF(6)) have been examined by femto- and nanosecond laser flash photolysis measurements. The observed transient absorption bands at 630 and 670 nm after laser pulse irradiation in the absence of Sc(3+) in benzonitrile are assigned to the charge-shifted (CS) state (ZnPQ(*)(+)-AuPQ). The CS state decays through back electron transfer (BET) to the ground state rather than to the triplet excited state. The BET rate was determined from the disappearance of the absorption band due to the CS state. The decay of the CS state obeys first-order kinetics. The CS lifetime was determined to be 250 ps in benzonitrile. Addition of Sc(3+) to a solution of ZnPQ-AuPQ(+) in benzonitrile caused a drastic lengthening of the CS lifetime that was determined to be 430 ns, a value 1700 times longer than the 250 ps lifetime measured in the absence of Sc(3+). Such remarkable prolongation of the CS lifetime in the presence of Sc(3+) results from a change in the site of electron transfer from the Au(III) center to the quinoxaline part of the PQ macrocycle when Sc(3+) binds to the quinoxaline moiety, which decelerate BET due to a large reorganization energy of electron transfer. The change in the site of electron transfer was confirmed by ESR measurements, redox potentials, and UV

  11. Anxiolytic and antidepressant effect of zinc on rats and its impact on general behavioural parameters

    OpenAIRE

    Samardžić Janko; Savić Kristina; Stefanović Nemanja; Matunović Radomir; Baltezarević Dragana; Obradović Miljana; Jančić Jasna; Oprić Dejan; Obradović Dragan

    2013-01-01

    Background/Aim. Zinc is an essential element which has considerable interaction with gamma-aminobutyric acid A type receptors (GABAA) and glutamate receptors in the central nervous system (CNS). It is believed that zinc acts as a potent inhibitor of glutamate N-methyl-D-aspartate (NMDA) receptors, and binding to structurally specific site on the GABAA receptor leads to inhibition of GABA dependent Cl-pass. The aim of our research was to test the anxiolytic and antidepressant effects of ...

  12. Mononuclear phagocytes contribute to intestinal invasion and dissemination of Yersinia enterocolitica.

    Science.gov (United States)

    Drechsler-Hake, Doreen; Alamir, Hanin; Hahn, Julia; Günter, Manina; Wagner, Samuel; Schütz, Monika; Bohn, Erwin; Schenke-Layland, Katja; Pisano, Fabio; Dersch, Petra; Autenrieth, Ingo B; Autenrieth, Stella E

    2016-09-01

    Enteropathogenic Yersinia enterocolitica (Ye) enters the host via contaminated food. After colonisation of the small intestine Ye invades the Peyer's patches (PPs) via M cells and disseminates to the mesenteric lymph nodes (MLNs), spleen and liver. Whether Ye uses other invasion routes and which pathogenicity factors are required remains elusive. Oral infection of lymphotoxin-β-receptor deficient mice lacking PPs and MLNs with Ye revealed similar bacterial load in the spleen 1h post infection as wild-type mice, demonstrating a PP-independent dissemination route for Ye. Immunohistological analysis of the small intestine revealed Ye in close contact with mononuclear phagocytes (MPs), specifically CX3CR1(+) monocyte-derived cells (MCs) as well as CD103(+) dendritic cells (DCs). This finding was confirmed by flow cytometry and imaging flow cytometry analysis of lamina propria (LP) leukocytes showing CD103(+) DCs and MCs with intracellular Ye. Uptake of Ye by LP CD103(+) DCs and MCs was dependent on the pathogenicity factor invasin, whereas the adhesin YadA was dispensable as demonstrated by Ye deletion mutants. Furthermore, Ye were found exclusively associated with CD103(+) DCs in the MLNs from wild-type mice, but not from CCR7(-/-) mice, demonstrating a CCR7 dependent transport of Ye by CD103(+) DCs from LP to the MLNs. In contrast, dissemination of Ye to the spleen was dependent on MCs as significantly less Ye could be recovered from the spleen of CX3CR1(GFP/GFP) mice compared to wild-type mice. Altogether, MCs and CD103(+) DCs contribute to immediate invasion and dissemination of Ye. This together with data from other bacteria suggests MPs as general pathogenic entry site in the intestine.

  13. Controlled meal frequency without caloric restriction alters peripheral blood mononuclear cell cytokine production

    Directory of Open Access Journals (Sweden)

    Longo Dan L

    2011-03-01

    Full Text Available Abstract Background Intermittent fasting (IF improves healthy lifespan in animals by a mechanism involving reduced oxidative damage and increased resistance to stress. However, no studies have evaluated the impact of controlled meal frequency on immune responses in human subjects. Objective A study was conducted to establish the effects of controlled diets with different meal frequencies, but similar daily energy intakes, on cytokine production in healthy male and female subjects. Design In a crossover study design with an intervening washout period, healthy normal weight middle-age male and female subjects (n = 15 were maintained for 2 months on controlled on-site one meal per day (OMD or three meals per day (TMD isocaloric diets. Serum samples and peripheral blood mononuclear cells (PBMCs culture supernatants from subjects were analyzed for the presence of inflammatory markers using a multiplex assay. Results There were no significant differences in the inflammatory markers in the serum of subjects on the OMD or TMD diets. There was an increase in the capacity of PBMCs to produce cytokines in subjects during the first month on the OMD or TMD diets. Lower levels of TNF-α, IL-17, MCP-1 and MIP-1β were produced by PBMCs from subjects on the OMD versus TMD diet. Conclusions PBMCs of subjects on controlled diets exhibit hypersensitivities to cellular stimulation suggesting that stress associated with altered eating behavior might affect cytokine production by immune cells upon stimulation. Moreover, stimulated PBMCs derived from healthy individuals on a reduced meal frequency diet respond with a reduced capability to produce cytokines.

  14. Naive Treg-like CCR7(+) mononuclear cells indicate unfavorable prognosis in hepatocellular carcinoma.

    Science.gov (United States)

    Shi, Jie-Yi; Duan, Meng; Sun, Qi-Man; Yang, Liuxiao; Wang, Zhi-Chao; Mynbaev, Ospan A; He, Yi-Feng; Wang, Ling-Yan; Zhou, Jian; Tang, Qi-Qun; Cao, Ya; Fan, Jia; Wang, Xiao-Ying; Gao, Qiang

    2016-07-01

    Chemokine receptor-like 1 (CCRL1) has the potential in creating a low level of CCL19 and CCL21 to hinder CCR7(+) cell tracking to tumor tissue. Previously, we found a tumor suppressive role of CCRL1 by impairing CCR7-related chemotaxis of tumor cells in human hepatocellular carcinoma (HCC). Here, we reported a contribution of CCR7(+) mononuclear cells in the tumor microenvironment to the progression of disease. Immunohistochemistry was used to investigate the distribution and clinical significance of CCR7(+) cells in a cohort of 240 HCC patients. Furthermore, the phenotype, composition, and functional status of CCR7(+) cells were determined by flow cytometry, immunofluorescence, and in vitro co-culture assays. We found that CCR7(+) mononuclear cells were dispersed around tumor tissue and negatively related to tumoral expression of CCRL1 (P CCR7(+) mononuclear cells positively correlated with the absence of tumor capsule, vascular invasion, and poor differentiation (P CCR7(+) mononuclear cells was significantly associated with worse survival and increased recurrence. We found that CCR7(+) mononuclear cells featured a naive Treg-like phenotype (CD45RA(+)CD25(+)FOXP3(+)) and possessed tumor-promoting potential by producing TGF-β1. Moreover, CCR7(+) cells were also composed of several immunocytes, a third of which were CD8(+) T cells. CCR7(+) Treg-like cells facilitate tumor growth and indicate unfavorable prognosis in HCC patients, but fortunately, their tracking to tumor tissue is under the control of CCRL1.

  15. Heterogeneity of lung mononuclear phagocytes during pneumonia: contribution of chemokine receptors.

    Science.gov (United States)

    Chen, Lanlin; Zhang, Zhimin; Barletta, Kathryn E; Burdick, Marie D; Mehrad, Borna

    2013-11-15

    Bacterial pneumonia is a common and dangerous illness. Mononuclear phagocytes, which comprise monocyte, resident and recruited macrophage, and dendritic cell subsets, are critical to antimicrobial defenses, but the dynamics of their recruitment to the lungs in pneumonia is not established. We hypothesized that chemokine-mediated traffic of mononuclear phagocytes is important in defense against bacterial pneumonia. In a mouse model of Klebsiella pneumonia, circulating Ly6C(hi) and, to a lesser extent, Ly6C(lo) monocytes expanded in parallel with accumulation of inflammatory macrophages and CD11b(hi) dendritic cells and plasmacytoid dendritic cells in the lungs, whereas numbers of alveolar macrophages remained constant. CCR2 was expressed by Ly6C(hi) monocytes, recruited macrophages, and airway dendritic cells; CCR6 was prominently expressed by airway dendritic cells; and CX3CR1 was ubiquitously expressed by blood monocytes and lung CD11b(hi) dendritic cells during infection. CCR2-deficient, but not CCL2-, CX3CR1-, or CCR6-deficient animals exhibited worse outcomes of infection. The absence of CCR2 had no detectable effect on neutrophils but resulted in reduction of all subsets of lung mononuclear phagocytes in the lungs, including alveolar macrophages and airway and plasmacytoid dendritic cells. In addition, absence of CCR2 skewed the phenotype of lung mononuclear phagocytes, abrogating the appearance of M1 macrophages and TNF-producing dendritic cells in the lungs. Taken together, these data define the dynamics of mononuclear phagocytes during pneumonia.

  16. Microarray-based gene expression profiling of peripheral blood mononuclear cells in dairy cows with experimental hypocalcemia and milk fever

    National Research Council Canada - National Science Library

    Sasaki, K; Yamagishi, N; Kizaki, K; Sasaki, K; Devkota, B; Hashizume, K

    2014-01-01

    .... Therefore, peripheral blood mononuclear cells from dairy cows with experimentally induced hypocalcemia or spontaneous milk fever were subjected to oligo-microarray analysis to identify specific biomarker genes...

  17. The κB transcriptional enhancer motif and signal sequences of V(DJ recombination are targets for the zinc finger protein HIVEP3/KRC: a site selection amplification binding study

    Directory of Open Access Journals (Sweden)

    Wu Lai-Chu

    2002-08-01

    Full Text Available Abstract Background The ZAS family is composed of proteins that regulate transcription via specific gene regulatory elements. The amino-DNA binding domain (ZAS-N and the carboxyl-DNA binding domain (ZAS-C of a representative family member, named κB DNA binding and recognition component (KRC, were expressed as fusion proteins and their target DNA sequences were elucidated by site selection amplification binding assays, followed by cloning and DNA sequencing. The fusion proteins-selected DNA sequences were analyzed by the MEME and MAST computer programs to obtain consensus motifs and DNA elements bound by the ZAS domains. Results Both fusion proteins selected sequences that were similar to the κB motif or the canonical elements of the V(DJ recombination signal sequences (RSS from a pool of degenerate oligonucleotides. Specifically, the ZAS-N domain selected sequences similar to the canonical RSS nonamer, while ZAS-C domain selected sequences similar to the canonical RSS heptamer. In addition, both KRC fusion proteins selected oligonucleoties with sequences identical to heptamer and nonamer sequences within endogenous RSS. Conclusions The RSS are cis-acting DNA motifs which are essential for V(DJ recombination of antigen receptor genes. Due to its specific binding affinity for RSS and κB-like transcription enhancer motifs, we hypothesize that KRC may be involved in the regulation of V(DJ recombination.

  18. Pancreatitis in wild zinc-poisoned waterfowl

    Science.gov (United States)

    Sileo, Louis; Beyer, W. Nelson; Mateo, Rafael

    2003-01-01

    Four waterfowl were collected in the TriState Mining District (Oklahoma, Kansas and Missouri, USA), an area known to be contaminated with lead, cadmium and zinc (Zn). They were part of a larger group of 20 waterfowl collected to determine the exposure of birds to metal contamination at the site. The four waterfowl (three Branta canadensis, one Anas platyrhynchos) had mild to severe degenerative abnormalities of the exocrine pancreas, as well as tissue (pancreas, liver) concentrations of Zn that were considered toxic. The mildest condition was characterized by generalized atrophy of exocrine cells that exhibited cytoplasmic vacuoles and a relative lack of zymogen. The most severe condition was characterized by acini with distended lumens and hyperplastic exocrine tissue that completely lacked zymogen; these acini were widely separated by immature fibrous tissue. Because the lesions were nearly identical to the lesions reported in chickens and captive waterfowl that had been poisoned with ingested Zn, and because the concentrations of Zn in the pancreas and liver of the four birds were consistent with the concentrations measured in Zn-poisoned birds, we concluded that these waterfowl were poisoned by Zn. This may be the first reported case of zinc poisoning in free-ranging wild birds poisoned by environmental Zn.

  19. Study of cation distribution of spinel zinc nano-ferrite by X-ray

    Science.gov (United States)

    Najafi Birgani, Azadeh; Niyaifar, Mohammad; Hasanpour, Ahmad

    2015-01-01

    A set of zinc ferrite samples with ZnFe2O4 chemical composition were synthesized in 400, 500, and 1100 °C using conventional solid state synthesis method. The X-ray diffraction pattern of all the three samples was studied at room temperature. This diffraction pattern confirmed the existence of a single-phase cubic spinel structure with lattice parameters of 8.451, 8.448, and 8.437 Å, respectively. Oxygen position and cation distribution of the samples between the tetrahedral site, A and the octahedral site, B were examined using R-Factor method. The results showed that cation distribution of zinc ferrite samples changes from a normal spinel mode into a mixed spinel mode with the decrease of particle size. Moreover, the ratio of zinc divalent cations migrating from the tetrahedral site to the octahedral site was calculated.

  20. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    Science.gov (United States)

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells.

  1. Embryonic neural inducing factor churchill is not a DNA-binding zinc finger protein: solution structure reveals a solvent-exposed beta-sheet and zinc binuclear cluster.

    Science.gov (United States)

    Lee, Brian M; Buck-Koehntop, Bethany A; Martinez-Yamout, Maria A; Dyson, H Jane; Wright, Peter E

    2007-08-31

    Churchill is a zinc-containing protein that is involved in neural induction during embryogenesis. At the time of its discovery, it was thought on the basis of sequence alignment to contain two zinc fingers of the C4 type. Further, binding of an N-terminal GST-Churchill fusion protein to a particular DNA sequence was demonstrated by immunoprecipitation selection assay, suggesting that Churchill may function as a transcriptional regulator by sequence-specific DNA binding. We show by NMR solution structure determination that, far from containing canonical C4 zinc fingers, the protein contains three bound zinc ions in novel coordination sites, including an unusual binuclear zinc cluster. The secondary structure of Churchill is also unusual, consisting of a highly solvent-exposed single-layer beta-sheet. Hydrogen-deuterium exchange and backbone relaxation measurements reveal that Churchill is unusually dynamic on a number of time scales, with the exception of regions surrounding the zinc coordinating sites, which serve to stabilize the otherwise unstructured N terminus and the single-layer beta-sheet. No binding of Churchill to the previously identified DNA sequence could be detected, and extensive searches using DNA sequence selection techniques could find no other DNA sequence that was bound by Churchill. Since the N-terminal amino acids of Churchill form part of the zinc-binding motif, the addition of a fusion protein at the N terminus causes loss of zinc and unfolding of Churchill. This observation most likely explains the published DNA-binding results, which would arise due to non-specific interaction of the unfolded protein in the immunoprecipitation selection assay. Since Churchill does not appear to bind DNA, we suggest that it may function in embryogenesis as a protein-interaction factor.

  2. Zinc complexes of the antibacterial drug oxolinic acid: structure and DNA-binding properties.

    Science.gov (United States)

    Tarushi, Alketa; Psomas, George; Raptopoulou, Catherine P; Kessissoglou, Dimitris P

    2009-06-01

    The neutral mononuclear zinc complexes with the quinolone antibacterial drug oxolinic acid in the absence or presence of a nitrogen donor heterocyclic ligand 2,2'-bipyridine or 1,10-phenanthroline have been synthesized and characterized. The experimental data suggest that oxolinic acid is on deprotonated mode acting as a bidentate ligand coordinated to the metal ion through the ketone and one carboxylato oxygen atoms. The crystal structures of (chloro)(oxolinato)(2,2'-bipyridine)zinc(II), 2, and bis(oxolinato)(1,10-phenanthroline)zinc(II), 3, have been determined with X-ray crystallography. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV and fluorescence spectroscopies. UV studies of the interaction of the complexes with DNA have shown that they can bind to CT DNA and the DNA-binding constants have been calculated. Competitive studies with ethidium bromide (EB) have shown that complex 3 exhibits the ability to displace the DNA-bound EB indicating that it binds to DNA in strong competition with EB.

  3. Zinc(II) complexes of carboxamide derivatives: Crystal structures and interaction with calf thymus DNA

    Indian Academy of Sciences (India)

    Biplab Mondal; Buddhadeb Sen; Ennio Zangrando; Pabitra Chattopadhyay

    2015-10-01

    Two mononuclear zinc(II) complexes of newly designed carboxamide derivatives, formulated as [Zn(L1)3](ClO4)2 (1) and [Zn(L2)3](ClO4)2 (2) [where L1 = -(furan-2-ylmethyl)-2-pyridinecarboxamide and L2 = -(thiophen-2-ylmethyl)-2-pyridine-carboxamide], have been isolated in pure form in the reaction of perchlorate salts of Zn(II) with ligands L1 and L2, respectively. The two complexes were characterized by physicochemical and spectroscopic tools, and by X-ray crystal structures of both ligands and the complex 1. In complex 1, zinc(II) is chelated by three ligands with a distorted octahedral geometry. The DNA-binding properties of zinc complexes 1 and 2 have been investigated by spectroscopic methods and viscosity measurements. The results suggest that both complexes 1 and 2 bind to DNA in an intercalation mode between the uncoordinated furan or thiophene chromophore and the base pairs of DNA.

  4. Study of cation distribution of spinel zinc nano-ferrite by X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Najafi Birgani, Azadeh, E-mail: a.najafibirgani@gmail.com; Niyaifar, Mohammad; Hasanpour, Ahmad

    2015-01-15

    A set of zinc ferrite samples with ZnFe{sub 2}O{sub 4} chemical composition were synthesized in 400, 500, and 1100 °C using conventional solid state synthesis method. The X-ray diffraction pattern of all the three samples was studied at room temperature. This diffraction pattern confirmed the existence of a single-phase cubic spinel structure with lattice parameters of 8.451, 8.448, and 8.437 Å, respectively. Oxygen position and cation distribution of the samples between the tetrahedral site, A and the octahedral site, B were examined using R-Factor method. The results showed that cation distribution of zinc ferrite samples changes from a normal spinel mode into a mixed spinel mode with the decrease of particle size. Moreover, the ratio of zinc divalent cations migrating from the tetrahedral site to the octahedral site was calculated. - Highlights: • The average crystallite size of a set of zinc ferrite samples compared. • The cation distribution of the samples were studied. • A fraction of zinc ions migrated to the octahedral site. • This migration due to reduced power of ligands. • Their spinel structure of samples change by this migration.

  5. Zinc Plating Industry Drives Zinc Consumption by Power Grids, Railways and Highways

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>On the afternoon of June 30, at the Chengdu Lead and Zinc Summit, more than 150 partici-pants voted for the product they felt drives zinc consumption the most. 48% went for zinc plat-ing products, 16% voted for zinc oxide,

  6. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Zinc ions highly concentrate in hippocampus and play a key role in modulating spatial learning and memory. At a time when dietary fortification and supplementation of zinc have increased the zinc consuming level especially in the youth, the toxicity of zinc overdose on brain function was underestimated. In the present study, weaning ICR mice were given water supplemented with 15 ppm Zn (low dose, 60 ppm Zn (high dose or normal lab water for 3 months, the behavior and brain zinc homeostasis were tested. Mice fed high dose of zinc showed hippocampus-dependent memory impairment. Unexpectedly, zinc deficiency, but not zinc overload was observed in hippocampus, especially in the mossy fiber-CA3 pyramid synapse. The expression levels of learning and memory related receptors and synaptic proteins such as NMDA-NR2A, NR2B, AMPA-GluR1, PSD-93 and PSD-95 were significantly decreased in hippocampus, with significant loss of dendritic spines. In keeping with these findings, high dose intake of zinc resulted in decreased hippocampal BDNF level and TrkB neurotrophic signaling. At last, increasing the brain zinc level directly by brain zinc injection induced BDNF expression, which was reversed by zinc chelating in vivo. These results indicate that zinc plays an important role in hippocampus-dependent learning and memory and BDNF expression, high dose supplementation of zinc induces specific zinc deficiency in hippocampus, which further impair learning and memory due to decreased availability of synaptic zinc and BDNF deficit.

  7. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling.

    Science.gov (United States)

    Yang, Yang; Jing, Xiao-Peng; Zhang, Shou-Peng; Gu, Run-Xia; Tang, Fang-Xu; Wang, Xiu-Lian; Xiong, Yan; Qiu, Mei; Sun, Xu-Ying; Ke, Dan; Wang, Jian-Zhi; Liu, Rong

    2013-01-01

    Zinc ions highly concentrate in hippocampus and play a key role in modulating spatial learning and memory. At a time when dietary fortification and supplementation of zinc have increased the zinc consuming level especially in the youth, the toxicity of zinc overdose on brain function was underestimated. In the present study, weaning ICR mice were given water supplemented with 15 ppm Zn (low dose), 60 ppm Zn (high dose) or normal lab water for 3 months, the behavior and brain zinc homeostasis were tested. Mice fed high dose of zinc showed hippocampus-dependent memory impairment. Unexpectedly, zinc deficiency, but not zinc overload was observed in hippocampus, especially in the mossy fiber-CA3 pyramid synapse. The expression levels of learning and memory related receptors and synaptic proteins such as NMDA-NR2A, NR2B, AMPA-GluR1, PSD-93 and PSD-95 were significantly decreased in hippocampus, with significant loss of dendritic spines. In keeping with these findings, high dose intake of zinc resulted in decreased hippocampal BDNF level and TrkB neurotrophic signaling. At last, increasing the brain zinc level directly by brain zinc injection induced BDNF expression, which was reversed by zinc chelating in vivo. These results indicate that zinc plays an important role in hippocampus-dependent learning and memory and BDNF expression, high dose supplementation of zinc induces specific zinc deficiency in hippocampus, which further impair learning and memory due to decreased availability of synaptic zinc and BDNF deficit.

  8. Incorporation of zinc into the coccoliths of the microalga Emiliania huxleyi.

    Science.gov (United States)

    Santomauro, Giulia; Sun, Wei-Lin; Brümmer, Franz; Bill, Joachim

    2016-04-01

    The coccolithophore Emiliania huxleyi is covered with elaborated calcite plates, the so-called coccoliths, which are produced inside the cells. We investigated the incorporation of zinc into the coccoliths of E. huxleyi by applying different zinc and calcium amounts via the culture media and subsequently analyzing the zinc content in the cells and the Zn/Ca ratio of the coccoliths. To investigate the Zn/Ca ratio of coccoliths built in the manipulated media, the algae have first to be decalcified, i.e. coccolith free. We used a newly developed decalcification method to obtain 'naked' cells for cultivation. E. huxleyi proliferated and produced new coccoliths in all media with manipulated Zn/Ca ratios. The cells and the newly built coccoliths were investigated regarding their zinc content and their Zn/Ca ratio, respectively. High zinc amounts were taken up by the algae. The Zn/Ca ratio of the coccoliths was positively correlated to the Zn/Ca ratio of the applied media. The unique feature of the coccoliths was maintained also at high Zn/Ca ratios. We suggest the following pathway of the zinc ions into the coccoliths: first, the zinc ions are bound to the cell surface, followed by their transportation into the cytoplasm. Obviously, the zinc ions are removed afterwards into the coccolith vesicle, where the zinc is incorporated into the calcite coccoliths which are then extruded. The incorporation of toxic zinc ions into the coccoliths possibly due to a new function of the coccoliths as detoxification sites is discussed.

  9. Anxiolytic and antidepressant effect of zinc on rats and its impact on general behavioural parameters

    Directory of Open Access Journals (Sweden)

    Samardžić Janko

    2013-01-01

    Full Text Available Background/Aim. Zinc is an essential element which has considerable interaction with gamma-aminobutyric acid A type receptors (GABAA and glutamate receptors in the central nervous system (CNS. It is believed that zinc acts as a potent inhibitor of glutamate N-methyl-D-aspartate (NMDA receptors, and binding to structurally specific site on the GABAA receptor leads to inhibition of GABA dependent Cl-pass. The aim of our research was to test the anxiolytic and antidepressant effects of zinc after single application and its influence on general behavioural parameters after repeated administration. Methods. Male Wistar rats were treated with increasing doses of zinc histidine dehydrate (10, 20, 30 mg/kg, i.p.. To determine anxiolytic and antidepressant properties of zinc two models were used: elevated plus maze (EPM and forced swim test (FST. Behavioural parameters (stillness and mobility were, also, recorded after single and repeated administration of active substance. Results. Testing animals in the EPM showed a statistically significant difference as follows: dose of 20 mg/kg significantly increased the time animals spent in open arms, indicating an acute anxiolytic effect, while doses of 30 mg/kg significantly reduced the time in the open arms, indicating a potentially anxiogenic effect. Testing the animals by FST showed a statistically significant difference in immobility time of animals treated with the lowest applied (10 mg/kg and highest applied (30 mg/kg doses of zinc, compared to the control group. The first day of testing behavioral parameters showed the tendency to increase locomotor activity of the animals with the lowest dose of zinc (10 mg/kg, while the following day revealed a reduced activity with the highest dose applied (30 mg/kg. Conclusion. Zinc has important effects on the CNS: After single application, in all doses zinc showed antidepressant effects. The effects of zinc on anxiety and locomotor activity showed dose

  10. Editing the Plasmodium vivax Genome, Using Zinc-Finger Nucleases

    OpenAIRE

    Moraes Barros, Roberto R.; Straimer, Judith; Sa, Juliana M; Salzman, Rebecca E.; Melendez-Muniz, Viviana A.; Mu, Jianbing; David A Fidock; Thomas E. Wellems

    2014-01-01

    Plasmodium vivax is a major cause of malaria morbidity worldwide yet has remained genetically intractable. To stably modify this organism, we used zinc-finger nucleases (ZFNs), which take advantage of homology-directed DNA repair mechanisms at the site of nuclease action. Using ZFNs specific to the gene encoding P. vivax dihydrofolate reductase (pvdhfr), we transfected blood specimens from Saimiri boliviensis monkeys infected with the pyrimethamine (Pyr)–susceptible Chesson strain with a ZFN ...

  11. 86Rubidium uptake in mononuclear leucocytes from young subjects at increased risk of developing essential hypertension

    DEFF Research Database (Denmark)

    Nielsen, J R; Johansen, Torben; Pedersen, K E

    1988-01-01

    This study was designed to assess any changes in mononuclear leucocytes from young men at increased risk of developing essential hypertension and to determine whether any changes found were associated with borderline hypertension and/or heredity. To this end we used mononuclear leucocytes...... as a cellular model for in vitro measurement of total 86rubidium uptake to give an index of sodium-potassium pump activity. Four groups of subjects were evaluated, 28 normotensive and 20 borderline hypertensive offspring of hypertensives, and 12 borderline hypertensives and 28 normotensives with normotensive...... parents. 86Rubidium uptake was significantly increased in the borderline hypertensive subjects, especially in the borderline hypertensive offspring of hypertensive patients. Our results indicate that the sodium-potassium pump is activated in mononuclear leucocytes from borderline hypertensives...

  12. Enhanced cleavage of double-stranded DNA by artificial zinc-finger nuclease sandwiched between two zinc-finger proteins.

    Science.gov (United States)

    Mineta, Yusuke; Okamoto, Tomoyuki; Takenaka, Kosuke; Doi, Norio; Aoyama, Yasuhiro; Sera, Takashi

    2008-11-25

    To enhance DNA cleavage by zinc-finger nucleases (ZFNs), we sandwiched a DNA cleavage enzyme with two artificial zinc-finger proteins (AZPs). Because the DNA between the two AZP-binding sites is cleaved, the AZP-sandwiched nuclease is expected to bind preferentially to a DNA substrate rather than to cleavage products and thereby cleave it with multiple turnovers. To demonstrate the concept, we sandwiched a staphylococcal nuclease (SNase), which cleaves DNA as a monomer, between two three-finger AZPs. The AZP-sandwiched SNase cleaved large amounts of dsDNA site-specifically. Such multiple-turnover cleavage was not observed with nucleases that possess a single AZP. Thus, AZP-sandwiched nucleases will further refine ZFN technology.

  13. Conditioning causes an increase in glucose transporter-4 levels in mononuclear cells in sled dogs.

    Science.gov (United States)

    Schnurr, Theresia M; Reynolds, Arleigh J; Gustafson, Sally J; Duffy, Lawrence K; Dunlap, Kriya L

    2014-10-01

    This study was designed to investigate the effects of physical conditioning on the expression of the insulin sensitive glucose transporter-4 protein (GLUT4) on mononuclear cells and HOMA-IR levels in dogs and compared to results reported in human skeletal muscle and the skeletal muscle of rodent models. Blood was sampled from conditioned dogs (n = 8) and sedentary dogs (n = 8). The conditioned dogs were exercised four months prior the experiment and were following a uniform training protocol, whereas the sedentary dogs were not. GLUT4 expression in mononuclear cells and plasma insulin levels were measured using commercially available enzyme-linked immunosorbent assay (ELISA). Blood glucose levels were determined using blood plasma. HOMA-IR was calculated using plasma insulin and blood glucose levels using the linear approximation formula. Our results indicate that the state of conditioning had a significant effect on the GLUT4 expression at the surface of mononuclear cells. HOMA-IR was also affected by conditioning in dogs. GLUT4 levels in mononuclear cells of sled dogs were inversely correlated with the homeostasis model assessment of insulin sensitivity. This study demonstrates that conditioning increases GLUT4 levels in mononuclear cells of sled dogs as it has been previously reported in skeletal muscle. Our results support the potential of white blood cells as a proxy tissue for studying insulin signaling and may lead to development of a minimally invasive and direct marker of insulin resistance. This may be the first report of GLUT4 in mononuclear cells in response to exercise and measured with ELISA.

  14. Field emission from zinc oxide nanowires

    Institute of Scientific and Technical Information of China (English)

    陈亮; 张耿民; 王鸣生; 张琦锋

    2005-01-01

    An array of random-oriented zinc oxide nanowires (ZnO NWs) was fabricated on silicon substrate by thermal evaporation. After a thermal evaporation process, the silicon substrate was covered with a large number of uniformly distributed ZnO islands, from which non-aligned NWs with a diameter of several ten nanometres were grown. During this process, the temperature around the substrate was intentionally kept below 500℃ for practical consideration.From these ZnO NWs field emission was achieved. The turn-on field, under which a 10μA/cm2 current density was extracted, was measured to be 3.0V/μm. Also, the emission site distribution was investigated using the transparent anode technique. The field emission was observed to have occurred from the whole sample surface. These results suggest that ZnO NWs have great potential application in flat panel displays.

  15. Studies of biological properties of Uncaria tomentosa extracts on human blood mononuclear cells.

    Science.gov (United States)

    Bors, Milena; Michałowicz, Jaromir; Pilarski, Radosław; Sicińska, Paulina; Gulewicz, Krzysztof; Bukowska, Bożena

    2012-08-01

    Uncaria tomentosa (Willd.) DC is a lignified climbing plant from South and Central America, which (under the name of "vilcacora" or "cat's claw") has become highly popular in many countries due to its proven immunostimmulatory and anti-inflammatory activities and also with respect to its anticancer and antioxidative effects. There are insufficient data on the mechanism of U. tomentosa action on normal blood mononuclear cells. The aim of the study was to analyze the impact of ethanol and aqueous extracts from bark and leaves of Uncaria tomentosa on the structure and function of human mononuclear cells and to find out whether the kind of extractant used modulates biological activity of the extracts studied. Plant material consisted of four different extracts: (1) ethanol extract from leaves, (2) aqueous extract from leaves, (3) ethanol extract from bark and (4) aqueous extract from bark. The effect of these extracts on protein damage as well as on free-radical formation in human peripheral blood mononuclear cells was analyzed. Moreover, changes in viability, size, and granularity as well as apoptotic alterations in human blood mononuclear cells exposed to U. tomentosa extracts were investigated. The oxidative changes were observed in mononuclear blood cells exposed to both ethanol and aqueous extracts obtained from bark and leaves. Moreover, in the cells studied the extracts from U. tomentosa induced apoptosis and a decrease in viability of mononuclear blood cells, with the exception of aqueous extract from leaves. Additionally, no statistically significant changes in the cell size were observed both for aqueous extracts from leaves and bark. Changes in the blood mononuclear cell granularity were observed at 250 μg/mL for all extracts examined. The strongest changes were observed for the ethanol extract of the bark, which increased cell granularity at 50 μg/mL and changed cell size at 100 μg/mL. The conducted research showed differences in biological activity

  16. A hitchhiker's guide to myeloid cell subsets: practical implementation of a novel mononuclear phagocyte classification system

    Directory of Open Access Journals (Sweden)

    Martin eGuilliams

    2015-08-01

    Full Text Available The classification of mononuclear phagocytes as either dendritic cells or macrophages has been mainly based on morphology, the expression of surface markers and assumed functional specialization. We have recently proposed a novel classification system of mononuclear phagocytes based on their ontogeny. Here we discuss the practical application of such a classification system through a number of prototypical examples we have encountered while hitchhiking from one subset to another, across species and between steady state and inflammatory settings. Finally, we discuss the advantages and drawbacks of such a classification system and propose a number of improvements to move from theoretical concepts to concrete guidelines.

  17. Zinc supplementation in children with cystic fibrosis

    Science.gov (United States)

    Cystic fibrosis (CF) leads to malabsorption of macro- and micronutrients. Symptomatic zinc deficiency has been reported in CF but little is known about zinc homeostasis in children with CF. Zinc supplementation (Zn suppl) is increasingly common in children with CF but it is not without theoretcial r...

  18. 21 CFR 558.78 - Bacitracin zinc.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bacitracin zinc. 558.78 Section 558.78 Food and... in Animal Feeds § 558.78 Bacitracin zinc. (a) Specifications. Type A medicated articles containing bacitracin zinc equivalent to 10, 25, 40, or 50 grams per pound bacitracin. (b) Approvals. See No. 046573...

  19. 21 CFR 582.5991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is...

  20. 21 CFR 182.8991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc oxide. 182.8991 Section 182.8991 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is generally recognized as safe when used...

  1. 21 CFR 73.2991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in identity and specifications to the requirements of §...

  2. Zinc metalloproteins as medicinal targets.

    Science.gov (United States)

    Anzellotti, A I; Farrell, N P

    2008-08-01

    Zinc bioinorganic chemistry has emphasized the role of the metal ion on the structure and function of the protein. There is, more recently, an increasing appreciation of the role of zinc proteins in a variety of human diseases. This critical review, aimed at both bioinorganic and medicinal chemists, shows how apparently widely-diverging diseases share the common mechanistic approaches of targeting the essential function of the metal ion to inhibit activity. Protein structure and function is briefly summarized in the context of its clinical relevance. The status of current and potential inhibitors is discussed along with the prospects for future developments (162 references).

  3. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    Science.gov (United States)

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  4. Polyacrylate microspheres for tunable fluorimetric zinc ions sensor.

    Science.gov (United States)

    Woźnica, Emilia; Maksymiuk, Krzysztof; Michalska, Agata

    2014-01-07

    A novel concept of optical fluorimetric sensing using polymeric microspheres is explored on example of zinc ions sensors. The novel approach proposed uses the advantage of concomitant presence in a microsphere of two compounds: a receptor, fluorescently silent complexing ligand and an optical transducer, fluorescent compound. Binding of the analyte by the ligand affects its absorption spectrum, leading to decrease of the free ligand absorption and increase of complex absorption band. The decrease of free ligand absorption exposes emission of the transducer, yielding increase in fluorescence intensity on analyte concentration increase. This approach was verified experimentally using Zn(2+) as a model analyte, the fluorimetric sensor obtained uses 1-(2-pyridylazo)-2-naphthol (PAN) as analyte sensitive receptor and pyrene as optical transducer. In the absence of zinc ions in the sample emission of pyrene embedded in the spheres was significantly quenched, whereas increase of Zn(2+) ions concentration in the sample resulted in dependence of fluorescence intensity on logarithm of zinc ions concentration in extraordinary wide range, from 10(-7) to 0.1 M. The response mechanism was explained by surface accumulation of zinc ion-PAN complex on the microsphere/sample solution interface. It was also shown that introduction of cation-exchanging sites to the microspheres significantly alters the responses pattern leading to high sensitivity over relatively limited concentration range (3-4 orders of magnitude). In the latter case the observed responses can be tuned to occur in chosen concentration range, simply by adjusting sample pH.

  5. Zinc: A precious trace element for oral health care?

    Science.gov (United States)

    Fatima, Tayyaba; Haji Abdul Rahim, Zubaidah Binti; Lin, Chai Wen; Qamar, Zeeshan

    2016-08-01

    This review will discuss the importance of Zinc in the maintenance of oral health. Zinc (Zn) is a trace element of valuable importance. In the oral cavity, it is naturally present at various sites such as dental plaque, dental hard tissues and saliva. It is proven to be effective against common prevalent oral health problems such as dental caries, gingivitis, periodontitis and malodour. It is being used in various oral health care products to control the formation of dental plaque and inhibiting the formation of dental calculus. It has the potential to sustain and maintain its elevated concentrations for a longer time particularly in the dental plaque and saliva on delivery from the mouth rinses and toothpastes. It has been reported that low concentrations of zinc have the capability to reduce dissolution and promote remineralization under caries simulating conditions. Most importantly low Zn2+ levels in the serum are useful as a tumour marker. Thus taking a note of its potentials, it can be concluded that zinc is a precious element for the maintenance of oral health.

  6. The First Histidine Triad Motif of PhtD Is Critical for Zinc Homeostasis in Streptococcus pneumoniae.

    Science.gov (United States)

    Eijkelkamp, Bart A; Pederick, Victoria G; Plumptre, Charles D; Harvey, Richard M; Hughes, Catherine E; Paton, James C; McDevitt, Christopher A

    2015-11-16

    Streptococcus pneumoniae is the world's foremost human pathogen. Acquisition of the first row transition metal ion zinc is essential for pneumococcal colonization and disease. Zinc is acquired via the ATP-binding cassette transporter AdcCB and two zinc-binding proteins, AdcA and AdcAII. We have previously shown that AdcAII is reliant upon the polyhistidine triad (Pht) proteins to aid in zinc recruitment. Pht proteins generally contain five histidine (His) triad motifs that are believed to facilitate zinc binding and therefore play a significant role in pneumococcal metal ion homeostasis. However, the importance and potential redundancy of these motifs have not been addressed. We examined the effects of mutating each of the five His triad motifs of PhtD. The combination of in vitro growth assays, active zinc uptake, and PhtD expression studies show that the His triad closest to the protein's amino terminus is the most important for zinc acquisition. Intriguingly, in vivo competitive infection studies investigating the amino- and carboxyl-terminal His triad mutants indicate that the motifs have similar importance in colonization. Collectively, our new insights into the contributions of the individual His triad motifs of PhtD, and by extension the other Pht proteins, highlight the crucial role of the first His triad site in zinc acquisition. This study also suggests that the Pht proteins likely play a role beyond zinc acquisition in pneumococcal virulence.

  7. Synthesis, crystal structure and luminescence properties of acenaphthene benzohydrazide based ligand and its zinc(II) complex

    Science.gov (United States)

    Kumar, Mukesh; Roy, Soumyabrata; Faizi, Md. Serajul Haque; Kumar, Santosh; Singh, Mantu Kumar; Kishor, Shyam; Peter, Sebastian C.; John, Rohith P.

    2017-01-01

    The complex compound of zinc(II) supported by (Z)-2-hydroxy-N‧-(1-oxoacenaphthylen-2(1H) ylidene)benzohydrazide ligand (H2L1) has been reported and discussed. The reaction of zinc acetate with H2L1 ligand leads to the formation of a mononuclear zinc(ii) complex, [Zn(HL1)2H2O]. The ligand, H2L1 has been characterized by elemental analysis, 1H, 13C and 1Hsbnd COSY -NMR, IR and ESI-MS, while the complex was characterized by elemental analysis, IR, and ESI-MS. The crystal structures of the free ligand H2L1 and the complex have also been determined by single crystal X-ray diffraction. The ligand chelates with metal centre with a nitrogen atom of imino moiety and an oxygen atom of enolic group. The complex shows distorted trigonal bipyramidal geometry around the metal centre with oxygen atoms lying in the equatorial plane and imino nitrogen atoms along the axial direction. The DFT/TD-DFT calculations were performed on both the ligand and its zinc complex to get insight into the structural, electronic and optical properties. The photoluminescence, fluorescence properties of the complex have been investigated.

  8. The (unusual) aspartic acid in the metal coordination sphere of the prokaryotic zinc finger domain.

    Science.gov (United States)

    D'Abrosca, Gianluca; Russo, Luigi; Palmieri, Maddalena; Baglivo, Ilaria; Netti, Fortuna; de Paola, Ivan; Zaccaro, Laura; Farina, Biancamaria; Iacovino, Rosa; Pedone, Paolo Vincenzo; Isernia, Carla; Fattorusso, Roberto; Malgieri, Gaetano

    2016-08-01

    The possibility of choices of protein ligands and coordination geometries leads to diverse Zn(II) binding sites in zinc-proteins, allowing a range of important biological roles. The prokaryotic Cys2His2 zinc finger domain (originally found in the Ros protein from Agrobacterium tumefaciens) tetrahedrally coordinates zinc through two cysteine and two histidine residues and it does not adopt a correct fold in the absence of the metal ion. Ros is the first structurally characterized member of a family of bacterial proteins that presents several amino acid changes in the positions occupied in Ros by the zinc coordinating residues. In particular, the second position is very often occupied by an aspartic acid although the coordination of structural zinc by an aspartate in eukaryotic zinc fingers is very unusual. Here, by appropriately mutating the protein Ros, we characterize the aspartate role within the coordination sphere of this family of proteins demonstrating how the presence of this residue only slightly perturbs the functional structure of the prokaryotic zinc finger domain while it greatly influences its thermodynamic properties.

  9. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes.

    Science.gov (United States)

    Jain, Tarun; Jayaram, B

    2007-06-01

    Zinc is one of the most important metal ions found in proteins performing specific functions associated with life processes. Coordination geometry of the zinc ion in the active site of the metalloprotein-ligand complexes poses a challenge in determining ligand binding affinities accurately in structure-based drug design. We report here an all atom force field based computational protocol for estimating rapidly the binding affinities of zinc containing metalloprotein-ligand complexes, considering electrostatics, van der Waals, hydrophobicity, and loss in conformational entropy of protein side chains upon ligand binding along with a nonbonded approach to model the interactions of the zinc ion with all the other atoms of the complex. We examined the sensitivity of the binding affinity predictions to the choice of Lennard-Jones parameters, partial atomic charges, and dielectric treatments adopted for system preparation and scoring. The highest correlation obtained was R2 = 0.77 (r = 0.88) for the predicted binding affinity against the experiment on a heterogenous dataset of 90 zinc containing metalloprotein-ligand complexes consisting of five unique protein targets. Model validation and parameter analysis studies underscore the robustness and predictive ability of the scoring function. The high correlation obtained suggests the potential applicability of the methodology in designing novel ligands for zinc-metalloproteins. The scoring function has been web enabled for free access at www.scfbio-iitd.res.in/software/drugdesign/bapplz.jsp as BAPPL-Z server (Binding Affinity Prediction of Protein-Ligand complexes containing Zinc metal ions).

  10. Public health assessment for Sandoval Zinc Company, Sandoval, Marion County, Illinois, Region 5: CERCLIS number ILD053980454. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-10

    The Sandoval Zinc site occupies about 13 acres southeast of Sandoval in Marion County, Illinois. It is an abandoned primary and secondary zinc smelter that was next to a coal mining operation. Smelting waste may have been transported off the site and used as fill in Sandoval and other nearby communities. Airborne emissions occurred during regular operations and accidental fires. Surface water runoff transported wastes from the site into adjacent ditches, creeks, ponds, and farm properties. Overall, the Sandoval Zinc site poses no apparent public health hazard to most of the population in Sandoval. The site may be a public health hazard to preschool children with excessive hand-to-mouth activity exposed to residential surface soils with high levels of lead. However, blood sample results from children in a day care near the site did not show elevated levels of lead.

  11. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria.

    Science.gov (United States)

    Wang, Yan-Wen; Cao, Aoneng; Jiang, Yu; Zhang, Xin; Liu, Jia-Hui; Liu, Yuanfang; Wang, Haifang

    2014-02-26

    New materials with good antibacterial activity and less toxicity to other species attract numerous research interest. Taking advantage of zinc oxide (ZnO) and graphene oxide (GO), the ZnO/GO composites were prepared by a facile one-pot reaction to achieve superior antibacterial properties without damaging other species. In the composites, ZnO nanoparticles (NPs), with a size of about 4 nm, homogeneously anchored onto GO sheets. The typical bacterium Escherichia coli and HeLa cell were used to evaluate the antibacterial activity and cytotoxicity of the ZnO/GO composites, respectively. The synergistic effects of GO and ZnO NPs led to the superior antibacterial activity of the composites. GO helped the dispersion of ZnO NPs, slowed the dissolution of ZnO, acted as the storage site for the dissolved zinc ions, and enabled the intimate contact of E. coli with ZnO NPs and zinc ions as well. The close contact enhanced the local zinc concentration pitting on the bacterial membrane and the permeability of the bacterial membrane and thus induced bacterial death. In addition, the ZnO/GO composites were found to be much less toxic to HeLa cells, compared to the equivalent concentration of ZnO NPs in the composites. The results indicate that the ZnO/GO composites are promising disinfection materials to be used in surface coatings on various substrates to effectively inhibit bacterial growth, propagation, and survival in medical devices.

  12. Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter Zip14 and can be overcome by zinc supplementation.

    Science.gov (United States)

    Wessels, Inga; Cousins, Robert J

    2015-11-01

    Integrity of the immune system is particularly dependent on the availability of zinc. Recent data suggest that zinc is involved in the development of sepsis, a life-threatening systemic inflammation with high death rates, but with limited therapeutic options. Altered cell zinc transport mechanisms could contribute to the inflammatory effects of sepsis. Zip14, a zinc importer induced by proinflammatory stimuli, could influence zinc metabolism during sepsis and serve as a target for therapy. Using cecal ligation-and-puncture (CLP) to model polymicrobial sepsis, we narrowed the function of ZIP14 to regulation of zinc homeostasis in hepatocytes, while hepatic leukocytes were mostly responsible for driving inflammation, as shown by higher expression of IL-1β, TNFα, S100A8, and matrix metalloproteinase-8. Using Zip14 knockout (KO) mice as a novel approach, we found that ablation of Zip14 produced a delay in development of leukocytosis, prevented zinc accumulation in the liver, altered the kinetics of hypozincemia, and drastically increased serum IL-6, TNFα, and IL-10 concentrations following CLP. Hence, this model revealed that the zinc transporter ZIP14 is a component of the pathway for zinc redistribution that contributes to zinc dyshomeostasis during polymicrobial sepsis. In contrast, using the identical CLP model, we found that supplemental dietary zinc reduced the severity of sepsis, as shown by amelioration of cytokines, calprotectins, and blood bacterial loads. We conclude that the zinc transporter ZIP14 influences aspects of the pathophysiology of nonlethal polymicrobial murine sepsis induced by CLP through zinc delivery. The results are promising for the use of zinc and its transporters as targets for future sepsis therapy.

  13. Pharmacokinetics of zinc tannate after intratesticular injection.

    Science.gov (United States)

    Migally, N B; Fahim, M S

    1984-01-01

    Forty-eight sexually mature male rats were injected intratesticularly with either 1, 3, or 6 mg zinc tannate (Kastrin) or with saline (as control). Zinc localized only in low concentration in primary spermatocytes and could not be detected in spermatogonia, Sertoli cells, spermatids, or spermatozoa. Forty-eight hours after injection of 1 mg Kastrin, zinc was accumulated in the spermatogonia and primary spermatocytes while, after injection of 3 mg, zinc was preferentially localized in Sertoli cells and spermatids; however, zinc was observed in the spermatids and spermatozoa 48 h after injection with 6 mg, and germ cells lost their identity and were fragmented after 1 week.

  14. Non-Chromate Passivation of Zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, G.

    1993-01-01

    . There is no known environmental or health risk involved using the treatments mentioned above. All components used in the baths are non toxic compared to Cr(VI). Alloy coatings such as zinc/nickel, zinc/cobalt, zinc/tin and all types of pure zinc coating (from cyanide, acidic or alkaline baths) have been treated...... minutes, in any one of the baths, at 60¢XC. Some movement of the submerged samples, or stirring with air-bubbles, should be applied, just as a thorough rinse of the zinc surface immediately before the pas-sivation is extremely important....

  15. Talitrid amphipods (Crustacea) as biomonitors for copper and zinc

    Science.gov (United States)

    Rainbow, P. S.; Moore, P. G.; Watson, D.

    1989-06-01

    Data are presented on the copper and zinc concentrations of four talitrid amphipod species (standard dry weight 10 mg), i.e. Orchestia gammarellus (Pallas), O. mediterranea Costa, Talitrus saltator Montagu and Talorchestia deshayesii (Audouin), from 31 sites in S.W. Scotland, N. Wales and S.W. England. More limited data are also presented for cadmium in O. gammarellus (three sites) and T. deshayesii (one site). In S.W. Scotland, copper concentrations were raised significantly in O. gammarellus from Whithorn and Auchencairn (Solway) and Loch Long and Holy Loch (Clyde). In S.W. England, copper concentrations were highest at Restronguet Creek, Torpoint and Gannel (Cornwall). Samples of O. gammarellus from Islay (inner Hebrides) taken adjacent to the effluent outfalls of local whisky distilleries fell into two groups based on copper concentrations (presumably derived from copper stills), the higher copper levels deriving from the more productive distilleries. High copper levels were found in T. saltator and Tal. deshayesii from Dulas Bay (Wales). Zinc levels in O. gammarellus were high in Holy Loch and Auchencairn (Scotland), Gannel and Torpoint (England) but extremely elevated (as was Zn in O. mediterranea) at Restronguet Creek. Zinc was also high in T. saltator from Dulas Bay (Wales), but not in Tal. deshayesii. Cadmium levels in O. gammarellus from Kilve (Bristol Channel) were much raised. These differences (a) conform with expectations of elevated bioavailability of these metals from well researched areas (S.W. England & N. Wales), and (b) identify hitherto unappreciated areas of enrichment in S.W. Scotland. Orchestia gammarellus is put forward as a suitable biomonitor for copper and zinc in British coastal waters.

  16. Preventive activity of olive oil phenolic compounds on alkene epoxides induced oxidative DNA damage on human peripheral blood mononuclear cells.

    Science.gov (United States)

    Fuccelli, Raffaela; Sepporta, Maria Vittoria; Rosignoli, Patrizia; Morozzi, Guido; Servili, Maurizio; Fabiani, Roberto

    2014-01-01

    The aim of this study was to investigate the ability of epoxides of styrene (styrene-7,8-oxide; SO) and 1,3-butadiene (3,4-epoxy-1-butene; 1,2:3,4:-diepoxybutane) to cause oxidative stress and oxidative DNA damage on human peripheral blood mononuclear cells (PBMCs) and whether a complex mixture of olive oil phenols (OOPE) could prevent these effects. The DNA damage was measured by the single-cell gel electrophoresis (SCGE; comet assay). We found that the DNA damage induced by alkene epoxides could be prevented by N-acetyl-cysteine (10 mM) and catalase (100 U/ml). Alkene epoxides caused a significant (P DNA glycosylase (FPG)- and Endonuclease III (ENDO III)-sensitive sites in PBMCs, demonstrating the presence of oxidized bases. OOPE (1 μg of total phenols/ml) was able to prevent the alkene epoxide induced DNA damage both after 2 and 24 h of incubation. In addition, OOPE completely inhibited the SO-induced intracellular peroxide accumulation in PBMCs and prevented the oxidative DNA damage induced by SO, as evidenced by the disappearance of both FPG- and ENDO III-sensitive sites. This is the first study demonstrating the ability of OOPE to prevent the DNA damage induced by alkene epoxides providing additional information about the chemopreventive properties of olive oil.

  17. Zinc leaching from tire crumb rubber.

    Science.gov (United States)

    Rhodes, Emily P; Ren, Zhiyong; Mays, David C

    2012-12-04

    Because tires contain approximately 1-2% zinc by weight, zinc leaching is an environmental concern associated with civil engineering applications of tire crumb rubber. An assessment of zinc leaching data from 14 studies in the published literature indicates that increasing zinc leaching is associated with lower pH and longer leaching times, but the data display a wide range of zinc concentrations, and do not address the effect of crumb rubber size or the dynamics of zinc leaching during flow through porous crumb rubber. The present study was undertaken to investigate the effect of crumb rubber size using the synthetic precipitation leaching procedure (SPLP), the effect of exposure time using quiescent batch leaching tests, and the dynamics of zinc leaching using column tests. Results indicate that zinc leaching from tire crumb rubber increases with smaller crumb rubber and longer exposure time. Results from SPLP and quiescent batch leaching tests are interpreted with a single-parameter leaching model that predicts a constant rate of zinc leaching up to 96 h. Breakthrough curves from column tests displayed an initial pulse of elevated zinc concentration (~3 mg/L) before settling down to a steady-state value (~0.2 mg/L), and were modeled with the software package HYDRUS-1D. Washing crumb rubber reduces this initial pulse but does not change the steady-state value. No leaching experiment significantly reduced the reservoir of zinc in the crumb rubber.

  18. Non-Chromate Passivation of Zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, G.

    1993-01-01

    . There is no known environmental or health risk involved using the treatments mentioned above. All components used in the baths are non toxic compared to Cr(VI). Alloy coatings such as zinc/nickel, zinc/cobalt, zinc/tin and all types of pure zinc coating (from cyanide, acidic or alkaline baths) have been treated...... successfully. The corrosion resistance against white rust on zinc and zinc alloys is just as good as that of yellow chromate, although the result de-pends on the corrosion test method as well as on the nature of the zinc substrate pas-sivated. The passivation procedure is simply a dip for approxi-mately 2...

  19. Zinc Therapy in Dermatology: A Review

    Directory of Open Access Journals (Sweden)

    Mrinal Gupta

    2014-01-01

    Full Text Available Zinc, both in elemental or in its salt forms, has been used as a therapeutic modality for centuries. Topical preparations like zinc oxide, calamine, or zinc pyrithione have been in use as photoprotecting, soothing agents or as active ingredient of antidandruff shampoos. Its use has expanded manifold over the years for a number of dermatological conditions including infections (leishmaniasis, warts, inflammatory dermatoses (acne vulgaris, rosacea, pigmentary disorders (melasma, and neoplasias (basal cell carcinoma. Although the role of oral zinc is well-established in human zinc deficiency syndromes including acrodermatitis enteropathica, it is only in recent years that importance of zinc as a micronutrient essential for infant growth and development has been recognized. The paper reviews various dermatological uses of zinc.

  20. Zinc-The key to preventing corrosion

    Science.gov (United States)

    Kropschot, S.J.; Doebrich, Jeff L.

    2011-01-01

    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  1. Phosphorylation of Ser8 promotes zinc-induced dimerization of the amyloid-β metal-binding domain.

    Science.gov (United States)

    Kulikova, Alexandra A; Tsvetkov, Philipp O; Indeykina, Maria I; Popov, Igor A; Zhokhov, Sergey S; Golovin, Andrey V; Polshakov, Vladimir I; Kozin, Sergey A; Nudler, Evgeny; Makarov, Alexander A

    2014-10-01

    Zinc-induced aggregation of the amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease (AD). Recently it was shown that phosphorylation of Aβ at Ser8 promotes the formation of toxic aggregates. In this work, we have studied the impact of Ser8 phosphorylation on the mode of zinc interaction with the Aβ metal-binding domain 1-16 using isothermal titration calorimetry, electrospray ionization mass spectrometry and NMR spectroscopy. We have discovered a novel zinc binding site ((6)HDpS(8)) in the phosphorylated peptide, in which the zinc ion is coordinated by the imidazole ring of His6, the phosphate group attached to Ser8 and a backbone carbonyl group of His6 or Asp7. Interaction of the zinc ion with this site involves His6, thereby withdrawing it from the interaction pattern observed in the non-modified peptide. This event was found to stimulate dimerization of peptide chains through the (11)EVHH(14) site, where the zinc ion is coordinated by the two pairs of Glu11 and His14 in the two peptide subunits. The proposed molecular mechanism of zinc-induced dimerization could contribute to the understanding of initiation of pathological Aβ aggregation, and the (11)EVHH(14) tetrapeptide can be considered as a promising drug target for the prevention of amyloidogenesis.

  2. Nuclear thyroid hormone receptor binding in human mononuclear blood cells after goitre resection

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E; Blichert-Toft, M

    1989-01-01

    Nuclear thyroxine and triiodothyronine receptor-binding in human mononuclear blood cells were examined in 14 euthyroid persons prior to and 1, 6, 24 and 53 weeks after goitre resection. One week after resection decreased serum T3 from 1.47 nmol/l to 1.14 nmol/l (P less than 0.05), FT4I from 103 a...

  3. Administration of liposomal agents and blood clearance capacity of the mononuclear phagocyte system

    NARCIS (Netherlands)

    E.W.M. van Etten (Els); M.T. ten Kate (Marian); S.V. Snijders (Susan); I.A.J.M. Bakker-Woudenberg (Irma)

    1998-01-01

    textabstractAs liposomes are cleared from the circulation to a substantial extent by the phagocytic cells of the mononuclear phagocyte system (MPS), there is a question whether administration of liposome-based therapeutic agents interferes with clearance of infectious o

  4. SURFACE MODIFICATION OF NANOPARTICLES TO OPPOSE UPTAKE BY THE MONONUCLEAR PHAGOCYTE SYSTEM

    NARCIS (Netherlands)

    STORM, G; BELLIOT, SO; DAEMEN, T; LASIC, DD

    1995-01-01

    An overview of recent advances in the surface modification of colloidal particles to oppose uptake by the mononuclear phagocyte system (MPS) is presented. First, we describe the colloidal particles and hydrophilic coating materials investigated, with particular focus on the literature concerning par

  5. Immunomodulatory capacity of fungal proteins on the cytokine production of human peripheral blood mononuclear cells

    NARCIS (Netherlands)

    Jeurink, P.V.; Lull Noguera, C.; Savelkoul, H.F.J.; Wichers, H.J.

    2008-01-01

    Immunomodulation by fungal compounds can be determined by the capacity of the compounds to influence the cytokine production by human peripheral blood mononuclear cells (hPBMC). These activities include mitogenicity, stimulation and activation of immune effector cells. Eight mushroom strains (Agaric

  6. Slc27a2 expression in peripheral blood mononuclear cells as a marker for overweight development

    NARCIS (Netherlands)

    Caimari, A.; Oliver, P.; Rodenburg, W.; Keijer, J.; Palou, A.

    2010-01-01

    Background: Peripheral blood mononuclear cells (PBMC) can be collected easily and repeatedly. Their potential use to reflect the individual's biological status is increasingly explored. Obesity is becoming the most common health problem of the 21st century, being dietary intake an important determin

  7. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise

    2015-01-01

    Aging is associated with oxidative stress-generated damage to DNA and this could be related to metabolic disturbances. This study investigated the association between levels of oxidatively damaged DNA in peripheral blood mononuclear cells (PBMCs) and metabolic risk factors in 1,019 subjects, aged...

  8. Evidence for a dual function of monocyte-derived mononuclear phagocytes during chronic intestinal inflammation

    DEFF Research Database (Denmark)

    Rivollier, Aymeric Marie Christian; Pool, Lieneke; Frising, Ulrika

    Mononuclear phagocytes derived from tissue-infiltrating monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. We and others showed that, upon recruitment to the intestinal mucosa, the differentiation of Ly6Chi monocytes into phagocytes with anti- versus pro...... suggest a dual and time-restricted contribution of MDP during the development and healing phases of the disease....

  9. Intracoronary infusion of mononuclear cells after PCI-treated myocardial infarction and arrhythmogenesis : is it safe?

    NARCIS (Netherlands)

    Robbers, L. F. H. J.; Nijveldt, R.; Beek, A. M.; Kemme, M. J. B.; Delewi, R.; Hirsch, Alexander; van der Laan, A. M.; van der Vleuten, P. A.; Piek, J. J.; Zijlstra, F.; van Rossum, A. C.

    2012-01-01

    To reduce long-term morbidity after revascularised acute myocardial infarction, different therapeutic strategies have been investigated. Cell therapy with mononuclear cells from bone marrow (BMMC) or peripheral blood (PBMC) has been proposed to attenuate the adverse processes of remodelling and subs

  10. Role of mononuclear phagocyte function in endotoxin-induced tumor necrosis

    NARCIS (Netherlands)

    Hofhuis, F.M.A.; Bloksma, N.; Willers, J.M.N.

    1984-01-01

    The temporal susceptibility of tumors to induction of necrosis and regression by endotoxin was investigated further with a focus on the role of the putative mediator, tumor necrosis factor (TNF). Production of this factor was shown earlier to require prior activation of the mononuclear phagocytic sy

  11. The structural basis of cephalosporin formation in a mononuclear ferrous enzyme

    NARCIS (Netherlands)

    Valegård, Karin; Terwisscha van Scheltinga, Anke C.; Dubus, Alain; Ranghino, Graziella; Öster, Linda M.; Hajdu, Janos; Andersson, Inger

    2004-01-01

    Deacetoxycephalosporin-C synthase (DAOCS) is a mononuclear ferrous enzyme that transforms penicillins into cephalosporins by inserting a carbon atom into the penicillin nucleus. In the first half-reaction, dioxygen and 2-oxoglutarate produce a reactive iron-oxygen species, succinate and CO2. The oxi

  12. Arecoline inhibits endothelial cell growth and migration and the attachment to mononuclear cells

    Directory of Open Access Journals (Sweden)

    Shuei-Kuen Tseng

    2014-09-01

    Conclusion: Arecoline impaired vascular endothelial cells by inhibiting their growth and migration and their adhesion to U937 mononuclear cells. These results reveal that arecoline may contribute to the pathogenesis of oral submucous fibrosis and cardiovascular diseases by affecting endothelial cell function in BQ chewers.

  13. Interleukin-8 transcripts in mononuclear cells determine impaired graft function after kidney transplantation

    DEFF Research Database (Denmark)

    Borst, Christoffer; Xia, Shengqiang; Bistrup, Claus

    2015-01-01

    OBJECTIVE: Interleukin-8 (IL-8) has been associated with ischemia reperfusion injury after renal allograft transplantation. Impaired allograft function may cause major impact on patient morbidity and health care costs. We investigated whether transcript levels in mononuclear cells including IL-8 ...

  14. The structural basis of cephalosporin formation in a mononuclear ferrous enzyme

    NARCIS (Netherlands)

    Valegård, Karin; Terwisscha van Scheltinga, Anke C.; Dubus, Alain; Ranghino, Graziella; Öster, Linda M.; Hajdu, Janos; Andersson, Inger

    2004-01-01

    Deacetoxycephalosporin-C synthase (DAOCS) is a mononuclear ferrous enzyme that transforms penicillins into cephalosporins by inserting a carbon atom into the penicillin nucleus. In the first half-reaction, dioxygen and 2-oxoglutarate produce a reactive iron-oxygen species, succinate and CO2. The

  15. Synthesis and Characterization of Zinc β-Diketonate Complex Extended to the Macromolecular Polymers

    Directory of Open Access Journals (Sweden)

    Mohammed A. Al-Anber

    2014-01-01

    Full Text Available A mononuclear complex of [Zn(tta2(H2O2] (3 (tta = deprotonated of 1-thenoyl-4,4,4-trifluoro­acetone (1 has been prepared by the reaction of 1-thenoyl-4,4,4-trifluoro­acetone (H-tta: 1 with Zn(OAc2.4H2O (OAc = O2CMe in a 2:1 molar ratio. Complex 3 can be extended to form a coordination polymers of general formula [Zn(tta2(X]n (X = 4,4'-bipy (4, pz (5 by the reaction of zinc atom in 3 with s-donor ligand such as 4,4-bipyridine (4,4'-bipy and pyrazin (pz. The reaction completion was controlled via FTIR and elemental analysis.

  16. Recovery of zinc from low-grade zinc oxide ores by solvent extraction

    Institute of Scientific and Technical Information of China (English)

    覃文庆; 蓝卓越; 黎维中

    2003-01-01

    The recovery of zinc from low-grade zinc oxide ores with solvent extraction-electrowinning technique was investigated by using D2EHPA as extractant and 260# kerosene as diluent. The results show that it is possible to selectively leach zinc from the ores by heap leaching. The zinc concentration of leach solution in the first leaching cycle is 32.57 g/L, and in the sixteenth cycle the zinc concentration is 8.27g/L after solvent extraction. The leaching solution is subjected to solvent extraction, scrubbing and selective stripping for enrichment of zinc and removal of impurities. The pregnant zinc sulfate solution produced from the stripping cycle is suitable for zinc electrowinning.Extra-pure zinc metal was obtained in the electrowinning test under conventional conditions.

  17. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Rebecca L. Wilson

    2016-10-01

    Full Text Available Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE; spontaneous preterm birth (sPTB; low birthweight (LBW; and gestational diabetes (GDM. Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g and those who gave birth to an infant of adequate weight (>2500 g, particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg. No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status.

  18. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    Science.gov (United States)

    Wilson, Rebecca L.; Grieger, Jessica A.; Bianco-Miotto, Tina; Roberts, Claire T.

    2016-01-01

    Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status. PMID:27754451

  19. Vigorous, but differential mononuclear cell response of cirrhotic patients to bacterial ligands

    Institute of Scientific and Technical Information of China (English)

    Varenka J Barbero-Becerra; María Concepción Gutiérrez-Ruiz; Carmen Maldonado-Bernal; Félix I Téllez-Avila; Roberto Alfaro-Lara; Florencia Vargas-Vorácková

    2011-01-01

    AIM: To study the role of gram-positive and gram-negative bacteria in the pathogenesis of liver injury, specifically the activation of inflammatory mediators. METHODS: Peripheral blood mononuclear cells of 20 out-patients were studied, 10 of them with cirrhosis. Peripheral blood mononuclear cells were isolated and exposed to lipopolysaccharide or lipoteichoic acid. CD14, Toll-like receptor 2 and 4 expression was determined by flow cytometry, and tumor necrosis factor (TNF) α, interleukin (IL)-1β, IL-6, IL-12 and IL-10 secretion in supernatants was determined by ELISA. RESULTS: Higher CD14, Toll-like receptor 2 and 4 expression was observed in peripheral blood mononuclear cells from cirrhotic patients, (P < 0.01, P < 0.006, P < 0.111) respectively. Lipopolysaccharide and lipoteichoic acid induced a further increase in CD14 expression (P < 0.111 lipopolysaccharide, P < 0.013 lipoteichoic acid), and a decrease in Toll-like receptor 2 (P < 0.008 lipopolysaccharide, P < 0.008 lipoteichoic acid) and Toll-like receptor 4 (P < 0.008 lipopolysaccharide, P < 0.028 lipoteichoic acid) expression. With the exception of TNFα, absolute cytokine secretion of peripheral blood mononuclear cells was lower in cirrhotic patients under nonexposure conditions (P < 0.070 IL-6, P < 0.009 IL-1β, P < 0.022 IL-12). Once exposed to lipopolysaccharide or lipoteichoic acid, absolute cytokine secretion of peripheral blood mononuclear cells was similar in cirrhotic and non-cirrhotic patients, determining a more vigorous response in the former (P < 0.005 TNFα, IL-1β, IL-6, IL-2 and IL-10 lipopolysaccharide; P < 0.037 TNFα; P < 0.006 IL-1β; P < 0.005 IL-6; P < 0.007 IL-12; P < 0.014 IL-10 lipoteichoic acid). Response of peripheral blood mononuclear cells was more intense after lipopolysaccharide than after lipoteichoic acid exposure. CONCLUSION: Peripheral blood mononuclear cells of cirrhotic patients are able to respond to a sudden bacterial ligand exposure, particularly lipopolysaccharide

  20. The biological inorganic chemistry of zinc ions.

    Science.gov (United States)

    Krężel, Artur; Maret, Wolfgang

    2016-12-01

    The solution and complexation chemistry of zinc ions is the basis for zinc biology. In living organisms, zinc is redox-inert and has only one valence state: Zn(II). Its coordination environment in proteins is limited by oxygen, nitrogen, and sulfur donors from the side chains of a few amino acids. In an estimated 10% of all human proteins, zinc has a catalytic or structural function and remains bound during the lifetime of the protein. However, in other proteins zinc ions bind reversibly with dissociation and association rates commensurate with the requirements in regulation, transport, transfer, sensing, signalling, and storage. In contrast to the extensive knowledge about zinc proteins, the coordination chemistry of the "mobile" zinc ions in these processes, i.e. when not bound to proteins, is virtually unexplored and the mechanisms of ligand exchange are poorly understood. Knowledge of the biological inorganic chemistry of zinc ions is essential for understanding its cellular biology and for designing complexes that deliver zinc to proteins and chelating agents that remove zinc from proteins, for detecting zinc ion species by qualitative and quantitative analysis, and for proper planning and execution of experiments involving zinc ions and nanoparticles such as zinc oxide (ZnO). In most investigations, reference is made to zinc or Zn(2+) without full appreciation of how biological zinc ions are buffered and how the d-block cation Zn(2+) differs from s-block cations such as Ca(2+) with regard to significantly higher affinity for ligands, preference for the donor atoms of ligands, and coordination dynamics. Zinc needs to be tightly controlled. The interaction with low molecular weight ligands such as water and inorganic and organic anions is highly relevant to its biology but in contrast to its coordination in proteins has not been discussed in the biochemical literature. From the discussion in this article, it is becoming evident that zinc ion speciation is

  1. ZifBASE: a database of zinc finger proteins and associated resources

    Directory of Open Access Journals (Sweden)

    Punetha Ankita

    2009-09-01

    Full Text Available Abstract Background Information on the occurrence of zinc finger protein motifs in genomes is crucial to the developing field of molecular genome engineering. The knowledge of their target DNA-binding sequences is vital to develop chimeric proteins for targeted genome engineering and site-specific gene correction. There is a need to develop a computational resource of zinc finger proteins (ZFP to identify the potential binding sites and its location, which reduce the time of in vivo task, and overcome the difficulties in selecting the specific type of zinc finger protein and the target site in the DNA sequence. Description ZifBASE provides an extensive collection of various natural and engineered ZFP. It uses standard names and a genetic and structural classification scheme to present data retrieved from UniProtKB, GenBank, Protein Data Bank, ModBase, Protein Model Portal and the literature. It also incorporates specialized features of ZFP including finger sequences and positions, number of fingers, physiochemical properties, classes, framework, PubMed citations with links to experimental structures (PDB, if available and modeled structures of natural zinc finger proteins. ZifBASE provides information on zinc finger proteins (both natural and engineered ones, the number of finger units in each of the zinc finger proteins (with multiple fingers, the synergy between the adjacent fingers and their positions. Additionally, it gives the individual finger sequence and their target DNA site to which it binds for better and clear understanding on the interactions of adjacent fingers. The current version of ZifBASE contains 139 entries of which 89 are engineered ZFPs, containing 3-7F totaling to 296 fingers. There are 50 natural zinc finger protein entries ranging from 2-13F, totaling to 307 fingers. It has sequences and structures from literature, Protein Data Bank, ModBase and Protein Model Portal. The interface is cross linked to other public

  2. Two intrathecal transplants of bone marrow mononuclear cells produce motor improvement in an acute and severe model of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Elisa Lettnin Kaminski

    2013-12-01

    Full Text Available OBJECTIVE: We studied transplants of bone marrow mononuclear cells (BMMC by lumbar puncture (LP in a severe model of spinal cord injury (SCI using clip compression. METHODS: BMMCs or saline solution were transplanted by LP 48 hours and 9 days post injury. Motor function was evaluated by BBB scale, histological analysis by Nissl technique and the verification of cell migration by PCR analysis. RESULTS: The BBB had significantly improved in rats treated with BMMCs by LP compared with controls (p<0.001. The histological analysis did not showed difference in the lesional area between the groups. The PCR analysis was able to found BMMCs in the injury site. CONCLUSIONS: two BMMC transplants by LP improved motor function in a severe model of SCI and BMMC was found in the injury site.

  3. Influence of phytase, EDTA, and polyphenols on zinc absorption in adults from porridges fortified with zinc sulfate or zinc oxide.

    Science.gov (United States)

    Brnić, Marica; Wegmüller, Rita; Zeder, Christophe; Senti, Gabriela; Hurrell, Richard F

    2014-09-01

    Fortification of cereal staples with zinc is recommended to combat zinc deficiency. To optimize zinc absorption, strategies are needed to overcome the inhibitory effect of phytic acid (PA) and perhaps polyphenols. Five zinc absorption studies were conducted in young adults consuming maize or sorghum porridges fortified with 2 mg zinc as zinc sulfate (ZnSO4) or zinc oxide (ZnO) and containing combinations of PA or polyphenols as potential inhibitors and EDTA and phytase as potential enhancers. Fractional absorption of zinc (FAZ) was measured by using the double isotopic tracer ratio method. Adding phytase to the maize porridge immediately before consumption or using phytase for dephytinization during meal preparation both increased FAZ by >80% (both P zinc molar ratio of 1:1 increased FAZ from maize porridge fortified with ZnSO4 by 30% (P = 0.01) but had no influence at higher EDTA ratios or on absorption from ZnO. FAZ was slightly higher from ZnSO4 than from ZnO (P = 0.02). Sorghum polyphenols had no effect on FAZ from dephytinized sorghum porridges but decreased FAZ by 20% from PA-rich sorghum porridges (P zinc absorption from zinc-fortified cereals, EDTA at a 1:1 molar ratio modestly enhanced zinc absorption from ZnSO4-fortified cereals but not ZnO-fortified cereals, and sorghum polyphenols inhibited zinc absorption in the presence, but not absence, of PA. This trial was registered at clinicaltrials.gov as NCT01210794.

  4. Adult peripheral blood mononuclear cells transdifferentiate in vitro and integrate into the retina in vivo.

    Science.gov (United States)

    Liu, Qian; Guan, Liping; Huang, Bing; Li, Weihua; Su, Qiao; Yu, Minbin; Xu, Xiaoping; Luo, Ting; Lin, Shaochun; Sun, Xuerong; Chen, Mengfei; Chen, Xigu

    2011-06-01

    Adult peripheral blood-derived cells are able to differentiate into a variety of cell types, including nerve cells, liver-like cells and epithelial cells. However, their differentiation into retina-like cells is controversial. In the present study, transdifferentiation potential of human adult peripheral blood mononuclear cells into retina-like cells and integration into the retina of mice were investigated. Freshly isolated adult peripheral blood mononuclear cells were divided into two groups: cells in group I were cultured in neural stem cell medium, and cells in group II were exposed to conditioned medium from rat retinal tissue culture. After 5 days, several distinct cell morphologies were observed, including standard mononuclear, neurons with one or two axons and elongated glial-like cells. Immunohistochemical analysis of neural stem cell, neuron and retina cell markers demonstrated that cells in both groups were nestin-, MAP2 (microtubule-associated protein)- and GFAP (glial fibrillary acidic protein)-positive. Flow cytometry results suggested a significant increase in nestin-, MAP2- and CD16-positive cells in group I and nestin-, GFAP-, MAP2-, vimentin- and rhodopsin-positive cells in group II. To determine survival, migration and integration in vivo, cell suspensions (containing group I or group II cells) were injected into the vitreous or the peritoneum. Tissue specimens were obtained and immunostained 4 weeks after transplantation. We found that cells delivered by intravitreal injection integrated into the retina. Labelled cells were not detected in the retina of mice receiving differentiated cells by intraperitoneal injection, but cells (groups I and II) were detected in the liver and spleen. Our findings revealed that human adult peripheral blood mononuclear cells could be induced to transdifferentiate into neural precursor cells and retinal progenitor cells in vitro, and the differentiated peripheral blood mononuclear cells can migrate and integrate

  5. Defining mononuclear phagocyte subset homology across several distant warm-blooded vertebrates through comparative transcriptomics

    Directory of Open Access Journals (Sweden)

    Thien eVu Manh

    2015-06-01

    Full Text Available Mononuclear phagocytes are organized in a complex system of ontogenically and functionally-distinct subsets, that has been best described in mouse and to some extent in human. Identification of homologous mononuclear phagocyte subsets in other vertebrate species of biomedical, economic and environmental interest is needed to improve our knowledge in physiologic and physio-pathologic processes, and to design intervention strategies against a variety of diseases, including zoonotic infections.We developed a streamlined approach combining refined cell sorting and integrated comparative transcriptomics analyses which revealed conservation of the mononuclear phagocyte organization across human, mouse, sheep, pigs and, in some respect, chicken. This strategy should help democratizing the use of omics analyses for the identification and study of cell types across tissues and species. Moreover we identified conserved gene signatures that enable robust identification and universal definition of these cell types. We identified new evolutionarily conserved gene candidates and gene interaction networks for the molecular regulation of the development or functions of these cell types, as well as conserved surface candidates for refined subset phenotyping throughout species. A phylogenetic analysis revealed that orthologous genes of the conserved signatures exist in teleost fishes and apparently not in Lamprey, indicating conservation of the genetic support for mononuclear phagocyte organization throughout jawed vertebrates but likely not in agnathans. Altogether this work provides molecular clues to the definition and functions of mononuclear phagocyte subsets across vertebrates which shall be useful to rigorously identify these cells and to design universal strategies to manipulate them in many target species towards the goal to reach and maintain global health.

  6. Combined copper/zinc attachment to prion protein

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Misfolding of prion protein (PrP) is responsible for diseases such as ``mad-cow disease'' in cattle and Creutzfeldt-Jacob in humans. Extensive experimental investigation has established that this protein strongly interacts with copper ions, and this ability has been linked to its still unknown function. Attachment of other metal ions (zinc, iron, manganese) have been demonstrated as well, but none of them could outcompete copper. Recent finding, however, indicates that at intermediate concentrations both copper and zinc ions can attach to the PrP at the octarepeat region, which contains high affinity metal binding sites. Based on this evidence, we have performed density functional theory simulations to investigate the combined Cu/Zn attachment. We consider all previously reported binding modes of copper at the octarepeat region and examine a possibility simultaneous Cu/Zn attachment. We find that this can indeed occur for only one of the known binding sites, when copper changes its coordination mode to allow for attachment of zinc ion. The implications of the simultaneous attachment on neural function remain to be explored.

  7. El zinc: oligoelemento esencial Zinc: an essential oligoelement

    Directory of Open Access Journals (Sweden)

    C. Rubio

    2007-02-01

    Full Text Available En este artículo se hace una revisión exhaustiva del zinc, elemento metálico esencial para el funcionamiento del organismo. Repasamos y reflejamos aspectos relacionados con la farmacocinética, con las fuentes dietéticas más importantes, así como las IDR (Ingestas Dietéticas Recomendadas del mismo. También se hace mención a los signos y síntomas relacionados tanto con una ingesta deficiente, como con posibles efectos tóxicos, derivados de ingestas excesivas.This article comprehensively reviews zinc, the metallic element essential for body functioning. We review and highlight issues related to pharmacokinetics, the most important dietary sources, as well as its RDIs (Recommended Dietary Intakes. We also focus on signs and symptoms related with both a deficient intake and possible toxic effects derived from excessive intakes.

  8. Peripheral Blood Mononuclear Cells Enhance Cartilage Repair in in vivo Osteochondral Defect Model.

    Directory of Open Access Journals (Sweden)

    Niina Hopper

    Full Text Available This study characterized peripheral blood mononuclear cells (PBMC in terms of their potential in cartilage repair and investigated their ability to improve the healing in a pre-clinical large animal model. Human PBMCs were isolated with gradient centrifugation and adherent PBMC's were evaluated for their ability to differentiate into adipogenic, chondrogenic and osteogenic lineages and also for their expression of musculoskeletal genes. The phenotype of the PBMCs was evaluated using Stro-1, CD34, CD44, CD45, CD90, CD106, CD105, CD146 and CD166 cell surface markers. Osteochondral defects were created in the medial femoral condyle (MFC of 24 Welsh mountain sheep and evaluated at a six month time point. Four cell treatment groups were evaluated in combination with collagen-GAG-scaffold: (1 MSC alone; (2 MSCs and PBMCs at a ratio of 20:1; (3 MSCs and PBMC at a ratio of 2:1 and (4 PBMCs alone. Samples from the surgical site were evaluated for mechanical properties, ICRS score and histological repair. Fresh PBMC samples were 90% positive for hematopoietic cell surface markers and negative for the MSC antibody panel (<1%, p = 0.006. However, the adherent PBMC population expressed mesenchymal stem cell markers in hypoxic culture and lacked CD34/45 positive cells (<0.2%. This finding demonstrated that the adherent cells had acquired an MSC-like phenotype and transformed in hypoxia from their original hematopoietic lineage. Four key genes in muskuloskeletal biology were significantly upregulated in adherent PBMCs by hypoxia: BMP2 4.2-fold (p = 0.0007, BMP6 10.7-fold (p = 0.0004, GDF5 2.0-fold (p = 0.002 and COL1 5.0-fold (p = 0.046. The monolayer multilineage analysis confirmed the trilineage mesenchymal potential of the adherent PBMCs. PBMC cell therapy was equally good as bone marrow MSC therapy for defects in the ovine large animal model. Our results show that PBMCs support cartilage healing and oxygen tension of the environment was found to have a key

  9. Generation and functional analysis of zinc finger nucleases.

    Science.gov (United States)

    Cathomen, Toni; Segal, David J; Brondani, Vincent; Müller-Lerch, Felix

    2008-01-01

    The recent development of artificial endonucleases with tailored specificities has opened the door for a wide range of new applications, including the correction of mutated genes directly in the chromosome. This kind of gene therapy is based on homologous recombination, which can be stimulated by the creation of a targeted DNA double-strand break (DSB) near the site of the desired recombination event. Artificial nucleases containing zinc finger DNA-binding domains have provided important proofs of concept, showing that inserting a DSB in the target locus leads to gene correction frequencies of 1-18% in human cells. In this paper, we describe how zinc finger nucleases are assembled by polymerase chain reaction (PCR) and present two methods to assess these custom nucleases quickly in vitro and in a cell-based recombination assay.

  10. The Role of Histidine-Proline-Rich Glycoprotein as Zinc Chaperone for Skeletal Muscle AMP Deaminase

    Directory of Open Access Journals (Sweden)

    Maria Ranieri-Raggi

    2014-05-01

    Full Text Available Metallochaperones function as intracellular shuttles for metal ions. At present, no evidence for the existence of any eukaryotic zinc-chaperone has been provided although metallochaperones could be critical for the physiological functions of Zn2+ metalloenzymes. We propose that the complex formed in skeletal muscle by the Zn2+ metalloenzyme AMP deaminase (AMPD and the metal binding protein histidine-proline-rich glycoprotein (HPRG acts in this manner. HPRG is a major plasma protein. Recent investigations have reported that skeletal muscle cells do not synthesize HPRG but instead actively internalize plasma HPRG. X-ray absorption spectroscopy (XAS performed on fresh preparations of rabbit skeletal muscle AMPD provided evidence for a dinuclear zinc site in the enzyme compatible with a (μ-aqua(μ-carboxylatodizinc(II core with two histidine residues at each metal site. XAS on HPRG isolated from the AMPD complex showed that zinc is bound to the protein in a dinuclear cluster where each Zn2+ ion is coordinated by three histidine and one heavier ligand, likely sulfur from cysteine. We describe the existence in mammalian HPRG of a specific zinc binding site distinct from the His-Pro-rich region. The participation of HPRG in the assembly and maintenance of skeletal muscle AMPD by acting as a zinc chaperone is also demonstrated.

  11. The Current Trend of China’s Zinc Consumption

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> According to estimations of zinc consumptionby China’s major zinc consumption industries,the growth rate of China’s actual zinc con-sumption in the period 1998-2002 was 10.2percent.Of China’s total zinc consumption inyear 2002,galvanizing zinc made 36 percent,

  12. Zinc stannate nanostructures: hydrothermal synthesis

    Directory of Open Access Journals (Sweden)

    Sunandan Baruah and Joydeep Dutta

    2011-01-01

    Full Text Available Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature.

  13. Morphology study of electrodeposited zinc from zinc sulfate solutions as anode for zinc-air and zinc-carbon batteries

    Directory of Open Access Journals (Sweden)

    Nurhaswani Alias

    2015-01-01

    Full Text Available The morphology of Zinc (Zn deposits was investigated as anode for aqueous batteries. The Zn was deposited from zinc sulfate solution in direct current conditions on a copper surface at different current densities. The morphology characterization of Zn deposits was performed via field emission scanning electron microscopy. The Zn deposits transformed from a dense and compact structure to dendritic form with increasing current density. The electrodeposition of Zn with a current density of 0.02 A cm−2 exhibited good morphology with a high charge efficiency that reached up to 95.2%. The Zn deposits were applied as the anode in zinc–air and zinc–carbon batteries, which gave specific discharge capacities of 460 and 300 mA h g−1, respectively.

  14. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens.

    Science.gov (United States)

    Fones, H N; McCurrach, H; Mithani, A; Smith, J A C; Preston, G M

    2016-05-11

    Metal-hyperaccumulating plants, which are hypothesized to use metals for defence against pests and pathogens, provide a unique context in which to study plant-pathogen coevolution. Previously, we demonstrated that the high concentrations of zinc found in leaves of the hyperaccumulator Noccaea caerulescens provide protection against bacterial pathogens, with a potential trade-off between metal-based and pathogen-induced defences. We speculated that an evolutionary arms race between zinc-based defences in N. caerulescens and zinc tolerance in pathogens might have driven the development of the hyperaccumulation phenotype. Here, we investigate the possibility of local adaptation by bacteria to the zinc-rich environment of N. caerulescens leaves and show that leaves sampled from the contaminated surroundings of a former mine site harboured endophytes with greater zinc tolerance than those within plants of an artificially created hyperaccumulating population. Experimental manipulation of zinc concentrations in plants of this artificial population influenced the zinc tolerance of recovered endophytes. In laboratory experiments, only endophytic bacteria isolated from plants of the natural population were able to grow to high population densities in any N. caerulescens plants. These findings suggest that long-term coexistence with zinc-hyperaccumulating plants leads to local adaptation by endophytic bacteria to the environment within their leaves. © 2016 The Author(s).

  15. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens

    Science.gov (United States)

    Fones, H. N.; McCurrach, H.; Mithani, A.; Smith, J. A. C.

    2016-01-01

    Metal-hyperaccumulating plants, which are hypothesized to use metals for defence against pests and pathogens, provide a unique context in which to study plant–pathogen coevolution. Previously, we demonstrated that the high concentrations of zinc found in leaves of the hyperaccumulator Noccaea caerulescens provide protection against bacterial pathogens, with a potential trade-off between metal-based and pathogen-induced defences. We speculated that an evolutionary arms race between zinc-based defences in N. caerulescens and zinc tolerance in pathogens might have driven the development of the hyperaccumulation phenotype. Here, we investigate the possibility of local adaptation by bacteria to the zinc-rich environment of N. caerulescens leaves and show that leaves sampled from the contaminated surroundings of a former mine site harboured endophytes with greater zinc tolerance than those within plants of an artificially created hyperaccumulating population. Experimental manipulation of zinc concentrations in plants of this artificial population influenced the zinc tolerance of recovered endophytes. In laboratory experiments, only endophytic bacteria isolated from plants of the natural population were able to grow to high population densities in any N. caerulescens plants. These findings suggest that long-term coexistence with zinc-hyperaccumulating plants leads to local adaptation by endophytic bacteria to the environment within their leaves. PMID:27170725

  16. Production of nano zinc, zinc sulphide and nanocomplex of magnetite zinc oxide by Brevundimonas diminuta and Pseudomonas stutzeri.

    Science.gov (United States)

    Mirhendi, Mansoureh; Emtiazi, Giti; Roghanian, Rasoul

    2013-12-01

    ZnO (Zincite) nanoparticle has many industrial applications and is mostly produced by chemical reactions, usually prepared by decomposition of zinc acetate or hot-injection and heating-up method. Synthesis of semi-conductor nanoparticles such as ZnS (Sphalerite) by ultrasonic was previously reported. In this work, high-zinc tolerant bacteria were isolated and used for nano zinc production. Among all isolated microorganisms, a gram negative bacterium which was identified as Brevundimonas diminuta could construct nano magnetite zinc oxide on bacterial surface with 22 nm in size and nano zinc with 48.29 nm in size. A piece of zinc metal was immersed in medium containing of pure culture of B. diminuta. Subsequently, a yellow-white biofilm was formed which was collected from the surface of zinc. It was dried at room temperature. The isolated biofilm was analysed by X-ray diffractometer. Interestingly, the yield of these particles was higher in the light, with pH 7 at 23°C. To the best of the authors knowledge, this is the first report about the production of nano zinc metal and nano zinc oxide that are stable and have anti-bacterial activities with magnetite property. Also ZnS (sized 12 nm) produced by Pseudomonas stutzeri, was studied by photoluminescence and fluorescent microscope.

  17. Recovery of Zinc from Zinc Ash and Flue Dusts by Hydrometallurgical Processing

    Science.gov (United States)

    Thorsen, G.; Grislingås, A.; Steintveit, G.

    1981-01-01

    A process has been developed for recovering zinc and other metal values from chloride-containing solid zinc waste materials such as zinc ash from galvanizing baths, and flue dusts from zinc smelting and Waelz processes. The waste is leached with a liquid organic phase containing a cation exchanger; the commercial carboxylic acid Versatic 911 is highly efficient for this operation. Halogens present in the organic phase are readily washed out with water. Zinc and other metal values are then selectively stripped with sulfuric acid, generating a neutral solution of zinc sulfate suitable for electrolytic production of zinc metal. Alternatively, zinc sulfate can be crystallized directly from the organic phase by stripping with concentrated sulfuric acid.

  18. The zinc electrode - Its behaviour in the nickel oxide-zinc accumulator

    Science.gov (United States)

    Certain aspects of zinc electrode reaction and behavior are investigated in view of their application to batteries. The properties of the zinc electrode in a battery system are discussed, emphasizing porous structure. Shape change is emphasized as the most important factor leading to limited battery cycle life. It is shown that two existing models of shape change based on electroosmosis and current distribution are unable to consistently describe observed phenomena. The first stages of electrocrystallization are studied and the surface reactions between the silver substrate and the deposited zinc layer are investigated. The reaction mechanism of zinc and amalgamated zinc in an alkaline electrolyte is addressed, and the batter system is studied to obtain information on cycling behavior and on the shape change phenomenon. The effect on cycle behavior of diferent amalgamation techniques of the zinc electrode and several additives is addressed. Impedance measurements on zinc electrodes are considered, and battery behavior is correlated with changes in the zinc electrode during cycling.

  19. Chemical stability and electrical performance of dual-active-layered zinc-tin-oxide/indium-gallium-zinc-oxide thin-film transistors using a solution process.

    Science.gov (United States)

    Kim, Chul Ho; Rim, You Seung; Kim, Hyun Jae

    2013-07-10

    We investigated the chemical stability and electrical properties of dual-active-layered zinc-tin-oxide (ZTO)/indium-gallium-zinc-oxide (IGZO) structures (DALZI) with the durability of the chemical damage. The IGZO film was easily corroded or removed by an etchant, but the DALZI film was effectively protected by the high chemical stability of ZTO. Furthermore, the electrical performance of the DALZI thin-film transistor (TFT) was improved by densification compared to the IGZO TFT owing to the passivation of the pin holes or pore sites and the increase in the carrier concentration due to the effect of Sn(4+) doping.

  20. High performance zinc anode for battery applications

    Science.gov (United States)

    Casey, John E., Jr. (Inventor)

    1998-01-01

    An improved zinc anode for use in a high density rechargeable alkaline battery is disclosed. A process for making the zinc electrode comprises electrolytic loading of the zinc active material from a slightly acidic zinc nitrate solution into a substrate of nickel, copper or silver. The substrate comprises a sintered plaque having very fine pores, a high surface area, and 80-85 percent total initial porosity. The residual porosity after zinc loading is approximately 25-30%. The electrode of the present invention exhibits reduced zinc mobility, shape change and distortion, and demonstrates reduced dendrite buildup cycling of the battery. The disclosed battery is useful for applications requiring high energy density and multiple charge capability.

  1. The role of zinc in acute pyelonephritis.

    Science.gov (United States)

    Mahyar, Abolfazl; Ayazi, Parviz; Farzadmanesh, Shahin; Sahmani, Mehdi; Oveisi, Sonia; Chegini, Victoria; Esmaeily, Shiva

    2015-09-01

    This study was conducted to determine the serum concentration of zinc in children with acute pyelonephritis. Serum zinc levels of 60 children with acute pyelonephritis and 60 healthy children were compared. Acute pyelonephritis was diagnosed using Tc-99m dimercaptosuccinic acid (DMSA) renal scan. Serum zinc levels were measured by the atomic absorption flame spectrophotometry. The levels in question in the case and control groups were 70.73 ± 14.15 and 87.61 ± 12.68 mcg/dL, respectively (P=0.001). There was no correlation between serum zinc level with inflammatory markers, severity of acute pyelonephritis and duration of the disease. This study showed that there is a correlation between serum zinc level and acute pyelonephritis. Zinc would therefore appear to play a certain role in the pathogenesis of acute pyelonephritis.

  2. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    Science.gov (United States)

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight

  3. Zinc alloy enhances strength and creep resistance

    Energy Technology Data Exchange (ETDEWEB)

    Machler, M. [Fisher Gauge Ltd., Peterborough, Ontario (Canada). Fishercast Div.

    1996-10-01

    A family of high-performance ternary zinc-copper-aluminum alloys has been developed that provides higher strength, hardness, and creep resistance than the traditional zinc-aluminum alloys Zamak 3, Zamak 5, and ZA-8. Designated ACuZinc, mechanical properties comparable to those of more expensive materials make it suitable for high-load applications and those at elevated temperatures. This article describes the alloy`s composition, properties, and historical development.

  4. Zinc therapy for different causes of diarrhea

    OpenAIRE

    Hafaz Zakky Abdillah; Supriatmo Supriatmo; Melda Deliana; Selvi Nafianti; Atan Baas Sinuhaji

    2013-01-01

    Background The incidence of diarrhea in Indonesia has declined in the past five years. In spite of the increasing number of studies on the treatment for acute diarrhea, especially the use of zinc, it is not known if bacterial vs. non-bacterial etiology makes a difference in the reduction of severity of acute diarrhea in children on zinc therapy. Objective To assess the effect of zinc therapy in reducing the severity of acute bacterial and non-bacterial diarrhea. Method...

  5. Use of accelerator mass spectrometry to measure the pharmacokinetics and peripheral blood mononuclear cell concentrations of zidovudine.

    Science.gov (United States)

    Vuong, Le T; Ruckle, Jon L; Blood, Arlin B; Reid, Michael J; Wasnich, Richard D; Synal, Hans-Arno; Dueker, Stephen R

    2008-07-01

    The remarkable sensitivity of accelerator mass spectrometry (AMS) is finding many new applications in pharmacology. In this study AMS was used to measure [(14)C]-Zidovudine (ZDV) concentrations at the drug's site of action (peripheral blood mononuclear cells, PBMCs) following a dose of 520 ng (less than one-millionth of the standard daily dose) to a healthy volunteer. In addition, the pharmacokinetics of this microdose were determined and compared to previously published parameters for therapeutic doses. Microdose ZDV pharmacokinetic parameters fell within reported 95% confidence intervals or standard deviations of most previously published values for therapeutic doses. Blood, urine, stool, saliva, and isolated PBMCs were collected periodically through 96 h postdose and analyzed for ZDV and metabolite concentrations. The results showed that ZDV is rapidly absorbed and eliminated, has one major metabolite, and is sequestered in PBMCs. (14)C mass balance assessments indicated a significant portion of ZDV remained after 96 h with a much prolonged elimination half-life. Results of this study demonstrate the usefulness of microdosing and AMS as a tool for studying the pharmacokinetic characteristics, including PBMC concentrations, of ZDV and underscore the value of AMS as a tool with which to perform pharmacokinetic and mass balance studies using trace amounts of radiolabeled compound.

  6. Hydrolytic protein cleavage mediated by unusual mononuclear copper(II) complexes: X-ray structures and solution studies.

    Science.gov (United States)

    de Oliveira, Mauricio C B; Scarpellini, Marciela; Neves, Ademir; Terenzi, Hernán; Bortoluzzi, Adailton J; Szpoganics, Bruno; Greatti, Alessandra; Mangrich, Antônio S; de Souza, Emanuel M; Fernandez, Pablo M; Soares, Marcia R

    2005-02-21

    The crystal structures and redox and UV-vis/EPR spectroscopic properties of two new mononuclear copper(II) complexes, [Cu(HL1)Cl2] (1) and [Cu(L1)Cl] (2), prepared through the reaction between copper(II) chloride and the ligand 2-[(bis(pyridylmethyl)amino)methyl]-4-methyl-6-formylphenol (HL1) under distinct base conditions, are reported along with solution studies. Also, we demonstrate that these CuII complexes are able to cleave unactivated peptide bonds from bovine serum albumin (BSA) and the thermostable enzyme Taq DNA polymerase at micromolar concentration, under mild pH and temperature conditions. The cleavage activity seems to be specific with defined proteolytic fragments appearing after protein treatment. The location of the specific cleavage sites was tentatively assigned to solvent-accessible portions of the protein. These are two of the most active Cu(II) complexes described to date, since their cleavage activity is detected in minutes and evidence is here presented for a hydrolytic mechanism mediating protein cleavage by these complexes.

  7. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    Science.gov (United States)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  8. Consequence of irrigation with arsenic and zinc contaminated water on accumulation of zinc in radishes plant

    Directory of Open Access Journals (Sweden)

    Hossein Banejad

    2014-10-01

    Conclusion: It was found that zinc concentration in radish roots, tubers, and leafs is correlated with the concentration of zinc in water. Moreover, there was a competition between the absorption of zinc and arsenic in plants. With increasing arsenic in irrigation water, transition of Zn was reduced to aerial part.

  9. Zinc and Copper Homeostasis in Head and Neck Cancer: Review and Meta-Analysis.

    Science.gov (United States)

    Ressnerova, Alzbeta; Raudenska, Martina; Holubova, Monika; Svobodova, Marketa; Polanska, Hana; Babula, Petr; Masarik, Michal; Gumulec, Jaromir

    2016-01-01

    Metals are known for playing essential roles in human physiology. Copper and zinc are trace elements closely dependent on one another and are involved in cell proliferation, growth, gene expression, apoptosis and other processes. Their homeostasis is crucial and tightly controlled by a resourceful system of transporters and transport proteins which deliver copper and zinc ions to their target sites. Abnormal zinc and copper homeostasis can be seen in a number of malignancies and also in head and neck cancer. Imbalance in this homeostasis is observed as an elevation or decrease of copper and zinc ions in serum or tissue levels in patients with cancer. In head and neck cancer these altered levels stand out from those of other malignancies which makes them an object of interest and therefore zinc and copper ions might be a good target for further research of head and neck cancer development and progression. This review aims to summarize the physiological roles of copper and zinc, its binding and transport mechanisms, and based on those, its role in head and neck cancer. To provide stronger evidence, dysregulation of levels is analysed by a meta-analytical approach.

  10. Evaluation of renal allografts using {sup 99m} Tc mononuclear leukocytes; Avaliacao de transplantes renais utilizando-se {sup 99m} Tc-leucocitos mononucleares

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Sergio Augusto Lopes de; Martins, Flavia Paiva Proenca; Carvalho, Antonio Carlos Pires; Gutfilen, Bianca [Universidade Federal, Rio de Janeiro, RJ (Brazil). Faculdade de Medicina. Dept. de Radiologia]. E-mail: sergioalsouza@ufrj.br; Goncalves, Renato Torres; Pontes, Daniela Salomao [Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil). Servico de Nefrologia; Fonseca, Lea Mirian Barbosa da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Faculdade de Medicina. Dept. de Medicina Nuclear

    2004-02-01

    Renal allograft acute rejection must be promptly diagnosed since its reversibility is related to the readiness in which treatment is initiated. The aim of this study was: to establish a quantitative method to evaluate kidney rejection and acute tubular necrosis (Attn); to assess the potential role of {sup 99m} Tc-mononuclear leukocytes scintigraphy in the diagnosis of renal rejection and differential diagnosis of Attn. One hundred and sixty studies were performed in 80 renal transplant patients at the first and fifth day after transplantation. Autologous cells were used for labeling. Images were obtained at 30 minutes, 3 hours and 24 hours after intravenous administration of 444 MBq (12 mCi) of labeled cells. There was abnormal labeled cells uptake in 27 of 31 cases of rejection and in 6 of 8 cases of Attn. The results of each patient were compared with clinical findings. Doppler scanning detected 18 of 31 cases of rejection. Rejection diagnosis sensitivity and specificity rates using scintigraphy were 87.1 per cent and 100 per cent, respectively, and 58.1 per cent and 100 per cent, respectively using ultrasound. Renal biopsy was performed in eight patients which demonstrated seven cases of rejection and one case of ATN. These results suggest that {sup 99m} Tc-mononuclear leukocytes imaging may be useful in the early diagnosis of rejection and in the differential diagnosis of ATN. (author)

  11. Reversal of uraemic impotence by zinc.

    Science.gov (United States)

    Antoniou, L D; Shalhoub, R J; Sudhakar, T; Smith, J C

    1977-10-29

    In eight impotent haemodialysed men with low plasma-zinc levels sexual function, including potency, frequency of intercourse, libido, and plasma testosterone, follicle-stimulating hormone, and luteinising hormone levels, was determined before and after therapy with zinc (four patients) or placebo (four patients). Dialytic administration of zinc strikingly improved potency in all patients and raised the plasma-testosterone to normal in the two with low pretreatment plasma-testosterone levels. Placebo did not improve sexual function in any patient. Zinc deficiency is a reversible cause of gonadal dysfunction in uraemia.

  12. Zinc and Brass in Archaeological Perspective

    Directory of Open Access Journals (Sweden)

    J. S. Kharakwal

    2006-12-01

    Full Text Available Brass has a much longer history than zinc. There has been a bit of confusion about the early beginning of zinc as several claims are made out side of India. Both literary as well as archaeological records reveal that production of pure zinc had begun in the second half of the first millennium BC, though production on commercial scale begun in the early Medieval times. This paper attempts to examine the archaeological record and literary evidence to understand the actual beginning of brass and zinc in India.

  13. Zinc oxide varistor; Sanka aen barisuta

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, H.

    2000-01-01

    Characteristics of zinc oxide varistors, applications to electronic equipment protection and to power arrester are explained. Zinc oxide varistors were invented in Japan, which function by ceramics boundary phenomena and are applied to various fields from power plants to houses. Zinc oxide varistors protect electronic equipment from malfunctions and destructions by surge voltage, accordingly have spread rapidly. Protection performance of the power arresters has been improved by development of zinc oxide varistors for electric power, and power arresters came to be used to protect electric lines all over the world. (NEDO)

  14. Evolution of zinc morphology during continuous electrodeposition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The morphology evolution of zinc continuous electrodeposits with nano-sized crystals on the ferrite substrate has been studied by in-situ scanning tunnel spectroscopy (STM). It is found that the morphology of zinc electrodeposits varies from initial granules with a size of about 30 nm to layered platelets with increasing deposition time. Meanwhile, the crystal structure of the zinc electrodeposits is identified to be hexagonal η-phase by X-ray diffraction. The orientation relationship between zinc crystals and the substrate surface can be interpreted in terms of the misfit and the atomic correspondence of the interphase boundary between the η-phase deposits and α-Fe substrate.

  15. Zinc absorption in inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Kertesz, A.; Bondy, D.C.

    1986-07-01

    Zinc absorption was measured in 29 patients with inflammatory bowel disease and a wide spectrum of disease activity to determine its relationship to disease activity, general nutritional state, and zinc status. Patients with severe disease requiring either supplementary oral or parenteral nutrition were excluded. The mean 65ZnCl2 absorption, in the patients, determined using a 65Zn and 51Cr stool-counting test, 45 +/- 17% (SD), was significantly lower than the values, 54 +/- 16%, in 30 healthy controls, P less than 0.05. Low 65ZnCl2 absorption was related to undernutrition, but not to disease activity in the absence of undernutrition or to zinc status estimated by leukocyte zinc measurements. Mean plasma zinc or leukocyte zinc concentrations in patients did not differ significantly from controls, and only two patients with moderate disease had leukocyte zinc values below the 5th percentile of normal. In another group of nine patients with inflammatory bowel disease of mild-to-moderate severity and minimal nutritional impairment, 65Zn absorption from an extrinsically labeled turkey test meal was 31 +/- 10% compared to 33 +/- 7% in 17 healthy controls, P greater than 0.1. Thus, impairment in 65ZnCl2 absorption in the patients selected for this study was only evident in undernourished persons with moderate or severe disease activity, but biochemical evidence of zinc deficiency was uncommon, and clinical features of zinc depletion were not encountered.

  16. The application of human umbilical cord blood mononuclear cells in the management of deep partial thickness burn

    Directory of Open Access Journals (Sweden)

    Yefta Moenadjat

    2013-05-01

    Full Text Available Background: Wound healing in burn is a complex process and early complete wound closure still enfaces many problems. Application of stem cells is found to be the future method of wound healing. Among the available sources of allogenic stem cells, umbilical cord blood is quite easy to be obtained, has less ethical issue, and contain multipotent stem cells, which are characterized by low immunogenicity. The study aims to evaluate the potential of human umbilical cord blood mononuclear cells (hUCBMNCs treatment in the management of deep partial thickness burns. Methods: Twenty patients with deep partial thickness burns were treated with topical application of 2 x 107 hUCBMNCs and silver sulfadiazine (SSD cream on the comparable wound size in the other sites. The treatments were applied for six times in every two consecutive days. Wound surface area was measured with Visitrak® on day 0, 7, and 11. Pain intensity was evaluated using Wong Baker’s faces scale on each wound dressing change. Histology examination was performed in some samples of collected skin biopsy of the newly re-epithelialized area of hUCBMNCs and SSD-treated wound at the end of treatment. HLA typing is used to evaluate the issue of safety. Wilcoxon signed rank test was used to compare the rate of wound healing. Results: Sixteen patients of hUCBMNCs-treated showed a significant wound closure in faster than SSD-treated; measured on day 7 (p = 0.041 and day 11 (p = 0.021. Number of patients with reduced pain intensity, from approximately scale 3 to 1/0 on day 7 and 11, were higher in hUCBMNCs-treated compared to SSD-treated wound. In spite of the HLA-mismatch, no allergic reaction, rejection, and infection found on hUCBMNCs-treated wound suggested the safety of this therapy. Histology examination found the formation of dermal-epidermal junction and rete ridges equal to the normal skin on hUCBMNCs-treated wounds. Conclusion: hUCBMNCs are effective and safe to promote re

  17. Effect of malaria components on blood mononuclear cells involved in immune response.

    Science.gov (United States)

    Punsawad, Chuchard

    2013-09-01

    During malaria infection, elevated levels of pro-inflammatory mediators and nitric oxide production have been associated with pathogenesis and disease severity. Previous in vitro and in vivo studies have proposed that both Plasmodium falciparum hemozoin and glycosylphosphatidylinositols are able to modulate blood mononuclear cells, contributing to stimulation of signal transduction and downstream regulation of the NF-κB signaling pathway, and subsequently leading to the production of pro-inflammatory cytokines, chemokines, and nitric oxide. The present review summarizes the published in vitro and in vivo studies that have investigated the mechanism of intracellular signal transduction and activation of the NF-κB signaling pathway in blood mononuclear cells after being inducted by Plasmodium falciparum malaria components. Particular attention is paid to hemozoin and glycosylphosphatidylinositols which reflect the important mechanism of signaling pathways involved in immune response.

  18. Effect of malaria components on blood mononuclear cells involved in immune response

    Institute of Scientific and Technical Information of China (English)

    Chuchard Punsawad

    2013-01-01

    During malaria infection, elevated levels of pro-inflammatory mediators and nitric oxide production have been associated with pathogenesis and disease severity. Previous in vitro and in vivo studies have proposed that both Plasmodium falciparum hemozoin and glycosylphosphatidylinositols are able to modulate blood mononuclear cells, contributing to stimulation of signal transduction and downstream regulation of the NF-κB signaling pathway, and subsequently leading to the production of pro-inflammatory cytokines, chemokines, and nitric oxide. The present review summarizes the published in vitro and in vivo studies that have investigated the mechanism of intracellular signal transduction and activation of the NF-κB signaling pathway in blood mononuclear cells after being inducted by Plasmodium falciparum malaria components. Particular attention is paid to hemozoin and glycosylphosphatidylinositols which reflect the important mechanism of signaling pathways involved in immune response.

  19. Reduced LAK cytotoxicity of peripheral blood mononuclear cells in patients with bladder cancer

    DEFF Research Database (Denmark)

    Hermann, G G; Petersen, K R; Steven, K

    1990-01-01

    were analyzed using monoclonal antibodies against T cells, natural killer (NK) -cells, monocytes, and activation markers. The cytotoxicities of US-PBMC, PS-PBMC, and LAK cells were all significantly lower in the cancer patients than in the controls (P less than 0.05). The percentages of PBMC positive......The cytotoxicity of unstimulated peripheral blood mononuclear cells (US-PBMC), phytohemagglutinin (PHA)-stimulated PBMC (PS-PBMC) and interleukin-2 (IL-2)-activated PBMC (LAK cells) was assessed in patients with noninvasive and invasive transitional-cell bladder cancer and compared with those...... determined in healthy controls. The differences in the cytotoxicities were correlated with specific changes in the subsets of peripheral blood mononuclear cells (PBMC). PBMC from 37 patients and 13 healthy controls were tested against the bladder cancer cell line T24 in 51Cr-release assays. The PBMC subsets...

  20. Zinc Is Involved in Depression by Modulating G Protein-Coupled Receptor Heterodimerization.

    Science.gov (United States)

    Tena-Campos, Mercè; Ramon, Eva; Lupala, Cecylia S; Pérez, Juan J; Koch, Karl-W; Garriga, Pere

    2016-04-01

    5-Hydroxytryptamine 1A receptor and galanin receptor 1 belong to the G protein-coupled receptors superfamily, and they have been described to heterodimerize triggering an anomalous physiological state that would underlie depression. Zinc supplementation has been widely reported to improve treatment against major depressive disorder. Our work has focused on the study and characterization of these receptors and its relationships with zinc both under purified conditions and in cell culture. To this aim, we have designed a strategy to purify the receptors in a conformationally active state. We have used receptors tagged with the monoclonal Rho-1D4 antibody and employed ligand-assisted purification in order to successfully purify both receptors in a properly folded and active state. The interaction between both purified receptors has been analyzed by surface plasmon resonance in order to determine the kinetics of dimerization. Zinc effect on heteromer has also been tested using the same methodology but exposing the 5-hydroxytryptamine 1A receptor to zinc before the binding experiment. These results, combined with Förster resonance energy transfer (FRET) measurements, in the absence and presence of zinc, suggest that this ion is capable of disrupting this interaction. Moreover, molecular modeling suggests that there is a coincidence between zinc-binding sites and heterodimerization interfaces for the serotonin receptor. Our results establish a rational explanation for the role of zinc in the molecular processes associated with receptor-receptor interactions and its relationship with depression, in agreement with previously reported evidence for the positive effects of zinc in depression treatment, and the involvement of our target dimer in the same disease.

  1. Synthesis and spectroscopic characterization of high-spin mononuclear iron(II) p-semiquinonate complexes.

    Science.gov (United States)

    Baum, Amanda E; Park, Heaweon; Lindeman, Sergey V; Fiedler, Adam T

    2014-12-01

    Two mononuclear iron(II) p-semiquinonate (pSQ) complexes have been generated via one-electron reduction of precursor complexes containing a substituted 1,4-naphthoquinone ligand. Detailed spectroscopic and computational analysis confirmed the presence of a coordinated pSQ radical ferromagnetically coupled to the high-spin Fe(II) center. The complexes are intended to model electronic interactions between (semi)quinone and iron cofactors in biology.

  2. Synthesis and Spectroscopic Characterization of High-Spin Mononuclear Iron(II) p-Semiquinonate Complexes

    OpenAIRE

    Baum, Amanda E.; Park, Heaweon; Lindeman, Sergey V.; Fiedler, Adam T.

    2014-01-01

    Two mononuclear iron(II) p-semiquinonate (pSQ) complexes have been generated via one-electron reduction of precursor complexes containing a substituted 1,4-naphthoquinone ligand. Detailed spectroscopic and computational analysis confirmed the presence of a coordinated pSQ radical ferromagnetically coupled to the high-spin FeII center. The complexes are intended to model electronic interactions between (semi)quinone and iron cofactors in biology.

  3. Rapid Column-Free Enrichment of Mononuclear Cells from Solid Tissues.

    Science.gov (United States)

    Scoville, Steven D; Keller, Karen A; Cheng, Stephanie; Zhang, Michael; Zhang, Xiaoli; Caligiuri, Michael A; Freud, Aharon G

    2015-07-30

    We have developed a rapid negative selection method to enrich rare mononuclear cells from human tissues. Unwanted and antibody-tethered cells are selectively depleted during a Ficoll separation step, and there is no need for magnetic-based reagents and equipment. The new method is fast, customizable, inexpensive, remarkably efficient, and easy to perform, and per sample the overall cost is less than one-tenth the cost associated with a magnetic column-based method.

  4. Rapid Column-Free Enrichment of Mononuclear Cells from Solid Tissues

    Science.gov (United States)

    Scoville, Steven D.; Keller, Karen A.; Cheng, Stephanie; Zhang, Michael; Zhang, Xiaoli; Caligiuri, Michael A.; Freud, Aharon G.

    2015-01-01

    We have developed a rapid negative selection method to enrich rare mononuclear cells from human tissues. Unwanted and antibody-tethered cells are selectively depleted during a Ficoll separation step, and there is no need for magnetic-based reagents and equipment. The new method is fast, customizable, inexpensive, remarkably efficient, and easy to perform, and per sample the overall cost is less than one-tenth the cost associated with a magnetic column-based method. PMID:26223896

  5. UV/Vis, MCD and EPR Spectra of Mononuclear Manganese and Molybdenum Complexes

    OpenAIRE

    Westphal, Anne

    2012-01-01

    This PhD thesis deals with the spectroscopic characterization of the electronic structures of mononuclear manganese and molybdenum complexes. At this, in addition to UV/Vis absorption spectroscopy, electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopy were applied in this work. Additionally, new procedures for the general analysis of MCD C-term intensities were developed within the scope of this thesis. It is divided into four parts. Following a general p...

  6. Effects of carvedilol on oxidative stress in polymorphonuclear and mononuclear cells in patients with essential hypertension.

    Science.gov (United States)

    Yasunari, Kenichi; Maeda, Kensaku; Nakamura, Munehiro; Watanabe, Takanori; Yoshikawa, Junichi; Asada, Akira

    2004-04-01

    To compare the effects of carvedilol and propranolol on oxidative stress in leukocytes and C-reactive protein levels in patients with hypertension. Sixty hypertensive patients were randomly assigned to carvedilol (20 mg; n = 30) or propranolol (60 mg; n = 30) for 6 months. Thirty normotensive subjects who were given placebo served as controls. Oxidative stress in polymorphonuclear cells and mononuclear cells were measured by gated flow cytometry. C-reactive protein levels were measured by immunonephelometric assay. Oxidative stress in polymorphonuclear cells and mononuclear cells was increased significantly in hypertensive patients compared with in normotensive controls. After 6 months of treatment, carvedilol decreased oxidative stress significantly in polymorphonuclear cells by a mean of 45 arbitrary units (95% confidence interval [CI]: 32 to 59 arbitrary units; P <0.001) and propranolol decreased oxidative stress significantly by 20 arbitrary units (95% CI: 7 to 33 arbitrary units; P <0.003; P = 0.001 for difference between treatments). Carvedilol also decreased oxidative stress significantly in mononuclear cells by 23 arbitrary units (95% CI: 15 to 31 arbitrary units; P <0.001), whereas propranolol decreased oxidative stress by 2 arbitrary units (95% CI: 7 to 12 arbitrary units; P = 0.62; P = 0.002 for difference between treatments). Carvedilol decreased C-reactive protein levels significantly by a median of 0.073 mg/dL (interquartile range, 0.034 to 0.112 mg/dL; P <0.001), whereas propranolol decreased levels by 0.012 mg/dL (interquartile range, 0.009 to 0.032 mg/dL; P = 0.26; P = 0.003 for difference between treatments). These findings suggest that carvedilol inhibits oxidative stress in polymorphonuclear and mononuclear cells, as well as lowers C-reactive protein levels, to a greater extent than does propranolol in hypertensive patients.

  7. Subcutaneous Connective Tissue Reaction to a New Nano Zinc-Oxide Eugenol Sealer in Rat Model

    Science.gov (United States)

    Omidi, Salma; Javidi, Maryam; Zarei, Mina; Mushakhian, Siavash; Jafarian, Amirhossein

    2017-01-01

    Introduction: The aim of this animal study was to evaluate the histological response of the new nano zinc-oxide eugenol (NZOE) sealer in comparison with Pulp Canal Sealer (ZOE based) and AH-26 (epoxy resin sealer). Methods and Materials: A total of 27 Wistar rats were used. Four polyethylene tubes were implanted in the back of each rat (three tubes containing the test materials and an empty tube as a control). Then, 9 animals were sacrificed at each interval of 15, 30 and 60 days, and the implants were removed with the surrounding tissues.Samples were evaluated for the presence of inflammatory cell (mononuclear cell), vascular changes, fibrous tissue formation and present of giant cell. Comparisons between groups and time-periods were performed using the Kruskal-Wallis and Mann-Whitney U non-parametric tests. The level of significance was set at 0.05. Results: No significant difference was observed in tissue reactions and biocompatibility pattern of three sealers during 3 experimental periods (P<0.05). In all groups the tissue behavior showed tendency to decrease the irritation effect over time. Conclusion: The new nano zinc-oxide eugenol sealer has histocompatibility properties comparable to conventional commercial sealers. PMID:28179927

  8. INFLUENCE OF ALPHA-1-ACID GLYCOPROTEIN UPON PRODUCTION OF CYTOKINES BY PERIPHERAL BLOOD MONONUCLEARS

    Directory of Open Access Journals (Sweden)

    М. V. Osikov

    2007-01-01

    Full Text Available Abstract. Alpha-1-acid glycoprotein (orosomucoid is a multifunctional acute phase reactant belonging to the family of lipocalines from plasma alpha-2 globulin fraction. In present study, we investigated dosedependent effects of orosomucoid upon secretion of IL-1â, IL-2, IL-3, IL-4 by mononuclear cells from venous blood of healthy volunteers. Mononuclear cells were separated by means of gradient centrifugation, followed by incubation for 24 hours with 250, 500, or 1000 mcg of orosomucoid per ml RPMI-1640 medium (resp., low, medium and high dose. The levels of cytokine production were assayed by ELISA technique. Orosomucoid-induced secretion of IL-1â and IL-4 was increased, whereas IL-3 secretion was inhibited. IL-2 production was suppressed at low doses of orosomucoid, and stimulated at medium and high doses. The effect of alpha-1-acid glycoprotein upon production of IL-2, IL-3 and IL-4 was dose-dependent. Hence, these data indicate that orosomucoid is capable of modifying IL-1â, IL-2, IL-3, and IL-4 secretion by blood mononuclear cells.

  9. Modulation of adhesion molecules by cholesterol-lowering therapy in mononuclear cells from hypercholesterolemic patients.

    Science.gov (United States)

    Cerda, Alvaro; Rodrigues, Alice Cristina; Alves, Camila; Genvigir, Fabiana Dalla Vecchia; Fajardo, Cristina Moreno; Dorea, Egidio Lima; Gusukuma, Maria Cecilia; Pinto, Gelba Almeida; Hirata, Mario Hiroyuki; Hirata, Rosario Dominguez Crespo

    2015-08-01

    Cholesterol-lowering therapy has been related with several pleiotropic effects including anti-inflammatory action in vascular endothelium; however, their influence on monocyte adhesion molecules is poorly described. To investigate the effect of inhibitors of synthesis (statins) and absorption (ezetimibe) of cholesterol on expression of adhesion molecules L-selectin, PSGL-1, VLA-4, LFA-1, and Mac-1 in mononuclear cells in vivo and in vitro using THP-1 cells. The influence of simvastatin (10 mg/day), ezetimibe (10 mg/day), and their combination (10 mg each/day) on mRNA expression of adhesion molecules was analyzed in peripheral blood mononuclear cells (PBMC) from hypercholesterolemics. The effects of atorvastatin, simvastatin, and ezetimibe on mRNA and protein expression of adhesion molecules were also evaluated in THP-1 cells. Simvastatin/ezetimibe combination, but not the monotherapies, reduced the mRNA expression of the PSGL-1, LFA-1, and Mac-1 genes in PBMC from hypercholesterolemics. Total and LDL cholesterol in serum correlated with PSGL-1 mRNA expression, whereas HDL cholesterol negatively correlated with mRNA levels of L-selectin and VLA-4 genes (P molecules in PBMC from hypercholesterolemics and THP-1 cells. Simvastatin/ezetimibe combination gives more benefits by reducing to a larger extent the expression of adhesion molecules in mononuclear cells. © 2015 John Wiley & Sons Ltd.

  10. Defining Mononuclear Phagocyte Subset Homology Across Several Distant Warm-Blooded Vertebrates Through Comparative Transcriptomics.

    Science.gov (United States)

    Vu Manh, Thien-Phong; Elhmouzi-Younes, Jamila; Urien, Céline; Ruscanu, Suzana; Jouneau, Luc; Bourge, Mickaël; Moroldo, Marco; Foucras, Gilles; Salmon, Henri; Marty, Hélène; Quéré, Pascale; Bertho, Nicolas; Boudinot, Pierre; Dalod, Marc; Schwartz-Cornil, Isabelle

    2015-01-01

    Mononuclear phagocytes are organized in a complex system of ontogenetically and functionally distinct subsets, that has been best described in mouse and to some extent in human. Identification of homologous mononuclear phagocyte subsets in other vertebrate species of biomedical, economic, and environmental interest is needed to improve our knowledge in physiologic and physio-pathologic processes, and to design intervention strategies against a variety of diseases, including zoonotic infections. We developed a streamlined approach combining refined cell sorting and integrated comparative transcriptomics analyses which revealed conservation of the mononuclear phagocyte organization across human, mouse, sheep, pigs and, in some respect, chicken. This strategy should help democratizing the use of omics analyses for the identification and study of cell types across tissues and species. Moreover, we identified conserved gene signatures that enable robust identification and universal definition of these cell types. We identified new evolutionarily conserved gene candidates and gene interaction networks for the molecular regulation of the development or functions of these cell types, as well as conserved surface candidates for refined subset phenotyping throughout species. A phylogenetic analysis revealed that orthologous genes of the conserved signatures exist in teleost fishes and apparently not in Lamprey.

  11. Use of {sup 99m}Tc-Mononuclear Leukocyte Scintigraphy in Nosocomial Fever

    Energy Technology Data Exchange (ETDEWEB)

    Gutfilen, B.; Lopes de Souza, S.A.; Martins, F.P.P.; Cardoso, L.R.; Pinheiro Pessoa, M.C.; Fonseca, L.M.B. [Univ. Federal do Rio de Janeiro (Brazil). Dept. de Radiologia

    2006-09-15

    Purpose: To determine the overall diagnostic accuracy of mononuclear leukocyte-{sup 99m}Tc scintigraphy in the routine detection of infectious lesions and fever of unknown origin (FUO) in inpatients. Material and Methods: The use of mononuclear leukocyte {sup 99m}Tc scintigraphy is presented in 87 patients who fulfilled the Durack and Street diagnostic criteria of nosocomial FUO; 66 patients were suspected of having infectious lesions (myocarditis, endocarditis, infected catheters, diabetic foot, and osteomyelitis) and 21 patients presented with unknown causes of FUO. Scans were carried out 1, 3, and 24 h after injection of labeled leukocytes. Results: In three cases (3/27) where scintigraphs were negative, biopsies were positive. There were two (2/87) false-positive scintigrams. We found a 95.8% sensitivity and 92.3% specificity. PPV was 93.8%, PPN 94.7%, and accuracy 94.2%. Conclusion: Mononuclear leukocyte {sup 99m}Tc scintigraphy showed high sensitivity, specificity, positive and negative predictive values in patients with nosocomial FUO. These results suggest an important role for nuclear medicine in the management of patients with infection/inflammation.

  12. Study of the inhibition by polymorphonuclear leukocytes of TNF-α release from human mononuclear cells and its mechanism

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ The present study was undertaken to investigate the effect of human PMNs on the production of TNF-α by the human peripheral blood mononuclear cells (PBMCs) and to elucidate its tentative mechanism.

  13. Dosage Effect of Zinc Glycine Chelate on Zinc Metabolism and Gene Expression of Zinc Transporter in Intestinal Segments on Rat.

    Science.gov (United States)

    Huang, Danping; Hu, Qiaoling; Fang, Shenglin; Feng, Jie

    2016-06-01

    Zinc plays an essential role in various fundamental biological processes. The focus of this research was to investigate the dosage effect of zinc glycine chelate (Zn-Gly) on zinc metabolism and the gene expression of zinc transporters in intestinal segments. A total of 30 4-week-old SD rats were randomized into five treatment groups. The basal diets for each group were supplemented with gradient levels of Zn (0, 30, 60, 90, and 180 mg/kg) from Zn-Gly. After 1-week experiment, the results showed that serum and hepatic zinc concentration were elevated linearly with supplemental Zn levels from 0 to 180 mg Zn/kg. Serum Cu-Zn SOD activities resulted in a significant (P zinc levels (P zinc content and was significantly higher (P zinc levels and the activities of Cu-Zn SOD and AKP on rats. Dietary Zn-Gly has a certain effect on MT1, Zip4, Zip5, and ZnT1 expression, which expressed differently in intestinal segments with different levels of Zn-Gly load. Besides, Zn-Gly also could regulate PepT1 expression in intestinal segments.

  14. Corrosion of carbon steel, zinc and copper by air pollution in Chongqing

    Institute of Scientific and Technical Information of China (English)

    YE Di; ZHAO Da-wei; CHEN Gang-cai; ZHANG Dong-bao

    2007-01-01

    This paper presents the research on the atmospheric corrosion rates of carbon steel, zinc and copper in Chongqing, which was a corrosion subprogram of an international project, Regional Air Pollution in Developing Countries. We performed field exposure tests of carbon steel, zinc and copper at an urban site Guanyinqiao and a rural site Tieshanping inChongqing, then used grey relational analysis, based on the database of the whole corrosion project, to determine the order of the effect of environmental factors on corrosion rates of tested metals, and established dose-response functions for these three metals. The results showed that the two crucial agents of acidic environment, SO2 and H+, were common factors that contributed most to the corrosion of the tested metals. The established dose-response functions for outdoor carbon steel and zinc are proved applicable to use in Chongqing, but the function for copper needs further modifying. We employed these dose-response functions and general environmental data to elaborate the maps of corrosion rate respectively of carbon steel and zinc by geological information system (GIS) technique which help to identify areas of high corrosion damage risk. An acceptable annual average SO2 level of 21 μg/m3 for carbon steel and that of 61 μg/m3 for zinc are also put forward to control the air pollution impact on atmospheric corrosion in Chongqing urban areas.

  15. Aggressive periodontitis and chronic arthritis: blood mononuclear cell gene expression and plasma protein levels of cytokines and cytokine inhibitors

    DEFF Research Database (Denmark)

    Sørensen, Lars K; Havemose-Poulsen, Anne; Bendtzen, Klaus

    2009-01-01

    BACKGROUND: Cytokines and cytokine inhibitors have been associated with many immunoinflammatory diseases. In the present study, we examined whether peripheral blood mononuclear cell (PBMC) gene expression mirrors the corresponding plasma levels of clinically important pro- and anti-inflammatory c......BACKGROUND: Cytokines and cytokine inhibitors have been associated with many immunoinflammatory diseases. In the present study, we examined whether peripheral blood mononuclear cell (PBMC) gene expression mirrors the corresponding plasma levels of clinically important pro- and anti...

  16. Leishmania mexicana amazonensis: heterogeneity in 5-nucleotidase and peroxidase activities of mononuclear phagocytes during in vivo and in vitro infection

    OpenAIRE

    Suzana Côrte-Real; Gabriel Grimaldi Junior; Maria de Nazareth Leal de Meirelles

    1988-01-01

    The degree of maturation of cells of the Mononuclear Phagocyte System (MPS), during in vivo and in vitro infection by Leishmania mexicana amazonenesis, was evaluated in this study. The macrophages' differentiation was assayed by cytochemical characterization at the ultrastrctural level, using two well-established markers: 5'-nucleotidase enzyme activity, for revealing the mature cells, and the peroxidase activity present in the cell granules to demonstrate immature mononuclear phagocytes. onl...

  17. Nucleation and growth in alkaline zinc electrodeposition An Experimental and Theoretical study

    Science.gov (United States)

    Desai, Divyaraj

    The current work seeks to investigate the nucleation and growth of zinc electrodeposition in alkaline electrolyte, which is of commercial interest to alkaline zinc batteries for energy storage. The morphology of zinc growth places a severe limitation on the typical cycle life of such batteries. The formation of mossy zinc leads to a progressive deterioration of battery performance while zinc dendrites are responsible for sudden catastrophic battery failure. The problems are identified as the nucleation-controlled formation of mossy zinc and the transport-limited formation of dendritic zinc. Consequently, this thesis work seeks to investigate and accurately simulate the conditions under which such morphologies are formed. The nucleation and early-stage growth of Zn electrodeposits is studied on carbon-coated TEM grids. At low overpotentials, the morphology develops by aggregation at two distinct length scales: ~5 nm diameter monocrystalline nanoclusters form ~50nm diameter polycrystalline aggregates, and second, the aggregates form a branched network. Epitaxial (0002) growth above a critical overpotential leads to the formation of hexagonal single-crystals. A kinetic model is provided using the rate equations of vapor solidification to simulate the evolution of the different morphologies. On solving these equations, we show that aggregation is attributed to cluster impingement and cluster diffusion while single-crystal formation is attributed to direct attachment. The formation of dendritic zinc is investigated using in-operando transmission X-ray microscopy which is a unique technique for imaging metal electrodeposits. The nucleation density of zinc nuclei is lowered using polyaniline films to cover the active nucleation sites. The effect of overpotential is investigated and the morphology shows beautiful in-operando formation of symmetric zinc crystals. A linear perturbation model was developed to predict the growth and formation of these crystals to first

  18. DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine

    Science.gov (United States)

    Anjomshoa, Marzieh; Fatemi, Seyed Jamilaldin; Torkzadeh-Mahani, Masoud; Hadadzadeh, Hassan

    2014-06-01

    Binding studies of a mononuclear zinc(II) complex, [Zn(dppt)2Cl2] (dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), with DNA and bovine serum albumin (BSA) have been investigated under physiological conditions. The binding properties of the complex with fish sperm DNA (FS-DNA) have been investigated by UV-Vis absorption, thermal denaturation, competitive DNA-binding studies with ethidium bromide (EB) by fluorescence, and gel electrophoresis techniques. The competitive study with (EB) shows that the complex can displace EB from the DNA-EB system and compete for the DNA-binding sites with EB, which is usually characteristic of the intercalative interaction of compounds with DNA. The value of the fluorescence quenching constant (Ksv) was obtained as 3.1 × 104 M-1, indicating that this complex shows a high quenching efficiency and a significant degree of binding to DNA. Moreover, the intercalative binding mode has also been verified by the results of UV-Vis absorption, thermal denaturation and gel electrophoresis. The value of Kb at room temperature was calculated to be 1.97 × 105 M-1, indicating that the complex possesses strong tendency to bind with DNA. This value is very greater than to the values obtained for other zinc(II) complexes. The interaction of the complex with BSA has been studied by UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques. The results indicate that the complex has a quite strong ability to quench the fluorescence of BSA and the binding reaction is mainly a static quenching process. The quenching constants (KSV), the binding constants (Kb), the number of binding sites at different temperatures, the binding distance between BSA and the complex (r), and the thermodynamic parameters (ΔHo, ΔSo and ΔGo) between BSA and the complex were calculated. The complex exhibits good binding propensity to BSA showing relatively high binding constant values. The positive ΔHo and ΔSo values indicate that the

  19. DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine.

    Science.gov (United States)

    Anjomshoa, Marzieh; Fatemi, Seyed Jamilaldin; Torkzadeh-Mahani, Masoud; Hadadzadeh, Hassan

    2014-06-01

    Binding studies of a mononuclear zinc(II) complex, [Zn(dppt)2Cl2] (dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), with DNA and bovine serum albumin (BSA) have been investigated under physiological conditions. The binding properties of the complex with fish sperm DNA (FS-DNA) have been investigated by UV-Vis absorption, thermal denaturation, competitive DNA-binding studies with ethidium bromide (EB) by fluorescence, and gel electrophoresis techniques. The competitive study with (EB) shows that the complex can displace EB from the DNA-EB system and compete for the DNA-binding sites with EB, which is usually characteristic of the intercalative interaction of compounds with DNA. The value of the fluorescence quenching constant (Ksv) was obtained as 3.1×10(4)M(-1), indicating that this complex shows a high quenching efficiency and a significant degree of binding to DNA. Moreover, the intercalative binding mode has also been verified by the results of UV-Vis absorption, thermal denaturation and gel electrophoresis. The value of Kb at room temperature was calculated to be 1.97×10(5)M(-1), indicating that the complex possesses strong tendency to bind with DNA. This value is very greater than to the values obtained for other zinc(II) complexes. The interaction of the complex with BSA has been studied by UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques. The results indicate that the complex has a quite strong ability to quench the fluorescence of BSA and the binding reaction is mainly a static quenching process. The quenching constants (KSV), the binding constants (Kb), the number of binding sites at different temperatures, the binding distance between BSA and the complex (r), and the thermodynamic parameters (ΔH(o), ΔS(o) and ΔG(o)) between BSA and the complex were calculated. The complex exhibits good binding propensity to BSA showing relatively high binding constant values. The positive ΔH(o) and ΔS(o) values indicate that

  20. Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator.

    Directory of Open Access Journals (Sweden)

    Avery G Frey

    Full Text Available The Zap1 transcription factor of Saccharomyces cerevisiae plays a central role in zinc homeostasis by controlling the expression of genes involved in zinc metabolism. Zap1 is active in zinc-limited cells and repressed in replete cells. At the transcriptional level, Zap1 controls its own expression via positive autoregulation. In addition, Zap1's two activation domains are regulated independently of each other by zinc binding directly to those regions and repressing activation function. In this report, we show that Zap1 DNA binding is also inhibited by zinc. DMS footprinting showed that Zap1 target gene promoter occupancy is regulated with or without transcriptional autoregulation. These results were confirmed using chromatin immunoprecipitation. Zinc regulation of DNA binding activity mapped to the DNA binding domain indicating other parts of Zap1 are unnecessary for this control. Overexpression of Zap1 overrode DNA binding regulation and resulted in constitutive promoter occupancy. Under these conditions of constitutive binding, both the zinc dose response of Zap1 activity and cellular zinc accumulation were altered suggesting the importance of DNA binding control to zinc homeostasis. Thus, our results indicated that zinc regulates Zap1 activity post-translationally via three independent mechanisms, all of which contribute to the overall zinc responsiveness of Zap1.

  1. Solubilization and Transformation of Insoluble Zinc Compounds by Fungi Isolated from a Zinc Mine

    Directory of Open Access Journals (Sweden)

    Thanawat Sutjaritvorakul

    2013-07-01

    Full Text Available Fungi were isolated from zinc-containing rocks and mining soil. They were screened for the ability to solubilize and transform three insoluble zinc compounds: ZnO, Zn3(PO4, and ZnCO3. Fungi were plated on potato dextrose agar (PDA medium which was supplemented with 0.5% (w/v of insoluble zinc compounds. Of the strains tested, four fungal isolates showed the highest efficiency for solubilizing all the insoluble zinc compounds, producing clearing zone diameters > 40 mm. These were identified as a Phomopsis spp., Aspergillus sp.1, Aspergillus sp.2, and Aspergillus niger. Zinc oxide was the most easily solubilized compound and it was found that 87%, 52%, and 61% of the tested fungi (23 isolates were able to solubilize zinc oxide, zinc phosphate, and zinc carbonate, respectively. Precipitation of zinc-containing crystals was observed in zinc oxide-containing agar medium underneath colonies of Aspergillus sp.1, and these were identified as zinc oxalate. It is suggested that these kinds of fungi have the potential application in bioremediation practices for heavy metal contaminated soils.

  2. Clinical Aspects of Trace Elements: Zinc in Human Nutrition - Assessment of Zinc Status

    Directory of Open Access Journals (Sweden)

    Michelle M Pluhator

    1996-01-01

    Full Text Available Because the limiting and vulnerable zinc pool has not been identified, it becomes a challenge to determine which of the many zinc pools is most susceptible to deficiency. As a consequence, defining and assessing zinc status in the individual patient is a somewhat uncertain process. Laboratory analysis of zinc status is difficult because no single biochemical criterion can reliably reflect zinc body stores. Many indexes have been examined in the hopes of discovering a method for the assessment of zinc nutriture. None of the methods currently used can be wholeheartedly recommended because they are fraught with problems that affect their use and interpretation. However, these methods remain in use for clinical and research purposes, though their benefits and drawbacks must always be acknowledged. Until an acceptable method of analysis is discovered, clinicians must rely for confirmation of zinc deficiency on a process of supplementing with zinc and observing the patient’s response. The main indexes (plasma/serum, erythrocyte, leukocyte, neutrophil, urine, hair and salivary zinc levels, taste acuity and oral zinc tolerance tests, and measurement of metallothionein levels are reviewed. Measurement of plasma or erythrocyte metallothionein levels shows promise as a future tool for the accurate determination of zinc status.

  3. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    Directory of Open Access Journals (Sweden)

    Cuong D. Tran

    2015-05-01

    Full Text Available It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease.

  4. Multiple correlation analyses revealed complex relationship between DNA methylation and mRNA expression in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Xie, Fang-Fei; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Hong; Wu, Jian; Guo, Yu-Fan; Zeng, Ke-Qin; Wang, Ming-Jun; Zhu, Xiao-Wei; Xia, Wei; Wang, Lan; He, Pei; Bing, Peng-Fei; Lu, Xin; Zhang, Yong-Hong; Lei, Shu-Feng

    2017-07-22

    DNA methylation is an important regulator on the mRNA expression. However, a genome-wide correlation pattern between DNA methylation and mRNA expression in human peripheral blood mononuclear cells (PBMCs) is largely unknown. The comprehensive relationship between mRNA and DNA methylation was explored by using four types of correlation analyses and a genome-wide methylation-mRNA expression quantitative trait locus (eQTL) analysis in PBMCs in 46 unrelated female subjects. An enrichment analysis was performed to detect biological function for the detected genes. Single pair correlation coefficient (r T1) between methylation level and mRNA is moderate (-0.63-0.62) in intensity, and the negative and positive correlations are nearly equal in quantity. Correlation analysis on each gene (T4) found 60.1% genes showed correlations between mRNA and gene-based methylation at P correlation (R T4 > 0.8). Methylation sites have regulation effects on mRNA expression in eQTL analysis, with more often observations in region of transcription start site (TSS). The genes under significant methylation regulation both in correlation analysis and eQTL analysis tend to cluster to the categories (e.g., transcription, translation, regulation of transcription) that are essential for maintaining the basic life activities of cells. Our findings indicated that DNA methylation has predictive regulation effect on mRNA with a very complex pattern in PBMCs. The results increased our understanding on correlation of methylation and mRNA and also provided useful clues for future epigenetic studies in exploring biological and disease-related regulatory mechanisms in PBMC.

  5. Intravenous zinc therapy for acquired zinc deficiency secondary to gastric bypass surgery: a case report.

    Science.gov (United States)

    Vick, Garrett; Mahmoudizad, Rod; Fiala, Katherine

    2015-01-01

    Zinc deficiency may result from either a congenitally inherited defect of zinc absorption or is acquired secondarily from a variety of factors affecting dietary zinc intake, absorption, or loss. We report a case of acquired zinc deficiency secondary to gastric bypass surgery that resulted in vulvar cutaneous manifestations of delayed onset, with failure to clear after oral supplementation with zinc. The patient experienced improvement of symptoms only after administration of intravenous zinc supplementation. Upon review of the current literature, it is thought that the patient's original suboptimal response to oral supplementation and improvement after receiving intravenous zinc were related to the intentional surgical alteration and bypass of the absorptive capacity of the duodenum and jejunum. With the current prevalence of obesity and availability of surgical weight loss therapies, it is important to be mindful of the resulting nutritional deficiencies, their clinical manifestations, and factors affecting the efficacy of therapeutic approaches as seen in this case.

  6. Validation of using gene expression in mononuclear cells as a marker for hepatic cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Dutta Amrita

    2006-08-01

    Full Text Available Abstract HMG-CoA reductase and the LDL receptor are ubiquitously expressed in major tissues. Since the liver plays a major role in regulating circulating LDL, it is usually of interest to measure the effects of drug or dietary interventions on these proteins in liver. In humans, peripheral blood mononuclear cells have been used as a surrogate for liver to assess regulation of these genes, although there is concern regarding the validity of this approach. The purpose of this study was to evaluate the relationship between liver and mononuclear cell expression of HMG-CoA reductase and the LDL receptor in guinea pigs, a well established model for human cholesterol and lipoprotein metabolism. We extracted RNA from liver and mononuclear cells of guinea pigs from a previous study where the effects of rapamycin, an immunosuppresant drug used for transplant patients, on lipid metabolism were evaluated. Guinea pigs were assigned to three different diets containing the same amount of fat (15 g/100 g and cholesterol (0.08 g/100 g for a period of 3 weeks. The only difference among diets was the concentration of rapamycin: 0, 0.0028 or 0.028 g/100 g. There were no differences in plasma LDL cholesterol (LDL-C among groups. Values were 78.4 ± 14.3, 65.8 ± 17.2 and 68.4 ± 45.4 mg/dL (P > 0.05 for guinea pigs treated with 0, low or high doses of rapamycin, respectively. The mRNA abundance for the LDL receptor and HMG-CoA reductase was measured both in liver (n = 30 and mononuclear cells (n = 22 using reverse transcriptase PCR. In agreement with the finding of no changes in plasma LDL-C, there were also no differences for the expression of HMG-CoA reductase or the LDL receptor among groups. However, a positive correlation was found between liver and mononuclear cells for both HMG-CoA reductase (r = 0.613, P

  7. Molybdate based passivation of zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, Gregers; Møller, Per

    1997-01-01

    In order to reduce corrosion rates, zinc plated parts are usually chromated. Recently chromates have caused increasingly environmental concern, for both allergic effects among workers touching chro-mated parts and toxic effects on fish, plants and bacteria. A molybdate based alternative has been...... developed to replace chromates in several passivation applica-tions. Depending on the environment in which the passivated parts are to be exposed, the protection that this alternative treatment provides range from less efficient to more efficient as compared to chromate. These aspects as well as issues...

  8. Bidirectional reflectance of zinc oxide

    Science.gov (United States)

    Scott, R.

    1973-01-01

    This investigation was undertaken to determine original and useful information about the bidirection reflectance of zinc oxide. The bidirectional reflectance will be studied for the spectra between .25-2.5 microns and the hemisphere above the specimen. The following factors will be considered: (1) surface conditions; (2) specimen preparation; (3) specimen substrate, (4) polarization; (5) depolarization; (6) wavelength; and (7) angles of incident and reflection. The bidirectional reflectance will be checked by experimentally determined angular hemispherical measurements or hemispherical measurements will be used to obtain absolute bidirectional reflectance.

  9. Zinc dosing and glucose tolerance in humans

    Energy Technology Data Exchange (ETDEWEB)

    Greenley, S.; Taylor, M.

    1986-03-05

    Animal data suggest the existence of a physiologic relationship between glucoregulatory hormones and zinc metabolism. In order to investigate this proposed relationship in humans, they examined the effect of moderately elevated plasma zinc levels on blood glucose clearance. Eight women (24-37 yrs) served as subjects for the study. Fasted volunteers were tested under two experimental conditions (a) ingestion of 50 g D-glucose (b) ingestion of 25 mg zinc followed 60 min later by ingestion of 50 g D-glucose. Five ml venous blood was drawn into trace-metal-free, fluoride-containing vacutainer tubes prior to and 15, 30, 45, 60, 90, and 120 min after glucose ingestion. Plasma was analyzed for glucose and zinc; glycemic responses were quantified by computing areas under the curves and times to peak concentration. Their human data indicate varied glycemic responses to the acute elevation of plasma zinc: 4 subjects showed little apparent effect; 3 subjects marginally increased either the area under the curve or time to peak and 1 subject (classified as suspect diabetic in the non-zinc condition) showed marked improvement in glycemic response following zinc ingestion. Their preliminary results suggest that blood glucose clearance may be affected in some individuals by the acute elevation of plasma zinc.

  10. Zinc anode alloy for sacrificial anodes

    Energy Technology Data Exchange (ETDEWEB)

    Jore, T.N.

    1984-02-13

    A zinc anode for sacrifical anodes, for preventing intercrystalline corrosion, comprises 0.10-050% by weight Al, 0.025-1.15% by weight Cd, and the remainder zinc and impurities caused by the production method, wherein the alloy also contains 0.01-1.0% magnesium.

  11. Adverse health effects in Canada geese (Branta canadensis) associated with waste from zinc and lead mines in the Tri-State Mining District (Kansas, Oklahoma, and Missouri, USA).

    Science.gov (United States)

    van der Merwe, Deon; Carpenter, James W; Nietfeld, Jerome C; Miesner, John F

    2011-07-01

    Lead and zinc poisoning have been recorded in a variety of bird species, including migrating waterfowl such as Canada Geese (Branta canadensis), at sites contaminated with mine waste from lead and zinc mines in the Tri-State Mining District, Kansas, Oklahoma, and Missouri, USA. The adverse health impacts from mine waste on these birds may, however, be more extensive than is apparent from incidental reports of clinical disease. To characterize health impacts from mine waste on Canada Geese that do not have observable signs of poisoning, four to eight apparently healthy birds per site were collected from four contaminated sites and an uncontaminated reference site, and examined for physical and physiologic evidence of metals poisoning. Tissue concentrations of silver, aluminum, arsenic, barium, cadmium, cobalt, chromium, copper, iron, magnesium, manganese, molybdenum, nickel, lead, selenium, thallium, vanadium, and zinc were determined by inductively coupled plasma mass spectroscopy. Adverse health effects due to lead were characterized by assessing blood δ-aminolevulinic acid dehydratase (ALAD) enzyme activity. Adverse effects associated with zinc poisoning were determined from histologic examination of pancreas tissues. Elevated tissue lead concentrations and inhibited blood ALAD enzyme activities were consistently found in birds at all contaminated sites. Histopathologic signs of zinc poisoning, including fibrosis and vacuolization, were associated with elevated pancreatic zinc concentrations at one of the study sites. Adverse health effects associated with other analyzed elements, or tissue concentrations indicating potentially toxic exposure levels to these elements, were not observed.

  12. The large intracellular loop of hZIP4 is an intrinsically disordered zinc binding domain†

    Science.gov (United States)

    Bafaro, Elizabeth M.; Antala, Sagar; Nguyen, Tuong-Vi; Dzul, Stephen P.; Doyon, Brian; Stemmler, Timothy L.; Dempski, Robert E.

    2015-01-01

    The human (h) ZIP4 transporter is a plasma membrane protein which functions to increase the cytosolic concentration of zinc. hZIP4 transports zinc into intestinal cells and therefore has a central role in the absorption of dietary zinc. hZIP4 has eight transmembrane domains and encodes a large intracellular loop between transmembrane domains III and IV, M3M4. Previously, it has been postulated that this domain regulates hZIP4 levels in the plasma membrane in a zinc-dependent manner. The objective of this research was to examine the zinc binding properties of the large intracellular loop of hZIP4. Therefore, we have recombineantly expressed and purified M3M4 and showed that this domain binds two zinc ions. Using a combination of site-directed mutagenesis, metal binding affinity assays, and X-ray absorption spectroscopy, we demonstrated that the two Zn2+ ions bind sequentially, with the first Zn2+ binding to a CysHis3 site with a nanomolar binding affinity, and the second Zn2+ binding to a His4 site with a weaker affinity. Circular dichroism spectroscopy revealed that the M3M4 domain is intrinsically disordered, with only a small structural change induced upon Zn2+ coordination. Our data supports a model in which the intracellular M3M4 domain senses high cytosolic Zn2+ concentrations and regulates the plasma membrane levels of the hZIP4 transporter in response to Zn2+ binding. PMID:25882556

  13. Recent advances in zinc-air batteries.

    Science.gov (United States)

    Li, Yanguang; Dai, Hongjie

    2014-08-07

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  14. AMPA receptor inhibition by synaptically released zinc.

    Science.gov (United States)

    Kalappa, Bopanna I; Anderson, Charles T; Goldberg, Jacob M; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-12-22

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses.

  15. Biomarkers of metals exposure in fish from lead-zinc mining areas of southeastern Missouri, USA.

    Science.gov (United States)

    Schmitt, Christopher J; Whyte, Jeffrey J; Roberts, Aaron P; Annis, Mandy L; May, Thomas W; Tillitt, Donald E

    2007-05-01

    The potential effects of proposed lead-zinc mining in an ecologically sensitive area were assessed by studying a nearby mining district that has been exploited for about 30 y under contemporary environmental regulations and with modern technology. Blood and liver samples representing fish of three species (largescale stoneroller, Campostoma oligolepis, n=91; longear sunfish, Lepomis megalotis, n=105; and northern hog sucker, Hypentelium nigricans, n=20) from 16 sites representing a range of conditions relative to mining activities were collected. Samples were analyzed for metals (also reported in a companion paper) and for biomarkers of metals exposure [erythrocyte delta-aminolevulinic acid dehydratase (ALA-D) activity; concentrations of zinc protoporphyrin (ZPP), iron, and hemoglobin (Hb) in blood; and hepatic metallothionein (MT) gene expression and lipid peroxidation]. Blood lead concentrations were significantly higher and ALA-D activity significantly lower in all species at sites nearest to active lead-zinc mines and in a stream contaminated by historical mining than at reference or downstream sites. ALA-D activity was also negatively correlated with blood lead concentrations in all three species but not with other metals. Iron and Hb concentrations were positively correlated in all three species, but were not correlated with any other metals in blood or liver in any species. MT gene expression was positively correlated with liver zinc concentrations, but neither MT nor lipid peroxidase differences among fish grouped according to lead concentrations were statistically significant. ZPP was not detected by hematofluorometry in most fish, but fish with detectable ZPP were from sites affected by mining. Collectively, these results confirm that metals are released to streams from active lead-zinc mining sites and are accumulated by fish.

  16. Thermodynamic Modeling of Zinc Speciation in Electric Arc Furnace Dust

    Science.gov (United States)

    Pickles, Chris A.

    2011-04-01

    The remelting of automobile scrap, containing galvanized steel, in an electric arc furnace (EAF) results in the generation of a dust, which contains considerable amounts of zinc and other metals. Typically, the amount of zinc is of significant commercial value, but the recovery of this metal can be hindered by the varied speciation of zinc. The majority of the zinc exists as zincite (ZnO) and zinc ferrite (ZnFe2O4) or ferritic spinels ((Zn x Mn y Fe1-x-y )Fe2O4), but other zinccontaining species such as zinc chloride, zinc hydroxide chlorides, hydrated zinc sulphates and zinc silicates have also been identified. There is a scarcity of research literature on the thermodynamic aspects of the formation of these zinc-containing species, in particular, the minor zinc-containing species. Therefore, in this study, the equilibrium module of HSC Chemistry® 6.1 was utilized to calculate the types and the amounts of the zinc-containing species. The variables studied were: the gas composition, the temperature and the dust composition. At high temperatures, zincite forms via the reaction of zinc vapour with oxygen gas and the zinc-manganese ferrites form as a result of the reaction of iron-manganese particles with zinc vapour and oxygen. At intermediate temperatures, zinc sulphates are produced through the reaction of zinc oxide and sulphur dioxide gas. As room temperature is approached, zinc chlorides and fluorides form by the reaction of zinc oxide with hydrogen chloride and hydrogen fluoride gases, respectively. Zinc silicate likely forms via the high temperature reaction of zinc vapour and oxygen with silica. In the presence of excess water and as room temperature is approached, the zinc sulphates, chlorides and fluorides can become hydrated.

  17. Zinc deficiency: a special challenge.

    Science.gov (United States)

    Hambidge, K Michael; Krebs, Nancy F

    2007-04-01

    In the development and testing of programs designed to improve complementary feeding globally, local nonfortified food-based solutions comprise an important strategy for the foreseeable future. These solutions are especially vital for the rural poor of less-developed countries. Zinc is notable among individual nutrients that have been designated as "problem" nutrients, adequate intake of which is difficult from complementary foods without fortification. This article considers the potential role of meat +/- liver in addressing this apparent problem. In a recent Colorado study, beef and cereal have been determined to be equally acceptable between age 5-7 mo as first and regular complementary foods. Average intake and absorption of Zn from beef by 7 mo of age, together with the modest intake/absorption of Zn from breast milk at that age, were adequate to meet average dietary and physiologic zinc requirements, respectively. Barriers to acceptability and availability of affordable meat are considered, but these are neither universal nor irresolvable in all populations.

  18. Transplanted human umbilical cord blood mononuclear cells improve left ventricular function through angiogenesis in myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    HU Cheng-heng; WU Gui-fu; WANG Xiao-qing; YANG Yan-hua; DU Zhi-min; HE Xiao-hong; XIANG Peng

    2006-01-01

    Background Human umbilical cord blood contains an abundance of immature stem/progenitor cells, which may participate in the repair of hearts that have been damaged by myocardial infarction (MI). This study aimed to evaluate the effects of human umbilical cord blood mononuclear cells (hUCBC) transplantation on cardiac function and left ventricular remodeling in rat model of MI.Methods Forty-five male Wistar rats were randomized into three groups: MI or control group (n=15), MI plus cell transplantation (n=15), and sham group (n=15). Acute myocardial infarction (AMI) was established by ligating the left anterior descending artery, thereafter, hUCBC were implanted into the marginal area of infarcted myocardium. In MI/control group, DMEM was injected instead of hUCBC following the same protocol. Left ventricular function assessment was carried out by echocardiography and invasive hemodynamic measurements one month post MI. All rats were sacrificed for histological and immunochemical examinations.Results The transplanted hUCBC survived and engaged in the process of myocardial repair in the host heart.Echocardiography demonstrated that left ventricular function improved significantly in the rats that underwent cell transplantation. Hemodynamic studies found a significantly decreased left ventricular end-diastolic pressure (LVEDP) [(21.08±8.10) mmHg vs (30.82±9.59) mmHg, P<0.05], increase in +dp/dtmax [(4.29± 1.27)mmHg/ms vs (3.24±0.75) mmHg/ms, P<0.05), and increase in -dp/dtmax [(3.71 ±0.79) mmHg/ms vs (3.00±0.49) mmHg/ms, P<0.05] among MI group with hUCBC transplantation when compared with MI/control group.Masson's trichrome staining revealed that the collagen density in the left ventricle was significantly lower in rats of transplantation group than that in the MI control groups [(6.33±2.69)% vs (11.10±3.75)%, P< 0.01]. Based on immunostaining of α-actin, the numbers of microvessels were significantly (P<0.01) increased at the boundary of

  19. The effect of zinc deficiency and zinc supplementation on element levels in the bone tissue of ovariectomized rats: histopathologic changes.

    Science.gov (United States)

    Baltaci, Abdulkerim Kasim; Sunar, Fusun; Mogulkoc, Rasim; Acar, Musa; Toy, Hatice

    2014-05-01

    Study aimed to determine the effects of zinc supplementation/deficiency on the histological structure and elements levels in bone tissue in ovariectomized rats. The study included 40 Sprague-Dawley type adult female rats, divided as follows: Control, ovariectomized, ovariectomized + zinc supplemented, ovariectomized + zinc deficient groups. At the end of the study bone tissues (femur) were collected to determine the levels of calcium, phosphorus, magnesium, zinc, iron, aluminium, chrome, lithium, lead, nickel, and manganese. The bone tissue was examined for histopathology. Ovariectomy leaded to significant decrease in magnesium. Zinc supplementation to ovariectomized rats restored the reduced calcium, phosphorus, zinc. However, zinc deficiency in ovariectomized rats further reduced calcium, phosphorus, zinc, and manganese levels. Zinc deficiency in ovariectomized significantly increased Al, Cr, Li, Pb, and Ni levels. Tissue integrity was impaired due to ovariectomy and zinc deficiency. Ovariectomy and zinc deficiency leads significant decreases elements of the bone.

  20. Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells

    DEFF Research Database (Denmark)

    Nygaard, Sanne Bjørn; Larsen, Agnete; Knuhtsen, Astrid;

    2014-01-01

    BACKGROUND: Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron......-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells. RESULTS: Using INS-1E...... cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N',N-tektrakis(2-pyridylmethyl...

  1. Submicromolar concentrations of zinc irreversibly reduce a calcium-dependent potassium current in rat hippocampal neurons in vitro.

    Science.gov (United States)

    Sim, J A; Cherubini, E

    1990-01-01

    The action of the endogenous divalent cation zinc on Ca2+ and Ca2(+)-dependent currents was studied in rat hippocampal CA1 and CA3 neurons in vitro, by means of a single electrode voltage clamp technique. Bath application of zinc (0.5-1 microM) produced a small membrane depolarization associated with an increase in synaptic noise and cell excitability and a depression of the afterhyperpolarization following a train of action potentials. The effects on the afterhyperpolarization, could not be reversed on washout. In voltage-clamped neurons, zinc induced a steady inward current and reduced, at resting membrane potential, the peak amplitude of the outward current underlying the afterhyperpolarization, IAHP. In caesium loaded neurons (in the presence of tetrodotoxin and tetraethylammonium), zinc reduced the slow inactivating Ca2+ current activated from a holding potential of -40 mV. Similar results were observed with nickel and cobalt at comparable concentrations, with Zn2+ greater than Ni2+ greater than Co2+, in their order of potency. In contrast to nickel and cobalt the effects of zinc did not reverse on washout. These results suggest that low concentrations of zinc enhance cell excitability by reducing IAHP. In addition, zinc reduces the slow inactivating voltage-dependent Ca2+ current. The irreversible effect of this metal ion is compatible with a toxic, intracellular site of action.

  2. Serum zinc levels in gestational diabetes

    Directory of Open Access Journals (Sweden)

    Rahimi Sharbaf F

    2008-12-01

    Full Text Available "nBackground: Maternal zinc deficiency during pregnancy has been related to adverse pregnancy outcomes. Most studies in which pregnant women have been supplemented with zinc to examine its effects on the outcome of the pregnancy have been carried out in industrialized countries and the results have been inconclusive. It has been shown that women with gestational diabetes (GDM have lower serum zinc levels than healthy pregnant women, and higher rates of macrosomia. Zinc is required for normal glucose metabolism, and strengthens the insulin-induced transportation of glucose into cells by its effect on the insulin signaling pathway. The purpose of this study was to assess the serum zinc levels of GDM patients and evaluate the effect of zinc supplementation. "nMethods: In the first stage of this prospective controlled study, we enrolled 70 women who were 24-28 weeks pregnant at the Prenatal Care Center of Mirza Kochak Khan Hospital, Tehran, Iran. The serum zinc level of each subject was determined. In the second stage, among these 70 subjects, the diabetics receiving insulin were divided into two groups, only one of which received a zinc supplement and the other group was the control group. Birth weight of neonates and insulin dosages were recorded. "nResults: The mean serum zinc level in the GDM group was lower than that of the control group (94.83 vs. 103.49mg/dl, respectively and the mean birth weight of neonates from the GDM women who received the zinc supplement was lower than that of the control group (3849g vs. 4136g. The rate of macrosomia was lower in the zinc supplemented group (20% vs. 53%. The mean of increase of insulin after receiving the zinc supplement was lower (8.4u vs. 13.53. "nConclusion: Maternal insulin resistance is associated with the accumulation of maternal fat tissue during early stages of pregnancy and greater fetoplacental nutrient availability in later stages, when 70% of fetal growth occurs, resulting in macrosomia. In

  3. Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.

    Science.gov (United States)

    Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E

    1983-04-01

    Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.

  4. PREPARATION OF ZINC ENRICHED YEAST (SACCHAROMYCES CEREVISIAE BY CULTIVATION WITH DIFFERENT ZINC SALTS

    Directory of Open Access Journals (Sweden)

    Ľuboš Harangozo

    2012-02-01

    Full Text Available The yeast Saccharomyces cerevisiae is the best known microorganism and therefore widely used in many branches of industry. This study aims to investigate the accumulation of three inorganic zinc salts. Our research presents the ability of this yeast to absorb zinc from liquid medium and such enriched biomass use as a potential source of microelements in animal and/or human nutrition. It was found that the addition of different zinc forms, i.e. zinc nitrate, zinc sulphate and zinc chloride in fixed concentrations of 0, 25, 50 and 100 mg.100 ml-1 did not affect the amount of dry yeast biomass yielded, i.e. 1.0 – 1.2 g of yeast cells from 100 ml of cultivation medium, while higher presence of zinc solutions caused significantly lower yield of yeast biomass. The highest amount of zinc in yeast cells was achieved when added in the form of zinc nitrate in concentration of 200 mg.100 ml-1 YPD medium. The increment of intracellular zinc was up to 18.5 mg.g-1 of yeast biomass.

  5. Corrosion behaviour of hot dip zinc and zinc-aluminium coatings on steel in seawater

    Indian Academy of Sciences (India)

    Yan Li

    2001-08-01

    A comparative investigation of hot dip Zn–25Al alloy, Zn–55Al–Si and Zn coatings on steel was performed with attention to their corrosion performance in seawater. The results of 2-year exposure testing of these at Zhoushan test site are reported here. In tidal and immersion environments, Zn–25Al alloy coating is several times more durable than zinc coating of double thickness. At long exposure times, corrosion rate for the Zn–25Al alloy coating remains indistinguishable from that for the Zn–55Al–Si coating of similar thickness in tidal zone, and is two to three times lower than the latter in immersion zone. The decrease in tensile strength suggested that galvanized and Zn–55Al–Si coated steel suffer intense pitting corrosion in immersion zone. The electrochemical tests showed that all these coatings provide cathodic protection to the substrate metal; the galvanic potentials are equal to – 1,050, – 1,025 and – 880 mV (SCE) for zinc, Zn–25Al alloy and Zn–55Al–Si coating, respectively, which are adequate to keep the steel inside the immunity region. It is believed that the superior performance of the Zn–25Al alloy coating is due to its optimal combination of the uniform corrosion resistance and pitting corrosion resistance. The inferior corrosion performance by comparison of the Zn coating mainly results from its larger dissolution rate, while the failure of the Zn–55Al–Si coating is probably related to its higher susceptibility to pitting corrosion in seawater.

  6. Hyperaccumulation of zinc by zinc-depleted Candida utilis grown in chemostat culture.

    Science.gov (United States)

    Lawford, H G; Pik, J R; Lawford, G R; Williams, T; Kligerman, A

    1980-01-01

    The steady-state levels of zinc in Candida utilis yeast grown in continuous culture under conditions of zinc limitations are zinc-depleted cells from a zinc-limited chemostat possess the capacity to accumulate and store zinc at levels far in excess of the steady-state level of 4 nmol/mg dry biomass observed in carbon-limited chemostat cultures. Zinc uptake is energy-dependent and apparently undirectional since accumulated 65Zn neither exists from preloaded cells nor exchanges with cold Zn2+. The transport system exhibits a high affinity for Zn2+ (Km =.36micrM) with a Vmaxof 2.2 nmol per minute per milligram dry weight of cells. Growth during the period of the uptake assay is responsible for the apparent plateau level of 35 nmol Zn2+/mg dry weight of cells achieved after 20-30 min in the presence of 65Zn at pH 4.5 and 30 degrees C. Inhibition of growth during the uptake assay by cycloheximide results in a biphasic linear pattern of zinc accumulation where the cellular zinc is about 60 nmol/mg dry weight after 1 h. The enhanced level of accumulated zinc is not inhibtory to growth. Zinc-depleted C. utilis contains elevated amounts of polyphosphate and this anionic evidence does not allow discrimination between possible regulation of zinc homestasis either by inhibitions of zinc efflux through control of the membrane carrier or by control of the synthesis of a cytoplasmic zinc-sequestering macromolecule.

  7. Ecotoxicological damage from zinc smelting at Palmerton, Pennsylvania

    Science.gov (United States)

    Beyer, W. Nelson; Storm, Gerald L.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    1995-01-01

    The two zinc smelters at Palmerton, PA emitted huge amounts of contaminants ( 260,000 t of Zn, 3,300 t of Cd, 6,800 t of Pb) to the air and severely damaged the forest on Blue Mountain. The high Zn concentrations in soil killed tree seedlings by inhibiting root elongation. The result was a forest with too few young trees. When natural stresses such as fire challenged the forest, the forest failed to regenerate, and the exposed soil eroded down the steep slopes. Tree species that could sprout were favored over those that developed from seeds. As a result of high zinc concentrations, the lichen and moss communities were depauperate for at least 20 km along Blue Mountain. The denuded areas are in the process of being reclaimed with the addition of a mixture of fly ash and sewage sludge, which is seeded with grasses tolerant to the harsh conditions. In preliminary experiments, the fly ash and sewage sludge mixture was stable, despite the steepness of the slopes of the reclaimed sites on Blue Mountain. Zinc emissions reduced the decomposition rate of plant material on Blue Mountain. The partially decomposed litter, in particular, accumulated on the surface of the mineral soil. The populations of both microorganisms and arthropods were greatly reduced in soils near the smelters. Samples of litter collected from sites spanning 30 km were toxic to woodlice, and Zn was shown to be the toxic factor. A white-tailed deer examined had a very high renal Zn concentration and an articular lesion in one of its hind legs that closely resembled the lesions reported in Zn-poisoned horses. Zinc concentrations were regulated in wildlife tissues and were not reliable indicators of exposure, except in extreme cases. Two songbirds, a shrew, and several rabbits contained Pb concentrations that were suggested to be toxic. Shrews and ground-feeding songbirds accumulated relatively high concentrations of Pb. Exposure to Pb seemed to be related to the amount of soil that an animal ingests. Some

  8. Woodlouse Porcellio scaber as a biological indicator of zinc, cadmium, lead, and copper pollution

    Energy Technology Data Exchange (ETDEWEB)

    Hopkin, S.P.; Hardisty, G.N.; Martin, M.H.

    1986-01-01

    The amounts of zinc, cadmium, lead, and copper were determined in the hepatopancreas and whole body of the woodlouse. Porcellio scaber (Crustacea, Isopoda) and soil and leaf litter collected from 89 sites in the counties of Avon and Somerset, south-west England. Maps were drawn to compare the regional distribution of concentrations of metals in the samples. The main source of zinc, cadmium, lead, and copper pollution was centered on Avonmouth to the north-west of Bristol, the site of a primary zinc, lead, and cadmium smelting works. Concentrations of all four metals in the hepatopancreas, whole woodlice, soil and leaf litter were above background levels over a large area on all maps which, in the case of cadmium in the hepatopancreas, extended for 25 km to the east of the smelting works. The correlation coefficients between the concentrations of each metal in woodlice and soil, and between woodlice and leaf litter, were positive and statistically significant in all cases. At individual sites, however, particularly those associated with disused mining areas, rubbish tips or busy roads, the concentrations of zinc, cadmium, lead, and copper in woodlice could not have been predicted accurately from the levels of metals in leaf litter or soil due to the large scatter of data points along the lines of best fit.

  9. IFN-{gamma} gene expression in pancreatic islet-infiltrating mononuclear cells correlates with autoimmune diabetes in nonobese diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Rabinovitch, A.; Suarez-Pinzon, W.L.; Sorensen, O. [Univ. of Alberta, Edmonton (Canada)] [and others

    1995-05-01

    Insulin-dependent diabetes mellitus in nonobese diabetic (NOD) mice results from selective destruction of pancreatic islet {beta}-cells following islet filtration by mononuclear leukocytes. Cytokines produced by islet-infiltrating mononuclear cells may be involved in {beta}-cell destruction. Therefore, we analyzed cytokine mRNA expression, by reverse-transcriptase PCR (RT-PCR) assay, in mononuclear leukocytes isolated from pancreatic islets of four groups of mice: diabetes-prone female NOD mice; female NOD mice protected from diabetes by injection of CFA at an early age; male NOD mice with a low diabetes incidence; and female BALB/c mice that do not develop diabetes. We found that mRNA levels of IL-1{beta}, IL-2, IL-4, IL-10, and IFN-{gamma} in mononuclear cells from islets of diabetes-prone female NOD mice increased progressively as these cells infiltrated the islets from age 5 wk to diabetes onset (>13 wk). However, only IFN-{gamma} mRNA levels were significantly higher in islet mononuclear cells from 12-wk-old diabetes-prone female NOD mice than from less diabetes-prone NOD mice (CFA-treated females, and males) and normal mice (BALB/c). In contrast, IL-4 mRNA levels were lower in islet mononuclear cells from diabetes-prone female NOD mice than from NOD mice with low diabetes incidence (CFA-treated females and males). Splenic cell mRNA levels of IFN-{gamma} and IL-4 were not different in the four groups of mice. These results suggest that islet {beta}-cell destruction and diabetes in female NOD mice are dependent upon intra-islet IFN-{gamma} production by mononuclear cells, and that CFA-treated female NOD mice and male NOD mice may be protected from diabetes development by down-regulation of IFN-{gamma} production in the islets. 56 refs., 4 figs., 3 tabs.

  10. Performance of iron filings and activated sludge as media for permeable reactive barriers to treat zinc contaminated groundwater

    Directory of Open Access Journals (Sweden)

    Chayapat Hassapak

    2015-02-01

    Full Text Available Zinc is one of the important contaminants in groundwater. Removal of zinc by iron filings, activated sludge and lateritic soil was studied with batch test. The lowest optimum pH for removal of zinc by iron filings, activated sludge and lateritic soil was 6. From isotherm studies iron filings and activated sludge were chosen as media for permeable reactive barrier (PRB. The PRB of 0.5-m thick was simulated in the unconfined aquifer with the distance of 21.5 m downgradient of the zinc contaminated site having constant concentration of 100 mg/l. The groundwater flow in the site was induced by the hydraulic gradient of 0.02. Simulation results indicated that the concentration of zinc of treated groundwater was less than 5 mg/l, which met Thai Groundwater Quality Standard for Drinking Purposes. The continuous PRBs using iron filings and activated sludge could treat zinc for 2,170 and 2,248 days, respectively

  11. Zinc Binding by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Jasna Mrvčić

    2009-01-01

    Full Text Available Zinc is an essential trace element in all organisms. A common method for the prevention of zinc deficiency is pharmacological supplementation, especially in a highly available form of a metalloprotein complex. The potential of different microbes to bind essential and toxic heavy metals has recently been recognized. In this work, biosorption of zinc by lactic acid bacteria (LAB has been investigated. Specific LAB were assessed for their ability to bind zinc from a water solution. Significant amount of zinc ions was bound, and this binding was found to be LAB species-specific. Differences among the species in binding performance at a concentration range between 10–90 mg/L were evaluated with Langmuir model for biosorption. Binding of zinc was a fast process, strongly influenced by ionic strength, pH, biomass concentration, and temperature. The most effective metal-binding LAB species was Leuconostoc mesenteroides (27.10 mg of Zn2+ per gram of dry mass bound at pH=5 and 32 °C, during 24 h. FT-IR spectroscopy analysis and electron microscopy demonstrated that passive adsorption and active uptake of the zinc ions were involved.

  12. Interactions of cadmium and zinc during pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Sorell, T.L.

    1988-01-01

    The interactions of cadmium exposure and zinc during pregnancy were investigated by studying rats exposed to 0, 5, 50, or 100 ppm cadmium (as CdCl{sub 2}) in the drinking water from day 6 to day 20 of pregnancy. On day 20 of pregnancy, fetuses of rats exposed to 50 and 100 ppm of cadmium were slightly but significantly smaller than those of control animals. Fetal weight was negatively correlated with fetal cadmium concentration and positively correlated with fetal cadmium concentration. Significant fetal cadmium accumulation occurred in both the 50 and 100 ppm cadmium exposure groups; fetal zinc concentrations were decreased. Maternal liver and kidney zinc concentrations were slightly elevated, and the possible role of maternal organ sequestration of available zinc is discussed. The activity of two zinc metalloenzymes, alkaline phosphatase and {delta}-aminolevulinic acid dehydratase, was decreased in maternal and fetal tissues, providing evidence of an alteration in zinc metabolism. In addition, the placental transport of {sup 65}Zn was characterized in control animals and compared to exposed groups; placental zinc transport was significantly decreased in the 50 and 100 ppm exposure groups.

  13. Zinc-Laccase Biofuel Cell

    Directory of Open Access Journals (Sweden)

    Abdul Aziz Ahmad

    2011-12-01

    Full Text Available A zinc-laccase biofuel cell adapting the zinc-air cell design features is investigated. A simple cell design configuration is employed: a membraneless single chamber and a freely suspended laccase in a quasi-neutral buffer electrolyte. The cell is characterised according to its open-circuit voltage, polarization profile, power density plot and discharge capacity at constant current. The biocatalytic role of laccase is evident from the polarization profile and power output plot. Performance comparison between a single chamber and dual chamber cell design is also presented. The biofuel cell possessed an open-circuit voltage of 1.2 V and delivered a maximum power density of 0.9 mW/cm2 at current density of 2.5 mA/cm2. These characteristics are comparable to biofuel cell utilising a much more complex system design.KEY WORDS (keyword:  Biofuel cell, Bioelectrochemical cell, Zinc anode, Laccase and Oxidoreductase.ABSTRAK: Sel bio-bahan api zink-laccase dengan adaptasi daripada ciri-ciri rekabentuk sel zink-udara telah dikaji. Sel dengan konfigurasi rekabentuk yang mudah digunapakai: ruangan tunggal tanpa membran dan laccase diampaikan secara bebas di dalam elektrolit pemampan quasi-neutral. Sel dicirikan berdasarkan voltan litar terbuka, profil polarisasi, plot ketumpatan kuasa dan kapasiti discas pada arus malar. Peranan laccase sebagai bio-pemangkin adalah amat ketara daripada profil polarisasi dan plot ketumpatan kuasa. Perbandingan prestasi di antara sel dengan rekabentuk ruangan tunggal and dwi-ruangan turut diketengahkan. Seperti dijangkakan, sel dengan rekabentuk ruangan tunggal menunjukkan kuasa keluaran yang lebih rendah jika dibandingkan dengan rekabentuk dwi-ruangan kemungkinan disebabkan fenomena cas bocor. Sel bio-bahan api ini mempunyai voltan litar terbuka 1.2 V dan memberikan ketumpatan kuasa maksima 0.9 mW/cm2 pada ketumpatan arus 2.5 mA/cm2. Ciri-ciri ini adalah sebanding dengan sel bio-bahan api yang menggunapakai rekabentuk sel

  14. Genome-wide identification of mononuclear cell DNA methylation sites potentially affected by fish oil supplementation in young infants

    DEFF Research Database (Denmark)

    Lind, Mads Vendelbo; Martino, D; Harsløf, Laurine Bente Schram;

    2015-01-01

    Recent evidence suggests that the effects of n-3LCPUFA might be mediated through epigenetic mechanisms, especially DNA-methylation, during pregnancy and early life. A randomized trial was conducted in 133 9-mo-old, infants who received 3.8g/day of fish oil (FO) or sunflower oil (SO) for 9 mo....... In a subset of 12 children, buffy-coat DNA was extracted before and after intervention and analyzed on Illumina-Human-Methylation 450-arrays to explore genome-wide differences between the FO and SO groups. Genome-wide-methylation analysis did not reveal significant differences between groups after adjustment...

  15. Maternal zinc status is associated with breast milk zinc concentration and zinc status in breastfed infants aged 4-6 months.

    Science.gov (United States)

    Dumrongwongsiri, Oraporn; Suthutvoravut, Umaporn; Chatvutinun, Suthida; Phoonlabdacha, Phanphen; Sangcakul, Areeporn; Siripinyanond, Artitaya; Thiengmanee, Usana; Chongviriyaphan, Nalinee

    2015-01-01

    Breast milk provides adequate nutrients during the first 6 months of life. However, there are some reports of zinc deficiency in breastfed infants. This study was conducted to determine the prevalence of zinc deficiency in infants aged 4-6 months and the associated factors. Healthy infants aged 4-6 months and their mothers were enrolled. They were classified by feeding types as breastfed (BF), formula-fed (FF), and mixed groups (MF). Data collection included demographic data, perinatal data, given diets, and anthropometric measurement. Blood from infants and lactating mothers, and breast milk samples were collected to assess plasma and breast milk zinc concentrations. From 158 infants, the prevalence of zinc deficiency (plasma level below 10.7 mol/L) was 7.6%, and according to feeding groups 14.9%, 5.3%, and 2.9% in the BF, the FF, and the MF groups, respectively. Breastfed infants with zinc deficiency had significantly lower maternal zinc concentrations compared with those without zinc deficiency. There was a higher proportion of maternal zinc deficiency in zinc-deficient infants than those without zinc deficiency (66.7% vs 16.2%, p=0.02). There was a positive correlation between zinc concentrations in breast milk and plasma zinc concentrations of infants (r=0.62, p=0.01) and plasma zinc concentrations of lactating mothers (r=0.56, p=0.016). Using the regression analysis, infant zinc status was associated with maternal plasma zinc concentrations among breastfed infants. The results of this study suggest that breastfed infants aged 4-6 months may have a risk of zinc deficiency and that risk is associated with maternal zinc status and breast milk zinc concentrations.

  16. Retrograde tracing of zinc-enriched (ZEN) neuronal somata in rat spinal cord

    DEFF Research Database (Denmark)

    Wang, Z; Danscher, G; Mook Jo, S

    2001-01-01

    and having either inhibitory or excitatory ZEN terminals. The ZEN neurons seem to form a vast network of terminals located primarily in the gray matter, but also contacting dendrites radiating into the white matter. Important functions of this rather massive system of ZEN terminals can not be deduced from......The zinc selenide autometallographic (ZnSeAMG) technique for tracing the retrograde axonal transport of zinc ions in zinc-enriched (ZEN) neurons was used to map the distribution of ZEN neuronal somata in rat spinal cord. After a local injection of sodium selenide into the dorsal or ventral horn, Zn......SeAMG-labeled ZEN neurons appeared in Rexed's laminae V, VII and X while laminae I and II were void. A few scattered ZEN somata were observed in the remaining laminae. The labeled neurons differed in shape and size, and the relatively high level of labeled somata around the injection site suggests that many ZEN...

  17. Toward a Code for the Interactions of Zinc Fingers with DNA: Selection of Randomized Fingers Displayed on Phage

    Science.gov (United States)

    Choo, Yen; Klug, Aaron

    1994-11-01

    We have used two selection techniques to study sequence-specific DNA recognition by the zinc finger, a small, modular DNA-binding minidomain. We have chosen zinc fingers because they bind as independent modules and so can be linked together in a peptide designed to bind a predetermined DNA site. In this paper, we describe how a library of zinc fingers displayed on the surface of bacteriophage enables selection of fingers capable of binding to given DNA triplets. The amino acid sequences of selected fingers which bind the same triplet are compared to examine how sequence-specific DNA recognition occurs. Our results can be rationalized in terms of coded interactions between zinc fingers and DNA, involving base contacts from a few α-helical positions. In the paper following this one, we describe a complementary technique which confirms the identity of amino acids capable of DNA sequence discrimination from these positions.

  18. Crystal Structure of the Zinc-Binding Transport Protein ZnuA from Escherichia coli Reveals an Unexpected Variation in Metal Coordination

    Energy Technology Data Exchange (ETDEWEB)

    Li,H.; Jogl, G.

    2007-01-01

    Bacterial ATP-binding cassette transport systems for high-affinity uptake of zinc and manganese use a cluster 9 solute-binding protein. Structures of four cluster 9 transport proteins have been determined previously. However, the structural determinants for discrimination between zinc and manganese remain under discussion. To further investigate the variability of metal binding sites in bacterial transporters, we have determined the structure of the zinc-bound transport protein ZnuA from Escherichia coli to 1.75 {angstrom} resolution. The overall structure of ZnuA is similar to other solute-binding transporters. A scaffolding {alpha}-helix forms the backbone for two structurally related globular domains. The metal-binding site is located at the domain interface. The bound zinc ion is coordinated by three histidine residues (His78, His161 and His225) and one glutamate residue (Glu77). The functional role of Glu77 for metal binding is unexpected, because this residue is not conserved in previously determined structures of zinc and manganese-specific transport proteins. The observed metal coordination by four protein residues differs significantly from the zinc-binding site in the ZnuA transporter from Synechocystis 6803, which binds zinc via three histidine residues. In addition, the E. coli ZnuA structure reveals the presence of a disulfide bond in the C-terminal globular domain that is not present in previously determined cluster 9 transport protein structures.

  19. Implication of zinc excess on soil health.

    Science.gov (United States)

    Wyszkowska, Jadwiga; Boros-Lajszner, Edyta; Borowik, Agata; Baćmaga, Małgorzata; Kucharski, Jan; Tomkiel, Monika

    2016-01-01

    This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl - 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn(2+) kg(-1) in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn(2+) kg(-1).

  20. Intra-arterial Infusion of Autologous Bone Marrow Mononuclear Stem Cells in Subacute Ischemic Stroke Patients.

    Science.gov (United States)

    Ghali, Azza Abass; Yousef, Mohamed Khalil; Ragab, Osama AbdAllah; ElZamarany, Enas Arafa

    2016-01-01

    Based on many preclinical and small clinical trials, stem cells can help stroke patient with the possibility of replacing the cells and supporting the remaining cells. The aim of this study was to evaluate the safety and feasibility of bone marrow mononuclear (BMMN) stem cell transplantation in subacute ischemic stroke patients. Thirty-nine (n = 39) patients with subacute ischemic cerebral infarct due to large artery occlusion in the middle cerebral artery (MCA) territory were recruited. They were distributed into two groups: first group (n = 21) served as an experimental group, which received intra-arterial (IA) mononuclear stem cells (bone marrow-derived mononuclear cell), while the other group (n = 18) served as a control group. All the patients were evaluated clinically by National Institutes of Health Stroke Scale, modified Rankin Scale, Barthel Index, modified and standardized Arabic version of the Comprehensive Aphasia Test, and radiological for 12 months. The stem cell-treated group showed better improvement, but it was not significant when compared with the non-treated group. The volume of infarction changes at the end of the study was non-significant between both the groups. There was no, or minimal, adverse reactions in stem cell-treated group. The study results suggest that autologous BMMN stem cell IA transplantation in subacute MCA ischemic stroke patients is safe with very minimal hazards, but no significant improvement of motor, language disturbance, or infarction volume was detected in stem cell-treated group compared with the non-treated group.

  1. Role of peripheral blood mononuclear cell transportation from mother to baby in HBV intrauterine infection.

    Science.gov (United States)

    Shao, Qingliang; Zhao, Xiaxia; Yao Li, M D

    2013-12-01

    We aimed to investigate the role of peripheral blood mononuclear cell transportation from mother to baby in hepatitis B virus (HBV) intrauterine infection. Thirty HBsAg-positive pregnant women in the second trimester and their aborted fetuses were included in this study. Enzyme-linked-immunosorbent-assay was utilized to detect HBsAg in the peripheral blood of pregnant women and the femoral vein blood of their aborted fetuses. HBV-DNA in serum and peripheral blood mononuclear cells (PBMC) and GSTM1 alleles of pregnant women and their aborted fetuses were detected by nested polymerase chain reaction (PCR) and seminested PCR, respectively. We also examined the location of placenta HBsAg and HBcAb using immunohistochemical staining. The expression of placenta HBV-DNA was detected by in situ hybridization. For the 30 aborted fetuses, the HBV intrauterine infection rate was 43.33%. The HBV-positive rates of HBsAg in peripheral blood, serum, and PBMC were 10% (3/30), 23.33% (7/30), and 33.33% (10/30), respectively. Maternal-fetal PBMC transport was significantly positively correlated with fetal PBMC HBV-DNA (P = 0.004). Meanwhile, the rates of HBV infection gradually decreased from the maternal side to the fetus side of placenta (decidual cells > trophoblastic cells > villous mesenchymal cells > villous capillary endothelial cells). However, no significant correlation between placenta HBV infection and HBV intrauterine infection was observed (P = 0.410). HBV intrauterine infection was primarily due to peripheral blood mononuclear cell maternal-fetal transportation in the second trimester in pregnant women.

  2. Clinical Aspects of Trace Elements: Zinc in Human Nutrition – Zinc Deficiency and Toxicity

    Directory of Open Access Journals (Sweden)

    Michelle M Pluhator

    1996-01-01

    Full Text Available Available evidence suggests that trace elements, such as zinc, once thought to have no nutritional relevance, are possibly deficient in large sections of the human population. Conditioned deficiencies have been reported to result from malabsorption syndromes, acrodermatitis enteropathica, alcoholism, gastrointestinal disease, thermal injury, chronic diseases (eg, diabetes, sickle cell anemia, and in total parenteral nutrition therapy. Awareness that patients with these problems are at risk has led health professionals to focus increasingly on the importance of zinc therapy in the prevention and treatment of deficiency. More recently zinc toxicity and its role in human nutrition and well-being have come under investigation. Reports have focused on the role of zinc toxicity in causes of copper deficiency, changes in the immune system and alterations in blood lipids. As the numerous challenges presented by the study of zinc in human nutrition are met, more appropriate recommendations for dietary and therapeutic zinc intake are being made.

  3. Preparation of zinc oxide particles by using layered basic zinc acetate as a precursor

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lanqin, E-mail: lanqin_tang@ycit.edu.cn [College of Chemical and Biological Engineering, Yancheng Institute of Technology, 9 Yingbin Avenue, Yancheng 224051 (China); College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ding, Xuefeng; Zhao, Xu; Wang, Zichen; Zhou, Bing [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A simple aqueous solution process has been applied to prepare zinc oxide particles. Black-Right-Pointing-Pointer This novel method exempts traditional calcinations. Black-Right-Pointing-Pointer Various zinc oxide particles are obtained. - Abstract: TEA and NaOH are applied to transform layered basic zinc acetate into zinc oxide particles by a simple aqueous solution process (<100 Degree-Sign C). Zinc oxide with different morphologies, including dumbbells, earthnuts, ellipsoids and hexagonal pillars, are obtained by carefully controlling the amounts of sodium hydroxide, triethanolamine, and reaction temperature. Field emission scanning electron microscope images, X-ray powder diffraction patterns, X-ray photoelectron spectroscopy spectra and room-temperature photoluminescence spectra are used to characterize final products. Furthermore, a possible growth mechanism is discussed in this paper. This easy procedure for zinc oxide fabrication offers the possibility of a generalized approach to the production of metal oxide with tunable morphology.

  4. Electrochromic devices based on wide band-gap nanocrystalline semiconductors functionalized with mononuclear charge transfer compounds

    DEFF Research Database (Denmark)

    Biancardo, M.; Argazzi, R.; Bignozzi, C.A.

    2006-01-01

    A series of ruthenium and iron mononuclear complexes were prepared and their spectroeletrochemical behavior characterized oil Optically Transparent Thin Layer Electrodes (OTTLE) and on Fluorine Doped SnO2 (FTO) conductive glasses coated with Sb-doped nanocrystalline SnO2. These systems display...... a reversible electrochemical response and offer potential application in electrochromic devices. On SnO2 films distinct spectral changes are observed in a narrow potential range (-0.5/0.9 V vs SCE) with switching times of the order of 0.8 s. (c) 2005 Elsevier B.V. All rights reserved....

  5. Usefulness of liver infiltrating CD86-positive mononuclear cells for diagnosis of autoimmune hepatitis

    Institute of Scientific and Technical Information of China (English)

    Kazutaka Kurokohchi; Shigeki Kuriyama; Tsutomu Masaki; Takashi Himoto; Akihiro Deguchi; Seiji Nakai; Asahiro Morishita; Hirohito Yoneyama; Yasuhiko Kimura; Seishiro Watanabe

    2006-01-01

    AIM: Although the pathogenic mechanism underlying autoimmune hepatitis (AIH) remains unclear, the immune system is thought to be critical for the progression of the disease. Cellular immune responses may be linked to the hepatocellular damage in AIH. Recently, much attention has been focused on the critical functions of costimulatory molecules expressed on mononuclear cells in the generation of effective T cell-mediated immune responses. Analysis of costimulatory molecule expressed on mononuclear cells from the patients with AIH may give us insight into the pathogenic mechanism of hepatocellular damage in AIH.METHODS: Peripheral blood mononuclear cells (PBMC)were taken from the patients with AIH (34 cases) and healthy controls (25 cases). Liver infiltrating mononuclear cells (LIMCs) were taken from the patients with AIH (18 cases), the patient with chronic hepatitis C (CH-C) (13 cases) and the patients with fatty liver (2 cases).Using flow cytometry, the cells were analyzed for the expression of costimulatory molecules, such as CD80,CD86, and CD152 (CTLA-4). The results were compared with clinical data such as the level of gammaglobulin,histological grade, presence or absence of corticosteroids administration and the response to corticosteroids.RESULTS: The levels of CD80+, CD86+ and CD152+PBMC were significantly reduced in the patients with AIH as compared with healthy controls. By contrast,those cells were significantly higher in LTMC than in PBMC of the patients with AIH. Especially, the level of CD86+ LIMC showed a marked increase irrespective of the degree of disease activity in the patients with ATH,although CD86+ cells were rarely present in PBMC. The levels of CD86+ cells were present in significantly higher frequency in patients with AIH than in the patients with CH-C. Furthermore, the patients with AIH with high levels of CD86+ LIMC showed good responses to corticosteroids, whereas 2 cases of AIH with low levels of CD86+ LIMC did not respond well

  6. Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex

    OpenAIRE

    Cho, Jaeheung; Jeon, Sujin; Wilson, Samuel A.; Liu, Lei V.; Kang, Eun A; Braymer, Joseph J.; Lim, Mi Hee; Hedman, Britt; Hodgson, Keith O.; Valentine, Joan Selverstone; Solomon, Edward I.; Nam, Wonwoo

    2011-01-01

    Oxygen-containing mononuclear iron species—iron(III)–peroxo, iron(III)–hydroperoxo and iron(IV)–oxo—are key intermediates in the catalytic activation of dioxygen by iron-containing metalloenzymes1–7. It has been difficult to generate synthetic analogues of these three active iron–oxygen species in identical host complexes, which is necessary to elucidate changes to the structure of the iron centre during catalysis and the factors that control their chemical reactivities with substrates. Here ...

  7. Generation of iPS Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors.

    Science.gov (United States)

    Su, Ruijun Jeanna; Neises, Amanda; Zhang, Xiao-Bing

    2016-01-01

    Peripheral blood is the easy-to-access, minimally invasive, and the most abundant cell source to use for cell reprogramming. The episomal vector is among the best approaches for generating integration-free induced pluripotent stem (iPS) cells due to its simplicity and affordability. Here we describe the detailed protocol for the efficient generation of integration-free iPS cells from peripheral blood mononuclear cells. With this optimized protocol, one can readily generate hundreds of iPS cell colonies from 1 ml of peripheral blood.

  8. Age and gender effects on DNA strand break repair in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Garm, Christian; Moreno-Villanueva, Maria; Bürkle, Alexander;

    2013-01-01

    single-strand breaks (SSBs) and double-strand breaks (DSBs) in human peripheral blood mononuclear cells (PBMCs). Of these lesions, DSBs are the least frequent but the most dangerous for cells. We have measured the level of endogenous SSBs, SSB repair capacity, γ-H2AX response, and DSB repair capacity...... in a study population consisting of 216 individuals from a population-based sample of twins aged 40-77 years. Age in this range did not seem to have any effect on the SSB parameters. However, γ-H2AX response and DSB repair capacity decreased with increasing age, although the associations did not reach...

  9. Zinc Deficiency in Humans and its Amelioration

    OpenAIRE

    Yashbir Singh Shivay

    2015-01-01

    Zinc (Zn) deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in ...

  10. Thermally induced microstrain broadening in hexagonal zinc

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Andrew C [Los Alamos National Laboratory; Valdez, James A [Los Alamos National Laboratory; Roberts, Joyce A [Los Alamos National Laboratory; Leineweber, Andreas [STUTTGART, GERMANY; Mittemeijer, E J [STUTTGART, GERMANY; Kreher, W [DRESDEN UNIV

    2008-01-01

    Neutron powder-diffraction experiments on polycrystalline hexagonal zinc show considerable temperature-dependent line broadening. Whereas as-received zinc at 300 K exhibits narrow reflections, during cooling to a minimum temperature of 10K considerable line-broadening appears, which largely disappears again during reheating. The line broadening may be ascribed to microstrains induced by thermal microstresses due to the anisotropy of the thermal expansion (shrinkage) of hexagonal zinc. Differences between the thermal microstrains and theoretical predictions considering elastic deformation of the grains can be explained by plastic deformation and surface effects.

  11. Zinc therapy for different causes of diarrhea

    OpenAIRE

    Hafaz Zakky Abdillah; Supriatmo; Melda Deliana; Selvi Nafianti; Atan Baas Sinuhaji

    2013-01-01

    Background The incidence of diarrhea in Indonesia has declined in the past five years. In spite of the increasing number of studies on the treatment for acute diarrhea, especially the use of zinc, it is not known if bacterial vs. non-bacterial etiology makes a difference in the reduction of severity of acute diarrhea in children on zinc therapy. Objective To assess the effect of zinc therapy in reducing the severity of acute bacterial and non-bacterial diarrhea. Methods We performed a...

  12. Zinc supplementation in burn patients.

    Science.gov (United States)

    Caldis-Coutris, Nancy; Gawaziuk, Justin P; Logsetty, Sarvesh

    2012-01-01

    Micronutrient supplementation is a common practice throughout many burn centers across North America; however, uncertainty pertaining to dose, duration, and side effects of such supplements persists. The authors prospectively collected data from 23 hospitalized patients with burn sizes ranging from 10 to 93% TBSA. Each patient received a daily multivitamin and mineral supplement, 50 mg zinc (Zn) daily, and 500 mg vitamin C twice daily. Supplements were administered orally or enterally. Albumin, prealbumin, C-reactive protein, serum Zn, and serum copper were measured weekly during hospital admission until levels were within normal reference range. Our study concluded that 50 mg daily dose of Zn resulted in normal serum levels in 19 of 23 patients at discharge; 50 mg Zn supplementation did not interfere with serum copper levels; and Zn supplements, regardless of administration route, did not result in gastrointestinal side effects.

  13. Zinc(II) and Cadmium(II) complexes with N4-coordinate pyrazole based ligand: Syntheses, characterization and structure

    Science.gov (United States)

    Solanki, Ankita; Sadhu, Mehul H.; Kumar, Sujit Baran; Mitra, Partho

    2014-11-01

    A series of six new mononuclear zinc(II) complexes of the type [Zn(X)(dbdmp)]Y (1-6) (X = N3-/NCO-/NCS-, Y = ClO4-/PF6-, and dbdmp = N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine), two binuclear cadmium(II) complexes [{Cd(dbdmp)}2(μ-N3)2](Y)2 (7-8) and three mononuclear cadmium(II) complexes [Cd(NCO)(dbdmp)]Y (Y = ClO4-/PF6-) (9-10) and [Cd(NCS)2(dbdmp)] (11) have been synthesized and characterized by physico-chemical methods. Crystal structures of the complexes [Zn(N3)(dbdmp)]ClO4 (1), [{Cd(dbdmp)}2(μ-N3)2](ClO4)2 (7), [Cd(NCO)(dbdmp)]ClO4 (9) and [Cd(NCS)2(dbdmp)] (11) have been solved by single crystal X-ray diffraction studies and showed that [Zn(N3)(dbdmp)]ClO4 (1) and [Cd(NCO)(dbdmp)]ClO4 (9) have distorted trigonal bipyramidal geometry, [Cd(NCS)2(dbdmp)] (11) and [(dbdmp)Cd(μ-N3)]2(ClO4)2 (7) have distorted octahedral geometry.

  14. The McbB component of microcin B17 synthetase is a zinc metalloprotein.

    Science.gov (United States)

    Zamble, D B; McClure, C P; Penner-Hahn, J E; Walsh, C T

    2000-12-26

    The microcin B17 synthetase converts glycine, serine, and cysteine residues in a polypeptide precursor into oxazoles and thiazoles during the maturation of the Escherichia coli antibiotic Microcin B17. This multimeric enzyme is composed of three subunits (McbB, McbC, and McbD), and it employs both ATP and FMN as cofactors. The McbB subunit was purified as a fusion with the maltose-binding protein (MBP), and metal analysis revealed that this protein binds 0.91+/-0.17 zinc atoms. Upon incubation of MBP-McbB with excess zinc, the stoichiometry increased to two atoms of zinc bound, but metal binding to the second site resulted in a decrease in the heterocyclization activity when MBP-McbB was reconstituted with the other components of the synthetase. Apo-protein was prepared by using p-hydroxymercuriphenylsulfonic acid (PMPS), and loss of the metal caused a severe reduction in enzymatic activity. However, if dithiothreitol was added to the PMPS reactions within a few minutes, enzymatic activity was retained and MBP-McbB could be reconstituted with zinc. Spectroscopic analysis of the cobalt-containing protein and extended X-ray absorption fine structure analysis of the zinc-containing protein both provide evidence for a tetrathiolate coordination sphere. Site-directed mutants of MBP-McbB as well as the synthetase tagged with the calmodulin-binding peptide were constructed. Activity assays and metal analysis were used to determine which of the six cysteines in McbB are metal ligands. These results suggest that the zinc cofactor in McbB plays a structural role.

  15. Identification of glutamic acid 646 as a zinc-coordinating residue in endopeptidase-24.11.

    Science.gov (United States)

    Le Moual, H; Devault, A; Roques, B P; Crine, P; Boileau, G

    1991-08-25

    Neutral endopeptidase (EC 3.424.11, NEP) is a membrane-bound zinc-metallopeptidase. The substrate specificity and catalytic activity of NEP resemble those of thermolysin, a bacterial zinc-metalloprotease. Comparison of the primary structure of both enzymes suggests that several amino acids present in the active site of thermolysin are also found in NEP. Using site-directed mutagenesis of the cDNA encoding the NEP sequence, we have already shown that His residues 583 and 587 are two of the three zinc ligands. In order to identify the third zinc ligand, we have substituted Val or Asp for Glu616 or Glu646. Val616 NEP showed the same kinetic parameters as the non-mutated NEP. In contrast, the mutant Val646 NEP was almost completely devoid of catalytic activity and unable to bind the tritiated inhibitor [3H]N-[2(R,S)-3-hydroxyaminocarbonyl-2-benzyl-1-oxypropyl]gl ycine, the binding of which is dependent on the presence of the zinc ion. Replacing Glu for Asp at position 646 conserved the negative charge, and the mutant enzyme exhibited the same Km value as the non-mutated enzyme, but kCat was decreased to less than 3% of the value of the non-mutated enzyme. When compared to the non-mutated enzyme Asp646 NEP showed a higher susceptibility to chelating agents, but bound the tritiated inhibitor with the same affinity. Taken together, these observations strongly suggest that Glu646 of NEP is the third zinc-coordinating residue and is equivalent to Glu166 in thermolysin.

  16. The artificial zinc finger coding gene 'Jazz' binds the utrophin promoter and activates transcription.

    Science.gov (United States)

    Corbi, N; Libri, V; Fanciulli, M; Tinsley, J M; Davies, K E; Passananti, C

    2000-06-01

    Up-regulation of utrophin gene expression is recognized as a plausible therapeutic approach in the treatment of Duchenne muscular dystrophy (DMD). We have designed and engineered new zinc finger-based transcription factors capable of binding and activating transcription from the promoter of the dystrophin-related gene, utrophin. Using the recognition 'code' that proposes specific rules between zinc finger primary structure and potential DNA binding sites, we engineered a new gene named 'Jazz' that encodes for a three-zinc finger peptide. Jazz belongs to the Cys2-His2 zinc finger type and was engineered to target the nine base pair DNA sequence: 5'-GCT-GCT-GCG-3', present in the promoter region of both the human and mouse utrophin gene. The entire zinc finger alpha-helix region, containing the amino acid positions that are crucial for DNA binding, was specifically chosen on the basis of the contacts more frequently represented in the available list of the 'code'. Here we demonstrate that Jazz protein binds specifically to the double-stranded DNA target, with a dissociation constant of about 32 nM. Band shift and super-shift experiments confirmed the high affinity and specificity of Jazz protein for its DNA target. Moreover, we show that chimeric proteins, named Gal4-Jazz and Sp1-Jazz, are able to drive the transcription of a test gene from the human utrophin promoter.

  17. Biomimetic ion nanochannels as a highly selective sequential sensor for zinc ions followed by phosphate anions.

    Science.gov (United States)

    Han, Cuiping; Su, Haiyan; Sun, Zhongyue; Wen, Long; Tian, Demei; Xu, Kai; Hu, Junfeng; Wang, Aming; Li, Haibing; Jiang, Lei

    2013-07-08

    A novel biomimetic ion-responsive multi-nanochannel system is constructed by covalently immobilizing a metal-chelating ligand, 2,2'-dipicolylamine (DPA), in polyporous nanochannels prepared in a polymeric membrane. The DPA-modified multi-nanochannels show specific recognition of zinc ions over other common metal ions, and the zinc-ion-chelated nanochannels can be used as secondary sensors for HPO4(2-) anions. The immobilized DPA molecules act as specific-receptor binding sites for zinc ions, which leads to the highly selective zinc-ion response through monitoring of ionic current signatures. The chelated zinc ions can be used as secondary recognition elements for the capture of HPO4(2-) anions, thereby fabricating a sensing nanodevice for HPO4(2-) anions. The success of the DPA immobilization and ion-responsive events is confirmed by measurement of the X-ray photoelectron spectroscopy (XPS), contact angle (CA), and current-voltage (I-V) characteristics of the systems. The proposed nanochannel sensing devices display remarkable specificity, high sensitivity, and wide dynamic range. In addition, control experiments performed in complex matrices suggest that this sensing system has great potential applications in chemical sensing, biotechnology, and many other fields.

  18. Expression and RNA-binding of human zinc-finger antiviral protein

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Mi Suk; Kim, Eun Jung [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Jang, Se Bok, E-mail: sbjang@pusan.ac.kr [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2010-06-04

    Zinc-finger antiviral protein (ZAP) is a recently isolated host antiviral factor that inhibits the replication of many viruses such as Moloney murine leukemia virus (MLV) and Sindbis virus (SIN) by preventing the accumulation of viral mRNA in the cytoplasm. ZAP comprises four CCCH zinc-finger motifs, the second and fourth of which are responsible for protein activity based on their integrity. Thus far, there have been no reports on whether or not ZAP expressed in Escherichia coli is soluble. Therefore, we expressed N-terminal ZAP (NZAP, 254 amino acids) in E. coli as a fusion protein with several different cleavage sites and protein tags. Cleaved ZAP in soluble form strongly bound to RNA through its four CCCH zinc-finger motifs. Here, we provide evidence indicating that ZAP directly interacted with viral RNA. Each conserved zinc-finger motif of ZAP coordinates a zinc ion using three cysteines and one histidine. These findings suggest that ZAP recruits the cellular RNA degradation machinery for the degradation of viral RNA.

  19. Effects of zinc transporters on Cryptococcus gattii virulence

    OpenAIRE

    Schneider, Rafael de Oliveira; Diehl, Camila; dos Santos, Francine Melise; Piffer, Alícia Corbellini; Garcia, Ane Wichine Acosta; Kulmann, Marcos Iuri Roos; Schrank, Augusto; Kmetzsch, Lívia; Vainstein, Marilene Henning; Staats, Charley C.

    2015-01-01

    Zinc is an essential nutrient for all living organisms because it is a co-factor of several important proteins. Furthermore, zinc may play an essential role in the infectiousness of microorganisms. Previously, we determined that functional zinc metabolism is associated with Cryptococcus gattii virulence. Here, we characterized the ZIP zinc transporters in this human pathogen. Transcriptional profiling revealed that zinc levels regulated the expression of the ZIP1, ZIP2 and ZIP3 genes, althoug...

  20. First Principles Investigation of Zinc-anode Dissolution in Zinc-air Batteries

    OpenAIRE

    Siahrostami, Samira; Tripkovic, Vladimir; Lundgård, Keld Troen; Jensen, Kristian E.; Hansen, Heine A.; Hummelshøj, Jens Strabo; Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs; Nørskov, Jens K.; Rossmeisl, Jan

    2013-01-01

    With surging interest in high energy density batteries, much attention has recently been devoted to metal-air batteries. The zinc-air battery has been known for more than hundred years and is commercially available as a primary battery, but recharging has remained elusive; in part because the fundamental mechanisms still remain to be fully understood. Here, we present a density functional theory investigation of the zinc dissolution (oxidation) on the anode side in the zinc-air battery. Two m...

  1. Cellular zinc is required for intestinal epithelial barrier maintenance via the regulation of claudin-3 and occludin expression.

    Science.gov (United States)

    Miyoshi, Yuka; Tanabe, Soichi; Suzuki, Takuya

    2016-07-01

    Intracellular zinc is required for a variety of cell functions, but its precise roles in the maintenance of the intestinal tight junction (TJ) barrier remain unclear. The present study investigated the essential roles of intracellular zinc in the preservation of intestinal TJ integrity and the underlying molecular mechanisms. Depletion of intracellular zinc in both intestinal Caco-2 cells and mouse colons through the application of a cell-permeable zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) induced a disruption of the TJ barrier, as indicated by increased FITC-labeled dextran flux and decreased transepithelial electrical resistance. The TPEN-induced TJ disruption is associated with downregulation of two TJ proteins, occludin and claudin-3. Biotinylation of cell surface proteins revealed that the zinc depletion induced the proteolysis of occludin but not claudin-3. Occludin proteolysis was sensitive to the inhibition of calpain activity, and increased calpain activity was observed in the zinc-depleted cells. Although quantitative PCR analysis and promoter reporter assay have demonstrated that the zinc depletion-induced claudin-3 downregulation occurred at transcriptional levels, a site-directed mutation in the egr1 binding site in the claudin-3 promoter sequence induced loss of both the basal promoter activity and the TPEN-induced decreases. Reduced egr1 expression by a specific siRNA also inhibited claudin-3 expression and transepithelial electrical resistance maintenance in cells. This study shows that intracellular zinc has an essential role in the maintenance of the intestinal epithelial TJ barrier through regulation of occludin proteolysis and claudin-3 transcription.

  2. Molecular epidemiology of different hepatitis C genotypes in serum and peripheral blood mononuclear cells in jahrom city of iran.

    Science.gov (United States)

    Ashrafi Hafez, Asghar; Baharlou, Rasoul; Mousavi Nasab, Seyed Dawood; Ahmadi Vasmehjani, Abbas; Shayestehpour, Mohammad; Joharinia, Negar; Ahmadi, Nayeb Ali

    2014-05-01

    The Hepatitis C Virus (HCV) is considered essentially hepatotropic, yet the virus compartments have also been found in important extra hepatic sites. Detection of HCV RNA in extra hepatic reservoirs such as peripheral blood mononuclear cells (PBMCs) is important for determining disease progression and treatment effectiveness. The present study aimed to determine different HCV genotypes in patients' plasma and PBMC specimens, in Jahrom city of Iran. Blood samples of 137 patients with established HCV were collected at the Honari clinic. These patients were anti-HCV and plasma HCV RNA positive. After plasma RNA extraction and obtaining a pellet of approximately 3-5 × 10(6) PBMCs, Real-time PCR was performed, using specific-genotype primers. Finally, data analysis was done by the Statistical Package for Social Sciences (SPSS) software. Subtype 3 was the most common genotype in plasma (57.7%) and PBMCs (51.1%). Subtype 1a was detected in 36.5% and 30.7% of plasma samples and PBMCs, respectively whereas subtype 4 was not detected in any of the cases. There was a genotype difference between plasma and PBMCs of 12.4% of patients. In four patients no genotype was detected in their plasma but genotype 3 was detected in the PBMCs. It is suggested that determination of the target genotype by plasma subtyping for choosing the proper antiviral therapy is essential but may result in therapy failure. HCV genotyping in PBMC samples, along with plasma specimens, might be more beneficial. Therefore determining the HCV genotype in PBMCs, before beginning the therapy is useful due to the possibility of occult infection detection.

  3. Mycolactone diffuses from Mycobacterium ulcerans-infected tissues and targets mononuclear cells in peripheral blood and lymphoid organs.

    Directory of Open Access Journals (Sweden)

    Hui Hong

    Full Text Available BACKGROUND: Buruli ulcer (BU is a progressive disease of subcutaneous tissues caused by Mycobacterium ulcerans. The pathology of BU lesions is associated with the local production of a diffusible substance, mycolactone, with cytocidal and immunosuppressive properties. The defective inflammatory responses in BU lesions reflect these biological properties of the toxin. However, whether mycolactone diffuses from infected tissues and suppresses IFN-gamma responses in BU patients remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here we have investigated the pharmacodistribution of mycolactone following injection in animal models by tracing a radiolabeled form of the toxin, and by directly quantifying mycolactone in lipid extracts from internal organs and cell subpopulations. We show that subcutaneously delivered mycolactone diffused into mouse peripheral blood and accumulated in internal organs with a particular tropism for the spleen. When mice were infected subcutaneously with M. ulcerans, this led to a comparable pattern of distribution of mycolactone. No evidence that mycolactone circulated in blood serum during infection could be demonstrated. However, structurally intact toxin was identified in the mononuclear cells of blood, lymph nodes and spleen several weeks before ulcerative lesions appear. Importantly, diffusion of mycolactone into the blood of M. ulcerans-infected mice coincided with alterations in the functions of circulating lymphocytes. CONCLUSION: In addition to providing the first evidence that mycolactone diffuses beyond the site of M. ulcerans infection, our results support the hypothesis that the toxin exerts immunosuppressive effects at the systemic level. Furthermore, they suggest that assays based on mycolactone detection in circulating blood cells may be considered for diagnostic tests of early disease.

  4. Effects of blood transportation on human peripheral mononuclear cell yield, phenotype and function: implications for immune cell biobanking.

    Directory of Open Access Journals (Sweden)

    Anita Posevitz-Fejfár

    Full Text Available Human biospecimen collection, processing and preservation are rapidly emerging subjects providing essential support to clinical as well as basic researchers. Unlike collection of other biospecimens (e.g. DNA and serum, biobanking of viable immune cells, such as peripheral blood mononuclear cells (PBMC and/or isolated immune cell subsets is still in its infancy. While certain aspects of processing and freezing conditions have been studied in the past years, little is known about the effect of blood transportation on immune cell survival, phenotype and specific functions. However, especially for multicentric and cooperative projects it is vital to precisely know those effects. In this study we investigated the effect of blood shipping and pre-processing delay on immune cell phenotype and function both on cellular and subcellular levels. Peripheral blood was collected from healthy volunteers (n = 9: at a distal location (shipped overnight and in the central laboratory (processed immediately. PBMC were processed in the central laboratory and analyzed post-cryopreservation. We analyzed yield, major immune subset distribution, proliferative capacity of T cells, cytokine pattern and T-cell receptor signal transduction. Results show that overnight transportation of blood samples does not globally compromise T- cell subsets as they largely retain their phenotype and proliferative capacity. However, NK and B cell frequencies, the production of certain PBMC-derived cytokines and IL-6 mediated cytokine signaling pathway are altered due to transportation. Various control experiments have been carried out to compare issues related to shipping versus pre-processing delay on site. Our results suggest the implementation of appropriate controls when using multicenter logistics for blood transportation aiming at subsequent isolation of viable immune cells, e.g. in multicenter clinical trials or studies analyzing immune cells/subsets. One important conclusion might

  5. Neuroprotective effects of intravenous transplantation of bone marrow mononuclear cells from 5-fluorouracil pre-treated rats on ischemic stroke.

    Science.gov (United States)

    Li, Y; Mao, W W; Zhang, C G; Wan, L; Jing, C H; Hua, X M; Li, S T; Cheng, J

    2016-03-15

    Our previous findings showed bone marrow mononuclear cells (BMMNCs) from 5- fluorouracil (5-FU) pre-treated rats (named BMRMNCs) had a better therapeutic efficacy in ischemia/reperfusion rats as compared to BMMNCs from untreated rats. This study was undertaken to explore the potential mechanisms underlying the neuroprotective effects of BMRMNCs in middle cerebral artery occlusion (MCAO) rat model. Rats were intravenously pre-treated with 5-FU and BMRMNCs were collected at different time points. The contents of growth factors in the supernatant and CXCR4 expression were detected by ELISA and flow cytometry, respectively. MCAO was introduced to rats, and BMMNCs and BMRMNCs collected at 7 days after 5-FU pre-treatment were independently transplanted via the tail vein 24h later. The neurological function was evaluated before cell transplantation and at 24h, 7d and 14d after cell transplantation. Rats were sacrificed at 14d after cell transplantation, the brains were collected for TTC staining, infarct volume detection, NISSL staining, counting of viable cells in the CA1 region, and observation of transplanted cells. BMRMNCs had elevated expressions of growth factors as well as CXCR4 expression. Our results confirmed the better therapeutic effects of BMRMNCs in MCAO rats, demonstrated by reduction in infarct volume, improvement of neurological function and more viable cells in the hippocampus. In addition, more transplanted cells were found after BMRMNCs transplantation at 7 days and 14 days although there was no marked difference at 14 days. These findings indicate that BMRMNCs transplantation may protect ischemic stroke, at least partially, via increasing the secretion of growth factors and migration to the injured site.

  6. Quantification of miltefosine in peripheral blood mononuclear cells by high-performance liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    Kip, A.E.; Rosing, H.; Hillebrand, M.J.X.; Castro, M.M.; Gomez, M.A.; Schellens, J.H.M.; Beijnen, J.H.; Dorlo, T.P.C.

    2015-01-01

    Phagocytes, the physiological compartment in which Leishmania parasites reside, are the main site of action of the drug miltefosine, but the intracellular pharmacokinetics of miltefosine remain unexplored. We developed a bioanalytical method to quantify miltefosine in human peripheral blood mononuclear cells (PBMCs), expanding from an existing high performance liquid chromatography-tandem mass spectrometry method for the quantification of miltefosine in plasma. The method introduced deuterated miltefosine as an internal standard. Miltefosine was extracted from PBMC pellets by addition of 62.5% methanol. Supernatant was collected, evaporated and reconstituted in plasma. Chromatographic separation was performed on a reversed phase C18 column and detection with a triple-quadrupole mass spectrometer. Miltefosine was quantified using plasma calibration standards ranging from 4 to 1000 ng/mL. This method was validated with respect to its PBMC matrix effect, selectivity, recovery and stability. No matrix effect could be observed from the PBMC content (ranging from 0.17 to 26.3 × 106 PBMCs) reconstituted in plasma, as quality control samples were within 3.0% of the nominal concentration (precision less than 7.7%). At the lower limit of quantitation of 4 ng/mL plasma, corresponding to 0.12 ng/106 PBMCs in a typical clinical sample, measured concentrations were within 8.6% of the nominal value. Recovery showed to be reproducible as adding additional pre-treatment steps did not increase the recovery with more than 9%. This method was successfully applied to measure intracellular miltefosine concentrations in PBMC samples from six cutaneous leishmaniasis patients up to one month post-treatment. PMID:26160472

  7. Mapping Variation in Cellular and Transcriptional Response to 1,25-Dihydroxyvitamin D3 in Peripheral Blood Mononuclear Cells.

    Directory of Open Access Journals (Sweden)

    Silvia N Kariuki

    Full Text Available The active hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D is an important modulator of the immune system, inhibiting cellular proliferation and regulating transcription of immune response genes. In order to characterize the genetic basis of variation in the immunomodulatory effects of 1,25D, we mapped quantitative traits of 1,25D response at both the cellular and the transcriptional level. We carried out a genome-wide association scan of percent inhibition of cell proliferation (Imax induced by 1,25D treatment of peripheral blood mononuclear cells from 88 healthy African-American individuals. Two genome-wide significant variants were identified: rs1893662 in a gene desert on chromosome 18 (p = 2.32 x 10-8 and rs6451692 on chromosome 5 (p = 2.55 x 10-8, which may influence the anti-proliferative activity of 1,25D by regulating the expression of nearby genes such as the chemokine gene, CCL28, and the translation initiation gene, PAIP1. We also identified 8 expression quantitative trait loci at a FDR<0.10 for transcriptional response to 1,25D treatment, which include the transcriptional regulator ets variant 3-like (ETV3L and EH-domain containing 4 (EHD4. In addition, we identified response eQTLs in vitamin D receptor binding sites near genes differentially expressed in response to 1,25D, such as FERM Domain Containing 6 (FRMD6, which plays a critical role in regulating both cell proliferation and apoptosis. Combining information from the GWAS of Imax and the response eQTL mapping enabled identification of putative Imax-associated candidate genes such as PAIP1 and the transcriptional repressor gene ZNF649. Overall, the variants identified in this study are strong candidates for immune traits and diseases linked to vitamin D, such as multiple sclerosis.

  8. Correlation analyses revealed global microRNA-mRNA expression associations in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Wang, Lan; Zhu, Jiang; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Xiao-Wei; Xia, Wei; Xie, Fang-Fei; He, Pei; Bing, Peng-Fei; Qiu, Ying-Hua; Lin, Xiang; Lu, Xin; Zhang, Lei; Yi, Neng-Jun; Zhang, Yong-Hong; Lei, Shu-Feng

    2017-09-06

    MicroRNAs (miRNAs) can regulate gene expression through binding to complementary sites in the 3'-untranslated regions of target mRNAs, which will lead to existence of correlation in expression between miRNA and mRNA. However, the miRNA-mRNA correlation patterns are complex and remain largely unclear yet. To establish the global correlation patterns in human peripheral blood mononuclear cells (PBMCs), multiple miRNA-mRNA correlation analyses and expression quantitative trait locus (eQTL) analysis were conducted in this study. We predicted and achieved 861 miRNA-mRNA pairs (65 miRNAs, 412 mRNAs) using multiple bioinformatics programs, and found global negative miRNA-mRNA correlations in PBMC from all 46 study subjects. Among the 861 pairs of correlations, 19.5% were significant (P correlation network was complex and highlighted key miRNAs/genes in PBMC. Some miRNAs, such as hsa-miR-29a, hsa-miR-148a, regulate a cluster of target genes. Some genes, e.g., TNRC6A, are regulated by multiple miRNAs. The identified genes tend to be enriched in molecular functions of DNA and RNA binding, and biological processes such as protein transport, regulation of translation and chromatin modification. The results provided a global view of the miRNA-mRNA expression correlation profile in human PBMCs, which would facilitate in-depth investigation of biological functions of key miRNAs/mRNAs and better understanding of the pathogenesis underlying PBMC-related diseases.

  9. Syntheses, structures and luminescence behaviour of some zinc(II) complexes containing acetate and tetradentate Schiff bases

    Indian Academy of Sciences (India)

    Ashis Kumar Maji; Subhasis Roy; Somnath Choubey; Rajarshi Ghosh; Barindra Kumar Ghosh

    2015-05-01

    Two mononuclear compounds of the types pentacoordinated [Zn(L1)(OAc)]PF6·H2O (1) and hexacoordinated [Zn(L2)(OAc)]PF6 (2) [L1 = N,N′-(bis(pyridin-2-yl)formylidene)-1,3-propanediamine; L2 = N,N′-(bis(pyridin-2-yl)benzylidene)-1,4-butanediamine] have been synthesized using one-pot reactions of a 1:1:1 molar ratio of Zn(OAc)2.2H2O, L1/L2, ammonium hexafluorophosphate in MeOH at room temperature. Compounds 1 and 2 are characterized on the basis of microanalytical, spectroscopic, thermal and other physicochemical results. Single crystal X-ray structural study reveals that the zinc(II) centre in 1 is coordinated by four N atoms of the Schiff base L1 and one O atom of terminal acetate with a ZnN4O chromophore, whereas in 2, the zinc(II) centre is bound by four N atoms of the tailored Schiff base L2 and two O atoms of the chelated acetate. In the crystalline state, mononuclear units in 1 are engaged in weak cooperative intermolecular O-H⋯O and C-H⋯F hydrogen bonds affording a 1D chain. The individual units of 2 are packed by ⋯ and anion⋯ interactions to form a 2D sheet structure. The complexes show reasonable thermal stabilities and display intraligand → ∗ fluorescence in solid state at room temperature.

  10. Conserved balance of hepatocyte nuclear DNA content in mononuclear and binuclear hepatocyte populations during the course of chronic viral hepatitis

    Institute of Scientific and Technical Information of China (English)

    Hidenori Toyoda; Takashi Kumada; Olivier Bregerie; Christian Brechot; Chantal Desdouets

    2006-01-01

    AIM: To analyze the percentages of hepatocytes with increased nuclear DNA content, i.e., tetraploid (4n) and octoploid (8n) nuclei, and then compared mononuclear and binuclear hepatocyte populations:METHODS: The percentages of mononuclear diploid(2n), 4n, and 8n hepatocytes and those of binuclear 2× 2n, 2 × 4n, and 2 × 8n hepatocytes were determined with a method that can simultaneously measure hepatocyte nuclear DNA content and binuclearity in 62patients with chronic hepatitis B or C. The percentage of 4n and 8n hepatocytes in the mononuclear hepatocyte population was compared with the percentage of 2 ×4n and 2 × 8n hepatocytes in the binuclear hepatocyte population.RESULTS: The percentages of 4n and 8n hepatocytes in mononuclear hepatocytes and 2 × 4n and 2 × 8n hepatocytes in binuclear hepatocytes were similar,regardless of the activity or fibrosis grade of chronic hepatitis and regardless of the infecting virus.CONCLUSION: The distribution of nuclear DNA content within mononuclear and binuclear hepatocyte populations was conserved during the course of chronic viral hepatitis.

  11. Therapeutic angiogenesis in Buerger's disease (thromboangiitis obliterans) patients with critical limb ischemia by autologous transplantation of bone marrow mononuclear cells.

    Science.gov (United States)

    Motukuru, Vishnu; Suresh, Kalkunte R; Vivekanand, Vivekanand; Raj, Sumanth; Girija, K R

    2008-12-01

    Peripheral arterial disease is a significant problem worldwide. In developing countries such as India, the increased incidence of smoking and other forms of nicotine intake has resulted in a large proportion of young individuals with Buerger's disease. The results of surgical and endovascular treatment for this condition have not been very rewarding. Hence, we focused on providing alternative therapies. Neovascularization by autologous bone marrow mononuclear cell transplantation is being tried as an alternative therapeutic option. We have reviewed our series of patients who underwent autologous bone marrow mononuclear cell transplantation during the last 2 years. We enrolled 38 patients who were chosen to undergo autologous bone marrow mononuclear cell transplantation for nonreconstructible Buerger's disease. We injected the bone marrow mononuclear cells into the calf muscles of the affected limbs in 36 patients. We monitored ulcer healing, ankle-brachial index (ABI), and transcutaneous oximetry (TcPo(2)) level. No procedurally related complications occurred, although one injected sample of bone marrow aspirate later revealed infestation with Strongyloides stercoralis. Two patients were seropositive on the Venereal Disease Research Laboratory test and were not injected with the bone marrow mononuclear cells. Three patients (12%) underwent major amputations disease who have critical limb ischemia.

  12. Atmospheric corrosion in subtropical areas: XRD and electrochemical study of zinc atmospheric corrosion products in the province of Santa Cruz de Tenerife (Canary Islands, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Morales, J. [Departamento de Quimica Fisica, Universidad de La Laguna, 38071 La Laguna, Tenerife (Spain)]. E-mail: jmorales@ull.es; Diaz, F. [Departamento de Quimica Fisica, Universidad de La Laguna, 38071 La Laguna, Tenerife (Spain); Hernandez-Borges, J. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de La Laguna, 38071 La Laguna, Tenerife (Spain); Gonzalez, S. [Departamento de Quimica Fisica, Universidad de La Laguna, 38071 La Laguna, Tenerife (Spain)

    2006-02-15

    In the present paper, zinc sheets have been exposed for 4 years to the action of different atmospheres in 35 test sites located in the province of Santa Cruz de Tenerife, Canary Islands, Spain. Corrosion products formed on the surface of the samples have been identified by means of X-ray diffraction (XRD) for the first and second year of exposure. Zincite, hydrozincite, simonkolleite, zinc chlorohydroxysulphate, zinc oxysulphate and zinc hydroxysulphate have been identified in the test sheets. Preliminary results of an electrochemical study of the breakdown potential of zinc samples are also presented in order to test the protective effect of the film formed on the surface of the samples. It was found that the protective effect of this film increases linearly with exposure time.

  13. Genome editing in plant cells by zinc finger nucleases.

    Science.gov (United States)

    Weinthal, Dan; Tovkach, Andriy; Zeevi, Vardit; Tzfira, Tzvi

    2010-06-01

    Gene targeting is a powerful tool for functional gene studies. However, only a handful of reports have been published describing the successful targeting of genome sequences in model and crop plants. Gene targeting can be stimulated by induction of double-strand breaks at specific genomic sites. The expression of zinc finger nucleases (ZFNs) can induce genomic double-strand breaks. Indeed, ZFNs have been used to drive the replacement of native DNA sequences with foreign DNA molecules, to mediate the integration of the targeted transgene into native genome sequences, to stimulate the repair of defective transgenes, and as site-specific mutagens in model and crop plant species. This review introduces the principles underlying the use of ZFNs for genome editing, with an emphasis on their recent use for plant research and biotechnology.

  14. Enhanced protein production by engineered zinc finger proteins.

    Science.gov (United States)

    Reik, Andreas; Zhou, Yuanyue; Collingwood, Trevor N; Warfe, Lyndon; Bartsevich, Victor; Kong, Yanhong; Henning, Karla A; Fallentine, Barrett K; Zhang, Lei; Zhong, Xiaohong; Jouvenot, Yann; Jamieson, Andrew C; Rebar, Edward J; Case, Casey C; Korman, Alan; Li, Xiao-Yong; Black, Amelia; King, David J; Gregory, Philip D

    2007-08-01

    Increasing the yield of therapeutic proteins from mammalian production cell lines reduces costs and decreases the time to market. To this end, we engineered a zinc finger protein transcription factor (ZFP TF) that binds a DNA sequence within the promoter driving transgene expression. This ZFP TF enabled >100% increase in protein yield from CHO cells in transient, stable, and fermentor production run settings. Expression vectors engineered to carry up to 10 ZFP binding sites further enhanced ZFP-mediated increases in protein production up to approximately 500%. The multimerized ZFP binding sites function independently of the promoter, and therefore across vector platforms. CHO cell lines stably expressing ZFP TFs demonstrated growth characteristics similar to parental cell lines. ZFP TF expression and gains in protein production were stable over >30 generations in the absence of antibiotic selection. Our results demonstrate that ZFP TFs can rapidly and stably increase protein production in mammalian cells.

  15. Effect of Zinc on Efficacy of Iron Supplementation in Improving Iron and Zinc Status in Women

    Directory of Open Access Journals (Sweden)

    Phuong Nguyen

    2012-01-01

    Full Text Available Iron and zinc may interact in micronutrient supplements and thereby decrease efficacy. We investigated interactive effects of combined zinc and iron supplementation in a randomized controlled trial conducted in 459 Guatemalan women. Four groups were supplemented for 12 weeks: (1 weekly iron and folic acid (IFA; (2 weekly IFA and 30 mg zinc; (3 daily IFA; (4 daily IFA and 15 mg zinc. Effects were assessed by generalized linear regression. Baseline hemoglobin (Hb concentration was 137.4±15.5 g/L, 13% were anemic and 54% had zinc deficiency. Hb cconcentrations were similar by supplement type, but Hb concentrations improved significantly in anemic women at baseline (increase of 21.8 g/L. Mean percentage changes in serum ferritin were significantly higher in daily compared to weekly supplemented groups (86% versus 32%. The addition of zinc to IFA supplements had no significant impact on iron or zinc status. In conclusion, adding zinc to IFA supplements did not modify efficacy on iron status or improve zinc status, but daily supplementation was more efficacious than weekly in improving iron stores.

  16. Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women

    Directory of Open Access Journals (Sweden)

    Karen Lim

    2015-04-01

    Full Text Available Iron and zinc are found in similar foods and absorption of both may be affected by food compounds, thus biochemical iron and zinc status may be related. This cross-sectional study aimed to: (1 describe dietary intakes and biochemical status of iron and zinc; (2 investigate associations between dietary iron and zinc intakes; and (3 investigate associations between biochemical iron and zinc status in a sample of premenopausal women aged 18–50 years who were recruited in Melbourne and Sydney, Australia. Usual dietary intakes were assessed using a 154-item food frequency questionnaire (n = 379. Iron status was assessed using serum ferritin and hemoglobin, zinc status using serum zinc (standardized to 08:00 collection, and presence of infection/inflammation using C-reactive protein (n = 326. Associations were explored using multiple regression and logistic regression. Mean (SD iron and zinc intakes were 10.5 (3.5 mg/day and 9.3 (3.8 mg/day, respectively. Median (interquartile range serum ferritin was 22 (12–38 μg/L and mean serum zinc concentrations (SD were 12.6 (1.7 μmol/L in fasting samples and 11.8 (2.0 μmol/L in nonfasting samples. For each 1 mg/day increase in dietary iron intake, zinc intake increased by 0.4 mg/day. Each 1 μmol/L increase in serum zinc corresponded to a 6% increase in serum ferritin, however women with low serum zinc concentration (AM fasting < 10.7 μmol/L; AM nonfasting < 10.1 μmol/L were not at increased risk of depleted iron stores (serum ferritin <15 μg/L; p = 0.340. Positive associations were observed between dietary iron and zinc intakes, and between iron and zinc status, however interpreting serum ferritin concentrations was not a useful proxy for estimating the likelihood of low serum zinc concentrations and women with depleted iron stores were not at increased risk of impaired zinc status in this cohort.

  17. Measurement of Zinc Absorption From Meals: Comparison of Extrinsi Zinc Labeling and Independent Measurements of Dietary Zinc Absorption

    Science.gov (United States)

    Sheng, Xiao-Yang; Hambidge, K. Michael; Miller, Leland V.; Westcott, Jamie E.; Lei, Sian; Krebs, Nancy F.

    2017-01-01

    Background Extrinsic labeling techniques are typically used to measure fractional absorption of zinc (FAZextrinsic) but none have been adequately evaluated. Objective To compare determination of the quantity of zinc absorbed (TAZextrinsic) using measurements of FAZextrinsic with results of simultaneous determinations of dietary zinc absorbed (TAZmetabolic) that are not dependent on labeling ingested food with an extrinsic tracer (modified metabolic balance technique). Design 70Zn was administered orally with all meals for 6 consecutive days to 21 healthy, free-living adult women consuming a constant diet. 68Zn and 67Zn were administered intravenously. FAZextrinsic was measured using a dual isotope tracer ratio technique and multiplied by dietary zinc to give TAZextrinsic TAZmetabolic was determined by addition of net absorption of zinc and endogenous fecal zinc, the latter determined by an isotope dilution technique. Results TAZextrinsic and TAZmetabolic were 3.0 ± 1.1mg/day and 3.1 ± 1.1 mg/day respectively, paired t-test p = 0.492. The correlation coefficient for TAZextrinsic and TAZmetabolic was 0.91, and for FAZextrinsic and FAZmetabolic was 0.95. A Bland Altman analysis indicated a bias of 0.07, and the limits of agreement of −0.86 to 1.01 for TAZextrinsic and TAZmatabolic Conclusion These results from two independent methods provide reasonable validation of our extrinsic labeling technique for a wide range of composite diets. PMID:20209474

  18. Zinc and its importance for human health: An integrative review.

    Science.gov (United States)

    Roohani, Nazanin; Hurrell, Richard; Kelishadi, Roya; Schulin, Rainer

    2013-02-01

    Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers), human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency.

  19. Zinc and its importance for human health: An integrative review

    Directory of Open Access Journals (Sweden)

    Nazanin Roohani

    2013-01-01

    Full Text Available Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers, human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency.

  20. 113Cd-NMR investigation of a cadmium-substituted copper, zinc-containing superoxide dismutase from yeast

    DEFF Research Database (Denmark)

    Kofod, Pauli; Bauer, Rogert; Danielsen, Eva

    1991-01-01

    113Cd nuclear magnetic resonance spectroscopy has been used to investigate the metal binding sites of cadmium-substituted copper,zinc-containing superoxide dismutase from baker's yeast. NMR signals were obtained for 113Cd(II) at the Cu site as well as for 113Cd(II) at the Zn site. The two subunits...... an explanation for the discrepancy in the literature regarding 113Cd-NMR investigations of bovine superoxide dismutase....

  1. The Nuts and Bolts of Zinc-Nickel: OEM Zinc Nickel Implementation on Fasteners - Getting It Into Production

    Science.gov (United States)

    2014-11-01

    Blake Simpson Louie Tran The Nuts and Bolts of Zinc- Nickel OEM Zinc Nickel Implementation on Fasteners – Getting It Into Production Report...REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE The Nuts and Bolts of Zinc- Nickel : OEM Zinc Nickel Implementation on...currently in production 2. Problem at Hand – Hexavalent Chromates 3. Transition to Zinc- Nickel 4. Preliminary Testing 5. Plan moving forward for

  2. Symmetry breaking and light-induced spin-state trapping in a mononuclear FeII complex with the two-step thermal conversion

    Science.gov (United States)

    Buron-Le Cointe, M.; Ould Moussa, N.; Trzop, E.; Moréac, A.; Molnar, G.; Toupet, L.; Bousseksou, A.; Létard, J. F.; Matouzenko, G. S.

    2010-12-01

    Crystallographic, magnetic, and Raman investigations of the mononuclear [FeII(Hpy-DAPP)](BF4)2 complex are presented. Its particular feature is a two-step thermal spin conversion in spite of a unique symmetry-independent iron site per unit cell. The plateau around 140 K is associated with a symmetry breaking visible by the appearance of weak (0k0) k odd Bragg peaks. Symmetries of the high-temperature high-spin state and of the low-temperature low-spin state are both monoclinic P21/c , so that the symmetry breaking on the plateau is associated with a reentrant phase transition. It is discussed in relation with Ising-type microscopic models. At the plateau level, the two symmetry-independent molecules differ both by their spin state and the conformation (chair versus twist-boat) of one metallocycle. At low-temperature photoinduced phenomena have been investigated: a partial phototransformation [light-induced excited spin-state trapping (LIESST) effect] is observed under visible red irradiation. Raman spectroscopy shows that the molecular photoinduced state is the high-spin one. Nevertheless, as no macroscopic symmetry breaking is observed, the unique average cationic [FeII(Hpy-DAPP)] state of the unit cell is intermediate between pure low-spin and high-spin states and presents a conformational disorder for one metallocycle. Reverse-LIESST has also been evidenced using near infrared excitation. Thus, the mononuclear [Fe(Hpy-DAPP)](BF4)2 compound offers the opportunity to discuss the interplay between spin conversion, molecular conformational change, and ordering processes.

  3. Sealed Cylindrical Silver/Zinc Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — RBC Technologies has significanly improved the cycle life and wet life of silver/zinc battery technology through novel separator and anode formulations. This...

  4. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  5. Role of zinc in plasma membrane function

    National Research Council Canada - National Science Library

    O'Dell, B L

    2000-01-01

    ... with a posttranslational change in plasma membrane proteins. Among the signs of zinc deficiency in rats is a bleeding tendency associated with failure of platelet aggregation, a phenomenon that correlates with impaired uptake of Ca(2+) when stimulated...

  6. Controlling fires in silver/zinc batteries

    Science.gov (United States)

    Boshers, W. A.; Britz, W. A.

    1977-01-01

    Silver/zinc storage battery fires are often difficult to extinguish. Improved technique employs manifold connected to central evacuation chamber to rapidly vent combustion-supporting gases generated by battery plate oxides.

  7. Model of how plants sense zinc deficiency

    DEFF Research Database (Denmark)

    Assuncao, Ana G.L.; Persson, Daniel Olof; Husted, Søren;

    2013-01-01

    to develop plant-based solutions addressing nutrient-use-efficiency and adaptation to nutrient-limited or -toxic soils. Recently two transcription factors of the bZIP family (basic-region leucine zipper) have been identified in Arabidopsis and shown to be pivotal in the adaptation response to zinc deficiency....... They represent not only the first regulators of zinc homeostasis identified in plants, but also a very promising starting-point that can provide new insights into the molecular basis of how plants sense and adapt to the stress of zinc deficiency. Considering the available information thus far we propose...... in this review a putative model of how plants sense zinc deficiency....

  8. Magnetic susceptibility and ground-state zero-field splitting in high-spin mononuclear manganese(III) of inverted N-methylated porphyrin complexes: Mn(2-NCH3NCTPP)Br.

    Science.gov (United States)

    Hung, Sheng-Wei; Yang, Fuh-An; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2008-08-18

    The crystal structures of diamagnetic dichloro(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-tin(IV) methanol solvate [Sn(2-NCH 3NCTPP)Cl 2.2(0.2MeOH); 6.2(0.2MeOH)] and paramagnetic bromo(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-manganese(III) [Mn(2-NCH 3NCTPP)Br; 5] were determined. The coordination sphere around Sn (4+) in 6.2(0.2MeOH) is described as six-coordinate octahedron ( OC-6) in which the apical site is occupied by two transoid Cl (-) ligands, whereas for the Mn (3+) ion in 5, it is a five-coordinate square pyramid ( SPY-5) in which the unidentate Br (-) ligand occupies the axial site. The g value of 9.19 (or 10.4) measured from the parallel polarization (or perpendicular polarization) of X-band EPR spectra at 4 K is consistent with a high spin mononuclear manganese(III) ( S = 2) in 5. The magnitude of axial ( D) and rhombic ( E) zero-field splitting (ZFS) for the mononuclear Mn(III) in 5 were determined approximately as -2.4 cm (-1) and -0.0013 cm (-1), respectively, by paramagnetic susceptibility measurements and conventional EPR spectroscopy. Owing to weak C(45)-H(45A)...Br(1) hydrogen bonds, the mononuclear Mn(III) neutral molecules of 5 are arranged in a one-dimensional network. A weak Mn(III)...Mn(III) ferromagnetic interaction ( J = 0.56 cm (-1)) operates via a [Mn(1)-C(2)-C(1)-N(4)-C(45)-H(45A)...Br(1)-Mn(1)] superexchange pathway in complex 5.

  9. A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life

    Directory of Open Access Journals (Sweden)

    Merchant Sabeeha S

    2009-10-01

    Full Text Available Abstract Background COG0523 proteins are, like the nickel chaperones of the UreG family, part of the G3E family of GTPases linking them to metallocenter biosynthesis. Even though the first COG0523-encoding gene, cobW, was identified almost 20 years ago, little is known concerning the function of other members belonging to this ubiquitous family. Results Based on a combination of comparative genomics, literature and phylogenetic analyses and experimental validations, the COG0523 family can be separated into at least fifteen subgroups. The CobW subgroup involved in cobalamin synthesis represents only one small sub-fraction of the family. Another, larger subgroup, is suggested to play a predominant role in the response to zinc limitation based on the presence of the corresponding COG0523-encoding genes downstream from putative Zur binding sites in many bacterial genomes. Zur binding sites in these genomes are also associated with candidate zinc-independent paralogs of zinc-dependent enzymes. Finally, the potential role of COG0523 in zinc homeostasis is not limited to Bacteria. We have predicted a link between COG0523 and regulation by zinc in Archaea and show that two COG0523 genes are induced upon zinc depletion in a eukaryotic reference organism, Chlamydomonas reinhardtii. Conclusion This work lays the foundation for the pursuit by experimental methods of the specific role of COG0523 members in metal trafficking. Based on phylogeny and comparative genomics, both the metal specificity and the protein target(s might vary from one COG0523 subgroup to another. Additionally, Zur-dependent expression of COG0523 and putative paralogs of zinc-dependent proteins may represent a mechanism for hierarchal zinc distribution and zinc sparing in the face of inadequate zinc nutrition.

  10. Treatment with at Homeopathic Complex Medication Modulates Mononuclear Bone Marrow Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Beatriz Cesar

    2011-01-01

    Full Text Available A homeopathic complex medication (HCM, with immunomodulatory properties, is recommended for patients with depressed immune systems. Previous studies demonstrated that the medication induces an increase in leukocyte number. The bone marrow microenvironment is composed of growth factors, stromal cells, an extracellular matrix and progenitor cells that differentiate into mature blood cells. Mice were our biological model used in this research. We now report in vivo immunophenotyping of total bone marrow cells and ex vivo effects of the medication on mononuclear cell differentiation at different times. Cells were examined by light microscopy and cytokine levels were measured in vitro. After in vivo treatment with HCM, a pool of cells from the new marrow microenvironment was analyzed by flow cytometry to detect any trend in cell alteration. The results showed decreases, mainly, in CD11b and TER-119 markers compared with controls. Mononuclear cells were used to analyze the effects of ex vivo HCM treatment and the number of cells showing ring nuclei, niche cells and activated macrophages increased in culture, even in the absence of macrophage colony-stimulating factor. Cytokines favoring stromal cell survival and differentiation in culture were induced in vitro. Thus, we observe that HCM is immunomodulatory, either alone or in association with other products.

  11. Catalytic water oxidation by mononuclear Ru complexes with an anionic ancillary ligand.

    Science.gov (United States)

    Tong, Lianpeng; Inge, A Ken; Duan, Lele; Wang, Lei; Zou, Xiaodong; Sun, Licheng

    2013-03-04

    Mononuclear Ru-based water oxidation catalysts containing anionic ancillary ligands have shown promising catalytic efficiency and intriguing properties. However, their insolubility in water restricts a detailed mechanism investigation. In order to overcome this disadvantage, complexes [Ru(II)(bpc)(bpy)OH2](+) (1(+), bpc = 2,2'-bipyridine-6-carboxylate, bpy = 2,2'-bipyridine) and [Ru(II)(bpc)(pic)3](+) (2(+), pic = 4-picoline) were prepared and fully characterized, which features an anionic tridentate ligand and has enough solubility for spectroscopic study in water. Using Ce(IV) as an electron acceptor, both complexes are able to catalyze O2-evolving reaction with an impressive rate constant. On the basis of the electrochemical and kinetic studies, a water nucleophilic attack pathway was proposed as the dominant catalytic cycle of the catalytic water oxidation by 1(+), within which several intermediates were detected by MS. Meanwhile, an auxiliary pathway that is related to the concentration of Ce(IV) was also revealed. The effect of anionic ligand regarding catalytic water oxidation was discussed explicitly in comparison with previously reported mononuclear Ru catalysts carrying neutral tridentate ligands, for example, 2,2':6',2″-terpyridine (tpy). When 2(+) was oxidized to the trivalent state, one of its picoline ligands dissociated from the Ru center. The rate constant of picoline dissociation was evaluated from time-resolved UV-vis spectra.

  12. High Insulin and Leptin Increase Resistin and Inflammatory Cytokine Production from Human Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Panayoula C. Tsiotra

    2013-01-01

    Full Text Available Resistin and the proinflammatory cytokines, such as TNF-α, IL-6, and IL-1β, produced by adipocytes, and macrophages, are considered to be important modulators of chronic inflammation contributing to the development of obesity and atherosclerosis. Human monocyte-enriched mononuclear cells, from ten healthy individuals, were exposed to high concentrations of insulin, leptin, and glucose (alone or in combination for 24 hours in vitro. Resistin, TNF-α, IL-6, and IL-1β production was examined and compared to that in untreated cells. High insulin and leptin concentrations significantly upregulated resistin and the cytokines. The subsequent addition of high glucose significantly upregulated resistin and TNF-α mRNA and protein secretion, while it did not have any effect on IL-6 or IL-1β production. By comparison, exposure to dexamethasone reduced TNF-α, IL-6, and IL-1β production, while at this time point it increased resistin protein secretion. These data suggest that the expression of resistin, TNF-α, IL-6, and IL-1β from human mononuclear cells, might be enhanced by the hyperinsulinemia and hyperleptinemia and possibly by the hyperglycemia in metabolic diseases as obesity, type 2 diabetes, and atherosclerosis. Therefore, the above increased production may contribute to detrimental effects of their increased adipocyte-derived circulating levels on systemic inflammation, insulin sensitivity, and endothelial function of these patients.

  13. A comparative DFT study of oxygen reduction reaction on mononuclear and binuclear cobalt and iron phthalocyanines

    Science.gov (United States)

    Chen, Xin; Li, Mengke; Yu, Zongxue; Ke, Qiang

    2016-12-01

    The oxygen reduction reaction (ORR) catalyzed by mononuclear and planar binuclear cobalt (CoPc) and iron phthalocyanine (FePc) catalysts is investigated in detail by density functional theory (DFT) methods. The calculation results indicate that the ORR activity of Fe-based Pcs is much higher than that of Co-based Pcs, which is due to the fact that the former could catalyze 4e- ORRs, while the latter could catalyze only 2e- ORRs from O2 to H2O2. The original high activities of Fe-based Pcs could be attributed to their high energy level of the highest occupied molecular orbital (HOMO), which could lead to the stronger adsorption energy between catalysts and ORR species. Nevertheless, the HOMO of Co-based Pcs is the ring orbital, not the 3 d Co orbital, thereby inhibiting the electron transfer from metal to adsorbates. Furthermore, compared with mononuclear FePc, the planar binuclear FePc has more stable structure in acidic medium and more suitable adsorption energy of ORR species, making it a promising non-precious electrocatalyst for ORR.

  14. Prevention of diabetic microangiopathy by prophylactic transplant of mobilized peripheral blood mononuclear cells

    Institute of Scientific and Technical Information of China (English)

    Bin ZHOU; Xiao-cang CAO; Zhi-hong FANG; Cui-lin ZHENG; Zhi-bo HAN; He REN; Man-chiu POON; Zhong-chao HAN

    2007-01-01

    Aim: To investigate whether the prophylactic local delivery of mobilized periph-eral blood mononuclear cells (M-PBMNC) could prevent peripheral microangio-pathy in diabetic nude mice. Methods: Diabetic nude mice were induced with intraperitoneal injections of streptozotocin. With the time course of diabetes, we detected the capillary and arteriole density of mice adductor muscles by immuno-histopathy. In situ apoptosis was detected by using TdT-mediated dUTP nick end labeling (TUNEL) methods. M-PBMNC were labeled and locally delivered to the adductor muscles. Mononuclear cells were also isolated and cultured in vitro for the detection and counting of endothelial progenitor cells(EPC). Results: Rarefication of capillaries and arterioles, enhanced apoptosis in adductor muscles,and reduced circulating EPC in diabetic nude mice. Prophylactic local delivery of M-PBMNC halted the progression of microvascular rarefaction in hind-limb skel-etal muscles by inhibiting apoptosis. We detected the survival, migration and incorporation of transplanted M-PBMNC into the murine vasculature in vivo. In addition, more EPC were available from M-PBMNC than non-mobilized cells.Conclusion: These results suggested that the prophylactic local delivery of M-PBMNC may represent a novel approach for the treatment of microvascular complications in diabetics.

  15. EXPRESSION OF GENETIC LOCI IN THE PERIPHERAL BLOOD MONONUCLEAR FRACTION FROM PATIENTS WITH PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    M. I. Kogan

    2012-01-01

    Full Text Available The early diagnosis and radical treatment of aggressive prostate cancers (PC is an effective way of improving survival and quality of life in patients. To develop mini-invasive tests is one of the ways of solving the problem. The cells of a peripheral blood mononuclear fraction in the expression patterns of their genetic loci reflect the presence or absence of cancers, including information on therapeutic effectiveness. RT-PRC was used to study the relative expression of 15 genetic loci in a chromosome and one locus of mitochondrial DNA in the cells of the peripheral blood mononuclear fraction in patients with PC or benign prostate hyperplasia and in healthy men. The genetic locus patterns whose change may be of informative value for differential diagnosis in patients with different stages of PC were revealed. The authors studied the relationship and showed the prognostic role and non-relationship of the altered transcriptional activity of loci in the TP53, GSTP1, and IL10 genes in PC to the changes in prostate-specific antigen the level with 90 % specificity and 93 % specificity.

  16. Obesity alters the expression profile of clock genes in peripheral blood mononuclear cells

    Science.gov (United States)

    Tahira, Kazunobu; Fukuda, Noboru; Aoyama, Takahiko; Tsunemi, Akiko; Matsumoto, Siroh; Nagura, Chinami; Matsumoto, Taro; Soma, Masayoshi; Shimba, Shigeki; Matsumoto, Yoshiaki

    2011-01-01

    Introduction The aim of this study was to investigate the association between the variation in expression profile of clock genes and obesity using peripheral blood mononuclear (PMN) cells. Material and methods The subjects comprised 10 obese patients and 10 healthy volunteers. Blood was collected at different time-points during the day and levels of blood sugar, IRI, adiponectin and leptin were determined. Peripheral blood mononuclear cells were sampled, and expression levels of brain and muscle Arnt-like protein-1 (BMAL1), Period (PER)1, PER2, Cryptochrome (CRY)1, CRY2, and REV-ERBα mRNA were quantified. Results During the day, the expression levels of BMAL1, CRY1, CRY2 and PER2 genes in PMN cells of the obese group were all significantly higher compared to those in the non-obese group. In addition, expression of BMAL1, CRY1, CRY2 and PER2 genes in PMN cells increased between 12:00 and 21:00 in the obese group. In PMN cells of both groups, PER1 gene expression showed a bimodal pattern, with high expression at 9:00 and 18:00. Conclusions Differences were observed in the expression profile variation of clock genes between the obese and non-obese groups. This study reveals the differences in clock gene expression profiles between obese and non-obese subjects, with evidence for two distinct chronotypes, and suggests a contribution of these chronotypes to fat accumulation in humans. PMID:22328874

  17. Outcomes of autologous bone marrow mononuclear cells for cerebral palsy: an open label uncontrolled clinical trial.

    Science.gov (United States)

    Nguyen, Liem Thanh; Nguyen, Anh Tuan; Vu, Chinh Duy; Ngo, Doan V; Bui, Anh V

    2017-04-12

    Stem cell therapy has emerged as a promising method for improving motor function of patients with cerebral palsy. The aim of this study is to assess the safety and effectiveness of autologous bone marrow mononuclear stem cell transplantation in patients with cerebral palsy related to oxygen deprivation. An open label uncontrolled clinical trial was carried out at Vinmec International Hospital. The intervention consisted of two administrations of stem cells, the first at baseline and the second 3 months later. Improvement was monitored at 3 months and 6 months after the first administration of stem cells, using the Gross Motor Function Measure (GMFM) and Modified Ashworth Score which measures muscle tone. No severe complications were recorded during the study. After transplantation, 12 patients encountered fever without infections and 9 patients experienced vomiting which was easily managed with medications. Gross motor function was markedly improved 3 months or 6 months after stem cell transplantation than at baseline. The post-transplantation GMFM-88 total score, each of its domains and the GMFM-66 percentile were all significantly higher (p-value  0.05). Autologous bone marrow mononuclear cell transplantation appears to be a safe and effective therapy for patients with cerebral palsy. ClinicalTrials.gov Identifier: NCT02569775 . Retrospectively registered on October 15, 2015.

  18. EXPRESSION OF GENETIC LOCI IN THE PERIPHERAL BLOOD MONONUCLEAR FRACTION FROM PATIENTS WITH PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    M. I. Kogan

    2014-08-01

    Full Text Available The early diagnosis and radical treatment of aggressive prostate cancers (PC is an effective way of improving survival and quality of life in patients. To develop mini-invasive tests is one of the ways of solving the problem. The cells of a peripheral blood mononuclear fraction in the expression patterns of their genetic loci reflect the presence or absence of cancers, including information on therapeutic effectiveness. RT-PRC was used to study the relative expression of 15 genetic loci in a chromosome and one locus of mitochondrial DNA in the cells of the peripheral blood mononuclear fraction in patients with PC or benign prostate hyperplasia and in healthy men. The genetic locus patterns whose change may be of informative value for differential diagnosis in patients with different stages of PC were revealed. The authors studied the relationship and showed the prognostic role and non-relationship of the altered transcriptional activity of loci in the TP53, GSTP1, and IL10 genes in PC to the changes in prostate-specific antigen the level with 90 % specificity and 93 % specificity.

  19. Effects of bone marrow ablation on compartmental prostaglandin synthesis by mononuclear phagocytes

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, A.; Shibata, Y.; Dempsey, W.; Morahan, P.S.

    1988-01-01

    Mononuclear phagocyte functions were studied in mice selectively deprived of bone marrow and rendered profoundly monocytopenic by the administration of the bone seeking isotope, 89Sr. Characteristics of such mice include severe impairment of monocyte-M phi elicitation, ablation of C. parvum induction of PGSM but the persistence of resident peritoneal and pulmonary alveolar M phi populations; splenic M phi increase in number concomitantly with splenic hemopoiesis. Studies on compartmental regulation in this model suggest that the capacity of splenic M phi to synthesize and release PGE2 is dependent upon a function of the bone marrow and is not wholly determined by the local environment. The relationship of blood monocytes to PGSM is uncertain. In contrast to splenic M phi, the capacity of resident peritoneal M phi for eicosanoid synthesis appears to be independent of bone marrow function. Monocyte influx, moreover, does not appear necessary for the maintenance of the resident peritoneal and alveolar M phi populations. We do not yet know whether bone marrow ablation destroys a migratory precursor of PGSM or the source of a crucial regulatory agent. In conclusion, the observations discussed show that prostaglandin metabolism within the spleen is subject to extracompartmental influence. It is clearly important to determine the regulatory characteristics of individual M phi compartments and generalizations about functional properties of mononuclear phagocytes should be made with circumspection. 19 references.

  20. IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology.

    Science.gov (United States)

    Aychek, Tegest; Mildner, Alexander; Yona, Simon; Kim, Ki-Wook; Lampl, Nardy; Reich-Zeliger, Shlomit; Boon, Louis; Yogev, Nir; Waisman, Ari; Cua, Daniel J; Jung, Steffen

    2015-03-12

    Gut homeostasis and mucosal immune defense rely on the differential contributions of dendritic cells (DC) and macrophages. Here we show that colonic CX3CR1(+) mononuclear phagocytes are critical inducers of the innate response to Citrobacter rodentium infection. Specifically, the absence of IL-23 expression in macrophages or CD11b(+) DC results in the impairment of IL-22 production and in acute lethality. Highlighting immunopathology as a death cause, infected animals are rescued by the neutralization of IL-12 or IFNγ. Moreover, mice are also protected when the CD103(+) CD11b(-) DC compartment is rendered deficient for IL-12 production. We show that IL-12 production by colonic CD103(+) CD11b(-) DC is repressed by IL-23. Collectively, in addition to its role in inducing IL-22 production, macrophage-derived or CD103(-) CD11b(+) DC-derived IL-23 is required to negatively control the otherwise deleterious production of IL-12 by CD103(+) CD11b(-) DC. Impairment of this critical mononuclear phagocyte crosstalk results in the generation of IFNγ-producing former TH17 cells and fatal immunopathology.

  1. Synthesis and structure of new mononuclear octahedral cobalt(III) dioximates derived from isonicotinic hydrazide

    Science.gov (United States)

    Cocu, Maria; Bulhac, Ion; Coropceanu, Eduard; Melnic, Elena; Shova, Sergiu; Ciobanica, Olga; Gutium, Victoria; Bourosh, Paulina

    2014-04-01

    New organic ligand L (1) resulting from isonicotinic hydrazide and 2,4-pentanedione has been prepared and investigated by physicochemical methods, including elemental analysis, 1H and 13C NMR, IR spectroscopy and X-ray studies. The X-ray investigation revealed that the condensation of 2,4-pentanedione with isonicotinic hydrazide is accompanied by the formation of a five-membered ring including three carbon atoms of 2,4-pentanedione and two nitrogen atoms of the isonicotinic hydrazide fragment. The reaction between [Co(DfgH)2Br(H2O)] (DfgH2 = diphenylglyoxime) and L resulted in the formation of the mononuclear octahedral complex [Co(DfgH)2BrL] (2) with the substitution of the water molecule in the apical position by the ligand L. The reaction starting from [Co(DmgH)2Cl(H2O)] (DmgH = dimethylglyoxime) and L resulted in the mononuclear octahedral Co(III) complex with the composition [Co(DmgH)2ClL‧] (3), where L‧ unexpectedly represents a dehydrated derivative of L. The two coordination compounds are characterized by X-ray diffraction method. The IR, 1H NMR spectral studies of new compounds are also reported.

  2. Mononuclear cells in subcutaneous haemorrhage with special consideration of myeloid percursor cells.

    Science.gov (United States)

    Oehmichen, M; Windisch, A; Meissner, C

    2000-10-01

    Various hematogenous markers were used to differentiate and quantify the types of mononuclear cells present in subcutaneous haemorrhages. Fifty samples of subcutaneous bleeding with a survival time of a few minutes to more than 48 hours were studied. The various cell types were detected using the following stains: Naphthol AS-D chloracetate esterase for myeloid cells, including mast cells; (alpha1-antichymotrypsin for monocytes/macrophages; UCHL1 for T-lymphocytes; and L26 for B lymphocytes. The percentage of monocytes/macrophages was found to increase in dependence on survival time, whereas T-lymphocytes declined. Within minutes of injury neutrophilic granulocytes had emigrated into the surrounding tissue and mast cell degranulation had occurred within the haemorrhagic zone. Esterase-positive mononuclear cells, namely metamyelocytes, were detected within minutes after injury and were still present after survival times exceeding 48 hours; however, no dependence on survival time or cause of death was found. Although the increasing number of monocytes/ macrophages and T-lymphocytes was expected, the sometimes high percentage of myeloid precursor cells within the wound were surprising. Possible explanations for this phenomenon are discussed.

  3. Autologous bone marrow mononuclear cell transplantation in Duchenne muscular dystrophy - a case report.

    Science.gov (United States)

    Sharma, Alok; Sane, Hemangi; Paranjape, Amruta; Bhagawanani, Khushboo; Gokulchandran, Nandini; Badhe, Prerna

    2014-01-01

    Male, 9 FINAL DIAGNOSIS: Duchenne muscular dystrophy Symptoms: Hyporeflexia • hypotonia • weaknes of lower limbs - Clinical Procedure: - Specialty: Neurology. Congenital defects/diseases. Duchenne muscular dystrophy (DMD) is a fatal, genetic, progressive, degenerating muscle disorder. Current treatment options are palliative. Newer options of cellular therapy promise to alter the disease process. Preclinical studies have successfully tested myogenic, neurogenic potential and dystrophin expression of bone marrow mononuclear cells. We treated a 9-year-old boy suffering from DMD with serial autologous bone marrow mononuclear cell transplantations followed by multidisciplinary rehabilitation. Brooke-Vignos score was 10 and he was wheelchair-bound. Over 36 months, gradual progressive improvement was noticed in muscle strength, ambulation with assistive devices, fine motor movements, Brooke-Vignos score, and functional independence measure score. Nine months after the transplantation, electromyography findings showed development of new normal motor unit potentials of the vastus medialis muscle. Magnetic resonance imaging scan of musculoskeletal systems showed no increase in fatty infiltration. This case report provides early investigative findings or the restorative effects of cellular therapy in DMD.

  4. Beryllium alters lipopolysaccharide-mediated intracellular phosphorylation and cytokine release in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Silva, Shannon; Ganguly, Kumkum; Fresquez, Theresa M; Gupta, Goutam; McCleskey, T Mark; Chaudhary, Anu

    2009-12-01

    Beryllium exposure in susceptible individuals leads to the development of chronic beryllium disease, a lung disorder marked by release of inflammatory cytokine and granuloma formation. We have previously reported that beryllium induces an immune response even in blood mononuclear cells from healthy individuals. In this study, we investigate the effects of beryllium on lipopolysaccharide-mediated cytokine release in blood mononuclear and dendritic cells from healthy individuals. We found that in vitro treatment of beryllium sulfate inhibits the secretion of lipopolysaccharide-mediated interleukin 10, while the release of interleukin 1beta is enhanced. In addition, not all lipopolysaccharide-mediated responses are altered, as interleukin 6 release in unaffected upon beryllium treatment. Beryllium sulfate-treated cells show altered phosphotyrosine levels upon lipopolysaccharide stimulation. Significantly, beryllium inhibits the phosphorylation of signal transducer and activator of transducer 3, induced by lipopolysaccharide. Finally, inhibitors of phosphoinositide-3 kinase mimic the effects of beryllium in inhibition of interleukin 10 release, while they have no effect on interleukin 1beta secretion. This study strongly suggests that prior exposures to beryllium could alter host immune responses to bacterial infections in healthy individuals, by altering intracellular signaling.

  5. A biokinetic model for zinc for use in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, R.W., E-mail: rwl@ornl.gov

    2012-03-15

    The physiology of the essential trace element zinc has been studied extensively in human subjects using kinetic analysis of time-dependent measurements of administered zinc tracers. A number of biokinetic models describing zinc exchange between plasma and tissues and endogenous excretion of zinc have been derived as fits to data for specific study groups. More rudimentary biokinetic models for zinc have been developed to estimate radiation doses from internally deposited radioisotopes of zinc. The latter models are designed to provide broadly accurate estimates of cumulative decays of zinc radioisotopes in tissues and are not intended as realistic descriptions of the directions of movement of zinc in the body. This paper reviews biokinetic data for zinc and proposes a physiologically meaningful biokinetic model for systemic zinc for use in radiation protection. The proposed model bears some resemblance to zinc models developed in physiological studies but depicts a finer division of systemic zinc and is based on a broader spectrum of data than previous models. The proposed model and the model for zinc currently recommended by the International Commission on Radiological Protection yield reasonably similar estimates of total-body retention and effective dose for internally deposited radioisotopes of zinc but much different systemic distributions of activity and much different dose estimates for some individual tissues, particularly the liver. - Highlights: Black-Right-Pointing-Pointer Zinc is an essential trace element with numerous functions in the human body. Black-Right-Pointing-Pointer Several biokinetic models for zinc have been developed from tracer studies on humans. Black-Right-Pointing-Pointer More rudimentary biokinetic models for zinc have been developed in radiation protection. Black-Right-Pointing-Pointer Biokinetic data for zinc are reviewed and a new biokinetic model is proposed for radiation protection. Black-Right-Pointing-Pointer The proposed model

  6. Site Features

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of various site features from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times...

  7. Zinc and zinc transporters in macrophages and their roles in efferocytosis in COPD.

    Directory of Open Access Journals (Sweden)

    Rhys Hamon

    Full Text Available Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD, cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2

  8. Minimal Zn2+ Binding Site of Amyloid-β

    Science.gov (United States)

    Tsvetkov, Philipp O.; Kulikova, Alexandra A.; Golovin, Andrey V.; Tkachev, Yaroslav V.; Archakov, Alexander I.; Kozin, Sergey A.; Makarov, Alexander A.

    2010-01-01

    Zinc-induced aggregation of amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease. Here we provide direct thermodynamic evidence that elucidates the role of the Aβ region 6–14 as the minimal Zn2+ binding site wherein the ion is coordinated by His6, Glu11, His13, and His14. With the help of isothermal titration calorimetry and quantum mechanics/molecular mechanics simulations, the region 11–14 was determined as the primary zinc recognition site and considered an important drug-target candidate to prevent Zn2+-induced aggregation of Aβ. PMID:21081056

  9. Minimal Zn(2+) binding site of amyloid-β.

    Science.gov (United States)

    Tsvetkov, Philipp O; Kulikova, Alexandra A; Golovin, Andrey V; Tkachev, Yaroslav V; Archakov, Alexander I; Kozin, Sergey A; Makarov, Alexander A

    2010-11-17

    Zinc-induced aggregation of amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease. Here we provide direct thermodynamic evidence that elucidates the role of the Aβ region 6-14 as the minimal Zn(2+) binding site wherein the ion is coordinated by His(6), Glu(11), His(13), and His(14). With the help of isothermal titration calorimetry and quantum mechanics/molecular mechanics simulations, the region 11-14 was determined as the primary zinc recognition site and considered an important drug-target candidate to prevent Zn(2+)-induced aggregation of Aβ.

  10. Association of poly(ADP-ribose) polymerase activity in circulating mononuclear cells with myocardial dysfunction in patients with septic shock

    Institute of Scientific and Technical Information of China (English)

    Li Li; Hu Bangchuan; Gong Shijin; Yu Yihua; Dai Haiwen; Yan Jing

    2014-01-01

    Background Severe sepsis and septic shock are the leading causes of morbidity and mortality in hospitalized patients.This study aimed to investigate the association of poly(ADP-ribose) polymerase-1 (PARP-1) activity in circulating mononuclear cells with myocardial dysfunction in patients with septic shock.Methods A total of 64 patients with septic shock were divided into the survival group (n=41) and the nonsurvival group (n=23) according to mortality at 28 days after enrollments.PARP-1 activity in circulating mononuclear cells,brain natriuretic peptide,Acute Physiology and Chronic Health Evaluation Ⅱ score,the cardiac index (CI),the cardiac function index (CFI),global ejection fraction (GEF),and the left ventricular contractility index (dp/dt max) were measured after admission to the intensive care unit.Results PARP-1 activity in circulating mononuclear cells of nonsurvival patients with septic shock was significantly higher than that in survival patients.PARP-1 activity in circulating mononuclear cells was strongly,negatively correlated with the CI,the CFI,GEE and dp/dt max.Multiple Logistic regression analysis showed that PARP-1 activity in circulating mononuclear cells was an independent risk factor of myocardial dysfunction.The optimal cutoff point of PARP-1 activity for predicting 28-day mortality was 942 nmol/L with a sensibility of 78.2% and specificity of 65.1%.Conclusion PARP-1 activity in circulating mononuclear cells is significantly associated with myocardial dysfunction and may have prognostic value in patients with septic shock.

  11. Relationship between gastric levels and antiulcerogenic activity of zinc.

    Science.gov (United States)

    Navarro, C; Ramis, A; Sendrós, S; Bulbena, O; Ferrer, L; Escolar, G

    1990-01-01

    The relationship between the absorption of an organic zinc salt, zinc acexamate, and its antiulcerogenic activity in a model of cold-restraint stress was studied. Serum and gastric levels of zinc, as well as its antiulcerogenic effect, were determined after oral or intravenous administration of zinc acexamate. Cytochemical and X-ray microanalysis techniques were also applied. In the rats subjected to cold-restraint stress, gastric levels of zinc correlated with the antiulcerogenic effect observed after administration of zinc acexamate. However, it was not possible to establish a relationship between serum levels and the pharmacologic effect of zinc. Our results in animals subjected to regular diet indicate that the antiulcerogenic effect exhibited by zinc compounds could be associated with the presence of zinc at different levels of gastric tissue.

  12. A biokinetic model for zinc for use in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, Richard Wayne [ORNL

    2012-01-01

    The physiology of the essential trace element zinc has been studied extensively in human subjects using kinetic analysis of time-dependent measurements of administered zinc tracers. A number of biokinetic models describing zinc exchange between plasma and tissues and loss of systemic zinc in excreta have been developed from the derived data. More rudimentary biokinetic models for zinc have been developed to estimate radiation doses from internally deposited radioisotopes of zinc. The latter models are designed to provide broadly accurate estimates of cumulative decays of zinc radioisotopes in tissues and are not intended as realistic descriptions of the directions of movement of zinc in the body. This paper reviews biokinetic data for zinc and proposes a physiologically meaningful biokinetic model for systemic zinc for use in radiation protection. The proposed model bears some resemblance to zinc models developed in physiological studies but depicts a finer division of systemic zinc and is based on a broader spectrum of data than previous models. The proposed model and current radiation protection model for zinc yield broadly similar estimates of effective dose from internally deposited radioisotopes of zinc but substantially different dose estimates for several individual tissues, particularly the liver.

  13. Serum and semen zinc levels in normozoospermic and oligozoospermic men

    Energy Technology Data Exchange (ETDEWEB)

    Madding, C.I.; Jacob, M.; Ramsay, V.P.; Sokol, R.Z.

    1986-01-01

    We studied 11 unselected men who presented to a Reproductive Endocrinology Clinic with histories of infertility and low sperm counts. Reproductive hormones and semen und serum zinc levels were measured. All men had semen analyses performed on at least three separate occasions. A similar set of laboratory evaluations were performed on 11 other men who had normal semen analyses and no history of infertility. No abnormalities of reproductive hormones were found in either group. Mean serum zinc levels were significantly lower in the infertile men. Mean semen zinc levels were not significantly different. There was no correlation between serum and semen zinc levels in either group. A significant correlation was found between sperm count and semen zinc in the volunteers with normal counts, but not in the oligozoospermic men. The results obtained in this study suggest that lowered serum zinc is more common than formerly appreciated in unselected patients with infertility. The high level of zinc found in semen is due primarily to the secretions of the prostate gland and reflects prostatic stores. Serum zinc is thought to be a reasonable indicator of zinc status. The lack of correlation between serum zinc and semen zinc found in our study suggests that mild zinc deficiency may lower serum zinc while the larger prostatic zinc stores remain unaffected.

  14. Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease

    Directory of Open Access Journals (Sweden)

    Samir Samman

    2012-07-01

    Full Text Available In atherosclerosis and diabetes mellitus, the concomitant presence of low-grade systemic inflammation and mild zinc deficiency highlights a role for zinc nutrition in the management of chronic disease. This review aims to evaluate the literature that reports on the interactions of zinc and cytokines. In humans, inflammatory cytokines have been shown both to up- and down-regulate the expression of specific cellular zinc transporters in response to an increased demand for zinc in inflammatory conditions. The acute phase response includes a rapid decline in the plasma zinc concentration as a result of the redistribution of zinc into cellular compartments. Zinc deficiency influences the generation of cytokines, including IL-1β, IL-2, IL-6, and TNF-α, and in response to zinc supplementation plasma cytokines exhibit a dose-dependent response. The mechanism of action may reflect the ability of zinc to either induce or inhibit the activation of NF-κB. Confounders in understanding the zinc-cytokine relationship on the basis of in vitro experimentation include methodological issues such as the cell type and the means of activating cells in culture. Impaired zinc homeostasis and chronic inflammation feature prominently in a number of cardiometabolic diseases. Given the high prevalence of zinc deficiency and chronic disease globally, the interplay of zinc and inflammation warrants further examination.

  15. Microwave Synthesis of Zinc Hydroxy Sulfate Nanoplates and Zinc Oxide Nanorods in the Classroom

    Science.gov (United States)

    Dziedzic, Rafal M.; Gillian-Daniel, Anne Lynn; Peterson, Greta M.; Martínez-Herna´ndez, Kermin J.

    2014-01-01

    In this hands-on, inquiry-based lab, high school and undergraduate students learn about nanotechnology by synthesizing their own nanoparticles in a single class period. This simple synthesis of zinc oxide nanorods and zinc hydroxy sulfate nanoplates can be done in 15 min using a household microwave oven. Reagent concentration, reaction…

  16. Possible role of zinc in diminishing lead-related occupational stress-a zinc nutrition concern.

    Science.gov (United States)

    Wani, Ab Latif; Ahmad, Ajaz; Shadab, G G H A; Usmani, Jawed Ahmad

    2017-03-01

    Lead and zinc are mostly present at the same occupational source and usually found as co-contaminants. Lead is known to associate with detrimental effects to humans. Zinc however is an essential nutrient and its deficiency causes debilitating effects on growth and development. Besides, it acts as core ion of important enzymes and proteins. The purpose of this study was to examine if zinc concentrations are associated with blood lead levels and if zinc may prevent lead-induced DNA damage. Blood samples were collected from 92 workers as participants occupationally exposed to lead or lead and zinc and 38 comparison participants having no history of such exposure. Lead and zinc levels were determined from blood by atomic absorption spectrophotometry and genetic damage was assessed by comet assay. Correlation was calculated by Spearman's rho. Lead concentrations were observed to increase among workers with increase in years of exposure. There was a significant difference (p lead levels between workers and controls. In addition, significant difference (p lead, while as the inverse effect of zinc on DNA damage. The results suggest that zinc may influence body lead absorption and may have a role in preventing the genetic damage caused by lead.

  17. Effect of zinc from zinc sulfate on trace mineral concentrations of milk in Varamini ewes

    NARCIS (Netherlands)

    Zali, A.; Ganjkhanlou, M.

    2009-01-01

    This study was conducted to evaluate the effect of feeding supplemental zinc (zinc sulfate) in different levels (15, 30, or 45 mg/kg) on trace mineral concentrations in milk of ewes. Thirty lactating Varaminni ewes were assigned to three experimental groups according to their live body weights, milk

  18. Enhanced zinc consumption causes memory deficits and increased brain levels of zinc

    Science.gov (United States)

    Flinn, J.M.; Hunter, D.; Linkous, D.H.; Lanzirotti, A.; Smith, L.N.; Brightwell, J.; Jones, B.F.

    2005-01-01

    Zinc deficiency has been shown to impair cognitive functioning, but little work has been done on the effects of elevated zinc. This research examined the effect on memory of raising Sprague-Dawley rats on enhanced levels of zinc (10 ppm ZnCO3; 0.153 mM) in the drinking water for periods of 3 or 9 months, both pre- and postnatally. Controls were raised on lab water. Memory was tested in a series of Morris Water Maze (MWM) experiments, and zinc-treated rats were found to have impairments in both reference and working memory. They were significantly slower to find a stationary platform and showed greater thigmotaxicity, a measure of anxiety. On a working memory task, where the platform was moved each day, zinc-treated animals had longer latencies over both trials and days, swam further from the platform, and showed greater thigmotaxicity. On trials using an Atlantis platform, which remained in one place but was lowered on probe trials, the zinc-treated animals had significantly fewer platform crossings, spent less time in the target quadrant, and did not swim as close to the platform position. They had significantly greater latency on nonprobe trials. Microprobe synchrotron X-ray fluorescence (??SXRF) confirmed that brain zinc levels were increased by adding ZnCO 3 to the drinking water. These data show that long-term dietary administration of zinc can lead to impairments in cognitive function. ?? 2004 Elsevier Inc. All rights reserved.

  19. Bioavailability of zinc in Wistar rats fed with rice fortified with zinc oxide.

    Science.gov (United States)

    Della Lucia, Ceres Mattos; Santos, Laura Luiza Menezes; Rodrigues, Kellen Cristina da Cruz; Rodrigues, Vivian Cristina da Cruz; Martino, Hércia Stampini Duarte; Sant'Ana, Helena Maria Pinheiro

    2014-06-13

    The study of zinc bioavailability in foods is important because this mineral intake does not meet the recommended doses for some population groups. Also, the presence of dietary factors that reduce zinc absorption contributes to its deficiency. Rice fortified with micronutrients (Ultra Rice®) is a viable alternative for fortification since this cereal is already inserted into the population habit. The aim of this study was to evaluate the bioavailability of zinc (Zn) in rice fortified with zinc oxide. During 42 days, rats were divided into four groups and fed with diets containing two different sources of Zn (test diet: UR® fortified with zinc oxide, or control diet: zinc carbonate (ZnCO3)), supplying 50% or 100%, respectively, of the recommendations of this mineral for animals. Weight gain, food intake, feed efficiency ratio, weight, thickness and length of femur; retention of zinc, calcium (Ca) and magnesium (Mg) in the femur and the concentrations of Zn in femur, plasma and erythrocytes were evaluated. Control diet showed higher weight gain, feed efficiency ratio, retention of Zn and Zn concentration in the femur (p 0.05) for dietary intake, length and thickness of the femur, erythrocyte and plasmatic Zn between groups. Although rice fortified with zinc oxide showed a lower bioavailability compared to ZnCO3, this food can be a viable alternative to be used as a vehicle for fortification.

  20. Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor

    DEFF Research Database (Denmark)

    Elling, C E; Thirstrup, K; Holst, Birgitte

    1999-01-01

    in the mutant receptors not by normal catecholamine ligands but instead either by free zinc ions or by zinc or copper ions in complex with small hydrophobic metal-ion chelators. Chelation of the metal ions by small hydrophobic chelators such as phenanthroline or bipyridine protected the cells from the toxic......Previously metal-ion sites have been used as structural and functional probes in seven transmembrane receptors (7TM), but as yet all the engineered sites have been inactivating. Based on presumed agonist interaction points in transmembrane III (TM-III) and -VII of the beta(2)-adrenergic receptor......, in this paper we construct an activating metal-ion site between the amine-binding Asp-113 in TM-III-or a His residue introduced at this position-and a Cys residue substituted for Asn-312 in TM-VII. No increase in constitutive activity was observed in the mutant receptors. Signal transduction was activated...

  1. Growth of zinc oxide nanostructures

    Indian Academy of Sciences (India)

    K Sreenivas; Sanjeev Kumar; Jaya Choudhury; Vinay Gupta

    2005-11-01

    Zinc oxide (ZnO) nanowhiskers have been prepared using a multilayer ZnO(50 nm)/Zn(20 nm)/ZnO(2 m) structure on a polished stainless steel (SS) substrate by high rate magnetron sputtering. The formation of uniformly distributed ZnO nanowhiskers with about 20 nm dia. and 2 to 5 m length was observed after a post-deposition annealing of the prepared structure at 300–400 ° C. An array of highly -axis oriented ZnO columns (70–300 nm in dia. and up to 10 m long) were grown on Si substrates by pulsed laser deposition (PLD) at a high pressure (1 Torr), and Raman studies showed the activation of surface phonon modes. The nanosized powder (15–20 nm) and nanoparticle ZnO films on glass substrate were also prepared by a chemical route. Nanowhiskers showed enhanced UV light detection characteristics, and the chemically prepared ZnO nanoparticle films exhibited good sensing properties for alcohol.

  2. Nanoscale zinc silicate from phytoliths

    Science.gov (United States)

    Qadri, S. B.; Gorzkowski, E. P.; Rath, B. B.; Feng, C. R.; Amarasinghe, R.; Freitas, J. A.; Culbertson, J. C.; Wollmershauser, J. A.

    2017-10-01

    We report a faster, less expensive method of producing zinc silicate nanoparticles. Such particles are used in high volume to make phosphors and anti-corrosion coatings. The approach makes use of phytoliths (plant rocks), which are microscopic, amorphous, and largely silicate particles embedded in plants, that lend themselves to being easily broken down into nanoparticles. Nanoparticles of Zn2SiO4 were produced in a two stage process. In the refinement stage, plant residue, mixed with an appropriate amount of ZnO, was heated in an argon atmosphere to a temperature exceeding 1400 °C for four to six hours and then heated in air at 650 °C to remove excess carbon. TEM shows 50-100 nm nanoparticles. Raman scattering indicates that only the -Zn2SiO4 crystalline phase was present. X-ray analysis indicated pure rhombohedral R 3 bar phase results from using rice/wheat husks. Both samples luminesced predominantly at 523 nm when illuminated with X-rays or UV laser light.

  3. A new zinc binding fold underlines the versatility of zinc binding modules in protein evolution.

    Science.gov (United States)

    Sharpe, Belinda K; Matthews, Jacqueline M; Kwan, Ann H Y; Newton, Anthea; Gell, David A; Crossley, Merlin; Mackay, Joel P

    2002-05-01

    Many different zinc binding modules have been identified. Their abundance and variety suggests that the formation of zinc binding folds might be relatively common. We have determined the structure of CH1(1), a 27-residue peptide derived from the first cysteine/histidine-rich region (CH1) of CREB binding protein (CBP). This peptide forms a highly ordered zinc-dependent fold that is distinct from known folds. The structure differs from a subsequently determined structure of a larger region from the CH3 region of CBP, and the CH1(1) fold probably represents a nonphysiologically active form. Despite this, the fold is thermostable and tolerant to both multiple alanine mutations and changes in the zinc-ligand spacing. Our data support the idea that zinc binding domains may arise frequently. Additionally, such structures may prove useful as scaffolds for protein design, given their stability and robustness.

  4. Mineralogical Study of a Biologically-Based Treatment System That Removes Arsenic, Zinc and Copper from Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Maryam Khoshnoodi

    2013-12-01

    Full Text Available Mineralogical characterization by X-ray diffraction (XRD and a high throughput automated quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN was conducted on samples from a sulphate-reducing biochemical reactor (BCR treating high concentrations of metals (As, Zn, Cu in smelter waste landfill seepage. The samples were also subjected to energy dispersive X-ray (EDX analysis of specific particles. The bulk analysis results revealed that the samples consisted mainly of silicate and carbonate minerals. More detailed phase analysis indicated four different classes: zinc-arsenic sulphosalts/sulphates, zinc-arsenic oxides, zinc phosphates and zinc-lead sulphosalts/sulphates. This suggests that sulphates and sulphides are the predominant types of Zn and As minerals formed in the BCR. Sphalerite (ZnS was a common mineral observed in many of the samples. In addition, X-ray point analysis showed evidence of As and Zn coating around feldspar and amphibole particles. The presence of arsenic-zinc-iron, with or without cadmium particles, indicated arsenopyrite minerals. Copper-iron-sulphide particles suggested chalcopyrite (CuFeS2 and tennantite (Cu,Fe12As4S13. Microbial communities found in each sample were correlated with metal content to describe taxonomic groups associated with high-metal samples. The research results highlight mineral grains that were present or formed at the site that might be the predominant forms of immobilized arsenic, zinc and copper.

  5. Transplantation of autologous bone marrow mononuclear cells for patients with lower limb ischemia

    Institute of Scientific and Technical Information of China (English)

    GU Yong-quan; LI Xue-feng; YU Heng-xi; CUI Shi-jun; WANG Zhong-gao; ZHANG Jian; GUO Lian-rui; QI Li-xing; ZHANG Shu-wen; XU Juan; LI Jian-xin; LUO Tao; JI Bing-xin

    2008-01-01

    Background Many treatment options for lower limb ischemia are difficult to apply for the patients with poor arterial outflow or with poor general conditions.The effect of medical treatment alone is far from ideal.especially in patients with diabetic foot.A high level amputation is inevitable in these patients.This study aimed to explore the effect of transplantation of autologous bone marrow mononuclear cells on the treatment of lower limb ischemia and to compare the effect of intra-artedal transplantation with that of intra-muscular transplantation.Methods In this clinical trial,32 patients with lower limb ischemia were divided into two groups.Group 1 (16 patients with 18 affected limbs) received transplantation of autologous bone marrow mononuclear cells by intra-muscular injection into the affected limbs;and group 2(16 patients with 17 affected limbs)received transplantation of autologous bone marrow mononucJear cells by intra-arterial injection into the affected limbs.Rest pain,coldness,ankle/brachial index (ABI),claudication,transcutaneous oxygen pressure(tcPO2)and angiography(15 limbs of 14 patients)were evaluated before and after the mononuclear cell transplantation to determine the effect of the treatment.Results Two patients died from heart failure.The improvement of rest pain was seen in 76.5%(13/17)of group 1 and 93.3%(14/15)of group 2.The improvement of coldness was 100%in both groups.The increase of ABI was 44.4%(8/18)in group 1 and 41.2%(7,17)in group 2.The value of tcPO2 increased to 20 mmHg or more in 20 limbs.Nine of 15 limbs which underwent angiography showed rich collaterals.Limb salvage rate was 83.3%(15,18)in group 1 and 94.1%(16/17)in group 2.There was no statistically significant difference in the effectiveness of the treatment between the two groups.Conclusions Transplantation of autologous bone marrow mononucJear cells is a simple,safe and effective method for the treatment of lower limb ischemia,and the two approaches for the implantation

  6. Effects of lethal and non-lethal malaria on the mononuclear phagocyte system

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Tosta

    1983-03-01

    Full Text Available The effects ofone non-lethal species ofmalarialparasite, Plasmodium yoelii, and one lethal species, P. berghei, on the mononuclear phagocyte system (MPS of BALB/c mice were studied. P. yoelii caused a greater and more sustained expansion and activation of the MPS, and the two major populations of spleen phagocytic cells-red pulp and marginal zone macrophages - exhibited a greater increase in numbers in this infection. During the course of P. berghei mataria, the spleen was progressively occupied by haematopoietic tissue and, at the terminal stage of infection, an extensive depletion of lymphocytes and macrophages was apparent. The possibility was suggested that the outcome of mataria may be inftuenced by the particular way the parasite interacts with the MPS.Estudou-se o efeito da infecção causada por espécie letal (Plasmodium berghei e não- letal (P. yoelii de plasmódio sobre o sistema de fagócitos mononucleares de camundongo BALB/c. O P. yoelii causou maior e mais prolongada expansão e ativação do sistema de macrófagos. As duas mais importantes populações de fagócitos esplênicos - macrófagos de polpa vermelha e da zona marginal - exibiam maior aumento do número de células nesta infecção. Durante a evolução da malária por P. berghei, o baço foi progressivamente ocupado por tecido hematopoiético e, na fase terminal da infecção, observou-se significativa depleção dos linfócitos e macrófagos esplênicos. Os dados apresentados indicam que a evolução da malária depende do tipo de interação entre o plasmódio e o sistema de fagócitos mononucleares.

  7. [Preliminary study on autologous bone marrow mononuclear cells transplantation for lower limb chronic venous ulcer].

    Science.gov (United States)

    Huang, Wen; Wang, Liwei; Tan, Bin; Zhang, Guozhen; Zhao, Yu; Ren, Guosheng

    2011-05-01

    To investigate the effectiveness of autologous bone marrow mononuclear cells transplantation on lower limb chronic venous ulcer. Between May 2009 and September 2010, 17 patients with lower limb chronic venous ulcer were treated with autologous bone marrow mononuclear cells transplantation (transplantation group) and 10 patients treated without cells transplantation served as control group. In the transplantation group, there were 9 males and 8 females with age of (33.3 +/- 6.1) years, including 11 cases of simple great saphenous vein varicosity and 6 cases of chronic venous insufficiency; the area of ulcer was (4.39 +/- 2.46) cm2; and the duration of ulcer ranged from 3 months to 6 years. In the control group, there were 4 males and 6 females with age of (39.2 +/- 10.3) years, including 7 cases of simple great saphenous vein varicosity and 3 cases of chronic venous insufficiency; and the area of ulcer was (5.51 +/- 2.63) cm2; and the duration of ulcer ranged from 3 months to 2 years. All patients in both groups were classified as C6 according to clinical etiology anatomy pathophysiology (CEAP) classification. No significant difference was found in the general data between 2 groups (P > 0.05). The healing process of ulcer was observed. The granulation tissue was harvested for HE staining before operation and at 3 days after operation in the transplantation group. The microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression of ulcer granulation tissue were observed. In the transplantation group, ulcer healing was accelerated; complete healing was observed in 15 cases, partial healing in 1 case, and no healing in 1 case with the median healing time of 22 days. However, in the control group, the healing process was slower; complete healing of ulcer was observed in 7 cases and no healing in 3 cases with the median healing time of 57.5 days. There was significant difference in the healing time between 2 groups (Z = 0.001 4, P = 0.0027). HE

  8. Low serum zinc level in dpression

    Directory of Open Access Journals (Sweden)

    SA Mousavi

    2006-07-01

    Full Text Available BACKGROUND: Major Depressive Disorder (MDD is a common disorder, with a lifetime prevalence of about 15 percent, perhaps as high as 25 percent for women. The etiology of MDD is too complex to be explained totally by a single social, developmental, or biological theory. A variety of factors appear to work together to cause or precipitate depressive disorders. Various functions have been reported for trace elements such as zink in recovery or exacerbation of depression. METHODS: In this experimental study, we studied 46 patients with MDD based on DSM IV criteria, among the patients referred to mental disorders clininc of Noor Hospital. Twenty Patients were men and 26 were women. Thirty two volunteers of general population were evaluated for depression with Beck depression test who did not show any depressive symptoms with this test. A blood sample of 5cc was obtained from each person and the serum zinc concentration was measured. Data gathered and analyzed with SPSS, logistic regression and chi-squar tests. RESULTS: Serum zinc concentrations were 74 to 130 mg/dl in men and 60 to 128 mg/dl in women of control group. Serum zinc concentration was 30 to 60 mg/dl in depressive patients that it was lower in women than men. The difference between serum zinc concentrations of normal and depressive persons was meaningful (P = 0.02. CONCLUSION: In our study, the serum concentration of zinc was about half of normal value. This study replicates previous findings that major depressed subjects show significantly lowered serum zinc concentration. KEYWORDS: Depression, zinc.

  9. Zinc, copper and selenium in reproduction.

    Science.gov (United States)

    Bedwal, R S; Bahuguna, A

    1994-07-15

    Of the nine biological trace elements, zinc, copper and selenium are important in reproduction in males and females. Zinc content is high in the adult testis, and the prostate has a higher concentration of zinc than any other organ of the body. Zinc deficiency first impairs angiotensin converting enzyme (ACE) activity, and this in turn leads to depletion of testosterone and inhibition of spermatogenesis. Defects in spermatozoa are frequently observed in the zinc-deficient rat. Zinc is thought to help to extend the functional life span of the ejaculated spermatozoa. Zinc deficiency in the female can lead to such problems as impaired synthesis/secretion of (FSH) and (LH), abnormal ovarian development, disruption of the estrous cycle, frequent abortion, a prolonged gestation period, teratogenicity, stillbirths, difficulty in parturition, pre-eclampsia, toxemia and low birth weights of infants. The level of testosterone in the male has been suggested to play a role in the severity of copper deficiency. Copper-deficient female rats are protected against mortality due to copper deficiency, and the protection has been suggested to be provided by estrogens, since estrogens alter the subcellular distribution of copper in the liver and increase plasma copper levels by inducing ceruloplasmin synthesis. The selenium content of male gonads increases during pubertal maturation. Selenium is localized in the mitochondrial capsule protein (MCP) of the midpiece. Maximal incorporation in MCP occurs at steps 7 and 12 of spermatogenesis and uptake decreases by step 15. Selenium deficiency in females results in infertility, abortions and retention of the placenta. The newborns from a selenium-deficient mother suffer from muscular weakness, but the concentration of selenium during pregnancy does not have any effect on the weight of the baby or length of pregnancy. The selenium requirements of a pregnant and lactating mother are increased as a result of selenium transport to the fetus via

  10. Zinc Fortification Decreases ZIP1 Gene Expression of Some Adolescent Females with Appropriate Plasma Zinc Levels

    Directory of Open Access Journals (Sweden)

    Rosa O. Méndez

    2014-06-01

    Full Text Available Zinc homeostasis is achieved after intake variation by changes in the expression levels of zinc transporters. The aim of this study was to evaluate dietary intake (by 24-h recall, absorption, plasma zinc (by absorption spectrophotometry and the expression levels (by quantitative PCR, of the transporters ZIP1 (zinc importer and ZnT1 (zinc exporter in peripheral white blood cells from 24 adolescent girls before and after drinking zinc-fortified milk for 27 day. Zinc intake increased (p < 0.001 from 10.5 ± 3.9 mg/day to 17.6 ± 4.4 mg/day, and its estimated absorption from 3.1 ± 1.2 to 5.3 ± 1.3 mg/day. Mean plasma zinc concentration remained unchanged (p > 0.05 near 150 µg/dL, but increased by 31 µg/dL (p < 0.05 for 6/24 adolescents (group A and decreased by 25 µg/dL (p < 0.05 for other 6/24 adolescents (group B. Expression of ZIP1 in blood leukocytes was reduced 1.4-fold (p < 0.006 in group A, while for the expression of ZnT1 there was no difference after intervention (p = 0.39. An increase of dietary zinc after 27-days consumption of fortified-milk did not increase (p > 0.05 the plasma level of adolescent girls but for 6/24 participants from group A in spite of the formerly appropriation, which cellular zinc uptake decreased as assessed by reduction of the expression of ZIP1.

  11. Effect of low zinc intake on absorption and excretion of zinc by infants studied with 70Zn as extrinsic tag.

    Science.gov (United States)

    Ziegler, E E; Serfass, R E; Nelson, S E; Figueroa-Colón, R; Edwards, B B; Houk, R S; Thompson, J J

    1989-11-01

    The effect of low dietary intake of zinc was studied in six normal infants with the use of 70Zn as an extrinsic tag. Of the two study formulas, one provided a zinc intake similar to that of customary infant formulas ("high" intake), whereas the other provided a "low" zinc intake. Two zinc absorption studies were performed with each formula (sequence: high-low-low-high). Extrinsically labeled formula was fed for 24 h and excreta were collected for 72 h. Zinc isotope ratios were determined by inductively coupled plasma mass spectrometry (ICP/MS). When zinc intake was high, net zinc absorption was 9.1 +/- 8.7% (mean +/- SD) of intake and net zinc retention was 74 +/- 91 micrograms/(kg.d). True zinc (70Zn) absorption was 16.8 +/- 5.8% of intake and fecal excretion of endogenous zinc was 78 +/- 56 micrograms/(kg.d). When zinc intake was low, net absorption of zinc increased significantly (P less than 0.001) to 26.0 +/- 13.0% of intake, but net retention was not significantly different at 42 +/- 33 micrograms/(kg.d). True absorption of zinc also increased significantly (P less than 0.001) to 41.1 +/- 7.8% of intake, whereas fecal endogenous zinc decreased (P less than 0.05) to 34 +/- 16 micrograms/(kg.d) during low zinc intake. Thus, infants maintain zinc balance in the face of low zinc intake through increased efficiency of absorption and decreased excretion of endogenous zinc.

  12. Selective effect of zinc on uphill transport of oligopeptides into kidney brush border membrane vesicles.

    Science.gov (United States)

    Daniel, H; Adibi, S A

    1995-08-01

    Based on the involvement of zinc in hydrolysis of peptides, we hypothesized that Zn2+ may also play a role in peptide transport. To investigate this hypothesis, kidney brush border membrane vesicles (BBMV) were incubated for 30 min with different concentrations of ZnSO4 before use in uptake studies. This incubation increased by twofold the overshoot uptake of 3H-Gly-L-Gln, D-Leu-125I-Tyr and 3H-cephalexin (all high-affinity substrates for the oligopeptide/H+ symporter) without affecting passive and/or facilitated diffusion of these substrates. Zinc had no effect on the uptake of either glutamine or glucose by kidney BBMV. Among a group of metal ions (cobalt, iron, copper, cadmium, and manganese), only manganese and copper substantially stimulated the activity of the oligopeptide/H+ symporter. DTPA (a complexing agent) inhibited dipeptide uptake, which was reversed by the addition of zinc to the BBMV. Zinc treatment of BBMV reduced the EC50 value of inhibition of 3H-Gly-L-Gln uptake by unlabeled Gly-L-Gln by twofold (90 +/- 8 vs. 45 +/- 4 microM). Similarly, zinc treatment of BBMV reduced the EC50 value for inhibition of D-Leu-125I-Tyr uptake by bestatin from 80 +/- 4 to 40 +/- 3 mM. In conclusion, the data show that zinc has a selective effect on transport of nutrients into kidney BBMV. It stimulates uphill transport of oligopeptides by a modification of their affinity for the binding site of the membrane transporter.

  13. Role of nutritional zinc in the prevention of osteoporosis.

    Science.gov (United States)

    Yamaguchi, Masayoshi

    2010-05-01

    Zinc is known as an essential nutritional factor in the growth of the human and animals. Bone growth retardation is a common finding in various conditions associated with dietary zinc deficiency. Bone zinc content has been shown to decrease in aging, skeletal unloading, and postmenopausal conditions, suggesting its role in bone disorder. Zinc has been demonstrated to have a stimulatory effect on osteoblastic bone formation and mineralization; the metal directly activates aminoacyl-tRNA synthetase, a rate-limiting enzyme at translational process of protein synthesis, in the cells, and it stimulates cellular protein synthesis. Zinc has been shown to stimulate gene expression of the transcription factors runt-related transcription factor 2 (Runx2) that is related to differentiation into osteoblastic cells. Moreover, zinc has been shown to inhibit osteoclastic bone resorption due to inhibiting osteoclast-like cell formation from bone marrow cells and stimulating apoptotic cell death of mature osteoclasts. Zinc has a suppressive effect on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-induced osteoclastogenesis. Zinc transporter has been shown to express in osteoblastic and osteoclastic cells. Zinc protein is involved in transcription. The intake of dietary zinc causes an increase in bone mass. beta-Alanyl-L: -histidinato zinc (AHZ) is a zinc compound, in which zinc is chelated to beta-alanyl-L: -histidine. The stimulatory effect of AHZ on bone formation is more intensive than that of zinc sulfate. Zinc acexamate has also been shown to have a potent-anabolic effect on bone. The oral administration of AHZ or zinc acexamate has the restorative effect on bone loss under various pathophysiologic conditions including aging, skeletal unloading, aluminum bone toxicity, calcium- and vitamin D-deficiency, adjuvant arthritis, estrogen deficiency, diabetes, and fracture healing. Zinc compounds may be designed as new supplementation factor in the prevention and

  14. Mechanisms of mammalian zinc-regulated gene expression.

    Science.gov (United States)

    Jackson, Kelly A; Valentine, Ruth A; Coneyworth, Lisa J; Mathers, John C; Ford, Dianne

    2008-12-01

    Mechanisms through which gene expression is regulated by zinc are central to cellular zinc homoeostasis. In this context, evidence for the involvement of zinc dyshomoeostasis in the aetiology of diseases, including Type 2 diabetes, Alzheimer's disease and cancer, highlights the importance of zinc-regulated gene expression. Mechanisms elucidated in bacteria and yeast provide examples of different possible modes of zinc-sensitive gene regulation, involving the zinc-regulated binding of transcriptional activators and repressors to gene promoter regions. A mammalian transcriptional regulatory mechanism that mediates zinc-induced transcriptional up-regulation, involving the transcription factor MTF1 (metal-response element-binding transcription factor 1), has been studied extensively. Gene responses in the opposite direction (reduced mRNA levels in response to increased zinc availability) have been observed in mammalian cells, but a specific transcriptional regulatory process responsible for such a response has yet to be identified. Examples of single zinc-sensitive transcription factors regulating gene expression in opposite directions are emerging. Although zinc-induced transcriptional repression by MTF1 is a possible explanation in some specific instances, such a mechanism cannot account for repression by zinc of all mammalian genes that show this mode of regulation, indicating the existence of as yet uncharacterized mechanisms of zinc-regulated transcription in mammalian cells. In addition, recent findings reveal a role for effects of zinc on mRNA stability in the regulation of specific zinc transporters. Our studies on the regulation of the human gene SLC30A5 (solute carrier 30A5), which codes for the zinc transporter ZnT5, have revealed that this gene provides a model system by which to study both zinc-induced transcriptional down-regulation and zinc-regulated mRNA stabilization.

  15. Apoptosis may underlie the pathology of zinc-deficient skin.

    Science.gov (United States)

    Wilson, Dallas; Varigos, George; Ackland, M Leigh

    2006-02-01

    The trace element zinc is essential for the survival and function of all cells. Zinc deficiency, whether nutritional or genetic, is fatal if left untreated. The effects of zinc deficiency are particularly obvious in the skin, seen as an erythematous rash, scaly plaques, and ulcers. Electron microscopy reveals degenerative changes within keratinocytes. Despite the well-documented association between zinc deficiency and skin pathology, it is not clear which cellular processes are most sensitive to zinc deficiency and could account for the typical pathological features. We used the cultured HaCaT keratinocyte line to obtain insight into the cellular effects of zinc deficiency, as these cells show many characteristics of normal skin keratinocytes. Zinc deficiency was induced by growing cells in the presence of the zinc chelator, TPEN, or by growth in zinc-deficient medium. Growth of cells in zinc-deficient medium resulted in a 44% reduction of intracellular zinc levels and a 75% reduction in the activity of the zinc-dependent enzyme, 5'-nucleotidase, relative to the control cells. Over a period of 7 days of exposure to zinc-deficient conditions, no changes in cell viability and growth, or in the cytoskeletal and cell adhesion systems, were found in HaCaT cells. At 7 days, however, induction of apoptosis was indicated by the presence of DNA fragmentation and expression of active caspase-3 in cells. These results demonstrate that apoptosis is the earliest detectable cellular change induced by zinc deficiency in HaCaT keratinocytes. Our observations account for many of the features of zinc deficiency, including the presence of degenerate nuclei, chromatin aggregates and abnormal organization of keratin, that may represent the later stages of apoptosis. In summary, a major causal role for apoptosis in the pathology of zinc deficiency in the skin is proposed. This role is consistent with the previously unexplained diverse range of degenerative cellular changes seen at the

  16. Synthesis, spectroscopic and single crystal X-ray studies on three new mononuclear Ni(II) pincer type complexes: DFT calculations and their antimicrobial activities

    Science.gov (United States)

    Layek, Samaresh; Agrahari, Bhumika; Tarafdar, Abhrajyoti; Kumari, Chanda; Anuradha; Ganguly, Rakesh; Pathak, Devendra D.

    2017-08-01

    Three new mononuclear square planar Ni(II) complexes, containing pincer type tridentate Schiff base ligands, having general formula [(NiL1(4-MePy)] (1), [(NiL1(2-AzNp)] (2), and [(NiL2(4-MePy)] (3) [where L1 = anion of N-(2-hydroxy-3-methoxybenzylidene) benzoylhydrazide (HL1), L2 = anion of N-(2-hydroxy-3-methoxybenzylidene) thiosemicarbazide (HL2), 4-MePy = 4-Methylpyridine and 2-AzNp = 2-Azanapthalene] have been synthesized and fully characterized by FT-IR, UV-visible, NMR, single crystal X-ray diffraction studies and elemental analysis. All the three complexes show square planar geometry around the nickel atom. The pincer type ligand occupies three coordination sites, while the fourth site is occupied by the monodentate nitrogen containing ligand. The Quantum chemical DFT calculations have also been carried out using DFT/B3LYP method and 6-311++G(d,p) basis set. The synthesized nickel complexes were screened for antimicrobial activities by agar well diffusion method against E. coli bacteria. Out of three complexes, [(NiL2(4-MePy)] (3) only showed the antimicrobial activity against E. coli bacteria.

  17. Changes in DNA Methylation and Chromatin Structure of Pro-inflammatory Cytokines Stimulated by LPS in Broiler Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Shen, Jing; Liu, Yanli; Ren, Xiaochun; Gao, Kang; Li, Yulong; Li, Shizhao; Yao, Junhu; Yang, Xiaojun

    2016-07-01

    The pro-inflammatory cytokines IL-1β, IL-6, and tumor necrosis factor (TNF)-α mediate inflammation, which is a protective response by body to ensure removal of detrimental stimuli, as well as a healing process for repairing damaged tissue. The overproduction of pro-inflammatory cytokines can induce autoimmune diseases and can be fatal. The aim of this study was to investigate epigenetic mechanisms in the regulation of pro-inflammatory cytokines expression after lipopolysaccharide (LPS) stimulation of broiler peripheral blood mononuclear cells (PBMC). Gene expression, promoter DNA methylation, and chromatin accessibility of pro-inflammatory cytokines in untreated and LPS-treated PBMC were compared. The expression of epigenetic enzymes DNA methyltransferase (DNMT) 1, histone deacetylase (HDAC), and histone acetylase (HAT) were measured after LPS stimulation. The results showed the activated gene expression of pro-inflammatory cytokines in broiler PBMC stimulated 3 h by LPS. The demethylation of IL-6 gene - 302 and -264 cytosine-guanine (CpG) sites, as well as TNF-α gene -371 CpG site, occurred after LPS treatment (P pro-inflammatory cytokines.

  18. Different Zinc Sources Have Diverse Impacts on Gene Expression of Zinc Absorption Related Transporters in Intestinal Porcine Epithelial Cells.

    Science.gov (United States)

    Huang, Danping; Zhuo, Zhao; Fang, Shenglin; Yue, Min; Feng, Jie

    2016-10-01

    This study was conducted to investigate the effects of zinc sources on gene expression of zinc-related transporters in intestinal porcine epithelial cells (IPEC-1). IPEC-1 cells were treated with zinc glycine chelate (Zn-Gly), zinc methionine (Zn-Met), and zinc sulfate (ZnSO4), respectively, for measurement of cell viability. Then, the relative expression of zinc-related transporters in IPEC-1 in response to different zinc sources (50 μmol/L zinc) was measured. Zinc transporter SLC39A4 (ZIP4) expression was selectively silenced to assess the function of ZIP4 in inorganic and organic zinc absorption. The result showed that Zn-Gly and Zn-Met had lower cell damage compared with ZnSO4 on the same zinc levels. Different zinc sources improved the expression of metallothionein1 (MT1) and zinc transporter SLC30A1 (ZnT1) messenger RNA (mRNA) compared with the control (P zinc addition. MT1 and ZnT1 mRNA expressions in Zn-Gly and Zn-Met were higher than those in ZnSO4, and ZIP4 mRNA expression in Zn-Met was the lowest among three kinds of zinc sources (P zinc sources groups. Silencing of ZIP4 significantly decreased MT1 mRNA expression in ZnSO4 and Zn-Gly treatments, reduced zinc absorption rate, and increased DMT1 mRNA expression in ZnSO4 compared with negative control. In summary, different zinc sources could improve zinc status on IPEC-1 cells and organic zinc had lower cell damage compared with ZnSO4. Moreover, Zn-Gly and Zn-Met are more efficient on zinc absorption according to the expression of various zinc-related transporters MT1, ZIP4, ZnT1, and DMT1. ZIP4 played a direct role in inorganic zinc uptake, and the absorption of zinc in Zn-Gly depends on ZIP4 partly, while absorption of Zn-Met is less dependent on ZIP4.

  19. Antiangiogenic activity of mononuclear copper(II) polypyridyl complexes for the treatment of cancers.

    Science.gov (United States)

    Nagababu, Penumaka; Barui, Ayan Kumar; Thulasiram, Bathini; Devi, C Shobha; Satyanarayana, S; Patra, Chitta Ranjan; Sreedhar, Bojja

    2015-07-09

    A series of four new mononuclear copper(II) polypyridyl complexes (1-4) have been designed, developed, and thoroughly characterized by several physicochemical techniques. The CT-DNA binding properties of 1-4 have been investigated by absorption, emission spectroscopy, and viscosity measurements. All the complexes especially 1 and 4 exhibit cytotoxicity toward several cancer cell lines, suggesting their anticancer properties as observed by several in vitro assays. Additionally, the complexes show inhibition of endothelial cell (HUVECs) proliferation, indicating their antiangiogenic nature. In vivo chick embryo angiogenesis assay again confirms the antiangiogenic properties of 1 and 4. The formation of excessive intracellular ROS (H2O2 and O2(•-)) and upregulation of BAX induced by copper(II) complexes may be the plausible mechanisms behind their anticancer activities. The present study may offer a basis for the development of new transition metal complexes through suitable choice of ligands for cancer therapeutics by controlling tumor angiogenesis.

  20. Chemokine receptor expression on the surface of peripheral blood mononuclear cells in Chagas disease.

    Science.gov (United States)

    Talvani, Andre; Rocha, Manoel O C; Ribeiro, Antonio L; Correa-Oliveira, Rodrigo; Teixeira, Mauro M

    2004-01-15

    We evaluated the expression of chemokine receptors (CCR1, CCR2, CCR5, and CXCR4) on the surface of peripheral blood mononuclear cells obtained from patients with chronic chagasic cardiomyopathy (CCC) and noninfected individuals. Only CCR5 and CXCR4 expression was different on the surface of the subsets (CD4, CD8, and CD14) evaluated. Patients with mild CCC had elevated leukocyte expression of CCR5, compared with noninfected individuals or those with severe disease. CXCR4 expression was lower on leukocytes from patients with severe CCC. The differential expression of both receptors on leukocytes of patients with CCC was consistent and clearly correlated with the degree of heart function such that the lower the heart function, the lower the expression of either CCR5 or CXCR4. These results highlight the possible participation of the chemokine system in early forms of chagasic cardiomyopathy and the relevance of heart failure-induced remodeling in modifying immune parameters in infected individuals.