WorldWideScience

Sample records for monomethyl hydrogen sulfate

  1. Biogeochemistry of molecular hydrogen in sulfate-reducing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.C.

    1987-01-01

    Concentrations of molecular hydrogen (H{sub 2}) have been measured using an equilibration-vacuum transfer method coupled to mercuric oxide reduction. In hemipelagic sediments (Eastern Tropical North Pacific (ETNP)) and bioturbated sediments (Princess Louisa Inlet, BC (PLI), and Buzzards Bay, MA (BB)) hydrogen levels were lowest in surface sediments and increased with depth. Sharp increases in H{sub 2} concentrations were observed just below the zone of bioturbation (PLI and BB), or below the depth of nitrate depletion (ETNP). Apparent hydrogen production rates were determined in laboratory incubations of sediments amended with inhibitors of sulfate reduction and methanogenesis. Hydrogen production ranged from 30 nmol 1{sup {minus}1} h{sup {minus}1} to 20 {times} 10{sup 3} nmol 1{sup {minus}1} h{sup {minus}1}. Apparent hydrogen production rates generally decreased in parallel with measured sulfate reduction rates. Experiments examined the response of apparent H{sub 2} production rates to additions of both specific organic chemicals and to additions of naturally occurring, complex organic materials. Organic sources typically considered labile (sucrose, and algae) stimulated apparent production up to a factor of 70. More refractory compounds (humic acids, chitin), stimulated rates of hydrogen production only slightly or not at all. These results show that hydrogen production is, in part, a function of the type of organic matter being degraded.

  2. Effect of pH and sulfate concentration on hydrogen production using anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae-Hoon; Choi, Jeong-A.; Bhatnagar, Amit; Kumar, Eva; Jeon, Byong-Hun [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do, 220-710 (Korea); Abou-Shanab, R.A.I. [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do, 220-710 (Korea); Department of Environmental Biotechnology, Mubarak City for Scientific Research, Alexandria (Egypt); Min, Booki [Department of Environmental Science and Engineering, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea); Song, Hocheol; Kim, Yong Je [Geologic Environment Division, KIGAM, Daejeon, 305-350 (Korea); Choi, Jaeyoung [Korea Institute of Science and Technology (KIST), Gangneung Institute, Gangneung 210-340 (Korea); Lee, Eung Seok [Geological Sciences, College of Arts and Sciences, Ohio University, Athens, OH 45701-2979 (United States); Um, Sukkee [School of Mechanical Engineering, Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul, 133-791 (Korea); Lee, Dae Sung [Petroleum and Marine Research Department, KIGAM, Daejeon (Korea)

    2009-12-15

    The effects of varying sulfate concentrations with pH on continuous fermentative hydrogen production were studied using anaerobic mixed cultures growing on a glucose substrate in a chemostat reactor. The maximum hydrogen production rate was 2.8 L/day at pH 5.5 and sulfate concentration of 3000 mg/L. Hydrogen production and residual sulfate level decreased with increasing the pH from 5.5 to 6.2. The volatile fatty acids (VFAs) and ethanol fractions in the effluent were in the order of butyric acid (HBu) > acetic acid (HAc) > ethanol > propionic acid (HPr). Fluorescence In Situ Hybridization (FISH) analysis revealed the presence of hydrogen producing bacteria (HPB) under all pH ranges while sulfate reducing bacteria (SRB) were present at pH 5.8 and 6.2. The inhibition in hydrogen production by SRB at pH 6.2 diminished entirely by lowering to pH 5.5, at which activity of SRB is substantially suppressed. (author)

  3. Understanding the kinetics of sulfate reduction in brines by hydrogen: Progress report

    International Nuclear Information System (INIS)

    Strachan, D.M.

    1988-07-01

    Experiments were conducted with mixtures of hydrogen gas and each of PBB1 and PBB3 brines to examine the reduction kinetics of sulfate in high ionic strength solutions. Results from the experiments with brines showed that the kinetics of sulfate reduction is slower in high ionic strength solutions than the kinetics in low ionic strength solutions. However, the kinetic mechanism does not seem to alter the slow kinetics, but the addition of much larger quantities of sulfide, about 40 mM, does accelerate the reduction of sulfate. Since the proposed reaction mechanism for the reduction of sulfate by hydrogen gas involves the reaction of sulfide with sulfate, slow initial kinetics in the absence of sulfide is understandable, but also implies an unknown rate-limiting reaction. Precipitation of calcium sulfate(s) and calcium sulfide may limit the sulfide and sulfate concentrations to low values. The coexistence of anhydrite and oldhamite may indicate a part of the Ca-S-H 2 O that has not yet been investigated. 6 refs., 4 figs., 3 tabs

  4. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  5. Fractionation of hydrogen isotopes by sulfate- and nitrate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Magdalena Rose Osburn

    2016-08-01

    Full Text Available Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen –protium and deuterium –that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ2H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ2H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ2H suggest much potential as an environmental recorder of metabolism.

  6. Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria.

    Science.gov (United States)

    Osburn, Magdalena R; Dawson, Katherine S; Fogel, Marilyn L; Sessions, Alex L

    2016-01-01

    Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen-protium and deuterium-that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ(2)H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ(2)H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ(2)H suggest much potential as an environmental recorder of metabolism.

  7. Density functional theory study on the ionic liquid pyridinium hydrogen sulfate

    Science.gov (United States)

    Tankov, Ivaylo; Yankova, Rumyana; Genieva, Svetlana; Mitkova, Magdalena; Stratiev, Dicho

    2017-07-01

    The geometry, electronic structure and chemical reactivity of a pyridinium-based ionic liquid, pyridinium hydrogen sulfate ([H-Pyr]+[HSO4]-), have been discussed on the basis of quantum chemical density functional theory calculations using B3LYP/6-311+G(d,p) and B3LYP/6-311++G(2d,2p) approaches. The calculations indicated that [H-Pyr]+[HSO4]- exists in the form of an ion pair. A large electropositive potential was found on the pyridinium ring, while the regions of a negative electrostatic potential is linked with the lone pair of electronegative oxygen atoms in hydrogen sulfate anion ([HSO4]-). Electron transfer both within the anion, and between the anion and cation of an ion pair were described using natural bond orbital theory. The energy values of -7.1375 and -2.8801 eV were related to HOMO and LUMO orbitals, respectively.

  8. Pathways of sulfate and hydrogen sulfide transformations in a BTEX- contaminated groundwater system

    DEFF Research Database (Denmark)

    Einsiedl, Florian; Anneser, B.; Griebler, C.

    2010-01-01

    in complex environmental systems. As a result, compound specific stable isotope signatures in various sulfur species were determined in a tar-oil contaminated site and were linked to the microbial community distribution in the aquifer. The goal of the study was to reach an integrated understanding of sulfur...... intermediate during abiotic oxidation of hydrogen sulphide, with the latter formed during bacterial sulfate reduction. The formed elemental sulfur may be used by the specific microbial community found in this aquifer for the oxidation of organic contaminants such as toluene. In contrast, reoxidation...... of hydrogen sulfide to sulfate by molecular oxygen may affect sulfur cycling within the transition between the unsaturated and the saturated zones and therefore attenuate concentrations of contaminants in groundwater as well....

  9. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Wang Aijie; Ren Nanqi; Wang Xu; Lee Duujong

    2008-01-01

    Sulfate reduction in a continuous flow, acidogenic reactor using molasses wastewater as the carbon source was studied at varying chemical oxygen demand/sulfate (COD/SO 4 2- ) ratios. At a critical COD/SO 4 2- ratio of 2.7, neither COD nor sulfate were in excess for extra production of ethanol or acetate in the reactor. An acetic-type microbial metabolism was established with sulfate-reducing bacteria (SRB) significantly consuming hydrogen and volatile fatty acids produced by acidogenic bacteria and hydrogen producing acetogens in degrading COD, thereby yielding sulfate removal rate >94.6%. A low critical COD/SO 4 2- ratio of 1.6 was also observed with the enriched ASRB population in reactor which overcomes the barrier to the treatment capability of sulfate-laden wastewater treatment with limited COD supply

  10. Reduction of sulfate by hydrogen in natural systems: A literature review: Salt Repository Project

    International Nuclear Information System (INIS)

    Mahoney, J.J.; Strachan, D.M.

    1988-01-01

    The results of this literature search indicate that the reduction of sulfate by hydrogen gas can occur in nature, but that temperature appears to be a key factor in the rate of this reaction. At temperatures below 200/degree/C, the key factor in the rate of reaction appears to be extremely slow. At low pH the rate of reaction is faster than at high pH. The solution composition also influences the reaction rate; the most recent research available (Yanisagawa 1983) suggests that the concentration of sulfide in solution influences the rate of this reaction. The reduction reaction appears to proceed through a thiosulfate intermediate, so the presence and distribution of other sulfur species will influence the reaction rate. If the reaction mechanism proposed by Yanisagawa is correct, then higher concentrations of sulfide will result in faster rates of sulfate reduction. In conclusion, the reduction of sulfate by hydrogen to form significant amounts of sulfide is a function of temperature, sulfate and sulfide concentrations, pH, and solution composition. The rate of this reaction appears to be very slow under the conditions anticipated in this repository, but given the length of time required to maintain the integrity of the containers (300 to 1000 years) and the unusual solution compositions present, a better understanding of the reaction mechanism is needed. 16 refs., 1 tab

  11. Hydrogen and acetate cycling in two sulfate-reducing sediments: Buzzards Bay and Town Cove, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.C. (SUNY, Stony Brook, NY (USA) Univ. of Colorado, Boulder (USA)); Michelson, A.R.; Scranton, M.I. (SUNY, Stony Brook, NY (USA)); Banta, G.T.; Hobbie, J.E. (Marine Biological Laboratory, Woods, Hole, MA (USA)); Howarth, R.W. (Cornell Univ., Ithaca, NY (USA))

    1988-10-01

    Molecular hydrogen and acetate are believed to be key intermediates in the anaerobic remineralization of organic carbon. The authors have made measurements of the cycling of both these compounds in two marine sediments: the bioturbated sediments of Buzzards Bay, Mass., and the much more reducing sediments of Town Cove, Orleans, Mass. Hydrogen concentrations are similar in these environments (from less than 5 to 30 nM), and are within the range previously reported for coastal sediments. However, apparent hydrogen production rates differ by a factor of 60 between these two sediments and at both sites show strong correlation with measured rates of sulfate reduction. Acetate concentrations generally increased with depth in both environments; this increase was greater in Buzzards Bay (22.5 to 71.5 {mu}M) than in Town Cove (26 to 44 {mu}M). Acetate oxidation rates calculated from measured concentrations and {sup 14}C-acetate consumption rate constants suggest that the measured acetate was not all available to sulfate-reducing bacteria. Using the measured sulfate reduction rates, they estimate that between 2% and 100% of the measured acetate pool is biologically available, and that the bioavailable pool decreases with depth. A diagenetic model of the total acetate concentration suggests that consumption may be first order with respect to only a fraction of the total pool.

  12. Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor.

    Science.gov (United States)

    Balk, Melike; Weijma, Jan; Goorissen, Heleen P; Ronteltap, Mariska; Hansen, Theo A; Stams, Alfons J M

    2007-01-01

    A sulfate-reducing bacterium, strain WW1, was isolated from a thermophilic bioreactor operated at 65 degrees C with methanol as sole energy source in the presence of sulfate. Growth of strain WW1 on methanol or acetate was inhibited at a sulfide concentration of 200 mg l(-1), while on H2/CO2, no apparent inhibition occurred up to a concentration of 500 mg l(-1). When strain WW1 was co-cultured under the same conditions with the methanol-utilizing, non-sulfate-reducing bacteria, Thermotoga lettingae and Moorella mulderi, both originating from the same bioreactor, growth and sulfide formation were observed up to 430 mg l(-1). These results indicated that in the co-cultures, a major part of the electron flow was directed from methanol via H2/CO2 to the reduction of sulfate to sulfide. Besides methanol, acetate, and hydrogen, strain WW1 was also able to use formate, malate, fumarate, propionate, succinate, butyrate, ethanol, propanol, butanol, isobutanol, with concomitant reduction of sulfate to sulfide. In the absence of sulfate, strain WW1 grew only on pyruvate and lactate. On the basis of 16S rRNA analysis, strain WW1 was most closely related to Desulfotomaculum thermocisternum and Desulfotomaculum australicum. However, physiological properties of strain WW1 differed in some aspects from those of the two related bacteria.

  13. Degradation of the Alternaria mycotoxins alternariol, alternariol monomethyl ether, and altenuene upon bread baking.

    Science.gov (United States)

    Siegel, David; Feist, Michael; Proske, Matthias; Koch, Matthias; Nehls, Irene

    2010-09-08

    The stability of the Alternaria mycotoxins alternariol, alternariol monomethyl ether, and altenuene upon bread baking was investigated by model experiments using a spiked wholemeal wheat flour matrix. For alternariol and alternariol monomethyl ether, but not for altenuene, degradation products, formed through a sequence of hydrolysis and decarboxylation, could be identified in pilot studies. The simultaneous quantification of alternariol, alternariol monomethyl ether, altenuene, and the degradation products was achieved by a newly developed high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) multimethod. The obtained quantitative data indicate that the Alternaria mycotoxins are barely degraded during wet baking, while significant degradation occurs upon dry baking, with the stability decreasing in the order alternariol monomethyl ether>alternariol>altenuene. The novel degradation products could be detected after the wet baking of flour spiked with alternariol and in a sample survey of 24 commercial cereal based baking products.

  14. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    Science.gov (United States)

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-09-02

    Coagulation with metal-based salts is a practice commonly employed by drinking-water utilities to decrease particle and dissolved organic carbon concentrations in water. In addition to decreasing dissolved organic carbon concentrations, the effectiveness of iron- and aluminum-based coagulants for decreasing dissolved concentrations both of inorganic and monomethyl mercury in water was demonstrated in laboratory studies that used agricultural drainage water from the Sacramento–San Joaquin Delta of California. To test the effectiveness of this approach at the field scale, nine 15-by-40‑meter wetland cells were constructed on Twitchell Island that received untreated water from island drainage canals (control) or drainage water treated with polyaluminum chloride or ferric sulfate coagulants. Surface-water samples were collected approximately monthly during November 2012–September 2013 from the inlets and outlets of the wetland cells and then analyzed by the U.S. Geological Survey for total concentrations of mercury and monomethyl mercury in filtered (less than 0.3 micrometers) and suspended-particulate fractions and for concentrations of dissolved organic carbon.

  15. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    Energy Technology Data Exchange (ETDEWEB)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.

    2017-03-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  16. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    Science.gov (United States)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  17. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.

    Science.gov (United States)

    Stams, A J M; Plugge, C M; de Bok, F A M; van Houten, B H G W; Lens, P; Dijkman, H; Weijma, J

    2005-01-01

    In environments where the amount of electron acceptors is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic consortia of acetogenic bacteria and methanogenic archaea. Hydrogen consumption by methanogens is essential for acetogenic bacteria to convert organic acids to acetate and hydrogen. Several syntrophic cocultures growing on propionate and butyrate have been described. These syntrophic fatty acid-degrading consortia are affected by the presence of sulfate. When sulfate is present sulfate-reducing bacteria compete with methanogenic archaea for hydrogen and acetate, and with acetogenic bacteria for propionate and butyrate. Sulfate-reducing bacteria easily outcompete methanogens for hydrogen, but the presence of acetate as carbon source may influence the outcome of the competition. By contrast, acetoclastic methanogens can compete reasonably well with acetate-degrading sulfate reducers. Sulfate-reducing bacteria grow much faster on propionate and butyrate than syntrophic consortia.

  18. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation

    International Nuclear Information System (INIS)

    Velasco, Antonio; Ramirez, Martha; Volke-Sepulveda, Tania; Gonzalez-Sanchez, Armando; Revah, Sergio

    2008-01-01

    The ability of sulfate-reducing bacteria to produce hydrogen sulfide and the high affinity of sulfide to react with divalent metallic cations represent an excellent option to remove heavy metals from wastewater. Different parameters have been proposed to control the hydrogen sulfide production by anaerobic bacteria, such as the organic and sulfate loading rates and the feed COD/SO 4 2- ratio. This work relates the feed COD/SO 4 2- ratio with the hydrogen sulfide production and dissolved lead precipitation, using ethanol as carbon and energy source in an up-flow anaerobic sludge blanket reactor. A maximum dissolved sulfide concentration of 470 ± 7 mg S/L was obtained at a feed COD/SO 4 2- ratio of 2.5, with sulfate and ethanol conversions of approximately 94 and 87%, respectively. The lowest dissolved sulfide concentration (145 ± 10 mg S/L) was observed with a feed COD/SO 4 2- ratio of 0.67. Substantial amounts of acetate (510-1730 mg/L) were produced and accumulated in the bioreactor from ethanol oxidation. Although only incomplete oxidation of ethanol to acetate was observed, the consortium was able to remove 99% of the dissolved lead (200 mg/L) with a feed COD/SO 4 2- ratio of 1.5. It was found that the feed COD/SO 4 2- ratio could be an adequate parameter to control the hydrogen sulfide production and the consequent precipitation of dissolved lead

  19. Hydrogen bond strengths in phosphorylated and sulfated amino acid residues.

    Directory of Open Access Journals (Sweden)

    Chaya Rapp

    Full Text Available Post-translational modification by the addition of an oxoanion functional group, usually a phosphate group and less commonly a sulfate group, leads to diverse structural and functional consequences in protein systems. Building upon previous studies of the phosphoserine residue (pSer, we address the distinct nature of hydrogen bonding interactions in phosphotyrosine (pTyr and sulfotyrosine (sTyr residues. We derive partial charges for these modified residues and then study them in the context of molecular dynamics simulation of model tripeptides and sulfated protein complexes, potentials of mean force for interacting residue pairs, and a survey of the interactions of modified residues among experimental protein structures. Overall, our findings show that for pTyr, bidentate interactions with Arg are particularly dominant, as has been previously demonstrated for pSer. sTyr interactions with Arg are significantly weaker, even as compared to the same interactions made by the Glu residue. Our work sheds light on the distinct nature of these modified tyrosine residues, and provides a physical-chemical foundation for future studies with the goal of understanding their roles in systems of biological interest.

  20. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, Antonio [Direccion General del Centro Nacional de Investigacion y Capacitacion Ambiental-Instituto Nacional de Ecologia, Av. San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico)], E-mail: jvelasco@ine.gob.mx; Ramirez, Martha [Direccion General del Centro Nacional de Investigacion y Capacitacion Ambiental-Instituto Nacional de Ecologia, Av. San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico); Volke-Sepulveda, Tania [Departamento de Biotecnologia, UAM-Cuajimalpa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico); Gonzalez-Sanchez, Armando [Departamento de Ingenieria de Procesos, Universidad Autonoma Metropolitana-Iztapalapa, UAM-Cuajimalpa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico); Revah, Sergio [Departamento de Procesos y Tecnologia, UAM-Cuajimalpa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico)

    2008-03-01

    The ability of sulfate-reducing bacteria to produce hydrogen sulfide and the high affinity of sulfide to react with divalent metallic cations represent an excellent option to remove heavy metals from wastewater. Different parameters have been proposed to control the hydrogen sulfide production by anaerobic bacteria, such as the organic and sulfate loading rates and the feed COD/SO{sub 4}{sup 2-} ratio. This work relates the feed COD/SO{sub 4}{sup 2-} ratio with the hydrogen sulfide production and dissolved lead precipitation, using ethanol as carbon and energy source in an up-flow anaerobic sludge blanket reactor. A maximum dissolved sulfide concentration of 470 {+-} 7 mg S/L was obtained at a feed COD/SO{sub 4}{sup 2-} ratio of 2.5, with sulfate and ethanol conversions of approximately 94 and 87%, respectively. The lowest dissolved sulfide concentration (145 {+-} 10 mg S/L) was observed with a feed COD/SO{sub 4}{sup 2-} ratio of 0.67. Substantial amounts of acetate (510-1730 mg/L) were produced and accumulated in the bioreactor from ethanol oxidation. Although only incomplete oxidation of ethanol to acetate was observed, the consortium was able to remove 99% of the dissolved lead (200 mg/L) with a feed COD/SO{sub 4}{sup 2-} ratio of 1.5. It was found that the feed COD/SO{sub 4}{sup 2-} ratio could be an adequate parameter to control the hydrogen sulfide production and the consequent precipitation of dissolved lead.

  1. USING RESPIROMETRY TO MEASURE HYDROGEN UTILIZATION IN SULFATE REDUCING BACTERIA IN THE PRESENCE OF COPPER AND ZINC

    Science.gov (United States)

    A respirometric method has been developed to measure hydrogen utilization by sulfate reducing bacteria (SRB). One application of this method has been to test inhibitory metals effects on the SRB culture used in a novel acid mine drainage treatment technology. As a control param...

  2. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  3. Inhibition of sulfate reduction in paddy soils

    Energy Technology Data Exchange (ETDEWEB)

    Vamos, R

    1958-12-13

    The hydrogen sulfide formed in waterlogged soils is a serious problem in rice cultivation. It inhibits the uptake of water and nutrients and may even cause root-rot. Results can best be obtained by preventing the formation of hydrogen sulfide. It is formed mainly by reduction of sulfate for which the cellulose-butyric acid fermentation provides the hydrogen source. Addition of ammonium or potassium nitrate prevents the formation of H/sub 2/S. The hydrogen produced by butyric acid fermentation is used to reduce nitrate and consequently cannot be utilized by the sulfate-reducing bacteria as a source of energy. 6 references.

  4. A subchronic dermal exposure study of diethylene glycol monomethyl ether and ethylene glycol monomethyl ether in the male guinea pig.

    Science.gov (United States)

    Hobson, D W; D'Addario, A P; Bruner, R H; Uddin, D E

    1986-02-01

    Diethylene glycol monomethyl ether (DEGME) has been selected as a replacement anti-icing additive for ethylene glycol monomethyl ether (EGME) in Navy jet aircraft fuel. This experiment was performed to determine whether DEGME produced similar toxicity to EGME following dermal exposure. Male guinea pigs were dermally exposed to 1.00, 0.20, 0.04, or 0 (control) g/kg/day DEGME for 13 weeks, 5 days/week, 6 hr/day. Another group of animals was similarly exposed to 1.00 g/kg/day EGME. Body weights as well as testicular and splenic weights were reduced as a result of exposure to EGME, DEGME-exposed animals exhibited decreased splenic weight in the high- and medium-dose (1.00 and 0.20 g/kg/day) exposure groups only. Hematologic changes in EGME-exposed animals included mild anemia with increased erythrocytic mean corpuscular volumes and a lymphopenia with increased neutrophils. Similar hematological changes were not observed in any animals exposed to DEGME. Serum creatine kinase activity was increased in animals exposed to EGME, and serum lactate dehydrogenase activity was increased in EGME and 1.00 g/kg/day DEGME-exposed animals. In general, DEGME produced minimal toxicological changes following dermal exposure, whereas the toxicological changes observed following similar exposure to EGME were much more profound.

  5. Use of 2-mercaptopyridine for the determination of alkylating agents in complex matrices: application to dimethyl sulfate.

    Science.gov (United States)

    Hoogerheide, J G; Scott, R A

    2005-01-30

    A rapid and sensitive method for the determination of alkylating agents in complex reaction mixtures was developed and characterized. Analyses are based on the alkylation of 2-mercaptopyridine by the analyte; the derivative is separated by RP-HPLC and measured by fluorescence detection. When applied to the determination of dimethyl sulfate, the method is linear over four orders of magnitude: 0.01-10mugmL(-1). By using recrystallized 2-mercaptopyridine, quantitation limits of 10ngmL(-1) can be achieved. Precision of the assay is 2% R.S.D. in the 1-10mugmL(-1) range and about 15% R.S.D. at 10ngmL(-1). Studies on the pH dependence of the derivatization reaction were key to minimizing interference from the dimethyl sulfate degradation product, monomethyl sulfate, in quenched reaction samples.

  6. Influence of sodium dodecyl sulfate on the reaction between Nile Blue A and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    IVANA A. JANKOVIC

    1999-05-01

    Full Text Available The influence of the anionic surfactant sodium dodecyl sulfate on the rate of the reaction between the cationic form of Nile Blue A and hydrogen peroxide was investigated in the pH range from 5 to 8.5. A retardation of the oxidation of Nile Blue A with hydrogen peroxide of three orders of magnitude was observed at pH 8.5 in the presence of anionic micelles compared to the kinetic data in water. The retardation effect was less pronounced at lower pH values. These effects were explained by the electrostatic interaction of the species involved in the reaction with the negatively charged micellar surface and their effective separation in the vicinity of the micellar surface.

  7. The effect of ethylene glycol monomethyl ether and diethylene glycol monomethyl ether on hepatic gamma-glutamyl transpeptidase.

    Science.gov (United States)

    Kawamoto, T; Matsuno, K; Kayama, F; Arashidani, K; Yoshikawa, M; Kodama, Y

    1992-11-22

    In this paper, we determined whether ethylene glycol monomethyl ether (EGME) and diethylene glycol monomethyl ether (diEGME) induce hepatic gamma-glutamyl transpeptidase activity. Male adult Wistar rats weighing 220 g were used as experimental animals. EGME (100, 300 mg/kg per day) and diEGME (500, 1000, 2000 mg/kg per day) were administered by gavage for 1, 2 or 5 days or 4 weeks. In the 4-week study, experimental animals were administered EGME or diEGME once a day orally, 5 days/week. EGME treatment increased the serum gamma-glutamyl transpeptidase (GGT) level significantly, however, diEGME did not. The activities of three other enzymes (SGOT, SGPT and ALP) in serum were not altered by EGME or diEGME treatment and thus there was no biochemical indices of hepatic damage by EGME or diEGME. EGME treatment increased the GGT activities in the liver and lungs. Of the organs examined, the induction of GGT was the greatest in the liver. The inducibility in the liver was 216% for the 5-day treatment and 460% for the 4-week treatment. A dose-dependent increase of hepatic microsomal GGT activity by EGME was observed. On the other hand, renal GGT activities were declined to 72% and 60% of control by the 5-day and 4-week EGME treatments, respectively. DiEGME did not affect the GGT activities in any of the tissues except those of the brain. In the histochemical study, most hepatocytes at the periportal zones were stained with GGT staining after the 4-week treatment. However, the hepatocytes at the central zones were negative.

  8. Effect of Sulfide Removal on Sulfate Reduction at pH 5 in a Hydrogen fed Gas-Lift Bioreactor

    NARCIS (Netherlands)

    Bijmans, M.F.M.; Dopson, M.; Lens, P.N.L.; Buisman, C.J.N.

    2008-01-01

    UNCORRECTED PROOF J. Microbiol. Biotechnol. (2007), 17(4), ¿ Effect of Sulfide Removal on Sulfate Reduction at pH 5 in a Hydrogen fed Gas-Lift Bioreactor Bijmans, Martijn F. M.1*, Mark Dopson2, Frederick Ennin1, Piet N. L. Lens1, and Cees J. N. Buisman1 1Sub Department of Environmental Technology,

  9. Sulfate Recognition by Persistent Crystalline Capsules with Rigidified Hydrogen Bonding Cavities

    International Nuclear Information System (INIS)

    Custelcean, Radu; Remy, Priscilla; Jiang, Deen; Bonnesen, Peter V; Moyer, Bruce A

    2008-01-01

    electivity is a fundamental property of pervasive importance in chemistry and biology as reflected in phenomena as diverse as membrane transport, catalysis, sensing, adsorption, complexation, and crystallization. Although the key principles of complementarity and preorganization governing the binding interactions underlying such phenomena were delineated long ago, truly profound selectivity has proven elusive by design in part because synthetic molecular architectures are neither maximally complementary for binding target species nor sufficiently rigid. Even if a host molecule possesses a high degree of complementarity for a guest species, it all too often can distort its structure or even rearrange its conformation altogether to accommodate competing guests. One approach taken by researchers to overcome this challenge has been to devise extremely rigid molecules that bind species within complementary cavities. Although examples have been reported to demonstrate the principle, such cases are not generally of practical utility, because of inefficient synthesis and often poor kinetics. Alternatively, flexible building blocks can be employed, but then the challenge becomes one of locking them in place. Taking a cue from natural binding agents that derive their rigidity from a network of molecular interactions, especially hydrogen bonding, we present herein an example of a crystalline, self-assembled capsule that binds sulfate by a highly complementary array of rigidified hydrogen bonds (H-bonds). Although covalent or self-assembled capsules have been previously employed as anion hosts, they typically lack the strict combination of complementarity and rigidity required for high selectivity. Furthermore, the available structural data for these systems is either restricted to a limited number of anions of similar size and shape, or varies significantly from one anion to another, which hampers the rationalization of the observed selectivity. We have been employing

  10. Final report on the safety assessment of sodium cetearyl sulfate and related alkyl sulfates as used in cosmetics.

    Science.gov (United States)

    Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-05-01

    Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.

  11. 1-Butyl-3-methylimidazolium hydrogen sulfate catalyzed in-situ transesterification of Nannochloropsis to fatty acid methyl esters

    International Nuclear Information System (INIS)

    Sun, Yingqiang; Cooke, Peter; Reddy, Harvind K.; Muppaneni, Tapaswy; Wang, Jun; Zeng, Zheling; Deng, Shuguang

    2017-01-01

    Highlights: • [Bmim][HSO_4] catalyzed in-situ transesterification of wet algae. • [Bmim][HSO_4] served as both effective solvent and excellent acid catalyst. • Proposed a mechanism for [Bmim][HSO_4] catalyzed in-situ transesterification. • Identified cell walls and lipid droplets in algae using confocal imaging tests. • Obtained crude biodiesel yield about 95% in 30 min at 200 °C. - Abstract: 1-Butyl-3-methylimidazolium hydrogen sulfate ([Bmim][HSO_4]) is used as a solvent and an acid catalyst for in-situ extractive transesterification of wet Nannochloropsis with methanol. The reaction is supposed to be a five-step process: (1) wet algae cell wall dissolves in ionic liquid at reaction temperatures; (2) hydrogen ions and sulfate ions release from the ionization of HSO_4"−. The hydrogen ions (H"+) act as catalysts for accelerating the reactive extraction of triglyceride from wet Nannochloropsis; (3) hydrogen ions and methanol molecules transfer from bulk to active site of cells without passing through cell wall that is dissolved by ionic liquid; (4) in-situ transesterification of lipid (mainly triglycerides) with methanol; and (5) products transfer from inside of algae cells to outside of cells. The crude biodiesel yield of [Bmim][HSO_4] catalyzed in-situ transesterification is about 95.28% at reaction temperature of 200 °C, reaction time of 30 min, mass ratio of [Bmim][HSO_4] to wet Nannochloropsis of 0.9:1, and a mass ratio of methanol to wet algae of 3:1. It decreases to 81.23% after [Bmim][HSO_4] is recycled for 4 times, which indicates that [Bmim][HSO_4] catalyzed in-situ transesterification is an economic approach for biodiesel production from wet algae.

  12. The anaerobic treatment of sulfate containing wastewater

    NARCIS (Netherlands)

    Visser, A.

    1995-01-01


    In the anaerobic treatment of sulfate containing wastewater sulfate reducing bacteria (SRB) will compete with methanogenic- (MB) and acetogenic bacteria (AB) for the available substrates such as hydrogen, acetate, propionate and butyrate. The outcome of this competition will

  13. NMR studies of the influence of dodecyl sulfate on the amide hydrogen exchange kinetics of a micelle-solubilized hydrophobic tripeptide

    International Nuclear Information System (INIS)

    O'Neil, J.D.J.; Sykes, B.D.

    1989-01-01

    Backbone amide hydrogen exchange measurements are an important source of information about the internal dynamics of proteins. Before such measurements can be interpreted unambiguously, contributions to hydrogen exchange rates from the chemical and physical environment of the amides must be taken into account. Membrane proteins are often solubilized in detergents, yet there have not been any systematic investigations of the possible effects detergents may have on the amide hydrogen exchange rates of proteins. To address this question, the authors have measured individual backbone and carboxyl-terminal amide exchange rates for the amphipathic tripeptide Leu-Val-Ile-amide dissolved in water and dodecyl sulfate micelles. Proton NMR spectroscopy was used to measure exchange using the direct exchange-out into D 2 O technique at 5 degree C and using an indirect steady-state saturation-transfer technique at 25 degree C. The broadening effect of micelle-incorporated spin-labeled fatty acid (12-doxylsterate) on the 1 H NMR spectra of both the detergent and the peptide resonances was used to demonstrate that the tripeptide is intimately associated with the micelle. These experiments help to explain the elevated pH min observed for backbone amides in the sodium dodecyl sulfate solubilized M13 coat protein

  14. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  15. Hydrogen isotopic messages in sulfate reducer lipids: a recorder of metabolic state?

    Science.gov (United States)

    Bradley, A. S.; Leavitt, W.; Zhou, A.; Cobban, A.; Suess, M.

    2017-12-01

    A significant range in microbial lipid 2H/1H ratios is observed in modern marine sediments. The magnitude of hydrogen isotope fractionation between microbial lipids and growth water (2ɛlipid-H2O) is hypothesized to relate to the central carbon and energy metabolism. These observations raise the possibility for culture independent identification of the dominant metabolic pathways operating in a given environment [Zhang et al. 2009]. One such metabolism we aim to track is microbial sulfate reduction. To-date, sulfate reducing bacteria have been observed to produce lipids that are depleted in fatty acid H-isotope composition, relative to growth water (2ɛlipid-H2O -50 to -175 ‰) [Campbell et al. 2009; Dawson et al. 2015; Osburn et al.], with recent work demonstrating a systematic relationship between lipid/water fractionation and growth rate when the electron-bifurcating NAD(P)(H) transhydrogenase (ebTH) activity was disrupted and the available electron requires the ebTH [Leavitt et al. 2016. Front Microbio]. Recent work in aerobic methylotrophs [Bradley et al. 2014. AGU] implicates non-bifurcating NAD(P)(H) transhydrogenase activity is a critical control on 2ɛlipid-H2O. This suggests a specific mechanism to control the range in fractionation is the ratio of intracellular NADPH/NADH/NADP/NAD in aerobes and perhaps the same in anaerobes with some consideration for FADH/FAD. Fundamentally this implies 2ɛlipid-H2O records intracellular redox state. In our sulfate reducer model system Desulfovibrio alaskensis strain G20 a key component of energy metabolism is the activity of ebTH. Nonetheless, this strain contains two independent copies of the genes, only one of which generates a distinctive isotopic phenotype [Leavitt et al. 2016. Front Microbio]. In this study we extend the recent work in G20 to continuous culture experiments comparing WT to nfnAB-2 transposon interruptions, where both organisms are cultivated continuously, at the rate of the slower growing mutant

  16. Regeneration of sulfated metal oxides and carbonates

    Science.gov (United States)

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  17. Use of sulfate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases

    NARCIS (Netherlands)

    Lens, P.N.L.; Gastesi, R.; Lettinga, G.

    2003-01-01

    This paper describes a novel bioscrubber concept for biological flue gas desulfurization, based on the recycling of a cell suspension of sulfite/sulfate reducing bacteria between a scrubber and a sulfite/sulfate reducing hydrogen fed bioreactor. Hydrogen metabolism in sulfite/sulfate reducing cell

  18. Intracrystalline site preference of hydrogen isotopes in the water of crystallization of copper sulfate pentahydrate

    International Nuclear Information System (INIS)

    Kita, I.; Matsuo, S.

    1981-01-01

    Difference in the isotopic partition at different sites of the water of crystallization of CuSO 4 .5H 2 O (the site preference) was estimated for the hydrogen isotopes. Fractional dehydration of CuSO 4 .5H 2 O under vacuum at 0 and 25 0 C was used to determine the isotopic ratio, the amount of dehydrated water, and the rate process of dehydration. The following results were obtained. (1) Two maxima occur in the isotopic ratio in the dehydration range, F < 0.8. (2) The dehydration occurs by the three sequential zeroth-order rate processes which have different rate constants for dehydration. The three different rate constants may be explained by the combination of the rate constants of dehydration of the water molecules dehydrated. The estimation of the difference in hydrogen isotope distribution for different sites, i.e., four of the five water molecules in the coordination sphere of copper ion (site A) and one bonded to the sulfate ion through hydrogen bonding (site B) was made. The site preference of hydrogen isotopes (delta D,%) was concluded to be -3.20 +- 0.52 for site A and +2.26 +- 2.09 for site B, where the delta D value was referred to the isotopic ratio of the mother liquor from which the crystal was formed

  19. Intracrystalline site preference of hydrogen isotopes in the water of crystallization of copper sulfate pentahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Kita, I.; Matsuo, S.

    1981-04-02

    Difference in the isotopic partition at different sites of the water of crystallization of CuSO/sub 4/.5H/sub 2/O (the site preference) was estimated for the hydrogen isotopes. Fractional dehydration of CuSO/sub 4/.5H/sub 2/O under vacuum at 0 and 25/sup 0/C was used to determine the isotopic ratio, the amount of dehydrated water, and the rate process of dehydration. The following results were obtained. (1) Two maxima occur in the isotopic ratio in the dehydration range, F < 0.8. (2) The dehydration occurs by the three sequential zeroth-order rate processes which have different rate constants for dehydration. The three different rate constants may be explained by the combination of the rate constants of dehydration of the water molecules dehydrated. The estimation of the difference in hydrogen isotope distribution for different sites, i.e., four of the five water molecules in the coordination sphere of copper ion (site A) and one bonded to the sulfate ion through hydrogen bonding (site B) was made. The site preference of hydrogen isotopes (delta D,%) was concluded to be -3.20 +- 0.52 for site A and +2.26 +- 2.09 for site B, where the delta D value was referred to the isotopic ratio of the mother liquor from which the crystal was formed.

  20. METABOLISM AND TISSUE DOSIMETRY OF PENTAVALENT AND TRIVALENT MONOMETHYLATED ARSENIC AFTER ORAL

    Science.gov (United States)

    METABOLISM AND TISSUE DOSIMETRY OF PENTAVALENT AND TRIVALENT MONOMETHYLATED ARSENIC AFTER ORAL ADMINISTRATION IN MICEM F Hughes1, V Devesa2, B M Adair1, M Styblo2, E M Kenyon1, and D J Thomas1. 1US EPA, ORD, NHEERL, ETD, Research Triangle Park, NC; 2UNC-CH, CEMALB, Chapel Hi...

  1. Measurement of chemical leaching potential of sulfate from landfill disposed sulfate containing wastes.

    Science.gov (United States)

    Sun, Wenjie; Barlaz, Morton A

    2015-02-01

    A number of sulfate-containing wastes are disposed in municipal solid wastes (MSW) landfills including residues from coal, wood, and MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, the sulfate can be reduced to hydrogen sulfide which is problematic for several reasons including its low odor threshold, toxicity, and corrosive nature. The overall objective of this study was to evaluate existing protocols for the quantification of total leachable sulfate from solid samples and to compare their effectiveness and efficiency with a new protocol described in this study. Methods compared include two existing acid extraction protocols commonly used in the U.S., a pH neutral protocol that requires multiple changes of the leaching solution, and a new acid extraction method. The new acid extraction method was shown to be simple and effective to measure the leaching potential of sulfate from a range of landfill disposed sulfate-containing wastes. However, the acid extraction methods do not distinguish between sulfate and other forms of sulfur and are thus most useful when sulfate is the only form of sulfur present. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments

    Science.gov (United States)

    Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei

    2017-09-01

    Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.

  3. Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington

    Energy Technology Data Exchange (ETDEWEB)

    Kuivila, K.M.; Murray, J.W.; Devol, A.H. (Univ. of Washington, Seattle (USA)); Novelli, P.C. (Univ. of Colorado, Boulder (USA))

    1989-02-01

    Rates of methane production (both acetate fermentation and CO{sub 2} reduction) and sulfate reduction were directly measured as a function of depth in the sediments of Lake Washington. Although methanogenesis was the primary mode of anaerobic respiration (63%), the major zone of methane production existed only below the sulfate reduction zone (16 cm). Acetate fermentation accounted for 61 to 85% of the total methane production, which is consistent with other low sulfate environments. The observed spatial separation of methane production and sulfate reduction, which has been reported for marine sediments, is attributed to competition between the methane-producing and sulfate-reducing bacteria for acetate and hydrogen. This hypothesis is supported by the strong correlation between the measured distributions of acetate and hydrogen and the rates of methane produced from these two precursors in Lake Washington sediments. Acetate concentrations increased rapidly (from 10-16 {mu}M to 30-40 {mu}M) once the sulfate concentration decreased below 30 {mu}M and methane production via acetate fermentation began. A similar trend was observed for hydrogen concentrations, which increased from 7 to 22 nM up to 40 to 55 nM, at the onset of methanogenesis from CO{sub 2} and H{sub 2} (sulfate concentrations of 35-40 {mu}M). These results show, for the first time in a freshwater lake, the separation of methane production and sulfate reduction and the corresponding changes in acetate and hydrogen concentrations.

  4. THE IMPACT OF BIOSTIMULATION ON THE FATE OF SULFATE AND ASSOCIATED SULFUR DYNAMICS IN GROUNDWATER

    Science.gov (United States)

    Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C.; Brusseau, Mark L.

    2014-01-01

    The impact of electron-donor addition on sulfur dynamics for a groundwater system with low levels of metal contaminants was evaluated with a pilot-scale biostimulation test conducted at a former uranium mining site. Geochemical and stable-isotope data collected before, during, and after the test were analyzed to evaluate the sustainability of sulfate reducing conditions induced by the test, the fate of hydrogen sulfide, and the impact on aqueous geochemical conditions. The results of site characterization activities conducted prior to the test indicated the absence of measurable bacterial sulfate reduction. The injection of an electron donor (ethanol) induced bacterial sulfate reduction, as confirmed by an exponential decrease of sulfate concentration in concert with changes in oxidation-reduction potential, redox species, alkalinity, production of hydrogen sulfide, and fractionation of δ34S-sulfate. High, stoichiometrically-equivalent hydrogen sulfide concentrations were not observed until several months after the start of the test. It is hypothesized that hydrogen sulfide produced from sulfate reduction was initially sequestered in the form of iron sulfides until the exhaustion of readily reducible iron oxides associated with the sediment. The fractionation of δ34S for sulfate was atypical, wherein the enrichment declined in the latter half of the experiment. It was conjectured that mixing effects associated with the release of sulfate from sulfate minerals associated with the sediments, along with possible sulfide re-oxidation contributed to this behavior. The results of this study illustrate the biogeochemical complexity that is associated with in-situ biostimulation processes involving bacterial sulfate reduction. PMID:25016586

  5. The impact of biostimulation on the fate of sulfate and associated sulfur dynamics in groundwater

    Science.gov (United States)

    Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C.; Brusseau, Mark L.

    2014-08-01

    The impact of electron-donor addition on sulfur dynamics for a groundwater system with low levels of metal contaminants was evaluated with a pilot-scale biostimulation test conducted at a former uranium mining site. Geochemical and stable-isotope data collected before, during, and after the test were analyzed to evaluate the sustainability of sulfate reducing conditions induced by the test, the fate of hydrogen sulfide, and the impact on aqueous geochemical conditions. The results of site characterization activities conducted prior to the test indicated the absence of measurable bacterial sulfate reduction. The injection of an electron donor (ethanol) induced bacterial sulfate reduction, as confirmed by an exponential decrease of sulfate concentration in concert with changes in oxidation-reduction potential, redox species, alkalinity, production of hydrogen sulfide, and fractionation of δ34S-sulfate. High, stoichiometrically-equivalent hydrogen sulfide concentrations were not observed until several months after the start of the test. It is hypothesized that hydrogen sulfide produced from sulfate reduction was initially sequestered in the form of iron sulfides until the exhaustion of readily reducible iron oxides within the sediment. The fractionation of δ34S for sulfate was atypical, wherein the enrichment declined in the latter half of the experiment. It was conjectured that mixing effects associated with the release of sulfate from sulfate minerals associated with the sediments, along with possible sulfide re-oxidation contributed to this behavior. The results of this study illustrate the biogeochemical complexity that is associated with in-situ biostimulation processes involving bacterial sulfate reduction.

  6. STUDY OF HYDROGEN SULFIDE REMOVAL FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    T. Lupascu

    2013-06-01

    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  7. Equivalent chain lengths of all C4-C23 saturated monomethyl branched fatty acid methyl esters on methylsilicone OV-1 stationary phase.

    Science.gov (United States)

    Kubinec, Róbert; Blaško, Jaroslav; Górová, Renáta; Addová, Gabriela; Ostrovský, Ivan; Amann, Anton; Soják, Ladislav

    2011-04-01

    Isomer mixtures of monomethyl branched saturated C7-C23 fatty acid methyl esters (FAME) were prepared by performing a methylene insertion reaction to the straight chain FAME and this study model was completed by using commercially available standards of C4-C7 FAME. The equivalent chain lengths (ECL) of all 220 C4-C23 monomethyl branched FAME on OV-1 stationary phase were measured, achieving an average repeatability of ±0.0004 ECL units. The monomethyl branched FAME was identified by GC on the basis of regularity of the fractional chain lengths (FCL) dependence on the number of carbon atoms (C(z)) of individual homologous series of methyl 2-, 3-, …, 21-FAME. The prediction of retention of the first homologues, having the new position of methyl group beginning at higher carbon atoms number, and analogously for the second, third, fourth, and other members of the homologous series, allowed the dependence FCL=f(C(z)) for the first and subsequent members of beginning homologous of monomethyl derivatives of FAME. The identification was confirmed by mass spectrometry. All of the methyl isomers of FAME, which could not be completely separated by gas chromatography due to having a methyl group in surroundings of the middle of the carbon chain, were resolved by mass spectrometry using deconvolution in a SIM-mode. Measured gas chromatographic and mass spectrometric data were applied for identification of the monomethyl branched saturated FAME in tongue coating. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. The kinetics of the cerium(IV)-uranium(IV) reaction at low sulfate concentrations

    International Nuclear Information System (INIS)

    Michaille, P.; Kikindai, T.

    1977-01-01

    The rate of oxidation of uranium(IV) by cerium(IV) was measured with a stopped-flow spectrophotometer at sulfuric acid concentrations of 2 x 10 -6 to 0.5 M. At a constant hydrogen ion concentration of 0.5 M, the maximum rate constant was observed for 2 x 10 -3 M sulfuric acid; at that concentration, two sulfate ions were involved in the activated complex. The dependence of the rate constant on the hydrogen ion concentration showed that the reaction paths involving one or two sulfate ions also involved one hydroxyl ion, whereas one hydrogen ion was involved in the five sulfate dependent path. Spectrophotometric measurements supported the existence of a hydrolyzed monosulfatocomplex of cerium(IV). (author)

  9. Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2014-12-23

    The degradation of our environment and the depletion of fossil fuels make the exploration of alternative fuels evermore imperative. Among the alternatives is biohydrogen which has high energy content by weight and produces only water when combusted. Considerable effort is being expended to develop photosynthetic systems -- algae, cyanobacteria, and anaerobic phototrophs -- for sustainable H2 production. While promising, this approach also has hurdles such as the harvesting of light in densely pigmented cultures that requires costly constant mixing and large areas for exposure to sunlight. Little attention is given to fermentative H2 generation. Thus understanding the microbial pathways to H2 evolution and metabolic processes competing for electrons is an essential foundation that may expand the variety of fuels that can be generated or provide alternative substrates for fine chemical production. We studied a widely found soil anaerobe of the class Deltaproteobacteria, a sulfate-reducing bacterium to determine the electron pathways used during the oxidation of substrates and the potential for hydrogen production.

  10. Relative importance of nitrate and sulfate aerosol production mechanisms in urban atmospheres

    International Nuclear Information System (INIS)

    Middleton, P.; Kiang, C.S.

    1979-01-01

    The relative importance of the various sulfate and nitrate aerosol production mechanisms is calculated for different atmospheric conditions. The calculation scheme used to determine the rates of nitrate and sulfate production, based on the concept that vapor transfer to the aerosols and nitrate and sulfate formation within the aerosols are coupled kinetic processes, considers sulfate formation by ozone and hydrogen peroxide oxidation and catalytic oxidation in the presence of soot, iron and manganese of sulfite solutions and sulfuric acid condensation and nitrate formation by the liquid-phase oxidation of dissolved nitrogen oxides for different initial gas concentrations and particle compositions and sizes. It is found that sulfate production is higher under daytime conditions, primarily proceeding by mechanisms involving sulfuric acid and hydrogen peroxide, while at night oxidation processes on the surface of the aerosol film are more important. Nitrate tends to decrease nighttime sulfate production due to an increase in aerosol acidity and nitrate production is found to be higher under nighttime conditions and in the winter

  11. Ultrasound augmented leaching of nickel sulfate in sulfuric acid and hydrogen peroxide media.

    Science.gov (United States)

    Li, Haoyu; Li, Shiwei; Peng, Jinhui; Srinivasakannan, Chandrasekar; Zhang, Libo; Yin, Shaohua

    2018-01-01

    A new method of preparation high purity nickel sulfate assisted by ultrasonic was studied. The process mechanism was analyzed by Inductively Coupled Plasma (ICP), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Energy dispersive X-ray spectrometry (EDS).The reaction mechanisms of oxidizing leaching and ultrasonic leaching were explored, respectively. Results showed that ultrasonic treatment peel off the oxide film on the surface of nickel. The leachate under strongly agitated, the yield rate of nickel sulfate was accelerate. And the reaction area was increased by the cavitation effect, the liquid-solid reaction was promoted, and the activation energy was reduced. The leaching rate of nickel reached 46.29% by conventional leaching, which takes about 5h. Under the same conditions, the ultrasonic leaching rate reached 40%, only half of the conventional leaching time. Concentration of leaching agent, reaction temperature, ultrasonic power, leaching time had significant effect on the enhancement of the leaching reaction with ultrasonic radiation. The leaching rate of 60.41% under the optimum experiment conditions as follows: sulfuric acid concentration 30%, hydrogen peroxide 10%, leaching temperature 333K, ultrasonic power 200W and leaching time 4h. The kinetic study of the system was investigated, and the reaction rates of conventional leaching and ultrasonic leaching were controlled by diffusion, and the apparent activation energies were 16.2kJ/mol and 11.83kJ/mol. Copyright © 2017. Published by Elsevier B.V.

  12. The histone H4 lysine 20 monomethyl mark, set by PR-Set7 and stabilized by L(3mbt, is necessary for proper interphase chromatin organization.

    Directory of Open Access Journals (Sweden)

    Ayako Sakaguchi

    Full Text Available Drosophila PR-Set7 or SET8 is a histone methyltransferase that specifically monomethylates histone H4 lysine 20 (H4K20. L(3MBT has been identified as a reader of methylated H4K20. It contains several conserved domains including three MBT repeats binding mono- and dimethylated H4K20 peptides. We find that the depletion of PR-Set7 blocks de novo H4K20me1 resulting in the immediate activation of the DNA damage checkpoint, an increase in the size of interphase nuclei, and drastic reduction of cell viability. L(3mbt on the other hand stabilizes the monomethyl mark, as L(3mbt-depleted S2 cells show a reduction of more than 60% of bulk monomethylated H4K20 (H4K20me1 while viability is barely affected. Ploidy and basic chromatin structure show only small changes in PR-Set7-depleted cells, but higher order interphase chromatin organization is significantly affected presumably resulting in the activation of the DNA damage checkpoint. In the absence of any other known functions of PR-Set7, the setting of the de novo monomethyl mark appears essential for cell viability in the presence or absence of the DNA damage checkpoint, but once newly assembled chromatin is established the monomethyl mark, protected by L(3mbt, is dispensable.

  13. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Science.gov (United States)

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A; Kjeldsen, Kasper U; Jørgensen, Bo B; Plugge, Caroline M

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  14. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Directory of Open Access Journals (Sweden)

    Derya eOzuolmez

    2015-05-01

    Full Text Available Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744, a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  15. Application of Biostimulation for Remediation of Sulfate-Contaminated Groundwater at a Mining Site

    Science.gov (United States)

    Miao, Z.; Carroll, K. C.; Carreon, C.; Brusseau, M. L.

    2011-12-01

    There is growing concern regarding sulfate contamination of groundwater. One innovative in-situ remediation option under investigation is biostimulation through addition of electron-donor amendments to enhance sulfate reduction. Two pilot-scale ethanol-injection tests were conducted at a former uranium mining site that is contaminated with sulfate and nitrate (with a lack of heavy metals), and for which there appears to be minimal natural attenuation of sulfate. The first test was a push-pull test that had a limited zone of influence, while the second test was a single-well injection test in which additional downgradient wells were monitored. For both tests, sulfate concentrations began to decline within a few weeks of injection, after nitrate concentrations were significantly reduced. Concomitantly, aqueous concentrations of manganese, iron, and hydrogen sulfide increased from background. Monitoring over many months revealed that the declines in sulfate concentration conformed to exponential decay, with first-order decay rates of approximately 0.01 /d. Analysis of sulfur stable isotope data indicated that the decrease in sulfate concentrations was microbially mediated. The results also indicated that sulfides formed during sulfate reduction may have undergone partial re-oxidation. This study illustrates the feasibility of using ethanol injection for remediation of sulfate-contaminated groundwater. However, re-oxidation of sulfides (both metal sulfide precipitates and hydrogen sulfide gas) is a potential issue of significance that would need to be addressed.

  16. Photosensitized production of hydrogen by Halobacterium halobium MMT sub 22 coupled to Escherichia coli in reversed micelles of sodium lauryl sulfate in organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M.M.T.; Bhatt, J.P. (Central Salt and Marine Research Inst., Bhavnagar (India))

    1991-01-01

    Observation on the enhanced production of hydrogen by Halobacterium halobium MMT{sub 22} coupled to Escherichia coli entrapped inside the reversed micelles formed by sodium lauryl sulfate in various organic solvents, namely benzene, carbon tetrachloride, toluene, n-heptane, nitrobenzene, chlorobenzene, are reported. In the present system, a hundred fold increase in activity as compared to the activity in the usual aqueous medium was observed. (author).

  17. Nuclear dynamics in the metastable phase of the solid acid caesium hydrogen sulfate.

    Science.gov (United States)

    Krzystyniak, Maciej; Drużbicki, Kacper; Fernandez-Alonso, Felix

    2015-12-14

    High-resolution spectroscopic measurements using thermal and epithermal neutrons and first-principles calculations within the framework of density-functional theory are used to investigate the nuclear dynamics of light and heavy species in the metastable phase of caesium hydrogen sulfate. Within the generalised-gradient approximation, extensive calculations show that both 'standard' and 'hard' formulations of the Perdew-Burke-Ernzerhof functional supplemented by Tkatchenko-Scheffler dispersion corrections provide an excellent description of the known structure, underlying vibrational density of states, and nuclear momentum distributions measured at 10 and 300 K. Encouraged by the agreement between experiment and computational predictions, we provide a quantitative appraisal of the quantum contributions to nuclear motions in this solid acid. From this analysis, we find that only the heavier caesium atoms reach the classical limit at room temperature. Contrary to naïve expectation, sulfur exhibits a more pronounced quantum character relative to classical predictions than the lighter oxygen atom. We interpret this hitherto unexplored nuclear quantum effect as arising from the tighter binding environment of this species in this technologically relevant material.

  18. Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation.

    Science.gov (United States)

    Soudham, Venkata Prabhakar; Brandberg, Tomas; Mikkola, Jyri-Pekka; Larsson, Christer

    2014-08-01

    The aim of the present work was to investigate whether a detoxification method already in use during waste water treatment could be functional also for ethanol production based on lignocellulosic substrates. Chemical conditioning of spruce hydrolysate with hydrogen peroxide (H₂O₂) and ferrous sulfate (FeSO₄) was shown to be an efficient strategy to remove significant amounts of inhibitory compounds and, simultaneously, to enhance the enzymatic hydrolysis and fermentability of the substrates. Without treatment, the hydrolysates were hardly fermentable with maximum ethanol concentration below 0.4 g/l. In contrast, treatment by 2.5 mM FeSO₄ and 150 mM H₂O₂ yielded a maximum ethanol concentration of 8.3 g/l. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hydrogen sulfide generation in shipboard oily-water waste. Part 3. Ship factors

    Energy Technology Data Exchange (ETDEWEB)

    Hodgeman, D.K.; Fletcher, L.E.; Upsher, F.J.

    1995-04-01

    The chemical and microbiological composition of bilge-water in ships of the Royal Australian Navy has been investigated in relation to the formation of hydrogen sulfide by sulfate-reducing bacteria. Sulfate-reducing bacteria were found in most ships in populations up to 800,000 per mL. Sulfate in the wastes is provided by sea-water. Sea-water constitutes up to 60% (median 20%) of the wastes analysed. Evidence for generation of hydrogen sulfide in the ships was found directly as sulfide or indirectly as depressed sulfate concentrations. The low levels of sulfide found in bilge-water from machinery spaces suggested the ventilation systems were effectively removing the gas from the working area. The effect of storage of the wastes under conditions which simulated the oily- water holding tanks of ships were also investigated. Some wastes were found to produce large quantities of hydrogen sulfide on storage. The wastes that failed to produce hydrogen sulfide were investigated to identify any specific nutritional deficiencies. Some organic substances present in bilge-water, such as lactate or biodegradable cleaning agents, and phosphate strongly influenced the generation of hydrogen sulfide in stored oily-water wastes.

  20. Intricate Conformational Tunneling in Carbonic Acid Monomethyl Ester.

    Science.gov (United States)

    Linden, Michael M; Wagner, J Philipp; Bernhardt, Bastian; Bartlett, Marcus A; Allen, Wesley D; Schreiner, Peter R

    2018-04-05

    Disentangling internal and external effects is a key requirement for understanding conformational tunneling processes. Here we report the s- trans/ s- cis tunneling rotamerization of carbonic acid monomethyl ester (1) under matrix isolation conditions and make comparisons to its parent carbonic acid (3). The observed tunneling rate of 1 is temperature-independent in the 3-20 K range and accelerates when using argon instead of neon as the matrix material. The methyl group increases the effective half life (τ eff ) of the energetically disfavored s- trans-conformer from 3-5 h for 3 to 11-13 h for 1. Methyl group deuteration slows the rotamerization further (τ eff ≈ 35 h). CCSD(T)/cc-pVQZ//MP2/aug-cc-pVTZ computations of the tunneling probability suggest that the rate should be almost unaffected by methyl substitution or its deuteration. Thus the observed relative rates are puzzling, and they disagree with previous explanations involving fast vibrational relaxation after the tunneling event facilitated by the alkyl rotor.

  1. Sulfate reduction with methanol by a thermophilic consortium obtained from a methanogenic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Davidova, I.A. [Wageningen Agricultural Univ. (Netherlands). Dept. of Microbiology; Stams, A.J.M. [Wageningen Agricultural Univ. (Netherlands). Dept. of Microbiology

    1996-12-31

    An enrichment culture obtained from anaerobic granular sludge of a bench-scale anarobic reactor degraded methanol at 65 C via sulfate reduction and acetogenesis. Sulfate reduction was the dominant process (S{sup 2-}/acetate=2.5). No methane formation was observed. Approximately 30% of the methanol was converted by acetogenic bacteria to acetate, while the remainder was degraded by these bacteria to H{sub 2} and CO{sub 2} in syntrophy with hydrogen-consuming sulfate-reducing bacteria. Pure cultures of sulfate-reducing and acetogenic bacteria were isolated and characterized. (orig.)

  2. Reduction and precipitation of neptunium(V) by sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Banaszak, J. E.; Rittmann, B. E.; Reed, D. T.

    1999-01-01

    Migration of neptunium, as NpO 2 + , has been identified as a potentially important pathway for actinide release at nuclear waste repositories and existing sites of subsurface contamination. Reduction of Np(V) to Np(IV) will likely reduce its volubility, resulting in lowered subsurface migration. The ability of sulfate-reducing bacteria (SRB) to utilize Np(V) as an electron acceptor was investigated, because these bacteria are active in many anaerobic aquifers and are known to facilitate the reduction of metals and radionuclides. Pure and mixed cultures of SRB were able to precipitate neptunium during utilization of pyruvate, lactate, and hydrogen as electron donors in the presence and absence of sulfate. The neptunium in the precipitate was identified as Np(IV) using X-ray absorption near edge spectroscopy (XANES) analysis. In mixed-culture studies, the addition of hydrogen to consortia grown by pyruvate fermentation stimulated neptunium reduction and precipitation. Experiments with pure cultures of Desulfovibrio vulgaris, growing by lactate fermentation in the absence of sulfate or by sulfate reduction, confirm that the organism is active in neptunium reduction and precipitation. Based on our results, the activity of SRB in the subsurface may have a significant, and potentially beneficial, impact on actinide mobility by reducing neptunium volubility

  3. An Eco-Friendly Improved Protocol for the Synthesis of Bis(3-indolyl)methanes Using Poly(4-vinylpyridinium)hydrogen Sulfate as Efficient, Heterogeneous, and Recyclable Solid Acid Catalyst

    Science.gov (United States)

    Banothu, Janardhan; Gali, Rajitha; Velpula, Ravibabu; Bavantula, Rajitha; Crooks, Peter A.

    2013-01-01

    Highly efficient and eco-friendly protocol for the synthesis of bis(3-indolyl)methanes by the electrophilic substitution reaction of indole with aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate was described. Excellent yields, shorter reaction times, simple work-up procedure, avoiding hazardous organic solvents, and reusability of the catalyst are the most obvious advantages of this method. PMID:24052864

  4. Swelling and hydrolysis kinetics of Kraft pulp fibers in aqueous 1-butyl-3-methylimidazolium hydrogen sulfate solutions.

    Science.gov (United States)

    Mao, Jia; Abushammala, Hatem; Pereira, Laura Barcellos; Laborie, Marie-Pierre

    2016-11-20

    1Butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) is efficient at extracting cellulose nanocrystals from pulp fibers. To shed some light on the respective contributions of swelling and hydrolysis of pulp fibers by [Bmim]HSO4, the physical, structural and morphological characteristics of hardwood Kraft pulp fibers were monitored under various conditions of temperature, water content and time. Swelling was largely compounded by hydrolysis at the highest temperatures (120°C) as evidenced by mass loss and reduced degree of polymerization (DPn) at this temperature. At 120°C only, water content appeared to play a significant role on the extent of hydrolysis. At this temperature, a heterogeneous kinetic model involving weak links and amorphous regions best described the experimental data. Hydrolysis rates were maximum at 25% water content in the aqueous ionic liquid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Lactulose mediates suppression of dextran sodium sulfate-induced colon inflammation by increasing hydrogen production.

    Science.gov (United States)

    Chen, Xiao; Zhai, Xiao; Shi, Jiazi; Liu, Wen Wu; Tao, Hengyi; Sun, Xuejun; Kang, Zhimin

    2013-06-01

    Molecular hydrogen (H2) is a potent antioxidant and able to protect organs from oxidative stress injuries. Orally administered lactulose, a potent H2 inducer, is digested by colon microflora and significantly increases H2 production, indicating its potential anti-inflammatory action. To evaluate the anti-inflammatory effects of lactulose on dextran sodium sulfate (DSS)-induced colitis in mice. Mice were randomly assigned into seven groups, receiving regular distilled water, H2-rich saline (peritoneal injection), DSS, oral lactulose (0.1, 0.15, 0.2 ml/10 g, respectively), and lactulose (0.2 ml/10 g) + oral antibiotics. The mouse model of human ulcerative colitis was established by supplying mice with water containing DSS. The H2 breath test was used to determine the exhaled H2 concentration. Body weight, colitis score, colon length, pathological features and tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), maleic dialdehyde (MDA) and marrow peroxidase (MPO) levels in colon lesions were evaluated. After 7 days, DSS-induced loss of body weight, increase of colitis score, shortening of colon length, pathological changes and elevated levels of TNF-α, IL-1β, MDA, and MPO in colon lesions, were significantly suppressed by oral lactulose administration and intraperitoneally injected H2-rich saline. Ingestion of antibiotics significantly compromised the anti-inflammatory effects of lactulose. The H2 breath test showed that lactulose administration significantly induced hydrogen production and that antibiotics administration could inhibit H2 production. Lactulose can prevent the development of DSS-induced colitis and alleviate oxidative stress in the colon, as measured by MDA and MPO, probably by increasing endogenous H2 production.

  6. Non-Classical Transformation of Benzendiazonium Hydrogen Sulfates. Access to 1,3-Dimethylisochromeno[4,3-c]pyrazol-5(1H-one, a Potential Benzodiazepine Receptor Ligand

    Directory of Open Access Journals (Sweden)

    Giuseppe Daidone

    2013-10-01

    Full Text Available The compound 2-((1,3-dimethyl-1H-pyrazol-5-yl(methylcarbamoylbenzene-diazonium hydrogen sulfate (10 was reacted with copper sulfate and sodium chloride, in the presence of ascorbic acid as reducing agent, to afford a mixture of the chlorinated epimers 4′-chloro-2,2′,5′-trimethyl-2′,4′-dihydrospiro[isoindoline-1,3′-pyrazol]-3-one (18 and (19, the epimers 4′-hydroxy-2,2′,5′-trimethyl-2′,4′-dihydrospiro[isoindoline-1,3′-pyrazol]-3-one (20 and (21, and N-(1,3-dimethyl-1H-pyrazol-5-ylbenzamide (22. Under the foregoing conditions, diazonium salt 10 affords neither the 2-chloro-N-(1,3-dimethyl-1H-pyrazol-5-yl-N-methylbenzamide (23 nor the tricyclic derivative 24, the classical products of the Sandmeyer and Pschorr reactions, respectively. Finally, by heating 20 at 210 °C the compound 1,3-dimethylisochromeno[4,3-c]pyrazol-5(1H-one (24 was obtained. The transformation under the above conditions of 2-((4-chloro-3-methyl-1-phenyl- 1H-pyrazol-5-yl(methylcarbamoylbenzendiazonium hydrogen sulphate (11 afforded 4′,4′-dichloro-2,5′-dimethyl-2′-phenyl-2′,4′-dihydrospiro[isoindoline-1,3′-pyrazol]-3-one (29 as the sole reaction product.

  7. Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor

    NARCIS (Netherlands)

    Balk, M.; Weijma, J.; Goorissen, H.P.; Ronteltap, M.; Hansen, T.A.; Stams, A.J.M.

    2007-01-01

    A sulfate-reducing bacterium, strain WW1, was isolated from a thermophilic bioreactor operated at 65 degrees C with methanol as sole energy source in the presence of sulfate. Growth of strain WW1 on methanol or acetate was inhibited at a sulfide concentration of 200 mg l(-1), while on H-2/CO2, no

  8. Tillage and water management for riceland productivity in acid sulfate soils of the Mekong delta, Vietnam.

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    1997-01-01

    Acid sulfate soils are characterized by low pH and high concentrations of aluminum, sulfate, iron and hydrogen sulfide. Removal of at least part of these substances is a prerequisite for land use, at least in severely acid soils. In this study, the effectiveness of harrowing and flushing with

  9. Growth of sulfate reducers in deep-subseafloor sediments stimulated by crustal fluids

    Directory of Open Access Journals (Sweden)

    Katja eFichtel

    2012-02-01

    Full Text Available On a global scale, crustal fluids fuel a substantial part of the deep subseafloor biosphere by providing electron acceptors for microbial respiration. In this study, we examined bacterial cultures from a sediment column of the Juan de Fuca Ridge, Northeast Pacific (IODP Site U1301 which is divided into three distinctive compartments: an upper sulfate-containing zone, formed by bottom-seawater diffusion, a sulfate-depleted zone and a second (~140 m thick sulfate-containing zone influenced by fluid diffusion from the basaltic aquifer. Sulfate reducers were isolated from near-surface and near-basement sediments. All initial enrichments harboured specific communities of heterotrophic microorganisms. Among those, the number of isolated spore-forming Firmicutes decreased from 60% to 21% with sediment depth. Strains affiliated to Desulfosporosinus lacus, Desulfotomaculum sp. and Desulfovibrio aespoeensis were recovered from the upper sediment layers (1.3-9.1 meters below seafloor, mbsf. Several strains of Desulfovibrio indonesiensis and one relative of Desulfotignum balticum were isolated from near-basement sediments (240-262 mbsf. The physiological investigation of strains affiliated to D. aespoeensis, D. indonesiensis and D. balticum indicated that they were all able to use sulfate, thiosulfate and sulfite as electron acceptors. In the presence of sulfate, they grew strain-specifically on a few short-chain n-alcohols and fatty acids, only. The strains fermented either ethanol, pyruvate or betaine. Interestingly, all strains utilized hydrogen and the isolate affiliated to D. indonesiensis even exhibited an autotrophic life-mode. Thus, in the deep subseafloor where organic substrates are limited or hardly degradable, hydrogen might become an essential electron donor. The isolation of non-sporeforming sulfate reducers from fluid-influenced layers indicates that they have survived the long-term burial as active populations even after the separation from

  10. Production and Consumption of Hydrogen in Hot Spring Microbial Mats Dominated by a Filamentous Anoxygenic Photosynthetic Bacterium

    Science.gov (United States)

    Otaki, Hiroyo; Everroad, R. Craig; Matsuura, Katsumi; Haruta, Shin

    2012-01-01

    Microbial mats containing the filamentous anoxygenic photosynthetic bacterium Chloroflexus aggregans develop at Nakabusa hot spring in Japan. Under anaerobic conditions in these mats, interspecies interaction between sulfate-reducing bacteria as sulfide producers and C. aggregans as a sulfide consumer has been proposed to constitute a sulfur cycle; however, the electron donor utilized for microbial sulfide production at Nakabusa remains to be identified. In order to determine this electron donor and its source, ex situ experimental incubation of mats was explored. In the presence of molybdate, which inhibits biological sulfate reduction, hydrogen gas was released from mat samples, indicating that this hydrogen is normally consumed as an electron donor by sulfate-reducing bacteria. Hydrogen production decreased under illumination, indicating that C. aggregans also functions as a hydrogen consumer. Small amounts of hydrogen may have also been consumed for sulfur reduction. Clone library analysis of 16S rRNA genes amplified from the mats indicated the existence of several species of hydrogen-producing fermentative bacteria. Among them, the most dominant fermenter, Fervidobacterium sp., was successfully isolated. This isolate produced hydrogen through the fermentation of organic carbon. Dispersion of microbial cells in the mats resulted in hydrogen production without the addition of molybdate, suggesting that simultaneous production and consumption of hydrogen in the mats requires dense packing of cells. We propose a cyclic electron flow within the microbial mats, i.e., electron flow occurs through three elements: S (elemental sulfur, sulfide, sulfate), C (carbon dioxide, organic carbon) and H (di-hydrogen, protons). PMID:22446313

  11. Evaluation of antioxidant activities and chemical analysis of sulfated chitosan from Sepia prashadi.

    Science.gov (United States)

    Seedevi, Palaniappan; Moovendhan, Meivelu; Vairamani, Shanmugam; Shanmugam, Annaian

    2017-06-01

    The chitin and chitosan of S. prashadi was prepared through demineralization, deproteinzation, deacetylation process and sulfation were carried by chlorosulfonic acid in N,N-dimethylformamide. The sulfate content in chitosan was found to be 18.9%. The carbon, hydrogen and nitrogen composition of the sulfated chitosan were recorded 39.09%, 6.95% and 6.58% respectively. The structural analysis was done by using FT-IR and NMR spectroscopy technique. The DSC curves of sulfated chitosan showed a large endothermic peak resolved with T o value of 54.57°C and T P value of 97.46°C. The morphology of sulfated chitin and sulfated chitosan were studied by SEM. The Further in vitro antioxidant activity of sulfated chitosan was screened by scavenging activity of superoxide radical assay, hydroxyl radical scavenging assay, metal-ion chelating effect and reducing power. Its anticoagulant activity was tested for human plasma with respect to Activated Partial Thromboplastin Time (APTT) and Prothrombin Time (PT). Results prove that sulfated chitosan has potent antioxidant and anticoagulant activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evidence of sulfate-dependent anaerobic methane oxidation... Wolfe & Wilkin data table vers 1

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data file (.csv) including data plotted in manuscript figures: methane and sulfate concentrations, and stable isotope data for carbon, hydrogen, sulfur, and oxygen....

  13. Biotechnological aspects of sulfate reduction with methane as electron donor

    NARCIS (Netherlands)

    Meulepas, R.J.W.; Stams, A.J.M.; Lens, P.N.L.

    2010-01-01

    Biological sulfate reduction can be used for the removal and recovery of oxidized sulfur compounds and metals from waste streams. However, the costs of conventional electron donors, like hydrogen and ethanol, limit the application possibilities. Methane from natural gas or biogas would be a more

  14. One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    NARCIS (Netherlands)

    Visser, M.

    2015-01-01

    ABSTRACT

    One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    Life on earth is sustained by the constant cycling of six essential elements: oxygen, hydrogen, nitrogen,

  15. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction.

    Science.gov (United States)

    Tabak, Henry H; Govind, Rakesh

    2003-12-01

    Several biotreatmemt techniques for sulfate conversion by the sulfate reducing bacteria (SRB) have been proposed in the past, however few of them have been practically applied to treat sulfate containing acid mine drainage (AMD). This research deals with development of an innovative polypropylene hollow fiber membrane bioreactor system for the treatment of acid mine water from the Berkeley Pit, Butte, MT, using hydrogen consuming SRB biofilms. The advantages of using the membrane bioreactor over the conventional tall liquid phase sparged gas bioreactor systems are: large microporous membrane surface to the liquid phase; formation of hydrogen sulfide outside the membrane, preventing the mixing with the pressurized hydrogen gas inside the membrane; no requirement of gas recycle compressor; membrane surface is suitable for immobilization of active SRB, resulting in the formation of biofilms, thus preventing washout problems associated with suspended culture reactors; and lower operating costs in membrane bioreactors, eliminating gas recompression and gas recycle costs. Information is provided on sulfate reduction rate studies and on biokinetic tests with suspended SRB in anaerobic digester sludge and sediment master culture reactors and with SRB biofilms in bench-scale SRB membrane bioreactors. Biokinetic parameters have been determined using biokinetic models for the master culture and membrane bioreactor systems. Data are presented on the effect of acid mine water sulfate loading at 25, 50, 75 and 100 ml/min in scale-up SRB membrane units, under varied temperatures (25, 35 and 40 degrees C) to determine and optimize sulfate conversions for an effective AMD biotreatment. Pilot-scale studies have generated data on the effect of flow rates of acid mine water (MGD) and varied inlet sulfate concentrations in the influents on the resultant outlet sulfate concentration in the effluents and on the number of SRB membrane modules needed for the desired sulfate conversion in

  16. Water containing explosive for big diameter use. [Slurry of ammonium nitrate and monomethyl lamine

    Energy Technology Data Exchange (ETDEWEB)

    Sunakawa, Tomoji; Fujita, Koichi; Kodama, Taro; Suzuki, Masahiro; Ono, Naoki

    1988-05-11

    This is a report concerning the design and experiment of water containing explosive which can be used as a substitute of ANFO. As the water containing explosive, slurry type was taken which consists of ammonium nitrate and monomethyl amine as main components and density of which was more than 1.2, explosion speed 4880 m/s, F value 7790 atm*L/Kg. Experiments were conducted for variuous loading length. From the result, it was recognized that at least 4.5 m of loading length was neccessary for achieving better result than the case whlen only ANFO was used. (1 fig, 1 tab)

  17. HYDROGEN CONCENTRATIONS IN SULFATE-REDUCING ESTUARINE SEDIMENTS DURING PCE DEHALOGENATION

    Science.gov (United States)

    Despite recent progress made evaluating the role of hydrogen (H2) as a key electron donor in the anaerobic remediation of chloroethenes, few studies have focused on the evaluation of hydrogen thresholds relative to reductive dehalogenation in sulfidogenic environments. Competitio...

  18. Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate.

    Science.gov (United States)

    Schink, Bernhard; Thiemann, Volker; Laue, Heike; Friedrich, Michael W

    2002-05-01

    A new sulfate-reducing bacterium was isolated from marine sediment with phosphite as sole electron donor and CO(2) as the only carbon source. Strain FiPS-3 grew slowly, with doubling times of 3-4 days, and oxidized phosphite, hydrogen, formate, acetate, fumarate, pyruvate, glycine, glutamate, and other substrates nearly completely, with concomitant reduction of sulfate to sulfide. Acetate was formed as a side product to a small extent. Glucose, arabinose, and proline were partly oxidized and partly fermented to acetate plus propionate. Growth with phosphite, hydrogen, or formate was autotrophic. Also, in the presence of sulfate, CO dehydrogenase was present, and added acetate did not increase growth rates or growth yields. In the absence of sulfate, phosphite oxidation was coupled to homoacetogenic acetate formation, with growth yields similar to those in the presence of sulfate. Cells were small rods, 0.6 - 0.8 x 2-4 microm in size, and gram-negative, with a G+C content of 53.9 mol%. They contained desulforubidin, but no desulfoviridin. Based on sequence analysis of the 16S rRNA gene and the sulfite reductase genes dsrAB, strain FiPS-3 was found to be closely related to Desulfotignum balticum. However, physiological properties differed in many points from those of D. balticum. These findings justify the establishment of a new species, Desulfotignum phosphitoxidans.

  19. Isotopic Zonation Within Sulfate Evaporite Mineral Crystals Reveal Quantitative Paleoenvironment Details

    Science.gov (United States)

    Coleman, M.; Rhorssen, M.; Mielke, R. E.

    2008-12-01

    Isotopic variations measured within a single crystal of hydrated magnesium sulfate are greater than 30 permil for delta 2-H, almost 10 permil for δ18O in water of hydration; and greater than 3 permil in sulfate oxygen. These results are interpreted to indicate the relative humidity of the system during evaporation (15 to 20 percent in this test case) and constrain the volume of water involved. The theoretical basis of this system is the isotopic fractionation between the species in solution and those precipitated as evaporite salts. Precipitation preferentially accumulates more of the heavy isotopes of sulfur and oxygen in mineral sulfate, relative to sulfate in solution. During the course of mineral growth this leads to successive depletion of the respective heavier isotopes in the residual brine reflected in a parallel trend in successive precipitates or even in successive zones within a single crystal. The change in isotopic composition at any one time during the process, relative to the initial value, can be described by an isotopic version of the Rayleigh Fractionation equation, depending only on the extent of the completion of the process and the relevant fractionation factor. Evaporation preferentially removes isotopically lighter hydrogen and oxygen leading to successive extents of enrichment in the respective heavier isotopes in the residual water. However, the relative effects on hydrogen and oxygen isotopes differs as function of relative humidity [1]. ALL OF THESE CHANGES ARE PRESERVED IN THE MINERAL ISOTOPE COMPOSITIONS. We precipitated barium sulfate from epsomite or gypsum samples, which was reduced at 1450°C in the presence of graphite and glassy carbon in a Finnigan TC/EA to produce CO for O isotopic analysis in a Finnigan 253 mass spectrometer, while a separate subsample was oxidized to SO2 in a Costech Elemental Analyzer. However, to make progress with this approach we needed to make a large number of measurements of hydration water and so we

  20. Morpholine-4-carboxamidinium sulfate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2016-01-01

    Full Text Available The asymmetric unit of the title salt, 2C5H12N3O+·SO42−, comprises two cations and one sulfate ion. In both cations, the C, N and O atoms of the morpholine rings are disordered over two sets of sites, with refined occupancies of 0.849 (3:0.151 (3 for cation I and 0.684 (4:0.316 (4 for cation II. The C—N bond lengths in both central C3N units of the carboxamidinium ions range between 1.253 (12 and 1.362 (5 Å, indicating a degree of double-bond character. The central C atoms are bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charges are delocalized in both CN3 planes. The crystal structure is stabilized by a three-dimensional network of N—H...O hydrogen bonds between the cations and the sulfate ion. Scheme tiny font, charges and delocalized bonds almost invisible

  1. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    International Nuclear Information System (INIS)

    Sugumaran, G.; Silbert, J.E.

    1988-01-01

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo[14C]chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo[14C]chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo[14C] chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo[14C]chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo[14C]chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo[14C]chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo[14C]chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent

  2. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  3. Analysis of the hybrid copper oxide-copper sulfate cycle for the thermochemical splitting of water for hydrogen production

    International Nuclear Information System (INIS)

    Gonzales, Ross B.; Law, Victor J.; Prindle, John C.

    2009-01-01

    The hybrid copper oxide-copper sulfate water-splitting thermochemical cycle involves two principal steps: (1) hydrogen production from the electrolysis of water, SO 2 (g) and CuO(s) at room temperature and (2) the thermal decomposition of the CuSO 4 product to form oxygen and SO 2 , which is recycled to the first step. A four-reaction version of the cycle (known in the literature as Cycle H-5) was used as the basis of the present work. For several of the four reactions, a rotating batch reactor sequence is proposed in order to overcome equilibrium limitations. Pinch technology was used to optimize heat integration. Sensitivity analyses revealed it to be economically more attractive to use a 10 C approach to minimize heat loss (rather than 20 C). Using standard Aspen Plus features and the Peng-Robinson equation of state for separations involving oxygen and sulfur oxides, a proposed flowsheet for the cycle was generated to yield ''Level 3'' results. A cost analysis of the designed plant (producing 100 million kmol/yr hydrogen) indicates a total major equipment cost of approximately $45 million. This translates to a turnkey plant price (excluding the cost of the high-temperature heat source or electrolyzer internals) of approximately $360 million. Based on a $2.50/kg selling price for hydrogen, gross annual revenue could be on the order of $500 million, resulting in a reasonable payback period when all capital and operating costs are considered. Previous efficiency estimates using Level 1 and Level 2 methods gave the process efficiency in the neighborhood of 47-48%. The Level 3 efficiency computation was 24-25% depending on the approach temperature used for recuperation. If the low quality heat rejected by the process can be recovered and used elsewhere, the Level 3 analysis could be as high as 51-53%. (author)

  4. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Science.gov (United States)

    Chung Kwong, Kai; Chim, Man Mei; Davies, James F.; Wilson, Kevin R.; Nin Chan, Man

    2018-02-01

    Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4-) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O) and a sulfate radical anion (SO4 ṡ -) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10-13 cm3 molecule-1 s-1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 1012 molecule cm-3 s), only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an

  5. Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice

    NARCIS (Netherlands)

    Hanson, Julien; Gille, Andreas; Zwykiel, Sabrina; Lukasova, Martina; Clausen, Björn E.; Ahmed, Kashan; Tunaru, Sorin; Wirth, Angela; Offermanns, Stefan

    2010-01-01

    The antidyslipidemic drug nicotinic acid and the antipsoriatic drug monomethyl fumarate induce cutaneous flushing through activation of G protein-coupled receptor 109A (GPR109A). Flushing is a troublesome side effect of nicotinic acid, but may be a direct reflection of the wanted effects of

  6. New hydrogen titanium phosphate sulfate electrodes for Li-ion and Na-ion batteries

    Science.gov (United States)

    Zhao, Ran; Mieritz, Daniel; Seo, Dong-Kyun; Chan, Candace K.

    2017-03-01

    NASICON-type materials with general formula AxM2(PO4)3 (A = Li or Na, M = Ti, V, and Fe) are promising candidates for Li- and Na-ion batteries due to their open three-dimensional framework structure. Here we report the electrochemical properties of hydrogen titanium phosphate sulfate, H0.4Ti2(PO4)2.4(SO4)0.6 (HTPS), a new mixed polyanion material with NASICON structure. Micron-sized HTPS aggregates with crystallite grain size of ca. 23 nm are synthesized using a sol-gel synthesis in an acidic medium. The properties of the as-synthesized HTPS, ball-milled HTPS, and samples prepared as carbon composites using an in-situ glucose decomposition reaction are investigated. A capacity of 148 mAh g-1 corresponding to insertion of 2 Li+ per formula unit is observed in the ball-milled HTPS over the potential window of 1.5-3.4 V vs. Li/Li+. Lithiation at ca. 2.8 and 2.5 V is determined to occur through filling of the M1 and M2 sites, respectively. Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) are used characterize the HTPS before and after cycling. Evaluation of the HTPS in a Na-ion cell is also performed. A discharge capacity of 93 mAh g-1 with sodiation at ca. 2.9 and 2.2 V vs. Na/Na+ is observed.

  7. Enhancer-associated H3K4 monomethylation by trithorax-related, the drosophila homolog of mammalian MLL3/MLL4

    NARCIS (Netherlands)

    H.-M. Herz (Hans-Martin); M. Mohan (Man); A.S. Garruss (Alexander); K. Liang (Kaiwei); Y.-H. Takahashi (Yoh-hei); K. Mickey (Kristen); O. Voets (Olaf); C.P. Verrijzer (Peter); A. Shilatifard (Ali)

    2012-01-01

    textabstractMonomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are

  8. Synfuel (hydrogen) production from fusion power

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Cox, K.E.; Pendergrass, J.H.; Booth, L.A.

    1979-01-01

    A potential use of fusion energy for the production of synthetic fuel (hydrogen) is described. The hybrid-thermochemical bismuth-sulfate cycle is used as a vehicle to assess the technological and economic merits of this potential nonelectric application of fusion power

  9. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    International Nuclear Information System (INIS)

    Dallam, R.D.

    1987-01-01

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H 2 35 SO 4 ) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables

  10. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    Science.gov (United States)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  11. Bis(4-aminopyridinium hexaaquanickel(II bis(sulfate

    Directory of Open Access Journals (Sweden)

    Thameur Sahbani

    2014-01-01

    Full Text Available In the title compound, (C5H7N22[Ni(H2O6](SO42, the NiII cation is located on an inversion centre and is coordinated by six aqua ligands in a slightly distorted octahedral coordination environment. The [Ni(H2O6]2+ ions are connected through an extensive network of O—H...O hydrogen bonds to sulfate anions, leading to the formation of layers parallel to (001. The 4-aminopyridinium cations are located between these layers and are connected to the anionic framework by N—H...O hydrogen bonds. Weak π–π interactions between the pyridine rings, with a centroid–centroid distance of 3.754 (9 Å, provide additional stability to the crystal packing.

  12. Biological sulfate removal from gypsum contaminated construction and demolition debris.

    Science.gov (United States)

    Kijjanapanich, Pimluck; Annachhatre, Ajit P; Esposito, Giovanni; van Hullebusch, Eric D; Lens, Piet N L

    2013-12-15

    Construction and demolition debris (CDD) contains high levels of sulfate that can cause detrimental environmental impacts when disposed without adequate treatment. In landfills, sulfate can be converted to hydrogen sulfide under anaerobic conditions. CDD can thus cause health impacts or odor problems to landfill employees and surrounding residents. Reduction of the sulfate content of CDD is an option to overcome these problems. This study aimed at developing a biological sulfate removal system to reduce the sulfate content of gypsum contaminated CDD in order to decrease the amount of solid waste, to improve the quality of CDD waste for recycling purposes and to recover sulfur from CDD. The treatment leached out the gypsum contained in CDD by water in a leaching column. The sulfate loaded leachate was then treated in a biological sulfate reducing Upflow Anaerobic Sludge Blanket (UASB) reactor to convert the sulfate to sulfide. The UASB reactor was operated at 23 ± 3 °C with a hydraulic retention time and upflow velocity of 15.5 h and 0.1 m h(-1), respectively while ethanol was added as electron donor at a final organic loading rate of 3.46 g COD L(-1) reactor d(-1). The CDD leachate had a pH of 8-9 and sulfate dissolution rates of 526.4 and 609.8 mg L(-1) d(-1) were achieved in CDD gypsum and CDD sand, respectively. Besides, it was observed that the gypsum dissolution was the rate limiting step for the biological treatment of CDD. The sulfate removal efficiency of the system stabilized at around 85%, enabling the reuse of the UASB effluent for the leaching step, proving the versatility of the bioreactor for practical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Fractionation of hydrogen isotopes by sulfate- and nitrate-reducing bacteria

    OpenAIRE

    Magdalena Rose Osburn; Katherine S Dawson; Marilyn L Fogel; Alex Sessions

    2016-01-01

    Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen –protium and deuterium –that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ2H provides a potential basis f...

  14. Natural occurrence of alternariol and alternariol monomethyl ether in soya beans.

    Science.gov (United States)

    Oviedo, M S; Barros, G G; Chulze, S N; Ramirez, M L

    2012-08-01

    The natural occurrence of alternariol (AOH) and alternariol monomethyl ether (AME) in soya beans harvested in Argentina was evaluated. Both toxins were simultaneously detected by using HPLC analysis coupled with a solid phase extraction column clean-up. Characteristics of this in-house method such as accuracy, precision and detection and quantification limits were defined by means of recovery test with spiked soya bean samples. Out of 50 soya bean samples, 60% showed contamination with the mycotoxins analyzed; among them, 16% were only contaminated with AOH and 14% just with AME. Fifteen of the positive samples showed co-occurrence of both mycotoxins analyzed. AOH was detected in concentrations ranging from 25 to 211 ng/g, whereas AME was found in concentrations ranging from 62 to 1,153 ng/g. Although a limited number of samples were evaluated, this is the first report on the natural occurrence of Alternaria toxins in soya beans and is relevant from the point of view of animal public health.

  15. Gastrointestinal and microbial responses to sulfate-supplemented drinking water in mice.

    Science.gov (United States)

    Deplancke, Bart; Finster, Kai; Graham, W Vallen; Collier, Chad T; Thurmond, Joel E; Gaskins, H Rex

    2003-04-01

    There is increasing evidence that hydrogen sulfide (H2S), produced by intestinal sulfate-reducing bacteria (SRB), may be involved in the etiopathogenesis of chronic diseases such as ulcerative colitis and colorectal cancer. The activity of SRB, and thus H2S production, is likely determined by the availability of sulfur-containing compounds in the intestine. However, little is known about the impact of dietary or inorganic sulfate on intestinal sulfate and SRB-derived H2S concentrations. In this study, the effects of short-term (7 day) and long-term (1 year) inorganic sulfate supplementation of the drinking water on gastrointestinal (GI) sulfate and H2S concentrations (and thus activity of resident SRBs), and the density of large intestinal sulfomucin-containing goblet cells, were examined in C3H/HeJBir mice. Additionally, a PCR-denaturing gradient gel electrophoresis (DGGE)-based molecular ecology technique was used to examine the impact of sulfate-amended drinking water on microbial community structure throughout the GI tract. Average H2S concentrations ranged from 0.1 mM (stomach) to 1 mM (cecum). A sulfate reduction assay demonstrated in situ production of H2S throughout the GI tract, confirming the presence of SRB. However, H2S generation and concentrations were greatest in the cecum and colon. Sulfate supplementation of drinking water did not significantly increase intestinal sulfate or H2S concentrations, suggesting that inorganic sulfate is not an important modulator of intestinal H2S concentrations, although it altered the bacterial profiles of the stomach and distal colon of 1-year-old mice. This change in colonic bacterial profiles may reflect a corresponding increase in the density of sulfomucin-containing goblet cells in sulfate-supplemented compared with control mice.

  16. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Directory of Open Access Journals (Sweden)

    K. C. Kwong

    2018-02-01

    Full Text Available Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4− has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O and a sulfate radical anion (SO4 ⋅ − upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19  ×  10−13 cm3 molecule−1 s−1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27  ×  1012 molecule cm−3 s, only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we

  17. Cementification for radioactive waste including high-concentration sodium sulfate and high-concentration radioactive nuclide

    International Nuclear Information System (INIS)

    Miyamoto, Shinya; Sato, Tatsuaki; Sasoh, Michitaka; Sakurai, Jiro; Takada, Takao

    2005-01-01

    For the cementification of radioactive waste that has large concentrations of sodium sulfate and radioactive nuclide, a way of fixation for sulfate ion was studied comprising the pH control of water in contact with the cement solid, and the removal of the excess water from the cement matrix to prevent hydrogen gas generation with radiolysis. It was confirmed that the sulfate ion concentration in the contacted water with the cement solid is decreased with the formation of ettringite or barium sulfate before solidification, the pH value of the pore water in the cement solid can control less than 12.5 by the application of zeolite and a low-alkali cement such as alumina cement or fly ash mixed cement, and removal of the excess water from the cement matrix by heating is possible with aggregate addition. Consequently, radioactive waste including high-concentration sodium sulfate and high-concentration radioactive nuclide can be solidified with cementitious materials. (author)

  18. USE OF HYDROGEN RESPIROMETRY TO DETERMINE METAL TOXICITY TO SULFATE REDUCING BACTERIA

    Science.gov (United States)

    Acid mine drainage (AMD), an acidic metal-bearing wastewater poses a severe pollution problem attributed to post-mining activities. The metals (metal sulfates) encountered in AMD and considered of concern for risk assessment are: arsenic, cadmium, aluminum, manganese, iron, zinc ...

  19. Desulfotomaculum arcticum sp. nov., a novel spore-forming, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard

    DEFF Research Database (Denmark)

    Vandieken, Verona; Knoblauch, Christian; Jørgensen, Bo Barker

    2006-01-01

    Strain 15T is a novel spore-forming, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Sulfate could be replaced by sulfite or thiosulfate. Hydrogen, formate, lactate, propionate, butyrate, hexanoate, methanol, ethanol, propanol, butanol, pyruvate, malate...

  20. Microbial fuel cell based on electroactive sulfate-reducing biofilm

    International Nuclear Information System (INIS)

    Angelov, Anatoliy; Bratkova, Svetlana; Loukanov, Alexandre

    2013-01-01

    Highlights: ► Regulation and management of electricity generation by variation of residence time. ► Design of microbial fuel cell based on electroactive biofilm on zeolite. ► Engineering solution for removing of the obtained elemental sulfur. - abstract: A two chambered laboratory scale microbial fuel cell (MFC) has been developed, based on natural sulfate-reducing bacterium consortium in electroactive biofilm on zeolite. The MFC utilizes potassium ferricyanide in the cathode chamber as an electron acceptor that derives electrons from the obtained in anode chamber H 2 S. The molecular oxygen is finally used as a terminal electron acceptor at cathode compartment. The generated power density was 0.68 W m −2 with current density of 3.2 A m −2 at 150 Ω electrode resistivity. The hydrogen sulfide itself is produced by microbial dissimilative sulfate reduction process by utilizing various organic substrates. Finally, elemental sulfur was identified as the predominant final oxidation product in the anode chamber. It was removed from MFC through medium circulation and gathering in an external tank. This report reveals dependence relationship between the progress of general electrochemical parameters and bacterial sulfate-reduction rate. The presented MFC design can be used for simultaneous sulfate purification of mining drainage wastewater and generation of renewable electricity

  1. Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis

    Directory of Open Access Journals (Sweden)

    Angeliki Marietou

    2018-03-01

    Full Text Available The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the physiology of dissimilatory sulfate-reducing microorganisms (SRM there are no studies identifying the proteins involved in sulfate uptake in members of this ecologically important group of anaerobes. We surveyed the complete genomes of 44 sulfate-reducing bacteria and archaea across six phyla and identified putative sulfate transporter encoding genes from four out of the five surveyed protein families based on homology. We did not find evidence that ABC-type transporters (SulT are involved in the uptake of sulfate in SRM. We speculate that members of the CysP sulfate transporters could play a key role in the uptake of sulfate in thermophilic SRM. Putative CysZ-type sulfate transporters were present in all genomes examined suggesting that this overlooked group of sulfate transporters might play a role in sulfate transport in dissimilatory sulfate reducers alongside SulP. Our in silico analysis highlights several targets for further molecular studies in order to understand this key step in the metabolism of SRMs.

  2. Recovery of ammonia and sulfate from waste streams and bioenergy production via bipolar bioelectrodialysis

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    to recover ammonia and sulfate from waste streams and thereby counteracting their toxicity during anaerobic digestion. Furthermore, hydrogen production and wastewater treatment were also accomplished. At an applied voltage of 1.2 V, nitrogen and sulfate fluxes of 5.1 g View the MathML sourceNH4+-N/m2/d...... and 18.9 g View the MathML sourceSO42−/m2/d were obtained, resulting in a Coulombic and current efficiencies of 23.6% and 77.4%, respectively. Meanwhile, H2 production of 0.29 L/L/d was achieved. Gas recirculation at the cathode increased the nitrogen and sulfate fluxes by 2.3 times. The applied voltage......Ammonia and sulfate, which are prevalent pollutants in agricultural and industrial wastewaters, can cause serious inhibition in several biological treatment processes, such as anaerobic digestion. In this study, a novel bioelectrochemical approach termed bipolar bioelectrodialysis was developed...

  3. Distinguishing iron-reducing from sulfate-reducing conditions

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.; Thomas, M.A.; McMahon, P.B.

    2009-01-01

    Ground water systems dominated by iron- or sulfate-reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS-, and S= species and denoted here as "H2S"). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron- and the sulfate-reducing microorganisms that catalyze the production of Fe2+ and H 2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H 2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2 ???0.2 to 0.8 nM). Conversely, if the Fe 2+/H2S ratio was less than 0.30, consistent sulfate-reducing (H2 ???1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron- and sulfate-reducing zones or concomitant iron and sulfate reduction under nonelectron donor-limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems. ?? 2009 National Ground Water Association.

  4. Reduced sulfation of chondroitin sulfate but not heparan sulfate in kidneys of diabetic db/db mice.

    Science.gov (United States)

    Reine, Trine M; Grøndahl, Frøy; Jenssen, Trond G; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O

    2013-08-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.

  5. Semi-synthesis of chondroitin sulfate-E from chondroitin sulfate-A

    OpenAIRE

    Cai, Chao; Solakyildirim, Kemal; Yang, Bo; Beaudet, Julie M.; Weyer, Amanda; Linhardt, Robert J.; Zhang, Fuming

    2012-01-01

    Chondroitin sulfate-E (chondroitin-4, 6-disulfate) was prepared from chondroitin sulfate-A (chondroitin-4 - sulfate) by regioselective sulfonation, performed using trimethylamine sulfur trioxide in formamide under argon. The structure of semi-synthetic chondroitin sulfate-E was analyzed by PAGE, 1H NMR, 13C NMR, 2D NMR and disaccharide analysis and compared with natural chondroitin sulfate-E. Both semi-synthetic and natural chondroitin sulfate-E were each biotinylated and immobilized on BIAco...

  6. Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins.

    Science.gov (United States)

    Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto

    2011-06-01

    In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S.

  7. Unusual hydrogen bonding in L-cysteine hydrogen fluoride.

    Science.gov (United States)

    Minkov, V S; Ghazaryan, V V; Boldyreva, E V; Petrosyan, A M

    2015-08-01

    L-Cysteine hydrogen fluoride, or bis(L-cysteinium) difluoride-L-cysteine-hydrogen fluoride (1/1/1), 2C3H8NO2S(+)·2F(-)·C3H7NO2S·HF or L-Cys(+)(L-Cys···L-Cys(+))F(-)(F(-)...H-F), provides the first example of a structure with cations of the 'triglycine sulfate' type, i.e. A(+)(A···A(+)) (where A and A(+) are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter-ion. The salt crystallizes in the monoclinic system with the space group P2(1). The dimeric (L-Cys···L-Cys(+)) cation and the dimeric (F(-)···H-F) anion are formed via strong O-H···O or F-H···F hydrogen bonds, respectively, with very short O···O [2.4438 (19) Å] and F···F distances [2.2676 (17) Å]. The F···F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O-H···F type, formed by a L-cysteinium cation and a fluoride ion. The corresponding O···F distance of 2.3412 (19) Å seems to be the shortest among O-H···F and F-H···O hydrogen bonds known to date. The single-crystal X-ray diffraction study was complemented by IR spectroscopy. Of special interest was the spectral region of vibrations related to the above-mentioned hydrogen bonds.

  8. A 3D-structural model of unsulfated chondroitin from high-field NMR: 4-sulfation has little effect on backbone conformation

    Science.gov (United States)

    Sattelle, Benedict M.; Shakeri, Javad; Roberts, Ian S.; Almond, Andrew

    2010-01-01

    The glycosaminoglycan chondroitin sulfate is essential in human health and disease but exactly how sulfation dictates its 3D-strucutre at the atomic level is unclear. To address this, we have purified homogenous oligosaccharides of unsulfated chondroitin (with and without 15N-enrichment) and analysed them by high-field NMR to make a comparison published chondroitin sulfate and hyaluronan 3D-structures. The result is the first full assignment of the tetrasaccharide and an experimental 3D-model of the hexasaccharide (PDB code 2KQO). In common with hyaluronan, we confirm that the amide proton is not involved in strong, persistent inter-residue hydrogen bonds. However, in contrast to hyaluronan, a hydrogen bond is not inferred between the hexosamine OH-4 and the glucuronic acid O5 atoms across the β(1→3) glycosidic linkage. The unsulfated chondroitin bond geometry differs slightly from hyaluronan by rotation about the β(1→3) ψ dihedral (as previously predicted by simulation), while the β(1→4) linkage is unaffected. Furthermore, comparison shows that this glycosidic linkage geometry is similar in chondroitin-4-sulfate. We therefore hypothesise that both hexosamine OH-4 and OH-6 atoms are solvent exposed in chondroitin, explaining why it is amenable to sulfation and hyaluronan is not, and also that 4-sulfation has little effect on backbone conformation. Our conclusions exemplify the value of the 3D-model presented here and progress our understanding of glycosaminoglycan molecular properties. PMID:20022001

  9. Mg-Sulfate Salts as Possible Water Reservoirs in Martian Regolith

    Science.gov (United States)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.; Feldman, W. C.

    2003-12-01

    Neutron spectrometer data from the Mars Odyssey orbiter provide evidence of high water-equivalent hydrogen abundance in some near-equatorial locations on Mars. In broad regions shallow (duricrust indicate that Mg and S are correlated and that ˜10% of an Mg-sulfate salt is a likely cementing agent. However, the range of possible Mg sulfates is large. Epsomite (7-hydrate, 51% water) and hexahydrite (6-hydrate, 47% water) are the most hydrated; both form structures of isolated SO4 tetrahedra with isolated octahedral sites consisting of Mg coordinated by six H2O molecules (epsomite has an extra H2O in addition to the six required to coordinate with Mg). Pentahydrite (5-hydrate, 43% water) has infinite chains of alternating SO4 tetrahedra and Mg octahedra, with 4/5 of the water forming apices in octahedral sites. Starkeyite (4-hydrate, 37% water) has clusters of two SO4 tetrahedra and two Mg octahedra, linked only by hydrogen bonds. The Mg-sulfate sanderite (2-hydrate, 23% water) is rare and has poorly known structure. Kieserite (1-hydrate, 13% water) is relatively common in evaporite deposits and has a framework structure of infinite tetrahedral-octahedral chains cross-linked by hydrogen bonds. The stability of Mg-sulfate hydrates under martian near-surface conditions depends on their structures; those with excess water beyond that required to form the octahedral Mg site (e.g., epsomite, pentahydrite) lose that excess readily. Experiments with epsomite and hexahydrite indicate great sensitivity to environmental conditions; epsomite is not stable at 295 K at relative humidity (RH) values less than about 55%, below which hexahydrite is the observed phase. More importantly, hexahydrite - with all water coordinated to Mg in octahedral sites - is unstable at pressures less than ˜20 mtorr. X-ray diffraction analysis of hexahydrite held at 20 mtorr for six hours shows that structural degradation is slow at 100 K but becomes obvious in 1 hour at 273 K. Thermogravimetric

  10. Impacts of Four SO2 Oxidation Pathways on Wintertime Sulfate Concentrations

    Science.gov (United States)

    Sarwar, G.; Fahey, K.; Zhang, Y.; Kang, D.; Mathur, R.; Xing, J.; Wei, C.; Cheng, Y.

    2017-12-01

    Air quality models tend to under-estimate winter-time sulfate concentrations compared to observed data. Such under-estimations are particularly acute in China where very high concentrations of sulfate have been measured. Sulfate is produced by oxidation of sulfur dioxide (SO2) in gas-phase by hydroxyl radical and in aqueous-phase by hydrogen peroxide, ozone, etc. and most air quality models employ such typical reactions. Several additional SO2 oxidation pathways have recently been proposed. Heterogeneous reaction on dust has been suggested to be an important sink for SO2. Oxidation of SO2 on fine particles in presence of nitrogen dioxide (NO2) and ammonia (NH3) at high relative humidity has been implicated for sulfate formation in Chinese haze and London fog. Reactive nitrogen chemistry in aerosol water has also been suggested to produce winter-time sulfate in China. Specifically, high aerosol water can trap SO2 which can be subsequently oxidized by NO2 to form sulfate. Aqueous-phase (in-cloud) oxidation of SO2 by NO2 can also produce sulfate. Here, we use the hemispheric Community Multiscale Air Quality (CMAQ) modeling system to examine the potential impacts of these SO2 oxidation pathways on sulfate formation. We use anthropogenic emissions from the Emissions Database for Global Atmospheric Research and biogenic emissions from Global Emissions InitiAtive. We performed simulations without and with these SO2 oxidation pathways for October-December of 2014 using meteorological fields obtained from the Weather Research and Forecasting model. The standard CMAQ model contains one gas-phase chemical reaction and five aqueous-phase chemical reactions for SO2 oxidation. We implement four additional SO2 oxidation pathways into the CMAQ model. Our preliminary results suggest that the dust chemistry enhances mean sulfate over parts of China and Middle-East, the in-cloud SO2 oxidation by NO2 enhances sulfate over parts of western Europe, oxidation of SO2 by NO2 and NH3 on

  11. Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation

    Directory of Open Access Journals (Sweden)

    Nestor Sanchez

    2017-12-01

    Full Text Available Cachaza is a type of non-centrifugal sugarcane press-mud that, if it is not employed efficiently, generates water pollution, soil eutrophication, and the spread of possible pathogens. This biomass can be fermented to produce bioethanol. Our intention is to obtain bioethanol that can be catalytically reformed to produce hydrogen (H2 for further use in fuel cells for electricity production. However, some impurities could negatively affect the catalyst performance during the bioethanol reforming process. Hence, the aim of this study was to assess the fermentation of Cachaza using ammonium sulfate ((NH42SO4 loadings and Saccharomyces cerevisiae strain to produce the highest ethanol concentration with the minimum amount of impurities in anticipation of facilitating further bioethanol purification and reforming for H2 production. The results showed that ethanol production from Cachaza fermentation was about 50 g·L−1 and the (NH42SO4 addition did not affect its production. However, it significantly reduced the production of branched alcohols. When a 160 mg·L−1 (NH42SO4 was added to the fermentation culture, 2-methyl-1-propanol was reduced by 41% and 3-methyl-1-butanol was reduced by 6%, probably due to the repression of the catabolic nitrogen mechanism. Conversely, 1-propanol doubled its concentration likely due to the higher threonine synthesis promoted by the reducing sugar presence. Afterwards, we employed the modified Gompertz model to fit the ethanol, 2M1P, 3M1B, and 1-propanol production, which provided acceptable fits (R2 > 0.881 for the tested compounds during Cachaza fermentation. To the best of our knowledge, there are no reports of the modelling of aliphatic production during fermentation; this model will be employed to calculate yields with further scaling and for life cycle assessment.

  12. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem

    Science.gov (United States)

    Garrelfs, Julia

    2014-01-01

    About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen (“chemical microbially influenced corrosion”; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons (“electrical microbially influenced corrosion”; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments. PMID:24317078

  13. Metabolic niche of a prominent sulfate-reducing human gut bacterium.

    Science.gov (United States)

    Rey, Federico E; Gonzalez, Mark D; Cheng, Jiye; Wu, Meng; Ahern, Philip P; Gordon, Jeffrey I

    2013-08-13

    Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger, the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial nine-member community and of the genes that impact D. piger fitness; the latter includes high- and low-affinity systems for using ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. Although genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary-free sulfate levels did not significantly alter levels of D. piger, which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides-encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H2S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage's substrate utilization preferences, allowing consumption of more reduced carbon sources and increasing the abundance of the H2-producing Actinobacterium, Collinsella aerofaciens. Our findings provide genetic and metabolic details of how this H2-consuming SRB shapes the responses of a microbiota to diet ingredients and a framework for examining how individuals lacking D. piger differ from those who harbor it.

  14. Relationship between microbial sulfate reduction rates and sulfur isotopic fractionation

    Science.gov (United States)

    Matsu'Ura, F.

    2009-12-01

    Sulfate reduction is one of the common processes to obtain energy for certain types of microorganisms.They use hydrogen gas or organic substrates as electron donor and sulfates as electron acceptor, and reduce sulfates to sulfides. Sulfate reducing microbes extend across domains Archea and Bacteria, and are believed to be one of the earliest forms of terrestrial life (Shen 2004). The origin of 34S-depleted (light) sulfide sulfur, especially δ34S vials, which contain 40ml of liquid culture media slightly modified from DSMZ #63 medium.Excess amount of Fe (II) is added to the DSMZ#63 medium to precipitate sulfide as iron sulfide. The vials were incubated at 25°C, 30°C, and 37°C, respectively. 21 vials were used for one temperature and sulfide and sulfate was collected from each three glass vials at every 12 hours from 72 hours to 144 hours after start of incubation. The sulfide was precipitated as iron sulfide and the sulfate was precipitated as barite. Sulfur isotope compositions of sulfate and sulfide were measured by standard method using Delta Plus mass-spectrometer. [Results and Discussion] The fractionation between sulfide and sulfate ranged from 2.7 to 11.0. The fractionation values varied among the different incubation temperature and growth phase of D. desulfuricans. The maximum fractionation values of three incubation temperatures were 9.9, 11.0, and 9.7, for 25 °C, 30°C, and 37°C, respectively. These results were different from standard model and Canfield et al. (2006). I could not find the clear correlation between ∂34S values and incubation temperatures in this experiment. The measured fractionation values during the incubation varied with incubation stage. The fractionation values clearly increased with incubation time at every temperature, and at 25°C ∂34S value was 3.6 at the 72h and it increased to 7.9 at 144 hours. This indicated the difference of sulfate reduction rate due to the growth phase of SRB. In the early logarithmic growth phase

  15. Crystal structures of eight mono-methyl alkanes (C26–C32 via single-crystal and powder diffraction and DFT-D optimization

    Directory of Open Access Journals (Sweden)

    Lee Brooks

    2015-09-01

    Full Text Available The crystal structures of eight mono-methyl alkanes have been determined from single-crystal or high-resolution powder X-ray diffraction using synchrotron radiation. Mono-methyl alkanes can be found on the cuticles of insects and are believed to act as recognition pheromones in some social species, e.g. ants, wasps etc. The molecules were synthesized as pure S enantiomers and are (S-9-methylpentacosane, C26H54; (S-9-methylheptacosane and (S-11-methylheptacosane, C28H58; (S-7-methylnonacosane, (S-9-methylnonacosane, (S-11-methylnonacosane and (S-13-methylnonacosane, C30H62; and (S-9-methylhentriacontane, C32H66. All crystallize in space group P21. Depending on the position of the methyl group on the carbon chain, two packing schemes are observed, in which the molecules pack together hexagonally as linear rods with terminal and side methyl groups clustering to form distinct motifs. Carbon-chain torsion angles deviate by less than 10° from the fully extended conformation, but with one packing form showing greater curvature than the other near the position of the methyl side group. The crystal structures are optimized by dispersion-corrected DFT calculations, because of the difficulties in refining accurate structural parameters from powder diffraction data from relatively poorly crystalline materials.

  16. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate-reducing benthic microbial populations.

    Science.gov (United States)

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E; Geelhoed, Jeanine S; Strous, Marc; Ruff, S Emil

    2017-12-01

    For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate-reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate- and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24-12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ' U Sabulitectum silens' and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate-reducing microbial communities and their adaptation to a dynamic environment. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Occurrence and distribution of color and hydrogen sulfide in water of the principal artesian aquifers in the Valdosta area, Georgia

    Science.gov (United States)

    Krause, Richard E.

    1976-01-01

    Hydrogen sulfide and color occur in objectionable amounts in ground water from the principal artesian aquifer in the Valdosta , Ga., area. Generally, water from wells south of Valdosta is high in hydrogen sulfide; water from wells north of the city is high in color. Water with high sulfate is likely to be a problem in wells deeper than about 540 ft. Heavy pumpage concentrated in a small area may cause high-sulfate water to migrate vertically upward into shallower wells. (Woodard-USGS)

  18. Sulfate adsorption on goethite

    Energy Technology Data Exchange (ETDEWEB)

    Rietra, R P.J.J.; Hiemstra, T; Riemsdijk, W.H. van

    1999-10-15

    Recent spectroscopic work has suggested that only one surface species of sulfate is dominant on hematite. Sulfate is therefore a very suitable anion to test and develop adsorption models for variable charge minerals. The authors have studied sulfate adsorption on goethite covering a large range of sulfate concentrations, surface coverages, pH values, and electrolyte concentrations. Four different techniques were used to cover the entire range of conditions. For characterization at low sulfate concentrations, below the detection limit of sulfate with ICP-AES, the authors used proton-sulfate titrations at constant pH. Adsorption isotherms were studied for the intermediate sulfate concentration range. Acid-base titrations in sodium sulfate and electromobility were used for high sulfate concentrations. All the data can be modeled with one adsorbed species if it is assumed that the charge of adsorbed sulfate is spatially distributed in the interface. The charge distribution of sulfate follows directly from modeling the proton-sulfate adsorption stoichoimemtry sine this stoichiometry is independent of the intrinsic affinity constant of sulfate. The charge distribution can be related to the structure of the surface complex by use of the Pauling bond valence concept and is in accordance with the microscopic structure found by spectroscopy. The intrinsic affinity constant follows from the other measurements. Modeling of the proton-ion stoichoimetry with the commonly used 2-pK models, where adsorbed ions are treated as point charges, is possible only if at least two surface species for sulfate are used.

  19. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    Science.gov (United States)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  20. Screening for occupational vitiligo in workers exposed to hydroquinone monomethyl ether and to paratertiary-amyl-phenol

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, J.J.; Stevenson, C.J.

    1981-11-01

    Two men reported previously with vitiligo after occupational exposure to hydroquinone monomethyl ether (HMME) have been reviewed after eight years. Repigmentation of significant degree was found in one man and of limited degree in the other. One hundred and sixty-nine men in the same works have been screened with Wood's light for evidence of vitiligo. No cases were found in the 148 men exposed to HMME (colleagues who screened 100 men exposed to HMME in two other factories also found no case) or in the 129 who had been exposed to paratertiary-amyl-phenol. Loss of light reflection on Wood's light examination was observed in 13 men due to scars or to other skin disorders.

  1. Hydrogen sulfide release from dairy manure storages containing gypsum bedding

    Science.gov (United States)

    Recycled gypsum products can provide a cost-effective bedding alternative for dairy producers. Manufacturers report reduced odors, moisture and bacteria in the stall environment when compared to traditional bedding. Gypsum provides a sulfate source that can be converted to hydrogen sulfide under ana...

  2. Periodate Oxidation for Sulfated Glycosaminoglycans, with Special Reference to the Position of Extra Sulfate Groups in Chondroitin Polysulfates, Chondroitin Sulfate D and Chondroitin Sulfate K

    OpenAIRE

    Seno, Nobuko; Murakami, Keiko; Shibusawa, Haru

    1981-01-01

    The optimum conditions for periodate oxidation of sulfated disaccharides were investigated to determine the position of extra sulfate groups on the saturated disulfated disaccharides obtained from chondroitin polysulfates, chondroitin sulfates D and K. Under the conditions: 2mM saturated disulfated disaccharide with 20mM sodium periodate at 37°in the dark, the uronic acid residue in the disulfated disaccharide from chondroitin sulfate D was rapidly and completely destroyed, whereas that in th...

  3. Distinctive Oxidative Stress Responses to Hydrogen Peroxide in Sulfate Reducing Bacteria Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aifen; He, Zhili; Redding, A.M.; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Joachimiak, Marcin P.; Bender, Kelly S.; Keasling, Jay D.; Stahl, David A.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2009-01-01

    Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide (H2O2, 1 mM) was investigated with transcriptomic, proteomic and genetic approaches. Microarray data demonstrated that gene expression was extensively affected by H2O2 with the response peaking at 120 min after H2O2 treatment. Genes affected include those involved with energy production, sulfate reduction, ribosomal structure and translation, H2O2 scavenging, posttranslational modification and DNA repair as evidenced by gene coexpression networks generated via a random matrix-theory based approach. Data from this study support the hypothesis that both PerR and Fur play important roles in H2O2-induced oxidative stress response. First, both PerR and Fur regulon genes were significantly up-regulated. Second, predicted PerR regulon genes ahpC and rbr2 were derepressedin Delta PerR and Delta Fur mutants and induction of neither gene was observed in both Delta PerR and Delta Fur when challenged with peroxide, suggesting possible overlap of these regulons. Third, both Delta PerR and Delta Fur appeared to be more tolerant of H2O2 as measured by optical density. Forth, proteomics data suggested de-repression of Fur during the oxidative stress response. In terms of the intracellular enzymatic H2O2 scavenging, gene expression data suggested that Rdl and Rbr2 may play major roles in the detoxification of H2O2. In addition, induction of thioredoxin reductase and thioredoxin appeared to be independent of PerR and Fur. Considering all data together, D. vulgaris employed a distinctive stress resistance mechanism to defend against increased cellular H2O2, and the temporal gene expression changes were consistent with the slowdown of cell growth at the onset of oxidative stress.

  4. Sulfation of ceria-zirconia model automotive emissions control catalysts

    Science.gov (United States)

    Nelson, Alan Edwin

    temperatures, as confirmed by thermal programmed desorption (TPD). While hydrogen exposure indicated slight sulfur removal, exposure to a redox environment or atmosphere nearly eliminated the quantity of chemisorbed surface sulfur. The nature of sulfur removal is attributed to the inherent redox properties of ceria-zirconia systems. The complete analysis provides mechanistic insight into sulfation dependencies and fundamental information regarding sulfur adsorption on ceria-zirconia model automotive emissions control systems.

  5. A recovery installation for sodium sulfates, thiosulfates and sulfides from waste water resulting from hydrogen sulfide fabrication

    International Nuclear Information System (INIS)

    Mazilu, Mihai; Costescu, Sanda

    2002-01-01

    An installation for recovery of sodium sulfate and sulfur suspensions from waste water was conceived. It consists from a preheater, vacuum evaporator and a refrigerating system with drum and scraper. This equipment concentration the solution by eliminating in the first stage the water in the vacuum evaporator. The water resulting at this stage is chemically pure and can be discharged in the sewage sludge system. The concentrated solution is then directed to the refrigerating system with drum and scrapper. Here the sodium sulfates, thiosulfates and sulfides get crystallized onto the drum surface. The resulting aqueous solution to be discharged in the sewage sludge system is previously analyzed as in case of the absent of the recovery installation, but the amount of pollutants will be much lower because sulfates, thiosulfates and sulfides were already recovered as scales from the drum. These solid scales can be used in detergent industry

  6. Possibilities of Production and Storage of Hydrogen in the Black Sea

    International Nuclear Information System (INIS)

    Mehmet Haklidir; Fusun Servin Tut; Sule Kapkin

    2006-01-01

    Black Sea, a highly-isolated inland sea, is the largest anoxic zone in the world. Since the hydrogen sulphide zone was discovered in early 19. century in the Black Sea, it has been adopted that there is no life in the depths of the Black Sea and there are only bacteria live in the hydrogen sulphide layer. High content of organic matter, with maximum processes of bacterial sulfate reduction is the major source of this hydrogen sulphide zone. Hydrogen sulphide is one of the most poisonous gases in the world but it has great economic value to obtain hydrogen via dissociated into hydrogen and sulphur. Thus the Black Sea is not only has a serious environmental contamination but also has potential source of hydrogen energy, if a decomposition process can be developed. In this study, the sources of hydrogen sulphide, environmental impact of hydrogen sulphide in the Black Sea, the available techniques of hydrogen production from hydrogen sulphide and the possibilities of hydrogen storage by the natural sources in the Black Sea have been investigated. (authors)

  7. Identification of the chlE gene encoding oxygen-independent Mg-protoporphyrin IX monomethyl ester cyclase in cyanobacteria.

    Science.gov (United States)

    Yamanashi, Kaori; Minamizaki, Kei; Fujita, Yuichi

    2015-08-07

    The fifth ring (E-ring) of chlorophyll (Chl) a is produced by Mg-protoporphyrin IX monomethyl ester (MPE) cyclase. There are two evolutionarily unrelated MPE cyclases: oxygen-independent (BchE) and oxygen-dependent (ChlA/AcsF) MPE cyclases. Although ChlA is the sole MPE cyclase in Synechocystis PCC 6803, it is yet unclear whether BchE exists in cyanobacteria. A BLAST search suggests that only few cyanobacteria possess bchE. Here, we report that two bchE candidate genes from Cyanothece strains PCC 7425 and PCC 7822 restore the photosynthetic growth and bacteriochlorophyll production in a bchE-lacking mutant of Rhodobacter capsulatus. We termed these cyanobacterial bchE orthologs "chlE." Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Copper oxide--copper sulfate water-splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    Foh, S. E.; Schreiber, J. D.; Dafler, J. R.

    1978-08-01

    A hybrid copper oxide--copper sulfate thermochemical water-splitting cycle, IGT's H-5, has been demonstrated in the laboratory with recycled materials. The optimum configuration and operating conditions for the electrolytic hydrogen-producing step have not yet been defined. With cooperative funding (A.G.A./G.R.I./DOE) a conceptual flowsheet was developed for this cycle and a load-line efficiency of about 37% calculated. This figure is the result of a single iteration on the original base case flow sheet and compares well with the values calculated for other processes at this stage of development. An iterative optimization of process conditions would improve efficiency. The data required to perform an economic analysis are not yet available and the electrolysis step must be more fully defined. An attractive process efficiency, relatively few corrosive materials, and few gas-phase separations are attributes of Cycle H-5 that lead us to believe hydrogen costs (to be developed during future analyses) would be improved significantly over similar processes analyzed to date.

  9. Hydrogen production through microheterogeneous photocatalysis of hydrogen sulfide cleavage. The thiosulfate cycle

    Energy Technology Data Exchange (ETDEWEB)

    Borgarello, E; Serpone, N; Graetzel, M; Pelizzetti, E

    1985-01-01

    Cleavage of hydrogen sulfide into hydrogen and sulfur occurs in alkaline aqueous CdS dispersions under visible light illumination. Small quantities of a noble metal catalyst (RuO/sub 2/) loaded onto 'naked' CdS particles markedly improve the yield of hydrogen formation. The effect of RuO/sub 2/ is ascribed to catalysis of electron transfer to proton. Simultaneous and efficient photogeneration of hydrogen and thiosulfate occurs in CdS dispersions containing both sulfite and bisulfide (or sulfide) ions. Electron transfer from the conduction band of CdS to that of TiO/sub 2/ particles occurs in alkaline suspensions containing these HS/sup -/ ions and has been exploited to improve the performance of a system achieving decomposition of H/sub 2/S by visible light. Equally important is a recent finding that the performance of a system containing 'naked' CdS in combination with RuO/sub 2/-loaded TiO/sub 2/ particles is far better than that of CdS/RuO/sub 2/ alone. Additionally, conduction band electrons produced by bandgap excitation of TiO/sub 2/ particles efficiently reduce thiosulfate to sulfide and sulfite. The valence band process in alklaine TiO/sub 2/ dispersions is thought to involve oxidation of S/sub 2/O/sub 3//sup 2 -/ to tetrathionate, S/sub 4/O/sub 6//sup 2 -/, which quantitatively dismutates into sulfite and thiosulfate. The photodriven disproportionation of thiosulfate into sulfide and sulfate is of great interest in systems that photochemically cleave hydrogen sulfide into hydrogen and sulfur. (author).

  10. TRANSPORT PROPERTIES FOR 1-ETHYL-3-METHYLIMIDAZOLIUM n-ALKYL SULFATES: POSSIBLE EVIDENCE OF GROTTHUSS MECHANISM

    International Nuclear Information System (INIS)

    García-Garabal, S.; Vila, J.; Rilo, E.; Domínguez-Pérez, M.; Segade, L.; Tojo, E.; Verdía, P.; Varela, L.M.; Cabeza, O.

    2017-01-01

    The objective of this work was to study the effect of the temperature and the lengthening of the linear alkyl chain of the anion in the transport physical properties of the pure ionic liquids 1-ethyl-3-methyl imidazolium n-alkyl sulphate (being n = 0, 1, 2, 4, 6 and 8). Density, viscosity and electrical conductivities were measured at atmospheric pressure in a wide temperature range. In the bibliography, data existed for these magnitudes for all ionic liquids studied but none of these had information about the electrical conductivity of 1-ethyl-3-methyl imidazolium n-alkyl sulfate whith n = 0, 4, 6 and 8. The experimental results show clearly 1-ethyl-3-methyl imidazolium hydrogen sulphate cannot be considered part of the 1-ethyl-3-methyl imidazolium n-alkyl sulphate family because of its hydrogen bonding ability. Results of density and viscosity behave as expected. However, in the case of the electrical conductivity due to the lack of alkyl chain in the hydrogen sulfate we expected to get extreme values but in practise, we obtained intermediate values between 1-ethyl-3-methyl imidazolium butyl sulphate and 1-ethyl-3-methyl imidazolium hexyl sulphate. This suggests that a Grotthus mechanism exists as result of a protonic current in addition to ionic conductivity, being Waldeńs plot consistent with this idea.

  11. Neutral sodium/bicarbonate/sulfate hot waters in geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahon, W.A.J. (Dept. of Industrial and Scientific Research, Wairakei, New Zealand); Klyen, L.E.; Rhode, M.

    1980-03-01

    The least understood thermal water is a near neutral water which contains varying amounts of bicarbonate and sulfate as the major anions, low concentrations of chloride (< 30 ppM) and sodium as the major cation. In the past this water has been referred to as a sodium bicarbonate water but present studies suggest that the quantities of bicarbonate and sulfate in this water type are frequently of the same order. Of particular interest is the distribution and position of the sodium/bicarbonate/sulfate water in the same and different systems. Many hot springs in Indonesia, for example, discharge water of this composition. Present studies indicate that this water type can originate from high temperature reservoirs which form the secondary steam heated part of a normal high temperature geothermal system. The hydrological conditions producing these waters in geothermal systems are investigated and the relationship between the water type and vapor dominated systems is discussed. It is suggested that the major water type occurring in the so called vapor dominated parts of geothermal systems is this water. The water does not simply represent steam condensate, rather it consists essentially of meteoric water which has been steam heated. The water composition results from the interaction of carbon dioxide and hydrogen sulfide with meteoric water and the rocks confining this water in the aquifer.

  12. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling.

    Science.gov (United States)

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-02-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.

  13. Discovery of a Heparan sulfate 3- o -sulfation specific peeling reaction

    NARCIS (Netherlands)

    Huang, Yu; Mao, Yang; Zong, Chengli; Lin, Cheng; Boons, Geert Jan|info:eu-repo/dai/nl/088245489; Zaia, Joseph

    2015-01-01

    Heparan sulfate (HS) 3-O-sulfation determines the binding specificity of HS/heparin for antithrombin III and plays a key role in herpes simplex virus (HSV) infection. However, the low natural abundance of HS 3-O-sulfation poses a serious challenge for functional studies other than the two cases

  14. p-Cresyl sulfate and indoxyl sulfate in pediatric patients on chronic dialysis

    Directory of Open Access Journals (Sweden)

    Hye Sun Hyun

    2013-04-01

    Full Text Available &lt;b&gt;Purpose:&lt;/b&gt; Indoxyl sulfate and p- cresyl sulfate are important protein-bound uremic retention solutes whose levels can be partially reduced by renal replacement therapy. These solutes originate from intestinal bacterial protein fermentation and are associated with cardiovascular outcomes and chronic kidney disease progression. The aims of this study were to investigate the levels of indoxyl sulfate and p- cresyl sulfate as well as the effect of probiotics on reducing the levels of uremic toxins in pediatric patients on dialysis. &lt;b&gt;Methods:&lt;/b&gt; We enrolled 20 pediatric patients undergoing chronic dialysis; 16 patients completed the study. The patients underwent a 12-week regimen of VSL#3, a high-concentration probiotic preparation, and the serum levels of indoxyl sulfate and p- cresyl sulfate were measured before treatment and at 4, 8, and 12 weeks after the regimen by using fluorescence liquid chromatography. To assess the normal range of indoxyl sulfate and p- cresyl sulfate we enrolled the 16 children with normal glomerular filtration rate who had visited an outpatient clinic for asymptomatic microscopic hematuria that had been detected by a school screening in August 2011. &lt;b&gt;Results:&lt;/b&gt; The baseline serum levels of indoxyl sulfate and p- cresyl sulfate in the patients on chronic dialysis were significantly higher than those in the children with microscopic hematuria. The baseline serum levels of p- cresyl sulfate in the peritoneal dialysis group were significantly higher than those in the hemodialysis group. There were no significant changes in the levels of these uremic solutes after 12-week VSL#3 treatment in the patients on chronic dialysis. &lt;b&gt;Conclusion:&lt;/b&gt; The levels of the uremic toxins p- cresyl sulfate and indoxyl sulfate are highly elevated in pediatric patients on dialysis, but there was no significant effect by

  15. The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment

    Directory of Open Access Journals (Sweden)

    Shi J

    2013-07-01

    Full Text Available Jinjin Shi,* Rourou Ma,* Lei Wang, Jing Zhang, Ruiyuan Liu, Lulu Li, Yan Liu, Lin Hou, Xiaoyuan Yu, Jun Gao, Zhenzhong Zhang School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China*These authors contributed equally to this workAbstract: Carbon nanotubes (CNTs have shown great potential in both photothermal therapy and drug delivery. In this study, a CNT derivative, hyaluronic acid-derivatized CNTs (HA-CNTs with high aqueous solubility, neutral pH, and tumor-targeting activity, were synthesized and characterized, and then a new photodynamic therapy agent, hematoporphyrin monomethyl ether (HMME, was adsorbed onto the functionalized CNTs to develop HMME-HA-CNTs. Tumor growth inhibition was investigated both in vivo and in vitro by a combination of photothermal therapy and photodynamic therapy using HMME-HA-CNTs. The ability of HMME-HA-CNT nanoparticles to combine local specific photodynamic therapy with external near-infrared photothermal therapy significantly improved the therapeutic efficacy of cancer treatment. Compared with photodynamic therapy or photothermal therapy alone, the combined treatment demonstrated a synergistic effect, resulting in higher therapeutic efficacy without obvious toxic effects to normal organs. Overall, it was demonstrated that HMME-HA-CNTs could be successfully applied to photodynamic therapy and photothermal therapy simultaneously in future tumor therapy.Keywords: photodynamic therapy, photothermal therapy, HA-derivatized carbon nanotubes, tumor targeting, synergistic effect, hematoporphyrin monomethyl ether

  16. Analytical methodology for determination of the sulfate in vinasse samples; Metodologia analitica para a determinacao de sulfato em vinhoto

    Energy Technology Data Exchange (ETDEWEB)

    Prada, Silvio Miranda; Guekezian, Marcia; Suarez-Ilha, Maria Encarnacion V. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica

    1998-05-01

    When sulfate is present in high concentrations, it acts as an inhibitor in the production of methane (Biogas Formation) in anaerobic biodigestion processes. In this way it is very important to know the sulfate concentration in vinasse samples before to make the biodigester design. A previous developed and indirect method (Anal. Chim. Acta. 1996, 329, 197), was used to determine sulfate in samples of vinasse, after previous treatments, done in order to eliminate organic matter with hydrogen peroxide 30% and concentrated nitric acid mixture (3:1), under heating. Interferent cationic ions were isolated by using ion exchange columns. The results obtained for some samples from Araraquara and Penapolis are here presented. The phosphate concentration was also determined. (author) 23 refs., 3 tabs.

  17. Assessment of thermochemical hydrogen production. Project 8994 mid-contract progress report, July 1--November 1, 1977. [Iron chloride and copper sulfate cycles

    Energy Technology Data Exchange (ETDEWEB)

    Dafler, J.R.; Foh, S.E.; Schreiber, J.D.

    1977-12-01

    We have completed the base-case (first-cut) flowsheet analysis for two thermochemical water-splitting cycles that have been under study at the Institute of Gas Technology: a four-step iron chloride cycle (denoted B-1) and a four-step copper sulfate cycle (denoted H-5). In the case of Cycle B-1, an energy balance has located the worst problem areas in the cycle, and flowsheet modifications have begun. Calculations of equilibrium effects due to the hydrolysis of ferrous chloride at pressures high enough to interface with projected hydrogen transmission systems will, apparently, necessitate higher temperature process heat input for this step. Higher pressure operation of some critical separation processes yields more favorable heat balances. For Cycle H-5, the unmodified (base-case) flowsheet indicates that reaction product separations will be relatively simple with respect to Cycle B-1. Work of Schuetz and others dealing with the electrolysis and thermodynamics of HBr/H/sub 2/O/SO/sub 2/ systems is being extensively reviewed. Work plans for this part of the contract are currently being reviewed.

  18. Co-existence of Methanogenesis and Sulfate Reduction with Common Substrates in Sulfate-Rich Estuarine Sediments

    Directory of Open Access Journals (Sweden)

    Michal Sela-Adler

    2017-05-01

    Full Text Available The competition between sulfate reducing bacteria and methanogens over common substrates has been proposed as a critical control for methane production. In this study, we examined the co-existence of methanogenesis and sulfate reduction with shared substrates over a large range of sulfate concentrations and rates of sulfate reduction in estuarine systems, where these processes are the key terminal sink for organic carbon. Incubation experiments were carried out with sediment samples from the sulfate-methane transition zone of the Yarqon (Israel estuary with different substrates and inhibitors along a sulfate concentrations gradient from 1 to 10 mM. The results show that methanogenesis and sulfate reduction can co-exist while the microbes share substrates over the tested range of sulfate concentrations and at sulfate reduction rates up to 680 μmol L-1 day-1. Rates of methanogenesis were two orders of magnitude lower than rates of sulfate reduction in incubations with acetate and lactate, suggesting a higher affinity of sulfate reducing bacteria for the available substrates. The co-existence of both processes was also confirmed by the isotopic signatures of δ34S in the residual sulfate and that of δ13C of methane and dissolved inorganic carbon. Copy numbers of dsrA and mcrA genes supported the dominance of sulfate reduction over methanogenesis, while showing also the ability of methanogens to grow under high sulfate concentration and in the presence of active sulfate reduction.

  19. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  20. Heparan sulfate biosynthesis

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A B; Couchman, John R

    2012-01-01

    Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests...... that the synthesis of heparan sulfate is tightly controlled. Although genomics has identified the enzymes involved in glycosaminoglycan synthesis in a number of vertebrates and invertebrates, the regulation of the process is not understood. Moreover, the localization of the various enzymes in the Golgi apparatus has......-quality resolution of the distribution of enzymes. The EXT2 protein, which when combined as heterodimers with EXT1 comprises the major polymerase in heparan sulfate synthesis, has been studied in depth. All the data are consistent with a cis-Golgi distribution and provide a starting point to establish whether all...

  1. Fast Breaking Detergents: Their Role in the Generation of Hydrogen Sulfide in Oily-Water Wastes

    Science.gov (United States)

    1993-09-01

    acid (Dwyer & Tiedje, 1983) and Desulfowibrio desulfitricans to produce ethanol and acetic acid (Dwyer & Tiedje, 1986). Under anaerobic conditions, the...glycol, glycolic acid, hydrogen, carbon dioxide and a number of intermediates. The acetic acid and ethylene glycol are utilised by some species of SRB...are consequently being introduced. Hydrogen sulfide generation by anaerobic sulfate-reducing bacteria (SRB) is a concern for the RAN because it can

  2. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe...... the process. The yields of sulfur oxides from ferric sulfate decomposition under boiler conditions are investigated experimentally, revealing a distribution of approximately 40% SO3 and 60% SO2. The ferric sulfate decomposition model is combined with a detailed kinetic model of gas‐phase KCl sulfation...... and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results show good agreements with experiments conducted in a biomass grate‐firing reactor. The results indicate that the SO3 released from ferric sulfate decomposition is the main contributor to KCl...

  3. Determination of the semi-empiric relationship among the physical density, the concentration and rate between hydrogen and manganese atoms, and a manganese sulfate solution; Determinacao da relacao semi-empirica entre a densidade fisica, concentracao e razao entre atomos de hidrogenio e manganes em uma solucao de sulfato de manganes

    Energy Technology Data Exchange (ETDEWEB)

    Bittencourt, Guilherme Rodrigues [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). PIBIC; Castro, Leonardo Curvello de; Pereira, Walsan W.; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da; Dantas, Maria Leticia [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes (LNMRI). Lab. de Neutrons

    2009-07-01

    The bath of a manganese sulfate (BMS) is a system for absolute standardization of the neutron sources. This work establishes a functional relationship based on semi-empirical methods for the theoretical prediction of physical density values, concentration and rate between the hydrogen and manganese atoms presents in the solution of the BMS

  4. Correction: Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity

    Directory of Open Access Journals (Sweden)

    Sugahara Kazuyuki

    2011-07-01

    Full Text Available Abstract After the publication of the work entitled "Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity", by Kozlowski et al., BMC Biochemistry 2011, 12:29, we found that the legends to Figures 2 to 5 contain serious mistakes that compromise the comprehension of the work. This correction article contains the correct text of the legends to Figures 2 to 5.

  5. SULFATE PRODUCTION IN CLOUDS IN EASTERN CHINA: OBSERVATIONS FROM MT. TAI

    Science.gov (United States)

    Collett, J. L.; Shen, X.; Lee, T.; Wang, X.; Wang, W.; Wang, T.

    2009-12-01

    The fate of China’s sulfur dioxide emissions depends, in part, on the ability of regional clouds to support rapid aqueous oxidation of these emissions to sulfate. Sulfur dioxide oxidized in regional clouds is more likely to be removed by wet deposition while sulfur dioxide that undergoes slower gas phase oxidation is expected to survive longer in the atmosphere and exert a radiative forcing impact over a broader spatial scale. Two 2008 field campaigns conducted at Mt. Tai, an isolated peak on the NE China plain, provide insight into the importance of various aqueous phase sulfur oxidation pathways in the region. Single and two-stage cloudwater collectors were used to collect bulk and drop size-resolved samples of cloudwater. Collected cloudwater was analyzed for key species that influence in-cloud sulfate production, including pH, S(IV), H2O2, Fe and Mn. Other major cloud solutes, including inorganic ions, total organic carbon, formaldehyde, and organic acids were also analyzed, as were gas phase concentrations of SO2, O3, and H2O2. A wide range of cloud pH was observed, from below 3 to above 6. High concentrations of cloudwater sulfate were consistent with abundant sulfur dioxide emissions in the region. Despite its fast aqueous reaction with sulfur dioxide, high concentrations of residual hydrogen peroxide were measured in some clouds implying a substantial capacity for additional sulfate production. Ozone was found to be an important S(IV) oxidant in some periods when cloud pH was high. This presentation will examine the importance of different oxidants (H2O2, O3, and O2 catalyzed by trace metals) for sulfur oxidation and the overall capacity of regional clouds to support rapid aqueous phase sulfate production.

  6. Volumetric properties for glycine and L-serine in aqueous solutions of 1-Ethyl-3-methylimidazolium hydrogen sulfate ([Emim][HSO4]) at T = (293.15–313.15) K and ambient pressure

    International Nuclear Information System (INIS)

    Rafiee, Hamid Reza; Frouzesh, Farshid

    2016-01-01

    Highlights: • Ternary systems (amino acid + ionic liquid + H 2 O) are considered. • Volumetric properties including density, V φ , ΔV φ 0 and E φ 0 are determined. • Glycine and L-serine were amino acids and [Emim][HSO 4 ] was IL studied. • V φ values for amino acids increased with both concentration of amino acids and temperature. • Both studied amino acids act as structure maker in ternary systems. - Abstract: By using the volumetric properties, the solute–solvent interactions are studied in the ternary (glycine + 1-Ethyl-3-methylimidazolium hydrogen sulfate [Emim][HSO 4 ] + water) and (L-serine + 1-Ethyl-3-methylimidazolium hydrogen sulfate [Emim][HSO 4 ] + water) systems. For this purpose, the apparent molar volumes, V φ , are calculated from the experimental density data. To obtain limiting apparent molar volumes V φ 0 , the apparent molar volume values are fitted to the Redlich-Mayer type equation. Then the limiting apparent molar volumes of transfer, ΔV φ 0 , for studied amino acids from water to aqueous solutions of ionic liquid (IL) are calculated. The results showed that the ΔV φ 0 values are negative for both ternary systems at all temperatures. The limiting apparent molar expansibility E φ 0 values have been obtained from the first derivative of limiting apparent molar volumes with respect to temperature. The values of second derivative of limiting apparent molar volumes respect to temperature show the structure making or breaking ability of glycine and L-serine in studied IL aqueous solutions. The results indicated that glycine and L-serine act as structure maker in studied solutions. McMillan–Mayer theory is used for evaluating the interaction parameters. Also the hydration number, n H , for both amino acids in ternary solutions has been reported.

  7. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction

    International Nuclear Information System (INIS)

    Ben Dhia Thabet, Olfa; Bouallagui, Hassib; Cayol, Jean-luc; Ollivier, Bernard; Fardeau, Marie-Laure; Hamdi, Moktar

    2009-01-01

    This study evaluated the anaerobic degradation of landfill leachate and sulfate reduction as a function of COD/(SO 4 2- ) ratio in an upflow anaerobic fixed-bed reactor. The reactor, which was inoculated with a mixed consortium, was operated under a constant hydraulic retention time (HRT) of 5 days. We investigated the effect of COD/(SO 4 2- ) ratio variation on the sulfate reduction efficiency, hydrogen sulfide production, chemical oxygen demand (COD) removal, conductivity, and pH variation. The best reactor performance, with significant sulfate reduction efficiency and COD removal efficiency of 91% and 87%, respectively, was reached under a COD/(SO 4 2- ) ratio of 1.17. Under these conditions, microscopic analysis showed the abundance of vibrios and rod-shaped bacterial cells. Two anaerobic bacteria were isolated from the reactor sludge. Phylogenetic studies performed on these strains identified strain A1 as affiliated to Clostridium genus and strain H1 as a new species of sulfate-reducing bacteria affiliated to the Desulfovibrio genus. The closest phylogenetic relative of strain H1 was Desulfovibrio desulfuricans, at 96% similarity for partial 16S RNA gene sequence data. Physiological and metabolic characterization was performed for this strain.

  8. Sulfur isotopic and proteomic profiles of sulfate reducers grown under differential steady-states

    Science.gov (United States)

    Leavitt, W.; Venceslau, S.; Waldbauer, J.; Smith, D. A.; Boidi, F. J.; Bradley, A. S.

    2016-12-01

    Microbial sulfate reducers (MSR) drive the Earth's biogeochemical sulfur cycle. At the heart of this energy metabolism is a cascade of redox transformations coupling organic carbon and/or hydrogen oxidation to the dissimilatory reduction of sulfate to sulfide. The product sulfide is depleted in the heavier isotopes of sulfur, relative to the reactant sulfate, consistent with a normal kinetic isotope effect. However, the magnitude of the net fractionation during MSR can range over a range of 70 permil, consistent with a multi-step set of reactions. This range in MSR fractionation has been shown to mainly depend on: i) the cell-specific sulfate reduction rate (csSRR), and ii) the ambient sulfate concentration. However, the fractionation under identical conditions differs among strains (Bradley et al. 2016. Geobio), and so must also be mediated by strain-specific processes, such as the nature and quantity of individual proteins involved in sulfate reduction, electron transport, and growth. In recent work we have examined the influence of electron donor, electron acceptor, and co-limitation under controlled steady-state culture conditions in order better inform models of MSR isotope fractionation, and the physiological and isotopic response to differential environmental forcings (e.g. Leavitt et al. (2013) PNAS). Recent models of the fractionation response to MSR rate (c.f. Bradley 2016; Wing & Halevy, 2016) make specific predictions for the responses of the cellular metabolome and proteome. Here we compare the steady-state S-isotopic fractionation and proteome of `fast' versus `slow' grown D. vulgaris, using replicate chemostats under electron donor limitation. We observe clear and statistically robust changes in some key central MSR and C-metabolism enzymes, though a host of the critical energy-transfer enzymes show no statistically discernable change. We discuss these results in light of recent theoretical advances and their relevance to modern and ancient

  9. Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan, E-mail: zhangfan@itpcas.ac.cn [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Wu Weimin [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 (United States); Parker, Jack C. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Mehlhorn, Tonia [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kelly, Shelly D.; Kemner, Kenneth M. [Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Zhang, Gengxin [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Schadt, Christopher; Brooks, Scott C. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Criddle, Craig S. [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 (United States); Watson, David B. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Jardine, Philip M. [Biosystems Engineering and Soil Science Department, University of Tennessee, Knoxville, TN 37996 (United States)

    2010-11-15

    Microcosm tests with uranium contaminated sediments were performed to explore the feasibility of using oleate as a slow-release electron donor for U(VI) reduction in comparison to ethanol. Oleate degradation proceeded more slowly than ethanol with acetate produced as an intermediate for both electron donors under a range of initial sulfate concentrations. A kinetic microbial reduction model was developed and implemented to describe and compare the reduction of sulfate and U(VI) with oleate or ethanol. The reaction path model considers detailed oleate/ethanol degradation and the production and consumption of intermediates, acetate and hydrogen. Although significant assumptions are made, the model tracked the major trend of sulfate and U(VI) reduction and describes the successive production and consumption of acetate, concurrent with microbial reduction of aqueous sulfate and U(VI) species. The model results imply that the overall rate of U(VI) bioreduction is influenced by both the degradation rate of organic substrates and consumption rate of intermediate products.

  10. Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions

    International Nuclear Information System (INIS)

    Zhang Fan; Wu Weimin; Parker, Jack C.; Mehlhorn, Tonia; Kelly, Shelly D.; Kemner, Kenneth M.; Zhang, Gengxin; Schadt, Christopher; Brooks, Scott C.; Criddle, Craig S.; Watson, David B.; Jardine, Philip M.

    2010-01-01

    Microcosm tests with uranium contaminated sediments were performed to explore the feasibility of using oleate as a slow-release electron donor for U(VI) reduction in comparison to ethanol. Oleate degradation proceeded more slowly than ethanol with acetate produced as an intermediate for both electron donors under a range of initial sulfate concentrations. A kinetic microbial reduction model was developed and implemented to describe and compare the reduction of sulfate and U(VI) with oleate or ethanol. The reaction path model considers detailed oleate/ethanol degradation and the production and consumption of intermediates, acetate and hydrogen. Although significant assumptions are made, the model tracked the major trend of sulfate and U(VI) reduction and describes the successive production and consumption of acetate, concurrent with microbial reduction of aqueous sulfate and U(VI) species. The model results imply that the overall rate of U(VI) bioreduction is influenced by both the degradation rate of organic substrates and consumption rate of intermediate products.

  11. The stereoselective sulfate conjugation of 4'-methoxyfenoterol stereoisomers by sulfotransferase enzymes.

    Science.gov (United States)

    Iyer, Lalitha V; Ramamoorthy, Anuradha; Rutkowska, Ewelina; Furimsky, Anna M; Tang, Liang; Catz, Paul; Green, Carol E; Jozwiak, Krzysztof; Wainer, Irving W

    2012-10-01

    The presystemic sulfate conjugation of the stereoisomers of 4'-methoxyfenoterol, (R,R')-MF, (S,S')-MF, (R,S')-MF, and (S,R')-MF, was investigated using commercially available human intestinal S9 fractions, a mixture of sulfotransferase (SULT) enzymes. The results indicate that the sulfation was stereospecific and that an S-configuration at the β-OH carbon of the MF molecule enhanced the maximal formation rates with (S,R')-MF  (S,S')-MF  (R,S')-MF ≈ (R,R')-MF, and competition studies demonstrated that (S,R')-MF is an effective inhibitor of (R,R')-MF sulfation (IC(50) = 60 μM). In addition, the results from a cDNA-expressed human SULT isoform screen indicated that SULT1A1, SULT1A3, and SULT1E1 can mediate the sulfation of all four MF stereoisomers. Previously published molecular models of SULT1A3 and SULT1A1 were used in docking simulations of the MF stereoisomers using Molegro Virtual Docker. The models of the MF-SULT1A3 and MF-SULT1A1 complexes indicate that each of the two chiral centers of MF molecule plays a role in the observed relative stabilities. The observed stereoselectivity is the result of multiple hydrogen bonding interactions and induced conformational changes within the substrate-enzyme complex. In conclusion, the results suggest that a formulation developed from a mixture of (R,R')-MF and (S,R')-MF may increase the oral bioavailability of (R,R')-MF. Copyright © 2012 Wiley Periodicals, Inc.

  12. Desulfotomaculum arcticum sp nov., a novel spore-formin, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard

    DEFF Research Database (Denmark)

    Vandieken, V.; Knoblauch, C.; Jørgensen, BB

    2006-01-01

    Strain 15 T is a novel spore-forming, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Sulfate could be replaced by sulfite or thiosulfate. Hydrogen, formate, lactate, propionate, butyrate, hexanoate, methanol, ethanol, propanol, butanol, pyruvate, malate, s...... related to Desulfotomaculum thermosapovorans MLF(T) (93-5% 16S rRNA gene sequence similarity). Strain 15 T represents a novel species, for which the name Desulfotomaculurn arcticum sp. nov. is proposed. The type strain is strain 15 T (=DSM 17038(T)=jCM 12923(T))....

  13. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2007-01-01

    The direct sulfation of limestone was studied in a laboratory fixed-bed reactor. It is found that the direct sulfation of limestone involves nucleation and crystal grain growth of the solid product (anhydrite). At 823 K and at low-conversions (less than about 0.5 %), the influences of SO2, O-2...... and CO2 on the direct sulfation of limestone corresponds to apparent reaction orders of about 0.2, 0.2 and -0.5, respectively. Water is observed to promote the sulfation reaction and increase the apparent reaction orders of SO2 and O-2. The influence of O-2 at high O-2 concentrations (> about 15...... %) becomes negligible. In the temperature interval from 723 K to 973 K, an apparent activation energy of about 104 kJ/mol is observed for the direct sulfation of limestone. At low temperatures and low conversions, the sulfation process is most likely under mixed control by chemical reaction and solid...

  14. Inhibition of synthesis of heparan sulfate by selenate: Possible dependence on sulfation for chain polymerization

    International Nuclear Information System (INIS)

    Dietrich, C.P.; Nader, H.B.; Buonassisi, V.; Colburn, P.

    1988-01-01

    Selenate, a sulfation inhibitor, blocks the synthesis of heparan sulfate and chondroitin sulfate by cultured endothelial cells. In contrast, selenate does not affect the production of hyaluronic acid, a nonsulfated glycosaminoglycan. No differences in molecular weight, [ 3 H]glucosamine/[ 35 S]sulfuric acid ratios, or disaccharide composition were observed when the heparan sulfate synthesized by selenate-treated cells was compared with that of control cells. The absence of undersulfated chains in preparations from cultures exposed to selenate supports the concept that, in the intact cell, the polymerization of heparan sulfate might be dependent on the sulfation of the saccharide units added to the growing glycosaminoglycan chain

  15. BIOREMEDIATION FOR ACID MINE DRAINAGE: ORGANIC SOLID WASTE AS CARBON SOURCES FOR SULFATE-REDUCING BACTERIA: A REVIEW

    Directory of Open Access Journals (Sweden)

    I. N. Jamil

    2013-12-01

    Full Text Available Biological sulfate reduction has been slowly replacing chemical unit processes to treat acid mine drainage (AMD. Bioremediations for AMD treatment are favored due to their low capital and maintenance cost. This paper describes the available AMD treatment, current SRB commercialization such as THIOPAQ® and BioSulphide® technologies, and also the factors and limitations faced. THIOPAQ® and BioSulphide® technologies use expensive carbon sources such as hydrogen as the electron donor. This paper discusses the possibility of organic solid waste as an alternative substrate as it is cheaper and abundant. A possible AMD treatment system setup was also proposed to test the efficiency of sulfate-reducing bacteria utilizing organic solid substrate.

  16. Growth and sedimentation of fine particles produced in aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Jonah, C.D.

    1994-10-01

    It is known that palladium and palladium-silver fine particles were formed from deaerated aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation. Changes in particle size and with amount of particles in the solution with time during and after irradiation were studied using dynamic light scattering technique and UV spectrophotometer. The particles formed from palladium sulfate solution are found to be water-filled bulky particles of diameter of 200 nm, which grow by mutual coagulation even after irradiation was terminated. Average density depends on concentration of palladium ion in the solution and dose, and the lowest density was about 2 g/cm 3 for particles of 200 nm obtained from 0.06 mM solution by 2.4 kGy irradiation. The average density of the particles obtained from palladium sulfate-silver sulfate solutions was smaller than those obtained for the corresponding palladium sulfate solutions. Supersonic agitation destroyed coagulated precipitates to form fine particles, but did not form clusters of a few atoms. (author)

  17. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms

    DEFF Research Database (Denmark)

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community...... was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths...... was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation....

  18. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule.

    Science.gov (United States)

    Calderwood, Alexander; Kopriva, Stanislav

    2014-09-15

    Sulfur is essential in all organisms for the synthesis of amino acids cysteine and methionine and as an active component of numerous co-factors and prosthetic groups. However, only plants, algae, fungi, and some prokaryotes are capable of using the abundant inorganic source of sulfur, sulfate. Plants take sulfate up, reduce it, and assimilate into organic compounds with cysteine being the first product of the pathway and a donor of reduced sulfur for synthesis of other S-containing compounds. Cysteine is formed in a reaction between sulfide, derived from reduction of sulfite and an activated amino acid acceptor, O-acetylserine. Sulfide is thus an important intermediate in sulfur metabolism, but numerous other functions in plants has been revealed. Hydrogen sulfide can serve as an alternative source of sulfur for plants, which may be significant in anaerobic conditions of waterlogged soils. On the other hand, emissions of hydrogen sulfide have been detected from many plant species. Since the amount of H2S discharged correlated with sulfate supply to the plants, the emissions were considered a mechanism for dissipation of excess sulfur. Significant hydrogen sulfide emissions were also observed in plants infected with pathogens, particularly with fungi. H2S thus seems to be part of the widely discussed sulfur-induced-resistance/sulfur-enhanced-defense. Recently, however, more evidence has emerged for a role for H2S in regulation and signaling. Sulfide stabilizes the cysteine synthase complex, increasing so the synthesis of its acceptor O-acetylserine. H2S has been implicating in regulation of plant stress response, particularly draught stress. There are more and more examples of processes regulated by H2S in plants being discovered, and hydrogen sulfide is emerging as an important signaling molecule, similar to its role in the animal and human world. How similar the functions, and homeostasis of H2S are in these diverse organisms, however, remains to be elucidated

  19. Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Brostroem, Markus; Backman, Rainer; Nordin, Anders [Energy Technology and Thermal Process Chemistry, Umeaa University, SE-901 87 Umeaa (Sweden); Kassman, Haakan [Vattenfall Power Consultant AB, Box 1046, SE-611 29 Nykoeping (Sweden); Helgesson, Anna; Berg, Magnus; Andersson, Christer [Vattenfall Research and Development AB, SE-814 26 Aelvkarleby (Sweden)

    2007-12-15

    Biomass and waste derived fuels contain relatively high amounts of alkali and chlorine, but contain very little sulfur. Combustion of such fuels can result in increased deposit formation and superheater corrosion. These problems can be reduced by using a sulfur containing additive, such as ammonium sulfate, which reacts with the alkali chlorides and forms less corrosive sulfates. Ammonium sulfate injection together with a so-called in situ alkali chloride monitor (IACM) is patented and known as ''ChlorOut''. IACM measures the concentrations of alkali chlorides (mainly KCl in biomass combustion) at superheater temperatures. Tests with and without spraying ammonium sulfate into the flue gases have been performed in a 96MW{sub th}/25MW{sub e} circulating fluidized bed (CFB) boiler. The boiler was fired mainly with bark and a chlorine containing waste. KCl concentration was reduced from more than 15 ppm to approximately 2 ppm during injection of ammonium sulfate. Corrosion probe measurements indicated that both deposit formation and material loss due to corrosion were decreased using the additive. Analysis of the deposits showed significantly higher concentration of sulfur and almost no chlorine in the case with ammonium sulfate. Results from impactor measurements supported that KCl was sulfated to potassium sulfate by the additive. (author)

  20. Hypochlorite-mediated fragmentation of hyaluronan, chondroitin sulfates, and related N-acetyl glycosamines

    DEFF Research Database (Denmark)

    Rees, Martin D; Hawkins, Clare Louise; Davies, Michael Jonathan

    2003-01-01

    Myeloperoxidase released from activated phagocytes reacts with H(2)O(2) in the presence of chloride ions to give hypochlorous acid. This oxidant has been implicated in the fragmentation of glycosaminoglycans, such as hyaluronan and chondroitin sulfates. In this study it is shown that reaction...... processes. In the case of glycosaminoglycan-derived amidyl radicals, evidence has been obtained in studies with model glycosides that these radicals undergo rapid intramolecular abstraction reactions to give carbon-centered radicals at C-2 on the N-acetyl glycosamine rings (via a 1,2-hydrogen atom shift......) and at C-4 on the neighboring uronic acid residues (via 1,5-hydrogen atom shifts). The C-4 carbon-centered radicals, and analogous species derived from model glycosides, undergo pH-independent beta-scission reactions that result in glycosidic bond cleavage. With N-acetyl glucosamine C-1 alkyl glycosides...

  1. Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria.

    Science.gov (United States)

    Wang, Shumin; Sugahara, Kazuyuki; Li, Fuchuan

    2016-12-01

    Sulfatases that specifically catalyze the hydrolysis of the sulfate groups on chondroitin sulfate (CS)/dermatan sulfate (DS) poly- and oligosaccharides belong to the formylglycine-dependent family of sulfatases and have been widely found in various mammalian and bacterial organisms. However, only a few types of CS/DS sulfatase have been identified so far. Recently, several novel CS/DS sulfatases have been cloned and characterized. Advanced studies have provided significant insight into the biological function and mechanism of action of CS/DS sulfatases. Moreover, further studies will provide powerful tools for structural and functional studies of CS/DS as well as related applications. This article reviews the recent progress in CS/DS sulfatase research and is expected to initiate further research in this field.

  2. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria

    Science.gov (United States)

    Lovley, D.R.; Phillips, E.J.P.

    1994-01-01

    Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum. Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+ ???SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O???SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.

  3. Heparan sulfate-chondroitin sulfate hybrid proteoglycan of the cell surface and basement membrane of mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    David, G.; Van den Berghe, H.

    1985-01-01

    Chondroitin sulfate represents approximately 15% of the 35 SO 4 -labeled glycosaminoglycans carried by the proteoglycans of the cell surface and of the basolateral secretions of normal mouse mammary epithelial cells in culture. Evidence is provided that these chondroitin sulfate-carrying proteoglycans are hybrid proteoglycans, carrying both chondroitin sulfate and heparan sulfate chains. Complete N-desulfation but limited O-desulfation, by treatment with dimethyl sulfoxide, of the proteoglycans decreased the anionic charge of the chondroitin sulfate-carrying proteoglycans to a greater extent than it decreased the charge of their constituent chondroitin sulfate chains. Partial depolymerization of the heparan sulfate residues of the proteoglycans with nitrous acid or with heparin lyase also reduced the effective molecular radius of the chondroitin sulfate-carrying proteoglycans. The effect of heparin lyase on the chondroitin sulfate-carrying proteoglycans was prevented by treating the proteoglycan fractions with dimethyl sulfoxide, while the effect of nitrous acid on the dimethyl sulfoxide-treated proteoglycans was prevented by acetylation. This occurrence of heparan sulfate-chondroitin sulfate hybrid proteoglycans suggests that the substitution of core proteins by heparan sulfate or chondroitin sulfate chains may not solely be determined by the specific routing of these proteins through distinct chondroitin sulfate and heparan sulfate synthesizing mechanisms. Moreover, regional and temporal changes in pericellular glycosaminoglycan compositions might be due to variable postsynthetic modification of a single gene product

  4. Structural analysis of a sulfated polysaccharidic fraction obtained from the coenocytic green seaweed Caulerpa cupressoides var. lycopodium

    Directory of Open Access Journals (Sweden)

    José Ariévilo Gurgel Rodrigues

    2014-04-01

    Full Text Available Researches on structural chemistry of sulfated polysaccharides (SPs have been mainly focused on red and brown algae. Caulerpa cupressoides var. lycopodium (Chlorophyta contains three SPs fractions (Cc-SP1, Cc-SP2 and Cc-SP3. Cc-SP1 and Cc-SP2 had anticoagulant (in vitro and anti- and prothrombotic, antinociceptive and/or anti-inflammatory (in vivo effects. However, their structural features have not yet been investigated. This study analyzed the chemical composition, elemental microanalysis and structural features by infrared (IR and nuclear magnetic resonance (1H NMR spectroscopy of Cc-SPs. Fractionation of SPs by DEAE-cellulose yielded Cc-SP1, Cc-SP2 and CcSP3 containing differences among the relative proportions of sulfate (14.67-26.72%, total sugars (34.92-49.73% and uronic acid (7.15-7.22%. Carbon (21.76-29.62%, sulfate (2.16-4.55%, nitrogen (0.85-1.57% and hydrogen (4.57-5.86% contents were obtained using a CHN equipment. Data from IR indicated occurrence of sulfate ester, galactose-6-sulfate, uronic acid and glycoside linkages. For 1H NMR spectrum of the soluble Cc-SP1 fraction, it was mainly found β-galactopyranose residues and CH3 group. The results showed that Cc-SPs fractions have some structural features similar to others studied Caulerpaceae SPs.

  5. Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates

    Science.gov (United States)

    Wang, A.; Freeman, J.J.; Jolliff, B.L.; Chou, I.-Ming

    2006-01-01

    The martian orbital and landed surface missions, OMEGA on Mar Express and the two Mars Explorations Rovers, respectively, have yielded evidence pointing to the presence of magnesium sulfates on the martian surface. In situ identification of the hydration states of magnesium sulfates, as well as the hydration states of other Ca- and Fe- sulfates, will be crucial in future landed missions on Mars in order to advance our knowledge of the hydrologic history of Mars as well as the potential for hosting life on Mars. Raman spectroscopy is a technique well-suited for landed missions on the martian surface. In this paper, we report a systematic study of the Raman spectra of the hydrates of magnesium sulfate. Characteristic and distinct Raman spectral patterns were observed for each of the 11 distinct hydrates of magnesium sulfates, crystalline and non-crystalline. The unique Raman spectral features along with the general tendency of the shift of the position of the sulfate ??1 band towards higher wavenumbers with a decrease in the degree of hydration allow in situ identification of these hydrated magnesium sulfates from the raw Raman spectra of mixtures. Using these Raman spectral features, we have started the study of the stability field of hydrated magnesium sulfates and the pathways of their transformations at various temperature and relative humidity conditions. In particular we report on the Raman spectrum of an amorphous hydrate of magnesium sulfate (MgSO4??2H2O) that may have specific relevance for the martian surface. ?? 2006 Elsevier Inc. All rights reserved.

  6. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.

    2008-01-01

    Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... to be a common modification and since then an increasing number of proteins have been identified as sulfated. The target proteins belong to the classes of secretory, plasma membrane, and lysosomal proteins, which reflects the intracellular localization of the enzymes catalyzing Tyr sulfation, the tyrosylprotein...... sulfotransferases (TPSTs).Traditionally, Tyr sulfation has been analyzed by incorporation of radiolabeled sulfate into target cells followed by purification of the target protein. Subsequently, the protein is degraded enzymatically or by alkaline hydrolysis followed by thin-layer electrophoresis to demonstrate...

  7. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J

    1993-01-01

    Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entactin...

  8. Control of malodorous hydrogen sulfide compounds using microbial fuel cell.

    Science.gov (United States)

    Eaktasang, Numfon; Min, Hyeong-Sik; Kang, Christina; Kim, Han S

    2013-10-01

    In this study, a microbial fuel cell (MFC) was used to control malodorous hydrogen sulfide compounds generated from domestic wastewaters. The electricity production demonstrated a distinct pattern of a two-step increase during 170 h of system run: the first maximum current density was 118.6 ± 7.2 mA m⁻² followed by a rebound of current density increase, reaching the second maximum of 176.8 ± 9.4 mA m⁻². The behaviors of the redox potential and the sulfate level in the anode compartment indicated that the microbial production of hydrogen sulfide compounds was suppressed in the first stage, and the hydrogen sulfide compounds generated from the system were removed effectively as a result of their electrochemical oxidation, which contributed to the additional electricity production in the second stage. This was also directly supported by sulfur deposits formed on the anode surface, which was confirmed by analyses on those solids using a scanning electron microscope equipped with energy dispersive X-ray spectroscopy as well as an elemental analyzer. To this end, the overall reduction efficiencies for HS⁻ and H₂S(g) were as high as 67.5 and 96.4 %, respectively. The correlations among current density, redox potential, and sulfate level supported the idea that the electricity signal generated in the MFC can be utilized as a potential indicator of malodor control for the domestic wastewater system.

  9. Chemical and isotopic compositions of water and dissolved sulfate from shallow wells on Vulcano Island, Aeolian Archipelago, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Cortecci, G.; Dinelli, E.; Boschetti, T. [University of Bologna (Italy). Dept. of Earth and Geological Environmental Sciences; Bolognesi, L. [International Institute for Geothermal Research, Pisa (Italy); Ferrara, G. [University of Pisa (Italy). Dept. of Earth Sciences

    2001-02-01

    Twenty-two cold and thermal waters from shallow wells sampled in June 1995 in the Vulcano Porto area, Vulcano Island, were analyzed for major and minor chemical constituents, oxygen and hydrogen isotopes and tritium contents, and sulfur isotopes in the dissolved sulfate. The sulfur isotopic composition of the dissolved sulfate ranges between + 0.6 and + 6.5 per mille (mean + 3.7{+-}1.7 per mille), and is interpreted as deriving mainly from fumarolic SO{sub 2} undergoing oxidation in deep and shallow aquifers, with possible minor contributions from oxidation of H{sub 2}S. Dissolution of secondary anhydrite may have been a minor source of the isotopically heavy aqueous sulfate in the cold groundwaters. The chemical and isotopic features of the waters support previous interpretative hydrologic models of Vulcano Porto, which comprise a number of aquifers fed basically by two major end-members, i.e. meteoric water and crater-type fumarolic inputs, the latter in the form of absorbed emissions or condensate. These data, along with the sulfur isotopes of aqueous sulfate, exclude involvement of seawater in the recharge of the groundwater system of the island. (author)

  10. Diaqua?bis?(1,10-phenanthroline-?2 N,N?)manganese(II) sulfate hexa?hydrate

    OpenAIRE

    Zhang, Chun; Zhu, Hong-lin

    2010-01-01

    In the title compound, [Mn(C12H8N2)2(H2O)2]SO4·6H2O, the complex cations assemble into positively charged sheets parallel to (010) via intermolecular π–π stacking interactions with a mean interplanar distance of 3.410 (6) along [100] and 3.465 (5) Å along [001]. The sulfate anions and uncoordinated water molecules are interconnected between these layers by hydrogen bonds, forming negatively charged layers which are li...

  11. Developing a New Sampling And Analysis Method For Hydrazine And Monomethyl Hydrazine: Using a Derivatizing Agent With Solid Phase Microextraction

    Science.gov (United States)

    Allen, John

    2001-01-01

    Solid phase microextraction (SPME) will be used to develop a method for detecting monomethyl hydrazine (MMH) and hydrazine (Hz). A derivatizing agent, pentafluorobenzoyl chloride (PFBCI), is known to react readily with MMH and Hz. The SPME fiber can either be coated with PFBCl and introduced into a gaseous stream containing MMH, or PFBCl and MMH can react first in a syringe barrel and after a short equilibration period a SPME is used to sample the resulting solution. These methods were optimized and compared. Because Hz and MMH can degrade the SPME, letting the reaction occur first gave better results. Only MMH could be detected using either of these methods. Future research will concentrate on constructing calibration curves and determining the detection limit.

  12. Cathodic protection of XL 52 steel under the influence of sulfate reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel, R. Garcia [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico, D.F. 07730 (Mexico); Departamento de lngenieria Metalurgica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Olivares, G. Zavala; Gayosso, M.J. Hernandez; Trejo, A. Gayosso [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico, D.F. 07730 (Mexico)

    2011-01-15

    The effect of sulfate reducing bacteria (SRB) upon the cathodic protection of XL 52 steel was determined, in order to identify if the potential value of -0.950 V versus copper/copper sulfate electrode is good enough to protect the metal surface. During the experiments, different operational parameters were monitored: hydrogen sulfide production, iron concentration, electrolyte alkalinity, microorganisms' population, as well as the metal surface damage. At the same time, the corrosion rate was determined using two electrochemical techniques: polarization resistance (PR) and electrochemical impedance spectroscopy (EIS). According to the results, it was observed that the protection potential of -0.950 V versus copper/copper sulfate electrode is not enough to control the microbiologically induced corrosion. This situation is reinforced by the fact that significant iron concentration was found in the electrolyte. The microbiological activity is not affected by the protection potential. On the contrary, the population growth is slightly strengthened. The alkalinity generated by the applied potential did not stop the SRB growth. A type of localized corrosion was developed during the experiments with microorganisms, even when the protection potential was applied to the system. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Diaquabis(1,10-phenanthroline-κ2N,N′manganese(II sulfate hexahydrate

    Directory of Open Access Journals (Sweden)

    Chun Zhang

    2010-11-01

    Full Text Available In the title compound, [Mn(C12H8N22(H2O2]SO4·6H2O, the complex cations assemble into positively charged sheets parallel to (010 via intermolecular π–π stacking interactions with a mean interplanar distance of 3.410 (6 along [100] and 3.465 (5 Å along [001]. The sulfate anions and uncoordinated water molecules are interconnected between these layers by hydrogen bonds, forming negatively charged layers which are linked to the positive layers through O—H...O hydrogen bonds, forming a three-dimensional architecture. Both the positive and negative sheets are stacked along [010] in an ...ABAB... sequence, the A layers being shifted by 1/2a along [100] with respect to the B layers. One of the uncoordinated water molecules is equally disordered over two positions.

  14. Acute Exacerbations of COPD Are Associated With Increased Expression of Heparan Sulfate and Chondroitin Sulfate in BAL.

    Science.gov (United States)

    Papakonstantinou, Eleni; Klagas, Ioannis; Roth, Michael; Tamm, Michael; Stolz, Daiana

    2016-03-01

    Acute exacerbations of COPD (AECOPDs) are associated with accelerated aggravation of clinical symptoms and deterioration of pulmonary function. The mechanisms by which exacerbations may contribute to airway remodeling and declined lung function are poorly understood. We investigated whether AECOPDs are associated with differential expression of glycosaminoglycans in BAL in a cohort of 97 patients with COPD. Patients with COPD with either stable disease (n = 53) or AECOPD (n = 44) and undergoing diagnostic bronchoscopy were matched for demographics and lung function parameters. Levels of heparan sulfate, chondroitin sulfate, dermatan sulfate, and matrix metalloproteinases (MMPs) in BAL were measured by enzyme-linked immunosorbent assay. Heparan sulfate and chondroitin sulfate were significantly increased in BAL of patients during exacerbations. Levels of heparan sulfate were higher in the BAL of patients with microbial infections. Chondroitin sulfate was negatively correlated with FEV1 % predicted but not with diffusing capacity of lung for carbon monoxide % predicted, indicating that chondroitin sulfate is associated with airway remodeling, leading to obstruction rather than to emphysema. Furthermore, heparan sulfate and chondroitin sulfate were significantly correlated with MMP-9, MMP-2, and MMP-12 in BAL, indicating that they were cleaved from their respective proteoglycans by MMPs and subsequently washed out in BAL. During AECOPD, there is increased expression of heparan sulfate and chondroitin sulfate in BAL. These molecules are significantly correlated with MMPs in BAL, indicating that they may be associated with airway remodeling and may lead to lung function decline during exacerbations of COPD. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  15. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...... produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated...... disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional...

  16. Activation and transfer of sulfate in biological systems (1960); Activation biologique du sulfate et son transfert (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Chapeville, F [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    It examines in this review the successive stages of active sulfate formation and its role in biological synthesis of sulfuric esters. The possible role of active sulfate as intermediary in sulfate reduction is also discussed. (author) [French] On examine dans cette etude les stades successifs de la mise en evidence du sulfate actif, son role dans la formation des esters sulfuriques de natures diverses, ainsi que sa participation eventuelle comme intermediaire au cours de la reduction du sulfate. On decrit aussi un procede de preparation du systeme biologique, generateur du sulfate actif et une methode de synthese chimique. (auteur)

  17. Quantitative analysis of glycosaminoglycans, chondroitin/dermatan sulfate, hyaluronic acid, heparan sulfate, and keratan sulfate by liquid chromatography-electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Osago, Harumi; Shibata, Tomoko; Hara, Nobumasa; Kuwata, Suguru; Kono, Michihaya; Uchio, Yuji; Tsuchiya, Mikako

    2014-12-15

    We developed a method using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) with a selected reaction monitoring (SRM) mode for simultaneous quantitative analysis of glycosaminoglycans (GAGs). Using one-shot analysis with our MS/MS method, we demonstrated the simultaneous quantification of a total of 23 variously sulfated disaccharides of four GAG classes (8 chondroitin/dermatan sulfates, 1 hyaluronic acid, 12 heparan sulfates, and 2 keratan sulfates) with a sensitivity of less than 0.5 pmol within 20 min. We showed the differences in the composition of GAG classes and the sulfation patterns between porcine articular cartilage and yellow ligament. In addition to the internal disaccharides described above, some saccharides derived from the nonreducing terminal were detected simultaneously. The simultaneous quantification of both internal and nonreducing terminal saccharides could be useful to estimate the chain length of GAGs. This method would help to establish comprehensive "GAGomic" analysis of biological tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Comparing the efficacy of four immersion flush and static hydorgen peroxide and copper sulfate treatments on channel catfish eggs infected with water molds

    Science.gov (United States)

    Water mold infestations on channel catfish eggs lower the hatch rate (egg survival) and ultimately the number of catfish fry available for stocking in production ponds. This study compared the potential of two hydrogen peroxide (HP) and two copper sulfate pentahydrate (CSP) treatments to increase c...

  19. Constraining Δ33S signatures of Archean seawater sulfate with carbonate-associated sulfate

    Science.gov (United States)

    Peng, Y.; Bao, H.; Bekker, A.; Hofmann, A.

    2017-12-01

    Non-mass dependent sulfur isotope deviation of S-bearing phases in Archean sedimentary strata, and expressed as Δ33S, has a consistent pattern, i.e., sulfide (pyrite) predominantly bear positive Δ33S values, while Paleoarchean sulfate (barite) has negative Δ33S values. This pattern was later corroborated by observations of negative Δ33S values in Archean volcanogenic massive sulfide deposits and negative Δ33S values in early diagenetic nodular pyrite with a wide range of δ34S values, which is thought to be due to microbial sulfate reduction. These signatures have provided a set of initial conditions for a mechanistic interpretation at physical chemistry level. Unlike the younger geological times when large bodies of seawater evaporite deposits are common, to expand seawater sulfate records, carbonate-associated sulfate (CAS) was utilized as a proxy for ancient seawater sulfate. CAS extracted from the Archean carbonates carries positive Δ33S values. However, CAS could be derived from pyrite oxidation following exposure to modern oxidizing conditions and/or during laboratory extraction procedures. It is, therefore, important for us understanding context of the overall early earth atmospheric condition to empirically confirm whether Archean seawater sulfate was generally characterized by negative Δ33S signatures. Combined δ18O, Δ17O, δ34S, and Δ33S analyses of sequentially extracted water-leachable sulfate (WLS) and acid-leachable sulfate (ALS = CAS) and δ34S and Δ33S analyses of pyrite can help to identify the source of extracted sulfate. We studied drill-core samples of Archean carbonates from the 2.55 Ga Malmani and Campell Rand supgroups, South Africa. Our preliminary results show that 1) neither WLS nor ALS were extracted from samples with extremely low pyrite contents (less than 0.05 wt.%); 2) extractable WLS and ALS is present in samples with relatively high pyrite contents (more than 1 wt.%), and that δ34S and Δ33S values of WLS, ALS, and

  20. Effects of sulfate deprivation on the production of chondroitin/dermatan sulfate by cultures of skin fibroblasts from normal and diabetic individuals

    International Nuclear Information System (INIS)

    Silbert, C.K.; Humphries, D.E.; Palmer, M.E.; Silbert, J.E.

    1991-01-01

    Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with [3H]glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of [3H]chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics

  1. INTRACELLULAR SYNTHESIS OF CHONDROITIN SULFATE

    Science.gov (United States)

    Dziewiatkowski, Dominic D.

    1962-01-01

    In autoradiograms of slices of costal cartilage, incubated for 4 hours in a salt solution containing S35-sulfate and then washed extensively and dehydrated, about 85 per cent of the radioactivity was assignable to the chondrocytes. From alkaline extracts of similarly prepared slices of cartilage, 64 to 83 per cent of the total sulfur-35 in the slices was isolated as chondroitin sulfate by chromatography on an anion-exchange resin. In view of the estimate that only about 15 per cent of the radioactivity was in the matrix, the isolation of 64 to 83 per cent of the total sulfur-35 as chondroitin sulfate is a strong argument that the chondrocytes are the loci in which chondroitin sulfate(s) is synthesized. PMID:13888910

  2. Synthesis of N-oleyl O-sulfate chitosan from methyl oleate with O-sulfate chitosan as edible film material

    Science.gov (United States)

    Daniel; Sihaloho, O.; Saleh, C.; Magdaleni, A. R.

    2018-04-01

    The research on the synthesis of N-oleyl O-sulfate chitosan through sulfonation reaction on chitosan with ammonium sulfate and followed by amidation reaction using methyl oleate has been done. In this study, chitosan was chemically modified into N-oleyl O-sulfatechitosan as an edible film making material. N-oleyl O-sulfate chitosan was synthesized by reaction between methyl oleate and O-sulfate chitosan. Wherein the depleted chitosan of O-sulfate chitosan into O-sulfate chitosan was obtained by reaction of sulfonation between ammonium sulfate and chitosan aldimine. While chitosan aldimine was obtained through reaction between chitosan with acetaldehyde. The structure of N-oleyl O-sulfate chitosan was characterized by FT-IR analysis which showed vibration uptake of C-H sp3 group, S=O group, and carbonyl group C=O of the ester. The resulting of N-oleyl O-sulfate chitosan yielded a percentage of 93.52%. Hydrophilic-Lipophilic Balance (HLB) test results gave a value of 6.68. In the toxicity test results of N-oleyl O-sulfate chitosan obtained LC50 value of 3738.4732 ppm. In WVTR (Water Vapor Transmission Rate) test results for chitosan film was 407.625 gram/m2/24 hours and N-oleylO-sulfate chitosan film was 201.125 gram/m2/24 hours.

  3. Desulfofrigus sp. prevails in sulfate-reducing dilution cultures from sediments of the Benguela upwelling area.

    Science.gov (United States)

    Kraft, Beate; Engelen, Bert; Goldhammer, Tobias; Lin, Yu-Shih; Cypionka, Heribert; Könneke, Martin

    2013-04-01

    Sediments of coastal upwelling areas are generally characterized by a high content of organic carbon that is mainly degraded via anaerobic microbial processes including sulfate reduction as a major terminal oxidation step. Despite the high importance of sulfate reduction in these sediments, the identity of sulfate-reducing bacteria (SRB) has remained almost unknown. Here, we applied a cultivation-based approach using selective enrichment conditions to study the diversity and distribution of active SRB in sediments along a transect perpendicular to the continental slope off the coast of Namibia (Meteor-cruise M76/1). To promote growth of the most abundant SRB, dilution series were prepared and amended with hydrogen, acetate, or a mixture of monomers representing typical substrates for SRB. Growth of SRB could be detected in the presence of all electron donors and from sediment down to 4 m depth. 16S rRNA gene-based DGGE analysis and sequencing revealed the predominance of SRB related to psychrophiles in particular to the genus Desulfofrigus, which made up 1 % of the total microbial community, accounting for an absolute abundance of up to 4.8 × 10(7)  cells mL(-1) . In general, the abundance of cultured SRB changed with depth and between the different sampling sites and correlated with the content of organic carbon as previously reported. Growth of chemolithotrophic SRB in relatively high dilution steps and the enrichment of methanogens as well as acetogens from deeper sediment point to a competition between hydrogen-utilizing microbial processes and their biogeochemical significance in deep sediment layers of the Benguela upwelling area. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Hydrogen anode for nitrate waste destruction. Revision 2

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Kalu, E.E.; White, R.E.

    1996-01-01

    Large quantities of radioactive and hazardous wastes have been generated from nuclear materials production during the past fifty years. Processes are under evaluation to separate the high level radioactive species from the waste and store them permanently in the form of durable solids. The schemes proposed will separate the high level radioactive components, cesium-137 and strontium-90, into a small volume for incorporation into a glass wasteform. The remaining low-level radioactive waste contain species such as nitrites and nitrates that are capable of contaminating ground water. Electrochemical destruction of the nitrate and nitrite before permanent storage has been proposed. Not only will the electrochemical processing destroy these species, the volume of the waste could also be reduced. The use of a hydrogen gas-fed anode and an acid anolyte in an electrochemical cell used to destroy nitrate was demonstrated. A mixed Na 2 SO 4 /H 2 SO 4 anolyte was shown to favor the nitrate cell performance, and the generation of a higher hydroxide ion concentration in the catholyte. The suggested scheme is an apparent method of sodium sulfate disposal and a possible means through which ammonia (to ammonium sulfate, fertilizer) and hydrogen gas could be recycled through the anode side of the reactor. This could result in a substantial savings in the operation of a nitrate destruction cell

  5. Contribution to the study of the reduction of sulfate by the yolk sac of the chicken embryo; Contribution a l'etude de la reduction du sulfate par le sac vitellin de l'embryon de poulet

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, Claude

    1958-11-15

    avec un rendement tres eleve. En ce qui concerne la reduction du sulfate, aucun resultat net n'a ete obtenu, hormis chez le poulet, mais peu d'especes ont ete examinees. En outre aucun embryon d'invertebres n'a fourni le moindre indice d'un metabolisme du soufre analogue a celui de l'embryon de poulet. L'embryon de poulet restait donc le seul materiel utilisable pour notre etude; l'activite reductrice du sulfate s'y trouve localisee dans le sac vitellin, organe extra embryonnaire assurant l'absorption du jaune. Quelques essais en vue d'obtenir une preparation acellulaire de sac vitellin, capable de reduire le sulfate, sont restes vains, confirmant ainsi que le systeme enzymatique implique dans la reduction est lie aux structures cellulaires, ou du moins necessite des conditions difficiles a realiser hors des cellules; ces essais nous permettent d'affirmer que dans le sac vitellin, seules les cellules epitheliales, a l'exclusion des cellules conjonctives, detiennent l'activite reductrice du sulfate. Cette impossibilite d'obtenir une preparation acellulaire active nous a conduit a etudier la reduction, in vitro, sur des sacs vitellins vides de leur jaune, ou sur des fragments de sacs vitellins, incubes a 38 deg. C. Dans ces conditions nous avons montre que l'organe etudie reduit deja le sulfate, de facon nette a l'age de 3 jours et que cette propriete persiste apres la naissance, durant la periode de resorption du sac vitellin. Enfin quelques substances agissant sur la reduction du sulfate ont ete mises en evidence: le fluorure qui a la concentration de 10{sup -2} M bloque totalement la formation de sulfite, agit a coup sur sur la penetration du sulfate dans les cellules vitellines; son action sur la reduction proprement dite est tres incertaine. L'oxygene et le cyanure de potassium au contraire agissent sur la reduction elle-meme; la privation d'oxygene l'inhibe, probablement en empechant la synthese de donateurs d'hydrogene, synthese qui intervient normalement au cours

  6. 21 CFR 184.1261 - Copper sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a...

  7. Heritability and clinical determinants of serum indoxyl sulfate and p-cresyl sulfate, candidate biomarkers of the human microbiome enterotype.

    Directory of Open Access Journals (Sweden)

    Liesbeth Viaene

    Full Text Available BACKGROUND: Indoxyl sulfate and p-cresyl sulfate are unique microbial co-metabolites. Both co-metabolites have been involved in the pathogenesis of accelerated cardiovascular disease and renal disease progression. Available evidence suggests that indoxyl sulfate and p-cresyl sulfate may be considered candidate biomarkers of the human enterotype and may help to explain the link between diet and cardiovascular disease burden. OBJECTIVE AND DESIGN: Information on clinical determinants and heritability of indoxyl sulfate and p-cresyl sulfate serum is non-existing. To clarify this issue, the authors determined serum levels of indoxyl sulfate and p-cresyl sulfate in 773 individuals, recruited in the frame of the Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO study. RESULTS: Serum levels of indoxyl sulfate and p-cresyl sulfate amounted to 3.1 (2.4-4.3 and 13.0 (7.4-21.5 μM, respectively. Regression analysis identified renal function, age and sex as independent determinants of both co-metabolites. Both serum indoxyl sulfate (h2 = 0.17 and p-cresyl sulfate (h2 = 0.18 concentrations showed moderate but significant heritability after adjustment for covariables, with significant genetic and environmental correlations for both co-metabolites. LIMITATIONS: Family studies cannot provide conclusive evidence for a genetic contribution, as confounding by shared environmental effects can never be excluded. CONCLUSIONS: The heritability of indoxyl sulfate and p-cresyl sulfate is moderate. Besides genetic host factors and environmental factors, also renal function, sex and age influence the serum levels of these co-metabolites.

  8. The electrical and thermal properties of sodium sulfate mixed with lithium sulfate, yttrium sulfate, and silicon dioxide

    International Nuclear Information System (INIS)

    Imanaka, N.; Yamaguchi, Y.; Adachi, G.; Shiokawa, J.

    1986-01-01

    Sodium sulfate mixed with lithium sulfate, yttrium sulfate, and silicon dioxide was prepared. The thermal and electrical properties of its phases were investigated. The Na 2 SO 4 -Li 2 SO 4 -Y 2 (SO 4 ) 3 SiO 2 samples are similar to the Na 2 SO 4 -I phase (a high temperature phase), which is appreciably effective for Na + ionic conduction. Phase transformation was considerably suppressed by mixing. Electromotive force (EMF) was measured, using Na 2 SO 4 -Li 2 SO 4 -Y 2 (SO 4 ) 3 -SiO 2 as a solid electrolyte, by constructing an SO 2 gas concentration cell. The measured EMF's at 823 and 773 K were in fairly good accordance with the calculated EMF's for inlet SO 2 gas concentration between 30 ppm and 1%, and 500 ppm and 0.5% respectively

  9. 21 CFR 172.822 - Sodium lauryl sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium lauryl sulfate. 172.822 Section 172.822 Food... Multipurpose Additives § 172.822 Sodium lauryl sulfate. The food additive sodium lauryl sulfate may be safely... specifications: (1) It is a mixture of sodium alkyl sulfates consisting chiefly of sodium lauryl sulfate [CH2(CH2...

  10. Purification and sequence characterization of chondroitin sulfate and dermatan sulfate from fishes.

    Science.gov (United States)

    Lin, Na; Mo, Xiaoli; Yang, Yang; Zhang, Hong

    2017-04-01

    Chondroitin sulfate (CS) and dermatan sulfate (DS) were extracted and purified from skins or bones of salmon (Salmo salar), snakehead (Channa argus), monkfish (Lophius litulon) and skipjack tuna (Katsuwonus pelamis). Size, structural sequences and sulfate groups of oligosaccharides in the purified CS and DS could be characterized and identified using high performance liquid chromatography (HPLC) combined with Orbitrap mass spectrometry. CS and DS chain structure varies depending on origin, but motif structure appears consistent. Structures of CS and DS oligosaccharides with different size and sulfate groups were compared between fishes and other animals, and results showed that some minor differences of special structures could be identified by hydrophilic interaction chromatography-liquid chromatography-fourier transform-mass/mass spectrometry (HILIC-LC-FT-MS/MS). For example, data showed that salmon and skipjack CS had a higher percentage content of high-level sulfated oligosaccharides than that porcine CS. In addition, structural information of different origins of CS and DS was analyzed by principal component analysis (PCA) and results showed that CS and DS samples could be differentiated according to their molecular conformation and oligosaccharide fragments information. Understanding CS and DS structure derived from different origins may lead to the production of CS or DS with unique disaccharides or oligosaccharides sequence composition and biological functions.

  11. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    International Nuclear Information System (INIS)

    Lee, Duu-Jong; Lee, Chin-Yu; Chang, Jo-Shu

    2012-01-01

    Highlights: ► We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. ► Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. ► The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. ► The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  12. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duu-Jong, E-mail: cedean@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (China); Lee, Chin-Yu [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. Black-Right-Pointing-Pointer Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. Black-Right-Pointing-Pointer The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. Black-Right-Pointing-Pointer The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  13. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment.

    KAUST Repository

    Meulepas, Roel J W

    2010-05-06

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and SR by an anaerobic methanotrophic enrichment. The presence of acetate, formate or hydrogen enhanced SR, but did not inhibit AOM, nor did these substrates trigger methanogenesis. Carbon monoxide also enhanced SR but slightly inhibited AOM. Methanol did not enhance SR nor did it inhibit AOM, and methanethiol inhibited both SR and AOM completely. Subsequently, it was calculated at which candidate-IEC concentrations no more Gibbs free energy can be conserved from their production from methane at the applied conditions. These concentrations were at least 1,000 times lower can the final candidate-IEC concentration in the bulk liquid. Therefore, the tested candidate-IECs could not have been produced from methane during the incubations. Hence, acetate, formate, methanol, carbon monoxide, and hydrogen can be excluded as sole IEC in AOM coupled to SR. Methanethiol did inhibit AOM and can therefore not be excluded as IEC by this study.

  14. High-performance liquid chromatography method for the determination of hydrogen peroxide present or released in teeth bleaching kits and hair cosmetic products.

    Science.gov (United States)

    Gimeno, Pascal; Bousquet, Claudine; Lassu, Nelly; Maggio, Annie-Françoise; Civade, Corinne; Brenier, Charlotte; Lempereur, Laurent

    2015-03-25

    This manuscript presents an HPLC/UV method for the determination of hydrogen peroxide present or released in teeth bleaching products and hair products. The method is based on an oxidation of triphenylphosphine into triphenylphosphine oxide by hydrogen peroxide. Triphenylphosphine oxide formed is quantified by HPLC/UV. Validation data were obtained using the ISO 12787 standard approach, particularly adapted when it is not possible to make reconstituted sample matrices. For comparative purpose, hydrogen peroxide was also determined using ceric sulfate titrimetry for both types of products. For hair products, a cross validation of both ceric titrimetric method and HPLC/UV method using the cosmetic 82/434/EEC directive (official iodometric titration method) was performed. Results obtained for 6 commercialized teeth whitening products and 5 hair products point out similar hydrogen peroxide contain using either the HPLC/UV method or ceric sulfate titrimetric method. For hair products, results were similar to the hydrogen peroxide content using the cosmetic 82/434/EEC directive method and for the HPLC/UV method, mean recoveries obtained on spiked samples, using the ISO 12787 standard, ranges from 100% to 110% with a RSDhydrogen peroxide contents higher than the regulated limit. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Impact of pH on hydrogen oxidizing redox processes in aquifers due to gas intrusions

    Science.gov (United States)

    Metzgen, Adrian; Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2017-04-01

    Hydrogen production from excess energy and its storage can help increasing the efficiency of solar and wind in the energy mix. Therefore, hydrogen needs large-scale intermediate storage independent of the intended later use as hydrogen gas or as reactant to produce methane in the Sabatier process. A possible storage solution is using the geological subsurface such as caverns built in salt deposits or aquifers that are not used for drinking water production. However, underground storage of hydrogen gas potentially leads to accidental gas leakages into near-surface potable aquifers triggering subsequent geochemical processes. These leakages pose potential risks that are currently not sufficiently understood. To close this gap in knowledge, a high-pressure laboratory column system was used to simulate a hydrogen gas intrusion into a shallow aquifer. Water and sediment were gained from a sandy Pleistocene aquifer near Neumünster, Germany. In the first stage of the experiment, 100% hydrogen gas was used to simulate dissolved hydrogen concentrations between 800 and 4000 µM by varying pH2 between 2 and 15 bars. pH values rose to between 7.9 and 10.4, partly due to stripping CO2 from the groundwater used during H2 gas addition. In a second stage, the pH was regulated in a range of 6.7 to 7.9 by using a gas mixture of 99% H2 and 1% CO2 at 5 bars of total gas pressure. Observed processes included hydrogen oxidation, sulfate reduction, acetogenesis, formate production, and methanogenesis, which were independent of the hydrogen concentration. Hydrogen oxidation and sulfate reduction showed zeroth order reaction rates and rate constants (106 to 412 µM/h and 12 to 33 µM/h, respectively) in the pH range between 8 and 10. At pH levels between 7 and 8, both reactions started out faster near the column's inflow but then seemed limited towards the columns outflow, suggesting the dependence of sulfate reduction on the pH-value. Acetogenesis dominated the pH range between 8 and 10

  16. Isolation of a sulfate reducing bacterium and its application in sulfate ...

    African Journals Online (AJOL)

    The results show that the effect of C. freundii in removing sulfate was best when the temperature was 32°C, pH was 7.0, COD/SO42- was 5.0 and the initial SO42- concentration was 1500 mg/L. Also, the SRB was inoculated onto an up-flow anaerobic sludge bed (UASB) to remove sulfate in actual tannery wastewater.

  17. Divergent Synthesis of Chondroitin Sulfate Disaccharides and Identification of Sulfate Motifs that Inhibit Triple Negative Breast Cancer

    Science.gov (United States)

    Wei Poh, Zhong; Heng Gan, Chin; Lee, Eric J.; Guo, Suxian; Yip, George W.; Lam, Yulin

    2015-09-01

    Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the “sulfation code” is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231.

  18. 2-Amino-4-hydroxyethylaminoanisole sulfate

    DEFF Research Database (Denmark)

    Madsen, Jakob T; Andersen, Klaus E

    2016-01-01

    positive patch test reactions to the coupler 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. METHODS: Patch test results from the Allergen Bank database for eczema patients patch tested with 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014 were reviewed. RESULTS......: A total of 902 dermatitis patients (154 from the dermatology department and 748 from 65 practices) were patch tested with amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. Thirteen (1.4%) patients had a positive patch test reaction. Our results do not indicate irritant reactions....... CONCLUSIONS: 2-Amino-4-hydroxyethylaminoanisole sulfate is a new but rare contact allergen....

  19. Holothurian Fucosylated Chondroitin Sulfate

    Directory of Open Access Journals (Sweden)

    Vitor H. Pomin

    2014-01-01

    Full Text Available Fucosylated chondroitin sulfate (FucCS is a structurally distinct glycosaminoglycan found in sea cucumber species. It has the same backbone composition of alternating 4-linked glucuronic acid and 3-linked N-acetyl galactosamine residues within disaccharide repeating units as regularly found in mammalian chondroitin sulfates. However, FucCS has also sulfated fucosyl branching units 3-O-linked to the acid residues. The sulfation patterns of these branches vary accordingly with holothurian species and account for different biological actions and responses. FucCSs may exhibit anticoagulant, antithrombotic, anti-inflammatory, anticancer, antiviral, and pro-angiogenic activities, besides its beneficial effects in hemodialysis, cellular growth modulation, fibrosis and hyperglycemia. Through an historical overview, this document covers most of the science regarding the holothurian FucCS. Both structural and medical properties of this unique GAG, investigated during the last 25 years, are systematically discussed herein.

  20. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Restaino, Odile Francesca, E-mail: odilefrancesca.restaino@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Finamore, Rosario, E-mail: rosario.finamore@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Diana, Paola, E-mail: paola.diana@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Marseglia, Mariacarmela, E-mail: marimars84@hotmail.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Vitiello, Mario, E-mail: mariovitiello.ita@gmail.com [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Casillo, Angela, E-mail: angela.casillo@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Bedini, Emiliano, E-mail: emiliano.bedini@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Parrilli, Michelangelo, E-mail: michelangelo.parrilli@unina.it [Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); and others

    2017-03-15

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. - Highlights: • A multi-analytical approach was set up, for the first time, for the determination of the residual keratan sulfate

  1. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate

    International Nuclear Information System (INIS)

    Restaino, Odile Francesca; Finamore, Rosario; Diana, Paola; Marseglia, Mariacarmela; Vitiello, Mario; Casillo, Angela; Bedini, Emiliano; Parrilli, Michelangelo

    2017-01-01

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. - Highlights: • A multi-analytical approach was set up, for the first time, for the determination of the residual keratan sulfate

  2. Biocidal properties of anti-icing additives for aircraft fuels.

    Science.gov (United States)

    Neihof, R A; Bailey, C A

    1978-04-01

    The biocidal and biostatic activities of seven glycol monoalkyl ether compounds were evaluated as part of an effort to find an improved anti-icing additive for jet aircraft fuel. Typical fuel contaminants, Cladosporium resinae, Gliomastix sp., Candida sp., Pseudomonas aeruginosa, and a mixed culture containing sulfate-reducing bacteria were used as assay organisms. Studies were carried out over 3 to 4 months in two-phase systems containing jet fuel and aqueous media. Diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, and 2-methoxyethanol were generally biocidal in aqueous concentrations of 10 to 17% for all organisms except Gliomastix, which required 25% or more. 2-Ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol were biocidal at progressively lower concentrations down to 1 to 2% for 2-butoxyethanol. The enhanced antimicrobial activity of these three compounds was attributed to cytoplasmic membrane damage because of the correlation between surface tension measurements and lytic activity with P. aeruginosa cells. The mechanism of action of the less active compounds appeared to be due to osmotic (dehydrating) effects. When all requirements are taken into account, diethylene glycol monomethyl ether appears to be the most promising replacement for the currently used additive, 2-methoxyethanol.

  3. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron acceptor.

    Science.gov (United States)

    Fadhlaoui, Khaled; Ben Hania, Wagdi; Armougom, Fabrice; Bartoli, Manon; Fardeau, Marie-Laure; Erauso, Gaël; Brasseur, Gaël; Aubert, Corinne; Hamdi, Moktar; Brochier-Armanet, Céline; Dolla, Alain; Ollivier, Bernard

    2018-01-01

    Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspecies hydrogen transfer. Hydrogen production was higher in M. prima strain PhosAc3 cells co-cultured with SRB than in cells cultured alone in the presence of elemental sulfur. We propose that the efficient sugar-oxidizing metabolism by M. prima strain PhosAc3 in syntrophic association with a hydrogenotrophic sulfate-reducing bacterium can be extrapolated to all members of the Mesotoga genus. Genome comparison of Thermotogae members suggests that the metabolic difference between Mesotoga and Thermotoga species (sugar oxidation versus fermentation) is mainly due to the absence of the bifurcating [FeFe]-hydrogenase in the former. Such an obligate oxidative process for using sugars, unusual within prokaryotes, is the first reported within the Thermotogae. It is hypothesized to be of primary ecological importance for growth of Mesotoga spp. in the environments that they inhabit. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticide extracts of foods.

    Science.gov (United States)

    Schenck, Frank J; Callery, Patrick; Gannett, Peter M; Daft, Jonathan R; Lehotay, Steven J

    2002-01-01

    Water-miscible solvents, such as acetone and acetonitrile, effectively extract both polar and nonpolar pesticide residues from nonfatty foods. The addition of sodium chloride to the resulting acetonitrile-water or acetone-water extract (salting out) results in the separation of the water from the organic solvent. However, the organic solvent layer (pesticide extract) still contains some residual water, which can adversely affect separation procedures that follow, such as solid-phase extraction and/or gas chromatography. Drying agents, such as sodium sulfate or magnesium sulfate, are used to remove the water from the organic extracts. In the present study, we used nuclear magnetic resonance spectroscopy to study the composition of the phases resulting from salting out and to compare the effectiveness of sodium sulfate and magnesium sulfate as drying agents. The study showed that considerable amounts of water remained in the organic phase after phase separation. Sodium sulfate was a relatively ineffective drying agent, removing little or no residual water from the organic solvent. Magnesium sulfate proved to be a much more effective drying agent.

  5. Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Aho, Martti

    2013-01-01

    Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less...... harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory......-scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation...

  6. Bactericide for sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shklyar, T F; Anoshina, G M; Blokhin, V Ye; Kisarrev, Ye L; Novikovsa, G M

    1981-01-01

    The aim of the invention is to find a bactericide for sulfate-reducing bacteria of oil fields in Western Siberia in order to suppress the biocorrosive activity on oil industry equipment. This goal is achieved by using M-nitroacetanylide as the bactericide of sulfate-reducing bacteria. This agent suppresses the activity of a stored culture of sulfate-reducing bacteria that comes from industrial waste waters injection wells of the Smotlor oil field.

  7. Inter vs. intraglycosidic acetal linkages control sulfation pattern in semi-synthetic chondroitin sulfate.

    Science.gov (United States)

    Laezza, Antonio; De Castro, Cristina; Parrilli, Michelangelo; Bedini, Emiliano

    2014-11-04

    Microbial-sourced unsulfated chondroitin could be converted into chondroitin sulfate (CS) polysaccharide by a multi-step strategy relying upon benzylidenation and acetylation reactions as key-steps for its regioselective protection. By conducting the two reactions one- or two-pots, CSs with different sulfation patterns could be obtained at the end of the semi-synthesis. In particular, a CS polysaccharide possessing sulfate groups randomly distributed between positions 4 and 6 of N-acetyl-galactosamine (GalNAc) units could be obtained through the two-pots route, whereas the one-pot pathway allowed an additional sulfation at position 3 of some glucuronic acid (GlcA) units. This difference was ascribed to the stabilization of a labile interglycosidic benzylidene acetal involving positions O-3 and O-6 of some GlcA and GalNAc, respectively, when the benzylidene-acetylation reactions were conducted in a one-pot fashion. Isolation and characterization of a polysaccharide intermediate showing interglycosidic acetal moieties was accomplished. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    2014-10-01

    Full Text Available Sulfate-reducing bacteria play major roles in the global carbon and sulfur cycles, but it remains unclear how reducing sulfate yields energy. To determine the genetic basis of energy conservation, we measured the fitness of thousands of pooled mutants of Desulfovibrio alaskensis G20 during growth in 12 different combinations of electron donors and acceptors. We show that ion pumping by the ferredoxin:NADH oxidoreductase Rnf is required whenever substrate-level phosphorylation is not possible. The uncharacterized complex Hdr/flox-1 (Dde_1207:13 is sometimes important alongside Rnf and may perform an electron bifurcation to generate more reduced ferredoxin from NADH to allow further ion pumping. Similarly, during the oxidation of malate or fumarate, the electron-bifurcating transhydrogenase NfnAB-2 (Dde_1250:1 is important and may generate reduced ferredoxin to allow additional ion pumping by Rnf. During formate oxidation, the periplasmic [NiFeSe] hydrogenase HysAB is required, which suggests that hydrogen forms in the periplasm, diffuses to the cytoplasm, and is used to reduce ferredoxin, thus providing a substrate for Rnf. During hydrogen utilization, the transmembrane electron transport complex Tmc is important and may move electrons from the periplasm into the cytoplasmic sulfite reduction pathway. Finally, mutants of many other putative electron carriers have no clear phenotype, which suggests that they are not important under our growth conditions, although we cannot rule out genetic redundancy.

  9. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  10. 21 CFR 582.5230 - Calcium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium sulfate. 582.5230 Section 582.5230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  11. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  12. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  13. Sulfation pattern of fucose branches affects the anti-hyperlipidemic activities of fucosylated chondroitin sulfate.

    Science.gov (United States)

    Wu, Nian; Zhang, Yu; Ye, Xingqian; Hu, Yaqin; Ding, Tian; Chen, Shiguo

    2016-08-20

    Fucosylated chondroitin sulfates (fCSs) are glycosaminoglycans extracted from sea cucumbers, consisting of chondroitin sulfate E (CSE) backbones and sulfated fucose branches. The biological properties of fCSs could be affected by the sulfation pattern of their fucose branches. In the present study, two fCSs were isolated from sea cucumbers Isostichopus badionotus (fCS-Ib) and Pearsonothuria graeffei (fCS-Pg). Their monosaccharide compositions of glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc), fucose (Fuc) and sulfate were at similar molar ratio with 1.0/0.7/0.9/3.1 for fCS-Ib and 1.0/0.8/1.5/2.6 for fCS-Pg. The two fCSs have different sulfation patterns on their fucose branches, fCS-Pg with 3,4-O-disulfation while fCS-Ib with 2,4-O-disulfation. Their antihyperlipidemic effects were compared using a high-fat high-fructose diet (HFFD)-fed C57BL/6J mice model. Both fCS-Ib and fCS-Pg had significant effects on lipid profile improvement, liver protection, blood glucose diminution and hepatic glycogen synthesis. Specifically, fCS-Pg with 3,4-O-disulfation fucose branches was more effective in reduction of blood cholesterol (TC), low density lipoprotein (LDL) and atherogenic index (AI). Our results indicate that both fCSs, especially fCS-Pg, could be used as a potential anti-hyperlipidemic drug. Copyright © 2016. Published by Elsevier Ltd.

  14. Hydrogen production from anaerobic treatment of vinasse using a UASB reactor

    International Nuclear Information System (INIS)

    Gonzalez Ugalde, Cesar Antonio

    2012-01-01

    Production of hydrogen in a UASB reactor is assessed in the laboratory through anaerobic fermentation of vinasses. Physico-chemical characterization of vinasse was made, through which it was determined that the same has an acid pH, high concentration of dissolved solids, low amount of total suspended solids and high organic load; likewise, potassium, nitrogen, calcium and iron contained within of the macro and micronutrients with higher concentrations, while copper and zinc are found in low concentrations. All these features have made the vinasse a substrate feasible for hydrogen fermentative production. The sulfate was found as the second compound in higher concentration, which can promote the growth of sulfate-reducing bacteria, which consume H 2 and generate hydrogen sulfide (H 2 S). Heat treatment was conducted to the anaerobic sludges in a water bath at 100 degrees for 30 minutes, which was achieved inhibit the growth of methanogenic bacteria. Likewise, total nonviable or viable matter growth curves were generated, with which it was determined that the exponential growth phase of bacteria in mixed culture thermally pretreated was found between 20 and 120 h. A CSTR reactor was used to decrease the time of formation of Hydrogen Producing Granules (GPH), which has resulted successful. Granules with an average size of 1,28 mm long and 1,18 mm wide after 7 days of operation were obtained. Under mesophilic conditions, operating pH of about 5,50 and substrate concentration of 20,000 mg COD/L, the hydrogen quantity produced in the UASB reactor was influenced by Hydraulic retention time (HRT). HRT for 12 hours was obtained a maximum of 2,31 mL/h of H 2 (0,789 mL/h/L reaccion ) whereas for HRT of 6 hours the maximum amount of hydrogen obtained has been 12,0 mL/h (13,4 mL/h/L reaction ); however, without possibility to assert that the average values of these variables has been statistically different. After 45 days of operation GHP were achieved with an average size of 0

  15. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Science.gov (United States)

    2010-04-01

    ... ophthalmic solution. 524.1484e Section 524.1484e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a...

  16. Crystallization and preliminary crystallographic analysis of a flavoprotein NADH oxidase from Lactobacillus brevis

    International Nuclear Information System (INIS)

    Kuzu, Mutlu; Niefind, Karsten; Hummel, Werner; Schomburg, Dietmar

    2005-01-01

    The water-forming flavoenzyme NADH oxidase was crystallized successfully for the first time. The crystals diffract X-rays to at least 4.0 Å resolution. NADH oxidase (NOX) from Lactobacillus brevis is a homotetrameric flavoenzyme composed of 450 amino acids per subunit. The molecular weight of each monomer is 48.8 kDa. The enzyme catalyzes the oxidation of two equivalents of NADH and reduces one equivalent of oxygen to yield two equivalents of water, without releasing hydrogen peroxide after the reduction of the first equivalent of NADH. Crystals of this protein were grown in the presence of 34% polyethylene glycol monomethyl ether 2000, 0.1 M sodium acetate and 0.2 M ammonium sulfate at pH 5.4. They belong to the tetragonal space group P4 3 2 1 2, with unit-cell parameters a = 74.8, b = 95.7, c = 116.9 Å, α = γ = 90, β = 103.8°. The current diffraction limit is 4.0 Å. The self-rotation function of the native data set is consistent with a NOX tetramer in the asymmetric unit

  17. Galactose 6-sulfate sulfatase activity in Morquio syndrome

    International Nuclear Information System (INIS)

    Yutaka, T.; Okada, S.; Kato, T.; Inui, K.; Yabuuhi, H.

    1982-01-01

    The authors have prepared a new substrate, o-β-D-sulfo-galactosyl-(1-4)-β-D-6-sulfo-2-acetamido-2-deoxyglucosyl-(1-4)-D-[1- 3 H]galactitol, from shark cartilage keratan sulfate, for the assay of galactose 6-sulfate sulfatase activity. Using this substrate, they found there was a striking deficiency of galactose 6-sulfate sulfatase activity, in addition to the known deficiency of N-acetylgalactosamine 6-sulfate sulfatase, in the cultured skin fibroblasts of patients with Morquio syndrome. Their results could be explained by the hypothesis that accumulation of keratan sulfate and chondroitin 6-sulfate in Morquio syndrome is due to a deficiency of galactose 6-sulfate sulfatase and N-acetylgalactosamine 6-sulfate sulfatase activity, which are necessary for the degradation of these two mucopolysaccharides. (Auth.)

  18. Galactose 6-sulfate sulfatase activity in Morquio syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yutaka, T.; Okada, S.; Kato, T.; Inui, K.; Yabuuhi, H. (Osaka Univ. (Japan). Faculty of Medicine)

    1982-07-01

    The authors have prepared a new substrate, o-..beta..-D-sulfo-galactosyl-(1-4)-..beta..-D-6-sulfo-2-acetamido-2-deoxyglucosyl-(1-4)-D-(1-/sup 3/H)galactitol, from shark cartilage keratan sulfate, for the assay of galactose 6-sulfate sulfatase activity. Using this substrate, they found there was a striking deficiency of galactose 6-sulfate sulfatase activity, in addition to the known deficiency of N-acetylgalactosamine 6-sulfate sulfatase, in the cultured skin fibroblasts of patients with Morquio syndrome. Their results could be explained by the hypothesis that accumulation of keratan sulfate and chondroitin 6-sulfate in Morquio syndrome is due to a deficiency of galactose 6-sulfate sulfatase and N-acetylgalactosamine 6-sulfate sulfatase activity, which are necessary for the degradation of these two mucopolysaccharides.

  19. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... hydroxide or potassium carbonate. (b) The ingredient meets the specifications of the “Food Chemicals Codex... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg...

  20. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    Science.gov (United States)

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  1. The ceric sulfate dosimeter

    DEFF Research Database (Denmark)

    Bjergbakke, Erling

    1970-01-01

    The process employed for the determination of absorbed dose is the reduction of ceric ions to cerous ions in a solution of ceric sulfate and cerous sulfate in 0.8N sulfuric acid: Ce4+→Ce 3+ The absorbed dose is derived from the difference in ceric ion concentration before and after irradiation...

  2. Hydrogen bonds of DsrD protein revealed by neutron crystallography

    International Nuclear Information System (INIS)

    Chatake, Toshiyuki; Higuchi, Yoshiki; Mizuno, Nobuhiro; Tanaka, Ichiro; Niimura, Nobuo; Morimoto, Yukio

    2008-01-01

    Hydrogen bonds of DNA-binding protein DsrD have been determined by neutron diffraction. In terms of proton donors and acceptors, DsrD protein shows striking differences from other proteins. The features of hydrogen bonds in DsrD protein from sulfate-reducing bacteria have been investigated by neutron protein crystallography. The function of DsrD has not yet been elucidated clearly, but its X-ray crystal structure revealed that it comprises a winged-helix motif and shows the highest structural homology to the DNA-binding proteins. Since any neutron structure of a DNA recognition protein has not yet been obtained, here detailed information on the hydrogen bonds in the winged-helix-motif protein is given and the following features found. (i) The number of hydrogen bonds per amino acid of DsrD is relatively fewer than for other proteins for which neutron structures were determined previously. (ii) Hydrogen bonds are localized between main-chain and main-chain atoms; there are few hydrogen bonds between main-chain and side-chain atoms and between side-chain and side-chain atoms. (iii) Hydrogen bonds inducted by protonation of specific amino acid residues (Glu50) seem to play an essential role in the dimerization of DsrD. The former two points are related to the function of the DNA-binding protein; the three-dimensional structure was mainly constructed by hydrogen bonds in main chains, while the side chains appeared to be used for another role. The latter point would be expected to contribute to the crystal growth of DsrD

  3. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  4. EFFECT OF SULFATE LOADING RATE AND ORGANIC LOADING RATE ON ANAEROBIC BAFFLED REACTORS USED FOR TREATMENT OF SANITARY LANDFILL LEACHATES

    Directory of Open Access Journals (Sweden)

    O. Burbano-Figueroa

    2015-06-01

    Full Text Available AbstractThis study investigated the effect of organic loading rate (OLR and sulfate loading rate (SLR on landfill leachate treatment by a lab-scale anaerobic baffled reactor (ABR. Landfill leachate contained a concentration of organic matter between 3966 and 5090 mg COD.L-1 and no detectable amounts of sulfate. Reactors were started-up by feeding them with iron-sulfate at a SLR of 0.05 g SO42-.L-1.day-1 (4 weeks. Factorial design and response surface techniques were used to evaluate and optimize the effects of these operating variables on COD removal. ABRs were operated at OLRs ranging from 0.30 up to 6.84 g COD.L-1.day-1 by changes in influent volumetric flow. SO42- was added to the influent at a SRL from 0.06 to 0.13 g SO42-.L-1.day-1. The highest value of COD removal (66% was reached at an OLR of 3.58 g COD.L-1.day-1 and SLR of 0.09 g SO4-2.L-1.day-1 with a COD/SO4-2 ratio of 40. Under these conditions sulfate is mainly used for molecular hydrogen consumption while organic matter is preferentially degraded via methanogesis.

  5. In situ hydrogen consumption kinetics as an indicator of subsurface microbial activity

    Science.gov (United States)

    Harris, S.H.; Smith, R.L.; Suflita, J.M.

    2007-01-01

    There are few methods available for broadly assessing microbial community metabolism directly within a groundwater environment. In this study, hydrogen consumption rates were estimated from in situ injection/withdrawal tests conducted in two geochemically varying, contaminated aquifers as an approach towards developing such a method. The hydrogen consumption first-order rates varied from 0.002 nM h-1 for an uncontaminated, aerobic site to 2.5 nM h-1 for a contaminated site where sulfate reduction was a predominant process. The method could accommodate the over three orders of magnitude range in rates that existed between subsurface sites. In a denitrifying zone, the hydrogen consumption rate (0.02 nM h-1) was immediately abolished in the presence of air or an antibiotic mixture, suggesting that such measurements may also be sensitive to the effects of environmental perturbations on field microbial activities. Comparable laboratory determinations with sediment slurries exhibited hydrogen consumption kinetics that differed substantially from the field estimates. Because anaerobic degradation of organic matter relies on the rapid consumption of hydrogen and subsequent maintenance at low levels, such in situ measures of hydrogen turnover can serve as a key indicator of the functioning of microbial food webs and may be more reliable than laboratory determinations. ?? 2007 Federation of European Microbiological Societies.

  6. The confused world of sulfate attack on concrete

    International Nuclear Information System (INIS)

    Neville, Adam

    2004-01-01

    External sulfate attack is not completely understood. Part I identifies the issues involved, pointing out disagreements, and distinguishes between the mere occurrence of chemical reactions of sulfates with hydrated cement paste and the damage or deterioration of concrete; only the latter are taken to represent sulfate attack. Furthermore, sulfate attack is defined as deleterious action involving sulfate ions; if the reaction is physical, then, it is physical sulfate attack that takes place. The discussion of the two forms of sulfate attack leads to a recommendation for distinct nomenclature. Sulfate attack on concrete structures in service is not widespread, and the amount of laboratory-based research seems to be disproportionately large. The mechanisms of attack by different sulfates--sodium, calcium, and magnesium--are discussed, including the issue of topochemical and through-solution reactions. The specific aspects of the action of magnesium sulfate are discussed, and the differences between laboratory conditions and field exposure are pointed out. Part II discusses the progress of sulfate attack and its manifestations. This is followed by a discussion of making sulfate-resisting concrete. One of the measures is to use Type V cement, and this topic is extensively discussed. Likewise, the influence of w/c on sulfate resistance is considered. The two parameters are not independent of one another. Moreover, the cation in the sulfate salt has a strong bearing on the efficiency of the Type V cement. Recent interpretations of the Bureau of Reclamation tests, both long term and accelerated, are evaluated, and it appears that they need reworking. Part III reviews the standards and guides for the classification of the severity of exposure of structures to sulfates and points out the lack of calibration of the various classes of exposure. A particular problem is the classification of soils because much depends on the extraction ratio of sulfate in the soil: there is a

  7. Sulfation in lead-acid batteries

    Science.gov (United States)

    Catherino, Henry A.; Feres, Fred F.; Trinidad, Francisco

    Virtually, all military land vehicle systems use a lead-acid battery to initiate an engine start. The maintainability of these batteries and as a consequence, system readiness, has suffered from a lack of understanding of the reasons for battery failure. Often, the term most commonly heard for explaining the performance degradation of lead-acid batteries is the word, sulfation. Sulfation is a residual term that came into existence during the early days of lead-acid battery development. The usage is part of the legend that persists as a means for interpreting and justifying the eventual performance deterioration and failure of lead-acid batteries. The usage of this term is confined to the greater user community and, over time, has encouraged a myriad of remedies for solving sulfation problems. One can avoid the connotations associated with the all-inclusive word, sulfation by visualizing the general "sulfation" effect in terms of specific mechanistic models. Also, the mechanistic models are essential for properly understanding the operation and making proper use this battery system. It is evident that the better the model, the better the level of understanding.

  8. Demonstration of EIC's copper sulfate process for removal of hydrogen sulfide and other trace contaminants from geothermal steam at turbine inlet temperatures and pressures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    The results obtained during the operation of an integrated, one-tenth commercial scale pilot plant using EIC's copper sulfate process for the removal of hydrogen sulfide and other contaminants from geothermal steam at turbine upstream conditions are discussed. The tests took place over a six month period at Pacific Gas and Electric Company's Unit No. 7 at The Geysers Power Plant. These tests were the final phase of a development effort which included the laboratory research and engineering design work which led to the design of the pilot plant. Broadly, the objectives of operating the pilot plant were to confirm the preliminary design criteria which had been developed, and provide data for their revisions, if appropriate, in a plant which contained all the elements of a commercial process using equipment of a size sufficient to provide valid scale-up data. The test campaign was carried out in four phases: water testing; open circuit, i.e., non integrated scrubbing, liquid-solid separation and regeneration testing; closed circuit short term; and closed circuit long term testing.

  9. Heparan sulfate and cell division

    Directory of Open Access Journals (Sweden)

    Porcionatto M.A.

    1999-01-01

    Full Text Available Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

  10. Sulfate and dissolved sulfide variation under low COD/Sulfate ratio in Up-flow Anaerobic Sludge Blanket (UASB treating domestic wastewater

    Directory of Open Access Journals (Sweden)

    Sérvio Túlio Alves Cassini

    2012-04-01

    Full Text Available In this study, the dynamics of sulfate reduction and dissolved sulfide generation (S2-, HS-, H2Saq in liquid phase was evaluated in an UASB reactor treating domestic wastewater with low COD/Sulfate content. The evaluation in the UASB reactor was performed at three sludge heights (0.25, 1.25, 2.25 taps and effluent of the reactor. Sulfate reduction was verified in the reactor, with an average reduction of 24 % throughout the experiment period. However, the dissolved sulfide concentration in the reactor was not higher than 5.0 mg Sdiss/L. The kinetic model of first order showed good fit to describe the sulfate reduction under different COD/sulfate ratio, with K1app between 2.94x10-5 s-1 and 1.17x10-5 s-1 with correlation coefficients for data over 91%. The maximum rate to sulfate reduction was 18.0 mg SO42-/L.h-1 and small variation in COD/sulfate ratio promotes a significant change both in sulfate and sulfide concentrations.

  11. Volatile fatty acids as substrates for iron and sulfate reduction in Arctic marine sediments, Svalbard

    Science.gov (United States)

    Finke, N.; Vandieken, V.; Jorgensen, B. B.

    2006-12-01

    Anaerobic degradation of complex organic material in aquatic systems is a multi-step process. The metabolic products of fermentative bacteria serve as electron donors for the terminal oxidizing bacteria. In marine sediments, iron reduction and sulfate reduction are generally the most important terminal oxidation processes in the upper anoxic zone [1]. Microorganisms that reduce iron and sulfate may use a broad range of electron donors, yet the list of potential substrates provides little information about the substrates used in situ by these organisms. Investigations on the electron donors for sulfate reducers in marine sediments have shown that volatile fatty acids (VFA), and in particular acetate, together with hydrogen are the major substrates (e.g. [2-4]). Similar investigations for iron reduction or simultaneous iron and sulfate reduction are lacking for marine sediments. Furthermore, most of these studies were made in temperate sediments and little is known about the substrates for sulfate reducers in permanently cold sediments, which account for >90% of the ocean floor [5]. We investigated the relative contributions of iron reduction and sulfate reduction to the terminal oxidation of organic carbon and the importance of acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in permanently cold, Arctic sediments from Svalbard. In the surface layer (0-2 cm) sulfate reduction accounted for 2/3 of the organic carbon oxidation (determined as DIC production), the remaining 1/3 were attributed to iron reduction. In the 5-9 cm layer sulfate reduction was the sole important terminal oxidation step. The contribution of acetate to terminal oxidation was determined by radiotracer incubation as well as from the accumulation after the inhibition of sulfate reduction by selenate. The rates determined with the two methods varied by less than 20%. Acetate turnover, determined with the tracer incubations, accounted for 10 and 40% of

  12. Zinc-Nickel Codeposition in Sulfate Solution Combined Effect of Cadmium and Boric Acid

    Directory of Open Access Journals (Sweden)

    Y. Addi

    2011-01-01

    Full Text Available The combined effect of cadmium and boric acid on the electrodeposition of zinc-nickel from a sulfate has been investigated. The presence of cadmium ion decreases zinc in the deposit. In solution, cadmium inhibits the zinc ion deposition and suppresses it when deposition potential value is more negative than −1.2 V. Low concentration of CdSO4 reduces the anomalous nature of Zn-Ni deposit. Boric acid decreases current density and shifts potential discharge of nickel and hydrogen to more negative potential. The combination of boric acid and cadmium increases the percentage of nickel in the deposit. Boric acid and cadmium.

  13. Setting constraints on the nature and origin of the two major hydrous sulfates on Mars: Monohydrated and polyhydrated sulfates

    Science.gov (United States)

    Wang, Alian; Jolliff, Bradley L.; Liu, Yang; Connor, Kathryn

    2016-04-01

    Monohydrated Mg sulfate (MgSO4·H2O) and polyhydrated sulfate are the most common and abundant hydrous sulfates observed thus far on Mars. They are widely distributed and coexist in many locations. On the basis of results from two new sets of experiments, in combination with past experimental studies and the subsurface salt mineralogy observed at a saline playa (Dalangtan, DLT) in a terrestrial analogue hyperarid region on the Tibet Plateau, we can now set new constraints on the nature and origin of these two major Martian sulfates. Starkeyite (MgSO4·4H2O) is the best candidate for polyhydrated sulfate. MgSO4·H2O in the form of "LH-1w," generated from dehydration of Mg sulfates with high degrees of hydration, is the most likely mineral form for the majority of Martian monohydrated Mg sulfate. Two critical properties of Mg sulfates are responsible for the coexistence of these two phases that have very different degrees of hydration: (1) the metastability of a substructural unit in starkeyite at relatively low temperatures, and (2) catalytic effects attributed to coprecipitated species (sulfates, chlorides, oxides, and hydroxides) from chemically complex brines that help overcome the metastability of starkeyite. The combination of these two properties controls the coexistence of the LH-1w layer and starkeyite layers at many locations on Mars, which sometimes occur in an interbedded stratigraphy. The structural H2O held by these two broadly distributed sulfates represents a large H2O reservoir at the surface and in the shallow subsurface on current Mars.

  14. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  15. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  16. Sulfate reduction in freshwater peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Oequist, M.

    1996-12-31

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO{sub 4}{sup 2-} concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 {mu}M. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 {mu}M h{sup -1} while in B and C they were 1 and 0.05 {mu}M h{sup -1}, respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 {mu}g d{sup -1} g{sup -1}) were found 10 cm below the water table, in B (ca. 1.0 {mu}g d{sup -1} g{sup -1}) in the vicinity of the water table, and in C (0.75 {mu}g d{sup -1} g{sup -1}) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m{sup -2} d{sup -1}, while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m{sup -2} d{sup -1}, respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination

  17. Sulfate reduction in freshwater peatlands

    International Nuclear Information System (INIS)

    Oequist, M.

    1996-01-01

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO 4 2- concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 μM. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 μM h -1 while in B and C they were 1 and 0.05 μM h -1 , respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 μg d -1 g -1 ) were found 10 cm below the water table, in B (ca. 1.0 μg d -1 g -1 ) in the vicinity of the water table, and in C (0.75 μg d -1 g -1 ) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m -2 d -1 , while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m -2 d -1 , respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination paper. 67 refs, 6 figs, 3 tabs

  18. Heavy metals detoxification in soil performed by sulfate - reducing bacteria

    International Nuclear Information System (INIS)

    Pado, R.; Pawlowska-Cwiek, L.; Szwagrzyk, J.

    1994-01-01

    The process of sulfate reduction carried out by mixed bacteria cultures in the presence of heavy cations (Fe 2+ , Pb 2+ , Cd 2+ , Zn 2+ , Cu 2+ ) was investigated. The range of harmful metals concentrations responded to the acceptable levels in soil and their multiplications (10-100 times) in contaminated soil. The results show the possibility of detoxicating these metals, especially lead. In the highest lead concentrations (3950 and 7500 ppm), only after one month of activities conducted by bacteria dissimilating hydrogen sulfide, between about 73 and 81 per cent of lead was converted into practically insoluble PbS. It was found that detoxication process with the presence of bacteria from this group prolonged with the increase of metal concentration (Zn 2+ and Cd 2+ in particular. (author). 30 refs, 5 figs, 3 tabs

  19. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    Science.gov (United States)

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information

  20. Development and validation of an alternative titration method for the determination of sulfate ion in indinavir sulfate

    Directory of Open Access Journals (Sweden)

    Breno de Carvalho e Silva

    2005-02-01

    Full Text Available A simple and rapid precipitation titration method was developed and validated to determine sulfate ion content in indinavir sulfate raw material. 0.1 mol L-1 lead nitrate volumetric solution was used as titrant employing potentiometric endpoint determination using a lead-specific electrode. The United States Pharmacopoeia Forum indicates a potentiometric method for sulfate ion quantitation using 0.1 mol L-1 lead perchlorate as titrant. Both methods were validated concerning linearity, precision and accuracy, yielding good results. The sulfate ion content found by the two validated methods was compared by the statistical t-student test, indicating that there was no statistically significant difference between the methods.

  1. The combined therapy with chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride does not improve joint damage in an experimental model of knee osteoarthritis in rabbits.

    Science.gov (United States)

    Roman-Blas, Jorge A; Mediero, Aránzazu; Tardío, Lidia; Portal-Nuñez, Sergio; Gratal, Paula; Herrero-Beaumont, Gabriel; Largo, Raquel

    2017-01-05

    Osteoarthritis is the most common chronic joint disorder especially during aging. Although with controversies, glucosamine, both in its forms of sulfate and hydrochloride, and chondroitin sulfate are commonly employed to treat osteoarthritis. Due to the modest improve in the symptoms observed in patients treated with these drugs alone, a formulation combining both agents has been considered. The discrepant results achieved for pain control or structural improvement in osteoarthritis patients has been attributed to the quality of chemical formulations or different bias in clinical studies. The current study has been designed to test the effects of two different combined formulations with adequate pharmaceutical grade of these drugs in osteoarthritic joints, and to explore the underlying mechanisms modulated by both formulations in different osteoarthritis target tissues. Knee osteoarthritis was surgically induced in experimental rabbits. Some animals received the combined therapy (CT)1, (chondroitin sulfate 1200mg/day + glucosamine sulfate 1500mg/day), or the CT2 ((chondroitin sulfate 1200mg/day + glucosamine hydrochloride 1500mg/day). Neither CT1 nor CT2 significantly modified the cartilage damage or the synovial inflammation observed in osteoarthritic animals. Treatments were also unable to modify the presence of pro-inflammatory mediators, and the synthesis of metalloproteinases in the cartilage or in the synovium of osteoarthritic animals. Combined therapies did not modify the decrease in the subchondral bone mineral density observed in osteoarthritic rabbits. Therapies of chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride failed to improve structural damage or to ameliorate the inflammatory profile of joint tissues during experimental osteoarthritis. Published by Elsevier B.V.

  2. Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: insights into the sugar sequences with bioactivities.

    Science.gov (United States)

    Mizumoto, Shuji; Murakoshi, Saori; Kalayanamitra, Kittiwan; Deepa, Sarama Sathyaseelan; Fukui, Shigeyuki; Kongtawelert, Prachya; Yamada, Shuhei; Sugahara, Kazuyuki

    2013-02-01

    Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [-4GlcUAβ1-3GalNAcβ1-](n), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d-disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, ΔO-D-D, ΔA-D-D, ΔC-D-D, ΔE-A-D, ΔD-D-C, ΔE-D-D and ΔA-B-D, in addition to three previously reported sequences, ΔC-A-D, ΔC-D-C and ΔA-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol Δ stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(4-O-sulfate)], [GlcUA-GalNAc(6-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], [GlcUA-GalNAc(4-O-, 6-O-sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, ΔA-D-A, ΔA-D-D and ΔA-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.

  3. Hematoporphyrin monomethyl ether-mediated photodynamic therapy selectively kills sarcomas by inducing apoptosis.

    Directory of Open Access Journals (Sweden)

    Hui Zeng

    Full Text Available We investigated the antitumor effect and mechanism of hematoporphyrin monomethyl ether-mediated photodynamic therapy (HMME-PDT in sarcomas. Intracellular uptake of HMME by osteosarcoma cells (LM8 and K7 was time- and dose-dependent, while this was not observed for myoblast cells (C2C12 and fibroblast cells (NIH/3T3. HMME-PDT markedly inhibited the proliferation of sarcoma cell lines (LM8, MG63, Saos-2, SW1353, TC71, and RD (P<0.05, and the killing effect was improved with increased HMME concentration and energy intensity. Flow cytometry analysis revealed that LM8, MG63, and Saos-2 cells underwent apoptosis after treatment with HMME-PDT. Additionally, apoptosis was induced after HMME-PDT in a three-dimensional culture of osteosarcoma cells. Hoechst 33342 staining confirmed apoptosis. Cell death caused by PDT was rescued by an irreversible inhibitor (Z-VAD-FMK of caspase. However, cell viability was not markedly decreased compared with the HMME-PDT group. Expression levels of caspase-1, caspase-3, caspase-6, caspase-9, and poly (ADP-ribose polymerase (PARP proteins were markedly up-regulated in the treatment groups and increased with HMME concentration as determined by western blot analysis. In vivo, tumor volume markedly decreased at 7-16 days post-PDT. Hematoxylin and eosin staining revealed widespread necrotic and infiltrative inflammatory cells in the HMME-PDT group. Immunohistochemistry analysis also showed that caspase-1, caspase-3, caspase-6, caspase-9, and PARP proteins were significantly increased in the HMME-PDT group. These results indicate that HMME-PDT has a potent killing effect on osteosarcoma cells in vitro and significantly inhibits tumor growth in vivo, which is associated with the caspase-dependent pathway.

  4. Effect of metakaolin on external sulfate attack

    Energy Technology Data Exchange (ETDEWEB)

    Ramlochan, T.; Thomas, M. [Toronto Univ., Dept. of Civil Engineering, ON (Canada)

    2000-07-01

    The effect of high reactivity metakaolin (HRM) on the sulfate resistance of mortars was studied. Mortar bars with three cements of varying C{sub 3}A content were used for the experiment. After a six month exposure to a 5 per cent solution of sodium sulfate, mortar bars incorporating any level of HRM as a partial replacement for a high-C{sub 3}A was considered 'moderately sulfate resistant'; mortar bars with HRM and a moderate or low C{sub 3}A content as 'high sulfate resistant'. It was also determined that for long term sulfate resistance 15 per cent HRM or more may be required, depending on the C{sub 3}A content. The performance of HRM was found to be significantly influenced by the water-cementitious material ratio, and in turn, by permeability, suggesting that HRM might increase sulfate resistance more by lowering the permeability of the concrete than by any chemical action. 7 refs., 4 tabs., 7 figs.

  5. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  6. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    Science.gov (United States)

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.

  7. A potential role for chondroitin sulfate/dermatan sulfate in arm regeneration in Amphiura filiformis.

    Science.gov (United States)

    Ramachandra, Rashmi; Namburi, Ramesh B; Dupont, Sam T; Ortega-Martinez, Olga; van Kuppevelt, Toin H; Lindahl, Ulf; Spillmann, Dorothe

    2017-05-01

    Glycosaminoglycans (GAGs), such as chondroitin sulfate (CS) and dermatan sulfate (DS) from various vertebrate and invertebrate sources are known to be involved in diverse cellular mechanisms during repair and regenerative processes. Recently, we have identified CS/DS as the major GAG in the brittlestar Amphiura filiformis, with high proportions of di- and tri-O-sulfated disaccharide units. As this echinoderm is known for its exceptional regeneration capacity, we aimed to explore the role of these GAG chains during A. filiformis arm regeneration. Analysis of CS/DS chains during the regeneration process revealed an increase in the proportion of the tri-O-sulfated disaccharides. Conversely, treatment of A. filiformis with sodium chlorate, a potent inhibitor of sulfation reactions in GAG biosynthesis, resulted in a significant reduction in arm growth rates with total inhibition at concentrations higher than 5 mM. Differentiation was less impacted by sodium chlorate exposure or even slightly increased at 1-2 mM. Based on the structural changes observed during arm regeneration we identified chondroitin synthase, chondroitin-4-O-sulfotransferase 2 and dermatan-4-O-sulfotransferase as candidate genes and sought to correlate their expression with the expression of the A. filiformis orthologue of bone morphogenetic factors, AfBMP2/4. Quantitative amplification by real-time PCR indicated increased expression of chondroitin synthase and chondroitin-4-O-sulfotransferase 2, with a corresponding increase in AfBMP2/4 during regeneration relative to nonregenerating controls. Our findings suggest that proper sulfation of GAGs is important for A. filiformis arm regeneration and that these molecules may participate in mechanisms controlling cell proliferation. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting...... apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage...... conductances, the variation of the rate coefficient for sulfate influx (y) was positively correlated with the rate coefficient for Cl- influx (x), y = 0.035 x - 0.0077 cm/sec (r = 0.9935, n = 15). 5. Addition of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine to the serosal bath of short...

  9. N-sulfation of heparan sulfate is critical for syndecan-4-mediated podocyte cell-matrix interactions

    NARCIS (Netherlands)

    Sugar, T.; Wassenhove-McCarthy, D.J.; Orr, A.W.; Green, J.; Kuppevelt, T.H. van; McCarthy, K.J.

    2016-01-01

    Previous research has shown that podocytes unable to assemble heparan sulfate on cell surface proteoglycan core proteins have compromised cell-matrix interactions. This report further explores the role of N-sulfation of intact heparan chains in podocyte-matrix interactions. For the purposes of this

  10. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon

    International Nuclear Information System (INIS)

    Chatelus, C.

    1987-11-01

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H 2 layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of the

  11. Simultaneous removal of selected oxidized contaminants in groundwater using a continuously stirred hydrogen-based membrane biofilm reactor.

    Science.gov (United States)

    Xia, Siqing; Liang, Jun; Xu, Xiaoyin; Shen, Shuang

    2013-01-01

    A laboratory trial was conducted for evaluating the capability of a continuously stirred hydrogen-based membrane biofilm reactor to simultaneously reduce nitrate (NO(3-)-N), sulfate (SO4(2-)), bromate (BrO3-), hexavalent chromium (Cr(VI)) and parachloronitrobenzene (p-CNB). The reactor contained two bundles of hollow fiber membranes functioning as an autotrophic biofilm carrier and hydrogen pipe as well. On the condition that hydrogen was supplied as electron donor and diffused into water through membrane pores, autohydrogenotrophic bacteria were capable of reducing contaminants to forms with lower toxicity. Reduction occurred within 1 day and removal fluxes for NO(3-)-N, SO4(2-), BrO3-, Cr(VI), and p-CNB reached 0.641, 2.396, 0.008, 0.016 and 0.031 g/(day x m2), respectively after 112 days of continuous operation. Except for the fact that sulfate was 37% removed under high surface loading, the other four contaminants were reduced by over 95%. The removal flux comparison between phases varying in surface loading and H2 pressure showed that decreasing surface loading or increasing H2 pressure would promote removal flux. Competition for electrons occurred among the five contaminants. Electron-equivalent flux analysis showed that the amount of utilized hydrogen was mainly controlled by NO(3-)-N and SO4(2-) reduction, which accounted for over 99% of the electron flux altogether. It also indicated the electron acceptor order, showing that nitrate was the most prior electron acceptor while suIfate was the second of the five contaminants.

  12. Immobilization of calcium sulfate contained in demolition waste

    International Nuclear Information System (INIS)

    Ambroise, J.; Pera, J.

    2008-01-01

    This paper presents the results of a laboratory study undertaken to examine the treatment of demolition waste containing calcium sulfate by means of calcium sulfoaluminate clinker (CSA). The quantity of CSA necessary to entirely consume calcium sulfate was determined. Using infrared spectrometry analysis and X-ray diffraction, it was shown that calcium sulfate was entirely consumed when the ratio between CSA and calcium sulfate was 4. Standard sand was polluted by 4% calcium sulfate. Two solutions were investigated: ·either global treatment of sand by CSA, ·or immobilization of calcium sulfate by CSA, followed by the introduction of this milled mixture in standard sand. Regardless of the type of treatment, swelling was almost stabilized after 28 days of immersion in water

  13. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  14. Mencegah Pembentukan Kalsium Sulfat pada Desalinasi Air Laut

    Directory of Open Access Journals (Sweden)

    Mirna Rahmah Lubis

    2007-06-01

    Full Text Available Resin penukar-anion, Relite MG 1/P, dapat digunakan untuk memisahkan sulfat dalam air laut guna mencegah pembentukan kerak kalsium sulfat pada heat exchanger. Resin tersebut menunjukkan selektivitas sulfat yang tinggi dalam air laut sintetis. Resin yang telah dipakai dapat diregenerasi menggunakan air asin yang dipekatkan dengan asam hingga mencapai pH 4. Untuk waktu pemakaian dan regenerasi yang sama, faktor konsentrasi desalinasi (misalnya 2 hingga 4 menaikkan konsentrasi klorida dalam air asin yang diblowdown. Dengan faktor konsentrasi yang tetap, kenaikan laju alir (pengurangan waktu pemakaian dan regenerasi memperendah efisiensi regenerasi dan menaikkan pemisahan sulfat. Akibat kelarutan kalsium sulfat yang bersifat terbalik tersebut, temperatur air asin yang tinggi memerlukan pemisahan sulfat yang lebih banyak, yang dapat dicapai dengan mengurangi laju alir air laut. Pengurangan laju alir tersebut membutuhkan peralatan yang lebih besar dan resin yang lebih banyak, sehingga biaya modal bertambah. Untuk pabrik desalinasi dengan kapasitas produksi 1 juta gallon per hari dan faktor konsentrasi sebesar 2, biaya pemisahan sulfat meliputi biaya resin dan biaya peralatan. Biaya tersebut bervariasi dari $0.246 hingga $0.356/kgalon (per ribu galon air yang diproduksi karena temperatur maksimum air asin berubah dari 140°C menjadi 180°C. Keywords: desalinasi air laut, ion exchange, kalsium sulfat, kerak; mechanical vapor compression (MVC, pemisahan sulfat, resin penukar-anion basa lemah

  15. EFFECT OF MAGNESIUM SULFATE (A LAXATIVE) ON ...

    African Journals Online (AJOL)

    use with little success . Magnesium sulfate also known as Epsom salt or bitter salt is a hydrate salt with a chemical name of magnesium sulfate heptahydrate . Chemical formula is MgSO. 7HO and trade name is. Andrews liver salt. Dried magnesium sulfate is an osmotic laxative or a saline laxative that acts by increasing the.

  16. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E.S. [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  17. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E S [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  18. Expression and activity of sulfate transporters and APS reductase in curly kale in response to sulfate deprivation and re-supply

    NARCIS (Netherlands)

    Koralewska, Aleksandra; Buchner, Peter; Stuiver, C. Elisabeth E.; Posthumus, Freek S.; Kopriva, Stanislav; Hawkesford, Malcolm J.; De Kok, Luit J.

    2009-01-01

    Both activity and expression of sulfate transporters and APS reductase in plants are modulated by the sulfur status of the plant. To examine the regulatory mechanisms in curly kale (Brossica olerracea L.), the sulfate supply was manipulated by the transfer of seedlings to sulfate-deprived

  19. Synthesis and crystal structure of hydrogen selenates K(HSeO4)(H2SeO4) and Cs(HSeO4)(H2SeO4)

    International Nuclear Information System (INIS)

    Troyanov, S.I.; Morozov, I.V.; Zakharov, M.A.; Kemnitz, E.

    1999-01-01

    Hydrogen selenates of the compositions K(HSeO 4 )(H 2 SeO 4 ) and Cs(HSeO 4 )(H 2 SeO 4 ) are synthesized by the reaction of alkali metal carbonates with an excess of the concentrated selenic acid. The X-ray diffraction study showed that both compounds are isostructural to the corresponding hydrogen sulfates. The difference in the systems of hydrogen bonding are caused by various combinations of the acceptor functions of the oxygen atoms in the HSeO 4 and H 2 SeO 4 groups

  20. Polysaccharides and their depolymerized fragments from Costaria costata: Molecular weight and sulfation-dependent anticoagulant and FGF/FGFR signal activating activities.

    Science.gov (United States)

    Hou, Ningning; Zhang, Meng; Xu, Yingjie; Sun, Zhongmin; Wang, Jing; Zhang, Lijuan; Zhang, Quanbin

    2017-12-01

    Crude polysaccharides from Costaria costata were extracted by hot water and further fractionated by anion exchange chromatography into three polysaccharide fractions. Three low molecular weight fragments were then prepared by degradation of the polysaccharides with hydrogen peroxide and ascorbic acid. The structural features of the polysaccharides and their low molecular weight fragments were elucidated for the first time based on the HGPC, FT-IR, NMR, MS, monosaccharide composition, and other chemical analyses. Their anticoagulant and FGF-1, -2, -7, -8, -9, -10/FGFR1c signaling activation activities in BaF3 cells were also examined. Our studies showed that the polysaccharides were sulfated at different positions of galactose and fucose residues. The APTT-, PT- and TT-based anticoagulant assay results indicated that a high molecular weight and a higher degree of sulfation were essential for their anticoagulant activities. In contrast, not only the polysaccharides but also the depolymerized fragments showed significant FGF/FGFR signal activating activities in a FGF-, molecular weight-, and sulfation-dependent manner. The results presented in current study demonstrated the potential use of the polysaccharides and their fragments as anticoagulants and FGF signal regulators. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part I: Flask experiments

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Mousavi; S. Yaghmaei; F. Salimi; A. Jafari [Sharif University of Technology, Tehran (Iran). Department of Chemical and Petroleum Engineering

    2006-12-15

    Biological oxidation of ferrous sulfate by Acidithiobacillus ferrooxidans has proved to be a significant step in the bioleaching of sulfide minerals and the treatment of acid mine drainage. The same bioreaction also has beneficial applications in the desulphurization of coal and removal of hydrogen sulfide from gaseous effluents. In this research, the effects of some process variables such as pH, temperature, elemental sulfur, amount of initial ferrous and magnesium ions on oxidation of ferrous sulfate by a native A. ferrooxidans, which was isolated from a chalcopyrite concentrate, were investigated. All experiments carried out in shake flasks at 33{sup o}C that was obtained as optimum temperature for the specific bacterial growth rate. The optimum range of pH for the maximum growth of the cells and effective biooxidation of ferrous sulfate varied from 2 to 2.3. The maximum biooxidation rate was achieved 1.2 g/L h in a culture initially containing 20.2 g/L Fe{sup 2+}. Mg{sup 2+} from 20 mg/L to 120 mg/L did not have any effect on the efficiency of the process, while the presence of elemental sulfur had negative effect on the biooxidation. 16 refs., 8 figs.

  2. Modeling and minimization of barium sulfate scale

    Science.gov (United States)

    Alan W. Rudie; Peter W. Hart

    2006-01-01

    The majority of the barium present in the pulping process exits the digester as barium carbonate. Barium carbonate dissolves in the bleach plant when the pH drops below 7 and, if barium and sulfate concentrations are too high, begins to precipitate as barium sulfate. Barium is difficult to control because a mill cannot avoid this carbonate-to-sulfate transition using...

  3. Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Xia Siqing, E-mail: siqingxia@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Li Haixiang; Zhang Zhiqiang [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhang Yanhao [College of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101 (China); Yang Xin; Jia Renyong; Xie Kang; Xu Xiaotian [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2011-08-30

    Highlights: {yields} We designed a novel hollow fiber membrane biofilm reactor for p-CNB removal. {yields} Biotransformation pathway of p-CNB in the reactor was investigated in this study. {yields} Nitrate and sulfate competed more strongly for hydrogen than p-CNB. {yields} This reactor achieved high removal efficiency and hydrogen utilization efficiency. - Abstract: para-Chloronitrobenzene (p-CNB) is particularly harmful and persistent in the environment and is one of the priority pollutants. A feasible degradation pathway for p-CNB is bioreduction under anaerobic conditions. Bioreduction of p-CNB using a hydrogen-based hollow fiber membrane biofilm reactor (HFMBfR) was investigated in the present study. The experiment results revealed that p-CNB was firstly reduced to para-chloraniline (p-CAN) as an intermediate and then reduced to aniline that involves nitro reduction and reductive dechlorination with H{sub 2} as the electron donor. The HFMBfR had reduced p-CNB to a major extent with a maximum removal percentage of 99.3% at an influent p-CNB concentration of 2 mg/L and a hydraulic residence time of 4.8 h, which corresponded to a p-CNB flux of 0.058 g/m{sup 2} d. The H{sub 2} availability, p-CNB loading, and the presence of competing electron acceptors affected the p-CNB reduction. Flux analysis indicated that the reduction of p-CNB and p-CAN could consume fewer electrons than that of nitrate and sulfate. The HFMBfR had high average hydrogen utilization efficiencies at different steady states in this experiment, with a maximum efficiency at 98.2%.

  4. Effects of Sulfation Level on the Desulfation Behavior of Presulfated Pt-BaO/Al2O3 Lean

    International Nuclear Information System (INIS)

    Kim, D.; Szanyi, J.; Kwak, J.; Wang, X.; Hanson, J.; Engelhard, M.; Peden, C.

    2009-01-01

    Desulfation by hydrogen of presulfated Pt (2 wt %)-BaO(20 wt %)/Al2O3 with various sulfur loading (S/Ba = 0.12, 0.31, and 0.62) were investigated by combining H2 temperature programmed reaction (TPRX), X-ray photoelectron spectroscopy (XPS), in situ sulfur K-edge X-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved X-ray diffraction (TR-XRD) techniques. We find that the amount of H2S desorbed during the desulfation in the H2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phase and remained in the catalyst rather than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt-BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels.

  5. Sulfate resistance of nanosilica contained Portland cement mortars

    Science.gov (United States)

    Batilov, Iani B.

    Soils, sea water and ground water high in sulfates are commonly encountered hostile environments that can attack the structure of concrete via chemical and physical mechanisms which can lead to costly repairs or replacement. Sulfate attack is a slow acting deteriorative phenomenon that can result in cracking, spalling, expansion, increased permeability, paste-to-aggregate bond loss, paste softening, strength loss, and ultimately, progressive failure of concrete. In the presented research study, Portland cement (PC) mortars containing 1.5% to 6.0% nanosilica (nS) cement replacement by weight were tested for sulfate resistance through full submersion in sodium sulfate to simulate external sulfate attack. Mortars with comparable levels of cement replacement were also prepared with microsilica (mS). Three cement types were chosen to explore nS' effectiveness to reduce sulfate expansion, when paired with cements of varying tricalcium aluminate (C3A) content and Blaine fineness, and compare it to that of mS. Mortars were also made with combined cement replacement of equal parts nS and mS to identify if they were mutually compatible and beneficial towards sulfate resistance. Besides sulfate attack expansion of mortar bars, the testing program included investigations into transport and microstructure properties via water absorption, sulfate ion permeability, porosimetry, SEM with EDS, laser diffraction, compressive strength, and heat of hydration. Expansion measurements indicated that mS replacement mortars outperformed both powder form nS, and nS/mS combined replacement mixtures. A negative effect of the dry nS powder replacement attributed to agglomeration of its nanoparticles during mixing negated the expected superior filler, paste densification, and pozzolanic activity of the nanomaterial. Agglomerated nS was identified as the root cause behind poor performance of nS in comparison to mS for all cement types, and the control when paired with a low C3A sulfate resistant

  6. High temperature cathodic charging of hydrogen in zirconium alloys and iron and nickel base alloys

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Gadiyar, H.S.

    1990-01-01

    These investigations lead to the development of a new technique for charging hydrogen into metals and alloys. In this technique a mixture of sulfates and bisulfates of sodium and potassium is kept saturated with water at 250-300degC in an open pyrex glass beaker and electrolysed using platinum anode and the material to be charged as the cathode. Most of the studies were carried out on Zr alloys. It is shown that because of the high hydrogen flux available at the surface and the high diffusivity of hydrogen in metals at these temperatures the materials pick up hydrogen faster and more uniformly than the conventional electrolytic charging at room temperature and high temperature autoclaving in LiOH solutions. Chemical analysis, metallographic examination and XRD studies confirm this. This technique has been used to charge hydrogen into many iron and nickel base austentic alloys, which are very resistant to hydrogen pick up and to H-embrittlement. Since this involved a novel method of electrolysing water, the hydrogen/deuterium isotopic ratio has been studied. At this temperatures the D/H ratio in the evolved hydrogen gas was found to be closer to the value in the liquid water, which means a smaller separation factor. This confirm the earlier observation that separation factor decreases with increase of temperature. (author). 16 refs., 21 fi gs., 6 tabs

  7. Studying inhibition of calcium oxalate stone formation: an in vitro approach for screening hydrogen sulfide and its metabolites

    Directory of Open Access Journals (Sweden)

    S. Vaitheeswari

    2015-06-01

    Full Text Available ABSTRACTPurpose:Calcium oxalate urolithiasis is one of the most common urinary tract diseases and is of high prevalence. The present study proposes to evaluate the antilithiatic property of hydrogen sulfide and its metabolites like thiosulfate & sulfate in an in vitro model.Materials and Methods:The antilithiatic activity of sodium hydrogen sulfide (NaSH, sodium thiosulfate (Na2S2O3 and sodium sulfate (Na2SO4 on the kinetics of calcium oxalate crystal formation was investigated both in physiological buffer and in urine from normal and recurrent stone forming volunteers. The stones were characterized by optical and spectroscopic techniques.Results:The stones were characterized to be monoclinic, prismatic and bipyramidal habit which is of calcium monohydrate and dihydrate nature. The FTIR displayed fingerprint corresponding to calcium oxalate in the control while in NaSH treated, S=O vibrations were visible in the spectrum. The order of percentage inhibition was NaSH>Na2S2O3>Na2SO4.Conclusion:Our study indicates that sodium hydrogen sulfide and its metabolite thiosulfate are inhibitors of calcium oxalate stone agglomeration which makes them unstable both in physiological buffer and in urine. This effect is attributed to pH changes and complexing of calcium by S2O32-and SO42- moiety produced by the test compounds.

  8. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone

    DEFF Research Database (Denmark)

    Bruchert, V.; Jørgensen, BB; Neumann, K.

    2003-01-01

    The coastal upwelling system off central Namibia is one of the most productive regions of the oceans and is characterized by frequently occurring shelf anoxia with severe effects for the benthic life and fisheries. We present data on water column dissolved oxygen, sulfide, nitrate and nitrite, pore......-depleted bottom waters, the oxygen minimum zone on the continental slope, and the lower continental slope below the oxygen minimum zone. High concentrations of dissolved sulfide, up to 22 mM, in the near-surface sediments of the inner shelf result from extremely high rates of bacterial sulfate reduction...

  9. Chondroitin / dermatan sulfate modification enzymes in zebrafish development.

    Directory of Open Access Journals (Sweden)

    Judith Habicher

    Full Text Available Chondroitin/dermatan sulfate (CS/DS proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented. We identify single orthologous genes in the zebrafish genome for the sulfotransferases chst7, chst11, chst13, chst14, chst15 and ust and the epimerase dse. In contrast, two copies were found for mammalian sulfotransferases CHST3 and CHST12 and the epimerase DSEL, named chst3a and chst3b, chst12a and chst12b, dsela and dselb, respectively. Expression of CS/DS modification enzymes is spatially and temporally regulated with a large variation between different genes. We found that CS/DS 4-O-sulfotransferases and 6-O-sulfotransferases as well as CS/DS epimerases show a strong and partly overlapping expression, whereas the expression is restricted for enzymes with ability to synthesize di-sulfated disaccharides. A structural analysis further showed that CS/DS sulfation increases during embryonic development mainly due to synthesis of 4-O-sulfated GalNAc while the proportion of 6-O-sulfated GalNAc increases in later developmental stages. Di-sulfated GalNAc synthesized by Chst15 and 2-O-sulfated GlcA/IdoA synthesized by Ust are rare, in accordance with the restricted expression of these enzymes. We also compared CS/DS composition with that of heparan sulfate (HS. Notably, CS/DS biosynthesis in early zebrafish development is more dynamic than HS biosynthesis. Furthermore, HS contains disaccharides with more than one sulfate group, which are virtually absent in CS/DS.

  10. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

    Science.gov (United States)

    Yu, Mingming; Wang, Yuanhong; Jiang, Tingfu; Lv, Zhihua

    2014-06-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  11. Chondroitin-4-sulfation negatively regulates axonal guidance and growth

    Science.gov (United States)

    Wang, Hang; Katagiri, Yasuhiro; McCann, Thomas E.; Unsworth, Edward; Goldsmith, Paul; Yu, Zu-Xi; Tan, Fei; Santiago, Lizzie; Mills, Edward M.; Wang, Yu; Symes, Aviva J.; Geller, Herbert M.

    2008-01-01

    Summary Glycosaminoglycan (GAG) side chains endow extracellular matrix proteoglycans with diversity and complexity based upon the length, composition, and charge distribution of the polysaccharide chain. Using cultured primary neurons, we show that specific sulfation in the GAG chains of chondroitin sulfate (CS) mediates neuronal guidance cues and axonal growth inhibition. Chondroitin-4-sulfate (CS-A), but not chondroitin-6-sulfate (CS-C), exhibits a strong negative guidance cue to mouse cerebellar granule neurons. Enzymatic and gene-based manipulations of 4-sulfation in the GAG side chains alter their ability to direct growing axons. Furthermore, 4-sulfated CS GAG chains are rapidly and significantly increased in regions that do not support axonal regeneration proximal to spinal cord lesions in mice. Thus, our findings provide the evidence showing that specific sulfation along the carbohydrate backbone carries instructions to regulate neuronal function. PMID:18768934

  12. Acidity-Reactivity Relationships in Catalytic Esterification over Ammonium Sulfate-Derived Sulfated Zirconia

    Directory of Open Access Journals (Sweden)

    Abdallah I. M. Rabee

    2017-07-01

    Full Text Available New insight was gained into the acidity-reactivity relationships of sulfated zirconia (SZ catalysts prepared via (NH42SO4 impregnation of Zr(OH4 for propanoic acid esterification with methanol. A family of systematically related SZs was characterized by bulk and surface analyses including XRD, XPS, TGA-MS, N2 porosimetry, temperature-programmed propylamine decomposition, and FTIR of adsorbed pyridine, as well as methylbutynol (MBOH as a reactive probe molecule. Increasing surface sulfation induces a transition from amphoteric character for the parent zirconia and low S loadings <1.7 wt %, evidenced by MBOH conversion to 3-hydroxy-3-methyl-2-butanone, methylbutyne and acetone, with higher S loadings resulting in strong Brønsted-Lewis acid pairs upon completion of the sulfate monolayer, which favored MBOH conversion to prenal. Catalytic activity for propanoic acid esterification directly correlated with acid strength determined from propylamine decomposition, coincident with the formation of Brønsted-Lewis acid pairs identified by MBOH reactive titration. Monodispersed bisulfate species are likely responsible for superacidity at intermediate sulfur loadings.

  13. Barium Sulfate

    Science.gov (United States)

    ... uses a computer to put together x-ray images to create cross-sectional or three dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called radiopaque contrast media. It works by coating the esophagus, stomach, or ...

  14. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  15. Direct sulfation of limestone based on oxy-fuel combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.M.; Zhao, C.S.; Liu, S.T.; Wang, C.B. [North China Electric Power University, Baoding (China)

    2009-10-15

    With limestone as the sorbent, the sulfation reaction can proceed via two different routes depending on whether calcination of the limestone takes place under the given reaction conditions. The direct sulfation reaction is defined as the sulfation reaction between sulfur dioxide (SO{sub 2}) and limestone in an uncalcined state. This reaction, based on oxyfuel combustion technology, was studied by thermogravimetric analysis. Surface morphologies of the limestone particles after sulfation were examined by a scanning electron microscope. Results show that there are more pores or gaps in the product layer formed by direct sulfation of limestone than by indirect sulfation, which can be attributed to the generation of carbon dioxide (CO{sub 2}) at a reaction interface. Compared with indirect sulfation, direct sulfation of limestone can yield much higher conversion and has a much higher reaction rate. For direct sulfation, the greater porosity in the product layer greatly reduces the solid-state ion diffusion distance, resulting in a higher reaction rate and higher conversion.

  16. Chinese hamster ovary cell mutants defective in heparan sulfate biosynthesis

    International Nuclear Information System (INIS)

    Bame, K.J.; Kiser, C.S.; Esko, J.D.

    1987-01-01

    The authors have isolated Chinese hamster ovary cell mutants defective in proteoglycan synthesis by radiographic screening for cells unable to incorporate 35 SO 4 into acid-precipitable material. Some mutants did not incorporate 35 SO 4 into acid-precipitable material, whereas others incorporated about 3-fold less radioactivity. HPLC anion exchange chromatographic analysis of radiolabelled glycosaminoglycans isolated from these mutants revealed many are defective in heparan sulfate biosynthesis. Mutants 803 and 677 do not synthesize heparan sulfate, although they produce chondroitin sulfate: strain 803 makes chondroitin sulfate normally, whereas 677 overaccumulates chondroitin sulfate by a factor of three. These mutants fall into the same complementation group, suggesting that the mutations are allelic. A second group of heparan sulfate biosynthetic mutants, consisting of cell lines 625, 668 and 679, produce undersulfated heparan sulfate and normal chondroitin sulfate. Treatment of the chains with nitrous acid should determine the position of the sulfate groups along the chain. These mutants may define a complementation group that is defective in the enzymes which modify the heparan sulfate chain. To increase the authors repertoire of heparan sulfate mutants, they are presently developing an in situ enzyme assay to screen colonies replica plated on filter discs for sulfotransferase defects

  17. Global source attribution of sulfate aerosol and its radiative forcing

    Science.gov (United States)

    Yang, Y.; Wang, H.; Smith, S.; Easter, R. C.; Ma, P. L.; Qian, Y.; Li, C.; Yu, H.; Rasch, P. J.

    2017-12-01

    Sulfate is an important aerosol that poses health risks and influences climate. Due to long-range atmospheric transport, local sulfate pollution could result from intercontinental influences, making domestic efforts of improving air quality inefficient. Accurate understanding of source attribution of sulfate and its radiative forcing is important for both regional air quality improvement and global climate mitigation. In this study, for the first time, a sulfur source-tagging capability is implemented in the Community Atmosphere Model (CAM5) to quantify the global source-receptor relationships of sulfate and its direct and indirect radiative forcing (DRF and IRF). Near-surface sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate is primarily attributed to non-local sources from long-range transport. The export of SO2 and sulfate from Europe contributes 20% of sulfate concentrations over North Africa, Russia and Central Asia. Sources from the Middle East account for 20% of sulfate over North Africa, Southern Africa and Central Asia in winter and autumn, and 20% over South Asia in spring. East Asia accounts for about 50% of sulfate over Southeast Asia in winter and autumn, 15% over Russia in summer, and 10% over North America in spring. South Asia contributes to 25% of sulfate over Southeast Asia in spring. Lifetime of aerosols, together with regional export, is found to determine regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with 75% contributed by anthropogenic sulfate and 25% contributed by natural sulfate. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes the most to the total DRF. East Asia has the largest contribution of 20-30% over the Northern Hemisphere mid- and high-latitudes. A 20% perturbation of sulfate and its precursor emissions gives a sulfate IRF of -0.44 W m-2. DMS has the

  18. Incorporation of 35S-sulfate and 3H-glucosamine into heparan and chondroitin sulfates during the cell cycle of B16-F10 cells

    International Nuclear Information System (INIS)

    Blair, O.C.; Sartorelli, A.C.

    1984-01-01

    Changes in glycosaminoglycan composition occurring during the cell cycle were determined in B16-F10 cells sorted flow cytometrically with respect to DNA content. Incorporation of 35 S-sulfate into heparan sulfate and chondroitin sulfate of unsorted and G1,S, and G2 +M sorted cells was determined following chondroitinase ABC or nitrous acid treatment; the incorporation into surface material was measured as the difference between the radioactivity of control and trypsin-treated cells. Incorporation of 35 S-sulfate and 3 H-glucosamine into cetyl pyridinium chloride (CPC)-precipitable material was characterized before and after chondroitinase or nitrous acid treatment by Sephadex G50 chromatography. Long-term (48 h) and short-term (1 h) labeling studies demonstrate that (a) the amount of total cellular chondroitin sulfate is greater than that of heparan sulfate, with larger amounts of unsulfated heparan than chondroitin being present; (b) the rate of turnover of heparan sulfate is greater than that of chondroitin sulfate; (c) greatest short-term incorporation of 3H-glucosamine into CPC-precipitable material occurs during S phase; and (d) the rate of turnover of both heparan sulfate and chondroitin sulfate is decreased in S phase relative to G1 and G2 + M

  19. Electrochemical generation of oxygen. 1: The effects of anions and cations on hydrogen chemisorption and anodic oxide film formation on platinum electrode. 2: The effects of anions and cations on oxygen generation on platinum electrode

    Science.gov (United States)

    Huang, C. J.; Yeager, E.; Ogrady, W. E.

    1975-01-01

    The effects were studied of anions and cations on hydrogen chemisorption and anodic oxide film formation on Pt by linear sweep voltammetry, and on oxygen generation on Pt by potentiostatic overpotential measurement. The hydrogen chemisorption and anodic oxide film formation regions are greatly influenced by anion adsorption. In acids, the strongly bound hydrogen occurs at more cathodic potential when chloride and sulfate are present. Sulfate affects the initial phase of oxide film formation by produced fine structure while chloride retards the oxide-film formation. In alkaline solutions, both strongly and weakly bound hydrogen are influenced by iodide, cyanide, and barium and calcium cations. These ions also influence the oxide film formation. Factors considered to explain these effects are discussed. The Tafel slope for oxygen generation was found to be independent on the oxide thickness and the presence of cations or anions. The catalytic activity indicated by the exchange current density was observed decreasing with increasing oxide layer thickness, only a minor dependence on the addition of certain cations and anions was found.

  20. Sulfate, nitrate and blood pressure - An EPIC interaction between sulfur and nitrogen.

    Science.gov (United States)

    Kuhnle, Gunter G; Luben, Robert; Khaw, Kay-Tee; Feelisch, Martin

    2017-08-01

    Nitrate (NO 3 - )-rich foods such as green leafy vegetables are not only part of a healthy diet, but increasingly marketed for primary prevention of cardiovascular disease (CVD) and used as ergogenic aids by competitive athletes. While there is abundant evidence for mild hypotensive effects of nitrate on acute application there is limited data on chronic intake in humans, and results from animal studies suggest no long-term benefit. This is important as nitrate can also promote the formation of nitrosamines. It is therefore classified as 'probably carcinogenic to humans', although a beneficial effect on CVD risk might compensate for an increased cancer risk. Dietary nitrate requires reduction to nitrite (NO 2 - ) by oral commensal bacteria to contribute to the formation of nitric oxide (NO). The extensive crosstalk between NO and hydrogen sulfide (H 2 S) related metabolites may further affect nitrate's bioactivity. Using nitrate and nitrite concentrations of drinking water - the only dietary source continuously monitored for which detailed data exist - in conjunction with data of >14,000 participants of the EPIC-Norfolk study, we found no inverse associations with blood pressure or CVD risk. Instead, we found a strong interaction with sulfate (SO 4 2- ). At low sulfate concentrations, nitrate was inversely associated with BP (-4mmHg in top quintile) whereas this was reversed at higher concentrations (+3mmHg in top quintile). Our findings have a potentially significant impact for pharmacology, physiology and public health, redirecting our attention from the oral microbiome and mouthwash use to interaction with sulfur-containing dietary constituents. These results also indicate that nitrate bioactivation is more complex than hitherto assumed. The modulation of nitrate bioactivity by sulfate may render dietary lifestyle interventions aimed at increasing nitrate intake ineffective and even reverse potential antihypertensive effects, warranting further investigation

  1. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats

    Directory of Open Access Journals (Sweden)

    Jackson Z Lee

    2014-02-01

    Full Text Available Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB. However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico -- permanently submerged Microcoleus microbial mats (GN-S, and intertidal Lyngbya microbial mats (GN-I -- were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU, molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of dsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and nanoSIMS (secondary ion mass-spectrometry indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi.

  2. Purification, structural characterization and antiproliferative properties of chondroitin sulfate/dermatan sulfate from tunisian fish skins.

    Science.gov (United States)

    Krichen, Fatma; Volpi, Nicola; Sila, Assaâd; Maccari, Francesca; Mantovani, Veronica; Galeotti, Fabio; Ellouz-Chaabouni, Semia; Bougatef, Ali

    2017-02-01

    Chondroitin sulfate/dermatan sulfate GAGs were extracted and purified from the skins of grey triggerfish (GTSG) and smooth hound (SHSG). The disaccharide composition produced by chondroitinase ABC treatment showed the presence of nonsulfated disaccharide, monosulfated disaccharides ΔDi6S and ΔDi4S, and disulfated disaccharides in different percentages. In particular, the nonsulfated disaccharide ΔDi0S of GTSG and SHSG were 3.5% and 5.5%, respectively, while monosulfated disaccharides ΔDi6S and ΔDi4S were evaluated to be 18.2%, 59% and 14.6%, 47.0%, respectively. Capillary elecrophoresis analysis of GTSG and SHSG contained 99.2% and 95.4% of chondroitin sulfate/dermatan sulfate, respectively. PAGE analysis showed a GTSG and SHSG having molecular masses with average values of 41.72KDa and 23.8KDa, respectively. HCT116 cell proliferation was inhibited (p<0.05) by 70.6% and 72.65% at 200μg/mL of GTSG and SHSG respectively. Both GTSG and SHSG demonstrated promising antiproliferative potential, which may be used as a novel, effective agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Studies of structure change of iron sulfates and its catalysis; Ryusantetsukei shokubai no kozo henka to sono shokubai sayo

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, E.; Horie, K. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Nishijima, A. [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1996-10-28

    Since a huge amount of coal containing inorganic ash is treated for the commercial hydroliquefaction process, cheap catalysts widely distributing on the earth with large reserves are desired rather than expensive catalysts. This paper describes the effects of addition of sulfur on the catalysis of iron sulfates during the hydroconversion of 1-methylnaphthalene (1-MN). Reactions of 1-MN were conducted at the same charging amount of iron in the reaction system. Sulfur was directly added in the reaction system using ferrous sulfate (FeSO4) as precursor. Consequently, it was found that FeSO4 provides lower but similar catalytic activity to the synthetic pyrite catalyst prepared through the complex processes with the precise control. Thus, it was revealed that high performance pyrrhotite (Fe(1-x)S) catalyst can be prepared for the hydrogenation of aromatic-rings by adding solid sulfur into the reaction system using commercial reagent, FeSO4 as a precursor of the catalyst. 9 figs.

  4. Low levels of H2S may replace sulfate as sulfur source in sulfate-deprived onion

    NARCIS (Netherlands)

    Durenkamp, Mark; De Kok, LJ

    2005-01-01

    Onion (Allium cepa L.) was exposed to low levels of H2S in order to investigate to what extent H2S could be used as a sulfur source for growth under sulfate-deprived conditions. Sulfate deprivation for a two-week period resulted in a decreased biomass production of the shoot, a subsequently

  5. Poly [[tetraaquatris(monomethylfumarato)strontium(II)] monomethyl fumarate] at 120 K

    DEFF Research Database (Denmark)

    Ståhl, Kenny; Andersen, Jens Enevold Thaulov; Nilsson, Henrik

    2006-01-01

    The title compound, {[Sr2(C5H5O4)3(H2O)4](C5H5O4)}n, crystallizes with three methyl fumarate ions and four water molecules coordinating the two independent strontium(II) ions. The coordination polyhedra are interconnected by edge-sharing to form chains, which are connected by hydrogen bonds...

  6. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    Science.gov (United States)

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Sulfates on Mars: TES Observations and Thermal Inertia Data

    Science.gov (United States)

    Cooper, C. D.; Mustard, J. F.

    2001-05-01

    The high resolution thermal emission spectra returned by the TES spectrometer on the MGS spacecraft have allowed the mapping of a variety of minerals and rock types by different sets of researchers. Recently, we have used a linear deconvolution approach to compare sulfate-palagonite soil mixtures created in the laboratory with Martian surface spectra. This approach showed that a number of areas on Mars have spectral properties that match those of sulfate-cemented soils (but neither loose powder mixtures of sulfates and soils nor sand-sized grains of disaggregated crusted soils). These features do not appear to be caused by atmospheric or instrumental effects and are thus believed to be related to surface composition and texture. The distribution and physical state of sulfate are important pieces of information for interpreting surface processes on Mars. A number of different mechanisms could have deposited sulfate in surface layers. Some of these include evaporation of standing bodies of water, aerosol deposition of volcanic gases, hydrothermal alteration from groundwater, and in situ interaction between the atmosphere and soil. The areas on Mars with cemented sulfate signatures are spread across a wide range of elevations and are generally large in spatial scale. Some of the areas are associated with volcanic regions, but many are in dark red plains that have previously been interpreted as duricrust deposits. Our current work compares the distribution of sulfate-cemented soils as mapped by the spectral deconvolution approach with thermal inertia maps produced from both Viking and MGS-TES. Duricrust regions, interpreted from intermediate thermal inertia values, are large regions thought to be sulfate-cemented soils similar to coherent, sulfate-rich materials seen at the Viking lander sites. Our observations of apparent regions of cemented sulfate are also large in spatial extent. This scale information is important for evaluating formation mechanisms for the

  8. Critical Filler Concentration in Sulfated Titania-Added Nafion™ Membranes for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Mirko Sgambetterra

    2016-04-01

    Full Text Available In this communication we present a detailed study of Nafion™ composite membranes containing different amounts of nanosized sulfated titania particles, synthesized through an optimized one-step synthesis procedure. Functional membrane properties, such as ionic exchange capacity and water uptake (WU ability will be described and discussed, together with thermal analysis, atomic force microscopy and Raman spectroscopy data. Also electrochemical properties such as proton conductivity and performances in hydrogen fuel cells will be presented. It has been demonstrated that a critical concentration of filler particles can boost the fuel cell performance at low humidification, exhibiting a significant improvement of the maximum power and current density delivered under 30% low-relative humidity (RH and 70 °C with respect to bare Nafion™-based systems.

  9. Development of affinity-based delivery of NGF from a chondroitin sulfate biomaterial.

    Science.gov (United States)

    Butterfield, Karen Chao; Conovaloff, Aaron W; Panitch, Alyssa

    2011-01-01

    Chondroitin sulfate is a major component of the extracellular matrix in both the central and peripheral nervous systems. Chondroitin sulfate is upregulated at injury, thus methods to promote neurite extension through chondroitin sulfate-rich matrices and synthetic scaffolds are needed. We describe the use of both chondroitin sulfate and a novel chondroitin sulfate-binding peptide to control the release of nerve growth factor. Interestingly, the novel chondroitin sulfate-binding peptide enhances the controlled release properties of the chondroitin sulfate gels. While introduction of chondroitin sulfate into a scaffold inhibits primary cortical outgrowth, the combination of chondroitin sulfate, chondroitin sulfate-binding peptide and nerve growth factor promotes primary cortical neurite outgrowth in chondroitin sulfate gels.

  10. Removal of Sulfate Ion From AN-107 by Evaporation

    International Nuclear Information System (INIS)

    GJ Lumetta; GS Klinger; DE Kurath; RL Sell; LP Darnell; LR Greenwood; CZ Soderquist; MJ Steele; MW Urie; JJ Wagner

    2000-01-01

    Hanford low-activity waste solutions contain sulfate, which can cause accelerated corrosion of the vitrification melter and unacceptable operating conditions. A method is needed to selectively separate sulfate from the waste. An experiment was conducted to evaluate evaporation for removing sulfate ion from Tank AN-107 low-activity waste. Two evaporation steps were performed. In the first step, the volume was reduced by 55% while in the second step, the liquid volume was reduced another 22%. Analysis of the solids precipitated during these evaporations revealed that large amounts of sodium nitrate and nitrite co-precipitated with sodium sulfate. Many other waste components precipitated as well. It can be concluded that sulfate removal by precipitation is not selective, and thus, evaporation is not a viable option for removing sulfate from the AN-107 liquid

  11. Xyloside-primed Chondroitin Sulfate/Dermatan Sulfate from Breast Carcinoma Cells with a Defined Disaccharide Composition Has Cytotoxic Effects in Vitro.

    Science.gov (United States)

    Persson, Andrea; Tykesson, Emil; Westergren-Thorsson, Gunilla; Malmström, Anders; Ellervik, Ulf; Mani, Katrin

    2016-07-08

    We previously reported that the xyloside 2-(6-hydroxynaphthyl) β-d-xylopyranoside (XylNapOH), in contrast to 2-naphthyl β-d-xylopyranoside (XylNap), specifically reduces tumor growth both in vitro and in vivo Although there are indications that this could be mediated by the xyloside-primed glycosaminoglycans (GAGs) and that these differ in composition depending on xyloside and cell type, detailed knowledge regarding a structure-function relationship is lacking. In this study we isolated XylNapOH- and XylNap-primed GAGs from a breast carcinoma cell line, HCC70, and a breast fibroblast cell line, CCD-1095Sk, and demonstrated that both XylNapOH- and XylNap-primed chondroitin sulfate/dermatan sulfate GAGs derived from HCC70 cells had a cytotoxic effect on HCC70 cells and CCD-1095Sk cells. The cytotoxic effect appeared to be mediated by induction of apoptosis and was inhibited in a concentration-dependent manner by the XylNap-primed heparan sulfate GAGs. In contrast, neither the chondroitin sulfate/dermatan sulfate nor the heparan sulfate derived from CCD-1095Sk cells primed on XylNapOH or XylNap had any effect on the growth of HCC70 cells or CCD-105Sk cells. These observations were related to the disaccharide composition of the XylNapOH- and XylNap-primed GAGs, which differed between the two cell lines but was similar when the GAGs were derived from the same cell line. To our knowledge this is the first report on cytotoxic effects mediated by chondroitin sulfate/dermatan sulfate. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V M; Hillamo, R; Maekinen, M; Virkkula, A; Maekelae, T; Pakkanen, T [Helsinki Univ. (Finland). Dept. of Physics

    1997-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  13. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  14. ROLE OF TYROSINE-SULFATED PROTEINS IN RETINAL STRUCTURE AND FUNCTION

    Science.gov (United States)

    Kanan, Y.; Al-Ubaidi, M.R.

    2014-01-01

    The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins’ tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases. PMID:25819460

  15. A novel chondroitin sulfate hydrogel for nerve repair

    Science.gov (United States)

    Conovaloff, Aaron William

    Brachial plexus injuries affect numerous patients every year, with very debilitating results. The majority of these cases are very severe, and involve damage to the nerve roots. To date, repair strategies for these injuries address only gross tissue damage, but do not supply cells with adequate regeneration signals. As a result, functional recovery is often severely lacking. Therefore, a chondroitin sulfate hydrogel that delivers neurotrophic signals to damaged neurons is proposed as a scaffold to support nerve root regeneration. Capillary electrophoresis studies revealed that chondroitin sulfate can physically bind with a variety of neurotrophic factors, and cultures of chick dorsal root ganglia demonstrated robust neurite outgrowth in chondroitin sulfate hydrogels. Outgrowth in chondroitin sulfate gels was greater than that observed in control gels of hyaluronic acid. Furthermore, the chondroitin sulfate hydrogel's binding activity with nerve growth factor could be enhanced by incorporation of a synthetic bioactive peptide, as revealed by fluorescence recovery after photobleaching. This enhanced binding was observed only in chondroitin sulfate gels, and not in hyaluronic acid control gels. This enhanced binding activity resulted in enhanced dorsal root ganglion neurite outgrowth in chondroitin sulfate gels. Finally, the growth of regenerating dorsal root ganglia in these gels was imaged using label-free coherent anti-Stokes scattering microscopy. This technique generated detailed, high-quality images of live dorsal root ganglion neurites, which were comparable to fixed, F-actin-stained samples. Taken together, these results demonstrate the viability of this chondroitin sulfate hydrogel to serve as an effective implantable scaffold to aid in nerve root regeneration.

  16. Polymorphism of nickel sulfate hexahydrate

    International Nuclear Information System (INIS)

    Angel, R.J.; Finger, L.W.

    1988-01-01

    NiSO 4 .6H 2 O, M r =262.85; data collections with Mo Kα radiation, λ=0.7093 A, room temperature. Monoclinic polymorph: C2/c, a=9.880(3), b=7.228(2), c=24.130(3) A, β=98.38(2) 0 , V=1704.7(6) A 3 , Z=8, D x =2.05 g cm -3 , μ=25.54 cm -1 , F(000)=1088, R=0.031 (wR=0.038) for 2176 observed reflections. Tetragonal polymorph: P4 1 2 1 2, a=6.780 (1), c=18.285 (2) A, V=840.5 (3) A 3 , Z=4, D x =2.07 g cm -3 , μ=25.81 cm -1 , F(000)=544, R=0.045 (wR=0.050) for 2102 observed reflections. The structure of the tetragonal polymorph originally determined (without H positions) by Beevers and Lipson and refined by O'Connor and Dale and Stadnicka, Glazer and Koralewski, is confirmed by refinement of X-ray diffraction data. The structure of the monoclinic polymorph is confirmed as being isostructural with NiSO 4 .6D 2 O, and a number of other hexahydrate sulfates, e.g. MgSO 4 .6H 2 O. Both structures contain isolated [Ni(H 2 O 6 ] octahedra and [SO 4 ] tetrahedra linked by hydrogen bonding. (orig.)

  17. Oxygen isotopic fractionation during bacterial sulfate reduction

    Science.gov (United States)

    Balci, N.; Turchyn, A. V.; Lyons, T.; Bruchert, V.; Schrag, D. P.; Wall, J.

    2006-12-01

    Sulfur isotope fractionation during bacterial sulfate reduction (BSR) is understood to depend on a variety of environmental parameters, such as sulfate concentration, temperature, cell specific sulfate reduction rates, and the carbon substrate. What controls oxygen isotope fractionation during BSR is less well understood. Some studies have suggested that carbon substrate is important, whereas others concluded that there is a stoichiometric relationship between the fractionations of sulfur and oxygen during BSR. Studies of oxygen fractionation are complicated by isotopic equilibration between sulfur intermediates, particularly sulfite, and water. This process can modify the isotopic composition of the extracellular sulfate pool (δ18OSO4 ). Given this, the challenge is to distinguish between this isotopic equilibration and fractionations linked to the kinetic effects of the intercellular enzymes and the incorporation of sulfate into the bacterial cell. The δ18OSO4 , in concert with the sulfur isotope composition of sulfate (δ34SSO4), could be a powerful tool for understanding the pathways and environmental controls of BSR in natural systems. We will present δ18OSO4 data measured from batch culture growth of 14 different species of sulfate reducing bacteria for which sulfur isotope data were previously published. A general observation is that δ18OSO4 shows little isotopic change (kinetic effect during BSR and/or equilibration between sulfur intermediates and the isotopically light water (~-5‰) of the growth medium. Our present batch culture data do not allow us to convincingly isolate the magnitude and the controlling parameters of the kinetic isotope effect for oxygen. However, ongoing growth of mutant bacteria missing enzymes critical in the different steps of BSR may assist in this mission.

  18. Enhanced hydrogen production by coupled system of Halobacterium halobium and chloroplast after entrapment within reverse micelles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Dubey, R.S. [Banaras Hindhu University, Varanasi (India). Dept. of Biochemistry; Pandey, K.D. [Banaras Hindhu University, Varanasi (India). Dept. of Botany

    1999-08-01

    Reverse micelles were used for the enhanced rate of photoproduction of hydrogen using the coupled system of Halobacterium halobium and chloroplasts organelles. Different combinations of organic solvents and surfactants were used for generating reverse micelles. A several fold enhancement in the rate of H{sub 2} production was observed when the coupled system was entrapped within reverse micelles as compared to the aqueous suspension where no detectable H{sub 2} was produced. The coupled system immobilized in reverse micelles formed by sodium lauryl sulfate and carbon tetrachloride yielded maximum rate of H{sub 2} evolution. The optimum temperature for such hydrogen production was 40{sup o}C using light of 520-570 nm wavelength and 100 lux intensity. (author)

  19. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    International Nuclear Information System (INIS)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    1989-01-01

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with [35S] sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I

  20. Pectin of Prunus domestica L. alters sulfated structure of cell-surface heparan sulfate in differentiated Caco-2 cells through stimulation of heparan sulfate 6-O-endosulfatase-2.

    Science.gov (United States)

    Nishida, Mitsutaka; Murata, Kazuma; Kanamaru, Yoshihiro; Yabe, Tomio

    2014-01-01

    Although previous reports have suggested that pectin induces morphological changes of the small intestine in vivo, the molecular mechanisms have not been elucidated. As heparan sulfate plays important roles in development of the small intestine, to verify the involvement of heparan sulfate (HS) in the pectin-induced morphological changes of the small intestine, the effects of pectin from Prunus domestica L. on cell-surface HS were investigated using differentiated Caco-2 cells. Disaccharide compositional analysis revealed that sulfated structures of HS were markedly changed by pectin administration. Real-time RT-PCR showed that pectin upregulated human HS 6-O-endosulfatase-2 (HSulf-2) expression and markedly inhibited HSulf-1 expression. Furthermore, inhibition analysis suggested that pretreatment with fibronectin III1C fragment, RGD peptide, and ERK1/2 inhibitor suppressed pectin-induced HSulf-2 expression. These observations indicate that pectin induced the expression of HSulf-2 through the interaction with fibronectin, α5β1 integrin, and ERK1/2, thereby regulating the sulfated structure of HS on differentiated Caco-2 cells.

  1. Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1999-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  2. Heparan Sulfate and Chondroitin Sulfate Glycosaminoglycans Are Targeted by Bleomycin in Cancer Cells.

    Science.gov (United States)

    Li, Xiulian; Lan, Ying; He, Yanli; Liu, Yong; Luo, Heng; Yu, Haibo; Song, Ni; Ren, Sumei; Liu, Tianwei; Hao, Cui; Guo, Yunliang; Zhang, Lijuan

    2017-01-01

    Bleomycin is a clinically used anti-cancer drug that produces DNA breaks once inside of cells. However, bleomycin is a positively charged molecule and cannot get inside of cells by free diffusion. We previously reported that the cell surface negatively charged glycosaminoglycans (GAGs) may be involved in the cellular uptake of bleomycin. We also observed that a class of positively charged small molecules has Golgi localization once inside of the cells. We therefore hypothesized that bleomycin might perturb Golgi-operated GAG biosynthesis. We used stable isotope labeling coupled with LC/MS analysis of GAG disaccharides simultaneously from bleomycin-treated and non-treated cancer cells. To further understand the cytotoxicity of bleomycin and its relationship to GAGs, we used sodium chlorate to inhibit GAG sulfation and commercially available GAGs to compete for cell surface GAG/bleomycin interactions in seven cell lines including CHO745 defective in both heparan sulfate and chondroitin sulfate biosynthesis. we discovered that heparan sulfate GAG was significantly undersulfated and the quantity and disaccharide compositions of GAGs were changed in bleomycin-treated cells in a concentration- and time-dependent manner. We revealed that bleomycin-induced cytotoxicity was directly related to cell surface GAGs. GAGs were targeted by bleomycin both at cell surface and at Golgi. Thus, GAGs might be the biological relevant molecules that might be related to the bleomycin-induced fibrosis in certain cancer patients, a severe side effect with largely unknown molecular mechanism. © 2017 The Author(s). Published by S. Karger AG, Basel.

  3. Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments

    Science.gov (United States)

    Wang, A.; Ling, Z.; Freeman, J. J.

    2008-12-01

    Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest

  4. Ferrous Sulfate (Iron)

    Science.gov (United States)

    ... are allergic to ferrous sulfate, any other medications tartrazine (a yellow dye in some processed foods and ... in, tightly closed, and out of reach of children. Store it at room temperature and away from ...

  5. DEPENDENCY OF SULFATE SOLUBILITY ON MELT COMPOSITION AND MELT POLYMERIZATION

    International Nuclear Information System (INIS)

    JANTZEN, CAROL M.

    2004-01-01

    Sulfate and sulfate salts are not very soluble in borosilicate waste glass. When sulfate is present in excess it can form water soluble secondary phases and/or a molten salt layer (gall) on the melt pool surface which is purported to cause steam explosions in slurry fed melters. Therefore, sulfate can impact glass durability while formation of a molten salt layer on the melt pool can impact processing. Sulfate solubility has been shown to be compositionally dependent in various studies, (e.g. , B2O3, Li2O, CaO, MgO, Na2O, and Fe2O3 were shown to increase sulfate solubility while Al2O3 and SiO2 decreased sulfate solubility). This compositional dependency is shown to be related to the calculated melt viscosity at various temperatures and hence the melt polymerization

  6. Sulfated glycosaminoglycans in human vocal fold lamina propria

    Directory of Open Access Journals (Sweden)

    Sung Woo Park

    Full Text Available Abstract Introduction: The distribution, concentration and function of glycosaminoglycans in the various vocal fold tissues are still unclear. Objective: To evaluate the distribution and concentration of sulfated glycosaminoglycans in different layers of the human vocal fold according to gender and age. Methods: We used 11 vocal folds obtained from cadavers (7 men and 4 women with no laryngeal lesion, less than 12 h after death, and aged between 35 and 98 years. The folds underwent glycosaminoglycans extraction from the cover and ligament, and post-electrophoresis analysis. Data were compared according to the layer, age and gender. Results: The concentration of dermatan sulfate was significantly higher in all layers. No differences were observed in the total concentrations of glycosaminoglycans in layers studied according to gender. It is significantly lower in the cover of individuals aged below 60 years. Conclusion: Dermatan sulfate, chondroitin sulfate, and heparan sulfate were observed in the human vocal folds cover and ligament of both genders, with the concentration of dermatan sulfate being significantly higher in all layers. Glycosaminoglycans concentration on the cover is significantly lower in individuals below 60 years compared with elderly.

  7. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire

    Science.gov (United States)

    Caccavo, F.; Blakemore, R.P.; Lovley, D.R.

    1992-01-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing bacterium was isolated from bottom sediments of the Great Bay estuary, New Hampshire. The isolate was a facultatively anaerobic gram-negative rod which did not appear to fit into any previously described genus. It was temporarily designated strain BrY. BrY grew anaerobically in a defined medium with hydrogen or lactate as the electron donor and Fe(III) as the electron acceptor. BrY required citrate, fumarate, or malate as a carbon source for growth on H2 and Fe(III). With Fe(III) as the sole electron acceptor, BrY metabolized hydrogen to a minimum threshold at least 60-fold lower than the threshold reported for pure cultures of sulfate reducers. This finding supports the hypothesis that when Fe(III) is available, Fe(III) reducers can outcompete sulfate reducers for electron donors. Lactate was incompletely oxidized to acetate and carbon dioxide with Fe(III) as the electron acceptor. Lactate oxidation was also coupled to the reduction of Mn(IV), U(VI), fumarate, thiosulfate, or trimethylamine n-oxide under anaerobic conditions. BrY provides a model for how enzymatic metal reduction by respiratory metal-reducing microorganisms has the potential to contribute to the mobilization of iron and trace metals and to the immobilization of uranium in sediments of Great Bay Estuary.

  8. DHEA-sulfate test

    Science.gov (United States)

    ... DHEA sulfate may be due to: Adrenal gland disorders that produce lower than normal amounts of adrenal hormones, including adrenal insufficiency and Addison disease The pituitary gland not producing normal amounts of its hormones ( hypopituitarism ) ...

  9. Behaviour of cementitious materials: sulfates and temperature actions

    International Nuclear Information System (INIS)

    Barbarulo, Remi

    2002-09-01

    The research work presented in this Ph.D. thesis is related to the nuclear waste underground repository concept. Concrete could be used in such a repository, and would be subjected to variations of temperature in presence of sulfate, a situation that could induce expansion of concrete. The research was lead in three parts: an experimental study of the possibility of an internal sulfate attack on mortars; an experimental study and modeling of the chemical equilibriums of the CaO-SiO 2 -Al 2 O 3 -SO 3 -H 2 O system; and a modeling of the mechanisms of internal and external sulfate attacks, and the effect of temperature. The results show that mortars can develop expansions after a steam-cure during hydration, but also when a long steam-cure is applied to one-year-old mortars, which is a new point. Ettringite precipitation can be considered as responsible for these expansions. The experimental study of the CaO-SiO 2 -Al 2 O 3 -SO 3 -H 2 O system clarified the role of Calcium Silicate Hydrates (C-S-H) on chemical equilibriums of cementitious materials. Sulfate sorption on C-S-H has been studied in detail. The quantity of sulfate bound to the C-S-H mainly depends on the sulfate concentration in solution, on the Ca/Si ratio of the C-S-H and is not significantly influenced by temperature. Aluminium inclusion in the C-S-H seems to be a significant phenomenon. Temperature increases the calcium sulfo-aluminate solubilities and thus increases sulfates concentration in solution. A modeling of the chemical system is proposed. Simulations of external sulfate attack (15 mmol/L of Na 2 SO 4 ) predict ettringite precipitation at 20 and 85±C. Simulation of internal sulfate attack was performed at a local scale (a hydrated cement grain). An initial inhomogeneity can lead, after a thermal curing at 85±C, to ettringite precipitation in zones originally free from ettringite. This new-formed ettringite could be the origin of the expansions. (author) [fr

  10. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    Science.gov (United States)

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. Copyright © 2016 Elsevier

  11. Extraction of uranyl sulfate with primary amine

    International Nuclear Information System (INIS)

    Mrnka, M.; Bizek, V.; Nekovar, P.; Cizevska, S.; Schroetterova, D.

    1984-01-01

    PRIMENE JM-T was used for extraction. Its composition was found to approach the general formula C 21 H 43 NH 2 . It was found that the extraction of uranyl sulfate is lower in case of a higher steady-state concentration of sulfuric acid in the aqueous phase. Extraction is accompanied with coextraction of water. The results obtained showed that uranyl sulfate passes into the organic phase by two mechanisms: extraction with amine sulfate and extraction with free amine. A mathematical description of the process was made based on the obtained results. (E.S.)

  12. Biological functions of iduronic acid in chondroitin/dermatan sulfate.

    Science.gov (United States)

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-05-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler-Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease. © 2013 The Authors Journal compilation © 2013 FEBS.

  13. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles

    International Nuclear Information System (INIS)

    Meier, P.J.; Valantinas, J.; Hugentobler, G.; Rahm, I.

    1987-01-01

    The mechanism(s) and driving forces for biliary excretion of sulfate were investigated in canalicular rat liver plasma membrane vesicles (cLPM). Incubation of cLPM vesicles in the presence of an inside-to-outside (in, out) bicarbonate gradient but not pH or out-to-in sodium gradients, stimulated sulfate uptake 10-fold compared with the absence of bicarbonate and approximately 2-fold above sulfate equilibrium (overshoot). Initial rates of this bicarbonate gradient-driven [ 35 S]-sulfate uptake were saturable with increasing concentrations of sulfate and could be inhibited by probenecid, N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate, acetazolamide, furosemide, 4-acetamideo-4'-isothiocyanostilbene-2,2'-disulfonic acid, and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (IC 50 , ∼40 μM). Cisinhibition of initial bicarbonate gradient-stimulated sulfate uptake and transstimulation of sulfate uptake in the absence of bicarbonate were observed with sulfate, thiosulfate, and oxalate but not with chloride, nitrate, phosphate, acetate, lactate, glutamate, aspartate, cholate, taurocholate, dehydrocholate, taurodehydrocholate, and reduced or oxidized glutathione. These findings indicate the presence of a sulfate (oxalate)-bicarbonate anion exchange system in canalicular rat liver plasma membranes. These findings support the concept that bicarbonate-sensitive transport system might play an important role in bile acid-independent canalicular bile formation

  14. Comparison of percent hatch and fungal infestation in channel catfish eggs after copper sulfate, diquat bromide, formalin, and hydrogen peroxide treatment

    Science.gov (United States)

    Reduced survival is often a result of fungal (Saprolegnia spp.) infestation of fish eggs. However, timely chemical treatments often limit these infestations and increase survival. The effect of copper sulfate pentahydrate (CSP - 10 mg/L), diquat bromide (25 mg/L diquat cation), formalin (433 mg/L)...

  15. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron acceptor

    OpenAIRE

    Fadhlaoui, K.; Ben Hania, W.; Armougom, Fabrice; Bartoli, M.; Fardeau, Marie-Laure; Erauso, G.; Brasseur, G.; Aubert, C.; Hamdi, M.; Brochier-Armanet, C.; Dolla, A.; Ollivier, Bernard

    2018-01-01

    Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspeci...

  16. Extraction of beryllium sulfate by a long chain amine

    International Nuclear Information System (INIS)

    Etaix, E.S.

    1968-01-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [fr

  17. Sulfate reduction and methanogenesis at a freshwater

    DEFF Research Database (Denmark)

    Iversen, Vibeke Margrethe Nyvang; Andersen, Martin Søgaard; Jakobsen, Rasmus

    The freshwater-seawater interface was studied in a ~9-m thick anaerobic aquifer located in marine sand and gravel with thin peat lenses. Very limited amounts of iron-oxides are present. Consequently, the dominating redox processes are sulfate reduction and methanogenesis, and the groundwater...... is enriched in dissolved sulfide, methane and bicarbonate. Under normal conditions the seawater-freshwater interface is found at a depth of 4 m at the coastline and reaches the bottom of the aquifer 40 m inland. However, occasional flooding of the area occurs, introducing sulfate to the aquifer. Groundwater...... chemistry was studied in a 120 m transect perpendicular to the coast. Cores were taken for radiotracer rate measurements of sulfate reduction and methanogenesis. In the saline part of the aquifer 35 m inland, sulfate reduction was the dominant process with rates of 0.1-10 mM/year. In the freshwater part 100...

  18. Studies on sulfate attack: Mechanisms, test methods, and modeling

    Science.gov (United States)

    Santhanam, Manu

    The objective of this research study was to investigate various issues pertaining to the mechanism, testing methods, and modeling of sulfate attack in concrete. The study was divided into the following segments: (1) effect of gypsum formation on the expansion of mortars, (2) attack by the magnesium ion, (3) sulfate attack in the presence of chloride ions---differentiating seawater and groundwater attack, (4) use of admixtures to mitigate sulfate attack---entrained air, sodium citrate, silica fume, and metakaolin, (5) effects of temperature and concentration of the attack solution, (6) development of new test methods using concrete specimens, and (7) modeling of the sulfate attack phenomenon. Mortar specimens using portland cement (PC) and tricalcium silicate (C 3S), with or without mineral admixtures, were prepared and immersed in different sulfate solutions. In addition to this, portland cement concrete specimens were also prepared and subjected to complete and partial immersion in sulfate solutions. Physical measurements, chemical analyses and microstructural studies were performed periodically on the specimens. Gypsum formation was seen to cause expansion of the C3S mortar specimens. Statistical analyses of the data also indicated that the quantity of gypsum was the most significant factor controlling the expansion of mortar bars. The attack by magnesium ion was found to drive the reaction towards the formation of brucite. Decalcification of the C-S-H and its subsequent conversion to the non-cementitious M-S-H was identified as the mechanism of destruction in magnesium sulfate attack. Mineral admixtures were beneficial in combating sodium sulfate attack, while reducing the resistance to magnesium sulfate attack. Air entrainment did not change the measured physical properties, but reduced the visible distress of the mortars. Sodium citrate caused a substantial reduction in the rate of damage of the mortars due to its retarding effect. Temperature and

  19. Euglena mitochondria and chloroplasts form tyrosine-O-sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Saidha, T.; Hanfstingl, U.; Schiff, J.A. (Brandeis Univ., Waltham, MA (USA))

    1989-04-01

    Mitochondria from light-grown wild-type Euglena gracilis var. bacillaris Cori or dark-grown mutant W{sub 10}BSmL incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, or with {sup 14}C-tyrosine, non-radioactive sulfate and ATP accumulate a labeled compound in the medium. Since this compound shows exact coelectrophoresis with tyrosine-O-sulfate (TOS) at pH 2.0, 5.8 or 8.0., yields sulfate and tyrosine on acid hydrolysis, and treatment with aryl sulfatase from Aerobacter aerogenes yields sulfate and tyrosine but no tyrosine methyl ester, it is identified as TOS. No TOS is found outside purified developing chloroplasts incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, but both chloroplasts and mitochondria form to {sup 35}S externally when incubated with adenosine 3{prime} phosphate 5{prime}phospho({sup 35}S) sulfate (PAP{sup 35}S). Since no tyrosine need be added, tyrosine is provided from endogenous sources. Although TOS is found in the free pool of Euglena cells it cannot be detected in proteins of cells or mucus ruling our sulfation of tyrosine of protein or incorporation of TOS into proteins. The system forming TOS is membrane-bound and may be involved in tyrosine transport.

  20. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs

  1. COMPARISON OF UASB AND FLUIDIZED-BED REACTORS FOR SULFATE REDUCTION

    Directory of Open Access Journals (Sweden)

    S. M. Bertolino

    2015-03-01

    Full Text Available Abstract Reactor hydrodynamics is important for sulfidogenesis because sulfate reduction bacteria (SRB do not granulate easily. In this work, the sulfate reduction performance of two continuous anaerobic bioreactors was investigated: (i an upflow anaerobic sludge blanket (UASB reactor and (ii a fluidized bed reactor (FBR. Organic loading, sulfate reduction, and COD removal were the main parameters monitored during lactate and glycerol degradation. The UASB reactor with biomass recirculation showed a specific sulfate reduction rate of 0.089±0.014 g.gSSV-1.d-1 (89% reduction, whereas values twice as high were achieved in the FBR treating either lactate (0.200±0.017 g.gSSV-1.d-1 or glycerol (0.178±0.010 g.gSSV-1.d-1. Sulfate reduction with pure glycerol produced a smaller residual COD (1700 mg.L-1 than that produced with lactate (2500 mg.L-1 at the same COD.sulfate-1 mass ratio. It was estimated that 50% of glycerol degradation was due to sulfate reduction and 50% to fermentation, which was supported by the presence of butyrate in the FBR effluent. The UASB reactor was unable to produce effluents with sulfate concentrations below 250 mg.L-1 due to poor mixing conditions, whereas the FBR consistently ensured residual sulfate concentrations below such a value.

  2. Source Of Hydrogen Sulfide To Sulfidic Spring And Watershed Ecosystems In Northern Sierra De Chiapas, Mexico Based On Sulfur And Carbon Isotopes

    Science.gov (United States)

    Rosales Lagarde, L.; Boston, P. J.; Campbell, A.

    2013-12-01

    At least four watersheds in northern Sierra de Chiapas, Mexico are fed by conspicuous karst sulfide-rich springs. The toxic hydrogen sulfide (H2S) in these springs nurtures rich ecosystems including especially adapted microorganisms, invertebrates and fish. Sulfur and carbon isotopic analysis of various chemical species in the spring water are integrated within their hydrogeologic context to evaluate the hydrogen sulfide source. Constraining the H2S origin can also increase the understanding of this compound effect in the quality of the nearby hydrocarbon reservoirs, and the extent to which its oxidation to sulfuric acid increases carbonate dissolution and steel corrosion in surface structures. The SO42-/H2S ratio in the spring water varies from 70,000 to 2 meq/L thus sulfate is the dominant species in the groundwater system. This sulfate is mainly produced from anhydrite dissolution based on its isotopic signature. The Δ SO42--H2S range of 16 spring water samples (30-50 ‰) is similar to the values determined by Goldhaber & Kaplan (1975) and Canfield (2001) for low rates of bacterial sulfate reduction suggesting that this is the most important mechanism producing H2S. Although the carbon isotopes do not constrain the nature of the organic matter participating in this reaction, this material likely comes from depth, perhaps as hydrocarbons, due to the apparent stability of the system. The organic matter availability and reactivity probably control the progress of sulfate reduction. The subsurface environments identified in the area also have different sulfur isotopic values. The heavier residual sulfate isotopic value in the Northern brackish springs (δ34S SO42- ≥ 18 ‰) compared to the Southern springs (δ34S SO42- ~18 ‰) suggests sulfate reduction is particularly enhanced in the former, probably by contribution of organic matter associated with oil produced water. In comparison, the composition of the Southern aquifer is mainly influenced by halite

  3. On the sulfation of O-desmethyltramadol by human cytosolic sulfotransferases.

    Science.gov (United States)

    Rasool, Mohammed I; Bairam, Ahsan F; Kurogi, Katsuhisa; Liu, Ming-Cheh

    2017-10-01

    Previous studies have demonstrated that sulfate conjugation is involved in the metabolism of the active metabolite of tramadol, O-desmethyltramadol (O-DMT). The current study aimed to systematically identify the human cytosolic sulfotransferases (SULTs) that are capable of mediating the sulfation of O-DMT. The sulfation of O-DMT under metabolic conditions was demonstrated using HepG2 hepatoma cells and Caco-2 human colon carcinoma cells. O-DMT-sulfating activity of thirteen known human SULTs and four human organ specimens was examined using an established sulfotransferase assay. pH-Dependency and kinetic parameters were also analyzed using, respectively, buffers at different pHs and varying O-DMT concentrations in the assays. Of the thirteen human SULTs tested, only SULT1A3 and SULT1C4 were found to display O-DMT-sulfating activity, with different pH-dependency profiles. Kinetic analysis revealed that SULT1C4 was 60 times more catalytically efficient in mediating the sulfation of O-DMT than SULT1A3 at respective optimal pH. Of the four human organ specimens tested, the cytosol prepared from the small intestine showed much higher O-DMT-sulfating activity than cytosols prepared from liver, lung, and kidney. Both cultured HepG2 and Caco-2 cells were shown to be capable of sulfating O-DMT and releasing sulfated O-DMT into cultured media. SULT1A3 and SULT1C4 were the major SULTs responsible for the sulfation of O-DMT. Collectively, the results obtained provided a molecular basis underlying the sulfation of O-DMT and contributed to a better understanding about the pharmacokinetics and pharmacodynamics of tramadol in humans. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1997-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  5. Chlorate: a reversible inhibitor of proteoglycan sulfation

    International Nuclear Information System (INIS)

    Humphries, D.E.; Silbert, J.E.

    1988-01-01

    Bovine aorta endothelial cells were cultured in medium containing [ 3 H]glucosamine, [ 35 S]sulfate, and various concentrations of chlorate. Cell growth was not affected by 10 mM chlorate, while 30 mM chlorate had a slight inhibitory effect. Chlorate concentrations greater than 10 mM resulted in significant undersulfation of chondroitin. With 30 mM chlorate, sulfation of chondroitin was reduced to 10% and heparan to 35% of controls, but [ 3 H]glucosamine incorporation on a per cell basis did not appear to be inhibited. Removal of chlorate from the culture medium of cells resulted in the rapid resumption of sulfation

  6. Antifouling potential of Nature-inspired sulfated compounds

    Science.gov (United States)

    Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel

    2017-02-01

    Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL-1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL-1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina ( 1000 μg.mL-1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.

  7. Acidity enhancement of niobia by sulfation: An experimental and DFT study

    International Nuclear Information System (INIS)

    Rocha, Angela S.; Costa, Gustavo C.; Tamiasso-Martinhon, Priscila; Sousa, Célia; Rocha, Alexandre B.

    2017-01-01

    Acidic solids are used as catalyst at several industrial processes and studies to improve their activities have been developed by different groups. One method well known is sulfating oxide to create new acid sites, but investigations about sulfated niobia are still scarce. This work studied the influence of sulfation on the niobia acidity by using a very simple reaction model, the esterification of acetic acid with ethanol, performed at 60 °C and 1 atm. Niobia and sulfated niobia samples were characterized by N 2 adsorption, X-ray diffraction, FTIR and titration with n-butylamine. To investigate the nature of sulfate groups formed on the surface of niobia, calculations based on the Density Functional Theory (DFT) have been performed for two models: pure niobia with hydroxylated surface and sulfated niobia where one OH − surface group was replaced by a HSO 4 − . The experimental results indicated that the sulfation treatment leads to an increase in the specific surface area, acidity and, consequently, in the activity of niobia, with small changes in the crystal structure of the solid. The presence of sulfate groups was evidenced by FTIR spectra and calculations have indicated HSO 4 − species bounded to the surface. Density Functional Perturbation Theory (DFPT) was also employed to obtain infrared intensities in the region of sulfate vibration bands. - Highlights: • Sulfation treatment has improved the acidity of niobium oxide. • A sulfate group on niobia (T-Nb 2 O 5 ) was proposed using DFT method. • Niobia and sulfated niobia are used for esterification of acetic acid with ethanol.

  8. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate.

    Science.gov (United States)

    Restaino, Odile Francesca; Finamore, Rosario; Diana, Paola; Marseglia, Mariacarmela; Vitiello, Mario; Casillo, Angela; Bedini, Emiliano; Parrilli, Michelangelo; Corsaro, Maria Michela; Trifuoggi, Marco; De Rosa, Mario; Schiraldi, Chiara

    2017-03-15

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. Sulfate reduction in an entrained-flow black liquor gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Kymaelaeinen, M.; Janka, K. [Tampella Power, Tampere (Finland); Frederick, W.J.; Littau, M.; Sricharoenchaikul, V.; Jivakanun, N.; Waag, K. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemical Engineering

    1995-12-31

    Sulfate reduction and carbon conversion during pyrolysis and gasification of black liquor particles were experimentally studied in a laminar entrained-flow reactor. A model was also developed to simulate an entrained-flow black liquor gasifier. Experimental results were then compared to model calculations. Results indicated that carbon must be present to get a high degree of sulfate reduction during gasification. It is therefore important to balance the rates of carbon conversion and sulfate reduction. High local temperatures in the reactor should be avoided so that carbon does not convert too rapidly, but temperatures of nearly 1000 degrees C are required to achieve good sulfate reduction. It was suggested that a new equation was needed to adequately predict sulfate reduction in an entrained-flow black liquor gasifier. 12 refs., 8 figs., 5 tabs.

  10. Influence of sulfate reduction on the organic matter of Wealden sediments of the Lower Saxony Basin (Germany)

    Energy Technology Data Exchange (ETDEWEB)

    Berner, U. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany)

    2013-08-01

    Sediments of the Wealden (Lower Saxony Basin, Germany) as obtained from the well Isterberg 1001 consist of clay stones, marls and few massive carbonate horizons. Although, the basin is predominantly characterized as lacustrine geochemical data indicate significant influences of marine ingression which have introduced sulfur into the depositional system. Consequently the organic matter of the sediments has been substantially affected by bacterial sulfate reduction, which has led to losses of the initial organic carbon of 5 to 80 wt.- percent, which is a minimum estimate as losses of H{sub 2}S form the sediments were not taken into account for the mass balance consideration. Complete uptake of reactive iron into sulfides has led in a significant number of samples to the presence of excess sulfur not contained in sulfides. In our argumentation we assume that excess sulfur is at least partly incorporated into the organic matter. Pyrolysis investigations show that organic matter in samples containing higher amounts of excess sulfur generates hydrocarbons at lower temperatures than samples with low concentrations of excess sulfur. These observations are compatible with findings usually reported for Type S-II kerogens. The likely organically bound excess sulfur introduces a bias with thermal maturities from RockEval pyrolysis, which implies that T{sub max} data rather reflect quality changes of the organic matter than thermal maturity in the investigated Wealden sediments. The hydrocarbon potential has been reduced significantly in samples which have been affected strongly by the microbial process as indicated by hydrogen indices of the sediments. The observations of variable degrees of sulfate reduction indicate also a variation of organic matter fluxes to the sediment surface of the palaeo-lake likely resulting from changes in biological surface productivity. Low carbon fluxes likely coincide with extensive use of organic substrate by sulfate reducers whereas high

  11. Development of affinity-based delivery of NGF from a chondroitin sulfate biomaterial

    OpenAIRE

    Butterfield, Karen Chao; Conovaloff, Aaron W.; Panitch, Alyssa

    2011-01-01

    Chondroitin sulfate is a major component of the extracellular matrix in both the central and peripheral nervous systems. Chondroitin sulfate is upregulated at injury, thus methods to promote neurite extension through chondroitin sulfate-rich matrices and synthetic scaffolds are needed. We describe the use of both chondroitin sulfate and a novel chondroitin sulfate-binding peptide to control the release of nerve growth factor. Interestingly, the novel chondroitin sulfate-binding peptide enhanc...

  12. Localized sulfate-reducing zones in a coastal plain aquifer

    Science.gov (United States)

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  13. Evolutionary relationships and functional diversity of plant sulfate transporters

    Directory of Open Access Journals (Sweden)

    Hideki eTakahashi

    2012-01-01

    Full Text Available Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal sulfate transporters (SUL and animal anion exchangers (SLC26. The lineage of plant SULTR family is expanded into four subfamilies (SULTR1 to SULTR4 in land plant species. By contrast, the putative SULTR homologues from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4, and the other diverged before the appearance of lineages for SUL, SULTR and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13 and plant tonoplast-localized dicarboxylate transporters (TDT. The putative sulfur-sensing protein (SAC1 and SAC1-like transporters (SLT of Chlorophyte green algae, bryophyte and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is completely absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  14. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors

    Science.gov (United States)

    Thompson, Robert E.; Liu, Xuyu; Ripoll-Rozada, Jorge; Alonso-García, Noelia; Parker, Benjamin L.; Pereira, Pedro José Barbosa; Payne, Richard J.

    2017-09-01

    Madanin-1 and chimadanin are two small cysteine-free thrombin inhibitors that facilitate blood feeding in the tick Haemaphysalis longicornis. Here, we report a post-translational modification—tyrosine sulfation—of these two proteins that is critical for potent anti-thrombotic and anticoagulant activity. Inhibitors produced in baculovirus-infected insect cells displayed heterogeneous sulfation of two tyrosine residues within each of the proteins. One-pot ligation-desulfurization chemistry enabled access to homogeneous samples of all possible sulfated variants of the proteins. Tyrosine sulfation of madanin-1 and chimadanin proved crucial for thrombin inhibitory activity, with the doubly sulfated variants three orders of magnitude more potent than the unmodified inhibitors. The three-dimensional structure of madanin-1 in complex with thrombin revealed a unique mode of inhibition, with the sulfated tyrosine residues binding to the basic exosite II of the protease. The importance of tyrosine sulfation within this family of thrombin inhibitors, together with their unique binding mode, paves the way for the development of anti-thrombotic drug leads based on these privileged scaffolds.

  15. Determination of boron spectrophotometry in thorium sulfate

    International Nuclear Information System (INIS)

    Federgrun, L.; Abrao, A.

    1976-01-01

    A procedure for the determination of microquantities of boron in nuclear grade thorium sulfate is described. The method is based on the extraction of BF - 4 ion associated to monomethylthionine (MMT) in 1,2 - dichloroethane. The extraction of the colored BF - 4 -MMT complex does not allow the presence of sulfuric and phosphoric acids; other anions interfere seriously. This fact makes the dissolution of the thorium sulfate impracticable, since it is insoluble in both acids. On the other hand, the quantitative separation of thorium is mandatory, to avoid the precipitation of ThF 4 . To overcome this difficulty, the thorium sulfate is dissolved using a strong cationic ion exchanger, Th 4+ being totally retained into the resin. Boron is then analysed in the effluent. The procedure allows the determination of 0.2 to 10.0 microgramas of B, with a maximum error of 10%. Thorium sulfate samples with contents of 0.2 to 2.0μg B/gTh have being analysed [pt

  16. Sulfated oligosaccharide structures, as determined by NMR techniques

    International Nuclear Information System (INIS)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J.; Cerezo, A.S.

    1997-01-01

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a λ-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author)

  17. Sources et marché du sulfate d'ammonium Sources of and Market for Ammonium Sulfate

    Directory of Open Access Journals (Sweden)

    Loussouarn C.

    2006-11-01

    Full Text Available Engrais azoté le plus utilisé dans le monde jusqu'en 1970, le sulfate d'ammonium ne représente plus aujourd'hui que 4 % de la fertilisation azotée. Avec une teneur en azote de 21 % seulement, il a été peu à peu remplacé comme engrais universel par des produits plus concentrés, notamment l'urée et le nitrate d'ammonium. Obtenu pour plus de 40 % comme sous-produit dans la synthèse de monomères comme le caprolactame, l'acrylonitrile ou le méthacrylate de méthyle, et pour près de 10 % dans le traitement des gaz de cokerie, sa production dépend largement des développements du marché des fibres synthétiques, et, dans une moindre mesure, de la sidérurgie et de la métallurgie. Dans les pays développés, où la production est essentiellement fatale, le volume du marché est et sera plus fonction de la disponibilité du sulfate d'ammonium que de la demande ou de facteurs de marché; sa consommation ne résidera plus que dans des applications spécifiques pour lesquelles il sera bien adapté. Par contre, l'intérêt croissant pour compenser le déficit en soufre de certains sols, et les qualités agronomiques propres du sulfate d'ammonium laissent entrevoir la possibilité d'un essor de son utilisation dans certaines régions en voie de développernent. Ammonium sulfate was the most worldwide nitrogenous fertilizer used up to 1970. Today, it makes up only 4% of nitrogenous fertilization. With a nitrogen content of only 21%, it has gradually been replaced as a universal fertilizer by more concentrated products, particularly urea and ammonium nitrate. More than 40% of the ammonium sulfate is obtained as a by-product from the synthesis of monomers such as caprolactam, acrylonitrile or methyl methacrylate, and nearly 10% from coking gas processing. Its production depends extensively on the development of the market for synthetic fibers and, to a lesser extent, on the steel and metallurgical industries. In the industrialized countries

  18. Tyrosine Sulfation as a Protein Post-Translational Modification

    Directory of Open Access Journals (Sweden)

    Yuh-Shyong Yang

    2015-01-01

    Full Text Available Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.

  19. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  20. Polymorphism of nickel sulfate hexahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Angel, R.J.; Finger, L.W.

    1988-11-15

    NiSO/sub 4/.6H/sub 2/O, M/sub r/=262.85; data collections with Mo K..cap alpha.. radiation, lambda=0.7093 A, room temperature. Monoclinic polymorph: C2/c, a=9.880(3), b=7.228(2), c=24.130(3) A, ..beta..=98.38(2)/sup 0/, V=1704.7(6) A/sup 3/, Z=8, D/sub x/=2.05 g cm/sup -3/, ..mu..=25.54 cm/sup -1/, F(000)=1088, R=0.031 (wR=0.038) for 2176 observed reflections. Tetragonal polymorph: P4/sub 1/2/sub 1/2, a=6.780 (1), c=18.285 (2) A, V=840.5 (3) A/sup 3/, Z=4, D/sub x/=2.07 g cm/sup -3/, ..mu..=25.81 cm/sup -1/, F(000)=544, R=0.045 (wR=0.050) for 2102 observed reflections. The structure of the tetragonal polymorph originally determined (without H positions) by Beevers and Lipson and refined by O'Connor and Dale and Stadnicka, Glazer and Koralewski, is confirmed by refinement of X-ray diffraction data. The structure of the monoclinic polymorph is confirmed as being isostructural with NiSO/sub 4/.6D/sub 2/O, and a number of other hexahydrate sulfates, e.g. MgSO/sub 4/.6H/sub 2/O. Both structures contain isolated (Ni(H/sub 2/O/sub 6/) octahedra and (SO/sub 4/) tetrahedra linked by hydrogen bonding.

  1. Acidity enhancement of niobia by sulfation: An experimental and DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Angela S., E-mail: angela.sanches.rocha@gmail.com [Universidade do Estado do Rio de Janeiro, Departamento de Físico-Química, Instituto de Química, Rio de Janeiro (Brazil); Costa, Gustavo C. [Universidade do Estado do Rio de Janeiro, Departamento de Físico-Química, Instituto de Química, Rio de Janeiro (Brazil); Tamiasso-Martinhon, Priscila; Sousa, Célia; Rocha, Alexandre B. [Universidade Federal do Rio de Janeiro, Departamento de Físico-Química, Instituto de Química, Rio de Janeiro (Brazil)

    2017-01-15

    Acidic solids are used as catalyst at several industrial processes and studies to improve their activities have been developed by different groups. One method well known is sulfating oxide to create new acid sites, but investigations about sulfated niobia are still scarce. This work studied the influence of sulfation on the niobia acidity by using a very simple reaction model, the esterification of acetic acid with ethanol, performed at 60 °C and 1 atm. Niobia and sulfated niobia samples were characterized by N{sub 2} adsorption, X-ray diffraction, FTIR and titration with n-butylamine. To investigate the nature of sulfate groups formed on the surface of niobia, calculations based on the Density Functional Theory (DFT) have been performed for two models: pure niobia with hydroxylated surface and sulfated niobia where one OH{sup −} surface group was replaced by a HSO{sub 4}{sup −}. The experimental results indicated that the sulfation treatment leads to an increase in the specific surface area, acidity and, consequently, in the activity of niobia, with small changes in the crystal structure of the solid. The presence of sulfate groups was evidenced by FTIR spectra and calculations have indicated HSO{sub 4}{sup −} species bounded to the surface. Density Functional Perturbation Theory (DFPT) was also employed to obtain infrared intensities in the region of sulfate vibration bands. - Highlights: • Sulfation treatment has improved the acidity of niobium oxide. • A sulfate group on niobia (T-Nb{sub 2}O{sub 5}) was proposed using DFT method. • Niobia and sulfated niobia are used for esterification of acetic acid with ethanol.

  2. X-ray diffraction study of lithium hydrazinium sulfate and lithium ammonium sulfate crystals under a static electric field

    International Nuclear Information System (INIS)

    Sebastian, M.T.; Becker, R.A.; Klapper, H.

    1991-01-01

    X-ray diffraction studies are made on proton-conducting polar lithium hydrazinium sulfate and ferroelectric lithium ammonium sulfate. The X-ray rocking curves recorded with in situ electric field along the polar b axis of lithium hydrazinium sulfate (direction of proton conductivity) show a strong enhancement of the 0k0 diffraction intensity. The corresponding 0k0 X-ray topographs reveal extinction contrast consisting of striations parallel to the polar axis. They disappear when the electric field is switched off. The effect is very strong in 0k0 but invisible in h0l reflections. It is present only if the electric field is parallel to the polar axis b. This unusual X-ray topographic contrast is correlated with the proton conduction. It is supposed that, under electric field, an inhomogeneous charge distribution develops, distorting the crystal lattice. Similar experiments on lithium ammonium sulfate also show contrast variations, but of quite different behaviour than before. In this case they result from changes of the ferroelectric domain configuration under electric field. (orig.)

  3. Sulfate Reduction Remediation of a Metals Plume Through Organic Injection

    International Nuclear Information System (INIS)

    Phifer, M.A.

    2003-01-01

    Laboratory testing and a field-scale demonstration for the sulfate reduction remediation of an acidic/metals/sulfate groundwater plume at the Savannah River Site has been conducted. The laboratory testing consisted of the use of anaerobic microcosms to test the viability of three organic substrates to promote microbially mediated sulfate reduction. Based upon the laboratory testing, soybean oil and sodium lactate were selected for injection during the subsequent field-scale demonstration. The field-scale demonstration is currently ongoing. Approximately 825 gallons (3,123 L) of soybean oil and 225 gallons (852 L) of 60 percent sodium lactate have been injected into an existing well system within the plume. Since the injections, sulfate concentrations in the injection zone have significantly decreased, sulfate-reducing bacteria concentrations have significantly increased, the pH has increased, the Eh has decreased, and the concentrations of many metals have decreased. Microbially mediated sulfate reduction has been successfully promoted for the remediation of the acidic/metals/sulfate plume by the injection of soybean oil and sodium lactate within the plume

  4. Using Sulfate-Amended Sediment Slurry Batch Reactors to Evaluate Mercury Methylation

    International Nuclear Information System (INIS)

    Harmon, S.M.

    2003-01-01

    In the methylated form, mercury represents a concern to public health primarily through the consumption of contaminated fish tissue. Research conducted on the methylation of mercury strongly suggests the process is microbial in nature and facilitated principally by sulfate-reducing bacteria. This study addressed the potential for mercury methylation by varying sulfate treatments and wetland-based soil in microbial slurry reactors with available inorganic mercury. Under anoxic laboratory conditions conducive to growth of naturally occurring sulfate-reducing bacteria in the soil, it was possible to evaluate how various sulfate additions influenced the methylation of inorganic mercury added to overlying water. Treatments included sulfate amendments ranging FR-om 25 to 500 mg/L (0.26 to 5.2 mM) above the soil's natural sulfate level. This study also provided an assessment of mercury methylation relative to sulfate-reducing bacterial population growth and subsequent sulfide production. Mercury methylation in sulfate treatments did not exceed that of the non-amended control during a 35-day incubation. However, increases in methylmercury concentration were linked to bacterial growth and sulfate reduction. A time lag in methylation in the highest treatment correlated with an equivalent lag in bacterial growth

  5. Toxicology of dimethyl and monomethyl derivatives of acetamide and formamide: a second update.

    Science.gov (United States)

    Kennedy, Gerald L

    2012-11-01

    formamide and their monomethyl derivatives as well as the commercially important DMAC and DMF. Since a large portion of the newer information deals with effects in humans and biomonitoring, these sections are presented at the start of this review.

  6. n-Electrons of heteroatoms in hydrogen bond and luminescence

    International Nuclear Information System (INIS)

    Karyakin, A.V.

    1985-01-01

    Hydrogen bond energy in the process of interaction between water molecules, water molecules and heteroatoms of organic solvents, water molecules and inorganic compounds, is determined, its mechanism being studied. On the basis of X-ray structure and IR-spectroscopic data water state in easily hydrolized compounds of zirconium and hafnium, including sulfates, nitrates, oxychlorides etc. is analyzed. Water state in uranyl nitrate hydrates, the structure of the compounds and their behaviour when they are extracted by TBP, are considered. The reasons for stability of uranyl nitrate hydrates are discussed. The effect of n-electrons of heteroatoms of simple aromatic compound on structural spectra of luminescence in aliphatic and inorganic matrices is investigated

  7. Metodologia analítica para a determinação de sulfato em vinhoto When sulfate is present in high concentrations, it acts as an inhibitor in the production of methane (biogas formation in anaerobic biodigestion processes

    Directory of Open Access Journals (Sweden)

    Sílvio Miranda Prada

    1998-06-01

    Full Text Available In this way it is very important to know the sulfate concentration in vinasse samples before to make the biodigestor design. A previous developed and indirect method (Anal. Chim. Acta. 1996, 329, 197, was used to determine sulfate in samples of vinasse, after previous treatments, done in order to eliminate organic matter with hydrogen peroxide 30% and concentrated nitric acid mixture (3:1, under heating. Interferent cationic ions were isolated by using ion exchange columns. The results obtained for some samples from Araraquara and Penápolis are here presented. The phosphate concentration was also determined.

  8. A zinc complex of heparan sulfate destabilises lysozyme and alters its conformation

    International Nuclear Information System (INIS)

    Hughes, Ashley J.; Hussain, Rohanah; Cosentino, Cesare; Guerrini, Marco; Siligardi, Giuliano; Yates, Edwin A.; Rudd, Timothy R.

    2012-01-01

    Highlights: ► Zinc–heparan sulfate complex destabilises lysozyme, a model amyloid protein. ► Addition of zinc, without heparan sulfate, stabilises lysozyme. ► Heparan sulfate cation complexes provide alternative protein folding routes. -- Abstract: The naturally occurring anionic cell surface polysaccharide heparan sulfate is involved in key biological activities and is implicated in amyloid formation. Following addition of Zn–heparan sulfate, hen lysozyme, a model amyloid forming protein, resembled β-rich amyloid by far UV circular dichroism (increased β-sheet: +25%), with a significantly reduced melting temperature (from 68 to 58 °C) by fluorescence shift assay. Secondary structure stability of the Zn–heparan sulfate complex with lysozyme was also distinct from that with heparan sulfate, under stronger denaturation conditions using synchrotron radiation circular dichroism. Changing the cation associated with heparan sulfate is sufficient to alter the conformation and stability of complexes formed between heparan sulfate and lysozyme, substantially reducing the stability of the protein. Complexes of heparan sulfate and cations, such as Zn, which are abundant in the brain, may provide alternative folding routes for proteins.

  9. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks...... of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...

  10. Determination of biocorrosion of low alloy steel by sulfate-reducing Desulfotomaculum sp. isolated from crude oil field

    Energy Technology Data Exchange (ETDEWEB)

    Cetin, D.; Doenmez, G. [Faculty of Science, Department of Biology, Ankara University, Tandogan, 06100, Ankara (Turkey); Bilgic, S. [Faculty of Science, Department of Chemistry, Ankara University, Tandogan, 06100, Ankara (Turkey); Doenmez, S. [Faculty of Engineering, Department of Food Engineering, Ankara University, Diskapi, 06110 Ankara (Turkey)

    2007-11-15

    In this study corrosion behavior of low alloy steel, in the presence of anaerobic sulfate-reducing Desulfotomaculum sp. which was isolated from an oil production well, was investigated. In order to determine corrosion rates and mechanisms, mass loss measurements and electrochemical polarization studies were performed without and with bacteria in the culture medium. Scanning electron microscopic observations and energy dispersive X-ray spectra (EDS) analysis were made on steel coupons. The effect of iron concentration on corrosion behavior was determined by Tafel extrapolation method. In a sterile culture medium, as the FeSO{sub 4} . 7H{sub 2}O concentration increased, corrosion potential (E{sub cor}) values shifted towards more anodic potentials and corrosion current density (I{sub cor}) values increased considerably. After inoculation of sulfate-reducing bacteria (SRB), E{sub cor} shifted towards cathodic values. I{sub cor} values increased with increasing incubation time for 10 and 100 mg/L concentrations of FeSO{sub 4} . 7H{sub 2}O. Results have shown that the corrosion activity changed due to several factors such as bacterial metabolites, ferrous sulfide, hydrogen sulfide, iron phosphide, and cathodic depolarization effect. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  11. Recoverable immobilization of transuranic elements in sulfate ash

    Science.gov (United States)

    Greenhalgh, Wilbur O.

    1985-01-01

    Disclosed is a method of reversibly immobilizing sulfate ash at least about 20% of which is sulfates of transuranic elements. The ash is mixed with a metal which can be aluminum, cerium, samarium, europium, or a mixture thereof, in amounts sufficient to form an alloy with the transuranic elements, plus an additional amount to reduce the transuranic element sulfates to elemental form. Also added to the ash is a fluxing agent in an amount sufficient to lower the percentage of the transuranic element sulfates to about 1% to about 10%. The mixture of the ash, metal, and fluxing agent is heated to a temperature sufficient to melt the fluxing agent and the metal. The mixture is then cooled and the alloy is separated from the remainder of the mixture.

  12. Chondroitin sulfate effects on neural stem cell differentiation.

    Science.gov (United States)

    Canning, David R; Brelsford, Natalie R; Lovett, Neil W

    2016-01-01

    We have investigated the role chondroitin sulfate has on cell interactions during neural plate formation in the early chick embryo. Using tissue culture isolates from the prospective neural plate, we have measured neural gene expression profiles associated with neural stem cell differentiation. Removal of chondroitin sulfate from stage 4 neural plate tissue leads to altered associations of N-cadherin-positive neural progenitors and causes changes in the normal sequence of neural marker gene expression. Absence of chondroitin sulfate in the neural plate leads to reduced Sox2 expression and is accompanied by an increase in the expression of anterior markers of neural regionalization. Results obtained in this study suggest that the presence of chondroitin sulfate in the anterior chick embryo is instrumental in maintaining cells in the neural precursor state.

  13. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development.

    Science.gov (United States)

    Ogawa, Hiroyasu; Hatano, Sonoko; Sugiura, Nobuo; Nagai, Naoko; Sato, Takashi; Shimizu, Katsuji; Kimata, Koji; Narimatsu, Hisashi; Watanabe, Hideto

    2012-01-01

    Chondroitin sulfate (CS) is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1)/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2)/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2(-/-) mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2(-/-) chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.

  14. Modeling the use of sulfate additives for potassium chloride destruction in biomass combustion

    DEFF Research Database (Denmark)

    Wu, Hao; Grell, Morten Nedergaard; Jespersen, Jacob Boll

    2013-01-01

    Potassium chloride, KCl, formed from biomass combustion may lead to ash deposition and corrosion problems in boilers. Sulfates are effective additives for converting KCl to the less harmful K2SO4. In the present study, the decomposition of ammonium sulfate, aluminum sulfate and ferric sulfate...... of ammonium sulfate addition and ferric sulfation addition compared favorably with the experimental results. However, the model for aluminum sulfate addition under-predicted significantly the high sulfation degree of KCl observed in the experiments, possibly because of an under-estimation of the decomposition...... rate of aluminum. Under the boiler conditions of the present work, the simulation results suggested that the desirable temperature for the ferric sulfate injection was around 950-900oC, whereas for ammonium sulfate the preferable injection temperature was below 800oC....

  15. Synthesis of [2,4-3H] 17β-dihydroequilin sulfate

    International Nuclear Information System (INIS)

    Bhavnani, B.R.

    1994-01-01

    [2,4- 3 H] 17β-dihydroequilin-3-sulfate ammonium salt suitable for in vivo pharmacokinetic studies was synthesized from [2,4- 3 H] equilin. Sulfation of [2,4- 3 H] equilin with pyridine-chlorosulfonic acid mixture gave in high yields [2,4- 3 H] equilin sulfate, which was then reduced with sodium borohydride to yield [2,4- 3 H] 17β-dihydroequilin sulfate. The reduction was sterospecific and no 17α-reduced products were formed. (author)

  16. Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Wang, Hailong [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Smith, Steven J. [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park MD USA; Easter, Richard C. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Rasch, Philip J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2018-02-08

    Source attributions of Arctic sulfate and its direct radiative effect for 2010–2014 are quantified in this study using the Community Earth System Model (CESM) equipped with an explicit sulfur source-tagging technique. Regions that have high emissions and/or are near/within the Arctic present relatively large contributions to Arctic sulfate burden, with the largest contribution from sources in East Asia (27%). East Asia and South Asia together have the largest contributions to Arctic sulfate concentrations at 9–12 km, whereas sources within or near the Arctic account largely below 2 km. For remote sources with strong emissions, their contributions to Arctic sulfate burden are primarily driven by meteorology, while contributions of sources within or near the Arctic are dominated by their emission strength. The sulfate direct radiative effect (DRE) is –0.080 W m-2 at the Arctic surface, offsetting the net warming effect from the combination of in-snow heating and DRE cooling from black carbon. East Asia, Arctic local and Russia/Belarus/Ukraine sources contribute –0.017, –0.016 and –0.014 W m-2, respectively, to Arctic sulfate DRE. A 20% reduction in anthropogenic SO2 emissions leads to a net increase of +0.013 W m-2 forcing at the Arctic surface. These results indicate that a joint reduction in BC emissions could prevent possible Arctic warming from future reductions in SO2 emissions. Sulfate DRE efficiency calculations suggest that short transport pathways together with meteorology favoring long sulfate lifetimes make certain sources more efficient in influencing the Arctic sulfate DRE.

  17. Human platelet as an independent unit for sulfate conjugation

    International Nuclear Information System (INIS)

    Khoo, B.Y.; Sit, K.H.; Wong, K.P.

    1988-01-01

    The human platelets possess a full complement of enzymes capable of synthesizing N-acetyldopamine (NADA) 35 sulfate from ATP, Mg ++ and sodium 35 sulfate. The pH optimum for this three-step overall sulfate conjugation (comprising of the ATP sulfurylase, APS kinase and phenolsulfotransferase reactions) is 8.6 and the reactions proceeded progressively for several hours. Both ATP and Mg ++ ions, above their respective optimal concentrations of 5 and 7 mM, inhibited the sulfate conjugation of NADA. The apparent Km values for NADA as determined by the phenolsulfotransferase (PST) and overall reactions were similar in magnitude being 2.6 and 4.8 μM, respectively, while that for sodium 35 sulfate was 202 μM. A comparison of these two activities in 62 platelet preparations of normal subjects showed that the rate of the PST reaction was generally higher than the overall reaction even though the PST assay was carried out at suboptimal concentration of PAPS. There was a positive correlation (r=0.82) between the two sets of data, suggesting that the PST reaction probably has some control over the rate of overall sulfate conjugation

  18. Sulfated oligosaccharide structures, as determined by NMR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J. [Parana Univ., Curitiba, PR (Brazil). Dept. De Bioquimica; Cerezo, A.S. [Buenos Aires Univ. Nacional (Argentina). Dept. de Quimica Organica

    1997-12-31

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a {lambda}-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author) 4 refs., 8 figs., 1 tabs.

  19. Evaluation of Hydrogel Suppositories for Delivery of 5-Aminolevulinic Acid and Hematoporphyrin Monomethyl Ether to Rectal Tumors.

    Science.gov (United States)

    Ye, Xuying; Yin, Huijuan; Lu, Yu; Zhang, Haixia; Wang, Han

    2016-10-12

    We evaluated the potential utility of hydrogels for delivery of the photosensitizing agents 5-aminolevulinic acid (ALA) and hematoporphyrin monomethyl ether (HMME) to rectal tumors. Hydrogel suppositories containing ALA or HMME were administered to the rectal cavity of BALB/c mice bearing subcutaneous tumors of SW837 rectal carcinoma cells. For comparison, ALA and HMME were also administered by three common photosensitizer delivery routes; local administration to the skin and intratumoral or intravenous injection. The concentration of ALA-induced protoporphyrin IX or HMME in the rectal wall, skin, and subcutaneous tumor was measured by fluorescence spectrophotometry, and their distribution in vertical sections of the tumor was measured using a fluorescence spectroscopy system. The concentration of ALA-induced protoporphyrin IX in the rectal wall after local administration of suppositories to the rectal cavity was 9.76-fold (1 h) and 5.8-fold (3 h) higher than in the skin after cutaneous administration. The maximal depth of ALA penetration in the tumor was ~3-6 mm at 2 h after cutaneous administration. Much lower levels of HMME were observed in the rectal wall after administration as a hydrogel suppository, and the maximal depth of tumor penetration was <2 mm after cutaneous administration. These data show that ALA more readily penetrates the mucosal barrier than the skin. Administration of ALA as an intrarectal hydrogel suppository is thus a potential delivery route for photodynamic therapy of rectal cancer.

  20. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    Science.gov (United States)

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  1. Cell-associated proteoheparan sulfate from bovine arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Schmidt, A.; Buddecke, E.

    1988-01-01

    Cell-associated proteoheparan sulfate has been isolated from bovine arterial smooth muscle cells preincubated with [ 35 S]sulfate or a combination of [ 3 H]glucosamine and [ 35 S]methionine. The purified proteoheparan sulfate had an apparent M r of 200,000 on calibrated Sepharose CL-2B columns. The glycosaminoglycan component (M r ∼30,000) was identified as heparan sulfate by its susceptibility to specific enzymatic and chemical degradation. After degradation of the proteoheparan sulfate by microbial heparitinase the resulting protein core had an apparent M r of 92,000 on SDS-polyacrylamide gels. Its mobility was similar in the absence and presence of reducing agents indicating that the protein core consists of a single polypeptide chain. Pulse-chase experiments revealed that about 40% of the cell layer-associated proteoheparan sulfate was released into the medium, while the remainder was internalized and converted to smaller species through a series of degradation steps. Initially there was a proteolytical cleavage of the protein core generating glycosaminoglycan peptide intermediates with polysaccharides chains similar in size to the original. The half-life of the native proteoheparan sulfate was found to be about 4 h

  2. Influence of nutrients on biomass evolution in an upflow anaerobic sludge blanket reactor degrading sulfate-laden organics.

    Science.gov (United States)

    Patidar, S K; Tare, Vinod

    2004-01-01

    This paper describes the effect of the nutrients iron (Fe), nickel (Ni), zinc (Zn), cobalt (Co), and molybdenum (Mo) on biomass evolution in an upflow anaerobic sludge blanket (UASB) reactor metabolizing synthetic sulfate-laden organics at varying operating conditions during a period of 540 days. A bench-scale model of a UASB reactor was operated at a temperature of 35 degrees C for a chemical oxygen demand-to-sulfate (COD/SO4(2-)) ratio of 8.59 to 2.0, a sulfate loading rate of 0.54 to 1.88 kg SO4(2-)/m3 x d, and an organic loading rate of 1.9 to 5.75 kg COD/m3 x d. Biomass was characterized in terms of total methanogenic activity, acetate-utilizing methanogenic activity, total sulfidogenic activity, acetate-utilizing sulfidogenic activity, and scanning electron microscopy (SEM). Nickel and cobalt limitation appears to affect the activity of hydrogen-utilizing methane-producing bacteria (HMPB) significantly without having an appreciable effect on the activity of acetate-utilizing methane-producing bacteria (AMPB). Nickel and cobalt supplementation resulted in increased availability and, consequently, restoration of biomass activity and process performance. Iron limitation and sulfidogenic conditions resulted in the growth of low-density, hollow, fragile granules that washed out, causing process instability and performance deterioration. Iron and cobalt supplementation indicated significant stimulation of AMPB with slight inhibition of HMPB. Examination of biomass through SEM indicated a population shift with dominance of sarcina-type organisms and the formation of hollow granules. Granule disintegration was observed toward the end of the study.

  3. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride-sulfate lakes in Central Asia

    NARCIS (Netherlands)

    Sorokin, D.Y.; Tourova, T.P.; Abbas, B.; Suhacheva, M.V.; Muyzer, G.

    2012-01-01

    Four strains of lithotrophic sulfate-reducing bacteria (SRB) have been enriched and isolated from anoxic sediments of hypersaline chloride-sulfate lakes in the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH 7.5. According to the 16S rRNA gene sequence analysis, the isolates were closely related

  4. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride–sulfate lakes in Central Asia

    NARCIS (Netherlands)

    Sorokin, D.Y.; Tourova, T.P.; Abbas, B.; Suhacheva, M.V.; Muyzer, G.

    2012-01-01

    Four strains of lithotrophic sulfate-reducing bacteria (SRB) have been enriched and isolated from anoxic sediments of hypersaline chloride–sulfate lakes in the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH 7.5. According to the 16S rRNA gene sequence analysis, the isolates were closely related

  5. Determination of contents of carbonate and hydrogen carbonate in solutions for alkaline leading of uranium ores

    International Nuclear Information System (INIS)

    Radil, V.

    1988-01-01

    The new analytical method is based on the determination of the molar ratio carbonate - hydrogen carbonate using the measured concentration of hydrogen ions, the determination of the dissociation constant of carbonic acid for different values of ionic strength. The concentration of hydrogen ions was measured with a Metrohm 632 pH meter with the use of a combined glass electrode. The content of total carbonate carbon was determined coulometrically and the uranium content was determined by extraction with tributyl phosphate and by spectrometry of the complex of uranyl ions with Arsenazo III. Model solutions were used for the experiments which contained a high concentration of sulfate ions, thiosulfate ions, uranium and various proportions of carbonate and hydrogen carbonate. The composition of the individual samples of the extraction solutions are tabulated. The calibration was made of the glass combined electrode at different ionic strength, the values determined of dissociation constants of carbonic acid for different ionic strength. The mathematical procedure is described for the calculation of molar concentrations of carbonate and hudrogen carbonate and the results are presented of the analysis of model solutions. (E.S.). 5 tabs., 1 fig., 5 refs

  6. Molecular hydrogen: an energy source for bacterial activity in nuclear waste disposal

    International Nuclear Information System (INIS)

    Libert, M.; Esnault, L.

    2010-01-01

    Document available in extended abstract form only. Hydrogen is a common product of microbial metabolism, large number of bacteria are able to use it as energetic substrate in subsurface ecosystems. Moreover H 2 is known as one of the most energetic substrates for deep subsurface ecosystem. It could be produced in different ways mainly volcanic activity (basalts iron rich volcanic rocks) or natural radiolysis of water or even fermentation. The millimolar concentrations of H 2 observed in the ground waters are consistent with the activity of a large variety of hydrogen-oxidising bacteria as described in the following Table. Electron acceptors are identified as O 2 , CO 2 , NO 3 , SO 4 or Fe +++ . Aerobic, anaerobic, obligate and facultative autotrophs are included. Numerous of these bacteria are thermophilic bacteria. This bacterial activity leads to the production of methane, acetate, nitrogen, hydrogen sulphur or ferrous oxides. In anoxic environments, H 2 concentrations are governed by microbial metabolism. In most cases, H 2 producing microorganisms are thermodynamically controlled by the abundance of H 2 , and survive thanks to H 2 consumers, a metabolism called inter-species H 2 transfer. Metabolism of H 2 is catalysed by hydrogenase as cytoplasmic enzymes or membrane bound enzymes. Several situations of H 2 production will occur in nuclear waste repository: - Radiolysis of water. - Radiolysis of organic matter (such as bitumen, in case of B waste), H 2 production due to gamma radiolysis of bitumen is evaluated to 1 L H 2 /kg of bitumen /MGy. - Corrosion of metal containers (in deaerated solutions). Large amount of H 2 are predicted in some situations, and will select the development of hydrogen species. Then, aerobic hydrogen bacteria oxidising hydrogen could be found in basins containing irradiating waste, or during the oxic period of storage, denitrifying bacteria or sulfate reducing bacteria will develop near the bitumen waste. Groundwater of the Callovo

  7. Micro-SHINE Uranyl Sulfate Irradiations at the Linac

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Kalensky, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Schneider, John [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.

  8. Modeling the Use of Sulfate Additives for Potassium Chloride Destruction in Biomass Combustion

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Morten Nedergaard; Jespersen, Jacob Boll

    2014-01-01

    Potassium chloride, KCl, formed from biomass combustion may lead to ash deposition and corrosion problems in boilers. Sulfates are effective additives for converting KCl to the less harmful K2SO4 and HCl. In the present study, the rate constants for decomposition of ammonium sulfate and aluminum...... sulfate were obtained from experiments in a fast heating rate thermogravimetric analyzer. The yields of SO2 and SO3 from the decomposition were investigated in a tube reactor at 600–900 °C, revealing a constant distribution of about 15% SO2 and 85% SO3 from aluminum sulfate decomposition and a temperature...... fluidized-bed reactor using ammonium sulfate, aluminum sulfate, and ferric sulfate as additives. The simulation results for ammonium sulfate and ferric sulfate addition compared favorably to the experiments. The predictions for aluminum sulfate addition were only partly in agreement with the experimental...

  9. Opiate-like excitatory effects of steroid sulfates and calcium-complexing agents given cerebroventricularly.

    Science.gov (United States)

    LaBella, F S; Havlicek, V; Pinsky, C

    1979-01-12

    Intracerebroventricular administration of 10--20 microgram of steroid-O-sulfates induced hypermotility, agitation, salivation, EEG abnormalities, stereotypies, wet dog shakes and seizures. Equivalent effects resulted from 30--200 microgram morphine sulfate (H2SO4 salt), 50 microgram EGTA or 300--400 microgram of sodium sulfate or phosphate, but not chloride, nitrate or acetate. Non-steroid sulfates, steroid glucuronides and steroid phosphates were inactive. Naloxone, previously found to antagonize the excitatory effects of androsterone sulfate, failed to antagonize those of cortisol sulfate, sodium sulfate or EGTA. These findings suggest a role for extracellular calcium ions and for sulfate derived from circulating steroids in central responses to opiates.

  10. Anchor of Ni2+ on the Agmatine Sulfate-Modified Electrodes for the Determination of H2O2 in Food

    Science.gov (United States)

    Yan, Yuhua; Zhang, Zhonghui; Xiao, Mingshu; Zhou, Hualan

    2017-07-01

    A method was developed to conveniently and rapidly determine hydrogen peroxide (H2O2) in food. The glassy carbon electrode (GCE) modified with agmatine sulfate (AS) easily anchoring nickel ion was attached to AS with polyamine structure. As a result, more Ni2+ was obtained and transformed to Ni(OH)2/NiOOH on the AS-GCE, which caused the electrode to own much better electrocatalytic performance on H2O2. Based on these, the content of H2O2 in thin sheet of bean curd sample was detected with standard addition method, by which good results were obtained.

  11. Metabolism of pure sulfate-reducing bacteria in the presence of ferrous ions and environmental chages of the medium; Tetsu ion sonzaika ni okeru junsuina ryusan`en kangenkin no taisha to baichi no kankyo henka

    Energy Technology Data Exchange (ETDEWEB)

    Baba, F.; Suzuki, T. [Ajinomoto Co. Inc., Kawasaki (Japan). Technology and Engineering Lab.; Seo, M. [Hokkaido Univ., Sapporo (Japan). Graduate School of Engineering

    1996-10-15

    In this study, the pure sulfate-reducing bacteria were cultured in the medium with different Fe{sup 2+} concentration; shape and activity of the bacteria, the evolution amount of hydrogen sulfide directly related to the breath of the sulfuric acid and the change of the pH value in the medium were investigated during every time interval; and influence on the metabolism of the sulfate-reducing bacteria with Fe{sup 2+} was examined. As a result, the conclusions were obtained as follows: in the case of a medium with high Fe{sup 2+} concentration containing Fe{sup 2+} of 1.0{times}10{sup -2} molkg{sup -1}, the colloidal substance in which the main composition was considered as Fe(OH)2 were present, and they provided a comfortable place for the bacteria to grow. Correspondingly, in the case of a medium with low Fe{sup 2+} concentration containing Fe{sup 2+} of 3.6{times}10{sup -4} molkg{sup -1}, the colloidal substance was small and the number of bacteria was also few. The four kinds of shape of bacteria coexisted in the medium with increasing the culturing time. The hydrogen sulfide was mainly evolved by the bacteria with the comma like shape. During a period that this comma like bacteria actively moved, the hydrogen sulfide evolution increased. 13 refs., 6 figs., 1 tab.

  12. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben

    2009-07-28

    We used a general circulation model of Earth\\'s climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  13. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben; Robock, Alan; Oman, Luke; Stenchikov, Georgiy L.; Marquardt, Allison B.

    2009-01-01

    We used a general circulation model of Earth's climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  14. Evolutionary relationships and functional diversity of plant sulfate transporters.

    Science.gov (United States)

    Takahashi, Hideki; Buchner, Peter; Yoshimoto, Naoko; Hawkesford, Malcolm J; Shiu, Shin-Han

    2011-01-01

    Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR, and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal SUL and animal anion exchangers (SLC26). The lineage of plant SULTR family is expanded into four subfamilies (SULTR1-SULTR4) in land plant species. By contrast, the putative SULTR homologs from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4), and the other diverged before the appearance of lineages for SUL, SULTR, and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13) and plant tonoplast-localized dicarboxylate transporters (TDT). The putative sulfur-sensing protein (SAC1) and SAC1-like transporters (SLT) of Chlorophyte green algae, bryophyte, and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  15. Parameterization and evaluation of sulfate adsorption in a dynamic soil chemistry model

    International Nuclear Information System (INIS)

    Martinson, Liisa; Alveteg, Mattias; Warfvinge, Per

    2003-01-01

    Including sulfate adsorption improves the dynamic behavior of the SAFE model. - Sulfate adsorption was implemented in the dynamic, multi-layer soil chemistry model SAFE. The process is modeled by an isotherm in which sulfate adsorption is considered to be fully reversible and dependent on sulfate concentration as well as pH in soil solution. The isotherm was parameterized by a site-specific series of simple batch experiments at different pH (3.8-5.0) and sulfate concentration (10-260 μmol l -1 ) levels. Application of the model to the Lake Gaardsjoen roof covered site shows that including sulfate adsorption improves the dynamic behavior of the model and sulfate adsorption and desorption delay acidification and recovery of the soil. The modeled adsorbed pool of sulfate at the site reached a maximum level of 700 mmol/m 2 in the late 1980s, well in line with experimental data

  16. Evaluation of aluminum sulfate (alum) as a feedlot surface amendment to reduce ammonia, hydrogen sulfide, and greenhouse gas emissions from beef feedlots

    Science.gov (United States)

    Ammonia (NH3) and greenhouse gas (GHG) emissions from concentrated feeding operations are a concern. The poultry industry has successfully used aluminum sulfate (Alum) as a litter amendment to reduce NH3 emissions from poultry barns. Alum has not been eval­uated for similar uses on cattle feedlot su...

  17. Sulfate was a trace constituent of Archean seawater

    DEFF Research Database (Denmark)

    Crowe, Sean Andrew; Paris, Guillaume; Katsev, Sergei

    2014-01-01

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column...

  18. Borax and octabor treatment of stored swine manure to reduce sulfate reducing bacteria and hydrogen sulfide emissions

    Science.gov (United States)

    Odorous gas emissions from stored swine manure are becoming serious environmental and health issues as the livestock industry becomes more specialized, concentrated, and industrialized. These nuisance gasses include hydrogen sulfide (H2S), ammonia, and methane, which are produced as a result of ana...

  19. Initial kinetics of the direct sulfation of limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Shang, Lei; Dam-Johansen, Kim

    2008-01-01

    The initial kinetics of direct sulfation of Faxe Bryozo, a porous bryozoan limestone was studied in the temperature interval from 873 to 973 K in a pilot entrained flow reactor with very short reaction times (between 0.1 and 0.6 s). The initial conversion rate of the limestone - for conversions...... less than 0.3% - was observed to be significantly promoted by higher SO2 concentrations and lower CO2 concentrations, whereas 02 showed negligible influence. A mathematical model for the sulfation of limestone involving chemical reaction at calcite grain surfaces and solid-state diffusion of carbonate...... ions in calcite grains is established. The validity of the model is limited to the initial sulfation period, in which nucleation of the solid product calcium sulphate is not started. This theoretical reaction-diffusion model gives a good simulation of the initial kinetics of the direct sulfation...

  20. Prognostic significance of highly sulfated chondroitin sulfates in ovarian cancer defined by the single chain antibody GD3A11.

    Science.gov (United States)

    van der Steen, Sophieke C H A; van Tilborg, Angela A G; Vallen, Myrtille J E; Bulten, Johan; van Kuppevelt, Toin H; Massuger, Leon F A G

    2016-03-01

    The extracellular matrix (ECM) of ovarian cancer may provide a number of potential biomarkers. Chondroitin sulfate (CS), a class of sulfated polysaccharides, is abundantly present in the ECM of ovarian cancer. Structural alterations of CS chains (i.e. sulfation pattern) have been demonstrated to play a role in cancer development and progression. In this study we investigate the potential of highly sulfated CS as a biomarker in ovarian cancer using the single chain antibody GD3A11 selected by the phage display technology. The specificity of the antibody was determined by an indirect ELISA. GD3A11 epitope expression was assessed by immunohistochemistry in healthy organs, benign and malignant ovarian tumors (N=359) and correlated to clinical parameters. The CHST15 gene, responsible for the biosynthesis of highly sulfated CS was evaluated for mutation and methylation status. The GD3A11 epitope was minimally expressed in normal organs. Intense expression was observed in the ECM of different ovarian cancer subtypes, in contrast to benign ovarian tumors. Expression was independent of tumor grade, FIGO stage, and the use chemotherapy. For the aggressive ovarian cancer phenotype, intense expression was identified as an independent predictor for poor prognosis. CHST15 gene analysis showed no mutations nor an altered methylation status. Specific highly sulfated CS motifs expressed in the tumoral ECM hold biomarker potential in ovarian cancer patients. These matrix motifs constitute a novel class of biomarkers with prognostic significance and may be instrumental for innovative diagnostic and therapeutic applications (e.g. targeted therapy) in management of ovarian cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Role of protein sulfation in vasodilation induced by minoxidil sulfate, a K+ channel opener

    International Nuclear Information System (INIS)

    Meisheri, K.D.; Oleynek, J.J.; Puddington, L.

    1991-01-01

    Evidence from contractile, radioisotope ion flux and electrophysiological studies suggest that minoxidil sulfate (MNXS) acts as a K+ channel opener in vascular smooth muscle. This study was designed to examine possible biochemical mechanisms by which MNXS exerts such an effect. Experiments performed in the isolated rabbit mesenteric artery (RMA) showed that MNXS, 5 microM, but not the parent compound minoxidil, was a potent vasodilator. Whereas the relaxant effects of an another K+ channel opener vasodilator, BRL-34915 (cromakalim), were removed by washing with physiological saline solution, the effects of MNXS persisted after repeated washout attempts. Furthermore, after an initial exposure of segments of intact RMA to [35S] MNXS, greater than 30% of the radiolabel was retained 2 hr after removal of the drug. In contrast, retention of radiolabel was not detected with either [3H]MNXS (label on the piperidine ring of MNXS) or [3H]minoxidil (each less than 3% after a 2-hr washout). These data suggested that the sulfate moiety from MNXS was closely associated with the vascular tissue. To determine if proteins were the acceptors of sulfate from MNXS, intact RMAs were incubated with [35S]MNXS, and then 35S-labeled proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analyzed by fluorography. Preferential labeling of a 116 kD protein was detected by 2 and 5 min of treatment. A 43 kD protein (resembling actin) also showed significant labeling. A similar profile of 35S-labeled proteins was observed in [35S] MNXS-treated A7r5 rat aortic smooth muscle cells, suggesting that the majority of proteins labeled by [35S]MNXS in intact RMA were components of smooth muscle cells

  2. Influence of Internal Sulfate Attack on Some Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Nada Mahdi Fawzi

    2015-08-01

    Full Text Available One of the most important problems that faces the concrete industry in Iraq is the deterioration due to internal sulfate attack , since it reduces the compressive strength and increases the expansion of concrete. Consequently, the concrete structure may be damage .The effects of total and total effective sulfate contents on high strength concrete (HSC have been studied in the present study. The research studied the effect of sulfate content in cement , sand and gravel , as well as comparing the total sulfate content with the total effective SO3 content. Materials used were divided into two groups of SO3 in cement ,three groups of SO3 in sand ,and two groups of SO3 in gravel. The results show that considering the total effective sulfate content is better than the total content of sulfates since the effect of sulfate in each constituent of concrete, depends on it's granular size .The smaller the particle size of the material the more effective is the sulfate in it. Therefore, it is recommended to follow the Iraqi specification for total effective sulfate content, because it gives more flexibility to the use of sand and gravel with higher sulfate content. The results of compressive strength at 90-days show that the effect of total effective SO3 content of ( 2.647% , 2.992% , 3.424% that correspond to total sulfate of ( 3.778%, 3.294%, 4.528% decrease the compressive strength by (7.53%, 11.44%, 14.59% respectively.

  3. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  4. States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution

    International Nuclear Information System (INIS)

    Chen Jian; Wang Jianqiu; Han Enhou; Dong Junhua; Ke Wei

    2008-01-01

    Mott-Schottky measurement and secondary ion mass spectroscopy (SIMS) were used to investigate the states and transport of hydrogen during the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution. The results showed that when samples were immersed or charged in solution, hydrogen atoms diffused into the film and reacted with vacancy to cause the increases of the carrier concentration (excess electron or hole carrier) and diffusion rate of hydrogen. Some hydrogen atoms diffused to interior of matrix and enriched in β phase while others resorted in the corrosive film. With the increase of immersion or charging time, magnesium hydride would be brittle fractured when the inner stress caused by hydrogen pressure and expansion stress of formation of magnesium hydride was above the fracture strength, which provided the direct experimental evidence of the hydrogen embrittlement (HE) mechanism of magnesium and its alloys. After immersion in solution, the transfer of excess electrons to the interfaces of corrosion film and solution would destroy the charge equilibrium in the film and stimulate the adsorption of SO 4 2- , which resulted in the initiation of localized corrosion; after cathodic charging and then immersion, the enrichment of hydrogen atoms at interior of corrosion film would combine into hydrogen gas to form high pressure and result in the rupture of corrosion film, and localized corrosion initiated and developed at surface. Therefore, localized corrosion nucleated earlier on the charged samples than on the uncharged samples. Hydrogen invasion accelerated the corrosion of matrix

  5. Isotopic constraints on heterogeneous sulfate production in Beijing haze

    Science.gov (United States)

    He, Pengzhen; Alexander, Becky; Geng, Lei; Chi, Xiyuan; Fan, Shidong; Zhan, Haicong; Kang, Hui; Zheng, Guangjie; Cheng, Yafang; Su, Hang; Liu, Cheng; Xie, Zhouqing

    2018-04-01

    Discerning mechanisms of sulfate formation during fine-particle pollution (referred to as haze hereafter) in Beijing is important for understanding the rapid evolution of haze and for developing cost-effective air pollution mitigation strategies. Here we present observations of the oxygen-17 excess of PM2.5 sulfate (Δ17O(SO42-)) collected in Beijing haze from October 2014 to January 2015 to constrain possible sulfate formation pathways. Throughout the sampling campaign, the 12-hourly averaged PM2.5 concentrations ranged from 16 to 323 µg m-3 with a mean of (141 ± 88 (1σ)) µg m-3, with SO42- representing 8-25 % of PM2.5 mass. The observed Δ17O(SO42-) varied from 0.1 to 1.6 ‰ with a mean of (0.9 ± 0.3) ‰. Δ17O(SO42-) increased with PM2.5 levels in October 2014 while the opposite trend was observed from November 2014 to January 2015. Our estimate suggested that in-cloud reactions dominated sulfate production on polluted days (PDs, PM2.5 ≥ 75 µg m-3) of Case II in October 2014 due to the relatively high cloud liquid water content, with a fractional contribution of up to 68 %. During PDs of Cases I and III-V, heterogeneous sulfate production (Phet) was estimated to contribute 41-54 % to total sulfate formation with a mean of (48 ± 5) %. For the specific mechanisms of heterogeneous oxidation of SO2, chemical reaction kinetics calculations suggested S(IV) ( = SO2 ⚫ H2O + HSO3- + SO32-) oxidation by H2O2 in aerosol water accounted for 5-13 % of Phet. The relative importance of heterogeneous sulfate production by other mechanisms was constrained by our observed Δ17O(SO42-). Heterogeneous sulfate production via S(IV) oxidation by O3 was estimated to contribute 21-22 % of Phet on average. Heterogeneous sulfate production pathways that result in zero-Δ17O(SO42-), such as S(IV) oxidation by NO2 in aerosol water and/or by O2 via a radical chain mechanism, contributed the remaining 66-73 % of Phet. The assumption about the thermodynamic state of aerosols

  6. On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis

    DEFF Research Database (Denmark)

    Holmborn, Katarina; Habicher, Judith; Kasza, Zsolt

    2012-01-01

    The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation...... levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element morphologies...

  7. Incorporation of Monovalent Cations in Sulfate Green Rust

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Dideriksen, K.; Katz, A.

    2014-01-01

    Green rust is a naturally occurring layered mixed-valent ferrous-ferric hydroxide, which can react with a range of redox-active compounds. Sulfate-bearing green rust is generally thought to have interlayers composed of sulfate and water. Here, we provide evidence that the interlayers also contain...... with water showed that Na+ and K+ were structurally fixed in the interlayer, whereas Rb+ and Cs+ could be removed, resulting in a decrease in the basal layer spacing. The incorporation of cations in the interlayer opens up new possibilities for the use of sulfate green rust for exchange reactions with both...

  8. Sulfation of Condensed Potassium Chloride by SO2

    DEFF Research Database (Denmark)

    Sengeløv, Louise With; Hansen, Troels Bruun; Bartolomé, Carmen

    2013-01-01

    The interaction between alkali chloride and sulfur oxides has important implications for deposition and corrosion in combustion of biomass. In the present study, the sulfation of particulate KCl (90–125 μm) by SO2 was studied in a fixed bed reactor in the temperature range 673–1023 K and with rea......The interaction between alkali chloride and sulfur oxides has important implications for deposition and corrosion in combustion of biomass. In the present study, the sulfation of particulate KCl (90–125 μm) by SO2 was studied in a fixed bed reactor in the temperature range 673–1023 K...... and with reactant concentrations of 500–3000 ppm SO2, 1–20% O2, and 4–15% H2O. The degree of sulfation was monitored by measuring the formation of HCl. Analysis of the solid residue confirmed that the reaction proceeds according to a shrinking core model and showed the formation of an eutectic at higher...... temperatures. On the basis of the experimental results, a rate expression for the sulfation reaction was derived. The model compared well with literature data for sulfation of KCl and NaCl, and the results indicate that it may be applied at even higher SO2 concentrations and temperatures than those...

  9. Transmission spectra study of sulfate substituted potassium dihydrogen phosphate

    KAUST Repository

    LI, LIANG; Zhang, Jianqin; Sun, Xun; Zhang, Qiang; Zhao, Xian; Zhang, Xixiang

    2013-01-01

    Potassium dihydrogen phosphate (KDP) crystals with different amounts of sulfate concentration were grown and the transmittance spectrum was studied. A crystal with high sulfate replacement density exhibits heavy absorption property

  10. Cloning and characterization of a novel chondroitin sulfate/dermatan sulfate 4-O-endosulfatase from a marine bacterium.

    Science.gov (United States)

    Wang, Wenshuang; Han, Wenjun; Cai, Xingya; Zheng, Xiaoyu; Sugahara, Kazuyuki; Li, Fuchuan

    2015-03-20

    Sulfatases are potentially useful tools for structure-function studies of glycosaminoglycans (GAGs). To date, various GAG exosulfatases have been identified in eukaryotes and prokaryotes. However, endosulfatases that act on GAGs have rarely been reported. Recently, a novel HA and CS lyase (HCLase) was identified for the first time from a marine bacterium (Han, W., Wang, W., Zhao, M., Sugahara, K., and Li, F. (2014) J. Biol. Chem. 289, 27886-27898). In this study, a putative sulfatase gene, closely linked to the hclase gene in the genome, was recombinantly expressed and characterized in detail. The recombinant protein showed a specific N-acetylgalactosamine-4-O-sulfatase activity that removes 4-O-sulfate from both disaccharides and polysaccharides of chondroitin sulfate (CS)/dermatan sulfate (DS), suggesting that this sulfatase represents a novel endosulfatase. The novel endosulfatase exhibited maximal reaction rate in a phosphate buffer (pH 8.0) at 30 °C and effectively removed 17-65% of 4-O-sulfates from various CS and DS and thus significantly inhibited the interactions of CS and DS with a positively supercharged fluorescent protein. Moreover, this endosulfatase significantly promoted the digestion of CS by HCLase, suggesting that it enhances the digestion of CS/DS by the bacterium. Therefore, this endosulfatase is a potential tool for use in CS/DS-related studies and applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Control of microbially generated hydrogen sulfide in produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Burger, E.D.; Vance, I.; Gammack, G.F.; Duncan, S.E.

    1995-12-31

    Production of hydrogen sulfide in produced waters due to the activity of sulfate-reducing bacteria (SRB) is a potentially serious problem. The hydrogen sulfide is not only a safety and environmental concern, it also contributes to corrosion, solids formation, a reduction in produced oil and gas values, and limitations on water discharge. Waters produced from seawater-flooded reservoirs typically contain all of the nutrients required to support SRB metabolism. Surface processing facilities provide a favorable environment in which SRB flourish, converting water-borne nutrients into biomass and H{sub 2}S. This paper will present results from a field trial in which a new technology for the biochemical control of SRB metabolism was successfully applied. A slip stream of water downstream of separators on a produced water handling facility was routed through a bioreactor in a side-steam device where microbial growth was allowed to develop fully. This slip stream was then treated with slug doses of two forms of a proprietary, nonbiocidal metabolic modifier. Results indicated that H{sub 2}S production was halted almost immediately and that the residual effect of the treatment lasted for well over one week.

  12. Chondroitin sulfate proteoglycan synthesis and reutilization of beta-D-xyloside-initiated chondroitin/dermatan sulfate glycosaminoglycans in fetal kidney branching morphogenesis

    International Nuclear Information System (INIS)

    Klein, D.J.; Brown, D.M.; Moran, A.; Oegema, T.R. Jr.; Platt, J.L.

    1989-01-01

    Branching morphogenesis and chondroitin sulfate proteoglycan synthesis by explanted fetal mouse kidneys were previously shown to be inhibited by p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside) while glomerular development and heparan sulfate proteoglycan synthesis were unaffected. The metabolic fate of fetal kidney explant proteoglycans was investigated to determine whether or not recovery of proteoglycan synthesis and morphogenesis occur after exposure to beta-D-xyloside. Chondroitin sulfate proteoglycan synthesis resumed within 4 hr of removal of beta-D-xyloside and was enhanced once beta-D-xyloside-initiated chondroitin/dermatan- 35 SO 4 glycosaminoglycans (GAGs) were released from the tissue. Radioactivity incorporated into beta-D-xyloside-initiated chondroitin/dermatan- 35 SO 4 GAGs during labeling in the presence of beta-D-xyloside was reutilized in the synthesis of chondroitin- 35 SO 4 proteoglycan during a 24-hr chase in nonradioactive medium without beta-D-xyloside. Further, highly purified beta-D-xyloside-initiated chondroitin/dermatan- 35 SO 4 GAGs were taken up by kidneys more avidly than was free [ 35 S]sulfate. These 35 S-GAGs were degraded and reutilized in the synthesis of chondroitin- 35 SO 4 proteoglycan. Ureteric bud branching resumed 48 hr after beta-D-xyloside was removed from the incubation medium. These findings support the idea that both chondroitin sulfate proteoglycan synthesis and proteoglycan processing may be involved in branching morphogenesis

  13. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes

    DEFF Research Database (Denmark)

    Detmers, Jan; Brüchert, Volker; Habicht, K S

    2001-01-01

    Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known...... sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2.......0 to 42.0 per thousand. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation...

  14. Annual sulfate budgets for Dutch lowland peat polders

    NARCIS (Netherlands)

    Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; Geest, van der Harm G.; Klein, de Jeroen J.M.; Kosten, Sarian; Smolders, Alfons J.P.; Verhoeven, Jos T.A.; Mes, Ron G.; Ouboter, Maarten

    2016-01-01

    Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species.

  15. Effects of Aluminium Sulfate on Cadmium Accumulation in Rice

    International Nuclear Information System (INIS)

    Khamvarn, Vararas; Boontanon, Narin; Prapagdee, Benjaphorn; Kumsopa, Acharaporn; Boonsirichai, Kanokporn

    2011-06-01

    Full text: Cadmium accumulation in Pathum Thani 1 and Suphan Buri 60 rice cultivars was investigated upon treatment with aluminium sulfate as a precipitant. Rice was grown hydroponically in a medium containing 4 ppm cadmium nitrate with or without 4 ppm aluminium sulfate. Root, stem with leaves and grain samples were collected and analyzed for cadmium content using atomic absorption spectroscopy and inductively coupled plasma atomic emission spectroscopy. Without the addition of aluminium sulfate, Pathum Thani 1 and Suphan Buri 60 accumulated 24.71∫ 3.14 ppm and 34.43 ∫ 4.51 ppm (dry weight of whole plant) of cadmium, respectively. With aluminium sulfate, cadmium accumulation increased to 40.66 ∫ 2.47 ppm and 62.94 ∫ 10.69 ppm, respectively. The addition of aluminium sulfate to the planting medium did not reduce cadmium accumulation but caused the rice to accumulate more cadmium especially in the shoots and grains. This observation might serve as the basis for future research on the management of agricultural areas that are contaminated with cadmium and aluminium

  16. Preparation and characterization of a chemically sulfated cashew gum polysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Moura Neto, Erico de; Maciel, Jeanny da S.; Cunha, Pablyana L. R.; Paula, Regina Celia M. de; Feitosa, Judith P.A., E-mail: judith@dqoi.ufc.br [Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, Fortaleza (Brazil)

    2011-09-15

    Cashew gum (CG) was sulfated in pyridine:formamide using chlorosulfonic acid as the reagent. Confirmation of sulfation was obtained by Fourier transform infrared (FTIR) spectroscopy through the presence of an asymmetrical S=O stretching vibration at 1259 cm{sup -1}. The degrees of substitution were 0.02, 0.24 and 0.88 determined from the sulfur percentage. 1D and 2D nuclear magnetic resonance (NMR) data showed that the sulfation occurred at primary carbons. An increase of at least 4% of the solution viscosity was observed due to sulfation. The thermal gravimetric curves (TGA) indicate that the derivatives are stable up to ca. 200 deg C. The sulfated CG is compared to carboxymethylated CG in order to verify the possibility of the use of the former in the preparation of polyelectrolyte complexes; the latter is already being used for this application. (author)

  17. Modeling of Sulfate Double-Salt in Nuclear Wastes

    International Nuclear Information System (INIS)

    Toghiani, B.; Lindner, J.S.; Weber, C.F.; Hunt, R.D.

    2000-01-01

    The Environmental Simulation Program (ESP) continues to adequately predict the solubility of most key chemical systems in the Hanford tank waste. For example, the ESP predictions were in fair agreement with the solubility experiments for the fluoride-phosphate system, although ESP probably underestimates the aqueous amounts. Due to the importance of this system in the formation of pipeline plugs, additional experiments have been made at elevated temperatures, and improvements to the ESP database will be made. ESP encountered problems with sulfate systems because the Public database for ESP does not include anhydrous sodium sulfate in mixed solutions below 32.4 C. This limitation leads to convergence problems and to spurious predictions of solubility near the transition point with sodium sulfate decahydrate when other salts such as sodium nitrate are present. However, ESP was able to make reasonable solubility predictions with a corrected database, demonstrating the need to validate and document the various databases that can be used by ESP. Even though ESP does not include the sulfate-nitrate double salt, this omission does not appear to be a major problem. The solubility predictions with and without the sulfate-nitrate double salt are comparable. In sharp contrast, the sulfate-fluoride double salt is included, but ESP still underestimates solubility in some cases. This problem can misrepresent the ionic strength of the solution, which is an important factor in the formation of pipeline plugs. Solubility tests on the sulfate-fluoride system are planned to provide additional data at higher temperatures and in caustic solutions. These results will be used to improve the range and accuracy of ESP predictions. ESP will continue to provide important predictions for waste processing operations while being evaluated and improved. For example, ESP will be used to determine the amount of water for the saltcake dissolution efforts at Hanford. When ESP underestimates the

  18. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    International Nuclear Information System (INIS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-01-01

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  19. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jinlong, Lv, E-mail: ljlbuaa@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Tongxiang, Liang; Chen, Wang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  20. Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi.

    Science.gov (United States)

    Bochenek, Michal; Etherington, Graham J; Koprivova, Anna; Mugford, Sam T; Bell, Thomas G; Malin, Gill; Kopriva, Stanislav

    2013-08-01

    The response to sulfate deficiency of plants and freshwater green algae has been extensively analysed by system biology approaches. By contrast, seawater sulfate concentration is high and very little is known about the sulfur metabolism of marine organisms. Here, we used a combination of metabolite analysis and transcriptomics to analyse the response of the marine microalga Emiliania huxleyi as it acclimated to sulfate limitation. Lowering sulfate availability in artificial seawater from 25 to 5 mM resulted in significant reduction in growth and intracellular concentrations of dimethylsulfoniopropionate and glutathione. Sulfate-limited E. huxleyi cells showed increased sulfate uptake but sulfate reduction to sulfite did not seem to be regulated. Sulfate limitation in E. huxleyi affected expression of 1718 genes. The vast majority of these genes were upregulated, including genes involved in carbohydrate and lipid metabolism, and genes involved in the general stress response. The acclimation response of E. huxleyi to sulfate deficiency shows several similarities to the well-described responses of Arabidopsis and Chlamydomonas, but also has many unique features. This dataset shows that even though E. huxleyi is adapted to constitutively high sulfate concentration, it retains the ability to re-program its gene expression in response to reduced sulfate availability. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. O-sulfated bacterial polysaccharides with low anticoagulant activity inhibit metastasis.

    Science.gov (United States)

    Borgenström, Marjut; Wärri, Anni; Hiilesvuo, Katri; Käkönen, Rami; Käkönen, Sanna; Nissinen, Liisa; Pihlavisto, Marjo; Marjamäki, Anne; Vlodavsky, Israel; Naggi, Annamaria; Torri, Giangiacomo; Casu, Benito; Veromaa, Timo; Salmivirta, Markku; Elenius, Klaus

    2007-07-01

    Heparin-like polysaccharides possess the capacity to inhibit cancer cell proliferation, angiogenesis, heparanase-mediated cancer cell invasion, and cancer cell adhesion to vascular endothelia via adhesion receptors, such as selectins. The clinical applicability of the antitumor effect of such polysaccharides, however, is compromised by their anticoagulant activity. We have compared the potential of chemically O-sulfated and N,O-sulfated bacterial polysaccharide (capsular polysaccharide from E. COLI K5 [K5PS]) species to inhibit metastasis of mouse B16-BL6 melanoma cells and human MDA-MB-231 breast cancer cells in two in vivo models. We demonstrate that in both settings, O-sulfated K5PS was a potent inhibitor of metastasis. Reducing the molecular weight of the polysaccharide, however, resulted in lower antimetastatic capacity. Furthermore, we show that O-sulfated K5PS efficiently inhibited the invasion of B16-BL6 cells through Matrigel and also inhibited the in vitro activity of heparanase. Moreover, treatment with O-sulfated K5PS lowered the ability of B16-BL6 cells to adhere to endothelial cells, intercellular adhesion molecule-1, and P-selectin, but not to E-selectin. Importantly, O-sulfated K5PSs were largely devoid of anticoagulant activity. These findings indicate that O-sulfated K5PS polysaccharide should be considered as a potential antimetastatic agent.

  2. Hexagonal-shaped chondroitin sulfate self-assemblies have exalted anti-HSV-2 activity.

    Science.gov (United States)

    Galus, Aurélia; Mallet, Jean-Maurice; Lembo, David; Cagno, Valeria; Djabourov, Madeleine; Lortat-Jacob, Hugues; Bouchemal, Kawthar

    2016-01-20

    The initial step in mucosal infection by the herpes simplex virus type 2 (HSV-2) requires its binding to certain glycosaminoglycans naturally present on host cell membranes. We took advantage of this interaction to design biomimetic supramolecular hexagonal-shaped nanoassemblies composed of chondroitin sulfate having exalted anti-HSV-2 activity in comparison with native chondroitin sulfate. Nanoassemblies were formed by mixing hydrophobically-modified chondroitin sulfate with α-cyclodextrin in water. Optimization of alkyl chain length grafted on chondroitin sulfate and the ratio between hydrophobically-modified chondroitin sulfate and α-cyclodextrin showed that more cohesive and well-structured nanoassemblies were obtained using higher α-cyclodextrin concentration and longer alkyl chain lengths. A structure-activity relationship was found between anti-HSV-2 activity and the amphiphilic nature of hydrophobically-modified chondroitin sulfate. Also, antiviral activity of hexagonal nanoassemblies against HSV-2 was further improved in comparison with hydrophobically-modified chondroitin sulfate. This work suggests a new biomimetic formulation approach that can be extended to other heparan-sulfate-dependent viruses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Comparative Evaluation of Aluminum Sulfate and Ferric Sulfate-Induced Coagulations as Pretreatment of Microfiltration for Treatment of Surface Water

    Directory of Open Access Journals (Sweden)

    Yali Song

    2015-06-01

    Full Text Available Two coagulants, aluminum sulfate and ferric chloride, were tested to reduce natural organic matter (NOM as a pretreatment prior to polyvinylidene fluoride (PVDF microfiltration (MF membranes for potable water treatment. The results showed that the two coagulants exhibited different treatment performance in NOM removal. Molecular weight (MW distributions of NOM in the tested surface raw water were concentrated at 3–5 kDa and approximately 0.2 kDa. Regardless of the coagulant species and dosages, the removal of 0.2 kDa NOM molecules was limited. In contrast, NOM at 3–5 kDa were readily removed with increasing coagulant dosages. In particular, aluminum sulfate favorably removed NOM near 5 kDa, whereas ferric chloride tended to reduce 3 kDa organic substances. Although aluminum sulfate and ferric chloride could improve the flux of the ensuing MF treatment, the optimal coagulant dosages to achieve effective pretreatment were different: 2–30 mg/L for aluminum sulfate and >15 mg/L for ferric chloride. The scanning electron microscope (SEM image of the membrane-filtered coagulated raw water showed that coagulation efficiency dramatically affected membrane flux and that good coagulation properties can reduce membrane fouling.

  4. Oriented nucleation and growth of anhydrite during direct sulfation of limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2008-01-01

    The direct sulfation of limestone (Iceland Spar) was studied at 973 K in a fixed-bed reactor. Scanning electron microscopy examinations of the sulfated limestone particles show that the sulfation process involves oriented nucleation and growth of the solid product, anhydrite. The reason...

  5. Uranyl Sulfate Nanotubules Templated by N-phenylglycine

    Directory of Open Access Journals (Sweden)

    Oleg I. Siidra

    2018-04-01

    Full Text Available The synthesis, structure, and infrared spectroscopy properties of the new organically templated uranyl sulfate Na(phgH+7[(UO26(SO410](H2O3.5 (1, obtained at room temperature by evaporation from aqueous solution, are reported. Its structure contains unique uranyl sulfate [(UO26(SO410]8− nanotubules templated by protonated N-phenylglycine (C6H5NH2CH2COOH+. Their internal diameter is 1.4 nm. Each of the nanotubules is built from uranyl sulfate rings sharing common SO4 tetrahedra. The template plays an important role in the formation of the complex structure of 1. The aromatic rings are stacked parallel to each other due to the effect of π–π interaction with their side chains extending into the gaps between the nanotubules.

  6. Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei.

    Science.gov (United States)

    Sanchez, Kevin J; Chen, Chia-Li; Russell, Lynn M; Betha, Raghu; Liu, Jun; Price, Derek J; Massoli, Paola; Ziemba, Luke D; Crosbie, Ewan C; Moore, Richard H; Müller, Markus; Schiller, Sven A; Wisthaler, Armin; Lee, Alex K Y; Quinn, Patricia K; Bates, Timothy S; Porter, Jack; Bell, Thomas G; Saltzman, Eric S; Vaillancourt, Robert D; Behrenfeld, Mike J

    2018-02-19

    Biogenic sources contribute to cloud condensation nuclei (CCN) in the clean marine atmosphere, but few measurements exist to constrain climate model simulations of their importance. The chemical composition of individual atmospheric aerosol particles showed two types of sulfate-containing particles in clean marine air masses in addition to mass-based Estimated Salt particles. Both types of sulfate particles lack combustion tracers and correlate, for some conditions, to atmospheric or seawater dimethyl sulfide (DMS) concentrations, which means their source was largely biogenic. The first type is identified as New Sulfate because their large sulfate mass fraction (63% sulfate) and association with entrainment conditions means they could have formed by nucleation in the free troposphere. The second type is Added Sulfate particles (38% sulfate), because they are preexisting particles onto which additional sulfate condensed. New Sulfate particles accounted for 31% (7 cm -3 ) and 33% (36 cm -3 ) CCN at 0.1% supersaturation in late-autumn and late-spring, respectively, whereas sea spray provided 55% (13 cm -3 ) in late-autumn but only 4% (4 cm -3 ) in late-spring. Our results show a clear seasonal difference in the marine CCN budget, which illustrates how important phytoplankton-produced DMS emissions are for CCN in the North Atlantic.

  7. Activation of Recombinantly Expressed l-Amino Acid Oxidase from Rhizoctonia solani by Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Katharina Hahn

    2017-12-01

    Full Text Available l-Amino acid oxidases (l-AAO catalyze the oxidative deamination of l-amino acids to the corresponding α-keto acids. The non-covalently bound cofactor FAD is reoxidized by oxygen under formation of hydrogen peroxide. We expressed an active l-AAO from the fungus Rhizoctonia solani as a fusion protein in E. coli. Treatment with small amounts of the detergent sodium dodecyl sulfate (SDS stimulated the activity of the enzyme strongly. Here, we investigated whether other detergents and amphiphilic molecules activate 9His-rsLAAO1. We found that 9His-rsLAAO1 was also activated by sodium tetradecyl sulfate. Other detergents and fatty acids were not effective. Moreover, effects of SDS on the oligomerization state and the protein structure were analyzed. Native and SDS-activated 9His-rsLAAO1 behaved as dimers by size-exclusion chromatography. SDS treatment induced an increase in hydrodynamic radius as observed by size-exclusion chromatography and dynamic light scattering. The activated enzyme showed accelerated thermal inactivation and an exposure of additional protease sites. Changes in tryptophan fluorescence point to a more hydrophilic environment. Moreover, FAD fluorescence increased and a lower concentration of sulfites was sufficient to form adducts with FAD. Taken together, these data point towards a more open conformation of SDS-activated l-amino acid oxidase facilitating access to the active site.

  8. Dissolution of sulfate scales

    Energy Technology Data Exchange (ETDEWEB)

    Hen, J.

    1991-11-26

    This patent describes a composition for the removal of sulfate scale from surfaces. It comprises: an aqueous solution of about 0.1 to 1.0 molar concentration of an aminopolycarboxylic acid (APCA) containing 1 to 4 amino groups or a salt thereof, and about 0.1 to 1.0 molar concentration of a second component which is diethylenetriaminepenta (methylenephosphonic acid) (DTPMP) or a salt thereof, or aminotri (methylenephosphonic acid) (ATMP) or a salt thereof as an internal phase enveloped by a hydrocarbon membrane phase which is itself emulsified in an external aqueous phase, the hydrocarbon membrane phase continuing a complexing agent weaker for the cations of the sulfate scale than the APCA and DTPMP or ATMP, any complexing agent for the cations in the external aqueous phase being weaker than that in the hydrocarbon membrane phase.

  9. Microbial methanogenesis in the sulfate-reducing zone of sediments in the Eckernförde Bay, SW Baltic Sea

    Science.gov (United States)

    Maltby, Johanna; Steinle, Lea; Löscher, Carolin R.; Bange, Hermann W.; Fischer, Martin A.; Schmidt, Mark; Treude, Tina

    2018-01-01

    Benthic microbial methanogenesis is a known source of methane in marine systems. In most sediments, the majority of methanogenesis is located below the sulfate-reducing zone, as sulfate reducers outcompete methanogens for the major substrates hydrogen and acetate. The coexistence of methanogenesis and sulfate reduction has been shown before and is possible through the usage of noncompetitive substrates by methanogens such as methanol or methylated amines. However, knowledge about the magnitude, seasonality, and environmental controls of this noncompetitive methane production is sparse. In the present study, the presence of methanogenesis within the sulfate reduction zone (SRZ methanogenesis) was investigated in sediments (0-30 cm below seafloor, cm b.s.f.) of the seasonally hypoxic Eckernförde Bay in the southwestern Baltic Sea. Water column parameters such as oxygen, temperature, and salinity together with porewater geochemistry and benthic methanogenesis rates were determined in the sampling area Boknis Eck quarterly from March 2013 to September 2014 to investigate the effect of seasonal environmental changes on the rate and distribution of SRZ methanogenesis, to estimate its potential contribution to benthic methane emissions, and to identify the potential methanogenic groups responsible for SRZ methanogenesis. The metabolic pathway of methanogenesis in the presence or absence of sulfate reducers, which after the addition of a noncompetitive substrate was studied in four experimental setups: (1) unaltered sediment batch incubations (net methanogenesis), (2) 14C-bicarbonate labeling experiments (hydrogenotrophic methanogenesis), (3) manipulated experiments with the addition of either molybdate (sulfate reducer inhibitor), 2-bromoethanesulfonate (methanogen inhibitor), or methanol (noncompetitive substrate, potential methanogenesis), and (4) the addition of 13C-labeled methanol (potential methylotrophic methanogenesis). After incubation with methanol, molecular

  10. Damage modelling in concrete subject to sulfate attack

    Directory of Open Access Journals (Sweden)

    N. Cefis

    2014-07-01

    Full Text Available In this paper, we consider the mechanical effect of the sulfate attack on concrete. The durability analysis of concrete structures in contact to external sulfate solutions requires the definition of a proper diffusion-reaction model, for the computation of the varying sulfate concentration and of the consequent ettringite formation, coupled to a mechanical model for the prediction of swelling and material degradation. In this work, we make use of a two-ions formulation of the reactive-diffusion problem and we propose a bi-phase chemo-elastic damage model aimed to simulate the mechanical response of concrete and apt to be used in structural analyses.

  11. Ionic and secretory response of pancreatic islet cells to minoxidil sulfate

    International Nuclear Information System (INIS)

    Antoine, M.H.; Hermann, M.; Herchuelz, A.; Lebrun, P.

    1991-01-01

    Minoxidil sulfate is an antihypertensive agent belonging to the new class of vasodilators, the K+ channel openers. The present study was undertaken to characterize the effects of minoxidil sulfate on ionic and secretory events in rat pancreatic islets. The drug unexpectedly provoked a concentration-dependent decrease in 86Rb outflow. This inhibitory effect was reduced in a concentration-dependent manner by glucose and tolbutamide. Minoxidil sulfate did not affect 45Ca outflow from islets perfused in the presence of extracellular Ca++ and absence or presence of glucose. However, in islets exposed to a medium deprived of extracellular Ca++, the drug provoked a rise in 45Ca outflow. Whether in the absence or presence of extracellular Ca++, minoxidil sulfate increased the cytosolic free Ca++ concentration of islet cells. Lastly, minoxidil sulfate increased the release of insulin from glucose-stimulated pancreatic islets. These results suggest that minoxidil sulfate reduces the activity of the ATP-sensitive K+ channels and promotes an intracellular translocation of Ca++. The latter change might account for the effect of the drug on the insulin-releasing process. However, the secretory response to minoxidil sulfate could also be mediated, at least in part, by a modest Ca++ entry

  12. Sulfate Formation on Mars by Volcanic Aerosols: A New Look

    Science.gov (United States)

    Blaney, D. L.

    1996-03-01

    Sulfur was measured at both Viking Lander sites in abundances of 5-9 wt % SO3. Because the sulfur was more concentrated in clumps which disintegrated and the general oxidized nature of the Martian soil, these measurements led to the assumption that a sulfate duricrust existed. Two types of models for sulfate formation have been proposed. One is a formation by upwardly migrating ground water. The other is the formation of sulfates by the precipitation of volcanic aerosols. Most investigators have tended to favor the ground water origin of sulfates on Mars. However, evidence assemble since Viking may point to a volcanic aerosol origin.

  13. Structure-Activity Relationships of Bioengineered Heparin/Heparan Sulfates Produced in Different Bioreactors

    Directory of Open Access Journals (Sweden)

    Ha Na Kim

    2017-05-01

    Full Text Available Heparin and heparan sulfate are structurally-related carbohydrates with therapeutic applications in anticoagulation, drug delivery, and regenerative medicine. This study explored the effect of different bioreactor conditions on the production of heparin/heparan sulfate chains via the recombinant expression of serglycin in mammalian cells. Tissue culture flasks and continuously-stirred tank reactors promoted the production of serglycin decorated with heparin/heparan sulfate, as well as chondroitin sulfate, while the serglycin secreted by cells in the tissue culture flasks produced more highly-sulfated heparin/heparan sulfate chains. The serglycin produced in tissue culture flasks was effective in binding and signaling fibroblast growth factor 2, indicating the utility of this molecule in drug delivery and regenerative medicine applications in addition to its well-known anticoagulant activity.

  14. Chondroitin sulfate addition to CD44H negatively regulates hyaluronan binding

    International Nuclear Information System (INIS)

    Ruffell, Brian; Johnson, Pauline

    2005-01-01

    CD44 is a widely expressed cell adhesion molecule that binds hyaluronan, an extracellular matrix glycosaminoglycan, in a tightly regulated manner. This regulated interaction has been implicated in inflammation and tumor metastasis. CD44 exists in the standard form, CD44H, or as higher molecular mass isoforms due to alternative splicing. Here, we identify serine 180 in human CD44H as the site of chondroitin sulfate addition and show that lack of chondroitin sulfate addition at this site enhances hyaluronan binding by CD44. A CD44H-immunoglobulin fusion protein expressed in HEK293 cells, and CD44H expressed in murine L fibroblast cells were modified by chondroitin sulfate, as determined by reduced sulfate incorporation after chondroitinase ABC treatment. Mutation of serine 180 or glycine 181 in CD44H reduced chondroitin sulfate addition and increased hyaluronan binding, indicating that serine 180 is the site for chondroitin sulfate addition in CD44H and that this negatively regulates hyaluronan binding

  15. Effect of Microstructure on Hydrogen Diffusion in Weld and API X52 Pipeline Steel Base Metals under Cathodic Protection

    Directory of Open Access Journals (Sweden)

    R. C. Souza

    2017-01-01

    Full Text Available The aim of this research was to evaluate the influence of microstructure on hydrogen permeation of weld and API X52 base metal under cathodic protection. The microstructures analyzed were of the API X52, as received, quenched, and annealed, and the welded zone. The test was performed in base metal (BM, quenched base metal (QBM, annealed base metal (ABM, and weld metal (WM. Hydrogen permeation flows were evaluated using electrochemical tests in a Devanathan cell. The potentiodynamic polarization curves were carried out to evaluate the corrosion resistance of each microstructure. All tests were carried out in synthetic soil solutions NS4 and NS4 + sodium thiosulfate at 25°C. The sodium thiosulfate was used to simulate sulfate reduction bacteria (SRB. Through polarization, assays established that the microstructure does not influence the corrosion resistance. The permeation tests showed that weld metal had lower hydrogen flow than base metal as received, quenched, and annealed.

  16. Selective recognition of sulfate anions in a 95% ethanol solvent with a simple neutral salicylaldehyde dansyl hydrazine Schiff base tuned by Brønsted-Lowry acid-base reaction

    Science.gov (United States)

    Wei, Gao-Ning; Zhang, Jing-Li; Jia, Cang; Fan, Wei-Zhen; Lin, Li-Rong

    2014-07-01

    A new Schiff base compound, 5-(dimethylamino)-N‧-(2-hydroxybenzylidene)naphthalene-1-sulfonohydrazide (R), has been synthesized, characterized, and employed as a selective fluorescence receptor for the recognition of sulfate anions. UV-vis absorption, fluorescence emission, 1H NMR spectra and DFT calculation studies on the system have been carried out to determine the nature of the interactions between R and anions. The results reveal that the deprotonation of the phenol without the need of a strong base leads to the formation of a hydrogen-bonding complex with a sbnd SO2sbnd NHsbnd group, which is responsible for the spectra changes. The deprotonation process for the selectivity recognition of sulfate can be tuned by the Brønsted-Lowry acid-base reaction in nonaqueous solutions, revealing that suitable phenolic hydroxyl acidity is the key factor for anion recognition selectivity.

  17. Biological sulfate removal from construction and demolition debris leachate: Effect of bioreactor configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kijjanapanich, Pimluck, E-mail: som_cheng00@hotmail.com [Pollution Prevention and Resource Recovery Chair Group, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Do, Anh Tien [Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Annachhatre, Ajit P. [Environmental Engineering and Management, Asian Institute of Technology, PO Box 4, Klongluang, Pathumthani 12120 (Thailand); Esposito, Giovanni [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino (Italy); Yeh, Daniel H. [Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Lens, Piet N.L. [Pollution Prevention and Resource Recovery Chair Group, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands)

    2014-03-01

    Highlights: • Novel biological technique for gypsum removal from CDD. • CDDS leachate treatment performed using different sulfate reducing bioreactors. • Gypsum in CDD can be used as a source of sulfate for sulfate reducing bacteria. • High calcium concentration (1000 mg L{sup −1}) did not affect the bioreactor performance. - Abstract: Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75–85% was achieved at a hydraulic retention time (HRT) of 15.5 h. A high calcium concentration up to 1000 mg L{sup −1} did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems.

  18. Biological sulfate removal from construction and demolition debris leachate: Effect of bioreactor configuration

    International Nuclear Information System (INIS)

    Kijjanapanich, Pimluck; Do, Anh Tien; Annachhatre, Ajit P.; Esposito, Giovanni; Yeh, Daniel H.; Lens, Piet N.L.

    2014-01-01

    Highlights: • Novel biological technique for gypsum removal from CDD. • CDDS leachate treatment performed using different sulfate reducing bioreactors. • Gypsum in CDD can be used as a source of sulfate for sulfate reducing bacteria. • High calcium concentration (1000 mg L −1 ) did not affect the bioreactor performance. - Abstract: Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75–85% was achieved at a hydraulic retention time (HRT) of 15.5 h. A high calcium concentration up to 1000 mg L −1 did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems

  19. 21 CFR 864.9320 - Copper sulfate solution for specific gravity determinations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Copper sulfate solution for specific gravity... Establishments That Manufacture Blood and Blood Products § 864.9320 Copper sulfate solution for specific gravity determinations. (a) Identification. A copper sulfate solution for specific gravity determinations is a device...

  20. Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate.

    Science.gov (United States)

    Chen, Dong; Szostak, Paul; Wei, Zongsu; Xiao, Ruiyang

    2016-01-01

    Nutrient loss from soil, especially phosphorous (P) from farmlands to natural water bodies via surface runoff or infiltration, have caused significant eutrophication problems. This is because dissolved orthophosphates are usually the limiting nutrient for algal blooms. Currently, available techniques to control eutrophication are surprisingly scarce. Calcium sulfate or gypsum is a common soil amendment and has a strong complexation to orthophosphates. The results showed that calcium sulfate reduced the amount of water extractable P (WEP) through soil incubation tests, suggesting less P loss from farmlands. A greater decrease in WEP occurred with a greater dosage of calcium sulfate. Compared to conventional coarse calcium sulfate, nano calcium sulfate further reduced WEP by providing a much greater specific surface area, higher solubility, better contact with the fertilizer and the soil particles, and superior dispersibility. The enhancement of the nano calcium sulfate for WEP reduction is more apparent for a pellet- than a powdered- fertilizer. At the dosage of Ca/P weight ratio of 2.8, the WEP decreased by 31±5% with the nano calcium sulfate compared to 20±5% decrease with the coarse calcium sulfate when the pellet fertilizer was used. Computation of the chemical equilibrium speciation shows that calcium hydroxyapatite has the lowest solubility. However, other mineral phases such as hydroxydicalcium phosphate, dicalcium phosphate dihydrate, octacalcium phosphate, and tricalcium phosphate might form preceding to calcium hydroxyapatite. Since calcium sulfate is the major product of the flue gas desulfurization (FGD) process, this study demonstrates a potential beneficial reuse and reduction of the solid FGD waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Controlling sulfate attack in Mississippi Department of Transportation structures

    Science.gov (United States)

    2010-08-01

    At some construction sites in Mississippi, deterioration of concrete in contact with the surrounding soil could be related to the high sulfate content of the adjacent soils. Studies dating to 1966 have documented sulfate attack associated with sp...

  2. Controlling sulfate attack in Mississippi Department of Transportation structures.

    Science.gov (United States)

    2010-08-01

    At some construction sites in Mississippi, deterioration of concrete in contact with the surrounding soil could be related to the high sulfate content of the adjacent soils. Studies dating to 1966 have documented sulfate attack associated with specif...

  3. Sulfate cooling effects on climate through in-cloud oxidation of anthropogenic SO2

    International Nuclear Information System (INIS)

    Lelieveld, J.; Heintzenberg, J.

    1992-01-01

    Anthropogenic SO 2 emissions may exert a significant cooling effect on climate in the Northern Hemisphere through backscattering of solar radiation by sulfate particles. Earlier estimates of the sulfate climate forcing were based on a limited number of sulfate-scattering correlation measurements from which a high sulfate-scattering efficiency was derived. Model results suggest that cloud processing of air is the underlying mechanism. aqueous phase oxidation of SO 2 into sulfate and the subsequent release of the dry aerosol by cloud evaporation render sulfate a much more efficient scatterer than through gas-phase SO 2 oxidation

  4. Global source attribution of sulfate concentration and direct and indirect radiative forcing

    Science.gov (United States)

    Yang, Yang; Wang, Hailong; Smith, Steven J.; Easter, Richard; Ma, Po-Lun; Qian, Yun; Yu, Hongbin; Li, Can; Rasch, Philip J.

    2017-07-01

    The global source-receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010-2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggesting that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with -0.31 W m-2 contributed by anthropogenic sulfate and -0.11 W m-2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17-84 % to the total DRF. East Asia has the largest contribution of 20-30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of -0.44 W m-2. DMS has the largest contribution, explaining -0.23 W m-2 of the global sulfate incremental IRF. Incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.

  5. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.

    Science.gov (United States)

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-11-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration--a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder.

  6. Characterization of a chondroitin sulfate hydrogel for nerve root regeneration

    Science.gov (United States)

    Conovaloff, Aaron; Panitch, Alyssa

    2011-10-01

    Brachial plexus injury is a serious medical problem that affects many patients annually, with most cases involving damage to the nerve roots. Therefore, a chondroitin sulfate hydrogel was designed to both serve as a scaffold for regenerating root neurons and deliver neurotrophic signals. Capillary electrophoresis showed that chondroitin sulfate has a dissociation constant in the micromolar range with several common neurotrophins, and this was determined to be approximately tenfold stronger than with heparin. It was also revealed that nerve growth factor exhibits a slightly stronger affinity for hyaluronic acid than for chondroitin sulfate. However, E8 chick dorsal root ganglia cultured in the presence of nerve growth factor revealed that ganglia cultured in chondroitin sulfate scaffolds showed more robust growth than those cultured in control gels of hyaluronic acid. It is hypothesized that, despite the stronger affinity of nerve growth factor for hyaluronic acid, chondroitin sulfate serves as a better scaffold for neurite outgrowth, possibly due to inhibition of growth by hyaluronic acid chains.

  7. Improved biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using recombinant host cells. More particularly, the present invention pertains to recombinant host cells comprising (e.g., expressing) a polypeptide having aryl sulfotransferase...... activity, wherein said recombinant host cells have been modified to have an increased uptake of sulfate compared to identical host cells that does not carry said modification. Further provided are processes for the production of aryl sulfates, such as zosteric acid, employing such recombinant host cells....

  8. Alginate Sulfate-Nanocellulose Bioinks for Cartilage Bioprinting Applications.

    Science.gov (United States)

    Müller, Michael; Öztürk, Ece; Arlov, Øystein; Gatenholm, Paul; Zenobi-Wong, Marcy

    2017-01-01

    One of the challenges of bioprinting is to identify bioinks which support cell growth, tissue maturation, and ultimately the formation of functional grafts for use in regenerative medicine. The influence of this new biofabrication technology on biology of living cells, however, is still being evaluated. Recently we have identified a mitogenic hydrogel system based on alginate sulfate which potently supports chondrocyte phenotype, but is not printable due to its rheological properties (no yield point). To convert alginate sulfate to a printable bioink, it was combined with nanocellulose, which has been shown to possess very good printability. The alginate sulfate/nanocellulose ink showed good printing properties and the non-printed bioink material promoted cell spreading, proliferation, and collagen II synthesis by the encapsulated cells. When the bioink was printed, the biological performance of the cells was highly dependent on the nozzle geometry. Cell spreading properties were maintained with the lowest extrusion pressure and shear stress. However, extruding the alginate sulfate/nanocellulose bioink and chondrocytes significantly compromised cell proliferation, particularly when using small diameter nozzles and valves.

  9. Effect of PEG-PDLLA polymeric nanovesicles loaded with doxorubicin and hematoporphyrin monomethyl ether on human hepatocellular carcinoma HepG2 cells in vitro

    Directory of Open Access Journals (Sweden)

    Xiang GH

    2013-12-01

    Full Text Available Guang-Hua Xiang,1,2,* Guo-Bin Hong,2,3,* Yong Wang,2 Du Cheng,2 Jing-Xing Zhou,1 Xin-Tao Shuai21Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China; 2PCFM Laboratory of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China; 3Department of Radiology, Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, People's Republic of China*These two authors contributed equally to this workObjective: To evaluate the cytotoxicity of poly(ethylene glycol-block-poly(D,L-lactic acid (PEG-PDLLA nanovesicles loaded with doxorubicin (DOX and the photosensitizer hematoporphyrin monomethyl ether (HMME on human hepatocellular carcinoma HepG2 cells and to investigate potential apoptotic mechanisms.Methods: PEG-PDLLA nanovesicles were simultaneously loaded with DOX and HMME (PEG-PDLLA-DOX-HMME, and PEG-PDLLA nanovesicles were loaded with DOX (PEG-PDLLA-DOX, HMME (PEG-PDLLA-HMME, or the PEG-PDLLA nanovesicle alone as controls. The cytotoxicity of PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA against HepG2 cells was measured, and the cellular reactive oxygen species, percentage of cells with mitochondrial membrane potential depolarization, and apoptotic rate following treatment were determined.Results: Four nanovesicles (PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA were synthesized, and mean particle sizes were 175±18 nm, 154±3 nm, 196±2 nm, and 147±15 nm, respectively. PEG-PDLLA-DOX-HMME was more cytotoxic than PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA. PEG-PDLLA-HMME-treated cells had the highest mean fluorescence intensity, followed by PEG-PDLLA-DOX-HMME-treated cells, whereas PEG-PDLLA-DOX- and PEG-PDLLA-treated cells had a similar fluorescence intensity. Mitochondrial membrane potential depolarization was observed in 54.2%, 59.4%, 13.8%, and 14.8% of the cells treated with

  10. Sulfate-reducing bacteria in rice field soil and on rice roots.

    Science.gov (United States)

    Wind, T; Stubner, S; Conrad, R

    1999-05-01

    Rice plants that were grown in flooded rice soil microcosms were examined for their ability to exhibit sulfate reducing activity. Washed excised rice roots showed sulfate reduction potential when incubated in anaerobic medium indicating the presence of sulfate-reducing bacteria. Rice plants, that were incubated in a double-chamber (phylloshpere and rhizosphere separated), showed potential sulfate reduction rates in the anoxic rhizosphere compartment. These rates decreased when oxygen was allowed to penetrate through the aerenchyma system of the plants into the anoxic root compartment, indicating that sulfate reducers on the roots were partially inhibited by oxygen or that sulfate was regenerated by oxidation of reduced S-compounds. The potential activity of sulfate reducers on rice roots was consistent with MPN enumerations showing that H2-utilizing sulfate-reducing bacteria were present in high numbers on the rhizoplane (4.1 x 10(7) g-1 root fresh weight) and in the adjacent rhizosperic soil (2.5 x 10(7) g-1 soil dry weight). Acetate-oxidizing sulfate reducers, on the other hand, showed highest numbers in the unplanted bulk soil (1.9 x 10(6) g-1 soil dry weight). Two sulfate reducing bacteria were isolated from the highest dilutions of the MPN series and were characterized physiologically and phylogenetically. Strain F1-7b which was isolated from the rhizoplane with H2 as electron donor was related to subgroup II of the family Desulfovibrionaceae. Strain EZ-2C2, isolated from the rhizoplane on acetate, grouped together with Desulforhabdus sp. and Syntrophobacter wolinii. Other strains of sulfate-reducing bacteria originated from bulk soil of rice soil microcosms and were isolated using different electron donors. From these isolates, strains R-AcA1, R-IbutA1, R-PimA1 and R-AcetonA170 were Gram-positive bacteria which were affiliated with the genus Desulfotomaculum. The other isolates were members of subgroup II of the Desulfovibrionaceae (R-SucA1 and R-LacA1), were

  11. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  12. The heparin/heparan sulfate sequence that interacts with cyclophilin B contains a 3-O-sulfated N-unsubstituted glucosamine residue.

    Science.gov (United States)

    Vanpouille, Christophe; Deligny, Audrey; Delehedde, Maryse; Denys, Agnès; Melchior, Aurélie; Liénard, Xavier; Lyon, Malcolm; Mazurier, Joël; Fernig, David G; Allain, Fabrice

    2007-08-17

    Many of the biological functions of heparan sulfate (HS) proteoglycans can be attributed to specialized structures within HS moieties, which are thought to modulate binding and function of various effector proteins. Cyclophilin B (CyPB), which was initially identified as a cyclosporin A-binding protein, triggers migration and integrin-mediated adhesion of peripheral blood T lymphocytes by a mechanism dependent on interaction with cell surface HS. Here we determined the structural features of HS that are responsible for the specific binding of CyPB. In addition to the involvement of 2-O,6-O, and N-sulfate groups, we also demonstrated that binding of CyPB was dependent on the presence of N-unsubstituted glucosamine residues (GlcNH2), which have been reported to be precursors for sulfation by 3-O-sulfotransferases-3 (3-OST-3). Interestingly, 3-OST-3B isoform was found to be the main 3-OST isoenzyme expressed in peripheral blood T lymphocytes and Jurkat T cells. Moreover, down-regulation of the expression of 3-OST-3 by RNA interference potently reduced CyPB binding and consequent activation of p44/42 mitogen-activated protein kinases. Altogether, our results strongly support the hypothesis that 3-O-sulfation of GlcNH2 residues could be a key modification that provides specialized HS structures for CyPB binding to responsive cells. Given that 3-O-sulfation of GlcNH2-containing HS by 3-OST-3 also provides binding sites for glycoprotein gD of herpes simplex virus type I, these findings suggest an intriguing structural linkage between the HS sequences involved in CyPB binding and viral infection.

  13. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    International Nuclear Information System (INIS)

    Im, A-Rang; Kim, Jee Young; Kim, Yeong Shik; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie

    2013-01-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds. (paper)

  14. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    Science.gov (United States)

    Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

    2013-10-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

  15. Isotopic constraints on heterogeneous sulfate production in Beijing haze

    Directory of Open Access Journals (Sweden)

    P. He

    2018-04-01

    Full Text Available Discerning mechanisms of sulfate formation during fine-particle pollution (referred to as haze hereafter in Beijing is important for understanding the rapid evolution of haze and for developing cost-effective air pollution mitigation strategies. Here we present observations of the oxygen-17 excess of PM2.5 sulfate (Δ17O(SO42− collected in Beijing haze from October 2014 to January 2015 to constrain possible sulfate formation pathways. Throughout the sampling campaign, the 12-hourly averaged PM2.5 concentrations ranged from 16 to 323 µg m−3 with a mean of (141  ±  88 (1σ µg m−3, with SO42− representing 8–25 % of PM2.5 mass. The observed Δ17O(SO42− varied from 0.1 to 1.6 ‰ with a mean of (0.9  ±  0.3 ‰. Δ17O(SO42− increased with PM2.5 levels in October 2014 while the opposite trend was observed from November 2014 to January 2015. Our estimate suggested that in-cloud reactions dominated sulfate production on polluted days (PDs, PM2.5  ≥  75 µg m−3 of Case II in October 2014 due to the relatively high cloud liquid water content, with a fractional contribution of up to 68 %. During PDs of Cases I and III–V, heterogeneous sulfate production (Phet was estimated to contribute 41–54 % to total sulfate formation with a mean of (48  ±  5 %. For the specific mechanisms of heterogeneous oxidation of SO2, chemical reaction kinetics calculations suggested S(IV ( =  SO2 ⚫ H2O + HSO3−  +  SO32− oxidation by H2O2 in aerosol water accounted for 5–13 % of Phet. The relative importance of heterogeneous sulfate production by other mechanisms was constrained by our observed Δ17O(SO42−. Heterogeneous sulfate production via S(IV oxidation by O3 was estimated to contribute 21–22 % of Phet on average. Heterogeneous sulfate production pathways that result in zero-Δ17O(SO42−, such as S(IV oxidation by NO2 in aerosol water and/or by O2 via a

  16. Acid Sulfate Alteration in Gusev Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  17. Facile analysis of contents and compositions of the chondroitin sulfate/dermatan sulfate hybrid chain in shark and ray tissues.

    Science.gov (United States)

    Takeda, Naoko; Horai, Sawako; Tamura, Jun-ichi

    2016-04-07

    The chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chain was extracted from specific tissues of several kinds of sharks and rays. The contents and sulfation patterns of the CS/DS hybrid chain were precisely analyzed by digestion with chondroitinases ABC and AC. All samples predominantly contained the A- and C-units. Furthermore, all samples characteristically contained the D-unit. Species-specific differences were observed in the contents of the CS/DS hybrid chain, which were the highest in Mako and Blue sharks and Sharpspine skates, but were lower in Hammerhead sharks. Marked differences were observed in the ratio of the C-unit/A-unit between sharks and rays. The contents of the CS/DS hybrid chain and the ratio of the C-unit/A-unit may be related to an oxidative stress-decreasing ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  19. Thermodynamic and optical studies of some ethylene glycol ethers in aqueous solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Pandhurnekar, Chandrashekhar P.; Parwate, Dilip V.

    2009-01-01

    Experimental results of density (ρ), speed of sound (u), and refractive index (n D ) have been obtained for aqueous solutions of ethylene glycol monomethyl ether (EGMME), ethylene glycol monoethyl ether (EGMEE), diethylene glycol monomethyl ether (DEGMME), and diethylene glycol monoethyl ether (DEGMEE) over the entire concentration range at T = 298.15 K. From these measurements, the derived parameters, apparent molar volume of solute (φ V ), excess molar volume (V E ), isentropic compressibility of solution (β S ), apparent molar isentropic compressibility of solute (φ KS ), deviation in isentropic compressibility (Δβ S ), molar refraction [R] 1,2 and deviation in refractive index of solution (Δn D ) have been calculated. The Redlich-Kister equation has been fitted to the calculated values of V E , Δβ S and Δn D for the solution. The results obtained are interpreted in terms of hydrogen bonding and various interactions among solute and solvent molecules

  20. Hydrogen sulfide generation in simulated construction and demolition debris landfills: impact of waste composition.

    Science.gov (United States)

    Yang, Kenton; Xu, Qiyong; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel; Booth, Matthew

    2006-08-01

    Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were debris landfills are suggested.

  1. Determination of sulfate in thorium salts using gravimetric technique with previous thorium separation

    International Nuclear Information System (INIS)

    Silva, C.M. da; Pires, M.A.F.

    1994-01-01

    Available as short communication only. A simple analytical method to analyze sulfates in thorium salt, is presented. The method is based on the thorium separation as hydroxide. The gravimetric technique is used to analyze the sulfate in the filtered as barium sulfate. Using this method, the sulfate separation from thorium has been reach 99,9% yield, and 0,1% precision. This method is applied to thorium salts specifically thorium sulfate, carbonate and nitrate. (author). 5 refs, 2 tabs

  2. Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling

    Science.gov (United States)

    Treude, Tina; Krause, Stefan; Maltby, Johanna; Dale, Andrew W.; Coffin, Richard; Hamdan, Leila J.

    2014-11-01

    Two ∼6 m long sediment cores were collected along the ∼300 m isobath on the Alaskan Beaufort Sea continental margin. Both cores showed distinct sulfate-methane transition zones (SMTZ) at 105 and 120 cm below seafloor (cmbsf). Sulfate was not completely depleted below the SMTZ but remained between 30 and 500 μM. Sulfate reduction and anaerobic oxidation of methane (AOM) determined by radiotracer incubations were active throughout the methanogenic zone. Although a mass balance could not explain the source of sulfate below the SMTZ, geochemical profiles and correlation network analyses of biotic and abiotic data suggest a cryptic sulfur cycle involving iron, manganese and barite. Inhibition experiments with molybdate and 2-bromoethanesulfonate (BES) indicated decoupling of sulfate reduction and AOM and competition between sulfate reducers and methanogens for substrates. While correlation network analyses predicted coupling of AOM to iron reduction, the addition of manganese or iron did not stimulate AOM. Since none of the classical archaeal anaerobic methanotrophs (ANME) were abundant, the involvement of unknown or unconventional phylotypes in AOM is conceivable. The resistance of AOM activity to inhibitors implies deviation from conventional enzymatic pathways. This work suggests that the classical redox cascade of electron acceptor utilization based on Gibbs energy yields does not always hold in diffusion-dominated systems, and instead biotic processes may be more strongly coupled to mineralogy.

  3. Effects of magnesium sulfate on the foliar absorption of phosphates at the pumpkin; Effets du sulfate de magnesium sur l'absorption foliaire de phosphates chez le potiron

    Energy Technology Data Exchange (ETDEWEB)

    Chamel, A

    1962-07-01

    The foliar absorption of phosphates labelled with {sup 32}P and applied with or without magnesium sulfate on the first leaf of pumpkin seedlings have been studied. The magnesium sulfate applied with the phosphate reduces plainly the absorption rate of {sup 32}P. (O.M.) [French] Nous avons etudie l'absorption foliaire de phosphates marques au {sup 32}P appliques, avec et sans sulfate de magnesium, sur la premiere feuille de jeunes plants de potirons. Le sulfate de magnesium applique avec le phosphate diminue nettement le taux d'absorption du {sup 32}P. (auteur)

  4. Integrated approach for investigating the durability of self-consolidating concrete to sulfate attack

    Science.gov (United States)

    Bassuoni, Mohamed Tamer F.

    The growing use of self-consolidating concrete (SCC) in various infrastructure applications exposed to sulfate-rich environments necessitates conducting comprehensive research to evaluate its durability to external sulfate attack. Since the reliability and adequacy of standard sulfate immersion tests have been questioned, the current thesis introduced an integrated testing approach for assessing the durability of a wide scope of SCC mixtures to external sulfate attack. This testing approach involved progressive levels of complexity from single to multiple damage processes. A new series of sulfate attack tests involving multiple field-like parameters and combined damage mechanisms (various cations, controlled pH, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading) were designed to evaluate the performance (suitability) of the SCC mixtures under various sulfate attack exposure scenarios. The main mixture design variables of SCC included the type of binder (single, binary, ternary and quaternary), air-entrainment, sand-to-aggregate mass ratio and hybrid fibre reinforcement. The comprehensive database and knowledge obtained from this research were used to develop smart models (fuzzy and neuro-fuzzy inference systems) based on artificial-intelligence to evaluate and predict the performance of the SCC mixtures under various sulfate attack exposure regimes implemented in this study. In full immersion tests involving high concentration sodium and magnesium sulfate solutions with controlled pH, the low penetrability of SCC was responsible for the high durability of specimens. Ternary and quaternary cementitious systems with or without limestone materials provided a passivating layer, with or without acid neutralization capacity, which protected SCC from severe damage in the aggressive sulfuric acid and ammonium sulfate solutions. In contrast to conclusions drawn from the sodium sulfate immersion

  5. A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland

    Science.gov (United States)

    Pester, Michael; Bittner, Norbert; Deevong, Pinsurang; Wagner, Michael; Loy, Alexander

    2015-01-01

    Methane emission from peatlands contributes substantially to global warming but is significantly reduced by sulfate reduction, which is fuelled by globally increasing aerial sulfur pollution. However, the biology behind sulfate reduction in terrestrial ecosystems is not well understood and the key players for this process as well as their abundance remained unidentified. Comparative 16S rRNA gene stable isotope probing in the presence and absence of sulfate indicated that a Desulfosporosinus species, which constitutes only 0.006% of the total microbial community 16S rRNA genes, is an important sulfate reducer in a long-term experimental peatland field site. Parallel stable isotope probing using dsrAB [encoding subunit A and B of the dissimilatory (bi)sulfite reductase] identified no additional sulfate reducers under the conditions tested. For the identified Desulfosporosinus species a high cell-specific sulfate reduction rate of up to 341 fmol SO42− cell−1 day−1 was estimated. Thus, the small Desulfosporosinus population has the potential to reduce sulfate in situ at a rate of 4.0–36.8 nmol (g soil w. wt.)−1 day−1, sufficient to account for a considerable part of sulfate reduction in the peat soil. Modeling of sulfate diffusion to such highly active cells identified no limitation in sulfate supply even at bulk concentrations as low as 10 μM. Collectively, these data show that the identified Desulfosporosinus species, despite being a member of the ‘rare biosphere’, contributes to an important biogeochemical process that diverts the carbon flow in peatlands from methane to CO2 and, thus, alters their contribution to global warming. PMID:20535221

  6. Global source attribution of sulfate concentration and direct and indirect radiative forcing

    Directory of Open Access Journals (Sweden)

    Y. Yang

    2017-07-01

    Full Text Available The global source–receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF from 16 regions/sectors for years 2010–2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggesting that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is −0.42 W m−2, with −0.31 W m−2 contributed by anthropogenic sulfate and −0.11 W m−2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS contributes 17–84 % to the total DRF. East Asia has the largest contribution of 20–30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of −0.44 W m−2. DMS has the largest contribution, explaining −0.23 W m−2 of the global sulfate incremental IRF. Incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.

  7. Sulfated zirconia modified SBA-15 catalysts for cellobiose hydrolysis

    NARCIS (Netherlands)

    Degirmenci, V.; Uner, D.; Cinlar, B.; Shanks, B.H.; Yilmaz, A.; Santen, van R.A.; Hensen, E.J.M.

    2011-01-01

    Zirconia modified SBA-15 becomes a very active catalyst for the selective hydrolysis of cellobiose to glucose after sulfation. Spectroscopic investigations indicate the presence of Brønsted acid sites with similar properties to those present in conventional sulfated zirconia. Indications are found

  8. Thermoreversible gel formulation containing sodium lauryl sulfate as a potential contraceptive device.

    Science.gov (United States)

    Haineault, Caroline; Gourde, Pierrette; Perron, Sylvie; Désormeaux, André; Piret, Jocelyne; Omar, Rabeea F; Tremblay, Roland R; Bergeron, Michel G

    2003-08-01

    The contraceptive properties of a gel formulation containing sodium lauryl sulfate were investigated in both in vitro and in vivo models. Results showed that sodium lauryl sulfate inhibited, in a concentration-dependent manner, the activity of sheep testicular hyaluronidase. Sodium lauryl sulfate also completely inhibited human sperm motility as evaluated by the 30-sec Sander-Cramer test. The acid-buffering capacity of gel formulations containing sodium lauryl sulfate increased with the molarity of the citrate buffers used for their preparations. Furthermore, experiments in which semen was mixed with undiluted gel formulations in different proportions confirmed their physiologically relevant buffering capacity. Intravaginal application of the gel formulation containing sodium lauryl sulfate to rabbits before their artificial insemination with freshly ejaculated semen completely prevented egg fertilization. The gel formulation containing sodium lauryl sulfate was fully compatible with nonlubricated latex condoms. Taken together, these results suggest that the gel formulation containing sodium lauryl sulfate could represent a potential candidate for use as a topical vaginal spermicidal formulation to provide fertility control in women.

  9. Quantification and isotopic analysis of intracellular sulfur metabolites in the dissimilatory sulfate reduction pathway

    Science.gov (United States)

    Sim, Min Sub; Paris, Guillaume; Adkins, Jess F.; Orphan, Victoria J.; Sessions, Alex L.

    2017-06-01

    Microbial sulfate reduction exhibits a normal isotope effect, leaving unreacted sulfate enriched in 34S and producing sulfide that is depleted in 34S. However, the magnitude of sulfur isotope fractionation is quite variable. The resulting changes in sulfur isotope abundance have been used to trace microbial sulfate reduction in modern and ancient ecosystems, but the intracellular mechanism(s) underlying the wide range of fractionations remains unclear. Here we report the concentrations and isotopic ratios of sulfur metabolites in the dissimilatory sulfate reduction pathway of Desulfovibrio alaskensis. Intracellular sulfate and APS levels change depending on the growth phase, peaking at the end of exponential phase, while sulfite accumulates in the cell during stationary phase. During exponential growth, intracellular sulfate and APS are strongly enriched in 34S. The fractionation between internal and external sulfate is up to 49‰, while at the same time that between external sulfate and sulfide is just a few permil. We interpret this pattern to indicate that enzymatic fractionations remain large but the net fractionation between sulfate and sulfide is muted by the closed-system limitation of intracellular sulfate. This 'reservoir effect' diminishes upon cessation of exponential phase growth, allowing the expression of larger net sulfur isotope fractionations. Thus, the relative rates of sulfate exchange across the membrane versus intracellular sulfate reduction should govern the overall (net) fractionation that is expressed. A strong reservoir effect due to vigorous sulfate reduction might be responsible for the well-established inverse correlation between sulfur isotope fractionation and the cell-specific rate of sulfate reduction, while at the same time intraspecies differences in sulfate uptake and/or exchange rates could account for the significant scatter in this relationship. Our approach, together with ongoing investigations of the kinetic isotope

  10. Solubility of gases in 1-alkyl-3methylimidazolium alkyl sulfate ionic liquids: Experimental determination and modeling

    International Nuclear Information System (INIS)

    Bermejo, María Dolores; Fieback, Tobias M.; Martín, Ángel

    2013-01-01

    Highlights: ► The solubility of CO 2 , CH 4 and C 2 H 6 in [emim][EtSO 4 ] is measured with a magnetic suspension balance. ► New data and literature results have been modeled with a Group Contribution equation of state. ► A specific group definition is required to model data of ionic liquids with a [MeSO 4 ] anion. ► Deviations between model and experiments are lower than 10% in most cases. ► Deviations of 34% are observed in the case of the solubility of ethane in the ionic liquid. -- Abstract: The solubility of different gases (carbon dioxide, methane, ethane, carbon monoxide and hydrogen) in ionic liquids with an alkyl sulfate anion has been modeled with the Group Contribution equation of state developed by Skjold-Jørgensen. New gas solubility measurements have been carried out with a high pressure magnetic suspension balance in order to cover pressure and temperature ranges not considered in previous studies and to obtain more experimental information for the correlation of parameters of the equation of state. New solubility measurements include the solubility of carbon dioxide in 1-ethyl 3-methyl imidazolium ethyl sulfate [emim][EtSO 4 ] at temperatures of 298 K and 348 K and pressures ranging from 0.3 MPa to 6.5 MPa, the solubility of methane in [emim][EtSO 4 ] at a temperature of 293 K and pressures ranging from 0.2 MPa to 10.2 MPa, and the solubility of ethane in [emim][EtSO 4 ] at temperatures of 323 K and 350 K and pressures ranging from 0.2 MPa to 4 MPa. Results show that the Group Contribution equation of state can be used to describe the solubility of gases in alkyl sulfate ionic liquids as well as infinite dilution coefficients of alkanes in the ionic liquids, with average deviations between experiments and calculations ranging from 1% to 10% in the case of mixtures with CO 2 , CO, CH 4 and H 2 with the alkyl sulfate ionic liquids to up to 34% in the case of the solubility of ethane in [emim][EtSO 4

  11. Barium sulfate suspension as a negative oral contrast agent for MR imaging

    International Nuclear Information System (INIS)

    Li, K.C.P.; Tart, R.P.; Fitzsimmons, J.R.; Storm, B.; Mao, J.

    1989-01-01

    Proton spectroscopy with linewidth measurements and MR imaging were performed on various commercially available barium sulfate suspensions as well as inorganic sulfates and barium salts. Approximately 500 mL of 20%, 40%, 60%, and 70% wt/wt single-contrast oral barium sulfate suspensions were administered to four normal volunteers, and MR imaging was performed with both a 1.5-T and a 0.15-T MR imager. As much as 80% of the small bowel and the entire colon were well visualized with the 60% or 70% wt/wt single-contrast barium sulfate suspensions. The authors conclude that barium sulfate suspensions are useful as oral MR contrast agents

  12. Bacterial PerO Permeases Transport Sulfate and Related Oxyanions.

    Science.gov (United States)

    Hoffmann, Marie-Christine; Pfänder, Yvonne; Tintel, Marc; Masepohl, Bernd

    2017-07-15

    Rhodobacter capsulatus synthesizes the high-affinity ABC transporters CysTWA and ModABC to specifically import the chemically related oxyanions sulfate and molybdate, respectively. In addition, R. capsulatus has the low-affinity permease PerO acting as a general oxyanion transporter, whose elimination increases tolerance to molybdate and tungstate. Although PerO-like permeases are widespread in bacteria, their function has not been examined in any other species to date. Here, we present evidence that PerO permeases from the alphaproteobacteria Agrobacterium tumefaciens , Dinoroseobacter shibae , Rhodobacter sphaeroides , and Sinorhizobium meliloti and the gammaproteobacterium Pseudomonas stutzeri functionally substitute for R. capsulatus PerO in sulfate uptake and sulfate-dependent growth, as shown by assimilation of radioactively labeled sulfate and heterologous complementation. Disruption of perO genes in A. tumefaciens , R. sphaeroides , and S. meliloti increased tolerance to tungstate and, in the case of R. sphaeroides , to molybdate, suggesting that heterometal oxyanions are common substrates of PerO permeases. This study supports the view that bacterial PerO permeases typically transport sulfate and related oxyanions and, hence, form a functionally conserved permease family. IMPORTANCE Despite the widespread distribution of PerO-like permeases in bacteria, our knowledge about PerO function until now was limited to one species, Rhodobacter capsulatus In this study, we showed that PerO proteins from diverse bacteria are functionally similar to the R. capsulatus prototype, suggesting that PerO permeases form a conserved family whose members transport sulfate and related oxyanions. Copyright © 2017 American Society for Microbiology.

  13. Degradation of sulfated polysaccharide extracted from algal Laminaria japonica and its modulation on calcium oxalate crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang Jianming, E-mail: toyjm@jnu.edu.cn [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Wang Miao; Lu Peng; Tan Jin [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China)

    2010-08-30

    Sulfated polysaccharide (LPS) extracted from alga Laminaria japonica was degraded by hydrogen peroxide (H{sub 2}O{sub 2}). The average molecular weight of LPS was apparently decreased from 172,000 to 9550 after degradation, while the proportion of sulfate groups (-OSO{sub 3}{sup -}) and carboxylic groups (-COO{sup -}) in the molecular chains of LPS were slightly decreased from 4.5% and 5.20% to 3.9% and 4.64%, respectively. The effects of degraded and natural LPS on formation of calcium oxalate (CaOxa) crystals were investigated in vitro using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), zeta-potential, and atomic absorption spectroscopy. LPS could increase the concentration of soluble Ca{sup 2+} ions in the solution, decrease the weight of precipitated CaOxa, and increase the negative value of zeta-potential of CaOxa crystals. LPS also inhibits the formation of thermodynamically stable calcium oxalate monohydrate (COM) crystals, while inducing and stabilizing metastable calcium oxalate dihydrate (COD) crystals. These results suggested that both degraded and natural LPS could decrease CaOxa crystallization, but the inhibition efficiency of the degraded LPS was clearly superior to that of the natural LPS. We expected this investigation would provide encouragement for further exploration into new drugs for the prevention and treatment of urolithiasis.

  14. Cloud albedo changes in response to anthropogenic sulfate and non-sulfate aerosol forcings in CMIP5 models

    Directory of Open Access Journals (Sweden)

    L. Frey

    2017-07-01

    Full Text Available The effects of different aerosol types on cloud albedo are analysed using the linear relation between total albedo and cloud fraction found on a monthly mean scale in regions of subtropical marine stratocumulus clouds and the influence of simulated aerosol variations on this relation. Model experiments from the Coupled Model Intercomparison Project phase 5 (CMIP5 are used to separately study the responses to increases in sulfate, non-sulfate and all anthropogenic aerosols. A cloud brightening on the month-to-month scale due to variability in the background aerosol is found to dominate even in the cases where anthropogenic aerosols are added. The aerosol composition is of importance for this cloud brightening, that is thereby region dependent. There is indication that absorbing aerosols to some extent counteract the cloud brightening but scene darkening with increasing aerosol burden is generally not supported, even in regions where absorbing aerosols dominate. Month-to-month cloud albedo variability also confirms the importance of liquid water content for cloud albedo. Regional, monthly mean cloud albedo is found to increase with the addition of anthropogenic aerosols and more so with sulfate than non-sulfate. Changes in cloud albedo between experiments are related to changes in cloud water content as well as droplet size distribution changes, so that models with large increases in liquid water path and/or cloud droplet number show large cloud albedo increases with increasing aerosol. However, no clear relation between model sensitivities to aerosol variations on the month-to-month scale and changes in cloud albedo due to changed aerosol burden is found.

  15. Observations of linear dependence between sulfate and nitrate in atmospheric particles

    Science.gov (United States)

    Kong, Lingdong; Yang, Yiwei; Zhang, Shuanqin; Zhao, Xi; Du, Huanhuan; Fu, Hongbo; Zhang, Shicheng; Cheng, Tiantao; Yang, Xin; Chen, Jianmin; Wu, Dui; Shen, Jiandong; Hong, Shengmao; Jiao, Li

    2014-01-01

    Hourly measurements of water-soluble inorganic ionic species in ambient atmospheric particles were conducted at Shanghai, Hangzhou, and Guangzhou sampling sites in China during the period of 2009-2011. The relation between sulfate and nitrate in particulate matter (PM10 and PM2.5) was examined based on these measurements. Results showed that the mass fraction of sulfate was strongly negatively correlated with that of nitrate in atmospheric particles on most of the sampling days, especially when sulfate and nitrate made up the vast majority of the total soluble anions and cations (Na+, K+, Ca2+, and Mg2+) made a small contribution to the total water-soluble ions, revealing that the formation mechanisms of sulfate and nitrate in the atmosphere are highly correlated, and there exists a significant negative correlation trend between sulfate and nitrate mass fractions in the atmospheric particles. We found that local meteorological conditions presented opposite influences on the mass fractions of sulfate and nitrate. Further analysis indicated that the two mass fractions were modulated by the neutralizing level of atmospheric aerosols, and the negative correlation could be found in acidic atmospheric particles. Strong negative correlation was usually observed on clear days, hazy days, foggy days, and respirable particulate air pollution days, whereas poor negative correlation was often observed during cloud, rain, snow, dust storm, and suspended dust events. The results can help to better understand the formation mechanisms of atmospheric sulfate and nitrate during air pollution episodes and to better explain field results of atmospheric chemistry concerning sulfate and nitrate.

  16. Chondroitin sulfates do not impede axonal regeneration in goldfish spinal cord.

    Science.gov (United States)

    Takeda, Akihito; Okada, Soichiro; Funakoshi, Kengo

    2017-10-15

    Chondroitin sulfate proteoglycans produced in glial scar tissue are a major inhibitory factor for axonal regeneration after central nervous system injury in mammals. The inhibition is largely due to chondroitin sulfates, whose effects differ according to the sulfation pattern. In contrast to mammals, fish nerves spontaneously regenerate beyond the scar tissue after spinal cord injury, although the mechanisms that allow for axons to pass through the scar are unclear. Here, we used immunohistochemistry to examine the expression of two chondroitin sulfates with different sulfation variants at the lesion site in goldfish spinal cord. The intact spinal cord was immunoreactive for both chondroitin sulfate-A (CS-A) and chondroitin sulfate-C (CS-C), and CS-A immunoreactivity overlapped extensively with glial processes positive for glial fibrillary acidic protein. At 1week after inducing the spinal lesion, CS-A immunoreactivity was observed in the cell bodies and extracellular matrix, as well as in glial processes surrounding the lesion center. At 2weeks after the spinal lesion, regenerating axons entering the lesion center overtook the CS-A abundant area. In contrast, at 1week after lesion induction, CS-C immunoreactivity was significantly decreased, and at 2weeks after lesion induction, CS-C immunoreactivity was observed along the regenerating axons entering the lesion center. The present findings suggest that after spinal cord injury in goldfish, chondroitin sulfate proteoglycans are deposited in the extracellular matrix at the lesion site but do not form an impenetrable barrier to the growth of regenerating axons. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast

    International Nuclear Information System (INIS)

    Yang, Hanna; Kwon, Chang Seob; Choi, Yoonjung; Lee, Daeyoup

    2016-01-01

    Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5′ promoter and 3′ termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNA production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast.

  18. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hanna [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Kwon, Chang Seob [Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 614-822 (Korea, Republic of); Choi, Yoonjung, E-mail: jjungii@kaist.ac.kr [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Daeyoup, E-mail: daeyoup@kaist.ac.kr [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2016-08-05

    Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5′ promoter and 3′ termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNA production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast.

  19. Immunological characterization of a basement membrane-specific chondroitin sulfate proteoglycan

    DEFF Research Database (Denmark)

    McCarthy, K J; Accavitti, M A; Couchman, J R

    1989-01-01

    with the proteoglycan preparation and four mAbs recognizing the core protein of a high-density, buoyant chondroitin sulfate proteoglycan were raised. Confirmation of antibody specificity was carried out by the preparation of affinity columns made from each of the mAbs. Chondroitin sulfate proteoglycans (CSPGs) were...... (Mr = 5-6 x 10(5)), with a core protein of Mr = approximately 1.5-1.6 x 10(5) and composed exclusively of chondroitin sulfate chains with an average Mr = 1.6-1.8 x 10(4). In addition, a CSPG was purified from adult rat kidney, whose core protein was also Mr = 1.6 x 10(5). The proteoglycan and its core...... sulfate proteoglycans, it therefore appears that at least one CSPG is a widespread basement membrane component....

  20. Sequencing of chondroitin sulfate oligosaccharides using a novel exolyase from a marine bacterium that degrades hyaluronan and chondroitin sulfate/dermatan sulfate.

    Science.gov (United States)

    Wang, Wenshuang; Cai, Xiaojuan; Han, Naihan; Han, Wenjun; Sugahara, Kazuyuki; Li, Fuchuan

    2017-11-09

    Glycosaminoglycans (GAGs) are a family of chemically heterogeneous polysaccharides that play important roles in physiological and pathological processes. Owing to the structural complexity of GAGs, their sophisticated chemical structures and biological functions have not been extensively studied. Lyases that cleave GAGs are important tools for structural analysis. Although various GAG lyases have been identified, exolytic lyases with unique enzymatic property are urgently needed for GAG sequencing. In the present study, a putative exolytic GAG lyase from a marine bacterium was recombinantly expressed and characterized in detail. Since it showed exolytic lyase activity toward hyaluronan (HA), chondroitin sulfate (CS), and dermatan sulfate (DS), it was designated as HCDLase. This novel exolyase exhibited the highest activity in Tris-HCl buffer (pH 7.0) at 30°C. Especially, it showed a specific activity that released 2-aminobenzamide (2-AB)-labeled disaccharides from the reducing end of 2-AB-labeled CS oligosaccharides, which suggest that HCDLase is not only a novel exolytic lyase that can split disaccharide residues from the reducing termini of sugar chains but also a useful tool for the sequencing of CS chains. Notably, HCDLase could not digest 2-AB-labeled oligosaccharides from HA, DS, or unsulfated chondroitin, which indicated that sulfates and bond types affect the catalytic activity of HCDLase. Finally, this enzyme combined with CSase ABC was successfully applied for the sequencing of several CS hexa- and octasaccharides with complex structures. The identification of HCDLase provides a useful tool for CS-related research and applications. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  1. Is Encephalopathy a Mechanism to Renew Sulfate in Autism?

    Directory of Open Access Journals (Sweden)

    Laurie Lentz-Marino

    2013-01-01

    Full Text Available This paper makes two claims: (1 autism can be characterized as a chronic low-grade encephalopathy, associated with excess exposure to nitric oxide, ammonia and glutamate in the central nervous system, which leads to hippocampal pathologies and resulting cognitive impairment, and (2, encephalitis is provoked by a systemic deficiency in sulfate, but associated seizures and fever support sulfate restoration. We argue that impaired synthesis of cholesterol sulfate in the skin and red blood cells, catalyzed by sunlight and nitric oxide synthase enzymes, creates a state of colloidal instability in the blood manifested as a low zeta potential and increased interfacial stress. Encephalitis, while life-threatening, can result in partial renewal of sulfate supply, promoting neuronal survival. Research is cited showing how taurine may not only help protect neurons from hypochlorite exposure, but also provide a source for sulfate renewal. Several environmental factors can synergistically promote the encephalopathy of autism, including the herbicide, glyphosate, aluminum, mercury, lead, nutritional deficiencies in thiamine and zinc, and yeast overgrowth due to excess dietary sugar. Given these facts, dietary and lifestyle changes, including increased sulfur ingestion, organic whole foods, increased sun exposure, and avoidance of toxins such as aluminum, mercury, and lead, may help to alleviate symptoms or, in some instances, to prevent autism altogether.

  2. Synthesis, structure and topological analysis of glycine templated highly stable cadmium sulfate framework: A New Lewis Acid catalyst

    Science.gov (United States)

    Paul, Avijit Kumar

    2018-04-01

    One new open-framework two-dimensional layer, [Cd(NH3CH2COO)(SO4)], I, has been synthesized using amino acid as templating agent. Single crystal structural analysis shows that the compound crystallizes in monoclinic cell with non-centrosymmetric space group P21, a = 4.9513(1) Å, b = 7.9763(2) Å, c = 8.0967(2) Å, β = 105.917(1)° and V = 307.504(12) Å3. The compound has connectivity between the Cd-centers and the sulfate units forming a two-dimensional layer structure. Sulfate unit is coordinated to metal center with η3, μ4 mode possessing a coordination free oxygen atom. The zwitterionic form of glycine molecule is present in the structure bridging with two metal centers through μ2-mode by carboxylate oxygens. The topological analysis reveals that the two-dimensional network is formed with a novel 4- and 6-connected binodal net of (32,42,52)(34,44,54,63) topology. Although one end of the glycine molecule is free from coordination, the structure is highly stable up to 350 °C. Strong N-H⋯ O hydrogen bonding interactions play an important role in the stabilization and formation of three-dimensional supramolecular structure. The cyanosilylation of imines using the present compounds as heterogeneous catalyst indicates good catalytic behavior. The present study illustrates the usefulness of the amino acid for the structure building in less studied sulfate based framework materials as well as designing of new heterogeneous catalysts for the broad application. The compound has also been characterized through elemental analysis, PXRD, IR, SEM and TG-DT studies.

  3. Heparan sulfate regulates fibrillin-1 N- and C-terminal interactions

    DEFF Research Database (Denmark)

    Cain, Stuart A; Baldwin, Andrew K; Mahalingam, Yashithra

    2008-01-01

    Fibrillin-1 N- and C-terminal heparin binding sites have been characterized. An unprocessed monomeric N-terminal fragment (PF1) induced a very high heparin binding response, indicating heparin-mediated multimerization. Using PF1 deletion and short fragments, a heparin binding site was localized w......-terminal interactions with heparin/heparan sulfate directly influence cell behavior, whereas C-terminal interactions with heparin/heparan sulfate regulate elastin deposition. These data highlight how heparin/heparan sulfate controls fibrillin-1 interactions....

  4. Mechanisms and Effectivity of Sulfate Reducing Bioreactors ...

    Science.gov (United States)

    Mining-influenced water (MIW) is the main environmental challenges associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of which is the substrate composition. Chitinous materials have demonstrated high metal removal rates, particularly for the two recalcitrant MIW contaminants Zn and Mn, but their removal mechanisms need further study. We studied Cd, Fe, Zn, and Mn removal in bioactive and abiotic SRBRs to elucidate the metal removal mechanisms and the differences in metal and sulfate removal rates using a chitinous material as substrate. We found that sulfate-reducing bacteria are effective in increasing metal and sulfate removal rates and duration of operation in SRBRs, and that the main mechanism involved was metal precipitation as sulfides. The solid residues provided evidence of the presence of sulfides in the bioactive column, more specifically ZnS, according to XPS analysis. The feasibility of passive treatments with a chitinous substrate could be an important option for MIW remediation. Mining influenced water (MIW) remediation is still one of the top priorities for the agency because it addresses the most important environmental problem associated with the mining industry and that affects thousands of communities in the U.S. and worldwide. In this paper, the MIW bioremediation mechanisms are studied

  5. Biological sulfate removal from construction and demolition debris leachate: effect of bioreactor configuration.

    Science.gov (United States)

    Kijjanapanich, Pimluck; Do, Anh Tien; Annachhatre, Ajit P; Esposito, Giovanni; Yeh, Daniel H; Lens, Piet N L

    2014-03-30

    Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75-85% was achieved at a hydraulic retention time (HRT) of 15.5h. A high calcium concentration up to 1,000 mg L(-1) did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Sulfated modification and anticoagulant activity of pumpkin (Cucurbita pepo, Lady Godiva) polysaccharide.

    Science.gov (United States)

    Liang, Li; Ao, Le; Ma, Tao; Ni, Yuanying; Liao, Xiaojun; Hu, Xiaosong; Song, Yi

    2018-01-01

    Sulfated modification of pumpkin polysaccharide using CAS with pyridines as catalysts under different conditions was conducted to obtain different degrees of sulfation on a laboratory scale. Anticoagulant activities of pumpkin polysaccharide and its sulfated derivatives were also investigated employing various established in vitro systems. Results showed that addition of high ratio of CAS/pyridine under constant conditions could increase the degree of substitution. Sulfate substitution was further confirmed by the FT-IR and 13 C NMR analysis. The d f values between 2.11-2.73 indicated the relatively expanded conformation of the sulfated derivatives. The sulfated polysaccharides showed higher anticoagulant activities through activated partial thrombosis time (aPTT), thrombin time (TT), prothrombin time (PT) and anti-Xa activity assay, which revealed that better anticoagulant activities could be obtained when DS remained higher and M w maintained in a moderate range. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Ferroelectric Polarization Switching Dynamics and Domain Growth of Triglycine Sulfate and Imidazolium Perchlorate

    KAUST Repository

    Ma, He

    2016-04-10

    The weak bond energy and large anisotropic domain wall energy induce many special characteristics of the domain nucleation, growth, and polarization switch in triglycine sulfate (TGS) and imidazolium perchlorate (IM), two typical molecular ferroelectrics. Their domain nucleation and polarization switch are rather slower than those of conventional oxide ferroelectrics, which may be due to the weaker bond energy of hydrogen bond or van der Waals bond than that of ionic bond. These chemical bonds dominate the elastic energy, with the latter being an important component of domain wall energy and playing an important role in domain nucleation and domain growth. The ratio of anisotropic domain wall energy to Gibbs free energy is large in TGS and IM, which allows a favorable domain shape and a special domain evolution under a certain electric field. Therefore, this study not only sheds light on the physical nature but also indicates the application direction for molecular ferroelectrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  8. Glycerin Borax Treatment of Exfoliative Cheilitis Induced by Sodium Lauryl Sulfate: a Case Report.

    Science.gov (United States)

    Thongprasom, Kobkan

    2016-06-01

    This paper reports on the results of a case study of a 19-year-old female who presented to the Oral Medicine clinic with a chief complaint of scaly and peeling lips. The lesions had persisted on her lips for more than 7 years and were refractory to previous treatment. Her physician's diagnosis was contact dermatitis. We diagnosed this patient as having exfoliative cheilitis (EC). A patch test using the toothpaste containing sodium lauryl sulfate (SLS) was positive and the patient discontinued using it. Instead, she started using a toothpaste not containing SLS. One year after treating her lesions with hydrogen peroxide mouthwash 1% and glycerin borax, a gradual improvement was observed until returning to normal. Glycerin borax was safe, low cost and simple to use in treatment of refractory exfoliative cheilitis. SLS may have been a precipitating factor in EC in this case.

  9. Glycerin Borax Treatment of Exfoliative Cheilitis Induced by Sodium Lauryl Sulfate: a Case Report

    Directory of Open Access Journals (Sweden)

    Kobkan Thongprasom

    2016-01-01

    Full Text Available This paper reports on the results of a case study of a 19-year-old female who presented to the Oral Medicine clinic with a chief complaint of scaly and peeling lips. The lesions had persisted on her lips for more than 7 years and were refractory to previous treatment. Her physician’s diagnosis was contact dermatitis. We diagnosed this patient as having exfoliative cheilitis (EC. A patch test using the toothpaste containing sodium lauryl sulfate (SLS was positive and the patient discontinued using it. Instead, she started using a toothpaste not containing SLS. One year after treating her lesions with hydrogen peroxide mouthwash 1% and glycerin borax, a gradual improvement was observed until returning to normal. Glycerin borax was safe, low cost and simple to use in treatment of refractory exfoliative cheilitis. SLS may have been a precipitating factor in EC in this case.

  10. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea RID A-8182-2008

    DEFF Research Database (Denmark)

    Leloup, Julie; Loy, Alexander; Knab, Nina J.

    2007-01-01

    branching sequences which might represent Gram-positive spore-forming sulfate- and/or sulfite-reducing microorganisms. We thus hypothesize that terminal carbon mineralization in surface sediments of the Black Sea is largely due to the sulfate reduction activity of previously hidden SRM. Although these novel...

  11. Transmission spectra study of sulfate substituted potassium dihydrogen phosphate

    KAUST Repository

    LI, LIANG

    2013-04-18

    Potassium dihydrogen phosphate (KDP) crystals with different amounts of sulfate concentration were grown and the transmittance spectrum was studied. A crystal with high sulfate replacement density exhibits heavy absorption property in the ultraviolet region which confirms and agrees well with former results. © 2013 Astro Ltd.

  12. Microbial methanogenesis in the sulfate-reducing zone of sediments in the Eckernförde Bay, SW Baltic Sea

    Directory of Open Access Journals (Sweden)

    J. Maltby

    2018-01-01

    Full Text Available Benthic microbial methanogenesis is a known source of methane in marine systems. In most sediments, the majority of methanogenesis is located below the sulfate-reducing zone, as sulfate reducers outcompete methanogens for the major substrates hydrogen and acetate. The coexistence of methanogenesis and sulfate reduction has been shown before and is possible through the usage of noncompetitive substrates by methanogens such as methanol or methylated amines. However, knowledge about the magnitude, seasonality, and environmental controls of this noncompetitive methane production is sparse. In the present study, the presence of methanogenesis within the sulfate reduction zone (SRZ methanogenesis was investigated in sediments (0–30 cm below seafloor, cm b.s.f. of the seasonally hypoxic Eckernförde Bay in the southwestern Baltic Sea. Water column parameters such as oxygen, temperature, and salinity together with porewater geochemistry and benthic methanogenesis rates were determined in the sampling area Boknis Eck quarterly from March 2013 to September 2014 to investigate the effect of seasonal environmental changes on the rate and distribution of SRZ methanogenesis, to estimate its potential contribution to benthic methane emissions, and to identify the potential methanogenic groups responsible for SRZ methanogenesis. The metabolic pathway of methanogenesis in the presence or absence of sulfate reducers, which after the addition of a noncompetitive substrate was studied in four experimental setups: (1 unaltered sediment batch incubations (net methanogenesis, (2 14C-bicarbonate labeling experiments (hydrogenotrophic methanogenesis, (3 manipulated experiments with the addition of either molybdate (sulfate reducer inhibitor, 2-bromoethanesulfonate (methanogen inhibitor, or methanol (noncompetitive substrate, potential methanogenesis, and (4 the addition of 13C-labeled methanol (potential methylotrophic methanogenesis. After incubation with

  13. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  14. Artemin Crystal Structure Reveals Insights into Heparan Sulfate Binding

    Energy Technology Data Exchange (ETDEWEB)

    Silvian,L.; Jin, P.; Carmillo, P.; Boriack-Sjodin, P.; Pelletier, C.; Rushe, M.; Gong, B.; Sah, D.; Pepinsky, B.; Rossomando, A.

    2006-01-01

    Artemin (ART) promotes the growth of developing peripheral neurons by signaling through a multicomponent receptor complex comprised of a transmembrane tyrosine kinase receptor (cRET) and a specific glycosylphosphatidylinositol-linked co-receptor (GFR{alpha}3). Glial cell line-derived neurotrophic factor (GDNF) signals through a similar ternary complex but requires heparan sulfate proteoglycans (HSPGs) for full activity. HSPG has not been demonstrated as a requirement for ART signaling. We crystallized ART in the presence of sulfate and solved its structure by isomorphous replacement. The structure reveals ordered sulfate anions bound to arginine residues in the pre-helix and amino-terminal regions that were organized in a triad arrangement characteristic of heparan sulfate. Three residues in the pre-helix were singly or triply substituted with glutamic acid, and the resulting proteins were shown to have reduced heparin-binding affinity that is partly reflected in their ability to activate cRET. This study suggests that ART binds HSPGs and identifies residues that may be involved in HSPG binding.

  15. The effect of divalent salt in chondroitin sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aranghel, D., E-mail: daranghe@nipne.ro [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Extreme Light Intrastructure Nuclear Physics (ELI-NP), Reactorului 30,RO-077125, POB-MG6, Magurele-Bucharest (Romania); Badita, C. R. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); University of Bucharest, Faculty of Physics, Atomiştilor 405, CP MG - 11, RO – 077125, Bucharest-Magurele (Romania); Radulescu, A. [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science, 85747 Garching (Germany); Moldovan, L.; Craciunescu, O. [National Institute R& D for Biological Sciences, Splaiul Independenţei 296, sector 6, cod 060031, C.P. 17-16, Bucharest (Romania); Balasoiu, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation)

    2016-03-25

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca{sup 2+} cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca{sup 2+} by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl{sub 2}) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  16. The effect of divalent salt in chondroitin sulfate solutions

    Science.gov (United States)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-03-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca2+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca2+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  17. The effect of divalent salt in chondroitin sulfate solutions

    International Nuclear Information System (INIS)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-01-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca"2"+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca"2"+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl_2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  18. Acidity characterization of a titanium and sulfate modified vermiculite

    International Nuclear Information System (INIS)

    Hernandez, W.Y.; Centeno, M.A.; Odriozola, J.A.; Moreno, S.; Molina, R.

    2008-01-01

    A natural vermiculite has been modified with titanium and sulfated by the intercalation and impregnation method in order to optimize the acidity of the clay mineral, and characterization of samples were analyzed by X-ray fluorescence (XRF), X-ray diffraction (XRD), nitrogen adsorption isotherms, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature programmed desorption with ammonia (TPD-NH 3 ). All the modified solids have a significantly higher number of acidic sites with respect to the parent material and in all of these, Broensted as well as Lewis acidity are identified. The presence of sulfate appears not to increase the number of acidic centers in the modified clay. For the materials sulfated with the intercalation method, it is observed that the strength of the acidic sites found in the material increases with the nominal sulfate/metal ratio. Nevertheless, when elevated quantities of sulfur are deposited, diffusion problems in the heptane reaction appear

  19. Structural elucidation of fucosylated chondroitin sulfates from sea cucumber using FTICR-MS/MS.

    Science.gov (United States)

    Agyekum, Isaac; Pepi, Lauren; Yu, Yanlei; Li, Junhui; Yan, Lufeng; Linhardt, Robert J; Chen, Shiguo; Amster, I Jonathan

    2018-02-01

    Fucosylated chondroitin sulfates are complex polysaccharides extracted from sea cucumber. They have been extensively studied for their anticoagulant properties and have been implicated in other biological activities. While nuclear magnetic resonance spectroscopy has been used to extensively characterize fucosylated chondroitin sulfate oligomers, we herein report the first detailed mass characterization of fucosylated chondroitin sulfate using high-resolution Fourier transform ion cyclotron resonance mass spectrometry. The two species of fucosylated chondroitin sulfates considered for this work include Pearsonothuria graeffei (FCS-Pg) and Isostichopus badionotus (FCS-Ib). Fucosylated chondroitin sulfate oligosaccharides were prepared by N-deacetylation-deaminative cleavage of the two fucosylated chondroitin sulfates and purified by repeated gel filtration. Accurate mass measurements obtained from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry measurements confirmed the oligomeric nature of these two fucosylated chondroitin sulfate oligosaccharides with each trisaccharide repeating unit averaging four sulfates per trisaccharide. Collision-induced dissociation of efficiently deprotonated molecular ions through Na/H + exchange proved useful in providing structurally relevant glycosidic and cross-ring product ions, capable of assigning the sulfate modifications on the fucosylated chondroitin sulfate oligomers. Careful examination of the tandem mass spectrometry of both species deferring in the positions of sulfate groups on the fucose residue (FCS-Pg-3,4- OS) and (FCS-Ib-2,4- OS) revealed cross-ring products 0,2 A αf and 2,4 X 2αf which were diagnostic for (FCS-Pg-3,4- OS) and 0,2 X 2αf diagnostic for (FCS-Ib-2,4- OS). Mass spectrometry and tandem mass spectrometry data acquired for both species varying in oligomer length (dp3-dp15) are presented.

  20. Participation of 3-O-sulfated heparan sulfates in the protection of macrophages by herpes simplex virus-1 glycoprotein D and cyclophilin B against apoptosis.

    Science.gov (United States)

    Delos, Maxime; Hellec, Charles; Foulquier, François; Carpentier, Mathieu; Allain, Fabrice; Denys, Agnès

    2017-02-01

    Heparan sulfates (HS) are involved in numerous biological processes, which rely on their ability to interact with a large panel of proteins. Although the reaction of 3-O-sulfation can be catalysed by the largest family of HS sulfotransferases, very few mechanisms have been associated with this modification and to date, only glycoprotein D (gD) of herpes simplex virus-1 (HSV-1 gD) and cyclophilin B (CyPB) have been well-described as ligands for 3- O -sulfated HS. Here, we hypothesized that both ligands could induce the same responses via a mechanism dependent on 3- O -sulfated HS. First, we checked that HSV-1 gD was as efficient as CyPB to induce the activation of the same signalling events in primary macrophages. We then demonstrated that both ligands efficiently reduced staurosporin-induced apoptosis and modulated the expression of apoptotic genes. In addition to 3- O -sulfated HS, HSV-1 gD was reported to interact with other receptors, including herpes virus entry mediator (HVEM), nectin-1 and -2. Thus, we decided to identify the contribution of each binding site in the responses triggered by HSV-1 gD and CyPB. We found that knock-down of 3- O -sulfotransferase 2, which is the main 3- O -sulfated HS-generating enzyme in macrophages, strongly reduced the responses induced by both ligands. Moreover, silencing the expression of HVEM rendered macrophages unresponsive to either HSV-1 gD and CyPB, thus indicating that both proteins induced the same responses by interacting with a complex formed by 3- O -sulfated HS and HVEM. Collectively, our results suggest that HSV-1 might hijack the binding sites for CyPB in order to protect macrophages against apoptosis for efficient infection.

  1. Isolation and characterization of a mesophilic heavy-metals-tolerant sulfate-reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulfate source

    International Nuclear Information System (INIS)

    Azabou, Samia; Mechichi, Tahar; Patel, Bharat K.C.; Sayadi, Sami

    2007-01-01

    A sulfate-reducing bacterium, was isolated from a 6 month trained enrichment culture in an anaerobic media containing phosphogypsum as a sulfate source, and, designated strain SA2. Cells of strain SA2 were rod-shaped, did not form spores and stained Gram-negative. Phylogenetic analysis of the 16S rRNA gene sequence of the isolate revealed that it was related to members of the genus Desulfomicrobium (average sequence similarity of 98%) with Desulfomicrobium baculatum being the most closely related (sequence similarity of 99%). Strain SA2 used thiosulfate, sulfate, sulfite and elemental sulfur as electron acceptors and produced sulfide. Strain SA2 reduced sulfate contained in 1-20 g/L phosphogypsum to sulfide with reduction of sulfate contained in 2 g/L phosphogypsum being the optimum concentration. Strain SA2 grew with metalloid, halogenated and non-metal ions present in phosphogypsum and with added high concentrations of heavy metals (125 ppm Zn and 100 ppm Ni, W, Li and Al). The relative order for the inhibitory metal concentrations, based on the IC 50 values, was Cu, Te > Cd > Fe, Co, Mn > F, Se > Ni, Al, Li > Zn

  2. Analysis of Saprolegnia parasitica Transcriptome following Treatment with Copper Sulfate.

    Directory of Open Access Journals (Sweden)

    Kun Hu

    Full Text Available Massive infection caused by oomycete fungus Saprolegnia parasitica is detrimental to freshwater fish. Recently, we showed that copper sulfate demonstrated good efficacy for controlling S. parasitica infection in grass carp. In this study, we investigated the mechanism of inhibition of S. parasitica growth by copper sulfate by analyzing the transcriptome of copper sulfate-treated S. parasitica. To examine the mechanism of copper sulfate inhibiting S. parasitica, we utilized RNA-seq technology to compare differential gene expression in S. parasitica treated with or without copper sulfate.The total mapped rates of the reads with the reference genome were 90.50% in the control group and 73.50% in the experimental group. In the control group, annotated splice junctions, partial novel splice junctions and complete novel splice junctions were about 83%, 3% and 14%, respectively. In the treatment group, the corresponding values were about 75%, 6% and 19%. Following copper sulfate treatment, a total 310 genes were markedly upregulated and 556 genes were markedly downregulated in S. parasitica. Material metabolism related GO terms including cofactor binding (33 genes, 1,3-beta-D-glucan synthase complex (4 genes, carboxylic acid metabolic process (40 genes were the most significantly enriched. KEGG pathway analysis also determined that the metabolism-related biological pathways were significantly enriched, including the metabolic pathways (98 genes, biosynthesis of secondary metabolites pathways (42 genes, fatty acid metabolism (13 genes, phenylalanine metabolism (7 genes, starch and sucrose metabolism pathway (12 genes. The qRT-PCR results were largely consistent with the RNA-Seq results.Our results indicate that copper sulfate inhibits S. parasitica growth by affecting multiple biological functions, including protein synthesis, energy biogenesis, and metabolism.

  3. Tyramine-O-sulfate is produced and secreted by human hepatoma cells, line HepG2

    International Nuclear Information System (INIS)

    Liu, M.C.; Yu, S.; Suiko, M.

    1987-01-01

    Human hepatoma cells, line HepG2, were metabolically labeled with [ 35 S]sulfate. The spent medium separated following 24 hr labeling was subjected to ultrafiltration using an Amicon Centricon unit. The filtrate obtained was analyzed by a two-dimensional separation procedure combining high-voltage electrophoresis and thin-layer chromatography. The autoradiograph taken from the cellulose thin-layer plate following the analysis revealed the presence of tyramine-O-[ 35 ]sulfate in addition to tyrosine-O-[ 35 ]sulfate. Using adenosine, 3'-phosphate, 5'-phospho[ 35 S]sulfate as the sulfate donor, it was shown that tyramine was actively sulfated to form tyramine-O-[ 35 S]sulfate as catalyzed by the sulfotransferase(s) present in dog liver homogenate. Attempts to decarboxylate tyrosine-O-sulfate to tyramine-O-sulfate using intrinsic p-tyrosine decarboxylase present in dog liver homogenate, however, were unsuccessful. Employing purified Streptococcus faecalis tyrosine decarboxylase, it was shown that L-tyrosine was actively decarboxylated to tyramine, whereas tyrosine-O-sulfate could not serve as a substrate

  4. Emerging sulfated flavonoids and other polyphenols as drugs: nature as an inspiration.

    Science.gov (United States)

    Correia-da-Silva, Marta; Sousa, Emília; Pinto, Madalena M M

    2014-03-01

    Nature uses sulfation of endogenous and exogenous molecules mainly to avoid potential toxicity. The growing importance of natural sulfated molecules, as modulators of a number of physiological and pathological processes, has inspired the synthesis of non-natural sulfated scaffolds. Until the 1990s, the synthesis of sulfated small molecules was almost restricted to derivatives of flavonoids and aimed mainly at structure elucidation and plant biosynthesis studies. Currently, the synthesis of this type of compounds concerns structurally diverse scaffolds and is aimed at the development of potential drugs and/or exploitation of the biological effects of sulfated metabolites. Some important hit compounds are emerging from sulfated flavonoids and other polyphenols mainly as anticoagulant and antiviral agents. When compared with polymeric macromolecules such as heparins, sulfated small molecules could be of value in therapeutics due to their hydrophobic nature that can contribute to improve the bioavailability. This review highlights the synthetic approaches that were applied to obtain monosulfated or polysulfated phenolic small molecules and compiles the diverse biological activities already reported for this type of derivatives. Toxicity and pharmacokinetic parameters of this emerging class of derivatives will also be considered, emphasizing their value for therapeutic applications. © 2013 Wiley Periodicals, Inc.

  5. Research on A3 steel corrosion behavior of basic magnesium sulfate cement

    Science.gov (United States)

    Xing, Sainan; Wu, Chengyou; Yu, Hongfa; Jiang, Ningshan; Zhang, Wuyu

    2017-11-01

    In this paper, Tafel polarization technique is used to study the corrosion behavior of A3 steel basic magnesium sulfate, and then analyzing the ratio of raw materials cement, nitrites rust inhibitor and wet-dry cycle of basic magnesium sulfate corrosion of reinforced influence, and the steel corrosion behavior of basic magnesium sulfate compared with magnesium oxychloride cement and Portland cement. The results show that: the higher MgO/MgSO4 mole ratio will reduce the corrosion rate of steel; Too high and too low H2O/MgSO4 mole ratio may speed up the reinforcement corrosion effect; Adding a small amount of nitrite rust and corrosion inhibitor, not only can obviously reduce the alkali type magnesium sulfate in the early hydration of cement steel bar corrosion rate, but also can significantly reduce dry-wet circulation under the action of alkali type magnesium sulfate cement corrosion of reinforcement effect. Basic magnesium sulfate cement has excellent ability to protect reinforced, its long-term corrosion of reinforcement effect and was equal to that of Portland cement. Basic magnesium sulfate corrosion of reinforced is far below the level in the MOC in the case.

  6. Sulfated glycopeptide nanostructures for multipotent protein activation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng; Álvarez, Zaida; Sleep, Eduard; Chun, Danielle S.; Weiner, Joseph A.; Cook, Ralph W.; Freshman, Ryan D.; Schallmo, Michael S.; Katchko, Karina M.; Schneider, Andrew D.; Smith, Justin T.; Yun, Chawon; Singh, Gurmit; Hashmi, Sohaib Z.; McClendon, Mark T.; Yu, Zhilin; Stock, Stuart R.; Hsu, Wellington K.; Hsu, Erin L.; Stupp , Samuel I. (NWU)

    2017-06-19

    Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many