WorldWideScience

Sample records for monolithic pin diodes

  1. Spectroscopic amplifier for pin diode

    International Nuclear Information System (INIS)

    Alonso M, M. S.; Hernandez D, V. M.; Vega C, H. R.

    2014-10-01

    The photodiode remains the basic choice for the photo-detection and is widely used in optical communications, medical diagnostics and field of corpuscular radiation. In detecting radiation it has been used for monitoring radon and its progeny and inexpensive spectrometric systems. The development of a spectroscopic amplifier for Pin diode is presented which has the following characteristics: canceler Pole-Zero (P/Z) with a time constant of 8 μs; constant gain of 57, suitable for the acquisition system; 4th integrator Gaussian order to waveform change of exponential input to semi-Gaussian output and finally a stage of baseline restorer which prevents Dc signal contribution to the next stage. The operational amplifier used is the TLE2074 of BiFET technology of Texas Instruments with 10 MHz bandwidth, 25 V/μs of slew rate and a noise floor of 17 nv/(Hz)1/2. The integrated circuit has 4 operational amplifiers and in is contained the total of spectroscopic amplifier that is the goal of electronic design. The results show like the exponential input signal is converted to semi-Gaussian, modifying only the amplitude according to the specifications in the design. The total system is formed by the detector, which is the Pin diode, a sensitive preamplifier to the load, the spectroscopic amplifier that is what is presented and finally a pulse height analyzer (Mca) which is where the spectrum is shown. (Author)

  2. Application of PIN diodes in Physics Research

    International Nuclear Information System (INIS)

    Ramirez-Jimenez, F. J.; Mondragon-Contreras, L.; Cruz-Estrada, P.

    2006-01-01

    A review of the application of PIN diodes as radiation detectors in different fields of Physics research is presented. The development and research in semiconductor technology, the use of PIN diodes in particle counting, X-and γ-ray spectroscopy, medical applications and charged particle spectroscopy are considered. Emphasis is made in the activities realized in the different research and development Mexican institutions dealing with this kind of radiation detectors

  3. Performance measurements of hybrid PIN diode arrays

    International Nuclear Information System (INIS)

    Jernigan, J.G.; Arens, J.F.; Collins, T.; Herring, J.; Shapiro, S.L.; Wilburn, C.D.

    1990-05-01

    We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format having 10 x 64 pixels, each 120 μm square, and the other format having 256 x 256 pixels, each 30 μm square. In both cases, the thickness of the PIN diode layer is 300 μm. Measurements of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 13 figs

  4. Spectroscopic amplifier for pin diode; Amplificador espectroscopico para diodo Pin

    Energy Technology Data Exchange (ETDEWEB)

    Alonso M, M. S.; Hernandez D, V. M.; Vega C, H. R., E-mail: bebe.luna_s@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    The photodiode remains the basic choice for the photo-detection and is widely used in optical communications, medical diagnostics and field of corpuscular radiation. In detecting radiation it has been used for monitoring radon and its progeny and inexpensive spectrometric systems. The development of a spectroscopic amplifier for Pin diode is presented which has the following characteristics: canceler Pole-Zero (P/Z) with a time constant of 8 μs; constant gain of 57, suitable for the acquisition system; 4th integrator Gaussian order to waveform change of exponential input to semi-Gaussian output and finally a stage of baseline restorer which prevents Dc signal contribution to the next stage. The operational amplifier used is the TLE2074 of BiFET technology of Texas Instruments with 10 MHz bandwidth, 25 V/μs of slew rate and a noise floor of 17 nv/(Hz)1/2. The integrated circuit has 4 operational amplifiers and in is contained the total of spectroscopic amplifier that is the goal of electronic design. The results show like the exponential input signal is converted to semi-Gaussian, modifying only the amplitude according to the specifications in the design. The total system is formed by the detector, which is the Pin diode, a sensitive preamplifier to the load, the spectroscopic amplifier that is what is presented and finally a pulse height analyzer (Mca) which is where the spectrum is shown. (Author)

  5. Study of PIN diode energy traps created by neutrons

    International Nuclear Information System (INIS)

    Sopko, V; Dammer, J; Sopko, B; Chren, D

    2013-01-01

    Characterization of radiation defects is still ongoing and finds greater application in the increasing radiation doses on semiconductor detectors in experiments. Studying the changes of silicon PIN diode for high doses of radiation is the fundamental motivation for our measurements. In this article we describe the behavior of the PIN diode and development of the disorder caused by neutrons from a 252Cf and doses up to 8 Gy. The calibration curve for PIN diode shows the effect of disorders as the changes of the voltampere characteristics depending on the dose of neutron irradiation. The measured values for defects are in good agreement with created energy traps.

  6. Silicon monolithic microchannel-cooled laser diode array

    International Nuclear Information System (INIS)

    Skidmore, J. A.; Freitas, B. L.; Crawford, J.; Satariano, J.; Utterback, E.; DiMercurio, L.; Cutter, K.; Sutton, S.

    2000-01-01

    A monolithic microchannel-cooled laser diode array is demonstrated that allows multiple diode-bar mounting with negligible thermal cross talk. The heat sink comprises two main components: a wet-etched Si layer that is anodically bonded to a machined glass block. The continuous wave (cw) thermal resistance of the 10 bar diode array is 0.032 degree sign C/W, which matches the performance of discrete microchannel-cooled arrays. Up to 1.5 kW/cm 2 is achieved cw at an emission wavelength of ∼808 nm. Collimation of a diode array using a monolithic lens frame produced a 7.5 mrad divergence angle by a single active alignment. This diode array offers high average power/brightness in a simple, rugged, scalable architecture that is suitable for large two-dimensional areas. (c) 2000 American Institute of Physics

  7. Development of a semiconductor neutron dosimeter with a PIN diode

    International Nuclear Information System (INIS)

    Kim, Seungho; Lee, Namho; Cho, Jaiwan; Youk, Geunuck

    2004-01-01

    When a Si PIN diode is exposed to fast neutrons, it produces displacement in Si lattice structure of the diode. Defects induced from structural dislocation become effective recombination centers for carriers which pass through the base of a PIN diode. Hence, increasing the resistivity of the diode decreases the current for the applied forward voltage. This paper involves the development of a neutron sensor based on the phenomena of the displacement effect damaged by neutron exposure. The neutron effect on the semiconductor was analyzed, and multi PIN diode arrays with various intrinsic layer (I layer) thicknesses and cross sections were fabricated. Under irradiation tests with a neutron beam, the manufactured diodes have good characteristics of linearity in a neutron irradiation experiment and give results that the increase of thickness of I layer and the decrease of the cross-section of the PIN diodes improve the sensitivity. Newly developed PIN diodes with a thicker I layer and various cross sections were retested and showed the best neutron sensitivity in the condition that the I layer thickness was similar to the length of a side of the cross-section. On the basis of two test results, final PIN diodes with a rectangular shape were manufactured and the characteristics for neutron detectors were analyzed through the neutron beam test using the on-line electronic dosimetry system. The developed PIN diode shows a good linearity to absorbed dose in the range of 0 to 1,000cGy (Tissue) and its neutron sensitivity is 13 mV/cGy at a constant current of 5 mA, that is three higher than that of similar commercially developed neutron detectors. Moreover the device shows less dependency on the orientation of the neutron beam and a considerable stability in an annealing test for a long period. (author)

  8. Pinning, flux diodes and ratchets for vortices interacting with conformal pinning arrays

    International Nuclear Information System (INIS)

    Olson Reichhardt, C. J.; Wang, Y. L.; Argonne National Laboratory; Xiao, Z. L.; Northern Illinois University, DeKalb, IL

    2016-01-01

    A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produce a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the density of pinning sites. Here we examine several aspects of vortices interacting with conformal pinning arrays and how they can be used to create a flux flow diode effect for driving vortices in different directions across the arrays. Under the application of an ac drive, a pronounced vortex ratchet effect occurs where the vortices flow in the easy direction of the array asymmetry. When the ac drive is applied perpendicular to the asymmetry direction of the array, it is possible to realize a transverse vortex ratchet effect where there is a generation of a dc flow of vortices perpendicular to the ac drive due to the creation of a noise correlation ratchet by the plastic motion of the vortices. We also examine vortex transport in experiments and compare the pinning effectiveness of conformal arrays to uniform triangular pinning arrays. In conclusion, we find that a triangular array generally pins the vortices more effectively at the first matching field and below, while the conformal array is more effective at higher fields where interstitial vortex flow occurs.

  9. Indium phosphide-based monolithically integrated PIN waveguide photodiode readout for resonant cantilever sensors

    Energy Technology Data Exchange (ETDEWEB)

    Siwak, N. P. [Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, Maryland 20742 (United States); Laboratory for the Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740 (United States); Fan, X. Z.; Ghodssi, R. [Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, Maryland 20742 (United States); Kanakaraju, S.; Richardson, C. J. K. [Laboratory for the Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740 (United States)

    2014-10-06

    An integrated photodiode displacement readout scheme for a microelectromechanical cantilever waveguide resonator sensing platform is presented. III-V semiconductors are used to enable the monolithic integration of passive waveguides with active optical components. This work builds upon previously demonstrated results by measuring the displacement of cantilever waveguide resonators with on-chip waveguide PIN photodiodes. The on-chip integration of the readout provides an additional 70% improvement in mass sensitivity compared to off-chip photodetector designs due to measurement stability and minimized coupling loss. In addition to increased measurement stability, reduced packaging complexity is achieved due to the simplicity of the readout design. We have fabricated cantilever waveguides with integrated photodetectors and experimentally characterized these cantilever sensors with monolithically integrated PIN photodiodes.

  10. Influence of irradiation on defects creation in pin diode structure

    International Nuclear Information System (INIS)

    Sopko, V.; Dammer, J.; Sopko, B.; Chren, D.

    2012-01-01

    In this paper the manufacture of type S1 PIN diodes and radiation defect induce by fast neutrons were studied. A shift from VV"- to VV (neutral) is observed in neutron irradiated diodes. From the results obtained, an explanation that clearly offers itself is that the nature of the defects produced by irradiation of material exhibiting N type conductivity is different from those for type P material. Given that the experiments were conducted with the same material, i.e., the dopant present in the material remained unchanged, it can be stated that simply by changing the type of conductivity with increasing dose, a different kind of defects is produced, having different activation energies in the forbidden band. All these results are consistent with the ongoing RD 50 experiments at CERN.

  11. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    International Nuclear Information System (INIS)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M.; Koeck, Franz A. M.; Nemanich, Robert J.

    2016-01-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco ® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  12. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Science.gov (United States)

    Hathwar, Raghuraj; Dutta, Maitreya; Koeck, Franz A. M.; Nemanich, Robert J.; Chowdhury, Srabanti; Goodnick, Stephen M.

    2016-06-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  13. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M. [Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-8806 (United States); Koeck, Franz A. M.; Nemanich, Robert J. [Department of Physics, Arizona State University, Tempe, Arizona 85287-8806 (United States)

    2016-06-14

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco{sup ®} Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures.

  14. Radiation monitoring with CVD diamonds and PIN diodes at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Bruinsma, M. [University of California Irvine, Irvine, CA 92697 (United States); Burchat, P. [Stanford University, Stanford, CA 94305-4060 (United States); Curry, S. [University of California Irvine, Irvine, CA 92697 (United States)], E-mail: scurry@slac.stanford.edu; Edwards, A.J. [Stanford University, Stanford, CA 94305-4060 (United States); Kagan, H.; Kass, R. [Ohio State University, Columbus, OH 43210 (United States); Kirkby, D. [University of California Irvine, Irvine, CA 92697 (United States); Majewski, S.; Petersen, B.A. [Stanford University, Stanford, CA 94305-4060 (United States)

    2007-12-11

    The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.

  15. Thick and large area PIN diodes for hard X-ray astronomy

    CERN Document Server

    Ota, N; Sugizaki, M; Kaneda, M; Tamura, T; Ozawa, H; Kamae, T; Makishima, K; Takahashi, T; Tashiro, M; Fukazawa, Y; Kataoka, J; Yamaoka, K; Kubo, S; Tanihata, C; Uchiyama, Y; Matsuzaki, K; Iyomoto, N; Kokubun, M; Nakazawa, T; Kubota, A; Mizuno, T; Matsumoto, Y; Isobe, N; Terada, Y; Sugiho, M; Onishi, T; Kubo, H; Ikeda, H; Nomachi, M; Ohsugi, T; Muramatsu, M; Akahori, H

    1999-01-01

    Thick and large area PIN diodes for the hard X-ray astronomy in the 10-60 keV range are developed. To cover this energy range in a room temperature and in a low background environment, Si PIN junction diodes of 2 mm in thickness with 2.5 cm sup 2 in effective area were developed, and will be used in the bottom of the Phoswich Hard X-ray Detector (HXD), on-board the ASTRO-E satellite. Problems related to a high purity Si and a thick depletion layer during our development and performance of the PIN diodes are presented in detail.

  16. Pin Diode Detector For Radiation Field Monitoring In A Current Mode

    International Nuclear Information System (INIS)

    Beck, A.; Wengrowicz, U.; Kadmon, Y.; Tirosh, D.; Osovizky, A.; Vulasky, E.; Tal, N.

    1999-01-01

    Thus paper presents calculations and tests made for a detector based on a bare Pin diode and a Pin diode coupled to a plastic scintillator. These configurations have a variety of applications in radiation field monitoring. For example, the Positron Emission Tomography (PET) technology which becomes an established diagnostic imaging modality. Flour-18 is one of the major isotopes being used by PET imaging. The PET method utilizes short half life β + radioisotopes which, by annihilation, produce a pair of high energy photons (511 keV). Fluoro-deoxyglucose producers are required to meet federal regulations and licensing requirements. Some of the regulations are related to the production in chemistry modules regarding measuring the Start Of Synthesis (SOS) activity and verifying the process repeatability. Locating a radiation detector based on Pin diode inside the chemistry modules is suitable for this purpose. The dimensions of a Pin diode based detector can be small, with expected linearity over several scale decades

  17. Characterization of an Mg-implanted GaN p-i-n Diode

    Science.gov (United States)

    2016-03-31

    Characterization of an Mg- implanted GaN p-i-n Diode Travis J. Anderson, Jordan D. Greenlee, Boris N. Feigelson, Karl D. Hobart, and Francis J...Kub Naval Research Laboratory, Washington, DC 20375 Abstract: A p-i-n diode formed by the implantation of Mg in GaN was fabricated and...characterized. After implantation , Mg was activated using the symmetrical multicycle rapid thermal annealing technique with heating pulses up to 1340C

  18. Recombination of charge carriers in the GaAs-based p-i-n diode

    International Nuclear Information System (INIS)

    Ayzenshtat, G. I.; Yushenko, A. Y.; Gushchin, S. M.; Dmitriev, D. V.; Zhuravlev, K. S.; Toropov, A. I.

    2010-01-01

    It is established that the radiative recombination of charge carriers plays a substantial role in the GaAs-based p-i-n diodes at high densities of the forward current. It is shown experimentally that the diodes operating in microwave integrated circuits intensely emit light in the IR range with wavelengths from 890 to 910 nm. The obtained results indicate the necessity of taking into account the features of recombination processes in the GaAs-based microwave p-i-n diodes.

  19. Monolithic integration of a resonant tunneling diode and a quantum well semiconductor laser

    Science.gov (United States)

    Grave, I.; Kan, S. C.; Griffel, G.; Wu, S. W.; Sa'Ar, A.

    1991-01-01

    A monolithic integration of a double barrier AlAs/GaAs resonant tunneling diode and a GaAs/AlGaAs quantum well laser is reported. Negative differential resistance and negative differential optical response are observed at room temperature. The device displays bistable electrical and optical characteristics which are voltage controlled. Operation as a two-state optical memory is demonstrated.

  20. The 1/f noise in a p-i-n diode and in a diode laser below threshold

    NARCIS (Netherlands)

    Fronen, R.J.; Hooge, F.N.

    1991-01-01

    --A theoretical treatment is given of number fluctuations induced by mobility fluctuations in the intrinsic region of a p-i-n diode. Mobility fluctuations lead to fluctuations in voltage across the intrinsic region. In the a.c. short-circuit situation, fluctuations across the intrinsic region result

  1. Effect of swift heavy Kr ions on complex permittivity of silicon PIN diode

    International Nuclear Information System (INIS)

    Li, Yun; Su, Ping; Yang, Zhimei; Ma, Yao; Gong, Min

    2016-01-01

    Highlights: • The complex permittivity has been studied on Si PIN irradiated by heavy Kr ions. • DLTS was used to investigate damages formed in PIN diode during irradiation. • The recombination of carriers has important influence on the complex permittivity. - Abstract: The complex permittivity has been researched on silicon PIN diodes irradiated by 2150 MeV heavy Kr ions in this article. The difference of complex permittivity spectra from 1 to 10^7 Hz between irradiated and unirradiated were observed and discussed. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured at room temperature (300 K) to study the change of electrical properties in diode after irradiation. Deep level transient spectroscopy (DLTS) was used to investigate damages caused by 2150 MeV heavy Kr ions in diode. Two extra electron traps were observed, which were located at E C -0.31 eV and E C -0.17 eV. It indicated that new defects have been formed in PIN diode during irradiation. A comparison of the results illustrated that not only the carrier density but also the recombination of electron-hole pair have important influences on the properties of complex permittivity. These results offer a further indication of the mechanism about the complex permittivity property of semiconductor device, which could help to make the applications for the semiconductor device controlled by electric signals come true in the fields of optoelectronic integrated circuits, plasma antenna and so on.

  2. Automatic dosimeter for kerma measurement based on commercial PIN photo diodes

    International Nuclear Information System (INIS)

    Kushpil, V.; Kushpil, S.; Huna, Z.

    2011-01-01

    A new automatic dosimeter for measurement of radiation dose from neutron and ionization radiation is presented. The dosimeter (kerma meter) uses commercial PIN diodes with long base as its active element. Later it provides a maximal dependence of the minority carriers life time versus absorbed dose. The characteristics of the dosimeter were measured for several types of commercial diodes. Device can be useful in many environmental or industrial applications. (authors)

  3. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  4. Time-of-flight measurements of heavy ions using Si PIN diodes

    Energy Technology Data Exchange (ETDEWEB)

    Strekalovsky, A. O., E-mail: alex.strek@bk.ru; Kamanin, D. V. [Joint Institute for Nuclear Research (Russian Federation); Pyatkov, Yu. V. [National Nuclear Research University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Kondratyev, N. A.; Zhuchko, V. E. [Joint Institute for Nuclear Research (Russian Federation); Ilić, S. [University of Novi Sad (Serbia); Alexandrov, A. A.; Alexandrova, I. A. [Joint Institute for Nuclear Research (Russian Federation); Jacobs, N. [University of Stellenbosch, Faculty of Military Science, Military Academy (South Africa); Kuznetsova, E. A.; Mishinsky, G. V.; Strekalovsky, O. V. [Joint Institute for Nuclear Research (Russian Federation)

    2016-12-15

    A new off-line timing method for PIN diode signals is presented which allows the plasma delay effect to be suppressed. Velocities of heavy ions measured by the new method are in good agreement within a wide range of masses and energies with velocities measured by time stamp detectors based on microchannel plates.

  5. Lifetime control of the minority carrier in PiN diodes by He+ ion implantation

    International Nuclear Information System (INIS)

    Tanaka, Y.; Kojima, K.; Takao, K.; Okamoto, M.; Kawasaki, M.; Takatsuka, A.; Yatsuo, T.; Arai, K.

    2005-01-01

    This paper reports the first demonstration of the lifetime control of the minority carrier in 4H-SiC PiN diodes by He + ion implantation. In this work, we fabricated 4H-SiC PiN diodes with the epitaxial junction and the blocking voltage of 2.6 kV, precisely corresponding to the theoretical blocking voltage calculated from the doping concentration (4.0 x 10 15 /cm 2 ) and the thickness of the drift layer (16.5 μm). He + ion implantation was performed with the energy and the dose of 400 kV and 1.0 x 10 13 -2.0 x 10 14 /cm 2 , respectively. We observed no different characteristics in the blocking voltage (2.6kV) and leakage current ( + ion implantation. However, we confirmed the improvement of the current recovery characteristics in the diodes with He + ion implantation. (orig.)

  6. A filter technique for optimising the photon energy response of a silicon pin diode dosemeter

    International Nuclear Information System (INIS)

    Olsher, R.H.; Eisen, Y.

    1996-01-01

    Unless they are energy compensated, silicon PIN diodes used in electronic pocket dosemeters, have significant over-response below 200 keV. Siemens is using three diodes in parallel with individual filters to produce excellent energy and angular response. An algorithm based on the photon spectrum of a single diode could be used to flatten the energy response. The commercial practice is to use a single diode with a simple filter to flatten the energy response, despite the mediocre low energy photon. The filter technique with an opening has been used for energy compensating GM detectors and proportional counters and a new variation of it has been investigated which compensates the energy response of a silicon PIN diode and maintains an extended low energy response. It uses a composite filter of two or more materials with several openings whose individual area is in the range of 15% to 25% of the diode's active area. One opening is centred over the diode's active area and others are located at the periphery of the active area to preserve a good polar response to ±45 o . Monte Carlo radiation transport methods were used to simulate the coupled electron-photon transport through a Hamamatsu S2506-01 diode and to determine the energy response of the diode for a variety of filters. In current mode, the resultant dosemeter energy response relative to air dose was within -15% and +30% for 0 o incidence over the energy range from 15 keV to 1 MeV. In pulse mode, the resultant dosemeter energy response was within -25% and +50% for 0 o incidence over the energy range from 30 keV to 10 MeV. For ±45 o incidence, the energy response was within -25% and +40% from 40 keV to 10 MeV. Theoretical viability of the filter technique has been shown in this work (Author)

  7. Monolithic Inorganic ZnO/GaN Semiconductors Heterojunction White Light-Emitting Diodes.

    Science.gov (United States)

    Jeong, Seonghoon; Oh, Seung Kyu; Ryou, Jae-Hyun; Ahn, Kwang-Soon; Song, Keun Man; Kim, Hyunsoo

    2018-01-31

    Monolithic light-emitting diodes (LEDs) that can generate white color at the one-chip level without the wavelength conversion through packaged phosphors or chip integration for photon recycling are of particular importance to produce compact, cost-competitive, and smart lighting sources. In this study, monolithic white LEDs were developed based on ZnO/GaN semiconductor heterojunctions. The electroluminescence (EL) wavelength of the ZnO/GaN heterojunction could be tuned by a post-thermal annealing process, causing the generation of an interfacial Ga 2 O 3 layer. Ultraviolet, violet-bluish, and greenish-yellow broad bands were observed from n-ZnO/p-GaN without an interfacial layer, whereas a strong greenish-yellow band emission was the only one observed from that with an interfacial layer. By controlled integration of ZnO/GaN heterojunctions with different postannealing conditions, monolithic white LED was demonstrated with color coordinates in the range (0.3534, 0.3710)-(0.4197, 0.4080) and color temperatures of 4778-3349 K in the Commission Internationale de l'Eclairage 1931 chromaticity diagram. Furthermore, the monolithic white LED produced approximately 2.1 times higher optical output power than a conventional ZnO/GaN heterojunction due to the carrier confinement effect at the Ga 2 O 3 /n-ZnO interface.

  8. Effect of swift heavy Kr ions on complex permittivity of silicon PIN diode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yun [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Su, Ping, E-mail: pingsu@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Yang, Zhimei; Ma, Yao [Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Gong, Min, E-mail: mgong@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China)

    2016-12-01

    Highlights: • The complex permittivity has been studied on Si PIN irradiated by heavy Kr ions. • DLTS was used to investigate damages formed in PIN diode during irradiation. • The recombination of carriers has important influence on the complex permittivity. - Abstract: The complex permittivity has been researched on silicon PIN diodes irradiated by 2150 MeV heavy Kr ions in this article. The difference of complex permittivity spectra from 1 to 10^7 Hz between irradiated and unirradiated were observed and discussed. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured at room temperature (300 K) to study the change of electrical properties in diode after irradiation. Deep level transient spectroscopy (DLTS) was used to investigate damages caused by 2150 MeV heavy Kr ions in diode. Two extra electron traps were observed, which were located at E{sub C}-0.31 eV and E{sub C}-0.17 eV. It indicated that new defects have been formed in PIN diode during irradiation. A comparison of the results illustrated that not only the carrier density but also the recombination of electron-hole pair have important influences on the properties of complex permittivity. These results offer a further indication of the mechanism about the complex permittivity property of semiconductor device, which could help to make the applications for the semiconductor device controlled by electric signals come true in the fields of optoelectronic integrated circuits, plasma antenna and so on.

  9. Sensitive pre-amplifier to load for Pin diodes

    International Nuclear Information System (INIS)

    Jacobo V, R. Y.; Hernandez D, V.; Ramirez J, F. J.

    2013-10-01

    The electronic instrumentation is indispensable for the measurement and characterization of the radiation. By means of this essential characteristics of the radiation are determined, as activity and their energy components. The nuclear instrumentation is based on the technical characteristics of the radiation detectors and the electronic devices associates (amplifiers, ana logical and digital converters, multichannel analyzers, etc.) The radiation detectors are very important instruments in fields as the nuclear physics, medicine, radiological protection, industry and in other fields, since they are the only method to capture the radiation and to be able to quantify it in precise form. To detect radiation diverse detector types are used, as the semiconductor type, inside them are the photodiodes type Pin. In this work the results that were obtained of the design, simulation, construction and tests of a preamplifier that was designed starting from a photodiode type Pin are presented. The system was designed and simulated with a program for electronic circuits, in this were carried out many tests being obtained a compact design and achieving the best necessary characteristics for its optimization. With the results of the simulation phase the electronics phase was built, which was couples to a spectroscopic amplifier and a multichannel analyzer. The total of the system was evaluated analyzing its performance before a triple source of alphas. Of the tests phase we find that the system allows obtaining, in a multichannel analyzer, the pulses height spectrum, with a good resolution and with this was calibrated the multichannel analyzer

  10. Influence of production technology and design on characteristics neutron-sensitive P-I-N diodes

    International Nuclear Information System (INIS)

    Perevertaylo, V.L.; Kovrygin, V.I.

    2012-01-01

    This paper presents the results of tests on neutron-sensitive p-i-n diode with local p-n junction, which allows to measure not only the integral dose by nonionizing energy loss (NIEL), but also the real-time dose and dose rate because of ionizing energy losses (IEL). The influence of design and process parameters and the lifetime of minority carriers on the radiation characteristics of the device considered. Sensitivity at low doses (from one to ten rad) is limited due to a decrease in the lifetime because of influence of lateral sides of cut. The sensitivity and accuracy of dose can be increased by moving of p-n junction away from the cut surface. The dependence of the voltage drop across the diode on the neutron dose irradiation up to 5 krad received, and the sensitivity was 2 - 3 mV/rad. We have demonstrated that replacement of the bulk p-i-n diode with total p-n junction by new diodes with local p-n junction allow for increase sensitivity, accuracy of dose and application in NIEL and IEL measurements simultaneously. Explanation for the extinction of a direct current through the diode with increasing doses of neutron irradiation proposed

  11. Development of defects in the structure of PIN dosimetry diodes exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sopko, V. [Hospital Na Bulovce, Department of Radiological Physics, Budinova 2, CZ-18081 Prague 8 (Czech Republic); Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ 12800 Prague 2 (Czech Republic); Sopko, B., E-mail: bruno.sopko@cern.ch [Department of Physics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, CZ 16000 Prague 6 (Czech Republic); Faculty of Production Technology and Management, J. E. Purkyně Univerzity in Ústí nad Labem, Na Okraji 1001, 400 01 Ústí nad Labem (Czech Republic); Chren, D. [Department of Physics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, CZ 16000 Prague 6 (Czech Republic); Dammer, J. [Hospital Na Bulovce, Department of Radiological Physics, Budinova 2, CZ-18081 Prague 8 (Czech Republic); Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ 12800 Prague 2 (Czech Republic); Charles University in Prague, First Faculty of Medicine, Salmovská 1,CZ-12000 Prague 2 (Czech Republic)

    2013-12-01

    Studies of radiation induced defects continue to be relevant as they find an ever greater application due to the increasing radiation doses to which semiconductor detectors are exposed. Efforts of figuring out the changes due to high radiation doses provide the fundamental motivation for this type of experiments. The PIN diode is described, and a developmental disorder caused thereto by 60Co source gamma quanta ranging from 100 kGy to 1 MGy. The calibration curve shows the effect of disturbances on the volt-ampere characteristics as a function of the dose of gamma radiation. The results are compared with earlier published data. Highlights: •We have studied Si PIN diode dosimeters irradiated by gamma. •We measured DLTS spectra and calculated energy traps caused by gamma irradiation. •Increasing dose caused creation of new traps and disappearance of others.

  12. Waveguide photonic crystals with characteristics controlled with p-i-n diodes

    International Nuclear Information System (INIS)

    Usanov, D. A.; Skripal, A. V.; Abramov, A. V.; Bogolyubov, A. S.; Skvortsov, V. S.; Merdanov, M. K.

    2010-01-01

    A one-dimensional waveguide photonic structure-specifically, a photonic crystal with a controllable frequency characteristic-is designed. The central frequency of the spectral window of the photonic crystal can be tuned by choosing the parameters of disturbance of periodicity in the photonic crystal, whereas the transmission coefficient at a particular frequency can be controlled by varying the voltage at a p-i-n diode. It is shown that the possibility exists of using the waveguide photonic crystal to design a microwave device operating in the 3-cm-wavelength region, with a transmission band of 70 MHz at a level 3 dB and the transmission coefficient controllable in the range from -1.5 to -25 dB under variations in the forward voltage bias at the p-i-n diode from zero to 700 mV.

  13. Testing digital recursive filtering method for radiation measurement channel using pin diode detector

    International Nuclear Information System (INIS)

    Talpalariu, C. M.; Talpalariu, J.; Popescu, O.; Mocanasu, M.; Lita, I.; Visan, D. A.

    2016-01-01

    In this work we have studied a software filtering method implemented in a pulse counting computerized measuring channel using PIN diode radiation detector. In case our interest was focalized for low rate decay radiation measurement accuracies improvement and response time optimization. During works for digital mathematical algorithm development, we used a hardware radiation measurement channel configuration based on PIN diode BPW34 detector, preamplifier, filter and programmable counter, computer connected. We report measurement results using two digital recursive methods in statically and dynamically field evolution. Software for graphical input/output real time diagram representation was designed and implemented, facilitating performances evaluation between the response of fixed configuration software recursive filter and dynamically adaptive configuration recursive filter. (authors)

  14. Comparison of silicon pin diode detector fabrication processes using ion implantation and thermal doping

    International Nuclear Information System (INIS)

    Zhou, C.Z.; Warburton, W.K.

    1996-01-01

    Two processes for the fabrication of silicon p-i-n diode radiation detectors are described and compared. Both processes are compatible with conventional integrated-circuit fabrication techniques and yield very low leakage currents. Devices made from the process using boron thermal doping have about a factor of 2 lower leakage current than those using boron ion implantation. However, the boron thermal doping process requires additional process steps to remove boron skins. (orig.)

  15. Comparison of proton microbeam and gamma irradiation for the radiation hardness testing of silicon PIN diodes

    Science.gov (United States)

    Jakšić, M.; Grilj, V.; Skukan, N.; Majer, M.; Jung, H. K.; Kim, J. Y.; Lee, N. H.

    2013-09-01

    Simple and cost-effective solutions using Si PIN diodes as detectors are presently utilized in various radiation-related applications in which excessive exposure to radiation degrades their charge transport properties. One of the conventional methods for the radiation hardness testing of such devices is time-consuming irradiation with electron beam or gamma-ray irradiation facilities, high-energy proton accelerators, or with neutrons from research reactors. Recently, for the purpose of radiation hardness testing, a much faster nuclear microprobe based approach utilizing proton irradiation has been developed. To compare the two different irradiation techniques, silicon PIN diodes have been irradiated with a Co-60 gamma radiation source and with a 6 MeV proton microbeam. The signal degradation in the silicon PIN diodes for both irradiation conditions has been probed by the IBIC (ion beam induced charge) technique, which can precisely monitor changes in charge collection efficiency. The results presented are reviewed on the basis of displacement damage calculations and NIEL (non-ionizing energy loss) concept.

  16. Progress report on the use of hybrid silicon pin diode arrays in high energy physics

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Jernigan, J.G.; Arens, J.F.

    1990-05-01

    We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump-bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format has 10 x 64 pixels, each 120 μm square; and the other format has 256 x 156 pixels, each 30 μm square. In both cases, the thickness of the PIN diode layer is 300 μm. Measurements of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 17 figs

  17. Noise in a-Si:H p-i-n detector diodes

    International Nuclear Information System (INIS)

    Cho, G.; Qureshi, S.; Drewery, J.S.; Jing, T.; Kaplan, S.N.; Lee, H.; Mireshghi, A.; Perez-Mendez, V.; Wildermuth, D.

    1991-10-01

    Noise of a-Si:H p-i-n diodes (5 ∼ 50 μm thick) under reverse bias was investigated. The current dependent 1/f type noise was found to be the main noise component at high bias. At low bias the thermal noise from a series resistance of the p-layer and of the metallic contacts is the dominant noise source which is unrelated to the reverse current through the diode. The noise associated with the p-layer resistance decreased significantly on annealing under reverse bias, reducing the total zero bias noise by a factor 2 approximately. The noise recovered to the original value on subsequent annealing without bias. In addition to the resistive noise there seems to be a shaping time independent noise component at zero biased diodes

  18. CsI/PIN Diode Detector Manufacture and Gamma-ray Response Measurement

    International Nuclear Information System (INIS)

    Ha, Jang Ho; Park, Se Hwan; Kang, Sang Mook; Kim, Yong Kyun; Lee, Wo Kyu

    2007-01-01

    In the nuclear industry changes fast to expand from conventional industry to newly emerging market industry. Such industries are environment and security field. Conventional devices to field-orientation application are too heavy not enough to be hand held. Especially emerging environment and security markets need a device which should be handheld and available long term battery operation. Photomultiplier based detection system could not satisfied these requirements. One of the promising system is the scintillator/PIN diode device. Present investigation is motivated for the purpose of developing a gamma-ray monitoring system with nuclei identification and small and light enough to be transportable by worker

  19. Characteristics of Si-PIN diode X-ray detector with DSP electronics

    International Nuclear Information System (INIS)

    Dutta, Juhi; Tapader, Srijita; Bisoi, Abhijit; Ray, Sudatta; Saha Sarkar, M.; Pramanik, Dibyadyuti; Saha, Archisman

    2012-01-01

    In the present work, the studies to investigate the features of PIN diodes detector coupled with a digital processor have been extended. At low energies, backscattered Compton peaks are close in energy to photo peak of the gamma of interest. Thus the backscattered peaks pose a serious problem in the analysis of spectra of low energy gamma rays. It has been initiated some measurements to quantitatively estimate the same as function of energy and Z of the scatterer. Recently there has been application of backscattering in high-resolution gamma backscatter imaging for technical applications

  20. Leakage current of amorphous silicon p-i-n diodes made by ion shower doping

    International Nuclear Information System (INIS)

    Kim, Hee Joon; Cho, Gyuseong; Choi, Joonhoo; Jung, Kwan-Wook

    2002-01-01

    In this letter, we report the leakage current of amorphous silicon (a-Si:H) p-i-n photodiodes, of which the p layer is formed by ion shower doping. The ion shower doping technique has an advantage over plasma-enhanced chemical vapor deposition (PECVD) in the fabrication of a large-area amorphous silicon flat-panel detector. The leakage current of the ion shower diodes shows a better uniformity within a 30 cmx40 cm substrate than that of the PECVD diodes. However, it shows a higher leakage current of 2-3 pA/mm 2 at -5 V. This high current originates from the high injection current at the p-i junction

  1. 11.72 sq cm SiC Wafer-scale Interconnected 64 kA PiN Diode

    Science.gov (United States)

    2012-01-30

    drop of 10.3 V. The dissipated energy was 382 J and the calculated action exceeded 1.7 MA2 -s. Preliminary development of high voltage interconnection...scale diode action (surge current integral), a key reliability parameter, exceeded 1.7 MA2 -s. Figure 6: The wafer-scale interconnected diode...scale diode was 382 J and the calculated action exceeded 1.7 MA2 -sec. High voltage operation of PiN diodes, thyristors, and other semiconductor

  2. Results from a 64-pixel PIN-diode detector system for low-energy beta-electrons

    Energy Technology Data Exchange (ETDEWEB)

    Wuestling, Sascha, E-mail: sascha.wuestling@kit.ed [Forschungszentrum Karlsruhe, Institut fuer Prozessdatenverarbeitung und Elektronik, Postfach 3640, 76021 Karlsruhe (Germany); Fraenkle, F.; Habermehl, F.; Renschler, P. [Universitaet Karlsruhe - TH, Institut fuer Experimentelle Kernphysik, Postfach 6980, 76128 Karlsruhe (Germany); Steidl, M [Forschungszentrum Karlsruhe, Institut fuer Kernphysik, Postfach 3640, 76021 Karlsruhe (Germany)

    2010-12-11

    The KATRIN neutrino mass experiment is based on a precise energy measurement ({Delta}E/E=5x10{sup -5}) of electrons emerging from tritium beta decay (E{sub max}=18.6 keV). This is done by a large electrostatic retarding spectrometer (MAC-E Filter), which is followed by an electron detector. Key requirements for this detector are a large sensitive area ({approx}80 cm{sup 2}), a certain energy resolution ({Delta}E=600 eV - 18.6 keV) but also a certain spatial resolution ({approx}3 mm), which leads to a multi-pixel design. As a tentative design on the way to the final detector, but also for operational service on the so-called pre-spectrometer experiment, a detector system with a reduced size (16 cm{sup 2}) and a reduced pixel number (64), making use of a monolithic segmented silicon PIN diode, was designed and built. While the design and very first measurements have been presented in Wuestling et al. , this publication shows the operational performance of the detector system. The robust concept of the electronics allowed adaptation to mechanically different experimental setups. The spacial resolution of the detector system proved to be essential in examining Penning trap induced background and other effects in the pre-spectrometer experiment. The detector performance test runs include energy resolution and calibration, background rates, correlation between pixels (crosstalk), spatially resolved rate analysis, and a dead-layer measurement . The detector allows for background searches with a sensitivity as low as 1.3x10{sup -3} cps/cm{sup 2} in the energy range of 20 keV. This allows the pre-spectrometer to be characterized with e-gun illumination with a signal to background ratio of better than 10{sup 5} and the search for ultra low Penning discharge emissions.

  3. Results from a 64-pixel PIN-diode detector system for low-energy beta-electrons

    Science.gov (United States)

    Wuestling, Sascha; Fraenkle, F.; Habermehl, F.; Renschler, P.; Steidl, M.

    2010-12-01

    The KATRIN neutrino mass experiment is based on a precise energy measurement (Δ E/ E=5×10 -5) of electrons emerging from tritium beta decay ( Emax=18.6 keV). This is done by a large electrostatic retarding spectrometer (MAC-E Filter), which is followed by an electron detector. Key requirements for this detector are a large sensitive area (˜80 cm 2), a certain energy resolution (Δ E=600 eV @ 18.6 keV) but also a certain spatial resolution (˜3 mm), which leads to a multi-pixel design. As a tentative design on the way to the final detector, but also for operational service on the so-called pre-spectrometer experiment, a detector system with a reduced size (16 cm 2) and a reduced pixel number (64), making use of a monolithic segmented silicon PIN diode, was designed and built. While the design and very first measurements have been presented in Wuestling et al. [6], this publication shows the operational performance of the detector system. The robust concept of the electronics allowed adaptation to mechanically different experimental setups. The spacial resolution of the detector system proved to be essential in examining Penning trap induced background and other effects in the pre-spectrometer experiment. The detector performance test runs include energy resolution and calibration, background rates, correlation between pixels (crosstalk), spatially resolved rate analysis, and a dead-layer measurement [7]. The detector allows for background searches with a sensitivity as low as 1.3×10 -3 cps/cm 2 in the energy range of 20 keV. This allows the pre-spectrometer to be characterized with e-gun illumination with a signal to background ratio of better than 10 5 and the search for ultra low Penning discharge emissions.

  4. Design and characterization of GaN p-i-n diodes for betavoltaic devices

    Science.gov (United States)

    Khan, Muhammad R.; Smith, Joshua R.; Tompkins, Randy P.; Kelley, Stephen; Litz, Marc; Russo, John; Leathersich, Jeff; Shahedipour-Sandvik, Fatemeh (Shadi); Jones, Kenneth A.; Iliadis, Agis

    2017-10-01

    The performance of gallium nitride (GaN) p-i-n diodes were investigated for use as a betavoltaic device. Dark IV measurements showed a turn on-voltage of approximately 3.2 V, specific-on-resistance of 15.1 mΩ cm2 and a reverse leakage current of -0.14 mA/cm2 at -10 V. A clear photo-response was observed when IV curves were measured under a light source at a wavelength of 310 nm (4.0 eV). In addition, GaN p-i-n diodes were tested under an electron-beam in order to simulate common beta radiation sources ranging from that of 3H (5.6 keV average) to 63Ni (17 keV average). From this data, we estimated output powers of 53 nW and 750 nW with overall efficiencies of 0.96% and 4.4% for our device at incident electron energies of 5.6 keV and 17 keV corresponding to 3H and 63Ni beta sources respectively.

  5. Performances of Dose Measurement of Commercial Electronic Dosimeters using Geiger Muller Tube and PIN Diode

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyunjun; Kim, Chankyu; Kim, Yewon; Kim, Giyoon; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    There are two categories in personal dosimeters, one is passive type dosimeter such as TLD (thermoluminescence dosimeter) and the other is active type dosimeter such as electronic dosimeter can show radiation dose immediately while TLD needs long time to readout its data by heating process. For improving the reliability of measuring dose for any energy of radiations, electronic dosimeter uses energy filter by metal packaging its detector using aluminum or copper, but measured dose of electronic dosimeter with energy filter cannot be completely compensated in wide radiation energy region. So, in this paper, we confirmed the accuracy of dose measurement of two types of commercial EPDs using Geiger Muller tube and PIN diode with CsI(Tl) scintillator in three different energy of radiation field. The experiment results for Cs-137 was almost similar with calculation value in the results of both electronic dosimeters, but, the other experiment values with Na-22 and Co-60 had higher error comparing with Cs-137. These results were caused by optimization of their energy filters. The optimization was depending on its thickness of energy filter. So, the electronic dosimeters have to optimizing the energy filter for increasing the accuracy of dose measurement or the electronic dosimeter using PIN diode with CsI(Tl) scintillator uses the multi-channel discriminator for using its energy information.

  6. Near space radiation dosimetry in Australian outback using a balloon borne energy compensated PIN diode detector

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar; Wu, Xiaofeng; Maczka, Tomasz; Kwan, Trevor; Huang, Yijun; Mares, Vladimir

    2016-01-01

    This paper reports the near space ballooning experiment carried out at Australian outback town West Wyalong (33°51′S, 147°24′E) on 19 July 2015. Several dedicated electronic detectors including digital temperature and acceleration (vibration) sensors and an energy compensated PIN-diode gamma ray dosimeter were installed in a thermally insulated Styrofoam payload box. A 9 V Lithium-Polymer battery powered all the devices. The payload box was attached to a helium-filled latex weather balloon and set afloat. The balloon reached a peak burst altitude of 30 km and then soft-landed aided by a self-deploying parachute 66.2 km away form the launch site. The payload box was retrieved and data collected from the electronic sensors analysed. The integrated cosmic ray induced photon ambient dose equivalent recorded by the PIN diode detector was evaluated to be 0.36 ± 0.05 μSv. Furthermore, a high-altitude extended version of commercially available aviation dosimetry package EPCARD.Net (European Program package for the Calculation of Aviation Route Doses) was used to calculate the ambient dose equivalents during the balloon flight. The radiation environment originated from the secondary cosmic ray shower is composed of neutrons, protons, electrons, muons, pions and photons. The photon ambient dose equivalent estimated by the EPCARD.Net code found to be 0.47 ± 0.09 μSv. The important aspects of balloon based near-space radiation dosimetry are highlighted in this paper. - Highlights: • Near space ballooning experiment in Australian outback. • A PIN diode based gamma dosimeter was sent to an altitude of 30 km. • Ambient photon dose equivalent was evaluated as a function of altitude. • Results agreed well with the simulated data delivered by EPCARD.Net Code. • The atmospheric temperature and payload jerks were also assessed.

  7. Correction of measured Gamma-Knife output factors for angular dependence of diode detectors and PinPoint ionization chamber.

    Science.gov (United States)

    Hršak, Hrvoje; Majer, Marija; Grego, Timor; Bibić, Juraj; Heinrich, Zdravko

    2014-12-01

    Dosimetry for Gamma-Knife requires detectors with high spatial resolution and minimal angular dependence of response. Angular dependence and end effect time for p-type silicon detectors (PTW Diode P and Diode E) and PTW PinPoint ionization chamber were measured with Gamma-Knife beams. Weighted angular dependence correction factors were calculated for each detector. The Gamma-Knife output factors were corrected for angular dependence and end effect time. For Gamma-Knife beams angle range of 84°-54°. Diode P shows considerable angular dependence of 9% and 8% for the 18 mm and 14, 8, 4 mm collimator, respectively. For Diode E this dependence is about 4% for all collimators. PinPoint ionization chamber shows angular dependence of less than 3% for 18, 14 and 8 mm helmet and 10% for 4 mm collimator due to volumetric averaging effect in a small photon beam. Corrected output factors for 14 mm helmet are in very good agreement (within ±0.3%) with published data and values recommended by vendor (Elekta AB, Stockholm, Sweden). For the 8 mm collimator diodes are still in good agreement with recommended values (within ±0.6%), while PinPoint gives 3% less value. For the 4 mm helmet Diodes P and E show over-response of 2.8% and 1.8%, respectively. For PinPoint chamber output factor of 4 mm collimator is 25% lower than Elekta value which is generally not consequence of angular dependence, but of volumetric averaging effect and lack of lateral electronic equilibrium. Diodes P and E represent good choice for Gamma-Knife dosimetry. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Prediction of the Response of the Commercial BPW34FS Silicon p-i-n Diode Used as Radiation Monitoring Sensors up to Very High Fluences

    CERN Document Server

    Mekki, J; Glaser, M; Moll, M; Dusseau, L

    2010-01-01

    The effect of radiation damage on Silicon p-i-n diodes has been studied. I-V characteristics of BPW34FS silicon p-i-n diodes irradiated with 24 GeV/c protons up to 6.3 x 10(15) n(eq)/cm(2) have been measured and analyzed. A parameterization predicting the radiation response in the fluence range relevant for the use of the diodes as radiation monitors in Super-LHC experiments is presented.

  9. Silicon Waveguide with Lateral p-i-n Diode for Nonlinearity Compensation by On-Chip Optical Phase Conjugation

    DEFF Research Database (Denmark)

    Gajda, A.; Da Ros, Francesco; Porto da Silva, Edson

    2018-01-01

    A 1-dB Q-factor improvement through optical phase conjugation in a silicon waveguide with a lateral p-i-n diode enables BER

  10. Energy down converting organic fluorophore functionalized mesoporous silica hybrids for monolith-coated light emitting diodes

    Directory of Open Access Journals (Sweden)

    Markus Börgardts

    2017-04-01

    Full Text Available The covalent attachment of organic fluorophores in mesoporous silica matrices for usage as energy down converting phosphors without employing inorganic transition or rare earth metals is reported in this article. Triethoxysilylpropyl-substituted derivatives of the blue emitting perylene, green emitting benzofurazane, and red emitting Nile red were synthesized and applied in the synthesis of mesoporous hybrid materials by postsynthetic grafting to commercially available MCM-41. These individually dye-functionalized hybrid materials are mixed in variable ratios to furnish a powder capable of emitting white light with CIE chromaticity coordinates of x = 0.33, y = 0.33 and an external quantum yield of 4.6% upon irradiation at 410 nm. Furthermore, as a proof of concept two different device setups of commercially available UV light emitting diodes, are coated with silica monoliths containing the three triethoxysilylpropyl-substituted fluorophore derivatives. These coatings are able to convert the emitted UV light into light with correlated color temperatures of very cold white (41100 K, 10700 K as well as a greenish white emission with correlated color temperatures of about 5500 K.

  11. High-speed and efficient silicon modulator based on forward-biased pin diodes

    Directory of Open Access Journals (Sweden)

    Suguru eAkiyama

    2014-11-01

    Full Text Available Silicon modulators, which use the free-carrier-plasma effect, were studied, both analytically and experimentally. It was demonstrated that the loss-efficiency product, a-VpL, was a suitable figure of merit for silicon modulators that enabled their intrinsic properties to be compared. Subsequently, the dependence of VpL on frequency was expressed by using the electrical parameters of a phase shifter when the modulator was operated by assuming a simple driving configuration. A diode-based modulator operated in forward biased mode was expected from analyses to provide more efficient operation than that in reversed mode at high frequencies due to its large capacitance. We obtained an a-VpL of 9.5 dB-V at 12.5 GHz in experiments by using the fabricated phase shifter with pin diodes operated in forward biased mode. This a-VpL was comparable to the best modulators operated in depletion mode. The modulator exhibited a clear eye opening at 56 Gb/s operated by 2 V peak-to-peak signals that was achieved by incorporating such a phase shifter into a ring resonator.

  12. Signal amplification and leakage current suppression in amorphous silicon p-i-n diodes by field profile tailoring

    International Nuclear Information System (INIS)

    Hong, W.S.; Zhong, F.; Mireshghi, A.; Perez-Mendez, V.

    1999-01-01

    The performance of amorphous silicon p-i-n diodes as radiation detectors in terms of signal amplitude can be greatly improved when there is a built-in signal gain mechanism. The authors describe an avalanche gain mechanism which is achieved by introducing stacked intrinsic, p-type, and n-type layers into the diode structure. They replaced the intrinsic layer of the conventional p-i-n diode with i 1 -p-i 2 -n-i 3 multilayers. The i 2 layer (typically 1 ∼ 3 microm) achieves an electric field > 10 6 V/cm, while maintaining the p-i interfaces to the metallic contact at electric fields 4 V/cm, when the diode is fully depleted. For use in photo-diode applications the whole structure is less than 10 microm thick. Avalanche gains of 10 ∼ 50 can be obtained when the diode is biased to ∼ 500 V. Also, dividing the electrodes to strips of 2 microm width and 20 microm pitch reduced the leakage current up to an order of magnitude, and increased light transmission without creating inactive regions

  13. Characterization of Lateral Structure of the p-i-n Diode for Thin-Film Silicon Solar Cell.

    Science.gov (United States)

    Kiaee, Zohreh; Joo, Seung Ki

    2018-03-01

    The lateral structure of the p-i-n diode was characterized for thin-film silicon solar cell application. The structure can benefit from a wide intrinsic layer, which can improve efficiency without increasing cell thickness. Compared with conventional thin-film p-i-n cells, the p-i-n diode lateral structure exploited direct light irradiation on the absorber layer, one-side contact, and bifacial irradiation. Considering the effect of different carrier lifetimes and recombinations, we calculated efficiency parameters by using a commercially available simulation program as a function of intrinsic layer width, as well as the distance between p/i or n/i junctions to contacts. We then obtained excellent parameter values of 706.52 mV open-circuit voltage, 24.16 mA/Cm2 short-circuit current, 82.66% fill factor, and 14.11% efficiency from a lateral cell (thickness = 3 μm; intrinsic layer width = 53 μm) in monofacial irradiation mode (i.e., only sunlight from the front side was considered). Simulation results of the cell without using rear-side reflector in bifacial irradiation mode showed 11.26% front and 9.72% rear efficiencies. Our findings confirmed that the laterally structured p-i-n cell can be a potentially powerful means for producing highly efficient, thin-film silicon solar cells.

  14. Application of PIN diode to soft x-ray measurement in TRIAM-1M

    International Nuclear Information System (INIS)

    Ohinata, Hirohiko; Kawasaki, Shoji; Kamitaki, Eriko; Moriyama, Shin-ichi; Nagao, Akihiro; Nakamura, Kazuo; Nakamura, Yukio; Hiraki, Naoji; Itoh, Satoshi.

    1989-01-01

    The soft X-ray in TRIAM-1M is measured with a PIN diode array in an effort to examine the internal MHD structures in tokamak plasma in TRIAM-1M. A magnetic probe is also used to make measurements. Based on these measurements, the region where sawtooth oscilations appears is identified in the Hugill diagram. The safety factor at the plasma surface at the time of the appearance of sawtooth oscillations is found to be larger than that at the time of its disappearance, indicating that the current density distribution becomes steeper with time. The time changes in the distribution of electron density and q-value are roughly calculated from those in the safety factor and inversion radius of sawtooth oscillations to confirm the above results. In low-q discharges, current disruption occurs either through the growth of the m=2/n=1 mode or through the interaction between the m=2/n=1 mode and m=3/n=2 mode. Current disruption in high-density discharges seems to occur through the growth of the m=2/n=1 mode. The rate of growth of sinusoidal oscillations is found to be only slightly dependent on the density. (N.K.)

  15. Frequency Reconfigurable Circular Patch Antenna with an Arc-Shaped Slot Ground Controlled by PIN Diodes

    Directory of Open Access Journals (Sweden)

    Yao Chen

    2017-01-01

    Full Text Available In this paper, a compact frequency reconfigurable circular patch antenna with an arc-shaped slot loaded in the ground layer is proposed for multiband wireless communication applications. By controlling the ON/OFF states of the five PIN diodes mounted on the arc-shaped slot, the effective length of the arc-shaped slot and the effective length of antennas current are changed, and accordingly six-frequency band reconfiguration can be achieved. The simulated and measured results show that the antenna can operate from 1.82 GHz to 2.46 GHz, which is located in DCS1800 (1.71–1.88 GHz, UMTS (2.11–2.20 GHz, WiBro (2.3–2.4 GHz, and Bluetooth (2.4–2.48 GHz frequency bands and so forth. Compared to the common rectangular slot circular patch antenna, the proposed arc-shaped slot circular patch antenna not only has a better rotational symmetry with the circular patch and substrate but also has more compact size. For the given operating frequency at 1.82 GHz, over 55% area reduction is achieved in this design with respect to the common design with rectangular slot. Since the promising frequency reconfiguration, this antenna may have potential applications in modern multiband and multifunctional mobile communication systems.

  16. A pin diode x-ray camera for laser fusion diagnostic imaging: Final technical report

    International Nuclear Information System (INIS)

    Jernigan, J.G.

    1987-01-01

    An x-ray camera has been constructed and tested for diagnostic imaging of laser fusion targets at the Laboratory for Laser Energetics (LLE) of the University of Rochester. The imaging detector, developed by the Hughes Aircraft Company, is a germanium PIN diode array of 10 x 64 separate elements which are bump bonded to a silicon readout chip containing a separate low noise amplifier for each pixel element. The camera assembly consists of a pinhole alignment mechanism, liquid nitrogen cryostat with detector mount and a thin beryllium entrance window, and a shielded rack containing the analog and digital electronics for operations. This x-ray camera has been tested on the OMEGA laser target chamber, the primary laser target facility of LLE, and operated via an Ethernet link to a SUN Microsystems workstation. X-ray images of laser targets are presented. The successful operation of this particular x-ray camera is a demonstration of the viability of the hybrid detector technology for future imaging and spectroscopic applications. This work was funded by the Department of Energy (DOE) as a project of the National Laser Users Facility (NLUF)

  17. Design and construction of a novel 1H/19F double-tuned coil system using PIN-diode switches at 9.4T.

    Science.gov (United States)

    Choi, Chang-Hoon; Hong, Suk-Min; Ha, YongHyun; Shah, N Jon

    2017-06-01

    A double-tuned 1 H/ 19 F coil using PIN-diode switches was developed and its performance evaluated. The is a key difference from the previous developments being that this design used a PIN-diode switch in series with an additionally inserted inductor in parallel to one of the capacitors on the loop. The probe was adjusted to 19 F when the reverse bias voltage was applied (PIN-diode OFF), whilst it was switched to 1 H when forward current was flowing (PIN-diode ON). S-parameters and Q-factors of single- and double-tuned coils were examined and compared with/without a phantom on the bench. Imaging experiments were carried out on a 9.4T preclinical scanner. All coils were tuned at resonance frequencies and matched well. It is shown that the Q-ratio and SNR of double-tuned coil at 19 F frequency are nearly as good as those of a single-tuned coil. Since the operating frequency was tuned to 19 F when the PIN-diodes were turned off, losses due to PIN-diodes were substantially lower resulting in the provision of excellent image quality of X-nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Simulation of Si P-i-N diodes for use in a positron emission tomography detector module

    International Nuclear Information System (INIS)

    Bailey, M.J.; University of Wollongong, NSW; Rosenfeld, A.; Lerch, M.; Taylor, G.; Heiser, G.

    2000-01-01

    Full text: Current Positron Emission Tomography (PET) systems consist of scintillation crystals optically coupled to photomultiplier tubes with associated electronics used to detect photons generated within the scintillator. The cost of photomultiplier tubes (PMTs) is considerable and is the major factor in the cost of PET systems. It has been suggested that Si P-i-N diodes can replace PMTs and provide Depth of Interaction (DOI) information for improved spatial resolution. Si P-i-N diodes of 25mm x 300μm and 3mm x 300μm cross sectional area were simulated using a 2D Monte Carlo program (PClD V5) from the UNSW photovoltics group. The diffusion lengths were varied from 0.5μm to 5μm and the charge collection characteristics of the diodes were observed. A 400nm monochromatic light source was used for the excitation as an approximation of the mean wavelength output from LSO crystal. The diodes were reverse biased with voltages 40V, 20V and 10V. The optimum diffusion length of up to 2μm and bias voltage of 40V were determined using the electric field, current density, carrier density and potential distribution results. These parameters will be used for the design of a device for optimal charge collection capabilities for the wavelengths encountered in PET applications. Further studies need to be conducted using spectra from LSO rather than a monochromatic source. The response of various Si P-i-N diodes to a monochromatic light source have been modeled in order to design a device for application in a PET detector module for DOI measurements. The charge collection within the first 2μm has been emphasized due to the strong absorption of photons from LSO near the surface.Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  19. Lead Halide Perovskite Photovoltaic as a Model p-i-n Diode.

    Science.gov (United States)

    Miyano, Kenjiro; Tripathi, Neeti; Yanagida, Masatoshi; Shirai, Yasuhiro

    2016-02-16

    The lead halide perovskite photovoltaic cells, especially the iodide compound CH3NH3PbI3 family, exhibited enormous progress in the energy conversion efficiency in the past few years. Although the first attempt to use the perovskite was as a sensitizer in a dye-sensitized solar cell, it has been recognized at the early stage of the development that the working of the perovskite photovoltaics is akin to that of the inorganic thin film solar cells. In fact, theoretically perovskite is always treated as an ordinary direct band gap semiconductor and hence the perovskite photovoltaics as a p-i-n diode. Despite this recognition, research effort along this line of thought is still in pieces and incomplete. Different measurements have been applied to different types of devices (different not only in the materials but also in the cell structures), making it difficult to have a coherent picture. To make the situation worse, the perovskite photovoltaics have been plagued by the irreproducible optoelectronic properties, most notably the sweep direction dependent current-voltage relationship, the hysteresis problem. Under such circumstances, it is naturally very difficult to analyze the data. Therefore, we set out to make hysteresis-free samples and apply time-tested models and numerical tools developed in the field of inorganic semiconductors. A series of electrical measurements have been performed on one type of CH3NH3PbI3 photovoltaic cells, in which a special attention was paid to ensure that their electronic reproducibility was better than the fitting error in the numerical analysis. The data can be quantitatively explained in terms of the established models of inorganic semiconductors: current/voltage relationship can be very well described by a two-diode model, while impedance spectroscopy revealed the presence of a thick intrinsic layer with the help of a numerical solver, SCAPS, developed for thin film solar cell analysis. These results point to that CH3NH3PbI3 is an

  20. BPW34 Commercial p-i-n Diodes for High-Level 1-MeV Neutron Equivalent Fluence Monitoring

    CERN Document Server

    Ravotti, F; Moll, M; Saigne, F

    2008-01-01

    The BPW34 p-i-n diode was characterized at CERN in view of its utilization as radiation monitor at the LHC to cover the broad 1-MeV neutron equivalent fluence (Phieq) range expected for the LHC machine and experiments during operation. Electrical measurements for both forward and reverse bias were used to characterize the device and to understand its behavior under irradiation. When the device is powered forward, a sensitivity to fast hadrons for Phieq > 2 times1012 cm-2 has been observed. With increasing particle fluences the forward I- V characteristics of the diode shifts towards higher voltages. At Phieq > 3times1013 cm-2, the forward characteristic starts to bend back assuming a thyristor-like behavior. An explanation for this phenomenon is given in this article. Finally, detailed radiation-response curves for the forward bias-operation and annealing studies of the diode's forward voltage are presented for proton, neutron and gamma irradiation.

  1. Sensitive pre-amplifier to load for Pin diodes; Pre-amplificador sensible a carga para diodos PIN

    Energy Technology Data Exchange (ETDEWEB)

    Jacobo V, R. Y.; Hernandez D, V. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Ramirez J, F. J., E-mail: yoshimarv@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    The electronic instrumentation is indispensable for the measurement and characterization of the radiation. By means of this essential characteristics of the radiation are determined, as activity and their energy components. The nuclear instrumentation is based on the technical characteristics of the radiation detectors and the electronic devices associates (amplifiers, ana logical and digital converters, multichannel analyzers, etc.) The radiation detectors are very important instruments in fields as the nuclear physics, medicine, radiological protection, industry and in other fields, since they are the only method to capture the radiation and to be able to quantify it in precise form. To detect radiation diverse detector types are used, as the semiconductor type, inside them are the photodiodes type Pin. In this work the results that were obtained of the design, simulation, construction and tests of a preamplifier that was designed starting from a photodiode type Pin are presented. The system was designed and simulated with a program for electronic circuits, in this were carried out many tests being obtained a compact design and achieving the best necessary characteristics for its optimization. With the results of the simulation phase the electronics phase was built, which was couples to a spectroscopic amplifier and a multichannel analyzer. The total of the system was evaluated analyzing its performance before a triple source of alphas. Of the tests phase we find that the system allows obtaining, in a multichannel analyzer, the pulses height spectrum, with a good resolution and with this was calibrated the multichannel analyzer.

  2. Gamma-ray vulnerability of light-emitting diodes injection-laser diodes and pin-photodiodes for 1.3 μm wavelength-fiber optics

    International Nuclear Information System (INIS)

    Breuze, G.; Serre, J.

    1992-01-01

    With the increasing use of optical data links, it becomes essential to test for radiation vulnerability not only the transmission support - fiber and cable - but also fiber-end electro-optical components that could be exposed to hostile environment. Presently there is a significant number of radiation tests of optical fibers [1,2,3[. Here are only given a few results obtained on gradient index multimode fibers with and without phosphor. These data provide an important contribution to the improvement of all standard electro-optical pigtailed components working on the 1.3 μm wavelength: light-emitting diodes (LED), injection-laser diode modules (LDM) and pin-photodiodes (PD). Multicomponent LDM behaviour under CO 60 exposure was extensively tested. Hardened optical data links allow now to ensure medium data transmission rates on appreciable fiber - lengths despite medium steady - state gamma-ray exposure

  3. Luminescence in amorphous silicon p-i-n diodes under double-injection dispersive-transport-controlled recombination

    International Nuclear Information System (INIS)

    Han, D.; Wang, K.; Yeh, C.; Yang, L.; Deng, X.; Von Roedern, B.

    1997-01-01

    The temperature and electric-field dependence of the forward bias current and the electroluminescence (EL) in hydrogenated amorphous silicon (a-Si:H) p-i-n and n-i-p diodes have been studied. Both the current and the EL efficiency temperature dependence show three regions depending on either hopping-controlled or multiple-trapping or ballistic transport mechanisms. Comparing the thermalization-controlled geminate recombination processes of photoluminescence to the features of EL, the differences can be explained by transport-controlled nongeminate recombination in trap-rich materials. copyright 1997 The American Physical Society

  4. Measurements of 1/f noise in A-Si:H pin diodes and thin-film-transistors

    International Nuclear Information System (INIS)

    Cho, Gyuseong; Drewery, J.S.; Fujieda, I.; Jing, T.; Kaplan, S.N.; Perez-Mendez, V.; Qureshi, S.; Wildermuth, D.; Street, R.A.

    1990-05-01

    We measured the equivalent noise charge of a-Si:H pin diodes (5 ∼ 45μm i-layer) with a pulse shaping time of 2.5 μsec under reverse biases up to 30 V/μm and analyzed it as a four component noise source. The frequency spectra of 1/f noise on the soft-breakdown region and of the Nyquist noise from contact resistance of diodes were measured. Using the conversion equations for a CR-RC shaper, we identified the contact resistance noise and the 1/f noise as the main noise sources in the low bias and high bias regions respectively. The 1/f noise of a-Si:H TFTs with channel length of 15 μm was measured to be the dominant component up to ∼100kHz for both saturation and linear regions. 15 refs., 7 figs

  5. Development of readout electronics for monolithic integration with diode strip detectors

    International Nuclear Information System (INIS)

    Hosticka, B.J.; Wrede, M.; Zimmer, G.; Kemmer, J.; Hofmann, R.; Lutz, G.

    1984-03-01

    Parallel in - serial out analog readout electronics integrated with silicon strip detectors will bring a reduction of two orders of magnitude in external electronics. The readout concept and the chosen CMOS technology solve the basic problem of low noise and low power requirements. A hybrid solution is an intermediate step towards the final goal of monolithic integration of detector and electronics. (orig.)

  6. Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities

    Science.gov (United States)

    Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.

    1988-01-01

    56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.

  7. Monolithic Flexible Vertical GaN Light-Emitting Diodes for a Transparent Wireless Brain Optical Stimulator.

    Science.gov (United States)

    Lee, Han Eol; Choi, JeHyuk; Lee, Seung Hyun; Jeong, Minju; Shin, Jung Ho; Joe, Daniel J; Kim, DoHyun; Kim, Chang Wan; Park, Jung Hwan; Lee, Jae Hee; Kim, Daesoo; Shin, Chan-Soo; Lee, Keon Jae

    2018-05-18

    Flexible inorganic-based micro light-emitting diodes (µLEDs) are emerging as a significant technology for flexible displays, which is an important area for bilateral visual communication in the upcoming Internet of Things era. Conventional flexible lateral µLEDs have been investigated by several researchers, but still have significant issues of power consumption, thermal stability, lifetime, and light-extraction efficiency on plastics. Here, high-performance flexible vertical GaN light-emitting diodes (LEDs) are demonstrated by silver nanowire networks and monolithic fabrication. Transparent, ultrathin GaN LED arrays adhere to a human fingernail and stably glow without any mechanical deformation. Experimental studies provide outstanding characteristics of the flexible vertical μLEDs (f-VLEDs) with high optical power (30 mW mm -2 ), long lifetime (≈12 years), and good thermal/mechanical stability (100 000 bending/unbending cycles). The wireless light-emitting system on the human skin is successfully realized by transferring the electrical power f-VLED. Finally, the high-density GaN f-VLED arrays are inserted onto a living mouse cortex and operated without significant histological damage of brain. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring.

    Science.gov (United States)

    Khrustalev, K; Popov, V Yu; Popov, Yu S

    2017-08-01

    We present a new second generation SiPIN based electron-photon coincidence detector system developed by Lares Ltd. for use in the Noble Gas measurement systems of the International Monitoring System and the On-site Inspection verification regimes of the Comprehensive Nuclear-Test Ban Treaty (CTBT). The SiPIN provide superior energy resolution for electrons. Our work describes the improvements made in the second generation detector cells and the potential use of such detector systems for other applications such as In-Situ Kr-85 measurements for non-proliferation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Silicon PIN diode hybrid arrays for charged particle detection: Building blocks for vertex detectors at the SSC

    International Nuclear Information System (INIS)

    Kramer, G.; Gaalema, S.; Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.

    1989-05-01

    Two-dimensional arrays of solid state detectors have long been used in visible and infrared systems. Hybrid arrays with separately optimized detector and readout substrates have been extensively developed for infrared sensors. The characteristics and use of these infrared readout chips with silicon PIN diode arrays produced by MICRON SEMICONDUCTOR for detecting high-energy particles are reported. Some of these arrays have been produced in formats as large as 512 /times/ 512 pixels; others have been radiation hardened to total dose levels beyond 1 Mrad. Data generation rates of 380 megasamples/second have been achieved. Analog and digital signal transmission and processing techniques have also been developed to accept and reduce these high data rates. 9 refs., 15 figs., 2 tabs

  10. Resonant metallic nanostructure for enhanced two-photon absorption in a thin GaAs p-i-n diode

    Energy Technology Data Exchange (ETDEWEB)

    Portier, Benjamin; Pardo, Fabrice; Péré-Laperne, Nicolas; Steveler, Emilie; Dupuis, Christophe; Bardou, Nathalie; Lemaître, Aristide; Pelouard, Jean-Luc, E-mail: jean-luc.pelouard@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), Route de Nozay, 91460 Marcoussis (France); Vest, Benjamin; Jaeck, Julien; Rosencher, Emmanuel [ONERA The French Aerospace Lab, Chemin de la Hunière, F-91760 Palaiseau (France); Haïdar, Riad [ONERA The French Aerospace Lab, Chemin de la Hunière, F-91760 Palaiseau (France); École Polytechnique, Département de Physique, F-91128 Palaiseau (France)

    2014-07-07

    Degenerate two-photon absorption (TPA) is investigated in a 186 nm thick gallium arsenide (GaAs) p-i-n diode embedded in a resonant metallic nanostructure. The full device consists in the GaAs layer, a gold subwavelength grating on the illuminated side, and a gold mirror on the opposite side. For TM-polarized light, the structure exhibits a resonance close to 1.47 μm, with a confined electric field in the intrinsic region, far from the metallic interfaces. A 109 times increase in photocurrent compared to a non-resonant device is obtained experimentally, while numerical simulations suggest that both gain in TPA-photocurrent and angular dependence can be further improved. For optimized grating parameters, a maximum gain of 241 is demonstrated numerically and over incidence angle range of (−30°; +30°).

  11. Resonant metallic nanostructure for enhanced two-photon absorption in a thin GaAs p-i-n diode

    International Nuclear Information System (INIS)

    Portier, Benjamin; Pardo, Fabrice; Péré-Laperne, Nicolas; Steveler, Emilie; Dupuis, Christophe; Bardou, Nathalie; Lemaître, Aristide; Pelouard, Jean-Luc; Vest, Benjamin; Jaeck, Julien; Rosencher, Emmanuel; Haïdar, Riad

    2014-01-01

    Degenerate two-photon absorption (TPA) is investigated in a 186 nm thick gallium arsenide (GaAs) p-i-n diode embedded in a resonant metallic nanostructure. The full device consists in the GaAs layer, a gold subwavelength grating on the illuminated side, and a gold mirror on the opposite side. For TM-polarized light, the structure exhibits a resonance close to 1.47 μm, with a confined electric field in the intrinsic region, far from the metallic interfaces. A 109 times increase in photocurrent compared to a non-resonant device is obtained experimentally, while numerical simulations suggest that both gain in TPA-photocurrent and angular dependence can be further improved. For optimized grating parameters, a maximum gain of 241 is demonstrated numerically and over incidence angle range of (−30°; +30°).

  12. Measurement of parameters for the quality control of X-ray units by using PIN diodes and a personal computer

    International Nuclear Information System (INIS)

    Ramirez, F.; Gaytan, E.; Mercado, I.; Estrada, M.; Cerdeira, A.

    2000-01-01

    The design of a new system for the measurement of the main parameters of X-ray units used in medicine is presented. The system measures automatically the exposure time, high voltage applied, waveform of the detected signal, exposure ratio and the total exposure (dose). The X-ray detectors employed are PIN diodes developed at CINVESTAV, the measurements are done in one single shot, without invasion of the X-ray unit. The results are shown in the screen of the computer and can be saved in a file for later analysis. The proposed system is intended to be used in the quality control of X-rays units for clinical radio-diagnosis. It is a simple and inexpensive equipment if compared with available commercial equipment that uses ionization chambers and accurate electrometers that small facilities and hospitals cannot afford

  13. Application of semiconductor MOSFET and pin diode dosimeters to epithermal neutron beam dose distribution measurements in phantoms

    International Nuclear Information System (INIS)

    Carolan, M.G.; Wallace, S.A.; Allen, B.J.; Rosenfeld, A.B.; Mathur, J.N.

    1996-01-01

    For any clinical application of Boron Neutron Capture Therapy (BNCT) fast and accurate dose calculations will be required for treatment planning. Such calculations are also necessary for the planning and interpretation of results from pre-clinical and clinical trials where the speed of calculation is not so critical. A dose calculation system based on the MCNP Monte Carlo Neutron transport code has been developed by Wallace. This system takes image data from CT scans and constructs a voxel based geometrical model for input into MCNP. To validate the calculations, a number of phantoms were constructed and exposed in the HB11 epithermal neutron beam at the HFR of the CEC Joint Research Centre in Petten. The doses recorded by arrays of PIN diode neutron dosimeters and MOSFET gamma dosimeters in these phantoms were compared with the calculated results from the MCNP dose planning system. Initial results have been reported elsewhere. Poster 197. (author)

  14. A Low-Noise X-ray Astronomical Silicon-On-Insulator Pixel Detector Using a Pinned Depleted Diode Structure.

    Science.gov (United States)

    Kamehama, Hiroki; Kawahito, Shoji; Shrestha, Sumeet; Nakanishi, Syunta; Yasutomi, Keita; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2017-12-23

    This paper presents a novel full-depletion Si X-ray detector based on silicon-on-insulator pixel (SOIPIX) technology using a pinned depleted diode structure, named the SOIPIX-PDD. The SOIPIX-PDD greatly reduces stray capacitance at the charge sensing node, the dark current of the detector, and capacitive coupling between the sensing node and SOI circuits. These features of the SOIPIX-PDD lead to low read noise, resulting high X-ray energy resolution and stable operation of the pixel. The back-gate surface pinning structure using neutralized p-well at the back-gate surface and depleted n-well underneath the p-well for all the pixel area other than the charge sensing node is also essential for preventing hole injection from the p-well by making the potential barrier to hole, reducing dark current from the Si-SiO₂ interface and creating lateral drift field to gather signal electrons in the pixel area into the small charge sensing node. A prototype chip using 0.2 μm SOI technology shows very low readout noise of 11.0 e - rms , low dark current density of 56 pA/cm² at -35 °C and the energy resolution of 200 eV(FWHM) at 5.9 keV and 280 eV (FWHM) at 13.95 keV.

  15. Terahertz repetition frequencies from harmonic mode-locked monolithic compound-cavity laser diodes

    International Nuclear Information System (INIS)

    Yanson, D. A.; Street, M. W.; McDougall, S. D.; Thayne, I. G.; Marsh, J. H.; Avrutin, E. A.

    2001-01-01

    Compound-cavity laser diodes are mode locked at a harmonic of the fundamental round-trip frequency to achieve repetition rates of up to 2.1 THz. The devices are fabricated from GaAs/AlGaAs material at a wavelength of 860 nm and incorporate two gain sections with an etched slot reflector between them, and a saturable absorber section. Autocorrelation studies are used to investigate device behavior for different reflector types and reflectivity. These lasers may find applications in terahertz imaging, medicine, ultrafast optical links, and atmospheric sensing. [copyright] 2001 American Institute of Physics

  16. Transient current changes induced in pin-diodes by nanosecond electron pulses

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Goldner, R.; Bos, J.; Mehnert, R.

    1984-01-01

    The electron pulse technique can be applied as a diagnostic method to measure charge carrier lifetimes, diffusion length or junction width in semiconductor p + -i-n + diodes. The described effect of the pulse length dependence on the electron energy might be of importance as an energy monitor for pulsed electron accelerators. (author)

  17. Photoelectric characteristics of diodes in prototype photosensitive pixels for a monolithic array infrared photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Sorochkin, A. V., E-mail: alexandersm@mail.ru; Varavin, V. S.; Predein, A. V.; Sabinina, I. V.; Yakushev, M. V. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2012-04-15

    Test photodiodes in the form of mesa structures with different areas from 30 Multiplication-Sign 30 to 100 Multiplication-Sign 100 {mu}m in size are fabricated based on a Cd{sub x}Hg{sub 1-x}Te/Si structure at x = 0.235, grown by molecular-beam epitaxy (MBE). The current-voltage characteristics of the diodes are measured in the dark and under background light conditions. The experimental results are compared with theoretical calculations. It is found that the dependence of the photodiode photocurrent and dark current on the mesa structure size appears in the mesa size ranges from 30 Multiplication-Sign 30 to 80 Multiplication-Sign 80 {mu}m. The dark current decreases and the photocurrent increases with decreasing mesa size. The mechanisms affecting the behavior of current-voltage characteristics are discussed.

  18. GaAs Schottky versus p/i/n diodes for pixellated X-ray detectors

    CERN Document Server

    Bourgoin, J C

    2002-01-01

    We discuss the performances of GaAs p/i/n structures and Schottky barriers for application as photodetectors for high-energy photons. We compare the magnitude of the leakage current and the width of the depleted region for a given reverse bias. We mention the effect of states present at the metal-semiconductor interface on the extension of the space charge region in Schottky barriers. We illustrate this effect by a description of the capacitance behaviour of a Au-GaAs barrier under gamma irradiation.

  19. Antireflective sub-wavelength structures for improvement of the extraction efficiency and color rendering index of monolithic white light-emitting diode

    DEFF Research Database (Denmark)

    Ou, Yiyu; Corell, Dennis Dan; Dam-Hansen, Carsten

    2011-01-01

    We have theoretically investigated the influence of antireflective sub-wavelength structures on a monolithic white light-emitting diode (LED). The simulation is based on the rigorous coupled wave analysis (RCWA) algorithm, and both cylinder and moth-eye structures have been studied in the work. Our...... simulation results show that a moth-eye structure enhances the light extraction efficiency over the entire visible light range with an extraction efficiency enhancement of up to 26 %. Also for the first time to our best knowledge, the influence of sub-wavelength structures on both the color rendering index...

  20. Recombination centers and electrical characteristics in silicon power p-i-n diodes irradiated with high energy electrons

    International Nuclear Information System (INIS)

    Fuochi, P.G.; Martelli, A.; Passerini, B.; Zambelli, M.

    1988-01-01

    Recombination centers introduced by irradiation with 12 MeV electrons in large area silicon diodes with p-i-n structure are studied with the Deep Level Transient Spectroscopy technique (DLTS). The effects of these levels on the electrical characteristics of the devices are related to their position Esub(t) in the silicon forbidden gap, their concentration and their electron capture cross section. Changes of defect configuration during an annealing process at 360 0 C have been observed and a detailed analysis of the DLTS spectra has shown a complex defect pattern. Four major recombination centers have been identified: Esub(c) - Esub(t) = 0.17 eV, Esub(c) - Esub(t) = 0.19 eV, Esub(c) -Esub(t) 0.31 eV, Esub(c) - Esub(t) = 0.39 eV, where Esub(c) is the energy corresponding to the lower limit of the conduction band. The first energy level, known as A-center, is the dominant recombination level controlling the minority carrier lifetime after room temperature irradiation. As the annealing proceeds the center at Esub(c) - Esub(t) = 0.31 eV becomes the dominant one. The complex structure of the centers has been studied and demonstrated with the aid of proper modelling implemented on a set of numerical simulation tools. In this way it has been possible to analyze more accurately the defect kinetics during annealing. The study of the defect behaviour during the annealing process has resulted in an improved application of electron irradiation as a standard production technique in the manufacturing process of high power devices. (author)

  1. Efficiency enhancement of InGaN/GaN light-emitting diodes with pin-doped GaN quantum barrier

    International Nuclear Information System (INIS)

    Sirkeli, Vadim P; Al-Daffaie, Shihab; Oprea, Ion; Küppers, Franko; Hartnagel, Hans L; Yilmazoglu, Oktay; Ong, Duu Sheng

    2017-01-01

    Blue InGaN/GaN light-emitting diodes with undoped, heavily Si-doped, Si delta-doped, heavily Mg-doped, Mg delta-doped, and Mg–Si pin-doped GaN barrier are investigated numerically. The simulation results demonstrate that the Mg–Si pin-doping in the GaN barrier effectively reduces the polarization-induced electric field between the InGaN well and the GaN barrier in the multiple quantum well, suppresses the quantum-confined Stark effect, and enhances the hole injection and electron confinement in the active region. For this light-emitting diode (LED) device structure, we found that the turn-on voltage is 2.8 V, peak light emission is at 415.3 nm, and internal quantum efficiency is 85.9% at 100 A cm −2 . It is established that the LED device with Mg–Si pin-doping in the GaN barrier has significantly improved efficiency and optical output power performance, and lower efficiency droop up to 400 A cm −2 compared with LED device structures with undoped or Si(Mg)-doped GaN barrier. (paper)

  2. Influence of different approaches for dynamical performance optimization of monolithic passive colliding-pulse mode-locked laser diodes emitting around 850 nm

    Science.gov (United States)

    Prziwarka, T.; Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Weyers, M.; Knigge, A.; Tränkle, G.

    2018-02-01

    Monolithic laser diodes which generate short infrared pulses in the picosecond and sub-picosecond ranges with high peak power are ideal sources for many applications like e.g. THz-time-domain spectroscopy (TDS) scanning systems. The achievable THz bandwidth is limited by the length of the optical pulses. Due to the fact that colliding-pulse mode locking (CPM) leads to the shortest pulses which could reached by passive mode locking, we experimentally investigated in detail the dynamical and electro optical performance of InGaAsP based quantum well CPM laser diodes with well-established vertical layer structures. Simple design modifications whose implementation is technically easy were realized. Improvements of the device performance in terms of pulse duration, output power, and noise properties are presented in dependence on the different adaptions. From the results we extract an optimized configuration with which we have reached pulses with durations of ≍1.5 ps, a peak power of > 1 W and a pulse-to-pulse timing jitter < 200 fs. The laser diodes emit pulses at a wavelength around 850 nm with a repetition frequency of ≍ 12.4 GHz and could be used as pump source for GaAs antennas to generate THz-radiation. Approaches for reducing pulse width, increasing output power, and improving noise performance are described.

  3. Origin analysis of expanded stacking faults by applying forward current to 4H-SiC p-i-n diodes

    Science.gov (United States)

    Hayashi, Shohei; Naijo, Takanori; Yamashita, Tamotsu; Miyazato, Masaki; Ryo, Mina; Fujisawa, Hiroyuki; Miyajima, Masaaki; Senzaki, Junji; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2017-08-01

    Stacking faults expanded by the application of forward current to 4H-SiC p-i-n diodes were observed using a transmission electron microscope to investigate the expansion origin. It was experimentally confirmed that long-zonal-shaped stacking faults expanded from basal-plane dislocations converted into threading edge dislocations. In addition, stacking fault expansion clearly penetrated into the substrate to a greater depth than the dislocation conversion point. This downward expansion of stacking faults strongly depends on the degree of high-density minority carrier injection.

  4. Monte Carlo simulation of THz radiation from GaAs p-i-n diodes under high electric fields using an extended valley model

    International Nuclear Information System (INIS)

    Dinh Nhu Thao

    2008-01-01

    We have applied a self-consistent ensemble Monte Carlo simulation procedure using an extended valley model to consider the THz radiation from GaAs p-i-n diodes under high electric fields. The present calculation has shown an important improvement of the numerical results when using this model instead of the usual valley model. It has been shown the importance of the full band-structure in the simulation of processes in semiconductors, especially under the influence of high electric fields. (author)

  5. Dual-polarization wavelength conversion of 16-QAM signals in a single silicon waveguide with a lateral p-i-n diode [Invited

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Gajda, Andrzej; Liebig, Erik

    2018-01-01

    with an optical signal-to-noise ratio penalty below 0.7 dB. High-quality converted signals are generated thanks to the low polarization dependence (≤0.5 dB) and the high conversion efficiency (CE) achievable. The strong Kerr nonlinearity in silicon and the decrease of detrimental free-carrier absorption due......A polarization-diversity loop with a silicon waveguide with a lateral p-i-n diode as a nonlinear medium is used to realize polarization insensitive four-wave mixing. Wavelength conversion of seven dual-polarization 16-quadrature amplitude modulation (QAM) signals at 16 GBd is demonstrated...

  6. Monolithic integration of collimating Fresnel lens for beam quality enhancement in tapered high-power laser diode

    NARCIS (Netherlands)

    Lau, F.K.; Tee, C.W.; Zhao, Xin; Williams, K.A.; Penty, R.V.; White, I.H.; Calligaro, M.; Lecomte, M.; Parillaud, O.; Michel, N.; Krakowski, M.

    2006-01-01

    We demonstrate, for the first time, a monolithic integrated lens for wide aperture gain-guided tapered laser beam quality enhancement by compensating the quadratic phase curvature. The 3mm long tapered laser with an output aperture of 170µm adopted in this design consists of a gain-guided tapered

  7. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111).

    Science.gov (United States)

    Nguyen, H P T; Zhang, S; Cui, K; Han, X; Fathololoumi, S; Couillard, M; Botton, G A; Mi, Z

    2011-05-11

    Full-color, catalyst-free InGaN/GaN dot-in-a-wire light-emitting diodes (LEDs) were monolithically grown on Si(111) by molecular beam epitaxy, with the emission characteristics controlled by the dot properties in a single epitaxial growth step. With the use of p-type modulation doping in the dot-in-a-wire heterostructures, we have demonstrated the most efficient phosphor-free white LEDs ever reported, which exhibit an internal quantum efficiency of ∼56.8%, nearly unaltered CIE chromaticity coordinates with increasing injection current, and virtually zero efficiency droop at current densities up to ∼640 A/cm(2). The remarkable performance is attributed to the superior three-dimensional carrier confinement provided by the electronically coupled dot-in-a-wire heterostructures, the nearly defect- and strain-free GaN nanowires, and the significantly enhanced hole transport due to the p-type modulation doping.

  8. Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors

    International Nuclear Information System (INIS)

    Liu, Zhaojun; Ma, Jun; Huang, Tongde; Liu, Chao; May Lau, Kei

    2014-01-01

    In this Letter, we report selective epitaxial growth of monolithically integrated GaN-based light emitting diodes (LEDs) with AlGaN/GaN high-electron-mobility transistor (HEMT) drivers. A comparison of two integration schemes, selective epitaxial removal (SER), and selective epitaxial growth (SEG) was made. We found the SER resulted in serious degradation of the underlying LEDs in a HEMT-on-LED structure due to damage of the p-GaN surface. The problem was circumvented using the SEG that avoided plasma etching and minimized device degradation. The integrated HEMT-LEDs by SEG exhibited comparable characteristics as unintegrated devices and emitted modulated blue light by gate biasing

  9. Integrated chemical sensor array platform based on a light emitting diode, xerogel-derived sensor elements, and high-speed pin printing

    International Nuclear Information System (INIS)

    Cho, Eun Jeong; Bright, Frank V.

    2002-01-01

    We report a new, solid-state, integrated optical array sensor platform. By using pin printing technology in concert with sol-gel-processing methods, we form discrete xerogel-based microsensor elements that are on the order of 100 μm in diameter and 1 μm thick directly on the face of a light emitting diode (LED). The LED serves as the light source to excite chemically responsive luminophores sequestered within the doped xerogel microsensors and the analyte-dependent emission from within the doped xerogel is detected with a charge coupled device (CCD). We overcome the problem of background illumination from the LED reaching the CCD and the associated biasing that results by coating the LED first with a thin layer of blue paint. The thin paint layer serves as an optical filter, knocking out the LEDs red-edge spectral tail. The problem of the spatially-dependent fluence across the LED face is solved entirely by performing ratiometric measurements. We illustrate the performance of the new sensor scheme by forming an array of 100 discrete O 2 -responsive sensing elements on the face of a single LED. The combination of pin printing with an integrated sensor and light source platform results in a rapid method of forming (∼1 s per sensor element) reusable sensor arrays. The entire sensor array can be calibrated using just one sensor element. Array-to-array reproducibly is <8%. Arrays can be formed using single or multiple pins with indistinguishable analytical performance

  10. Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics

    KAUST Repository

    Zhao, Chao

    2016-07-28

    A droop-free nitride light-emitting diode (LED) with the capacity to operate beyond the “green gap” has been a subject of intense scientific and engineering interest. While several properties of nanowires on silicon make them promising for use in LED development, the high aspect ratio of individual nanowires and their laterally discontinuous features limit phonon transport and device performance. Here, we report on the monolithic integration of metal heat-sink and droop-free InGaN/GaN quantum-disks-in-nanowire LEDs emitting at ∼710 nm. The reliable operation of our uncooled nanowire-LEDs (NW-LEDs) epitaxially grown on molybdenum was evident in the constant-current soft burn-in performed on a 380 μm × 380 μm LED. The square LED sustained 600 mA electrical stress over an 8 h period, providing stable light output at maturity without catastrophic failure. The absence of carrier and phonon transport barriers in NW-LEDs was further inferred from current-dependent Raman measurements (up to 700 mA), which revealed the low self-heating. The radiative recombination rates of NW-LEDs between room temperature and 40 °C was not limited by Shockley–Read–Hall recombination, Auger recombination, or carrier leakage mechanisms, thus realizing droop-free operation. The discovery of reliable, droop-free devices constitutes significant progress toward the development of nanowires for practical applications. Our monolithic approach realized a high-performance device that will revolutionize the way high power, low-junction-temperature LED lamps are manufactured for solid-state lighting and for applications in high-temperature harsh environment.

  11. Development of a PIN diode based on-line measurement system for Radon (222Rn) and Thoron (220Rn) in environment

    International Nuclear Information System (INIS)

    Ashokkumar, P.; Chaudhury, Probal; Sumesh, C.G.; Sahoo, B.K.; Gaware, J.J.; Mayya, Y.S.

    2014-01-01

    Radon, thoron and their progenies are universally present in outdoor air, and can reach higher levels in indoor air due to poor ventilation. Several instruments have been developed for accurate measurement of radon and thoron in the environment. Semiconductor detector based system employing spectroscopic method has been proved to be the best among them. A PIN diode based electrostatic collection type online real-time instrument has been developed in Bhabha Atomic Research Centre for simultaneous measurement of radon and thoron in an environment while both 222 Rn and 220 Rn are present. This system can be used for determination of radon and thoron concentrations at residence or workplace. Furthermore, since the 222 Rn and 220 Rn are differentiated from each other through spectroscopy, this monitor can be used even in a mixed radon/thoron environment

  12. Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kwon, O.; Boeckl, J. J.; Lee, M. L.; Pitera, A. J.; Fitzgerald, E. A.; Ringel, S. A.

    2006-01-01

    Room temperature operation of visible AlGaInP laser diodes epitaxially integrated on Si was demonstrated. Compressively strained laser heterostructures were grown by molecular beam epitaxy (MBE) on low dislocation density SiGe/Si substrates, where the threading dislocation density of the top relaxed Ge layers was measured in the range of 2x10 6 cm -2 . A threshold current density of J th ∼1.65 kA/cm 2 for the as-cleaved, gain-guided AlGaInP laser grown on SiGe/Si was obtained at the peak emission wavelength of 680 nm under pulsed mode current injection. These results show that not only can high quality AlGaInP materials grown by MBE be achieved on Si via relaxed SiGe interlayers, but the prototype demonstration of laser diode operation on Si illustrates that very defect sensitive optoelectronics in the III-P system can indeed be integrated with Si substrates by heteroepitaxial methods

  13. Highly luminescent and photostable quantum dot-silica monolith and its application to light-emitting diodes.

    Science.gov (United States)

    Jun, Shinae; Lee, Junho; Jang, Eunjoo

    2013-02-26

    A highly luminescent and photostable quantum dot-silica monolith (QD-SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol-gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol-gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD-SM maintained its initial luminescence after high-power UV radiation (∼1 W) for 200 h and through the 150 °C LED encapsulant curing process. Green and red light-emitting QD-SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD-SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported.

  14. Sensitive silicon PIN-diode dosimeter for fast neutrons and method to control and increase its sensitivity

    International Nuclear Information System (INIS)

    Swinehart, P.R.; Swartz, J.M.

    1978-01-01

    With the personnel dosimeter, applicable e.g. in medicine, a dose of 0.1 rad for neutrons with an energy greater than 10 keV can be detected. In the range between 0.1 and 20 rad sensitivity is increased to 5 mV/rad. This sensitivity can be achieved by distributing the mass of the semiconductor material of the diode or equal to four times the reciprocal base width. Appropriate dimensions are 750 μm for the edge length of the end surface resp. diameter and 750 μm up to 5000 μm for the base width. (DG) [de

  15. III-nitride disk-in-nanowire 1.2 μm monolithic diode laser on (001)silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hazari, Arnab; Aiello, Anthony; Bhattacharya, Pallab [Center for Photonics and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Ng, Tien-Khee; Ooi, Boon S. [Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)

    2015-11-09

    III-nitride nanowire diode heterostructures with multiple In{sub 0.85}Ga{sub 0.15}N disks and graded InGaN mode confining regions were grown by molecular beam epitaxy on (001)Si substrates. The aerial density of the 60 nm nanowires is ∼3 × 10{sup 10} cm{sup −2}. A radiative recombination lifetime of 1.84 ns in the disks is measured by time-resolved luminescence measurements. Edge-emitting nanowire lasers have been fabricated and characterized. Measured values of J{sub th}, T{sub 0}, and dg/dn in these devices are 1.24 kA/cm{sup 2}, 242 K, and 5.6 × 10{sup −17} cm{sup 2}, respectively. The peak emission is observed at ∼1.2 μm.

  16. 11.72-sq cm Active-Area Wafer Interconnected PiN Diode Pulsed at 64 kA Dissipates 382 J and Exhibits an Action of 1.7 MA(sup 2)-s

    Science.gov (United States)

    2012-01-30

    calculated action exceeded 1.7 MA2 -s. Preliminary efforts on high voltage diode interconnection have produced quarter wafer interconnected PiN...was packaged in a “hockey-puck” configuration and pulsed to 64 kA, dissipating 382 J with a calculated action exceeding 1.7 MA2 -s. II. FULL...epitaxial layers are utilized. 11.72-cm2 Active-area Wafer Interconnected PiN Diode pulsed at 64 kA dissipates 382 J and exhibits an action of 1.7 MA2 -s

  17. Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi-level pinning at the molecule-metal interface.

    Science.gov (United States)

    Lenfant, S; Guerin, D; Tran Van, F; Chevrot, C; Palacin, S; Bourgoin, J P; Bouloussa, O; Rondelez, F; Vuillaume, D

    2006-07-20

    We report the synthesis and characterization of molecular rectifying diodes on silicon using sequential grafting of self-assembled monolayers of alkyl chains bearing a pi group at their outer end (Si/sigma-pi/metal junctions). We investigate the structure-performance relationships of these molecular devices, and we examine the extent to which the nature of the pi end group (change in the energy position of their molecular orbitals) drives the properties of these molecular diodes. Self-assembled monolayers of alkyl chains (different chain lengths from 6 to 15 methylene groups) functionalized by phenyl, anthracene, pyrene, ethylene dioxythiophene, ethylene dioxyphenyl, thiophene, terthiophene, and quaterthiophene were synthesized and characterized by contact angle measurements, ellipsometry, Fourier transform infrared spectroscopy, and atomic force microscopy. We demonstrate that reasonably well-packed monolayers are obtained in all cases. Their electrical properties were assessed by dc current-voltage characteristics and high-frequency (1-MHz) capacitance measurements. For all of the pi groups investigated here, we observed rectification behavior. These results extend our preliminary work using phenyl and thiophene groups (Lenfant et al., Nano Lett. 2003, 3, 741). The experimental current-voltage curves were analyzed with a simple analytical model, from which we extracted the energy position of the molecular orbital of the pi group in resonance with the Fermi energy of the electrodes. We report experimental studies of the band lineup in these silicon/alkyl pi-conjugated molecule/metal junctions. We conclude that Fermi-level pinning at the pi group/metal interface is mainly responsible for the observed absence of a dependence of the rectification effect on the nature of the pi groups, even though the groups examined were selected to have significant variations in their electronic molecular orbitals.

  18. CdS-based p-i-n diodes using indium and copper doped CdS films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N; Berrellez-Reyes, F; Mizquez-Corona, R; Ramirez-Esquivel, O; Mejia, I; Quevedo-Lopez, M

    2015-01-01

    In this work we report a method to dope cadmium sulfide (CdS) thin films using pulsed laser deposition. Doping is achieved during film growth at substrate temperatures of 100 °C by sequential deposition of the CdS and the dopant material. Indium sulfide and copper disulfide targets were used as the dopant sources for n-type and p-type doping, respectively. Film resistivities as low as 0.2 and 1 Ω cm were achieved for indium and copper doped films, respectively. Hall effect measurements demonstrated the change in conductivity type from n-type to p-type when the copper dopants are incorporated into the film. The controlled incorporation of indium or copper, in the undoped CdS film, results in substitutional defects in the CdS, which increases the electron and hole concentration up to 4 × 10 18 cm −3 and 3 × 10 20 cm −3 , respectively. The results observed with CdS doping can be expanded to other chalcogenides material compounds by just selecting different targets. With the optimized doped films, CdS-based p-i-n diodes were fabricated yielding an ideality factor of 4, a saturation current density of 2 × 10 −6 A cm −2 and a rectification ratio of three orders of magnitude at ±3 V. (paper)

  19. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed

    2016-11-17

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  20. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed A.; Ghaffar, Farhan A.; Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  1. Design analysis of phosphor-free monolithic white light-emitting-diodes with InGaN/ InGaN multiple quantum wells on ternary InGaN substrates

    Directory of Open Access Journals (Sweden)

    Yu Kee Ooi

    2015-05-01

    Full Text Available Phosphor-free monolithic white light emitting diodes (LEDs based on InGaN/ InGaN multiple quantum wells (MQWs on ternary InGaN substrates are proposed and analyzed in this study. Simulation studies show that LED devices composed of multi-color-emitting InGaN/ InGaN quantum wells (QWs employing ternary InGaN substrate with engineered active region exhibit stable white color illumination with large output power (∼ 170 mW and high external quantum efficiency (EQE (∼ 50%. The chromaticity coordinate for the investigated monolithic white LED devices are located at (0.30, 0.28 with correlated color temperature (CCT of ∼ 8200 K at J = 50 A/cm2. A reference LED device without any nanostructure engineering exhibits green color emission shows that proper engineered structure is essential to achieve white color illumination. This proof-of-concept study demonstrates that high-efficiency and cost-effective phosphor-free monolithic white LED is feasible by the use of InGaN/ InGaN MQWs on ternary InGaN substrate combined with nanostructure engineering, which would be of great impact for solid state lighting.

  2. Design analysis of phosphor-free monolithic white light-emitting-diodes with InGaN/ InGaN multiple quantum wells on ternary InGaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, Yu Kee, E-mail: Yu.Kee.Ooi@rit.edu; Zhang, Jing, E-mail: Jing.Zhang@rit.edu [Department of Electrical and Microelectronics Engineering, Rochester Institute of Technology, Rochester, New York 14623 (United States)

    2015-05-15

    Phosphor-free monolithic white light emitting diodes (LEDs) based on InGaN/ InGaN multiple quantum wells (MQWs) on ternary InGaN substrates are proposed and analyzed in this study. Simulation studies show that LED devices composed of multi-color-emitting InGaN/ InGaN quantum wells (QWs) employing ternary InGaN substrate with engineered active region exhibit stable white color illumination with large output power (∼ 170 mW) and high external quantum efficiency (EQE) (∼ 50%). The chromaticity coordinate for the investigated monolithic white LED devices are located at (0.30, 0.28) with correlated color temperature (CCT) of ∼ 8200 K at J = 50 A/cm{sup 2}. A reference LED device without any nanostructure engineering exhibits green color emission shows that proper engineered structure is essential to achieve white color illumination. This proof-of-concept study demonstrates that high-efficiency and cost-effective phosphor-free monolithic white LED is feasible by the use of InGaN/ InGaN MQWs on ternary InGaN substrate combined with nanostructure engineering, which would be of great impact for solid state lighting.

  3. Monolithic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  4. Pin care

    Science.gov (United States)

    ... Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Pin care URL of this page: //medlineplus.gov/ency/patientinstructions/000481.htm Pin care To use the sharing features on this page, please enable JavaScript. Broken bones can be fixed in surgery with metal ...

  5. Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes

    Science.gov (United States)

    Hayashi, Shohei; Yamashita, Tamotsu; Senzaki, Junji; Miyazato, Masaki; Ryo, Mina; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2018-04-01

    The origin of expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes was investigated by the stress-current test. At a stress-current density lower than 25 A cm-2, triangular stacking faults were formed from basal-plane dislocations in the epitaxial layer. At a stress-current density higher than 350 A cm-2, both triangular and long-zone-shaped stacking faults were formed from basal-plane dislocations that converted into threading edge dislocations near the interface between the epitaxial layer and the substrate. In addition, the conversion depth of basal-plane dislocations that expanded into the stacking fault was inside the substrate deeper than the interface. These results indicate that the conversion depth of basal-plane dislocations strongly affects the threshold stress-current density at which the expansion of stacking faults occurs.

  6. A monolithically integrated detector-preamplifier on high-resistivity silicon

    International Nuclear Information System (INIS)

    Holland, S.; Spieler, H.

    1990-02-01

    A monolithically integrated detector-preamplifier on high-resistivity silicon has been designed, fabricated and characterized. The detector is a fully depleted p-i-n diode and the preamplifier is implemented in a depletion-mode PMOS process which is compatible with detector processing. The amplifier is internally compensated and the measured gain-bandwidth product is 30 MHz with an input-referred noise of 15 nV/√Hz in the white noise regime. Measurements with an Am 241 radiation source yield an equivalent input noise charge of 800 electrons at 200 ns shaping time for a 1.4 mm 2 detector with on-chip amplifier in an experimental setup with substantial external pickup

  7. Design of a terahertz CW photomixer based on PIN and superlattice PIN devices

    DEFF Research Database (Denmark)

    Krozer, Viktor; Eichhorn, Finn

    2006-01-01

    We present the design of a photomixer LO based on standard and superlattice PIN diodes, operating at 1 THz. The design is based on a direct integration of a double slot antenna with the PIN device and a suitable matching circuit. The antenna has been designed together with a dielectric lens using...... Ansoft HFSS EM simulation. The large-signal PIN diode model employed in the work has been improved compared to our previously developed model presented earlier in a 3 THz design. We demonstrate that the antenna characteristic changes drastically with the device in place....

  8. Monolithic CMOS imaging x-ray spectrometers

    Science.gov (United States)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  9. Happy Pinning

    DEFF Research Database (Denmark)

    Fausing, Bent

    2012-01-01

    This is about Pinterest, but with a different approach than usual to social networks. Pinterest is an image site par excellence. The images are as Windows that open outwards and also lets us look inwards and displays the soul and heart, the unintentional or pre-conscious desires. Happy Pinning!...

  10. Monoliths in Bioprocess Technology

    Directory of Open Access Journals (Sweden)

    Vignesh Rajamanickam

    2015-04-01

    Full Text Available Monolithic columns are a special type of chromatography column, which can be used for the purification of different biomolecules. They have become popular due to their high mass transfer properties and short purification times. Several articles have already discussed monolith manufacturing, as well as monolith characteristics. In contrast, this review focuses on the applied aspect of monoliths and discusses the most relevant biomolecules that can be successfully purified by them. We describe success stories for viruses, nucleic acids and proteins and compare them to conventional purification methods. Furthermore, the advantages of monolithic columns over particle-based resins, as well as the limitations of monoliths are discussed. With a compilation of commercially available monolithic columns, this review aims at serving as a ‘yellow pages’ for bioprocess engineers who face the challenge of purifying a certain biomolecule using monoliths.

  11. Monolithic exploding foil initiator

    Science.gov (United States)

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  12. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d' Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  13. Internal fuel pin oxidizer

    International Nuclear Information System (INIS)

    Andrews, M.G.

    1978-01-01

    A nuclear fuel pin has positioned within it material which will decompose to release an oxidizing agent which will react with the cladding of the pin and form a protective oxide film on the internal surface of the cladding

  14. Radiation detectors of PIN type for X-rays

    International Nuclear Information System (INIS)

    Ramirez-Jimenez, F.J.

    2003-01-01

    In this laboratory session, tree experiments are proposed: the measurement of X-ray energy spectra from radioactive sources with a high resolution cooled Si-Li detector, with a room temperature PIN diode and the measurement of the response of a PIN diode to the intensity of X-rays of radio-diagnostic units. The spectra obtained with the Si-Li detector help to understand the energy distribution of X-rays and are used as a reference to compare the results obtained with the PIN diode. Measurements in medical X-ray machines are proposed. Low cost, simple electronic instruments and systems are used as tools to make measurements in X-ray units used in radio-diagnostic

  15. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.

    2007-01-01

    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control of t...

  16. Advancing the technology of monolithic CMOS detectors for use as x-ray imaging spectrometers

    Science.gov (United States)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Amato, Stephen

    2017-08-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff has been engaged in a multi year effort to advance the technology of monolithic back-thinned CMOS detectors for use as X-ray imaging spectrometers. The long term goal of this campaign is to produce X-ray Active Pixel Sensor (APS) detectors with Fano limited performance over the 0.1-10keV band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Such devices would be ideal for candidate post 2020 decadal missions such as LYNX and for smaller more immediate applications such as CubeX. Devices from a recent fabrication have been back-thinned, packaged and tested for soft X-ray response. These devices have 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels with ˜135μV/electron sensitivity and a highly parallel signal chain. These new detectors are fabricated on 10μm epitaxial silicon and have a 1k by 1k format. We present details of our camera design and device performance with particular emphasis on those aspects of interest to single photon counting X-ray astronomy. These features include read noise, X-ray spectral response and quantum efficiency.

  17. MICROCONTROLLER PIN CONFIGURATION TOOL

    OpenAIRE

    Bhaskar Joshi; F. Mohammed Rizwan; Dr. Rajashree Shettar

    2012-01-01

    Configuring the micro controller with large number of pins is tedious. Latest Infine on microcontroller contains more than 200 pins and each pin has classes of signals. Therefore the complexity of the microcontroller is growing. It evolves looking into thousands of pages of user manual. For a user it will take days to configure the microcontroller with the peripherals. We need an automated tool to configure the microcontroller so that the user can configure the microcontroller without having ...

  18. Fibrous monolithic ceramics

    International Nuclear Information System (INIS)

    Kovar, D.; King, B.H.; Trice, R.W.; Halloran, J.W.

    1997-01-01

    Fibrous monolithic ceramics are an example of a laminate in which a controlled, three-dimensional structure has been introduced on a submillimeter scale. This unique structure allows this all-ceramic material to fail in a nonbrittle manner. Materials have been fabricated and tested with a variety of architectures. The influence on mechanical properties at room temperature and at high temperature of the structure of the constituent phases and the architecture in which they are arranged are discussed. The elastic properties of these materials can be effectively predicted using existing models. These models also can be extended to predict the strength of fibrous monoliths with an arbitrary orientation and architecture. However, the mechanisms that govern the energy absorption capacity of fibrous monoliths are unique, and experimental results do not follow existing models. Energy dissipation occurs through two dominant mechanisms--delamination of the weak interphases and then frictional sliding after cracking occurs. The properties of the constituent phases that maximize energy absorption are discussed. In this article, the authors examine the structure of Si 3 N 4 -BN fibrous monoliths from the submillimeter scale of the crack-deflecting cell-cell boundary features to the nanometer scale of the BN cell boundaries

  19. PINS Spectrum Identification Guide

    Energy Technology Data Exchange (ETDEWEB)

    A.J. Caffrey

    2012-03-01

    The Portable Isotopic Neutron Spectroscopy—PINS, for short—system identifies the chemicals inside munitions and containers without opening them, a decided safety advantage if the fill chemical is a hazardous substance like a chemical warfare agent or an explosive. The PINS Spectrum Identification Guide is intended as a reference for technical professionals responsible for the interpretation of PINS gamma-ray spectra. The guide is divided into two parts. The three chapters that constitute Part I cover the science and technology of PINS. Neutron activation analysis is the focus of Chapter 1. Chapter 2 explores PINS hardware, software, and related operational issues. Gamma-ray spectral analysis basics are introduced in Chapter 3. The six chapters of Part II cover the identification of PINS spectra in detail. Like the PINS decision tree logic, these chapters are organized by chemical element: phosphorus-based chemicals, chlorine-based chemicals, etc. These descriptions of hazardous, toxic, and/or explosive chemicals conclude with a chapter on the identification of the inert chemicals, e.g. sand, used to fill practice munitions.

  20. A compact narrow-linewidth laser with a low-Q monolithic cavity

    International Nuclear Information System (INIS)

    Peng, Yu

    2013-01-01

    We demonstrate an approach to narrowing the linewidth of a diode laser to around 15×10 3 Hz with a compact setup of confocal and parallel monolithic Fabry–Perot cavities (MFCs). Resonances of the confocal and parallel MFCs with low finesse are obtained. Diode lasers with optical feedback from confocal and parallel monolithic MFCs are demonstrated. The frequency could be tuned 80×10 6 Hz by changing the grating position of the external cavity diode laser based on the confocal MFC, and 100×10 6 Hz by tuning the temperature of the plane MFC over 0.02 ° C for the external cavity diode laser based on the parallel MFC. (paper)

  1. Monolith electroplating process

    Science.gov (United States)

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  2. Panoramic irradiator dose mapping with pin photodiodes

    International Nuclear Information System (INIS)

    Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Bueno, Carmen Cecilia

    2011-01-01

    In this work we study the possibility of using commercial silicon PIN photodiodes (Siemens, SFH 00206) for dose mapping in the Panoramic Irradiator facility at IPEN-CNEN/SP. The chosen photodiode, that is encased in 1.2 mm thickness polymer layer, displays promising dosimetric characteristics such as small size (sensitive area of 7.00 mm 2 ), high sensitivity and low dark current (≅ 300 pA, at 0 V) together with low-cost and wide availability. The Panoramic facility is an irradiator Type II with absorbed dose certificated by International Dose Assurance Service (IDAS) offered by the International Agency Energy Atomic (IAEA). The charge registered by the diode as a function of the absorbed dose was in excellent agreement with that one calibrated by IDAS. Besides this, the easy handling and fast response of the SFH00206 diode compared to Fricke chemical dosimeters encouraged us to perform dose mapping around the source. (author)

  3. Fuel pin transfer tool

    International Nuclear Information System (INIS)

    Patenaude, R. S.

    1985-01-01

    A fuel pin transfer tool has a latching device of the collet type attached to a first member movable vertically through a long work stroke enabling a fuel pin in an under water assembly to be engaged and withdrawn therefrom or placed therein and released. The latching device has a collet provided with a plurality of resilient fingers having cam portions normally spaced apart to receive the upper end of a fuel pin between them and a second member, movable vertically through a short stroke relative to the first member is provided with cam portions engageable with those of the fingers and is yieldably and resiliently held in a raised position in which its cam portions engage those of the fingers and force the fingers into their pin-gripping positions. When a predetermined force is applied to the second member, it is so moved that its cam portions are disengaged from the cam portions of the fingers permitting the latter to move into their normal relationship in which a gripped pin is released or another pin received but with their pin-gripping relationship positively re-established and maintained once the force on the tubular member is lessened. Movement of the first member in either direction and movement of the second member into its raised position is attended by forces inadequate to affect the integrity of fuel pin cladding. That force is applied in the preferred embodiment, by a power operated actuator which is within the upper portion of a housing and, in the preferred embodiment, carried by the long stroke member but always in the upper housing portion which is of a material sufficiently translucent to enable the actuator to be observed throughout the work stroke and is sufficiently light in weight to prevent the tool from being top heavy

  4. Flux Pinning in Superconductors

    CERN Document Server

    Matsushita, Teruo

    2007-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  5. A Flux-Pinning Mechanism for Segment Assembly and Alignment

    Science.gov (United States)

    Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip

    2011-01-01

    Currently, the most compelling astrophysics questions include how planets and the first stars formed and whether there are protostellar disks that contain large organic molecules. Although answering these questions requires space telescopes with apertures of at least 10 meters, such large primaries are challenging to construct by scaling up previous designs; the limited capacity of a launch vehicle bounds the maximum diameter of a monolithic primary, and beyond a certain size, deployable telescopes cannot fit in current launch vehicle fairings. One potential solution is connecting the primary mirror segments edgewise using flux-pinning mechanisms, which are analogous to non-contacting damped springs. In the baseline design, a flux-pinning mechanism consists of a magnet and a superconductor separated by a predetermined gap, with the damping adjusted by placing aluminum near the interface. Since flux pinning is possible only when the superconductor is cooled below a critical temperature, flux-pinning mechanisms are uniquely suited for cryogenic space telescopes. By placing these mechanisms along the edges of the mirror segments, a primary can be built up over time. Since flux pinning requires no mechanical deployments, the assembly process could be robotic or use some other non-contacting scheme. Advantages of this approach include scalability and passive stability.

  6. Porous polymer monolithic col

    Directory of Open Access Journals (Sweden)

    Lydia Terborg

    2015-05-01

    Full Text Available A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation of surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water and ion exchange chromatographic modes (applying gradient of salt in water, respectively.

  7. PINS-3X Operations

    Energy Technology Data Exchange (ETDEWEB)

    E.H. Seabury

    2013-09-01

    Idaho National Laboratory’s (INL’s) Portable Isotopic Neutron Spectroscopy System (PINS) non-intrusively identifies the chemical fill of munitions and sealed containers. The PINS-3X variant of the system is used to identify explosives and uses a deuterium-tritium (DT) electronic neutron generator (ENG) as the neutron source. Use of the system, including possession and use of the neutron generator and shipment of the system components requires compliance with a number of regulations. This report outlines some of these requirements as well as some of the requirements in using the system outside of INL.

  8. Pinning Down versus Density

    OpenAIRE

    Juhász, István; Soukup, Lajos; Szentmiklóssy, Zoltán

    2015-01-01

    The pinning down number $ {pd}(X)$ of a topological space $X$ is the smallest cardinal $\\kappa$ such that for any neighborhood assignment $U:X\\to \\tau_X$ there is a set $A\\in [X]^\\kappa$ with $A\\cap U(x)\

  9. Pin clad strains in Phenix

    International Nuclear Information System (INIS)

    Languille, A.

    1979-07-01

    The Phenix reactor has operated for 4 years in a satisfactory manner. The first 2 sub-assembly loadings contained pins clad in solution treated 316. The principal pin strains are: diametral strain (swelling and irradiation creep), ovality and spiral bending of the pin (interaction of wire and pin cluster and wrapper). A pin cluster irradiated to a dose of 80 dpa F reached a pin diameter strain of 5%. This strain is principally due to swelling (low fission gas pressure). The principal parameters governing the swelling are instantaneous dose, time and temperature for a given type of pin cladding. Other types of steel are or will be irradiated in Phenix. In particular, cold-worked titanium stabilised 316 steel should contribute towards a reduction in the pin clad strains and increase the target burn-up in this reactor. (author)

  10. Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    Clayton Cozzan

    2016-10-01

    Full Text Available With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl10O17, has been prepared using microwave-assisted heating (25 min and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min. The resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  11. Development of the multiwavelength monolithic integrated fiber optics terminal

    Science.gov (United States)

    Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.

    1982-01-01

    This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.

  12. Nuclear fuel pin

    International Nuclear Information System (INIS)

    Hartley, Kenneth; Moulding, T.L.J.; Rostron, Norman.

    1979-01-01

    Fuel pin for use in fast breeder nuclear reactors containing fissile and fertile areas of which the fissile and fertile materials do not mix. The fissile material takes the shape of large and small diameter microspheres (the small diameter microspheres can pass through the interstices between the large microspheres). The barrier layers being composed of microspheres with a diameter situated between those of the large and small microspheres ensure that the materials do not mix [fr

  13. Pinning in nonmagnetic borocarbides

    International Nuclear Information System (INIS)

    Zholobenko, A.N.; Mikitik, G.P.; Fil, V.D.; Kim, J.D.; Lee, S.I.

    2005-01-01

    The field dependences of the Labush parameter in nonmagnetic borocarbides are measured by the method which does not require the free flux flow regime. The anticipated critical current densities are estimated. These values are by two orders of magnitude higher than those measured 'directly' in transport (magnetic) experiments. The giant peak-effect in the field dependences of the Labush parameter is revealed in the Y-based borocarbides. Its behavior is well approximated by the collective pinning theory

  14. Transferrable monolithic multicomponent system for near-ultraviolet optoelectronics

    Science.gov (United States)

    Qin, Chuan; Gao, Xumin; Yuan, Jialei; Shi, Zheng; Jiang, Yuan; Liu, Yuhuai; Wang, Yongjin; Amano, Hiroshi

    2018-05-01

    A monolithic near-ultraviolet multicomponent system is implemented on a 0.8-mm-diameter suspended membrane by integrating a transmitter, waveguide, and receiver into a single chip. Two identical InGaN/Al0.10Ga0.90N multiple-quantum well (MQW) diodes are fabricated using the same process flow, which separately function as a transmitter and receiver. There is a spectral overlap between the emission and detection spectra of the MQW diodes. Therefore, the receiver can respond to changes in the emission of the transmitter. The multicomponent system is mechanically transferred from silicon, and the wire-bonded transmitter on glass experimentally demonstrates spatial light transmission at 200 Mbps using non-return-to-zero on–off keying modulation.

  15. Principle and modelling of Transient Current Technique for interface traps characterization in monolithic pixel detectors obtained by CMOS-compatible wafer bonding

    CERN Document Server

    Bronuzzi, J.; Moll, M.; Sallese, J.M.

    2016-01-01

    In the framework of monolithic silicon radiation detectors, a fabrication process based on a recently developed silicon wafer bonding technique at low temperature was proposed. Ideally, this new process would enable direct bonding of a read-out electronic chip wafer on a highly resistive silicon substrate wafer, which is expected to present many advantages since it would combine high performance IC's with high sensitive ultra-low doped bulk silicon detectors. But electrical properties of the bonded interface are critical for this kind of application since the mobile charges generated by radiation inside the bonded bulk are expected to transit through the interface in order to be collected by the read-out electronics. In this work, we propose to explore and develop a model for the so-called Transient Current Technique (TCT) to identify the presence of deep traps at the bonded interface. For this purpose, we consider a simple PIN diode reversely biased where the ultra-low doped active region of interest is set ...

  16. Principle and modelling of Transient Current Technique for interface traps characterization in monolithic pixel detectors obtained by CMOS-compatible wafer bonding

    International Nuclear Information System (INIS)

    Bronuzzi, J.; Mapelli, A.; Moll, M.; Sallese, J.M.

    2016-01-01

    In the framework of monolithic silicon radiation detectors, a fabrication process based on a recently developed silicon wafer bonding technique at low temperature was proposed. Ideally, this new process would enable direct bonding of a read-out electronic chip wafer on a highly resistive silicon substrate wafer, which is expected to present many advantages since it would combine high performance IC's with high sensitive ultra-low doped bulk silicon detectors. But electrical properties of the bonded interface are critical for this kind of application since the mobile charges generated by radiation inside the bonded bulk are expected to transit through the interface in order to be collected by the read-out electronics. In this work, we propose to explore and develop a model for the so-called Transient Current Technique (TCT) to identify the presence of deep traps at the bonded interface. For this purpose, we consider a simple PIN diode reversely biased where the ultra-low doped active region of interest is set in full depletion. In a first step, Synopsys Sentaurus TCAD is used to evaluate the soundness of this technique for interface traps characterization such as it may happen in bonded interfaces. Next, an analytical model is developed in details to give a better insight into the physics behind the TCT for interface layers. Further, this can be used as a simple tool to evidence what are the relevant parameters influencing the TCT signal and to set the basis for preliminary characterizations.

  17. Performance of a high-resolution CsI(Tl)-PIN readout detector

    International Nuclear Information System (INIS)

    Kudenko, Yu.G.; Imazato, J.

    1992-10-01

    A study of a large-volume CsI(Tl) detector with a PIN diode readout was carried out. Our results show a light output of ≤20000 photoelectrons/MeV, an equivalent noise charge (rms) of about 900 electrons, and an equivalent noise level of ≤ 60 keV. We obtained an energy resolution of 11.2% (fwhm) for 1275 keV gamma rays from a 22 Na source. The characteristics of the PIN - preamplifier system as well as the parameters of a small CsI(Tl) - PIN detector with a direct and wavelength shifter readout are also reported. (author)

  18. Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics

    Science.gov (United States)

    Shi, Zheng; Gao, Xumin; Yuan, Jialei; Zhang, Shuai; Jiang, Yan; Zhang, Fenghua; Jiang, Yuan; Zhu, Hongbo; Wang, Yongjin

    2017-12-01

    A monolithic III-nitride photonic circuit with integrated functionalities was implemented by integrating multiple components with different functions into a single chip. In particular, the III-nitride-on-silicon platform is used as it integrates a transmitter, a waveguide, and a receiver into a suspended III-nitride membrane via a wafer-level procedure. Here, a 0.8-mm-diameter suspended device architecture is directly transferred from silicon to a foreign substrate by mechanically breaking the support beams. The transferred InGaN/GaN multiple-quantum-well diode (MQW-diode) exhibits a turn-on voltage of 2.8 V with a dominant electroluminescence peak at 453 nm. The transmitter and receiver share an identical InGaN/GaN MQW structure, and the integrated photonic circuit inherently works for on-chip power monitoring and in-plane visible light communication. The wire-bonded monolithic photonic circuit on glass experimentally demonstrates in-plane data transmission at 120 Mb/s, paving the way for diverse applications in intelligent displays, in-plane light communication, flexible optical sensors, and wearable III-nitride optoelectronics.

  19. Advancing the Technology of Monolithic CMOS detectors for their use as X-ray Imaging Spectrometers

    Science.gov (United States)

    Kenter, Almus

    The Smithsonian Astrophysical Observatory (SAO) proposes a two year program to further advance the scientific capabilities of monolithic CMOS detectors for use as x-ray imaging spectrometers. This proposal will build upon the progress achieved with funding from a previous APRA proposal that ended in 2013. As part of that previous proposal, x- ray optimized, highly versatile, monolithic CMOS imaging detectors and technology were developed and tested. The performance and capabilities of these devices were then demonstrated, with an emphasis on the performance advantages these devices have over CCDs and other technologies. The developed SAO/SRI-Sarnoff CMOS devices incorporate: Low noise, high sensitivity ("gain") pixels; Highly parallel on-chip signal chains; Standard and very high resistivity (30,000Ohm-cm) Si; Back-Side thinning and passivation. SAO demonstrated the performance benefits of each of these features in these devices. This new proposal high-lights the performance of this previous generation of devices, and segues into new technology and capability. The high sensitivity ( 135uV/e) 6 Transistor (6T) Pinned Photo Diode (PPD) pixels provided a large charge to voltage conversion gain to the detect and resolve even small numbers of photo electrons produced by x-rays. The on-chip, parallel signal chain processed an entire row of pixels in the same time that a CCD requires to processes a single pixel. The resulting high speed operation ( 1000 times faster than CCD) provide temporal resolution while mitigating dark current and allowed room temperature operation. The high resistivity Si provided full (over) depletion for thicker devices which increased QE for higher energy x-rays. In this proposal, SAO will investigate existing NMOS and existing PMOS devices as xray imaging spectrometers. Conventional CMOS imagers are NMOS. NMOS devices collect and measure photo-electrons. In contrast, PMOS devices collect and measure photo-holes. PMOS devices have various

  20. Transformation of Helicopter PinS Procedures for Airplanes

    Directory of Open Access Journals (Sweden)

    Jakub Kraus

    2013-09-01

    Full Text Available This article deals with the possibility to use existing helicopter Point in Space procedures with minor changes for airplanes. The basis is to find parts of PinS procedures that need to be changed, suggest these changes, and then determine whether the revised procedures could be usable and could bring the benefits for airplane operations.

  1. Acoustic of monolithic dome structures

    Directory of Open Access Journals (Sweden)

    Mostafa Refat Ismail

    2018-03-01

    The interior of monolithic domes have perfect, concave shapes to ensure that sound travels through the dome and perfectly collected at different vocal points. These dome structures are utilized for domestic use because the scale allows the focal points to be positioned across daily life activities, thereby affecting the sonic comfort of the internal space. This study examines the various acoustic treatments and parametric configurations of monolithic dome sizes. A geometric relationship of acoustic treatment and dome radius is established to provide architects guidelines on the correct selection of absorption needed to maintain the acoustic comfort of these special spaces.

  2. Pinning, de-pinning and re-pinning of a slowly varying rivulet

    KAUST Repository

    Paterson, C.; Wilson, S.K.; Duffy, B.R.

    2013-01-01

    The solutions for the unidirectional flow of a thin rivulet with prescribed volume flux down an inclined planar substrate are used to describe the locally unidirectional flow of a rivulet with constant width (i.e. pinned contact lines) but slowly varying contact angle as well as the possible pinning and subsequent de-pinning of a rivulet with constant contact angle and the possible de-pinning and subsequent re-pinning of a rivulet with constant width as they flow in the azimuthal direction from the top to the bottom of a large horizontal cylinder. Despite being the same locally, the global behaviour of a rivulet with constant width can be very different from that of a rivulet with constant contact angle. In particular, while a rivulet with constant non-zero contact angle can always run from the top to the bottom of the cylinder, the behaviour of a rivulet with constant width depends on the value of the width. Specifically, while a narrow rivulet can run all the way from the top to the bottom of the cylinder, a wide rivulet can run from the top of the cylinder only to a critical azimuthal angle. The scenario in which the hitherto pinned contact lines of the rivulet de-pin at the critical azimuthal angle and the rivulet runs from the critical azimuthal angle to the bottom of the cylinder with zero contact angle but slowly varying width is discussed. The pinning and de-pinning of a rivulet with constant contact angle, and the corresponding situation involving the de-pinning and re-pinning of a rivulet with constant width at a non-zero contact angle which generalises the de-pinning at zero contact angle discussed earlier, are described. In the latter situation, the mass of fluid on the cylinder is found to be a monotonically increasing function of the constant width. © 2013 Elsevier Masson SAS. All rights reserved.

  3. Pinning, de-pinning and re-pinning of a slowly varying rivulet

    KAUST Repository

    Paterson, C.

    2013-09-01

    The solutions for the unidirectional flow of a thin rivulet with prescribed volume flux down an inclined planar substrate are used to describe the locally unidirectional flow of a rivulet with constant width (i.e. pinned contact lines) but slowly varying contact angle as well as the possible pinning and subsequent de-pinning of a rivulet with constant contact angle and the possible de-pinning and subsequent re-pinning of a rivulet with constant width as they flow in the azimuthal direction from the top to the bottom of a large horizontal cylinder. Despite being the same locally, the global behaviour of a rivulet with constant width can be very different from that of a rivulet with constant contact angle. In particular, while a rivulet with constant non-zero contact angle can always run from the top to the bottom of the cylinder, the behaviour of a rivulet with constant width depends on the value of the width. Specifically, while a narrow rivulet can run all the way from the top to the bottom of the cylinder, a wide rivulet can run from the top of the cylinder only to a critical azimuthal angle. The scenario in which the hitherto pinned contact lines of the rivulet de-pin at the critical azimuthal angle and the rivulet runs from the critical azimuthal angle to the bottom of the cylinder with zero contact angle but slowly varying width is discussed. The pinning and de-pinning of a rivulet with constant contact angle, and the corresponding situation involving the de-pinning and re-pinning of a rivulet with constant width at a non-zero contact angle which generalises the de-pinning at zero contact angle discussed earlier, are described. In the latter situation, the mass of fluid on the cylinder is found to be a monotonically increasing function of the constant width. © 2013 Elsevier Masson SAS. All rights reserved.

  4. Performance of silicon PIN photodiodes at low temperatures and in high magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Wauters, F.; Kraeva, I.S.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Zákoucký, Dalibor; Severijns, N.

    2009-01-01

    Roč. 604, č. 3 (2009), s. 563-567 ISSN 0168-9002 Institutional research plan: CEZ:AV0Z10480505 Keywords : PIN-diode * beta-particle detection * Magnetic field Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.317, year: 2009

  5. A Codesigned Compact Dual-Band Filtering Antenna with PIN Loaded for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Shanxiong Chen

    2014-01-01

    Full Text Available A codesigned compact dual-band filtering antenna incorporating a PIN diode for 2.45/5.2 GHz wireless local area network (WLAN applications is proposed in this paper. The integrated filtering antenna system consists of a simple monopole radiator, a microstrip dual-band band-pass filter, and a PIN diode. The performance of the filtering antenna is notably promoted by optimizing the impedance between the antenna and the band-pass filter, with good selectivity and out-of-band rejection. The design process follows the approach of the synthesis of band-pass filter. In addition, the PIN diode is incorporated in the filtering antenna for further size reduction, which also widens the coverage of the bandwidth by about 230% for 2.4 GHz WLAN. With the presence of small size and good filtering performances, the proposed filtering antenna is a good candidate for the wireless communication systems. Prototypes of the proposed filtering antenna incorporating a PIN diode are fabricated and measured. The measured results including return losses and radiation patterns are presented.

  6. Vortex pinning and creep experiments

    International Nuclear Information System (INIS)

    Kes, P.H.

    1991-01-01

    A brief review of basic flux-pinning and flux-creep ingredients and a selection of experimental results on high-temperature-superconductivity compounds is presented. Emphasis is put on recent results and on those properties which are central to the emerging understanding of the flux-pinning and flux-creep mechanisms of these fascinating materials

  7. Monolithic fiber optic sensor assembly

    Science.gov (United States)

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  8. Monolithic Integrated Ceramic Waveguide Filters

    OpenAIRE

    Hunter, IC; Sandhu, MY

    2014-01-01

    Design techniques for a new class of integrated monolithic high permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled TEM filters with the same unloaded Q-Factor. Designs for both chebyshev and asymmetric generalized chebyshev filter are presented, with experimental results for an 1800 MHz chebyshev filter showing excellent agreement with theory.

  9. Protective Skins for Aerogel Monoliths

    Science.gov (United States)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  10. Molecular beam epitaxy grown Ge/Si pin layer sequence for photonic devices

    International Nuclear Information System (INIS)

    Schulze, J.; Oehme, M.; Werner, J.

    2012-01-01

    A key challenge to obtain a convergence of classical Si-based microelectronics and optoelectronics is the manufacturing of photonic integrated circuits integrable into classical Si-based integrated circuits. This integration would be greatly enhanced if similar facilities and technologies could be used. Therefore one approach is the development of optoelectronic components and devices made from group-IV-based materials such as SiGe, Ge or Ge:Sn. In this paper the optoelectronic performances of a pin diode made from a Ge/Si heterostructure pin layer sequence grown by molecular beam epitaxy are discussed. After a detailed description of the layer sequence growth and the device manufacturing process it will be shown that – depending on the chosen operating point and device design – the diode serves as a broadband high speed photo detector, Franz–Keldysh effect modulator or light emitting diode.

  11. Molecular beam epitaxy grown Ge/Si pin layer sequence for photonic devices

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, J., E-mail: schulze@iht.uni-stuttgart.de; Oehme, M.; Werner, J.

    2012-02-01

    A key challenge to obtain a convergence of classical Si-based microelectronics and optoelectronics is the manufacturing of photonic integrated circuits integrable into classical Si-based integrated circuits. This integration would be greatly enhanced if similar facilities and technologies could be used. Therefore one approach is the development of optoelectronic components and devices made from group-IV-based materials such as SiGe, Ge or Ge:Sn. In this paper the optoelectronic performances of a pin diode made from a Ge/Si heterostructure pin layer sequence grown by molecular beam epitaxy are discussed. After a detailed description of the layer sequence growth and the device manufacturing process it will be shown that - depending on the chosen operating point and device design - the diode serves as a broadband high speed photo detector, Franz-Keldysh effect modulator or light emitting diode.

  12. Study of the Radiation-Hardness of VCSEL and PIN

    CERN Document Server

    Gan, K K; Fernando, W; Kagan, H P; Kass, R D; Lebbai, M R M; Merritt, H; Moore, J R; Nagarkar, A; Rizatdinova, F; Skubic, P L; Smith, D S; Strang, M

    2009-01-01

    The silicon trackers of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN (Geneva) use optical links for data transmission. An upgrade of the trackers is planned for the Super LHC (SLHC), an upgraded LHC with ten times higher luminosity. We study the radiation-hardness of VCSELs (Vertical-Cavity Surface-Emitting Laser) and GaAs and silicon PINs using 24 GeV/c protons at CERN for possible application in the data transmission upgrade. The optical power of VCSEL arrays decreases significantly after the irradiation but can be partially annealed with high drive currents. The responsivities of the PIN diodes also decrease significantly after irradiation, but can be recovered by operating at higher bias voltage. This provides a simple mechanism to recover from the radiation damage.

  13. Automated fuel pin loading system

    Science.gov (United States)

    Christiansen, D.W.; Brown, W.F.; Steffen, J.M.

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inerted as a batch prior to welding of end caps by one of two disclosed welding systems.

  14. Pinning down the axion

    International Nuclear Information System (INIS)

    Dabholkar, A.; Quashnock, J.M.

    1990-01-01

    Davis has argued that, without inflation, the decay of axionic strings is the primary source of axions. This implies a cosmological lower bound on the axion mass of 10 -5 to 10 -3 eV. In order to obtain a sharper bound it is essential to know the spectrum of emitted axions and the detailed motion of a global string strongly coupled to the axionic field. To this end, we obtain self-consistent, renormalized equations that describe the dynamics of a radiating global string interacting with its surrounding axionic field. We describe the numerical formalism for evolving string trajectories using these equations. From the numerical and analytical evidence we argue that, with appropriate renormalization, the motion of an interacting cosmic string loop can be well approximated by the motion of a free Nambu-Goto string. This implies a lower bound for the axion mass of 10 -3 eV. Together with the recent upper bound of 4x10 -4 eV from the supernova SN1987a, this marginally rules out the invisible axion, or at least pins down the axion mass to a very narrow window around 10 -3 eV. This still leaves open the window around 2 eV for hardronic axions, but in that case the axion is no longer a serious dark matter candidate. (orig.)

  15. Pinning Mechanisms in YBCO Tapes

    CERN Document Server

    Spera, Marcello; Ballarino, Amalia

    2015-01-01

    In this thesis work, a study on flux pinning mechanisms of commercial YBCO tapes is presented. This study has been performed via critical current characterization using transport (via direct I-V curves) and magnetization (via a Vibrating Sample Magnetometer) measurements. The latter ones turned out to be better concerning the comprehension of the pinning landscape of the provided samples, as a wider range of magnetic fields and temperatures is available for those measurements in the setup I used. The comparison of the experimental data with existing theoretical models allowed me to draw a picture of the pinning mechanisms underlying in each sample, and they turned out to be quite different one another. Moreover, for high-performance research tapes, another interesting feature has been found: the counterplay between the self-field critical current and the in-field one. Very well engineered artificial pinning structures limit the self-field critical current density due to the hi...

  16. Internal quantum efficiency and tunable colour temperature in monolithic white InGaN/GaN LED

    Science.gov (United States)

    Titkov, Ilya E.; Yadav, Amit; Zerova, Vera L.; Zulonas, Modestas; Tsatsulnikov, Andrey F.; Lundin, Wsevolod V.; Sakharov, Alexey V.; Rafailov, Edik U.

    2014-03-01

    Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperature (CCT) in pulsed operation mode and effect of self-heating on device performance.

  17. Analytic formalism for current crowding in light emitting diodes

    International Nuclear Information System (INIS)

    Lee, Kyu-Seok

    2012-01-01

    This paper presents an analytic approach to simulating current crowding (CC) in light-emitting diodes with parallel p- and n-contacts. The electrical potential difference across the p-i-n layers is derived from the Laplace equation, whereas the current density through the p-i-n layers is obtained from the current density - voltage relation of a single-diode model. Since these two properties influence each other, they are calculated iteratively. It is found that CC depends on the applied voltage (or the average current density), the sheet resistances of the p- and the n-contact layers, the width of the active region, and the specific series resistance and ideality factor of the p-i-n layers. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Automated system for loading nuclear fuel pins

    International Nuclear Information System (INIS)

    Marshall, J.L.

    1983-10-01

    A completely automatic and remotely controlled fuel pin fabrication system is being designed by the Westinghouse Hanford Company. The Pin Operations System will produce fuel pins for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor Plant (CRBRP). The system will assemble fuel pin components into cladding tubes in a controlled environment. After fuel loading, the pins are filled with helium, the tag gas capsules are inserted, and the top end cap welded. Following welding, the pins are surveyed to assure they are free of contamination and then the pins are helium leak tested

  19. Continuous Holdup Measurements with Silicon P-I-N Photodiodes

    International Nuclear Information System (INIS)

    Bell, Z.W.; Oberer, R.B.; Williams, J.A.; Smith, D.E.; Paulus, M.J.

    2002-01-01

    We report on the behavior of silicon P-I-N photodiodes used to perform holdup measurements on plumbing. These detectors differ from traditional scintillation detectors in that no high-voltage is required, no scintillator is used (gamma and X rays are converted directly by the diode), and they are considerably more compact. Although the small size of the diodes means they are not nearly as efficient as scintillation detectors, the diodes' size does mean that a detector module, including one or more diodes, pulse shaping electronics, analog-to-digital converter, embedded microprocessor, and digital interface can be realized in a package (excluding shielding) the size of a pocket calculator. This small size, coupled with only low-voltage power requirement, completely solid-state realization, and internal control functions allows these detectors to be strategically deployed on a permanent basis, thereby reducing or eliminating the need for manual holdup measurements. In this paper, we report on the measurement of gamma and X rays from 235 U and 238 U contained in steel pipe. We describe the features of the spectra, the electronics of the device and show how a network of them may be used to improve estimates of inventory in holdup

  20. Modulation of Frequency Doubled DFB-Tapered Diode Lasers for Medical Treatment

    DEFF Research Database (Denmark)

    Christensen, Mathias; Hansen, Anders Kragh; Noordegraaf, Danny

    2017-01-01

    have demonstrated power modulation from 0.1 Hz to 10 kHz at 532 nm with a modulation depth above 97% by wavelength detuning of the laser diode. The laser diode is a 1064 nm monolithic device with a distributed feedback (DFB) laser as the master oscillator (MO), and a tapered power amplifier (PA......). The MO and PA have separate electrical contacts and the modulation is achieved with wavelength tuning by adjusting the current through the MO 40 mA....

  1. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    International Nuclear Information System (INIS)

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.

    2010-01-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC 2 shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using μ-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 (micro)m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  2. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.; /Fermilab

    2010-11-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  3. Monolithically Integrated Ge-on-Si Active Photonics

    Directory of Open Access Journals (Sweden)

    Jifeng Liu

    2014-07-01

    Full Text Available Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS processing. In this paper, we present a review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation. We first discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties. We then give a brief overview of epitaxial Ge-on-Si materials growth, followed by a summary of recent investigations towards low-temperature, direct growth of high crystallinity Ge and GeSn alloys on dielectric layers for 3D photonic integration. Finally, we review the most recent studies on waveguide-integrated Ge-on-Si photodetectors (PDs, electroabsorption modulators (EAMs, and laser diodes (LDs, and suggest possible future research directions for large-scale monolithic electronic-photonic integrated circuits on a Si platform.

  4. CMOS monolithic active pixel sensors for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Snoeys, W., E-mail: walter.snoeys@cern.ch

    2014-11-21

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon are only now starting to make their way into high energy physics. Two major requirements are radiation tolerance and low power consumption. For the most extreme radiation levels, signal charge has to be collected by drift from a depletion layer onto a designated collection electrode without losing the signal charge elsewhere in the in-pixel circuit. Low power consumption requires an optimization of Q/C, the ratio of the collected signal charge over the input capacitance [1]. Some solutions to combine sufficient Q/C and collection by drift require exotic fabrication steps. More conventional solutions up to now require a simple in-pixel readout circuit. Both high voltage CMOS technologies and Monolithic Active Pixel Sensors (MAPS) technologies with high resistivity epitaxial layers offer high voltage diodes. The choice between the two is not fundamental but more a question of how much depletion can be reached and also of availability and cost. This paper tries to give an overview.

  5. Device Simulation of Monolithic Active Pixel Sensors: Radiation Damage Effects

    International Nuclear Information System (INIS)

    Fourches, N.T.

    2009-01-01

    Vertexing for the future International Linear Collider represents a challenging goal because of the high spatial resolution required with low material budget and high ionizing radiation tolerance. CMOS Monolithic Active Pixel Sensors (MAPS) represent a good potential solution for this purpose. Up to now many MAPS sensors have been developed. They are based on various architectures and manufactured in different processes. However, up so far, the sensor diode has not been the subject of extensive modelization and simulation. Published simulation studies of sensor-signal formation have been less numerous than measurements on real sensors. This is a cause for concern because such sensor is physically based on the partially depleted diode, in the vicinity of which the electric field collects the minority carriers generated by an incident MIP (minimum ionizing particle). Although the microscopic mechanisms are well known and modelled, the global physical mechanisms for signal formation are not very rigorously established. This is partly due to the presence of a predominant diffusion component in the charge transport. We present here simulations mainly based on the S-PISCES code, in which physical mechanisms affecting transport are taken into account. Diffusion, influence of residual carrier concentration due to the doping level in the sensitive volume, and more importantly charge trapping due to deep levels in the active (detecting) layer are studied together with geometric aspects. The effect of neutron irradiation is studied to assess the effects of deep traps. A comparison with available experimental data, obtained on processed MAPS before or after neutron irradiation will be introduced. Simulated reconstruction of the Minimum Ionizing Particle (MIP) point of impact in two dimensions is also investigated. For further steps, guidelines for process choices of next Monolithic Active Pixel Sensors are introduced. (authors)

  6. Enhanced pinning in superconducting thin films with graded pinning landscapes

    Science.gov (United States)

    Motta, M.; Colauto, F.; Ortiz, W. A.; Fritzsche, J.; Cuppens, J.; Gillijns, W.; Moshchalkov, V. V.; Johansen, T. H.; Sanchez, A.; Silhanek, A. V.

    2013-05-01

    A graded distribution of antidots in superconducting a-Mo79Ge21 thin films has been investigated by magnetization and magneto-optical imaging measurements. The pinning landscape has maximum density at the sample border, decreasing linearly towards the center. Its overall performance is noticeably superior than that for a sample with uniformly distributed antidots: For high temperatures and low fields, the critical current is enhanced, whereas the region of thermomagnetic instabilities in the field-temperature diagram is significantly suppressed. These findings confirm the relevance of graded landscapes on the enhancement of pinning efficiency, as recently predicted by Misko and Nori [Phys. Rev. B 85, 184506 (2012)].

  7. Stress relaxation of thermally bowed fuel pins

    International Nuclear Information System (INIS)

    Crossland, I.G.; Speight, M.V.

    1983-01-01

    The presence of cross-pin temperature gradients in nuclear reactor fuel pins produces differential thermal expansion which, in turn, causes the fuel pin to bow elastically. If the pin is restrained in any way, such thermal bowing causes the pin to be stressed. At high temperatures these stresses can relax by creep and it is shown here that this causes the pin to suffer an additional permanent deflection, so that when the cross-pin temperature difference is removed the pin remains bowed. By representing the cylindrical pin by an equivalent I-beam, the present work examines this effect when it takes place by secondary creep. Two restraint systems are considered, and it is demonstrated that the rate of relaxation depends mainly upon the creep equation, and hence the temperature, and also the magnitude of the initial stresses. (author)

  8. Defect pin behaviour in the DFR

    International Nuclear Information System (INIS)

    Sloss, W.M.; Bagley, K.Q.; Edmonds, E.; Potter, P.E.

    1979-01-01

    A program of defective fuel pin irradiations has been carried out in the DFR. This program employed fuel pins which had failed during previous irradiations (natural defects) and pins in which simulated failures (artificial defects) had been induced prior to irradiation or during an intermediate examination stage at moderate or substantial burnups. The artificial defects simulated longitudinal ruptures and were normally located at positions near the top, middle and bottom of the pin where clad temperatures were 450, 540 and 630 0 C respectively. The fuel was mixed U-Pu oxide, and fuel form, stoichiometry, clad type, pin diameter, linear rating, and burnup were among the variables examined. The defect pin tests were normally carried out in single pin or trefoil type vehicles. After irradiation all the pins were subjected to the normal nondestructive examination procedures and the visual, radiographic, gamma-scanning, and dimensional change results are presented. Several pins were destructively examined and the metallographic data are discussed

  9. A monolithic silicon detector telescope

    International Nuclear Information System (INIS)

    Cardella, G.; Amorini, F.; Cabibbo, M.; Di Pietro, A.; Fallica, G.; Franzo, G.; Figuera, P.; Papa, M.; Pappalardo, G.; Percolla, G.; Priolo, F.; Privitera, V.; Rizzo, F.; Tudisco, S.

    1996-01-01

    An ultrathin silicon detector (1 μm) thick implanted on a standard 400 μm Si-detector has been built to realize a monolithic telescope detector for simultaneous charge and energy determination of charged particles. The performances of the telescope have been tested using standard alpha sources and fragments emitted in nuclear reactions with different projectile-target colliding systems. An excellent charge resolution has been obtained for low energy (less than 5 MeV) light nuclei. A multi-array lay-out of such detectors is under construction to charge identify the particles emitted in reactions induced by low energy radioactive beams. (orig.)

  10. Imaging monolithic silicon detector telescopes

    International Nuclear Information System (INIS)

    Amorini, F.; Sipala, V.; Cardella, G.; Boiano, C.; Carbone, B.; Cosentino, L.; Costa, E.; Di Pietro, A.; Emanuele, U.; Fallica, G.; Figuera, P.; Finocchiaro, P.; La Guidara, E.; Marchetta, C.; Pappalardo, A.; Piazza, A.; Randazzo, N.; Rizzo, F.; Russo, G.V.; Russotto, P.

    2008-01-01

    We show the results of some test beams performed on a new monolithic strip silicon detector telescope developed in collaboration with the INFN and ST-microelectronics. Using an appropriate design, the induction on the ΔE stages, generated by the charge released in the E stage, was used to obtain the position of the detected particle. The position measurement, together with the low threshold for particle charge identification, allows the new detector to be used for a large variety of applications due to its sensitivity of only a few microns measured in both directions

  11. Liquid diode

    International Nuclear Information System (INIS)

    1976-01-01

    The liquid diode is designed for a flowmeter chamber which has an inlet and an outlet duct, and a flow chamber with a cross-section which is greater than inlet. In the space between the inlet and outlet are two screens with a number of spheres, which may be of different sizes and weights. The screen on the inlet side is smaller than that at the outlet, so that the spheres are able to block the inlet under reverse flow conditions, but do not block the outlet. The system functions as a non-return valve. (G.C.)

  12. MONJU fuel pin performance analysis

    International Nuclear Information System (INIS)

    Kitagawa, H.; Yamanaka, T.; Hayashi, H.

    1979-01-01

    Monju fuel pin has almost the same properties as other LMFBR fuel pins, i.e. Phenix, PFR, CRBR, but would be irradiated under severe conditions: maximum linear heat rate of 381 watt/cm, hot spot cladding temperature of 675 deg C, peak burnup of 131,000 MWd/t, peak fluence (E greater than 0.1 MeV) of 2.3 10 23 n/cm 2 . In order to understand in-core performance of Monju fuel pin, its thermal and mechanical behaviour was predicted using the fast running performance code SIMPLE. The code takes into account pellet-cladding interaction due to thermal expansion and swelling, gap conductance, structural changes of fuel pellets, fission product gas release with burnup and temperature increase, swelling and creep of fuel pellets, corrosion of cladding due to sodium flow and chemical attack by fission products, and cumulative damage of the cladding due to thermal creep

  13. Neutron radiography of fuel pins

    International Nuclear Information System (INIS)

    Jackson, C.N. Jr.; Powers, H.G.; Burgess, C.A.

    1975-01-01

    Neutron radiography performed with a reactor source has been shown to be a superior radiographic method for the examination of unirradiated mixed oxide fuel pins at the Hanford Engineering Development Laboratory. Approximately 1,700 fuel pins were contained in a sample that demonstrated the capability of the method for detecting laminations, structural flaws, fissile density variation, hydrogenous inclusions and voids in assembled fuel pins. The nature, extent, and importance of the detected conditions are substantiated by gamma autoradiography and by destructive analysis employing alpha autoradiography, electron microprobe and visual inspection. Also, a series of radiographs illustrate the response of neutron radiography as compared to low voltage and high voltage x-ray and gamma source Iridium 192 radiography. (U.S.)

  14. Mode of failure of LMFBR fuel pins

    International Nuclear Information System (INIS)

    Washburn, D.F.

    1975-01-01

    The objectives of the irradiation test described were to evaluate mixed-oxide fuel performance and to confirm the design adequacy of the FFTF fuel pins. After attainment of the initial objectives the irradiation of several of the original fuel pins was continued until a cladding breach occurred. The consequences of a cladding breach were evaluated by reconstituting the original 37-pin subassembly into two 19-pin subassemblies after a burnup at 50,000 MWd/MTM (5.2 a/o). The original pins were supplemented with fresh pins as necessary. Irradiation of the subassemblies was continued until a cladding breach occurred. Results are presented and discussed

  15. High gain semiconductor optical amplifier — Laser diode at visible wavelength

    KAUST Repository

    Shen, Chao; Lee, Changmin; Ng, Tien Khee; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2017-01-01

    We reported on the first experimental demonstration of a two-section semipolar InGaN-based laser diode with monolithically integrated semiconductor optical amplifier (SOA-LD). The onset of amplification effect was measured at 4V SOA bias (VSOA). The SOA-LD shows a large gain of 5.32 dB at Vsoa = 6 V.

  16. High gain semiconductor optical amplifier — Laser diode at visible wavelength

    KAUST Repository

    Shen, Chao

    2017-02-07

    We reported on the first experimental demonstration of a two-section semipolar InGaN-based laser diode with monolithically integrated semiconductor optical amplifier (SOA-LD). The onset of amplification effect was measured at 4V SOA bias (VSOA). The SOA-LD shows a large gain of 5.32 dB at Vsoa = 6 V.

  17. Colliding Pulse Mode-Locked Laser Diode using Multimode Interference Reflectors

    NARCIS (Netherlands)

    Gordon Gallegos, Carlos; Guzmán, R.C.; Jimenez, A.; Leijtens, X.J.M.; Carpintero, G.

    2014-01-01

    We present a novel fully monolithic Colliding Pulse Mode-Locked Laser Diode (CPML) using Multimode Interference Reflectors (MMIRs) to create the laser resonator. We demonstrate experimentally for the first time to our knowledge the Colliding Pulse mode-locking of a laser using MMIRs by observation

  18. Fabrication study of GaAs mesa diodes for X-ray detection

    OpenAIRE

    Ng, J.S.; Meng, X.; Lees, J.E.; Barnett, A.; Tan, C.H.

    2014-01-01

    A study of leakage currents using GaAs mesa p-i-n diodes for X-ray photon counting is presented. Different wet chemical etching solution and etch depth were used in the fabrication of these mesa diodes. Low and uniform leakage currents were achieved when the diode fabrication used (i) a combination of main etching solution and finishing etching solution for the etching, and (ii) partially etched mesas. The diodes fabricated using these methods showed well-defined X-ray peaks when illuminated ...

  19. Improved pinning regime by energetic ions using reduction of pinning potential

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Roy; Gandini, Alberto; Sawh, Ravi-Persad; Parks, Drew; Mayes, Bill

    2003-05-15

    When ion damage is used to create pinning centers, full columnar pinning centers provide the largest pinning potential, U{sub pin}, but not the greatest J{sub c} or pinned field, B{sub pin}. Some of the characteristics of columnar defects which limit J{sub c} and B{sub pin} are discussed, including reduction of percolation path, and the need for a larger number of columns of damage, for pinning, than are usually estimated. It is concluded that columnar pinning centers are limited to B{sub pin}<4 T, and also severely reduce J{sub c}. Evidence is reviewed that aligned damage, or broken-columnar pinning centers, described herein, can provide orders of magnitude higher J{sub c}, and higher pinned field, despite providing lower U{sub pin}. A pinning center morphology is discussed which utilizes multiple-in-line-damage (MILD). For, e.g., present day large grain HTS J{sub c}, obtainable by MILD pinning, is estimated to be of the order of 10{sup 6} A/cm{sup 2} at 77 K, even when crystal plane alignment and weak links are not improved. Pinned field is increased by over an order of magnitude. An experiment is proposed to confirm these observations, and to directly compare MILD to columnar pinning centers. It will also determine the optimum MILD structure. Other measurements of interest, made possible by the same data set, are described.

  20. Multicenter Study of Pin Site Infections and Skin Complications Following Pinning of Pediatric Supracondylar Humerus Fractures.

    Science.gov (United States)

    Combs, Kristen; Frick, Steven; Kiebzak, Gary

    2016-12-03

    Pediatric supracondylar humerus fractures are the most common elbow fractures in pediatric patients. Surgical fixation using pins is the primary treatment for displaced fractures. Pin site infections may follow supracondylar humerus fracture fixation; the previously reported incidence rate in the literature is 2.34%, but there is significant variability in reported incidence rates of pin site infection. This study aims to define the incidence rate and determine pre-, peri-, and postoperative factors that may contribute to pin site infection following operative reduction, pinning, and casting. A retrospective chart analysis was performed over a one-year period on patients that developed pin site infection. A cast care form was added to Nemours' electronic medical records (EMR) system (Epic Systems Corp., Verona, WI) to identify pin site infections for retrospective review. The cast care form noted any inflamed or infected pins. Patients with inflamed or infected pin sites underwent a detailed chart review. Preoperative antibiotic use, number and size of pins used, method of postoperative immobilization, pin dressings, whether postoperative immobilization was changed prior to pin removal, and length of time pins were in place was recorded. A total of 369 patients underwent operative reduction, pinning, and casting. Three patients developed a pin site infection. The pin site infection incidence rate was 3/369=0.81%. Descriptive statistics were reported for the three patients that developed pin site infections and three patients that developed pin site complications. Pin site infection development is low. Factors that may contribute to the development of pin site infection include preoperative antibiotic use, length of time pins are left in, and changing the cast prior to pin removal.

  1. Fuel pin bowing in CAGR

    International Nuclear Information System (INIS)

    Crossland, I.G.

    1982-01-01

    Some of the more important mechanisms by which pin bowing can occur in Advanced Gas Cooled Reactors are examined. These include creep relaxation of the stresses which occur when thermal bowing is restrained and asymmetric axial clad creep. The clad temperature changes which accompany such bowing are also investigated and the theoretical results briefly compared with the empirical behaviour. (author)

  2. Suspension scheme for fuel pin

    International Nuclear Information System (INIS)

    Butts, C.E.; Gray, H.C.

    1975-01-01

    A description is presented of a nuclear fuel pin suspension arrangement comprising, in combination, a rod; a first beam member connected to said rod at one end; a plurality of parallel-spaced slidable fuel support plates attached to said first beam member, the longitudinal axis of first beam member being perpendicular to the longitudinal axis of each of said fuel support plates, a first coupling means disposed along the length of the first beam member for permitting slidable fuel support plates parallel movement with respect to the longitudinal axis of said first beam member, a second coupling means located at one end of each of slidable fuel plates for slidably engaging first coupling means of first beam member, a second beam member connected to the other end of each of parallel-spaced slidable fuel support plates and providing an extension, second beam member being provided with a third coupling means disposed along the length of second beam member at one end thereof; and a plurality of fuel pins provided with a fourth coupling means located at one end of each fuel pin for slidably engaging third coupling means of second beam member to permit each fuel pin parallel movement with respect to the longitudinal axis of second beam member. (U.S.)

  3. Microfluidic devices and methods including porous polymer monoliths

    Science.gov (United States)

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  4. Components for monolithic fiber chirped pulse amplification laser systems

    Science.gov (United States)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  5. Performance Analysis of OCDMA Based on AND Detection in FTTH Access Network Using PIN & APD Photodiodes

    Science.gov (United States)

    Aldouri, Muthana; Aljunid, S. A.; Ahmad, R. Badlishah; Fadhil, Hilal A.

    2011-06-01

    In order to comprise between PIN photo detector and avalanche photodiodes in a system used double weight (DW) code to be a performance of the optical spectrum CDMA in FTTH network with point-to-multi-point (P2MP) application. The performance of PIN against APD is compared through simulation by using opt system software version 7. In this paper we used two networks designed as follows one used PIN photo detector and the second using APD photo diode, both two system using with and without erbium doped fiber amplifier (EDFA). It is found that APD photo diode in this system is better than PIN photo detector for all simulation results. The conversion used a Mach-Zehnder interferometer (MZI) wavelength converter. Also we are study, the proposing a detection scheme known as AND subtraction detection technique implemented with fiber Bragg Grating (FBG) act as encoder and decoder. This FBG is used to encode and decode the spectral amplitude coding namely double weight (DW) code in Optical Code Division Multiple Access (OCDMA). The performances are characterized through bit error rate (BER) and bit rate (BR) also the received power at various bit rate.

  6. Monolithic solid-state lasers for spaceflight

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  7. Monolithically integrated 8-channel WDM reflective modulator

    NARCIS (Netherlands)

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Smit, M.K.; Leijtens, X.J.M.

    2013-01-01

    In this work the design and characterization of a monolithically integrated photonic circuit acting as a reflective modulator for eight WDM channels is presented. The chip was designed and fabricated in a generic integration technology

  8. Optical Sensitivity of a Monolithic Integrated InP PIN-HEMT-HBT Transimpedance Amplifier

    OpenAIRE

    Matiss, A.; Janssen, G.; Bertenburg, R. M.; Brockerhoff, W.; Tegude, F.J.

    2004-01-01

    To improve sensitivity of optical receivers, a special integration concept is chosen that includes a pinphotodiode, high-electron mobility transistors (HEMT) and heterostructure bipolar transistors (HBT) on a single substrate. This work focuses on the optimization of the amplifier design to achieve lowest input noise currents of a transimpedance amplifier, and thus highest receiver sensitivity. The respective advantages of the components used are investigated with respect...

  9. New Structure for a Six-Port Reflectometer in Monolithic Microwave Integrated-Circuit Technology

    OpenAIRE

    Wiedmann , Frank; Huyart , Bernard; Bergeault , Eric; Jallet , Louis

    1997-01-01

    International audience; This paper presents a new structure for a six-port reflectometer which due to its simplicity can be implemented very easily in monolithic microwave integrated-circuit (MMIC) technology. It uses nonmatched diode detectors with a high input impedance which are placed around a phase shifter in conjunction with a power divider for the reference detector. The circuit has been fabricated using the F20 GaAs process of the GEC–Marconi foundry and operates between 1.3 GHz and 3...

  10. Pinning synchronization of a mobile agent network

    International Nuclear Information System (INIS)

    Wang, Lei; Sun, You-xian

    2009-01-01

    We investigate the problem of controlling a group of mobile agents in a plane in order to move them towards a desired orbit via pinning control, in which each agent is associated with a chaotic oscillator coupled with those of neighboring agents, and the pinning strategy is to have the common linear feedback acting on a small fraction of agents by random selection. We explore the effects of the pinning probability, feedback gains and agent density in the pinning synchronization of a mobile agent network under a fast-switching constraint, and perform numerical simulations for validation. In particular, we show that there exists a critical pinning density for network synchronization with an unbounded region: above the threshold, the dynamical network can be controlled by pinning; below it, anarchy prevails. And for the network with a single bounded synchronization region, pinning control has little effect as regards enhancing network synchronizability

  11. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing [Daly City, CA; Yang, Peidong [Kensington, CA; Kim, Woong [Seoul, KR; Fan, Rong [Pasadena, CA

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  12. Decomposition of monolithic web application to microservices

    OpenAIRE

    Zaymus, Mikulas

    2017-01-01

    Solteq Oyj has an internal Wellbeing project for massage reservations. The task of this thesis was to transform the monolithic architecture of this application to microservices. The thesis starts with a detailed comparison between microservices and monolithic application. It points out the benefits and disadvantages microservice architecture can bring to the project. Next, it describes the theory and possible strategies that can be used in the process of decomposition of an existing monoli...

  13. Ampfion-hybrid diode on the Cornell LION accelerator

    International Nuclear Information System (INIS)

    Rondeau, G.D.; Greenly, J.B.; Hammer, D.A.

    1984-01-01

    An ampfion hybrid diode, previously run on the HYDRAMITE accelerator at Sandia National Laboratories has recently been installed on the Cornell LION accelerator (1 TW, 1.8 MV, 40 ns pulse). The ampfion hybrid diode is magnetically insulated by means of a field coil in series with the cathode structure of the diode. An epoxy dielectric flashboard on the anode provides an anode plasma to supply the extracted ions. The diode has a geometric focal length of 20 cm. The experiment is equipped with plasma erosion opening switches on the anode stock to eliminate prepulse and improve the generator voltage risetime. Diagnostics include magnetic pickup loops to measure currents in the diode structure and non-neutral beam currents, biased charge collectors, and damage targets. An alpha particle pin hole camera utilizing the p,α reaction of fast (>500 kV) protons on boron or lithium is being developed to measure focus quality and proton current. Plastic track detector will be used to image the alpha particles coming from a boron or lithium target. A second pin hole camera uses a plastic scintillator and light detector to give time resolved focused ion intensity

  14. Activated Carbon Fiber Monoliths as Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Gelines Moreno-Fernandez

    2017-01-01

    Full Text Available Activated carbon fibers (ACF are interesting candidates for electrodes in electrochemical energy storage devices; however, one major drawback for practical application is their low density. In the present work, monoliths were synthesized from two different ACFs, reaching 3 times higher densities than the original ACFs’ apparent densities. The porosity of the monoliths was only slightly decreased with respect to the pristine ACFs, the employed PVDC binder developing additional porosity upon carbonization. The ACF monoliths are essentially microporous and reach BET surface areas of up to 1838 m2 g−1. SEM analysis reveals that the ACFs are well embedded into the monolith structure and that their length was significantly reduced due to the monolith preparation process. The carbonized monoliths were studied as supercapacitor electrodes in two- and three-electrode cells having 2 M H2SO4 as electrolyte. Maximum capacitances of around 200 F g−1 were reached. The results confirm that the capacitance of the bisulfate anions essentially originates from the double layer, while hydronium cations contribute with a mixture of both, double layer capacitance and pseudocapacitance.

  15. Study of 4H-SiC junction barrier Schottky diode using field guard ring termination

    International Nuclear Information System (INIS)

    Feng-Ping, Chen; Yu-Ming, Zhang; Hong-Liang, Lü; Yi-Men, Zhang; Jian-Hua, Huang

    2010-01-01

    This paper reports that the 4H-SiC Schottky barrier diode, PiN diode and junction barrier Schottky diode terminated by field guard rings are designed, fabricated and characterised. The measurements for forward and reverse characteristics have been done, and by comparison with each other, it shows that junction barrier Schottky diode has a lower reverse current density than that of the Schottky barrier diode and a higher forward drop than that of the PiN diode. High-temperature annealing is presented in this paper as well to figure out an optimised processing. The barrier height of 0.79 eV is formed with Ti in this work, the forward drop for the Schottky diode is 2.1 V, with an ideality factor of 3.2, and junction barrier Schottky diode with blocking voltage higher than 400 V was achieved by using field guard ring termination. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Uncooled monolithic ferroelectric IRFPA technology

    Science.gov (United States)

    Belcher, James F.; Hanson, Charles M.; Beratan, Howard R.; Udayakumar, K. R.; Soch, Kevin L.

    1998-10-01

    Once relegated to expensive military platforms, occasionally to civilian platforms, and envisioned for individual soldiers, uncooled thermal imaging affords cost-effective solutions for police cars, commercial surveillance, driving aids, and a variety of other industrial and consumer applications. System prices are continuing to drop, and swelling production volume will soon drive prices substantially lower. The impetus for further development is to improve performance. Hybrid barium strontium titanate (BST) detectors currently in production are relatively inexpensive, but have limited potential for improved performance. The MTF at high frequencies is limited by thermal conduction through the optical coating. Microbolometer arrays in development at Raytheon have recently demonstrated performance superior to hybrid detectors. However, microbolometer technology lacks a mature, low-cost system technology and an abundance of upgradable, deployable system implementations. Thin-film ferroelectric (TFFE) detectors have all the performance potential of microbolometers. They are also compatible with numerous fielded and planned system implementations. Like the resistive microbolometer, the TFFE detector is monolithic; i.e., the detector material is deposited directly on the readout IC rather than being bump bonded to it. Imaging arrays of 240 X 320 pixels have been produced, demonstrating the feasibility of the technology.

  17. Coaxial foilless diode

    OpenAIRE

    Long Kong; QingXiang Liu; XiangQiang Li; ShaoMeng Wang

    2014-01-01

    A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode par...

  18. Radiation effects on breakdown in silicon multiguarded diodes

    International Nuclear Information System (INIS)

    Bisello, D.; Da Rold, M.; Franzin, L.; Wheadon, R.

    1996-01-01

    The authors have investigated the current-voltage characteristics of silicon PIN diodes with a number of different multiguard structures. These structures were designed to increase the overall device breakdown voltage. The same measurements were carried out after gamma irradiation at different doses and neutron irradiation at fluences beyond type-inversion. This study is a first step towards defining guard structures optimized for operation in high-radiation environments such as those expected at the LHC

  19. Minimum ionizing particle detection using amorphous silicon diodes

    Energy Technology Data Exchange (ETDEWEB)

    Xi, J.; Hollingsworth, R.E.; Buitrago, R.H. (Glasstech Solar, Inc., Wheat Ridge, CO (USA)); Oakley, D.; Cumalat, J.P.; Nauenberg, U. (Colorado Univ., Boulder (USA). Dept. of Physics); McNeil, J.A. (Colorado School of Mines, Golden (USA). Dept. of Physics); Anderson, D.F. (Fermi National Accelerator Lab., Batavia, IL (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1991-03-01

    Hydrogenated amorphous silicon pin diodes have been used to detect minimum ionizing electrons with a pulse height signal-to-noise ratio exceeding 3. A distinct signal was seen for shaping times from 100 to 3000 ns. The devices used had a 54 {mu}m thick intrinsic layer and an active area of 0.1 cm{sup 2}. The maximum signal was 3200 electrons with a noise width of 950 electrons for a shaping time of 250 ns. (orig.).

  20. Long pulse diode experiments

    Science.gov (United States)

    McClenahan, Charles R.; Weber, Gerald J.; Omalley, Martin W.; Stewart, Joseph; Rinehart, Larry F.; Buttram, Malcolm T.

    1990-10-01

    A diode employing a thermionic cathode has produced 80 A beams at 200 kV for at least 6 microseconds. Moreover, the diode operates at rates as high as 1 Hz. EGUN simulations of the experimental geometry agree with the experiments. Finally, simulation of a proposed diode geometry predicts a 1 kA, 500 kV beam.

  1. Unicortical self-drilling external fixator pins reduce thermal effects during pin insertion.

    Science.gov (United States)

    Greinwald, Markus; Varady, Patrick A; Augat, Peter

    2017-12-14

    External fixation is associated with the risk of pin loosening and pin infection potentially associated to thermal bone necrosis during pin insertion. This study aims to investigate if the use of external fixator systems with unicortical pins reduces the heat production during pin insertion compared to fixators with bicortical pins. Porcine bone specimens were employed to determine bone temperatures during insertion of fixator pins. Two thermographic cameras were used for a simultaneous temperature measurement on the bone surface (top view) and a bone cross-section (front view). Self-drilling unicortical and bicortical pins were inserted at different rotational speeds: (30-600) rpm. Maximum and mean temperatures of the emerging bone debris, bone surface and bone cross-section were analyzed. Maximum temperatures of up to 77 ± 26 °C were measured during pin insertion in the emerging debris and up to 42 ± 2 °C on the bone surface. Temperatures of the emerging debris increased with increasing rotational speeds. Bicortical pin insertion generated significantly higher temperatures at low insertion speed (30 rpm) CONCLUSION: The insertion of external fixator pins can generate a considerable amount of heat around the pins, primarily emerging from bone debris and at higher insertion speeds. Our findings suggest that unicortical, self-drilling fixator pins have a decreased risk for thermal damage, both to the surrounding tissue and to the bone itself.

  2. Pin Wire Coating Trip Report

    International Nuclear Information System (INIS)

    Spellman, G P

    2004-01-01

    A meeting to discuss the current pin wire coating problems was held at the Reynolds plant in Los Angeles on 2MAR04. The attendance list for Reynolds personnel is attached. there was an initial presentation which gave a brief history and the current status of pin wire coating at Reynolds. There was a presentation by Lori Primus on the requirements and issues for the coating. There was a presentation by Jim Smith of LANL on the chemistry and to some extent process development done to date. There was a long session covering what steps should be taken in the short term and, to a lesser extent, the long term. The coating currently being used is a blend of two polymers, polyethersulfone and polyparabanic acid (PPA) and some TiO2 filler. This system was accepted and put into production when the pin wire coating was outsourced to another company in 1974. When that company no longer was interested, the wire coating was brought in-house to Reynolds. At that time polyparabanic acid was actually a commercial product available from Exxon under the trade name Tradlon. However, it appears that the material used at Reynolds was synthesized locally. Also, it appears that a single large batch was synthesized in that time period and used up to 1997 when the supply ran out. The reason for the inclusion of TiO2 is not known although it does act as a rheological thickener. However, a more controlled thickening can be obtained with materials such as fumed silica. This material would have less likelihood of causing point imperfections in the coatings. Also, the mixing technique being used for all stages of the process is a relatively low shear ball mill process and the author recommends a high shear process such as a three roll paint mill, at least for the final mixing. Since solvent is added to the powder at Reynolds, it may be that they need to have the paint mill there

  3. Transient survivability of LMR oxide fuel pins

    International Nuclear Information System (INIS)

    Weber, E.T.; Pitner, A.L.; Bard, F.E.; Culley, G.E.; Hunter, C.W.

    1986-01-01

    Fuel pin integrity during transient events must be assessed for both the core design and safety analysis phases of a reactor project. A significant increase in the experience related to limits of integrity for oxide fuel pins in transient overpower events has been realized from testing of fuel pins irradiated in FFTF and PFR. Fourteen FFTF irradiated fuel pins were tested in TREAT, representing a range of burnups, overpower ramp rates and maximum overpower conditions. Results of these tests along with similar testing in the PFR/TREAT program, provide a demonstration of significant safety margins for oxide fuel pins. Useful information applied in analytical extrapolation of fuel pin test data have been developed from laboratory transient tests on irradiated fuel cladding (FCTT) and on unirradiated fuel pellet deformation. These refinements in oxide fuel transient performance are being applied in assessment of transient capabilities of long lifetime fuel designs using ferritic cladding

  4. Conception and modelling of photo-detection pixels. PIN photodiodes conceived in amorphous silicon for particles detection; Conception et modelisation de pixels de photodetection: Photodiodes PIN en silicium amorphe en vue de leurs utilisations comme detecteurs de particules

    Energy Technology Data Exchange (ETDEWEB)

    Negru, R

    2008-06-15

    The research done has revealed that the a-Si:H is a material ideally suited for the detection of particles, while being resistant to radiation. It also has a low manufacturing cost, is compatible with existing technology and can be deposited over large areas. Thus, despite the low local mobility of charges (30 cm{sup 2}/V/s), a-Si:H is a material of particular interest for manufacturing high-energy particle detection pixels. As a consequence of this, we have studied the feasibility of an experimental pixel stacked structure based on a-Si:H as a basic sensor element for an electromagnetic calorimeter. The structure of such a pixel consists of different components. First, a silicon PIN diode in a-Si:H is fabricated, followed by a bias resistor and a decoupling capacitor. Before such a structure is made and in order to optimize its design, it is essential to have an efficient behavioural model of the various components. Thus, our primary goal was to develop a two-dimensional physical model of the PIN diode using the SILVACO finite element calculation software. This a-Si:H PIN diode two-dimensional physical model allowed us to study the problem of crosstalk between pixels in a matrix structure of detectors. In particular, we concentrated on the leakage current and the current generated in the volume between neighbouring pixels. The successful implementation of this model in SPICE ensures its usefulness in other professional simulators and especially its integration into a complete electronic structure (PIN diode, bias resistor, decoupling capacity and low noise amplifier). Thanks to these modelling tools, we were able to simulate PIN diode structures in a-Si:H with different thicknesses and different dimensions. These simulations have allowed us to predict that the thicker structures are relevant to the design of the pixel detectors for high energy physics. Applications in astronomy, medical imaging and the analysis of the failure of silicon integrated circuits, can

  5. Cesium migration in LMFBR fuel pins

    International Nuclear Information System (INIS)

    Karnesky, R.A.; Jost, J.W.; Stone, I.Z.

    1978-10-01

    The factors affecting the axial migration of cesium in mixed oxide fuel pins and the effects of cesium migration on fuel pin performance are examined. The development and application of a correlated model which will predict the occurrence of cesium migration in a mixed oxide (75 w/o UO 2 + 25 w/o PuO 2 ) fuel pins over a wide range of fabrication and irradiation conditions are described

  6. FFTF fuel pin design bases and performance

    International Nuclear Information System (INIS)

    Cox, C.M.; Hanson, J.E.; Roake, W.E.; Slember, R.J.; Weber, C.E.; Millunzi, A.C.

    1975-04-01

    The FFTF fuel pin was conservatively designed to meet thermal and structural performance requirements in the categories normal operation, upset events, emergency events, and hypothetical, faulted events. The fuel pin operating limits consistent with these requirements were developed from a strong fuel pin irradiation testing program scoped to define the performance capability under relevant steady state and transient conditions. Comparison of the results of the irradiation testing program with design requirements indicates that the FFTF fuel pin can exceed its goal burnup of 80,000 MWd/MTM. (U.S.)

  7. Integral Fast Reactor fuel pin processor

    International Nuclear Information System (INIS)

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves

  8. Magnetic pinning in superconductor-ferromagnet multilayers

    International Nuclear Information System (INIS)

    Bulaevskii, L. N.; Chudnovsky, E. M.; Maley, M. P.

    2000-01-01

    We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10 6 -10 7 A/cm 2 at high temperatures (but not very close to T c ) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics

  9. Magnetic pinning in superconductor-ferromagnet multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bulaevskii, L. N. [Department of Physics and Astronomy, CUNY Lehman College 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Chudnovsky, E. M. [Department of Physics and Astronomy, CUNY Lehman College, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Maley, M. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2000-05-01

    We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10{sup 6}-10{sup 7} A/cm{sup 2} at high temperatures (but not very close to T{sub c}) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics.

  10. Fabrication of FFTF fuel pin wire wrap

    International Nuclear Information System (INIS)

    Epperson, E.M.

    1980-06-01

    Lateral spacing between FFTF fuel pins is required to provide a passageway for the sodium coolant to flow over each pin to remove heat generated by the fission process. This spacing is provided by wrapping each fuel pin with type 316 stainless steel wire. This wire has a 1.435mm (0.0565 in.) to 1.448mm (0.0570 in.) diameter, contains 17 +- 2% cold work and was fabricated and tested to exacting RDT Standards. About 500 kg (1100 lbs) or 39 Km (24 miles) of fuel pin wrap wire is used in each core loading. Fabrication procedures and quality assurance tests are described

  11. Conception and modelling of photo-detection pixels. PIN photodiodes conceived in amorphous silicon for particles detection

    International Nuclear Information System (INIS)

    Negru, R.

    2008-06-01

    The research done has revealed that the a-Si:H is a material ideally suited for the detection of particles, while being resistant to radiation. It also has a low manufacturing cost, is compatible with existing technology and can be deposited over large areas. Thus, despite the low local mobility of charges (30 cm 2 /V/s), a-Si:H is a material of particular interest for manufacturing high-energy particle detection pixels. As a consequence of this, we have studied the feasibility of an experimental pixel stacked structure based on a-Si:H as a basic sensor element for an electromagnetic calorimeter. The structure of such a pixel consists of different components. First, a silicon PIN diode in a-Si:H is fabricated, followed by a bias resistor and a decoupling capacitor. Before such a structure is made and in order to optimize its design, it is essential to have an efficient behavioural model of the various components. Thus, our primary goal was to develop a two-dimensional physical model of the PIN diode using the SILVACO finite element calculation software. This a-Si:H PIN diode two-dimensional physical model allowed us to study the problem of crosstalk between pixels in a matrix structure of detectors. In particular, we concentrated on the leakage current and the current generated in the volume between neighbouring pixels. The successful implementation of this model in SPICE ensures its usefulness in other professional simulators and especially its integration into a complete electronic structure (PIN diode, bias resistor, decoupling capacity and low noise amplifier). Thanks to these modelling tools, we were able to simulate PIN diode structures in a-Si:H with different thicknesses and different dimensions. These simulations have allowed us to predict that the thicker structures are relevant to the design of the pixel detectors for high energy physics. Applications in astronomy, medical imaging and the analysis of the failure of silicon integrated circuits, can also

  12. Reduction of halo pin site morbidity with a new pin care regimen.

    Science.gov (United States)

    Kazi, Hussain Anthony; de Matas, Marcus; Pillay, Robin

    2013-06-01

    A retrospective analysis of halo device associated morbidity over a 4-year period. To assess the impact of a new pin care regimen on halo pin site related morbidity. Halo orthosis treatment still has a role in cervical spine pathology, despite increasing possibilities of open surgical treatment. Published figures for pin site infection range from 12% to 22% with pin loosening from 7% to 50%. We assessed the outcome of a new pin care regimen on morbidity associated with halo spinal orthoses, using a retrospective cohort study from 2001 to 2004. In the last two years, our pin care regimen was changed. This involved pin site care using chlorhexidene & regular torque checking as part of a standard protocol. Previously, povidone iodine was used as skin preparation in theatre, followed by regular sterile saline cleansing when pin sites became encrusted with blood. There were 37 patients in the series, the median age was 49 (range, 22-83) and 20 patients were male. The overall infection rate prior to the new pin care protocol was 30% (n=6) and after the introduction, it dropped to 5.9% (n=1). This difference was statistically significant (p<0.05). Pin loosening occurred in one patient in the group prior to the formal pin care protocol (3%) and none thereafter. Reduced morbidity from halo use can be achieved with a modified pin cleansing and tightening regimen.

  13. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport

    NARCIS (Netherlands)

    Huang, F.; Kemel Zago, M.; Abas, L.; van Marion, A.; Galván-Ampudia, C.S.; Offringa, R.

    2010-01-01

    Polar cell-to-cell transport of auxin by plasma membrane-localized PIN-FORMED (PIN) auxin efflux carriers generates auxin gradients that provide positional information for various plant developmental processes. The apical-basal polar localization of the PIN proteins that determines the direction of

  14. Polycrystalline Diamond Schottky Diodes and Their Applications.

    Science.gov (United States)

    Zhao, Ganming

    In this work, four-hot-filament CVD techniques for in situ boron doped diamond synthesis on silicon substrates were extensively studied. A novel tungsten filament shape and arrangement used to obtain large-area, uniform, boron doped polycrystalline diamond thin films. Both the experimental results and radiative heat transfer analysis showed that this technique improved the uniformity of the substrate temperature. XRD, Raman and SEM studies indicate that large area, uniform, high quality polycrystalline diamond films were obtained. Schottky diodes were fabricated by either sputter deposition of silver or thermal evaporation of aluminum or gold, on boron doped diamond thin films. High forward current density and a high forward-to-reverse current ratio were exhibited by silver on diamond Schottky diodes. Schottky barrier heights and the majority carrier concentrations of both aluminum and gold contacted diodes were determined from the C-V measurements. Furthermore, a novel theoretical C-V-f analysis of deep level boron doped diamond Schottky diodes was performed. The analytical results agree well with the experimental results. Compressive stress was found to have a large effect on the forward biased I-V characteristics of the diamond Schottky diodes, whereas the effect on the reverse biased characteristics was relatively small. The stress effect on the forward biased diamond Schottky diode was attributed to piezojunction and piezoresistance effects. The measured force sensitivity of the diode was as high as 0.75 V/N at 1 mA forward bias. This result shows that CVD diamond device has potential for mechanical transducer applications. The quantitative photoresponse characteristics of the diodes were studied in the spectral range of 300 -1050 nm. Semi-transparent gold contacts were used for better photoresponse. Quantum efficiency as high as 50% was obtained at 500 nm, when a reverse bias of over 1 volt was applied. The Schottky barrier heights between either gold or

  15. Fire resistance of prefabricated monolithic slab

    Directory of Open Access Journals (Sweden)

    Gravit Marina

    2017-01-01

    Full Text Available A prefabricated monolithic slab (PMS has a number of valuable advantages, they allow to significantly decrease the weight of construction keeping the necessary structural-load capacity, to speed up and cheapen work conduction, to increase the heat isolating properties of an enclosure structure [1]. In order to create a design method of prefabricated monolithic slab fire-resistance, it's necessary to perform a series of PMS testing, one of which is being described in this article. Subjected to the test is a fragment of prefabricated monolithic slab with polystyrene concrete inserts along the beams with bent metal profile 250 mm thick, with a 2.7 m span loaded with evenly spread load equal to 600 kg/m2. After 3 hour testing for fire-resistance [2] no signs of construction ultimate behavior were detected.

  16. Monolithic JFET preamplifier for ionization chamber calorimeter

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Manfredi, P.F.; Speziali, V.

    1990-10-01

    A monolithic charge sensitive preamplifier using exclusively n-channel diffused JFETs has been designed and is now being fabricated by INTERFET Corp. by means of a dielectrically isolated process which allows preserving as much as possible the technology upon which discrete JFETs are based. A first prototype built by means of junction isolated process has been delivered. The characteristics of monolithically integrated JFETs compare favorably with discrete devices. First results of tests of a preamplifier which uses these devices are reported. 4 refs

  17. Increased thermal conductivity monolithic zeolite structures

    Science.gov (United States)

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  18. Technology development for SOI monolithic pixel detectors

    International Nuclear Information System (INIS)

    Marczewski, J.; Domanski, K.; Grabiec, P.; Grodner, M.; Jaroszewicz, B.; Kociubinski, A.; Kucharski, K.; Tomaszewski, D.; Caccia, M.; Kucewicz, W.; Niemiec, H.

    2006-01-01

    A monolithic detector of ionizing radiation has been manufactured using silicon on insulator (SOI) wafers with a high-resistivity substrate. In our paper the integration of a standard 3 μm CMOS technology, originally designed for bulk devices, with fabrication of pixels in the bottom wafer of a SOI substrate is described. Both technological sequences have been merged minimizing thermal budget and providing suitable properties of all the technological layers. The achieved performance proves that fully depleted monolithic active pixel matrix might be a viable option for a wide spectrum of future applications

  19. Deep-red semiconductor monolithic mode-locked lasers

    International Nuclear Information System (INIS)

    Kong, L.; Bajek, D.; White, S. E.; Forrest, A. F.; Cataluna, M. A.; Wang, H. L.; Pan, J. Q.; Wang, X. L.; Cui, B. F.; Ding, Y.

    2014-01-01

    A deep-red semiconductor monolithic mode-locked laser is demonstrated. Multi-section laser diodes based on an AlGaAs multi-quantum-well structure were passively mode-locked, enabling the generation of picosecond optical pulses at 752 nm, at pulse repetition rates of 19.37 GHz. An investigation of the dependence of the pulse duration as a function of reverse bias revealed a predominantly exponential decay trend of the pulse duration, varying from 10.5 ps down to 3.5 ps, which can be associated with the concomitant reduction of absorption recovery time with increasing applied field. A 30-MHz-tunability of the pulse repetition rate with bias conditions is also reported. The demonstration of such a compact, efficient and versatile ultrafast laser in this spectral region paves the way for its deployment in a wide range of applications such as biomedical microscopy, pulsed terahertz generation as well as microwave and millimeter-wave generation, with further impact on sensing, imaging and optical communications

  20. InP Devices For Millimeter-Wave Monolithic Circuits

    Science.gov (United States)

    Binari, S. C.; Neidert, R. E.; Dietrich, H. B.

    1989-11-01

    High efficiency, mm-wave operation has been obtained from lateral transferred-electron devices (TEDs) designed with a high resistivity region located near the cathode contact. At 29.9 GHz, a CW power output of 29.1 mW with a conversion efficiency of 6.7% has been achieved with cavity-tuned discrete devices. This result represents the highest power output and efficiency of a lateral TED in this frequency range. The lateral devices also had a CW power output of 0.4 mW at 98.5 GHz and 0.9 mW at 75.2 GHz. In addition, a monolithic oscillator incorporating the lateral TED has been demonstrated at 79.9 GHz. InP Schottky-barrier diodes have been fabricated using selective MeV ion implantation into semi-insulating InP substrates. Using Si implantation with energies of up to 6.0 MeV, n+ layers as deep as 3 μm with peak carrier concentrations of 2 x 1018 cm-3 have been obtained. These devices have been evaluated as mixers and detectors at 94 GHz and have demonstrated a conversion loss of 7.6 dB and a zero-bias detector sensitivity as high as 400 mV/mW.

  1. Steps towards a GaN nanowire based light emitting diode and its integration with Si-MOS technology

    Energy Technology Data Exchange (ETDEWEB)

    Limbach, Friederich

    2012-06-22

    This work is concerned with the realization and investigation of a light emitting diode (LED) structure within single GaN nanowires (NWs) and its integration with Si technology. To this end first a general understanding of the GaN NW growth is given. This is followed by investigations of the influence which doping species, such as Mg and Si, have on the growth of the NWs. The experience gathered in these studies set the basis for the synthesis of nominal p-i-n and n-i-p junctions in GaN NWs. Investigations of these structures resulted in the technologically important insight, that p-type doping with Mg is achieved best if it is done in the later NW growth stage. This implies that it is beneficial for a NW LED to place the p-type segment on the NW top. Another important component of an LED is the active zone where electron-hole recombination takes place. In the case of planar GaN LEDs, this is usually achieved by alloying Ga and In to form InGaN. In order to be able to control the growth under a variety of conditions, we investigate the growth of InGaN in the form of extended segments on top of GaN NWs, as well as multi quantum wells (MQWs) in GaN NWs. All the knowledge gained during these preliminary studies is harnessed to reach the overall goal: The realization of a GaN NW LED. Such structures are fabricated, investigated and processed into working LEDs. Finally, a report on the efforts of integrating III-nitride NW LEDs and Si based metaloxide-semiconductor field effect transistor (MOSFET) technology is given. This demonstrates the feasibility of the monolithic integration of both devices on the same wafer at the same time.

  2. Synchronizability on complex networks via pinning control

    Indian Academy of Sciences (India)

    Keywords. Complex network; the pinning synchronization; synchronizability. ... The findings reveal the relationship between the decreasing speed of maximum eigenvalue sequence of the principal submatrices for coupling matrix and the synchronizability on complex networks via pinning control. We discuss the ...

  3. Breached-pin testing in the US

    International Nuclear Information System (INIS)

    Mahagin, D.E.; Lambert, J.D.B.

    1981-04-01

    Experience gained at EBR-II by the late 1970's from a significant number of failures in experimental fuel-pin irradiations forms the basis of a program directed towards the characterization of breached pins. The questions to be answered and the issues raised by further testing are discussed

  4. TACO: fuel pin performance analysis

    International Nuclear Information System (INIS)

    Stoudt, R.H.; Buchanan, D.T.; Buescher, B.J.; Losh, L.L.; Wilson, H.W.; Henningson, P.J.

    1977-08-01

    The thermal performance of fuel in an LWR during its operational lifetime must be described for LOCA analysis as well as for other safety analyses. The determination of stored energy in the LOCA analysis, for example, requires a conservative fuel pin thermal performance model that is capable of calculating fuel and cladding behavior, including the gap conductance between the fuel and cladding, as a function of burnup. The determination of parameters that affect the fuel and cladding performance, such as fuel densification, fission gas release, cladding dimensional changes, fuel relocation, and thermal expansion, should be accounted for in the model. Babcock and Wilcox (B and W) has submitted a topical report, BAW-10087P, December 1975, which describes their thermal performance model TACO. A summary of the elements that comprise the TACO model and an evaluation are presented

  5. Incommensurate pinning mechanism in KCP

    International Nuclear Information System (INIS)

    Apostol, M.; Baldea, I.

    1984-07-01

    A new pinning mechanism (termed incommensurate) is put forward for K 2 Pt(CN) 4 Brsub(0.3)x3.2H 2 O(KCP) based on the Q-quasi-modulated distribution of the bromine anions (Br-bar) along the chain axis (Q/2 being the Fermi momentum reduced to the first Brillouin zone). The different origins of the direct current (d.c.) thermally-activated gap and optical gap are thereby explained. The spectrum of the collective excitations (amplitudons and phasons) and the dielectric function are calculated for the charge density wave (CDW) state. Fair agreement is obtained with the optical and neutron scattering data. (author)

  6. Pinning impulsive control algorithms for complex network

    International Nuclear Information System (INIS)

    Sun, Wen; Lü, Jinhu; Chen, Shihua; Yu, Xinghuo

    2014-01-01

    In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms

  7. Resistance projection welding small pins in vacuum tube feedthrough assembly

    International Nuclear Information System (INIS)

    Kuncz, F. Jr.

    1980-01-01

    Resistance projection welding of two stainless steel pins to a cup is successfully accomplished by specially designed electrodes and by forming domes on the pin ends. Details of electrode and pin construction are given, as well as welding parameters

  8. 30 GHz monolithic balanced mixers using an ion-implanted FET-compatible 3-inch GaAs wafer process technology

    Science.gov (United States)

    Bauhahn, P.; Contolatis, A.; Sokolov, V.; Chao, C.

    1986-01-01

    An all ion-implanted Schottky barrier mixer diode which has a cutoff frequency greater than 1000 GHz has been developed. This new device is planar and FET-compatible and employs a projection lithography 3-inch wafer process. A Ka-band monolithic balanced mixer based on this device has been designed, fabricated and tested. A conversion loss of 8 dB has been measured with a LO drive of 10 dBm at 30 GHz.

  9. Pin fin compliant heat sink with enhanced flexibility

    Science.gov (United States)

    Schultz, Mark D.

    2018-04-10

    Heat sinks and methods of using the same include a top and bottom plate, at least one of which has a plurality of pin contacts flexibly connected to one another, where the plurality of pin contacts have vertical and lateral flexibility with respect to one another; and pin slice layers, each having multiple pin slices, arranged vertically between the top and bottom plates such that the plurality of pin slices form substantially vertical pins connecting the top and bottom plates.

  10. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    International Nuclear Information System (INIS)

    Jantzen, C

    2006-01-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO 2 and steam, and nitrate/nitrite components, if any, to N 2 . The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO 4 , I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the 2 durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form

  11. Package Holds Five Monolithic Microwave Integrated Circuits

    Science.gov (United States)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  12. Methacrylate monolithic columns functionalized with epinephrine for capillary electrochromatography applications.

    Science.gov (United States)

    Carrasco-Correa, Enrique Javier; Ramis-Ramos, Guillermo; Herrero-Martínez, José Manuel

    2013-07-12

    Epinephrine-bonded polymeric monoliths for capillary electrochromatography (CEC) were developed by nucleophilic substitution reaction of epoxide groups of poly(glycidyl-methacrylate-co-ethylenedimethacrylate) (poly(GMA-co-EDMA)) monoliths using epinephrine as nucleophilic reagent. The ring opening reaction under dynamic conditions was optimized. Successful chemical modification of the monolith surface was ascertained by in situ Raman spectroscopy characterization. In addition, the amount of epinephrine groups that was bound to the monolith surface was evaluated by oxidation of the catechol groups with Ce(IV), followed by spectrophotometric measurement of unreacted Ce(IV). About 9% of all theoretical epoxide groups of the parent monolith were bonded to epinephrine. The chromatographic behavior of the epinephrine-bonded monolith in CEC conditions was assessed with test mixtures of alkyl benzenes, aniline derivatives and substituted phenols. In comparison to the poly(GMA-co-EDMA) monoliths, the epinephrine-bonded monoliths exhibited a much higher retention and slight differences in selectivity. The epinephrine-bonded monolith was further modified by oxidation with a Ce(IV) solution and compared with the epinephrine-bonded monoliths. The resulting monolithic stationary phases were evaluated in terms of reproducibility, giving RSD values below 9% in the parameters investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Coaxial foilless diode

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Long; Liu, QingXiang; Li, XiangQiang; Wang, ShaoMeng [College of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China)

    2014-05-15

    A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode parameters is obtained. These results should be of interest to the area of generation and propagation of radial beam for application of generating high power microwaves.

  14. Coaxial foilless diode

    Directory of Open Access Journals (Sweden)

    Long Kong

    2014-05-01

    Full Text Available A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode parameters is obtained. These results should be of interest to the area of generation and propagation of radial beam for application of generating high power microwaves.

  15. Cesium chemistry in GCFR fuel pins

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1979-01-01

    The fuel rod design for the Gas Cooled Fast-Breeder Reactor (GCFR) is similar to that employed for the Liquid Metal Fast Breeder Reactor (LMFBR) with the exception of the unique features inherent to the use of helium as the coolant. These unique design features include the use of (1) vented and pressure-equalized fuel rods, and (2) ribbed cladding along 75% of the fuel section. The former design feature enables reduction in cladding thickness and prevention of possible creep collapse of the cladding due to the high coolant pressure (8.5 MPa). The latter design feature brings about improved heat transfer characteristics. Each GCFR fuel rod is vented to a manifold whereby gaseous fission products diffusing out of the fuel pin are retained on charcoal traps. As a result, the internal pressure of a GCFR fuel pin does not increase during irradiation. In addition, the venting system also maintains the pressure within the fuel pin slightly below (0.3 to 0.5 MPa) the coolant pressure outside the fuel pin. Consequently, should a breach occur in the cladding, helium flows into the breached fuel pin thereby minimizing fission product contamination of the coolant. These desirable aspects of a GCFR fuel pin can be maintained only as long as axial gas transport paths are available and operating within the fuel pin

  16. Vortex lattice melting, pinning and kinetics

    International Nuclear Information System (INIS)

    Doniach, S.; Ryu, S.; Kapitulnik, A.

    1994-01-01

    The phenomenology of the high T c superconductors is discussed both at the level of the thermodynamics of melting of the Abrikosov flux lattice and in terms of the melting and kinetics of the flux lattice for a pinned system. The authors review results on 3D melting obtained by a Monte Carlo simulation approach in which the 2D open-quotes pancakeclose quotes vortices are treated as statistical variables. The authors discuss pinning in the context of the strong pinning regime in which the vortex density given in terms of the applied field B is small compared to that represented by an effective field B pin measuring the pinning center density. The authors introduce a new criterion for the unfreezing of a vortex glass on increase of magnetic field or temperature, in the strong pinning, small field unit. The authors model this limit in terms of a single flux line interacting with a columnar pin. This model is studied both analytically and by computer simulation. By applying a tilt potential, the authors study the kinetics of the vortex motion in an external current and show that the resulting current-voltage characteristic follows a basic vortex glass-like scaling relation in the vicinity of the depinning transition

  17. Computer simulation of vortex pinning in type II superconductors. II. Random point pins

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1983-01-01

    Pinning of vortices in a type II superconductor by randomly positioned identical point pins is simulated using the two-dimensional method described in a previous paper (Part I). The system is characterized by the vortex and pin numbers (N/sub v/, N/sub p/), the vortex and pin interaction ranges (R/sub v/, R/sub p/), and the amplitude of the pin potential A/sub p/. The computation is performed for many cases: dilute or dense, sharp or soft, attractive or repulsive, weak or strong pins, and ideal or amorphous vortex lattice. The total pinning force F as a function of the mean vortex displacment X increases first linearly (over a distance usually much smaller than the vortex spacing and than R/sub p/) and then saturates, fluctuating about its averaging F-bar. We interpret F-bar as the maximum pinning force j/sub c/B of a large specimen. For weak pins the prediction of Larkin and Ovchinnikov for two-dimensional collective pinning is confirmed: F-bar = const. iW/R/sub p/c 66 , where W-bar is the mean square pinning force and c 66 is the shear modulus of the vortex lattice. If the initial vortex lattice is chosen highly defective (''amorphous'') the constant is 1.3--3 times larger than for the ideal triangular lattice. This finding may explain the often observed ''history effect.'' The function F-bar(A/sub p/) exhibits a jump, which for dilute, sharp, attractive pins occurs close to the ''threshold value'' predicted for isolated pins by Labusch. This jump reflects the onset of plastic deformation of the vortex lattice, and in some cases of vortex trapping, but is not a genuine threshold

  18. Electro-optical fuel pin identification system

    International Nuclear Information System (INIS)

    Kirchner, T.L.

    1978-09-01

    A prototype Electro-Optical Fuel Pin Identification System referred to as the Fuel Pin Identification System (FPIS) has been developed by the Hanford Engineering Development Laboratory (HEDL) in support of the Fast Flux Test Facility (FFTF) presently under construction at HEDL. The system is designed to remotely read an alpha-numeric identification number that is roll stamped on the top of the fuel pin end cap. The prototype FPIS consists of four major subassemblies: optical read head, digital compression electronics, video display, and line printer

  19. Flux pinning characteristics of YBCO coated conductor

    International Nuclear Information System (INIS)

    Matsushita, T.; Watanabe, T.; Fukumoto, Y.; Yamauchi, K.; Kiuchi, M.; Otabe, E.S.; Kiss, T.; Watanabe, T.; Miyata, S.; Ibi, A.; Muroga, T.; Yamada, Y.; Shiohara, Y.

    2005-01-01

    Flux pinning properties of PLD-processed YBCO coated conductors deposited on IBAD substrate are investigated. The thickness of YBCO layer is changed in the range of 0.27-1.0 μm. The thickness dependence of critical current density, n-value and irreversibility field are measured in a wide range of magnetic field. The results are compared with the theoretical flux creep-flow model. It is found that these pinning properties are strongly influenced by the thickness as well as the pinning strength. Optimum condition for high field application of this superconductor is discussed

  20. Pinning and creep in superconductors

    International Nuclear Information System (INIS)

    Ovchinnikov, Yu.N.

    1994-01-01

    All superconductors can be separated into two large groups: type I and type II. The behaviour of these two groups in a magnetic field is quite different. The superconductors of type I, in a strong magnetic field, enter the intermediate state. Phenomenological picture of this state was given by Landau. The type II superconductors, in strong magnetic fields, form the mixed state (or Shubnikov phase). The microscopic picture of the mixed state was given by Abrikosov on the basis of Ginzburg-Landau equations. In ideal homogeneous superconductors the free energy is not changed if all the vortex structure is shifted on some distance u. The transport current will be proportional, therefore, to the electric field E. All the real superconductors, however, are inhomogeneous. Inhomogeneities interact with vortex lattice and pin it. In this new state the transport current below some critical value does not lead to the motion of the flux lattice and to the energy dissipation. The value of critical current strongly depends on the type of inhomogeneities, on the value of magnetic field and on temperature. In new layered superconductors, the critical current depends also on the orientation of the magnetic field B with respect to the layer planes. Temperature and quantum fluctuations lead to the transition between different metastable states in superconductors with current. As a result, the vortex lattice slowly moves (creep phenomenon). Below we will briefly discuss all these phenomena. (orig.)

  1. Vortex diode jet

    Science.gov (United States)

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  2. A compact D-band monolithic APDP-based sub-harmonic mixer

    Science.gov (United States)

    Zhang, Shengzhou; Sun, Lingling; Wang, Xiang; Wen, Jincai; Liu, Jun

    2017-11-01

    The paper presents a compact D-band monolithic sub-harmonic mixer (SHM) with 3 μm planar hyperabrupt schottky-varactor diodes offered by 70 nm GaAs mHEMT technology. According to empirical equivalent-circuit models, a wide-band large signal equivalent circuit model of the diode is proposed. Based on the extracted model, the mixer is implemented and optimized with a shunt-mounted anti-parallel diode pair (APDP) to fulfill the sub-harmonic mixing mechanism. Furthermore, a modified asymmetric three-transmission-line coupler is devised to achieve high-level coupling and minimize the chip size. The measured results show that the conversion gain varies between -13.9 dB and -17.5 dB from 110 GHz to 145 GHz, with a local oscillator (LO) power level of 14 dBm and an intermediate frequency (IF) of 1 GHz. The total chip size including probe GSG pads is 0.57 × 0.68mm2. In conclusion, the mixer exhibits outstanding figure-of-merits.

  3. Compact CsI(Tl)-PIN detectors for nuclear physics applications

    International Nuclear Information System (INIS)

    Bhattacharjee, T.; Basu, S.K.; Bhattacharyya, S.; Chanda, S.; Chowdhury, A.; Mukhopadhyay, P.; Chatterjee, M.B.; Dey, C.C.; Mukherjee, Anjali

    2005-01-01

    Prototype detector elements, based on CsI(Tl) - Si PIN diodes, have been fabricated and optimized for use in a near 4p charged particle multiplicity filter array. The important aspects of fabrication of such compact detector elements along with the off-line and on-line performance test results will be reported. An early implementation of the proposed multiplicity filter array will be described. The planned use of the array in conjunction with the Indian National Gamma Array (INGA) as a reaction filter in high spin spectroscopic studies would be stressed. (author)

  4. Vortex pinning by point defect in superconductors

    International Nuclear Information System (INIS)

    Liao Hongyin; Zhou Shiping; Du Haochen

    2003-01-01

    We apply the periodic time-dependent Ginzburg-Landau model to study vortex distribution in type-II superconductors with a point-like defect and square pinning array. A defect site will pin vortices, and a periodic pinning array with right geometric parameters, which can be any form designed in advance, shapes the vortex pattern as external magnetic field varies. The maximum length over which an attractive interaction between a pinning centre and a vortex extends is estimated to be about 6.0ξ. We also derive spatial distribution expressions for the order parameter, vector potential, magnetic field and supercurrent induced by a point defect. Theoretical results and numerical simulations are compared with each other and they are consistent

  5. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  6. Nuclear fuel pin controlled failure device

    International Nuclear Information System (INIS)

    Schlenker, L.D.

    1975-01-01

    Each fuel pin of a fuel assembly for a water-cooled nuclear reactor is provided with means for rupturing the cladding tube at a predetermined location if an abnormal increase in pressure of the gases present occurs due to a loss-of-coolant accident. Preferably all such rupture means are oriented to minimize the hydraulic resistance to the flow of emergency core coolant such as all rupture means pointing in the same direction. Rupture means may be disposed at different elevations in adjacent fuel pins and, further, fuel pins may be provided with two or more rupture means, one of which is in the upper portion of the fuel pin. Rupture means are mechanical as by providing a locally weakened condition of a controlled nature in the cladding. (U.S.)

  7. Ultrasonic inspections of fuel alignment pins

    International Nuclear Information System (INIS)

    Rathgeb, W.; Schmid, R.

    1994-01-01

    As a remedy to the practical problem of defects in fuel alignment pins made of Inconel X750, an inspection technique has been developed which fully meets the requirements of detecting defects. The newly used fuel alignment pins made of austenite are easy to test and therefore satisfy the necessity of further inspections.For the fuel alignment pins of the upper core structure a safe and fast inspection technique was made available. The inspection sensitivity is high and it is possible to give quantitative directions concerning defect orientation and depth. After the required inspections had been concluded in 1989, a total of 18 inspections were carried out in various national and international nuclear power plants in the following years. During this time more than 6000 fuel alignment pines were examined.For the fuel alignment pins the inspection technique provided could increase the understanding of the defect process. This technique contributed to the development of an adaptive and economical repair strategy. ((orig.))

  8. Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering

    DEFF Research Database (Denmark)

    Criado, A. R.; Acedo, P.; Carpintero, G.

    2012-01-01

    A Continuous Wave (CW) sub-THz photonic synthesis setup based on a single Passively Mode-Locked Laser Diode (PMLLD) acting as a monolithic Optical Frequency Comb Generator (OFCG) and highly selective optical filtering has been implemented to evaluate the phase noise performance of the generated sub...

  9. IMp: The customizable LEGO® Pinned Insect Manipulator

    Directory of Open Access Journals (Sweden)

    Steen Dupont

    2015-02-01

    Full Text Available We present a pinned insect manipulator (IMp constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble.

  10. IMp: The customizable LEGO® Pinned Insect Manipulator

    Science.gov (United States)

    Dupont, Steen; Price, Benjamin; Blagoderov, Vladimir

    2015-01-01

    Abstract We present a pinned insect manipulator (IMp) constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble. PMID:25685035

  11. Anisotropic flux pinning in high Tc superconductors

    International Nuclear Information System (INIS)

    Kolesnik, S.; Igalson, J.; Skoskiewicz, T.; Szymczak, R.; Baran, M.; Pytel, K.; Pytel, B.

    1995-01-01

    In this paper we present a comparison of the results of FC magnetization measurements on several Pb-Sr-(Y,Ca)-Cu-O crystals representing various levels of flux pinning. The pinning centers in our crystals have been set up during the crystal growth process or introduced by neutron irradiation. Some possible explanations of the observed effects, including surface barrier, flux-center distribution and sample-shape effects, are discussed. ((orig.))

  12. Investigation on macroscopic cross section model for BWR pin-by-pin core analysis - 118

    International Nuclear Information System (INIS)

    Fujita, T.; Tada, K.; Yamamoto, A.; Yamane, Y.; Kosaka, S.; Hirano, G.

    2010-01-01

    A cross section model used in the pin-by-pin core analysis for BWR is investigated. In the pin-by-pin core calculation method, pin-cell averaged cross sections are calculated for many combinations of state and history variables that have influences on the cross section and are tabulated prior to the core calculations. Variation of a cross section in a core simulator is classified into two different types, i.e., the instantaneous effect and the history effect. The instantaneous effect is incorporated by the variation of cross section which is caused by the instantaneous change of state variables. For this effect, the exposure, the void fraction, the fuel temperature, the moderator temperature and the control rod are used as indexes. The history effect is the cumulative effect of state variables. We treat this effect with a unified approach using the spectral history. To confirm accuracy of the cross section model, the pin-by-pin fission rate distribution and the k-infinity of fuel assembly which are obtained with the tabulated and the reference cross sections are compared. For the instantaneous effect, the present cross section model well reproduces the reference results for all off-nominal conditions. For the history effect, however, considerable differences both on the pin-by-pin fission rate distribution and the k-infinity are observed at high exposure points. (authors)

  13. A macroscopic cross-section model for BWR pin-by-pin core analysis

    International Nuclear Information System (INIS)

    Fujita, Tatsuya; Endo, Tomohiro; Yamamoto, Akio

    2014-01-01

    A macroscopic cross-section model used in boiling water reactor (BWR) pin-by-pin core analysis is studied. In the pin-by-pin core calculation method, pin-cell averaged cross sections are calculated for many combinations of core state and depletion history variables and are tabulated prior to core calculations. Variations of cross sections in a core simulator are caused by two different phenomena (i.e. instantaneous and history effects). We treat them through the core state variables and the exposure-averaged core state variables, respectively. Furthermore, the cross-term effect among the core state and the depletion history variables is considered. In order to confirm the calculation accuracy and discuss the treatment of the cross-term effect, the k-infinity and the pin-by-pin fission rate distributions in a single fuel assembly geometry are compared. Some cross-term effects could be negligible since the impacts of them are sufficiently small. However, the cross-term effects among the control rod history (or the void history) and other variables have large impacts; thus, the consideration of them is crucial. The present macroscopic cross-section model, which considers such dominant cross-term effects, well reproduces the reference results and can be a candidate in practical applications for BWR pin-by-pin core analysis on the normal operations. (author)

  14. Improved pinning by multiple in-line damage

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Roy [Beam Particle Dynamics Laboratories, University of Houston, Houston, TX 77204-5005 (United States); Sawh, Ravi-Persad [Beam Particle Dynamics Laboratories, University of Houston, Houston, TX 77204-5005 (United States); Gandini, Alberto [Beam Particle Dynamics Laboratories, University of Houston, Houston, TX 77204-5005 (United States); Parks, Drew [Beam Particle Dynamics Laboratories, University of Houston, Houston, TX 77204-5005 (United States)

    2005-02-01

    Columnar pinning centres provide the largest pinning potential, U{sub pin}, but not the greatest J{sub c} or pinnable field, B{sub pin}. Characteristics of ion-generated columnar defects which limit J{sub c} and B{sub pin} are discussed, including reduction of the percolation path, and the need for a larger number of columns of damage, for pinning, than are usually estimated. It is concluded that columnar pinning centres limit B{sub pin} to less than 4 T, and also severely reduce J{sub c}. The goal of maximizing U{sub pin}, via columnar centres, appears to have obscured a more rewarding approach and resulted in neglect of a large regime of ion interactions. Evidence is reviewed that multiple in-line damage (MILD), described herein, can provide orders of magnitude higher J{sub c} and B{sub pin}, despite providing lower U{sub pin}. The MILD pinning centre morphology is discussed, and it is estimated that for present-day large grain high T{sub c} superconductors, a J{sub c} value of {approx}10{sup 6}Acm{sup -2} is obtainable at 77 K, even when crystal plane alignment and weak links are not improved. In addition, the pinned field is increased by over an order of magnitude. An experiment is proposed to confirm these calculations, directly compare MILD pinning to continuous columnar pinning, and determine the optimum MILD structure. Applications of MILD pinning are discussed.

  15. A monolithic integrated photonic microwave filter

    Science.gov (United States)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2017-02-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  16. Test of the TRAPPISTe monolithic detector system

    Science.gov (United States)

    Soung Yee, L.; Álvarez, P.; Martin, E.; Cortina, E.; Ferrer, C.

    2013-12-01

    A monolithic pixel detector named TRAPPISTe-2 has been developed in Silicon-on-Insulator (SOI) technology. A p-n junction is implanted in the bottom handle wafer and connected to readout electronics integrated in the top active layer. The two parts are insulated from each other by a buried oxide layer resulting in a monolithic detector. Two small pixel matrices have been fabricated: one containing a 3-transistor readout and a second containing a charge sensitive amplifier readout. These two readout structures have been characterized and the pixel matrices were tested with an infrared laser source. The readout circuits are adversely affected by the backgate effect, which limits the voltage that can be applied to the metal back plane to deplete the sensor, thus narrowing the depletion width of the sensor. Despite the low depletion voltages, the integrated pixel matrices were able to respond to and track a laser source.

  17. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  18. An overview of monolithic zirconia in dentistry

    Directory of Open Access Journals (Sweden)

    Özlem Malkondu

    2016-07-01

    Full Text Available Zirconia restorations have been used successfully for years in dentistry owing to their biocompatibility and good mechanical properties. Because of their lack of translucency, zirconia cores are generally veneered with porcelain, which makes restorations weaker due to failure of the adhesion between the two materials. In recent years, all-ceramic zirconia restorations have been introduced in the dental sector with the intent to solve this problem. Besides the elimination of chipping, the reduced occlusal space requirement seems to be a clear advantage of monolithic zirconia restorations. However, scientific evidence is needed to recommend this relatively new application for clinical use. This mini-review discusses the current scientific literature on monolithic zirconia restorations. The results of in vitro studies suggested that monolithic zirconia may be the best choice for posterior fixed partial dentures in the presence of high occlusal loads and minimal occlusal restoration space. The results should be supported with much more in vitro and particularly in vivo studies to obtain a final conclusion.

  19. Characterization of SOI monolithic detector system

    Science.gov (United States)

    Álvarez-Rengifo, P. L.; Soung Yee, L.; Martin, E.; Cortina, E.; Ferrer, C.

    2013-12-01

    A monolithic active pixel sensor for charged particle tracking was developed. This research is performed within the framework of an R&D project called TRAPPISTe (Tracking Particles for Physics Instrumentation in SOI Technology) whose aim is to evaluate the feasibility of developing a Monolithic Active Pixel Sensor (MAPS) with Silicon-on-Insulator (SOI) technology. Two chips were fabricated: TRAPPISTe-1 and TRAPPISTe-2. TRAPPISTe-1 was produced at the WINFAB facility at the Université catholique de Louvain (UCL), Belgium, in a 2 μm fully depleted (FD-SOI) CMOS process. TRAPPISTe-2 was fabricated with the LAPIS 0.2 μm FD-SOI CMOS process. The electrical characterization on single transistor test structures and of the electronic readout for the TRAPPISTe series of monolithic pixel detectors was carried out. The behavior of the prototypes’ electronics as a function of the back voltage was studied. Results showed that both readout circuits exhibited sensitivity to the back voltage. Despite this unwanted secondary effect, the responses of TRAPPISTe-2 amplifiers can be improved by a variation in the circuit parameters.

  20. Metal oxide nanorod arrays on monolithic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    2018-01-02

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can include a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.

  1. Fracture-resistant monolithic dental crowns.

    Science.gov (United States)

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-03-01

    To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Experimental measurements and XFEM predictions were self-consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. Copyright © 2015 Academy of Dental Materials. All rights reserved.

  2. Room Temperature Direct Band Gap Emission from Ge p-i-n Heterojunction Photodiodes

    Directory of Open Access Journals (Sweden)

    E. Kasper

    2012-01-01

    Full Text Available Room temperature direct band gap emission is observed for Si-substrate-based Ge p-i-n heterojunction photodiode structures operated under forward bias. Comparisons of electroluminescence with photoluminescence spectra allow separating emission from intrinsic Ge (0.8 eV and highly doped Ge (0.73 eV. Electroluminescence stems from carrier injection into the intrinsic layer, whereas photoluminescence originates from the highly n-doped top layer because the exciting visible laser wavelength is strongly absorbed in Ge. High doping levels led to an apparent band gap narrowing from carrier-impurity interaction. The emission shifts to higher wavelengths with increasing current level which is explained by device heating. The heterostructure layer sequence and the light emitting device are similar to earlier presented photodetectors. This is an important aspect for monolithic integration of silicon microelectronics and silicon photonics.

  3. Heterogeneous neutron-leakage model for PWR pin-by-pin calculation

    International Nuclear Information System (INIS)

    Li, Yunzhao; Zhang, Bin; Wu, Hongchun; Shen, Wei

    2017-01-01

    Highlights: •The derivation of the formula of the leakage model is introduced. This paper evaluates homogeneous and heterogeneous leakage models used in PWR pin-by-pin calculation. •The implements of homogeneous and heterogeneous leakage models used in pin-cell homogenization of the lattice calculation are studied. A consistent method of cooperation between the heterogeneous leakage model and the pin-cell homogenization theory is proposed. •Considering the computational cost, a new buckling search scheme is proposed to reach the convergence faster. The computational cost of the newly proposed neutron balance scheme is much less than the power-method scheme and the linear-interpolation scheme. -- Abstract: When assembly calculation is performed with the reflective boundary condition, a leakage model is usually required in the lattice code. The previous studies show that the homogeneous leakage model works effectively for the assembly homogenization. However, it becomes different and unsettled for the pin-cell homogenization. Thus, this paper evaluates homogeneous and heterogeneous leakage models used in pin-by-pin calculation. The implements of homogeneous and heterogeneous leakage models used in pin-cell homogenization of the lattice calculation are studied. A consistent method of cooperation between the heterogeneous leakage model and the pin-cell homogenization theory is proposed. Considering the computational cost, a new buckling search scheme is proposed to reach the convergence faster. For practical reactor-core applications, the diffusion coefficients determined by the transport cross-section or by the leakage model are compared with each other to determine which one is more accurate for the Pressurized Water Reactor pin-by-pin calculation. Numerical results have demonstrated that the heterogeneous leakage model together with the diffusion coefficient determined by the heterogeneous leakage model would have the higher accuracy. The new buckling search

  4. Powerful infrared emitting diodes

    Directory of Open Access Journals (Sweden)

    Kogan L. M.

    2012-02-01

    Full Text Available Powerful infrared LEDs with emission wavelength 805 ± 10, 870 ± 20 and 940 ± 10 nm developed at SPC OED "OPTEL" are presented in the article. The radiant intensity of beam diode is under 4 W/sr in the continuous mode and under 100 W/sr in the pulse mode. The radiation power of wide-angle LEDs reaches 1 W in continuous mode. The external quantum efficiency of emission IR diodes runs up to 30%. There also has been created infrared diode modules with a block of flat Fresnel lenses with radiant intensity under 70 W/sr.

  5. Testing of the KRI-developed Silicon PIN Radioxenon Detector

    International Nuclear Information System (INIS)

    Foxe, Michael P.; McIntyre, Justin I.

    2015-01-01

    removal of plastics within the cell, which will need to be explored in future work. A third important parameter in choosing the best detection technique for radioxenon is the resolution of the electron detection. While the resolution is important in determining the minimum detectable concentration, it plays a larger role in source identification when there is a visible signal. The Silicon PIN diodes generated improved resolution over a similar plastic scintillator cell. With the improved resolution, it becomes easier to distinguish the radioxenon isomers ( 133m Xe and 131m Xe) from the 133 Xe beta continuum background. With the beta background from 133 Xe ever present with the detection of the isomers, the improved resolution proves vital in calculating the ratios of the three isotopes. With an accurate measurement of the isotopic ratios, the anthropogenic sources of radioxenon (medical isotope production and nuclear reactors) can be more accurately distinguished. Based on the results shown within this report, a Si PIN beta cell shows the potential to aid in the operation and discriminating power of the IMS for the CTBTO. However, there are a number of issues that need attention before a detector of this design would be reliable enough for field operations in the IMS. Issues that need develop include, but are not limited to: studying the robustness of the design in field conditions, eliminating or minimizing the noise and variability of individual Si detector elements, understanding the long-term gain stability of the Si detectors, and reducing the non-Si materials within the cell (i.e. the plastic housing).

  6. Whole-Pin Furnace system: An experimental facility for studying irradiated fuel pin behavior under potential reactor accident conditions

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.C.; Donahue, D.A.; Pushis, D.O.; Savoie, F.E.; Holland, J.W.; Wright, A.E.; August, C.; Bailey, J.L.; Patterson, D.R.

    1990-05-01

    The whole-pin furnace system is a new in-cell experimental facility constructed to investigate how irradiated fuel pins may fail under potential reactor accident conditions. Extensive checkouts have demonstrated excellent performance in remote operation, temperature control, pin breach detection, and fission gas handling. The system is currently being used in testing of EBIR-II-irradiated Integral Fast Reactor (IFR) metal fuel pins; future testing will include EBR-II-irradiated mixed-oxide fuel pins. 7 refs., 4 figs

  7. Innovative monolithic detector for tri-spectral (THz, IR, Vis) imaging

    Science.gov (United States)

    Pocas, S.; Perenzoni, M.; Massari, N.; Simoens, F.; Meilhan, J.; Rabaud, W.; Martin, S.; Delplanque, B.; Imperinetti, P.; Goudon, V.; Vialle, C.; Arnaud, A.

    2012-10-01

    Fusion of multispectral images has been explored for many years for security and used in a number of commercial products. CEA-Leti and FBK have developed an innovative sensor technology that gathers monolithically on a unique focal plane arrays, pixels sensitive to radiation in three spectral ranges that are terahertz (THz), infrared (IR) and visible. This technology benefits of many assets for volume market: compactness, full CMOS compatibility on 200mm wafers, advanced functions of the CMOS read-out integrated circuit (ROIC), and operation at room temperature. The ROIC houses visible APS diodes while IR and THz detections are carried out by microbolometers collectively processed above the CMOS substrate. Standard IR bolometric microbridges (160x160 pixels) are surrounding antenna-coupled bolometers (32X32 pixels) built on a resonant cavity customized to THz sensing. This paper presents the different technological challenges achieved in this development and first electrical and sensitivity experimental tests.

  8. Growth and Transfer of Monolithic Horizontal ZnO Nanowire Superstructures onto Flexible Substrates

    KAUST Repository

    Xu, Sheng

    2010-04-28

    A method of fabricating horizontally aligned ZnO nanowire (NW) arrays with full control over the width and length is demonstrated. A cross-sectional view of the NWs by transmission electron microscopy shows a "mushroom-like" structure. Novel monolithic multisegment superstructures are fabricated by making use of the lateral overgrowth. Ultralong horizontal ZnO NWs of an aspect ratio on the order often thousand are also demonstrated. These horizontal NWs are lifted off and transferred onto a flexible polymer substrate, which may have many great applications in horizontal ZnO NW-based nanosensor arrays, light-emitting diodes, optical gratings, integrated circuit interconnects, and high-output-power alternating-current nanogenerators. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA.

  9. Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si

    Science.gov (United States)

    Castellano, A.; Cerutti, L.; Rodriguez, J. B.; Narcy, G.; Garreau, A.; Lelarge, F.; Tournié, E.

    2017-06-01

    We report on electrically pumped GaSb-based laser diodes monolithically grown on Si and operating in a continuous wave (cw) in the telecom wavelength range. The laser structures were grown by molecular-beam epitaxy on 6°-off (001) substrates. The devices were processed in coplanar contact geometry. 100 μm × 1 mm laser diodes exhibited a threshold current density of 1 kA/cm-2 measured under pulsed operation at 20 °C. CW operation was achieved up to 35 °C with 10 μm × 1 mm diodes. The output power at 20 °C was around 3 mW/uncoated facet, and the cw emission wavelength 1.59 μm, in the C/L-band of telecom systems.

  10. Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si

    Directory of Open Access Journals (Sweden)

    A. Castellano

    2017-06-01

    Full Text Available We report on electrically pumped GaSb-based laser diodes monolithically grown on Si and operating in a continuous wave (cw in the telecom wavelength range. The laser structures were grown by molecular-beam epitaxy on 6°-off (001 substrates. The devices were processed in coplanar contact geometry. 100 μm × 1 mm laser diodes exhibited a threshold current density of 1 kA/cm−2 measured under pulsed operation at 20 °C. CW operation was achieved up to 35 °C with 10 μm × 1 mm diodes. The output power at 20 °C was around 3 mW/uncoated facet, and the cw emission wavelength 1.59 μm, in the C/L-band of telecom systems.

  11. Disruptive laser diode source for embedded LIDAR sensors

    Science.gov (United States)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2017-02-01

    Active imaging based on laser illumination is used in various fields such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified these last years with an emphasis on lidar technology that is probably the key to achieve full automation level. Based on time-of-flight measurements, the profile of objects can be measured together with their location in various conditions, creating a 3D mapping of the environment. To be embedded on a vehicle as advanced driver assistance systems (ADAS), these sensors require compactness, low-cost and reliability, as it is provided by a flash lidar. An attractive candidate, especially with respect to cost reduction, for the laser source integrated in these devices is certainly laser diodes as long as they can provide sufficiently short pulses with a high energy. A recent breakthrough in laser diode and diode driver technology made by Quantel (Les Ulis, France) now allows laser emission higher than 1 mJ with pulses as short as 12 ns in a footprint of 4x5 cm2 (including both the laser diode and driver) and an electrical-to-optical conversion efficiency of the whole laser diode source higher than 25% at this level of energy. The components used for the laser source presented here can all be manufactured at low cost. In particular, instead of having several individual laser diodes positioned side by side, the laser diodes are monolithically integrated on a single semiconductor chip. The chips are then integrated directly on the driver board in a single assembly step. These laser sources emit in the range of 800-1000 nm and their emission is considered to be eye safe when taking into account the high divergence of the output beam and the aperture of possible macro lenses so that they can be used for end consumer applications. Experimental characterization of these state-of-the-art pulsed laser diode sources

  12. Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration

    Science.gov (United States)

    Liu, Jifeng; Kimerling, Lionel C.; Michel, Jurgen

    2012-09-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic-photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500-1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously

  13. Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration

    International Nuclear Information System (INIS)

    Liu, Jifeng; Kimerling, Lionel C; Michel, Jurgen

    2012-01-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic–photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500–1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously

  14. Research and Development of Monolithic Active Pixel Sensors for the Detection of the Elementary Particles

    International Nuclear Information System (INIS)

    Li, Y.

    2007-09-01

    In order to develop high spatial resolution and readout speed vertex detectors for the future International Linear Collider (ILC), fast CMOS Monolithic Active Pixel Sensors (MAPS) are studied on this work. Two prototypes of MAPS, MIMOSA 8 and MIMOSA 16, based on the same micro-electronic architecture were developed in CMOS processes with different thickness of epitaxial layer. The size of pixel matrix is 32 x 128: 8 columns of the pixel array are readout directly with analog outputs and the other 24 columns are connected to the column level auto-zero discriminators. The Correlated Double Sampling (CDS) structures are successfully implemented inside pixel and discriminator. The photo diode type pixels with different diode sizes are used in these prototypes. With a 55 Fe X-ray radioactive source, the important parameters, such as Temporal Noise, Fixed Pattern Noise (FPN), Signal-to-Noise Ratio (SNR), Charge-to-Voltage conversion Factor (CVF) and Charge Collection Efficiency (CCE), are studied as function of readout speed and diode size. For MIMOSA 8, the effect of fast neutrons irradiation is also. Two beam tests campaigns were made: at DESY with a 5 GeV electrons beam and at CERN with a 180 GeV pions beam. Detection Efficiency and Spatial Resolution are studied in function of the discriminator threshold. For these two parameters, the influences of diode size and SNR of the central pixel of a cluster are also discussed. In order to improve the spatial resolution of the digital outputs, a very compact (25 μm x 1 mm) and low consumption (300 μW) column level ADC is designed in AMS 0.35 μm OPTO process. Based on successive approximation architecture, the auto-offset cancellation structure is integrated. A new column level auto-zero discriminator using static latch is also designed. (author)

  15. Powering laser diode systems

    CERN Document Server

    Trestman, Grigoriy A

    2017-01-01

    This Tutorial Text discusses the competent design and skilled use of laser diode drivers (LDDs) and power supplies (PSs) for the electrical components of laser diode systems. It is intended to help power-electronic design engineers during the initial design stages: the choice of the best PS topology, the calculation of parameters and components of the PS circuit, and the computer simulation of the circuit. Readers who use laser diode systems for research, production, and other purposes will also benefit. The book will help readers avoid errors when creating laser systems from ready-made blocks, as well as understand the nature of the "mystical failures" of laser diodes (and possibly prevent them).

  16. Monolithic array of 32 SPAD pixels for single-photon imaging at high frame rates

    International Nuclear Information System (INIS)

    Tisa, Simone; Guerrieri, Fabrizio; Zappa, Franco

    2009-01-01

    We present a single-chip monolithic array of 32 Single-Photon Avalanche Diodes (SPAD) and associated electronics for imaging at high frame rates and high sensitivity. Photodetectors, front-end circuitry and control electronics used to manage the array are monolithically integrated on the same chip in a standard 0.35 μm CMOS high-voltage technology. The array is composed of 32 'smart' pixels working in photon counting mode and functioning in a parallel fashion. Every cell comprises of an integrated SPAD photodetector, a novel quenching circuit named as Variable Load Quenching Circuit (VLQC), counting electronics and a buffer memory. Proper ancillary electronics that perform the arbitration of photon counts between two consecutive frames is integrated as well. Thanks to the presence of in-pixel memory registers, the inter-frame dead time between subsequent frames is limited to few nanoseconds. Since integration and download are performed simultaneously and the array can be addressed like a standard digital memory, the achievable maximum frame rate is very high in the order of hundreds of thousands of frame/s.

  17. Statistics of dislocation pinning at localized obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A. [S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700098 (India); Bhattacharya, M., E-mail: mishreyee@vecc.gov.in; Barat, P. [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700064 (India)

    2014-10-14

    Pinning of dislocations at nanosized obstacles like precipitates, voids, and bubbles is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often studied at fundamental level by means of analytical tools, atomistic simulations, and finite element methods. Nevertheless, the information extracted from such studies cannot be utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here, we propose a new statistical approach, where the statistics of pinning of dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. Starting with a minimal set of material parameters, the framework employs the method of geometrical statistics with a few simple assumptions compatible with the real physical scenario. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to the non-conservative motion of dislocations. An interesting phenomenon of transition from rare pinning to multiple pinning regimes with increasing irradiation temperature is revealed.

  18. Pinning impulsive control algorithms for complex network

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wen [School of Information and Mathematics, Yangtze University, Jingzhou 434023 (China); Lü, Jinhu [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Shihua [College of Mathematics and Statistics, Wuhan University, Wuhan 430072 (China); Yu, Xinghuo [School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001 (Australia)

    2014-03-15

    In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.

  19. Radon measurements with a PIN photodiode

    International Nuclear Information System (INIS)

    Martin-Martin, A.; Gutierrez-Villanueva, J.L.; Munoz, J.M.; Garcia-Talavera, M.; Adamiec, G.; Iniguez, M.P.

    2006-01-01

    Silicon photodiodes are well suited to detect alphas coming from different sources as neutron reactions or radon daughters. In this work a radon in air detecting device, using an 18x18 mm silicon PIN photodiode is studied. The ionized airborne decay products formed during radon diffusion were focused by an accelerating high voltage to the PIN surface. Several conducting rings were disposed inside a cylindrical PVC vessel in such a way that they reproduced the electric field created by a punctual charge located behind PIN position. Alpha spectra coming from the neutral and ionized species deposited on the PIN surface, dominated by 218 Po and 214 Po progeny peaks, were recorded for varying conditions. Those include radon concentration from a Pylon source, high voltage (thousands of volts) and PIN inverse bias voltage. Different parameters such as temperature and humidity were also registered during data acquisition. The increase in the particle collection efficiency with respect to zero electric field was compared with the corresponding to a parallel plates configuration. A discussion is made in terms of the most appropriate voltages for different radon concentrations

  20. Magnetically insulated H- diodes

    International Nuclear Information System (INIS)

    Fisher, A.; Bystritskii, V.; Garate, E.; Prohaska, R.; Rostoker, N.

    1993-01-01

    At the Univ. of California, Irvine, the authors have been studying the production of intense H - beams using pulse power techniques for the past 7 years. Previously, current densities of H - ions for various diode designs at UCI have been a few A/cm 2 . Recently, they have developed diodes similar to the coaxial design of the Lebedev Physical Institute, Moscow, USSR, where current densities of up to 200 A/cm 2 were reported using nuclear activation of a carbon target. In experiments at UCI employing the coaxial diode, current densities of up to 35 A/cm 2 from a passive polyethylene cathode loaded with TiH 2 have been measured using a pinhole camera and CR-39 track recording plastic. The authors have also been working on a self-insulating, annular diode which can generate a directed beam of H - ions. In the annular diode experiments a plasma opening switch was used to provide a prepulse and a current path which self-insulated the diode. These experiments were done on the machine APEX, a 1 MV, 50 ns, 7 Ω pulseline with a unipolar negative prepulse of ∼ 100 kV and 400 ns duration. Currently, the authors are modifying the pulseline to include an external LC circuit which can generate a bipolar, 150 kV, 1 μs duration prepulse (similar prepulse characteristic as in the Lebedev Institute experiments cited above)

  1. Highly luminescent and ultrastable CsPbBr{sub 3} perovskite quantum dots incorporated into a silica/alumina monolith

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhichun; Kong, Long; Huang, Shouqiang; Li, Liang [School of Environmental Science and Engineering, Shanghai Jiao Tong University (China)

    2017-07-03

    We successfully prepared QDs incorporated into a silica/alumina monolith (QDs-SAM) by a simple sol-gel reaction of an Al-Si single precursor with CsPbBr{sub 3} QDs blended in toluene solution, without adding water and catalyst. The resultant transparent monolith exhibits high photoluminescence quantum yields (PLQY) up to 90 %, and good photostability under strong illumination of blue light for 300 h. We show that the preliminary ligand exchange of didodecyl dimethyl ammonium bromide (DDAB) was very important to protect CsPbBr{sub 3} QDs from surface damages during the sol-gel reaction, which not only allowed us to maintain the original optical properties of CsPbBr{sub 3} QDs but also prevented the aggregation of QDs and made the monolith transparent. The CsPbBr{sub 3} QDs-SAM in powder form was easily mixed into the resins and applied as color-converting layer with curing on blue light-emitting diodes (LED). The material showed a high luminous efficacy of 80 lm W{sup -1} and a narrow emission with a full width at half maximum (FWHM) of 25 nm. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Long-Wavelength InAs/GaAs Quantum-Dot Light Emitting Sources Monolithically Grown on Si Substrate

    Directory of Open Access Journals (Sweden)

    Siming Chen

    2015-06-01

    Full Text Available Direct integration of III–V light emitting sources on Si substrates has attracted significant interest for addressing the growing limitations for Si-based electronics and allowing the realization of complex optoelectronics circuits. However, the high density of threading dislocations introduced by large lattice mismatch and incompatible thermal expansion coefficient between III–V materials and Si substrates have fundamentally limited monolithic epitaxy of III–V devices on Si substrates. Here, by using the InAlAs/GaAs strained layer superlattices (SLSs as dislocation filter layers (DFLs to reduce the density of threading dislocations. We firstly demonstrate a Si-based 1.3 µm InAs/GaAs quantum dot (QD laser that lases up to 111 °C, with a low threshold current density of 200 A/cm2 and high output power over 100 mW at room temperature. We then demonstrate the operation of InAs/GaAs QD superluminescent light emitting diodes (SLDs monolithically grown on Si substrates. The fabricated two-section SLD exhibits a 3 dB linewidth of 114 nm, centered at ~1255 nm with a corresponding output power of 2.6 mW at room temperature. Our work complements hybrid integration using wafer bonding and represents a significant milestone for direct monolithic integration of III–V light emitters on Si substrates.

  3. Highly Luminescent and Ultrastable CsPbBr3 Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith.

    Science.gov (United States)

    Li, Zhichun; Kong, Long; Huang, Shouqiang; Li, Liang

    2017-07-03

    We successfully prepared QDs incorporated into a silica/alumina monolith (QDs-SAM) by a simple sol-gel reaction of an Al-Si single precursor with CsPbBr 3 QDs blended in toluene solution, without adding water and catalyst. The resultant transparent monolith exhibits high photoluminescence quantum yields (PLQY) up to 90 %, and good photostability under strong illumination of blue light for 300 h. We show that the preliminary ligand exchange of didodecyl dimethyl ammonium bromide (DDAB) was very important to protect CsPbBr 3 QDs from surface damages during the sol-gel reaction, which not only allowed us to maintain the original optical properties of CsPbBr 3 QDs but also prevented the aggregation of QDs and made the monolith transparent. The CsPbBr 3 QDs-SAM in powder form was easily mixed into the resins and applied as color-converting layer with curing on blue light-emitting diodes (LED). The material showed a high luminous efficacy of 80 lm W -1 and a narrow emission with a full width at half maximum (FWHM) of 25 nm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    Science.gov (United States)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  5. Development of a fast pin-by-pin transport solver in ARCADIA registered

    International Nuclear Information System (INIS)

    Geemert, R. van

    2009-01-01

    For satisfaction of future global customer needs, dedicated efforts are being coordinated internationally and pursued continuously at AREVA NP. The currently ongoing CONVERGENCE project is committed to the development of the ARCADIA registered next generation core simulation software package. ARCADIA registered will be put to global use by all AREVA NP business regions, for the entire spectrum of core design processes, licensing computations and safety studies. As part of the currently ongoing trend towards more sophisticated neutronics methodologies, an SP 3 nodal transport concept (van Geemert 2008) has been developed for ARTEMIS (Hobson 2008) which is the steady-state and transient core simulation part of ARCADIA registered . For enabling a high computational performance, the SP 3 calculations are accelerated by applying multi-level coarse mesh rebalancing (van Geemert 2006). In the current implementation, SP 3 is typically about 1.4 times as expensive computationally as SP 1 (diffusion). The developed SP 3 solution concept is foreseen as the future computational workhorse for many-group 3D pin-by-pin full core computations by ARCADIA registered . With the entire numerical workload being highly parallelizable through domain decomposition techniques, associated CPU-time requirements that adhere to the efficiency needs in the nuclear industry can be expected to become feasible in the near future. The accuracy enhancement obtainable by using SP 3 instead of SP 1 has been verified by a detailed comparison of ARTEMIS 16-group pin-by-pin SP N results with KAERI's DeCart reference results (Kozlowski 2003) for the 2D pin-by-pin Purdue UO 2 /MOX benchmark. Within the associated pin-by-pin grid, large pin-to-pin variations in cross-section values occur due to the explicit modelling of guide tubes, gadolinium pins as well as the heterogeneous distribution of MOX assemblies and UO 2 assemblies featuring significantly different burnups. With a pin-by-pin grid as

  6. PINS Testing and Modification for Explosive Identification

    International Nuclear Information System (INIS)

    Seabury, E.H.; Caffrey, A.J.

    2011-01-01

    The INL's Portable Isotopic Neutron Spectroscopy System (PINS)1 non-intrusively identifies the chemical fill of munitions and sealed containers. PINS is used routinely by the U.S. Army, the Defense Threat Reduction Agency, and foreign military units to determine the contents of munitions and other containers suspected to contain explosives, smoke-generating chemicals, and chemical warfare agents such as mustard and nerve gas. The objects assayed with PINS range from softball-sized M139 chemical bomblets to 200 gallon DOT 500X ton containers. INL had previously examined2 the feasibility of using a similar system for the identification of explosives, and based on this proof-of-principle test, the development of a dedicated system for the identification of explosives in an improvised nuclear device appears entirely feasible. INL has been tasked by NNSA NA-42 Render Safe Research and Development with the development of such a system.

  7. A 30 Mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit

    Science.gov (United States)

    Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Li, Yuanhang; Yuan, Wei; Zhu, Guixia; Zhu, Hongbo; Feng, Meixin; Sun, Qian; Liu, Yuhuai; Wang, Yongjin

    2017-07-01

    We propose, fabricate and characterize photonic integration of a InGaN/GaN multiple-quantum-well light-emitting diode (MQW-LED), waveguide, ring resonator and InGaN/GaN MQW-photodiode on a single chip, in which the photonic circuit is suspended by the support beams. Both experimental observations and simulation results illustrate the manipulation of in-plane light coupling and propagation by the waveguide and the ring resonator. The monolithic photonic circuit forms an in-plane data communication system using visible light. When the two suspended InGaN/GaN MQW-diodes simultaneously serve as the transmitter and the receiver, an in-plane full-duplex light communication is experimentally demonstrated with a transmission rate of 30 Mbps, and the superimposed signals are extracted using the self-interference cancellation method. The suspended photonic circuit creates new possibilities for exploring the in-plane full-duplex light communication and manufacturing complex GaN-based monolithic photonic integrations.

  8. Safety characteristics of the monolithic CFC divertor

    International Nuclear Information System (INIS)

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-01-01

    The main distinguishing feature of the monolithic CFC divertor is the use of a single material, a carbon fibre reinforced carbon, for the protective armour, the heat sink and the cooling channels. This removes joint interface problems which are one of the most important concerns related to the reference solutions of the ITER CDA divertor. An activation analysis of the different coolant options for this concept is presented. It turns out that neither short-term nor long-term activation are a concern for any coolants investigated. Therefore the proposed concept proves to be attractive from a safety stand-point also. ((orig.))

  9. Safety characteristics of the monolithic CFC divertor

    Science.gov (United States)

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-09-01

    The main distinguishing feature of the monolithic CFC divertor is the use of a single material, a carbon fibre reinforced carbon, for the protective armour, the heat sink and the cooling channels. This removes joint interface problems which are one of the most important concerns related to the reference solutions of the ITER CDA divertor. An activation analysis of the different coolant options for this concept is presented. It turns out that neither short-term nor long-term activation are a concern for any coolants investigated. Therefore the proposed concept proves to be attractive from a safety stand-point also.

  10. Peripheral pin alignment system for fuel assemblies

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1981-01-01

    An alignment system is provided for nuclear fuel assemblies in a nuclear core. The core support structure of the nuclear reactor includes upwardly pointing alignment pins arranged in a square grid and engage peripheral depressions formed in the lateral periphery of the lower ends of each of the fuel assemblies of the core. In a preferred embodiment, the depressions are located at the corners of the fuel assemblies so that each depression includes one-quarter of a cylindrical void. Accordingly, each fuel assembly is positioned and aligned by one-quarter of four separate alignment pins which engage the fuel assemblies at their lower exterior corners. (author)

  11. A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis

    NARCIS (Netherlands)

    Du, P.; Carneiro, J.T.; Moulijn, J.A.; Mul, Guido

    2008-01-01

    A novel reactor for multi-phase photocatalysis is presented, the so-called internally illuminated monolith reactor (IIMR). In the concept of the IIMR, side light emitting fibers are placed inside the channels of a ceramic monolith, equipped with a TiO2 photocatalyst coated on the wall of each

  12. Immobilisation of shredded soft waste in cement monolith

    International Nuclear Information System (INIS)

    Brown, D.J.; Dalton, M.J.; Smith, D.L.

    1983-04-01

    A grouting process for the immobilisation of shredded contaminated laboratory waste in a cement monolith is being developed at the Atomic Energy Establishment Winfrith. The objective is to produce a 'monolithic' type package which is acceptable both for sea and land disposal. The work carried out on this project in the period April 1982 - March 1983 is summarised in this report. (author)

  13. Fabrication of mesoporous polymer monolith: a template-free approach.

    Science.gov (United States)

    Okada, Keisuke; Nandi, Mahasweta; Maruyama, Jun; Oka, Tatsuya; Tsujimoto, Takashi; Kondoh, Katsuyoshi; Uyama, Hiroshi

    2011-07-14

    Mesoporous polyacrylonitrile (PAN) monolith has been fabricated by a template-free approach using the unique affinity of PAN towards a water/dimethyl sulfoxide (DMSO) mixture. A newly developed Thermally Induced Phase Separation Technique (TIPS) has been used to obtain the polymer monoliths and their microstructures have been controlled by optimizing the concentration and cooling temperature.

  14. Creating deep soil core monoliths: Beyond the solum

    Science.gov (United States)

    Soil monoliths serve as useful teaching aids in the study of the Earth’s critical zone where rock, soil, water, air, and organisms interact. Typical monolith preparation has so far been confined to the 1 to 2-m depth of the solum. Critical ecosystem services provided by soils include materials from ...

  15. A Monolithic Perovskite Structure for Use as a Magnetic Regenerator

    DEFF Research Database (Denmark)

    Pryds, Nini; Clemens, Frank; Menon, Mohan

    2011-01-01

    A La0.67Ca0.26Sr0.07Mn1.05O3 (LCSM) perovskite was prepared for the first time as a ceramic monolithic regenerator used in a regenerative magnetic refrigeration device. The parameters influencing the extrusion process and the performance of the regenerator, such as the nature of the monolith paste...

  16. Fine-grain concrete from mining waste for monolithic construction

    Science.gov (United States)

    Lesovik, R. V.; Ageeva, M. S.; Lesovik, G. A.; Sopin, D. M.; Kazlitina, O. V.; Mitrokhin, A. A.

    2018-03-01

    The technology of a monolithic construction is a well-established practice among most Russian real estate developers. The strong points of the technology are low cost of materials and lower demand for qualified workers. The monolithic construction uses various types of reinforced slabs and foamed concrete, since they are easy to use and highly durable; they also need practically no additional treatment.

  17. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    NARCIS (Netherlands)

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  18. Media Presentation Synchronisation for Non-monolithic Rendering Architectures

    NARCIS (Netherlands)

    I. Vaishnavi (Ishan); D.C.A. Bulterman (Dick); P.S. Cesar Garcia (Pablo Santiago); B. Gao (Bo)

    2007-01-01

    htmlabstractNon-monolithic renderers are physically distributed media playback engines. Non-monolithic renderers may use a number of different underlying network connection types to transmit media items belonging to a presentation. There is therefore a need for a media based and inter-network- type

  19. Pinning of fullerene lowest unoccupied molecular orbital edge at the interface with standing up copper phthalocyanine

    International Nuclear Information System (INIS)

    Wang, Chenggong; Irfan, Irfan; Turinske, Alexander J.; Gao, Yongli

    2012-01-01

    The electronic structure evolution of interfaces of fullerene (C 60 ) with copper phthalocyanine (CuPc) on highly oriented pyrolitic graphite (HOPG) and on native silicon oxide has been investigated with ultra-violet photoemission spectroscopy and inverse photoemission spectroscopy. The lowest unoccupied molecular orbital edge of C 60 was found to be pinned at the interface with CuPc on SiO 2 . A substantial difference in the electron affinity of CuPc on the two substrates was observed as the orientation of CuPc is lying flat on HOPG and standing up on SiO 2 . The ionization potential and electron affinity of C 60 were not affected by the orientation of CuPc due to the spherical symmetry of C 60 molecules. We observed band bending in C 60 on the standing-up orientation of CuPc molecules, while the energy levels of C 60 on the flat lying orientation of CuPc molecules were observed to be flat. - Highlights: ► Orientation of copper phthalocyanine (CuPc) on ordered graphite and silicon oxide. ► Pinning of lowest unoccupied molecular orbital edge of C60 to the Fermi level on CuPc. ► No C60 pinning or band bending was observed on flat laying CuPc. ► Results are useful for organic photovoltaic and organic light emitting diode research.

  20. Synthesis of Porous Carbon Monoliths Using Hard Templates.

    Science.gov (United States)

    Klepel, Olaf; Danneberg, Nina; Dräger, Matti; Erlitz, Marcel; Taubert, Michael

    2016-03-21

    The preparation of porous carbon monoliths with a defined shape via template-assisted routes is reported. Monoliths made from porous concrete and zeolite were each used as the template. The porous concrete-derived carbon monoliths exhibited high gravimetric specific surface areas up to 2000 m²·g -1 . The pore system comprised macro-, meso-, and micropores. These pores were hierarchically arranged. The pore system was created by the complex interplay of the actions of both the template and the activating agent as well. On the other hand, zeolite-made template shapes allowed for the preparation of microporous carbon monoliths with a high volumetric specific surface area. This feature could be beneficial if carbon monoliths must be integrated into technical systems under space-limited conditions.

  1. Tapered leaf support pin for operating plant guide tubes

    International Nuclear Information System (INIS)

    Land, J.T.; Hopkins, R.J.; Ford, D.E.

    1991-01-01

    This patent describes a mounting system for removably mounting the lower flange of a control rod guide tube over an opening in the upper core plate of a nuclear reactor comprising at least one elongated support pin mounted on the guide tube lower flange and resiliently receivable in a bore formed in the upper core plate. It comprises a support pin having a longitudinal axis and comprising a first pin portion mountable on the guide tube lower flange, and a second pin portion receivable within the upper core plate bore, the second pin portion including a solid body section adjacent the first pin portion and having an outer diameter which is accommodated by the bore by a close clearance fit; locking means mounted on the first pin portion of the support pin for retaining the guide tube lower flange between the solid body section of the second pin portion and the locking means; and a washer disposed around the first pin portion between the locking means and the control rod guide tube flange, the washer and the locking means including mutually engaging rounded surfaces for eliminating bending moments and stresses on the support pin during mounting of the locking means on the first pin portion of the support pin

  2. Detection and dosimetry studies on the response of silicon diodes to an 241Am-Be source

    International Nuclear Information System (INIS)

    Lotfi, Y; Dizaji, H Zaki; Davani, F Abbasi

    2014-01-01

    Silicon diode detectors show potential for the development of an active personal dosimeter for neutron and photon radiation. Photons interact with the constituents of the diode detector and produce electrons. Fast neutrons interact with the constituents of the diode detector and converter, producing recoil nuclei and causing (n,α) and (n,p) reactions. These photon- and neutron-induced charged particles contribute to the response of diode detectors. In this work, a silicon pin diode was used as a detector to produce pulses created by photon and neutron. A polyethylene fast neutron converter was used as a recoil proton source in front of the detector. The total registered photon and neutron efficiency and the partial contributions of the efficiency, due to interactions with the diode and converter, were calculated. The results show that the efficiency of the converter-diode is a function of the incident photon and neutron energy. The optimized thicknesses of the converter for neutron detection and neutron dosimetry were found to be 1 mm and 0.1 mm respectively. The neutron records caused by the (n,α) and (n,p) reactions were negligible. The photon records were strongly dependent upon the energy and the depletion layer of the diode. The photons and neutrons efficiency of the diode-based dosimeter was calculated by the MCNPX code, and the results were in good agreement with experimental results for photons and neutrons from an 241 Am-Be source

  3. Growth techniques for monolithic YBCO solenoidal magnets

    International Nuclear Information System (INIS)

    Scruggs, S.J.; Putman, P.T.; Fang, H.; Alessandrini, M.; Salama, K.

    2006-01-01

    The possibility of growing large single domain YBCO solenoids by the use of a large seed has been investigated. There are two known methods for producing a similar solenoid. This first is a conventional top seeded melt growth process followed by a post processing machining step to create the bore. The second involves using multiple seeds spaced around the magnet bore. The appeal of the new technique lies in decreasing processing time compared to the single seed technique, while avoiding alignment problems found in the multiple seeding technique. By avoiding these problems, larger diameter monoliths can be produced. Large diameter monoliths are beneficial because the maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that traditionally have been considered to require wound electromagnets, such as beam bending magnets for particle accelerators or electric propulsion. A comparison of YBCO solenoids grown by the use of a large seed and grown by the use of two small seeds simulating multiple seeding is made. Trapped field measurements as well as microstructure evaluation were used in characterization of each solenoid. Results indicate that high quality growth occurs only in the vicinity of the seeds for the multiple seeded sample, while the sample with the large seeded exhibited high quality growth throughout the entire sample

  4. Growth techniques for monolithic YBCO solenoidal magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scruggs, S.J. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States)]. E-mail: Sscruggs2@uh.edu; Putman, P.T. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Fang, H. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Alessandrini, M. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Salama, K. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States)

    2006-10-01

    The possibility of growing large single domain YBCO solenoids by the use of a large seed has been investigated. There are two known methods for producing a similar solenoid. This first is a conventional top seeded melt growth process followed by a post processing machining step to create the bore. The second involves using multiple seeds spaced around the magnet bore. The appeal of the new technique lies in decreasing processing time compared to the single seed technique, while avoiding alignment problems found in the multiple seeding technique. By avoiding these problems, larger diameter monoliths can be produced. Large diameter monoliths are beneficial because the maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that traditionally have been considered to require wound electromagnets, such as beam bending magnets for particle accelerators or electric propulsion. A comparison of YBCO solenoids grown by the use of a large seed and grown by the use of two small seeds simulating multiple seeding is made. Trapped field measurements as well as microstructure evaluation were used in characterization of each solenoid. Results indicate that high quality growth occurs only in the vicinity of the seeds for the multiple seeded sample, while the sample with the large seeded exhibited high quality growth throughout the entire sample.

  5. Cladding properties under simulated fuel pin transients

    International Nuclear Information System (INIS)

    Hunter, C.W.; Johnson, G.D.

    1975-01-01

    A description is given of the HEDL fuel pin testing program utilizing a recently developed Fuel Cladding Transient Tester (FCTT) to generate the requisite mechanical property information on irradiated and unirradiated fast reactor fuel cladding under temperature ramp conditions. The test procedure is described, and data are presented

  6. Turban pin aspiration: new fashion, new syndrome.

    Science.gov (United States)

    Ilan, Ophir; Eliashar, Ron; Hirshoren, Nir; Hamdan, Kasem; Gross, Menachem

    2012-04-01

    Turban pin aspiration syndrome is a new clinical entity afflicting young Islamic girls wearing a turban.The goal of this study was to present our experience in diagnosis and treatment of this new entity, define its clinical and epidemiologic features, and shed a new light on the role of fashion in the increased incidence. A retrospective study in a tertiary university hospital. Review of clinical parameters and epidemiologic features of 26 patients diagnosed with turban pin aspiration syndrome admitted to the Hadassah-Hebrew University Hospitals in Jerusalem from 1990 to 2010. All patients were Muslim females with an average age of 16 years. In all cases, the history was positive for accidental aspiration. Most of the pins were located in the trachea (42%). In 20 cases, the pins were extracted by rigid bronchoscopy without major complications. Fluoroscopy-assisted rigid bronchoscopy was used successfully in three cases. In one case, the object was self-ejected by coughing before the bronchoscopy, and two patients were referred to the chest unit for thoracotomy. Clinicians should be aware of this distinct form of foreign body aspiration, its method of diagnosis, and extraction techniques. A cultural investigation showed a difference in the turban-fastening technique of young girls as compared with their mothers. Removal by rigid bronchoscopy is a safe method with a high success rate and should be considered as the preferred extraction method of choice. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  7. Radiographic examination methods for fuel pins

    International Nuclear Information System (INIS)

    Smirnov, V.P.; Dvoretskii, V.G.

    1987-11-01

    To study the fast neutron reactor fuel pins structure the NIIAR Institute used x diffraction, neutronic radiography and autoradiographies. The two first methods are used for internal macrostructure studies, the third method for the plutonium and uranium radial distribution. These methods and the main results are indicated in this document [fr

  8. Physicist pins hopes on particle collider

    CERN Multimedia

    2007-01-01

    Physicist pins hopes on particle collider By Deseret Morning News Published: Monday, Dec. 31, 27 12:4 a.m. MST FONT Scott Thomas, a 187 State University graduate, is working at the frontiers of science. The theoretical physicist is crafting ways to extract fundamental secrets that seem certain to be uncovered by the Large Hadron Collider.

  9. Light ion beam experiments with pinch reflex diodes on KfK's pulse generator KALIF

    International Nuclear Information System (INIS)

    Bluhm, H.; Buth, L.; Bohnel, K.; Harke, W.; Hoppe, P.; Karow, H.U.; Rusch, D.; Schulken, H.; Singer, J.

    1985-01-01

    The authors report on intense LI beam experiments currently performed with pinch reflex ion diodes on 2 ohms/1.4 TW-pulse generator KALIF (Karlsruhe Light Ion Facility). The goals of this work are the generation of highly focussed LI beams of well-defined ion composition, and the undertaking of beam-target experiments. The experimental studies with axial 6 cm phi-pinch reflex proton diodes have been aiming at the focussing characteristics of the diode, and at the ion species composition of the beam. Experiments have been performed using different diode geometries (anode/cathode/beam window foil shapes), and different anode return current paths, respectively. A variety of diagnostique techniques have been used in these studies: Electron pinch phenomena in the diode are observed by static and by gated X-ray cameras. Beam diagnostiques is based on measuring in the vacuum feed the electric parameters of the diode (electron and ion currents, diode voltage) on probing the ion composition and ion energy in the beam (by use of a Thomson Parabola spectrometer), and on the investigation of the beam focus (by use of different techniques: shadow box analysis, α-pin hole imaging, nuclear activation methods). Measurements of beam stopping power of ion beam-heated thin targets are underway using a streaked ion energy-spectrometer. The results obtained so far in these experimental efforts are presented

  10. Analytical method for reconstruction pin to pin of the nuclear power density distribution

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S., E-mail: ppessoa@con.ufrj.br, E-mail: fernando@con.ufrj.br, E-mail: aquilino@imp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    An accurate and efficient method for reconstructing pin to pin of the nuclear power density distribution, involving the analytical solution of the diffusion equation for two-dimensional neutron energy groups in homogeneous nodes, is presented. The boundary conditions used for analytic as solution are the four currents or fluxes on the surface of the node, which are obtained by Nodal Expansion Method (known as NEM) and four fluxes at the vertices of a node calculated using the finite difference method. The analytical solution found is the homogeneous distribution of neutron flux. Detailed distributions pin to pin inside a fuel assembly are estimated by the product of homogeneous flux distribution by local heterogeneous form function. Furthermore, the form functions of flux and power are used. The results obtained with this method have a good accuracy when compared with reference values. (author)

  11. Analytical method for reconstruction pin to pin of the nuclear power density distribution

    International Nuclear Information System (INIS)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2013-01-01

    An accurate and efficient method for reconstructing pin to pin of the nuclear power density distribution, involving the analytical solution of the diffusion equation for two-dimensional neutron energy groups in homogeneous nodes, is presented. The boundary conditions used for analytic as solution are the four currents or fluxes on the surface of the node, which are obtained by Nodal Expansion Method (known as NEM) and four fluxes at the vertices of a node calculated using the finite difference method. The analytical solution found is the homogeneous distribution of neutron flux. Detailed distributions pin to pin inside a fuel assembly are estimated by the product of homogeneous flux distribution by local heterogeneous form function. Furthermore, the form functions of flux and power are used. The results obtained with this method have a good accuracy when compared with reference values. (author)

  12. Pinning control of complex networked systems synchronization, consensus and flocking of networked systems via pinning

    CERN Document Server

    Su, Housheng

    2013-01-01

    Synchronization, consensus and flocking are ubiquitous requirements in networked systems. Pinning Control of Complex Networked Systems investigates these requirements by using the pinning control strategy, which aims to control the whole dynamical network with huge numbers of nodes by imposing controllers for only a fraction of the nodes. As the direct control of every node in a dynamical network with huge numbers of nodes might be impossible or unnecessary, it’s then very important to use the pinning control strategy for the synchronization of complex dynamical networks. The research on pinning control strategy in consensus and flocking of multi-agent systems can not only help us to better understand the mechanisms of natural collective phenomena, but also benefit applications in mobile sensor/robot networks. This book offers a valuable resource for researchers and engineers working in the fields of control theory and control engineering.   Housheng Su is an Associate Professor at the Department of Contro...

  13. PROCOPE, Collision Probability in Pin Clusters and Infinite Rod Lattices

    International Nuclear Information System (INIS)

    Amyot, L.; Daolio, C.; Benoist, P.

    1984-01-01

    1 - Nature of physical problem solved: Calculation of directional collision probabilities in pin clusters and infinite rod lattices. 2 - Method of solution: a) Gauss integration of analytical expressions for collision probabilities. b) alternately, an approximate closed expression (not involving integrals) may be used for pin-to-pin interactions. 3 - Restrictions on the complexity of the problem: number of fuel pins must be smaller than 62; maximum number of groups of symmetry is 300

  14. Diode laser pumping

    International Nuclear Information System (INIS)

    Skagerlund, L.E.

    1975-01-01

    A diode laser is pumped or pulsed by a repeated capacitive discharge. A capacitor is periodically charged from a dc voltage source via a transformer, the capacitor being discharged through the diode laser via a controlled switching means after one or more charging periods. During a first interval of each charging period the transformer, while unloaded, stores a specific amount of energy supplied from the dc voltage source. During a subsequent interval of the charging period said specific amount of energy is transmitted from the transformer to the capacitor. The discharging of the capacitor takes place during a first interval of a charging period. (auth)

  15. Optimization study on pin tip diameter of an impact-pin nozzle at high pressure ratio

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, C. Palani; Lee, Kwon Hee [FMTRC, Daejoo Machinery Co. Ltd., Daegu (Korea, Republic of); Park, Tae Choon; Cha, Bong Jun [Engine Components Research Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Kim, Heuy Dong [Dept. of Mechanical Engineering, Andong National University, Andong (Korea, Republic of)

    2016-09-15

    Wet compression system is typically installed in a gas turbine engine to increase the net power output and efficiency. A crucial component of the wet compression system is the nozzle which generates fine water droplets for injection into the compressor. The main objective of present work is to optimize a kind of nozzle called impact-pin spray nozzle and thereby produce better quality droplets. To achieve this, the dynamics occurring in the water jet impinging on the pin tip, the subsequent formation of water sheet, which finally breaks into water droplets, must be studied. In this manuscript, the progress on the numerical studies on impact-pin nozzle are reported. A small computational domain covering the orifice, pin tip and the region where primary atomization occurs is selected for numerical analysis. The governing equations are selected in three dimensional cartesian form and simulations are performed to predict the dynamics of water jet impinging on the pin. Systematic studies were carried out and the results leading to the choice of turbulence model and the effect of pin tip diameter are reported here. Further studies are proposed to show the future directions of the present research work.

  16. A physico-genetic module for the polarisation of auxin efflux carriers PIN-FORMED (PIN)

    Science.gov (United States)

    Hernández-Hernández, Valeria; Barrio, Rafael A.; Benítez, Mariana; Nakayama, Naomi; Romero-Arias, José Roberto; Villarreal, Carlos

    2018-05-01

    Intracellular polarisation of auxin efflux carriers is crucial for understanding how auxin gradients form in plants. The polarisation dynamics of auxin efflux carriers PIN-FORMED (PIN) depends on both biomechanical forces as well as chemical, molecular and genetic factors. Biomechanical forces have shown to affect the localisation of PIN transporters to the plasma membrane. We propose a physico-genetic module of PIN polarisation that integrates biomechanical, molecular, and cellular processes as well as their non-linear interactions. The module was implemented as a discrete Boolean model and then approximated to a continuous dynamic system, in order to explore the relative contribution of the factors mediating PIN polarisation at the scale of single cell. Our models recovered qualitative behaviours that have been experimentally observed and enable us to predict that, in the context of PIN polarisation, the effects of the mechanical forces can predominate over the activity of molecular factors such as the GTPase ROP6 and the ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN RIC1.

  17. Primary hip spica with crossed retrograde intramedullary rush pins ...

    African Journals Online (AJOL)

    Bursitis and penetration of pins at the site of Rush pin insertion is a complication associated with this method of treatment. Conclusion: Closed reduction and internal fixation with crossed Rush pins was a superior treatment method in terms of early weight bearing and restoration of normal anatomy. Keywords: Femoral ...

  18. Some aspects of continuum physics used in fuel pin modeling

    International Nuclear Information System (INIS)

    Bard, F.E.

    1975-06-01

    The mathematical formulation used in fuel pin modeling is described. Fuel pin modeling is not a simple extension of the experimental and interpretative methods used in classical mechanics. New concepts are needed to describe materials in a reactor environment. Some aspects of continuum physics used to develop these new constitutive equations for fuel pins are presented. (U.S.)

  19. Post irradiation examination on test fuel pins for PWR

    International Nuclear Information System (INIS)

    Fogaca Filho, N.; Ambrozio Filho, F.

    1981-01-01

    Certain aspects of irradiation technology on test fuel pins for PWR, are studied. The results of post irradiation tests, performed on test fuel pins in hot cells, are presented. The results of the tests permit an evaluation of the effects of irradiation on the fuel and cladding of the pin. (Author) [pt

  20. Temperature and pinning strength dependence of the critical current of a superconductor with a square periodic array of pinning sites

    International Nuclear Information System (INIS)

    Benkraouda, M.; Obaidat, I.M.; Al Khawaja, U.

    2006-01-01

    We have conducted extensive series of molecular dynamic simulations on driven vortex lattices interacting with periodic square arrays of pinning sites. In solving the over damped equation of vortex motion we took into account the vortex-vortex repulsion interaction, the attractive vortex-pinning interaction, and the driving Lorentz force at several values of temperature. We have studied the effect of varying the driving Lorentz force and varying the pinning strength on the critical current for several pinning densities, and temperature values. We have found that the pinning strength play an important role in enhancing the critical current over the whole temperature range. At low temperatures, the critical current was found to increase linearly with increasing the pinning strengths for all pinning densities. As the temperature increases, the effect of small pinning strengths diminishes and becomes insignificant at high temperatures

  1. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    Capt Todd D. Church APPROVED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials C~t) Kraig/[ Vandewalle Date...copyrighted material in the thesis/dissertation manuscript entitled: "Translucency arid Strength of High-Translucency Monolithic Zirconium -Oxide...Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  2. Influence of different carbon monolith preparation parameters on pesticide adsorption

    Directory of Open Access Journals (Sweden)

    Vukčević Marija

    2013-01-01

    Full Text Available The capacity of carbon monolith for pesticide removal from water, and the mechanism of pesticide interaction with carbon surface were examined. Different carbon monolith samples were obtained by varying the carbonization and activation parameters. In order to examine the role of surface oxygen groups in pesticide adsorption, carbon monolith surface was functionalized by chemical treatment in HNO3, H2O2 and KOH. The surface properties of the obtained samples were investigated by BET surface area, pore size distribution and temperature-programmed desorption. Adsorption of pesticides from aqueous solution onto activated carbon monolith samples was studied by using five pesticides belonging to different chemical groups (acetamiprid, dimethoate, nicosulfuron, carbofuran and atrazine. Presented results show that higher temperature of carbonization and the amount of activating agent allow obtaining microporous carbon monolith with higher amount of surface functional groups. Adsorption properties of the activated carbon monolith were more readily affected by the amount of the surface functional groups than by specific surface area. Results obtained by carbon monolith functionalisation showed that π-π interactions were the main force for adsorption of pesticides with aromatic structure, while acidic groups play an important role in adsorption of pesticides with no aromatic ring in the chemical structure.

  3. Biomimetic small peptide functionalized affinity monoliths for monoclonal antibody purification.

    Science.gov (United States)

    Wang, Xiangyu; Xia, Donghai; Han, Hai; Peng, Kun; Zhu, Peijie; Crommen, Jacques; Wang, Qiqin; Jiang, Zhengjin

    2018-08-09

    The rapid development of monoclonal antibodies (mAbs) in therapeutic and diagnostic applications has necessitated the advancement of mAbs purification technologies. In this study, a biomimetic small peptide ligand 3,5-di-tert-butyl-4-hydroxybenzoic acid-Arg-Arg-Gly (DAAG) functionalized monolith was fabricated through a metal ion chelation-based multi-step approach. The resulting monolith showed good chromatographic performance. Compared with the Ni 2+ based IMAC monolith, the DAAG functionalized monolith exhibited not only excellent specificity but also higher dynamic binding capacity (DBC). The 10% DBC and 50% DBC for hIgG reached as high values as 26.0 and 34.6 mg/mL, respectively, at a ligand density of 8.8 μmol/mL, due to the high porosity and accessibility of the monolithic matrix. Moreover, the stability of the DAAG functionalized monolith in successive breakthrough experiments indicates that it has a promising potential for long-term use in mAbs purification. Finally, the DAAG functionalized monolith was successfully applied to the purification of trastuzumab or human immunoglobulin G (hIgG) from biological samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Determining leach rates of monolithic waste forms

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Dole, L.R.

    1986-01-01

    The ANS 16.1 Leach Procedure provides a conservative means of predicting long-term release from monolithic waste forms, offering a simple and relatively quick means of determining effective solid diffusion coefficients. As presented here, these coefficients can be used in a simple model to predict maximum release rates or be used in more complex site-specific models to predict actual site performance. For waste forms that pass the structural integrity test, this model also allows the prediction of EP-Tox leachate concentrations from these coefficients. Thus, the results of the ANS 16.1 Leach Procedure provide a powerful tool that can be used to predict the waste concentration limits in order to comply with the EP-Toxicity criteria for characteristically nonhazardous waste. 12 refs., 3 figs

  5. Silver deposition on chemically treated carbon monolith

    Directory of Open Access Journals (Sweden)

    Jovanović Zoran M.

    2009-01-01

    Full Text Available Carbon monolith was treated with HNO3, KOH and H2O2. Effects of these treatments on the surface functional groups and on the amount of silver deposited on the CM surface were studied by temperature programmed desorption (TPD and atomic absorption spectrometry (AAS. As a result of chemical treatment there was an increase in the amount of surface oxygen complexes. The increase in the amount of silver deposit is proportional to the amount of surface groups that produce CO under decomposition. However, the high amount of CO groups, decomposing above 600°C, induces the smaller Ag crystallite size. Therefore, the high temperature CO evolving oxides are, most likely, the initial centers for Ag deposition.

  6. Monolithic microwave integrated circuit water vapor radiometer

    Science.gov (United States)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  7. Present status of the MONOLITH project

    International Nuclear Information System (INIS)

    Petrukhin, A.A.

    2001-01-01

    MONOLITH is a proposed massive (34 kt) magnetized tracking calorimeter at the Gran Sasso laboratory in Italy, optimized for the detection of atmospheric muon neutrinos. The main goal is to establish (or reject) the neutrino oscillation hypothesis through an explicit observation of the full first oscillation swing. The Δm 2 sensitivity range for this measurement comfortably covers the complete Super-Kamiokande allowed region. Other measurements include studies of matter effects, the NC up/down ratio, ν bar / ν ratio, the study of cosmic ray muons in the multi-TeV range, and auxiliary measurements from the CERN to Gran Sasso neutrino beam. Depending on approval, data taking with the part of the detector could start towards the end of 2004

  8. Monolithic fuel injector and related manufacturing method

    Science.gov (United States)

    Ziminsky, Willy Steve [Greenville, SC; Johnson, Thomas Edward [Greenville, SC; Lacy, Benjamin [Greenville, SC; York, William David [Greenville, SC; Stevenson, Christian Xavier [Greenville, SC

    2012-05-22

    A monolithic fuel injection head for a fuel nozzle includes a substantially hollow vesicle body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween, an internal baffle plate extending radially outwardly from a downstream end of the bore, terminating short of the peripheral wall, thereby defining upstream and downstream fuel plenums in the vesicle body, in fluid communication by way of a radial gap between the baffle plate and the peripheral wall. A plurality of integral pre-mix tubes extend axially through the upstream and downstream fuel plenums in the vesicle body and through the baffle plate, with at least one fuel injection hole extending between each of the pre-mix tubes and the upstream fuel plenum, thereby enabling fuel in the upstream plenum to be injected into the plurality of pre-mix tubes. The fuel injection head is formed by direct metal laser sintering.

  9. Bioinspired Synthesis of Monolithic and Layered Aerogels.

    Science.gov (United States)

    Han, Xiao; Hassan, Khalil T; Harvey, Alan; Kulijer, Dejan; Oila, Adrian; Hunt, Michael R C; Šiller, Lidija

    2018-04-25

    Aerogels are the least dense and most porous materials known to man, with potential applications from lightweight superinsulators to smart energy materials. To date their use has been seriously hampered by their synthesis methods, which are laborious and expensive. Taking inspiration from the life cycle of the damselfly, a novel ambient pressure-drying approach is demonstrated in which instead of employing low-surface-tension organic solvents to prevent pore collapse during drying, sodium bicarbonate solution is used to generate pore-supporting carbon dioxide in situ, significantly reducing energy, time, and cost in aerogel production. The generic applicability of this readily scalable new approach is demonstrated through the production of granules, monoliths, and layered solids with a number of precursor materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Diode lasers and arrays

    International Nuclear Information System (INIS)

    Streifer, W.

    1988-01-01

    This paper discusses the principles of operation of III-V semiconductor diode lasers, the use of distributed feedback, and high power laser arrays. The semiconductor laser is a robust, miniature, versatile device, which directly converts electricity to light with very high efficiency. Applications to pumping solid-state lasers and to fiber optic and point-to-point communications are reviewed

  11. Deep diode atomic battery

    International Nuclear Information System (INIS)

    Anthony, T.R.; Cline, H.E.

    1977-01-01

    A deep diode atomic battery is made from a bulk semiconductor crystal containing three-dimensional arrays of columnar and lamellar P-N junctions. The battery is powered by gamma rays and x-ray emission from a radioactive source embedded in the interior of the semiconductor crystal

  12. Infrared diode laser spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Cihelka, Jaroslav; Matulková, Irena

    2010-01-01

    Roč. 18, č. 4 (2010), s. 408-420 ISSN 1230-3402 R&D Projects: GA AV ČR IAA400400705 Institutional research plan: CEZ:AV0Z40400503 Keywords : FTIR spectroscopy * absorption spectroscopy * laser diodes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.027, year: 2010

  13. Monolithic Hybrid and Passive Mode-Locked 40GHz Quantum Dot Laser Diodes

    DEFF Research Database (Denmark)

    Thompson, M. G.; Larsson, David; Rae, A. R.

    2006-01-01

    For the first time hybrid and passive mode-locking jitter performance is investigated in 40GHz quantum-dot mode-locked lasers. Record low passive mode-locking jitter of 219fs is presented, along with promising hybrid mode-locking results of 124fs.......For the first time hybrid and passive mode-locking jitter performance is investigated in 40GHz quantum-dot mode-locked lasers. Record low passive mode-locking jitter of 219fs is presented, along with promising hybrid mode-locking results of 124fs....

  14. Monolithic millimeter-wave diode array beam controllers: Theory and experiment

    Science.gov (United States)

    Sjogren, L. B.; Liu, H.-X. L.; Wang, F.; Liu, T.; Wu, W.; Qin, X.-H.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.; Maserjian, J.

    1992-01-01

    In the current work, multi-function beam control arrays have been fabricated and have successfully demonstrated amplitude control of transmitted beams in the W and D bands (75-170 GHz). While these arrays are designed to provide beam control under DC bias operation, new designs for high-speed electronic and optical control are under development. These arrays will fill a need for high-speed watt-level beam switches in pulsed reflectometer systems under development for magnetic fusion plasma diagnostics. A second experimental accomplishment of the current work is the demonstration in the 100-170 GHz (D band) frequency range of a new technique for the measurement of the transmission phase as well as amplitude. Transmission data can serve as a means to extract ('de-embed') the grid parameters; phase information provides more complete data to assist in this process. Additional functions of the array beam controller yet to be tested include electronically controlled steering and focusing of a reflected beam. These have application in the areas of millimeter-wave electronic scanning radar and reflectometry, respectively.

  15. Pinning impulsive synchronization of stochastic delayed coupled networks

    International Nuclear Information System (INIS)

    Tang Yang; Fang Jian-An; Wong W K; Miao Qing-Ying

    2011-01-01

    In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller, where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller, some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method. (general)

  16. The pin pixel detector--neutron imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Rhodes, N J; Schooneveld, E M; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a neutron gas pixel detector intended for application in neutron diffraction studies is reported. Using standard electrical connector pins as point anodes, the detector is based on a commercial 100 pin connector block. A prototype detector of aperture 25.4 mmx25.4 mm has been fabricated, giving a pixel size of 2.54 mm which matches well to the spatial resolution typically required in a neutron diffractometer. A 2-Dimensional resistive divide readout system has been adapted to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics. The timing properties of the device match well to the requirements of the ISIS-pulsed neutron source.

  17. Elementary pinning force for a superconducting vortex

    International Nuclear Information System (INIS)

    Hyun, O.B.; Finnemore, D.K.; Schwartzkopf, L.; Clem, J.R.

    1987-01-01

    The elementary pinning force f/sub p/ has been measured for a single vortex trapped in one of the superconducting layers of a cross-strip Josephson junction. At temperatures close to the transition temperature the vortex can be pushed across the junction by a transport current. The vortex is found to move in a small number of discrete steps before it exits the junction. The pinning force for each site is found to be asymmetric and to have a value of about 10/sup -6/ N/m at the reduced temperature, t = T/T/sub c/ = 0.95. As a function of temperature, f/sub p/ is found to vary approximately as (1-t)/sup 3/2/. .AE

  18. Top-nozzle mounted replacement guide pin assemblies

    International Nuclear Information System (INIS)

    Gilmore, C.B.; Andrews, W.H.

    1993-01-01

    A replacement guide pin assembly is provided for aligning a nuclear fuel assembly with an upper core plate of a nuclear reactor core. The guide pin assembly includes a guide pin body having a radially expandable base insertable within a hole in the top nozzle, a ferrule insertable within the guide pin base and capable of imparting a radially and outwardly directed force on the expandable base to expand it within the hole of the top nozzle and thereby secure the guide pin body to the top nozzle in response to a predetermined displacement of the ferrule relative to the guide pin body along its longitudinal axis, and a lock screw interfitted with the ferrule and threaded into the guide pin body so as to produce the predetermined displacement of the ferrule. (author)

  19. Timing analysis of PWR fuel pin failures

    International Nuclear Information System (INIS)

    Jones, K.R.; Wade, N.L.; Katsma, K.R.; Siefken, L.J.; Straka, M.

    1992-09-01

    Research has been conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B ampersand W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin bumup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PFL/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B ampersand W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B ampersand W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design bumup. Using peaking factors commensurate widi actual bumups would result in longer intervals for both reactor designs. This document also contains appendices A through J of this report

  20. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    Science.gov (United States)

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (Pglass ceramic, and enamel (Pglass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Catalytic Oxidation of Cyanogen Chloride over a Monolithic Oxidation Catalyst

    National Research Council Canada - National Science Library

    Campbell, Jeffrey

    1997-01-01

    The catalytic oxidation of cyanogen chloride was evaluated over a monolithic oxidation catalyst at temperatures between 200 and 300 deg C in air employing feed concentrations between 100 and 10,000 ppm...

  2. Effect of accelerated aging on translucency of monolithic zirconia

    Directory of Open Access Journals (Sweden)

    O. Abdelbary

    2016-12-01

    Conclusion: Thickness of zirconia has significant effect on translucency. Aging has significant effect on thinner sections of zirconia. More research is required on zirconia towards making the material more translucent for its potential use as esthetic monolithic restoration.

  3. Microchip-based monolithic column for high performance liquid chromatography

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed microchip based monolithic columns that can be used for liquid chromatography of small organic molecules, as well as, macromolecules such as...

  4. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin; Blasi, Benedikt; Eisenlohr, Johannes; Kohlstadt, Markus; Lee, Seunghun; Mastroianni, Simone; Mundt, Laura; Mundus, Markus; Ndione, Paul; Reichel, Christian; Schubert, Martin; Schulze, Patricia S.; Tucher, Nico; Veit, Clemens; Veurman, Welmoed; Wienands, Karl; Winkler, Kristina; Wurfel, Uli; Glunz, Stefan W.; Hermle, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  5. Shear bond strength of indirect composite material to monolithic zirconia.

    Science.gov (United States)

    Sari, Fatih; Secilmis, Asli; Simsek, Irfan; Ozsevik, Semih

    2016-08-01

    This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). Bond strength was significantly lower in untreated specimens than in sandblasted specimens (Pcomposite material and monolithic zirconia.

  6. Reliability Analysis and Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, Hans F.; Christiani, E.

    1994-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of the most important failure modes, sliding failure, failure of the foundation and overturning failure are described . Relevant design variables are identified...

  7. Plant oil-based shape memory polymer using acrylic monolith

    Directory of Open Access Journals (Sweden)

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  8. Towards a Technique for Extracting Microservices from Monolithic Enterprise Systems

    OpenAIRE

    Levcovitz, Alessandra; Terra, Ricardo; Valente, Marco Tulio

    2016-01-01

    The idea behind microservices architecture is to develop a single large, complex application as a suite of small, cohesive, independent services. On the other way, monolithic systems get larger over the time, deviating from the intended architecture, and becoming risky and expensive to evolve. This paper describes a technique to identify and define microservices on monolithic enterprise systems. As the major contribution, our evaluation shows that our approach was able to identify relevant ca...

  9. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  10. Microwaves integrated circuits: hybrids and monolithics - fabrication technology

    International Nuclear Information System (INIS)

    Cunha Pinto, J.K. da

    1983-01-01

    Several types of microwave integrated circuits are presented together with comments about technologies and fabrication processes; advantages and disadvantages in their utilization are analysed. Basic structures, propagation modes, materials used and major steps in the construction of hybrid thin film and monolithic microwave integrated circuits are described. Important technological applications are revised and main activities of the microelectronics lab. of the University of Sao Paulo (Brazil) in the field of hybrid and monolithic microwave integrated circuits are summarized. (C.L.B.) [pt

  11. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, H. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-09

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  12. Nano-Doped Monolithic Materials for Molecular Separation

    Directory of Open Access Journals (Sweden)

    Caleb Acquah

    2017-01-01

    Full Text Available Monoliths are continuous adsorbents that can easily be synthesised to possess tuneable meso-/macropores, convective fluid transport, and a plethora of chemistries for ligand immobilisation. They are grouped into three main classes: organic, inorganic, and hybrid, based on their chemical composition. These classes may also be differentiated by their unique morphological and physicochemical properties which are significantly relevant to their specific separation applications. The potential applications of monoliths for molecular separation have created the need to enhance their characteristic properties including mechanical strength, electrical conductivity, and chemical and thermal stability. An effective approach towards monolith enhancement has been the doping and/or hybridization with miniaturized molecular species of desirable functionalities and characteristics. Nanoparticles are usually preferred as dopants due to their high solid phase dispersion features which are associated with improved intermolecular adsorptive interactions. Examples of such nanomaterials include, but are not limited to, carbon-based, silica-based, gold-based, and alumina nanoparticles. The incorporation of these nanoparticles into monoliths via in situ polymerisation and/or post-modification enhances surface adsorption for activation and ligand immobilisation. Herein, insights into the performance enhancement of monoliths as chromatographic supports by nanoparticles doping are presented. In addition, the potential and characteristics of less common nanoparticle materials such as hydroxyapatite, ceria, hafnia, and germania are discussed. The advantages and challenges of nanoparticle doping of monoliths are also discussed.

  13. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.

    Science.gov (United States)

    Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi

    2015-02-28

    The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.

  14. Applicability of the diffusion and simplified P3 theories for BWR pin-by-pin core analysis

    International Nuclear Information System (INIS)

    Tada, Kenichi; Yamamoto, Akio; Kitamura, Yasunori; Yamane, Yoshihiro; Watanabe, Masato; Noda, Hiroshi

    2007-01-01

    The pin-by-pin fine mesh core calculation method is considered as a candidate of next-generation core calculation method for BWR. In this study, the diffusion and the simplified P 3 (SP 3 ) theories are applied to the pin-by-pin core analysis of BWR. Performances of the diffusion and the SP 3 theories for cell-homogeneous pin-by-pin fine mesh BWR core analysis are evaluated through comparison with cell-heterogeneous detailed transport calculation by the method of characteristics (MOC). In this study, two-dimensional, 2x2 multi-assemblies geometry is used to compare the prediction accuracies of the diffusion and the SP 3 theories. The 2x2 multi- assemblies geometry consists of two types of 9x9 UO 2 assembly that have two different enrichment splittings. To mitigate the cell-homogenization error, the SPH method is applied for the pin-by-pin fine mesh calculation. The SPH method is a technique that reproduces a result of heterogeneous calculation by that of homogeneous calculation. The calculation results indicated that diffusion theory shows larger discrepancy than that of SP 3 theory on pin-wise fission rates. Furthermore, the accuracy of the diffusion theory would not be sufficient for the pin-by-pin fine mesh calculation. In contrast to the diffusion theory, the SP 3 theory shows much better accuracy on pin wise fission rates. Therefore, if the SP 3 theory is applied, the accuracy of the pin-by-pin fine mesh BWR core analysis will be higher and will be sufficient for production calculation. (author)

  15. Diode pumped solid state laser by two diodes

    International Nuclear Information System (INIS)

    Li Mingzhong; Zhang Xiaomin; Liang Yue; Man Yongzai; Zhou Pizhang

    1995-01-01

    A Nd: YLF laser is pumped by home-made quantum well diode lasers. Datum of laser output energy 60 μJ and peak power 120 mw are observed at wavelength 1.047 μm. On the same pumping condition, the output power synchronously pumped by two diodes is higher than the total output power pumped by two diodes separately. The fluctuation is <3%. The results agree with theoretical analysis

  16. Spin-Wave Diode

    Directory of Open Access Journals (Sweden)

    Jin Lan (兰金

    2015-12-01

    Full Text Available A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.

  17. A final report for Gallium arsenide P-I-N detectors for high-sensitivity imaging of thermal neutrons

    CERN Document Server

    Vernon, S M

    1999-01-01

    This SBIR Phase I developed neutron detectors made FR-om gallium arsenide (GaAs) p-type/ intrinsic/n-type (P-I-N) diodes grown by metalorganic chemical vapor deposition (MOCVD) onto semi-insulating (S1) bulk GaAs wafers. A layer of isotonically enriched boron-10 evaporated onto the FR-ont surface serves to convert incoming neutrons into lithium ions and a 1.47 MeV alpha particle which creates electron-hole pairs that are detected by the GaAs diode. Various thicknesses of ''intrinsic'' (I) undoped GaAs were tested, as was use of a back-surface field (BSF) formed FR-om a layer of Al sub x Ga sub 1 sub - sub x As. Schottky-barrier diodes formed FR-om the same structures without the p+ GaAs top layer were tested as a comparison. After mesa etching and application of contacts, devices were tested in visible light before application of the boron coating. Internal quantum efficiency (IQE) of the best diode near the GaAs bandedge is over 90%. The lowest dark current measured is 1 x 10 sup - sup 1 sup 2 amps at -1 V o...

  18. Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator

    Science.gov (United States)

    Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.

    2014-02-01

    We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.

  19. Highly Efficient p-i-n Type Organic Light-emitting Diodes Using ...

    African Journals Online (AJOL)

    operating voltage of 3.0 V. In addition, impressive characteristics of white .... low voltage drops in the transport layers due to their ... thermal evaporation in high vacuum or organic vapor ... the calibrated silicon photodiode above the OLEDs.

  20. Highly Efficient p-i-n Type Organic Light-emitting Diodes Using ...

    African Journals Online (AJOL)

    Both predominantly hole transporting material (TCTA) and an exclusively electron transporting host material (TAZ) are doped with the green phosphorescent dye tris(phenylpyridine)iridium [Ir(ppy)3]. The intrinsic and doped transport and emission layers are formed using a high vacuum controlled co-evaporation deposition ...

  1. Characterisation of different hole transport materials as used in organic p-i-n solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pfuetzner, Steffen; Petrich, Annette; Koch, Maik; Riede, Moritz; Leo, Karl [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden (Germany); Malbrich, Christine [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Dresden (Germany); Hildebrandt, Dirk; Pfeiffer, Martin [Heliatek GmbH, Dresden (Germany)

    2008-07-01

    This work focuses on the replacement of hole transport material MeO-TPD, which has been used so far in organic p-i-n- solar cells despite its has unfavourable behaviour at elevated temperatures. For this reason, different characterisation and investigations of the hole transport materials PV-TPD, PV-TPDoM, Di-NPB and MeO-Spiro-TPD were done, i.e. dopability, hole mobility, absorption, reflection, cyclic voltametry and glass transition temperature were measured. With simplified structures, e.g. m-i-p diodes, and simplified solar cells, consisting of the blue absorbing fullerene C{sub 60} as acceptor and the transparent donor material 4P-TPD, further specific material properties were determined.

  2. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  3. A proposed parameterization of interface discontinuity factors depending on neighborhood for pin-by-pin diffusion computations for LWR

    International Nuclear Information System (INIS)

    Herrero, Jose Javier; Garcia-Herranz, Nuria; Ahnert, Carol

    2011-01-01

    There exists an interest in performing full core pin-by-pin computations for present nuclear reactors. In such type of problems the use of a transport approximation like the diffusion equation requires the introduction of correction parameters. Interface discontinuity factors can improve the diffusion solution to nearly reproduce a transport solution. Nevertheless, calculating accurate pin-by-pin IDF requires the knowledge of the heterogeneous neutron flux distribution, which depends on the boundary conditions of the pin-cell as well as the local variables along the nuclear reactor operation. As a consequence, it is impractical to compute them for each possible configuration. An alternative to generate accurate pin-by-pin interface discontinuity factors is to calculate reference values using zero-net-current boundary conditions and to synthesize afterwards their dependencies on the main neighborhood variables. In such way the factors can be accurately computed during fine-mesh diffusion calculations by correcting the reference values as a function of the actual environment of the pin-cell in the core. In this paper we propose a parameterization of the pin-by-pin interface discontinuity factors allowing the implementation of a cross sections library able to treat the neighborhood effect. First results are presented for typical PWR configurations. (author)

  4. A proposed parameterization of interface discontinuity factors depending on neighborhood for pin-by-pin diffusion computations for LWR

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, Jose Javier; Garcia-Herranz, Nuria; Ahnert, Carol, E-mail: herrero@din.upm.es, E-mail: nuria@din.upm.es, E-mail: carol@din.upm.es [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid (Spain)

    2011-07-01

    There exists an interest in performing full core pin-by-pin computations for present nuclear reactors. In such type of problems the use of a transport approximation like the diffusion equation requires the introduction of correction parameters. Interface discontinuity factors can improve the diffusion solution to nearly reproduce a transport solution. Nevertheless, calculating accurate pin-by-pin IDF requires the knowledge of the heterogeneous neutron flux distribution, which depends on the boundary conditions of the pin-cell as well as the local variables along the nuclear reactor operation. As a consequence, it is impractical to compute them for each possible configuration. An alternative to generate accurate pin-by-pin interface discontinuity factors is to calculate reference values using zero-net-current boundary conditions and to synthesize afterwards their dependencies on the main neighborhood variables. In such way the factors can be accurately computed during fine-mesh diffusion calculations by correcting the reference values as a function of the actual environment of the pin-cell in the core. In this paper we propose a parameterization of the pin-by-pin interface discontinuity factors allowing the implementation of a cross sections library able to treat the neighborhood effect. First results are presented for typical PWR configurations. (author)

  5. Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max.

    Science.gov (United States)

    Liu, Yuan; Wei, Haichao

    2017-07-01

    Soybean (Glycine max) is one of the most important crop plants. Wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, and seed coat development; these characters may be related to auxin biology. The PIN gene family encodes essential transport proteins in cell-to-cell auxin transport, but little research on soybean PIN genes (GmPIN genes) has been done, especially with respect to the evolution and differences between wild and cultivated soybean. In this study, we retrieved 23 GmPIN genes from the latest updated G. max genome database; six GmPIN protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPIN genes have been involved in segment duplication. Three pairs of GmPIN genes arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPIN genes retained similar expression patterns. All the duplicated GmPIN genes experienced purifying selection (K a /K s genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPIN genes.

  6. Properties of glass-bonded zeolite monoliths

    International Nuclear Information System (INIS)

    Lewis, M.A.; Fischer, D.F.; Murphy, C.D.

    1994-01-01

    It has been shown that mineral waste forms can be used to immobilize waste salt generated during the pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR). Solid, leach resistant monoliths were formed by hot-pressing mixtures of salt-occluded zeolite A powders and glass frit at 990 K and 28 MPa. Additional samples have now been fabricated and tested. Normalized release rates for all elements, including iodide and chloride, were less than 1 g/m 2 d in 28-day tests in deionized water and in brine at 363 K (90 degrees C). Preliminary results indicate that these rates fall with time with both leachants and that the zeolite phase in the glass-bonded zeolite does not function as an ion exchanger. Some material properties were measured. The Poisson ratio and Young's modulus were slightly smaller in glass-bonded zeolite than in borosilicate glass. Density depended on zeolite fraction. The glass-bonded zeolite represents a promising mineral waste form for IFR salt

  7. Neutron spectrometry with a monolithic silicon telescope.

    Science.gov (United States)

    Agosteo, S; D'Angelo, G; Fazzi, A; Para, A Foglio; Pola, A; Zotto, P

    2007-01-01

    A neutron spectrometer was set-up by coupling a polyethylene converter with a monolithic silicon telescope, consisting of a DeltaE and an E stage-detector (about 2 and 500 microm thick, respectively). The detection system was irradiated with monoenergetic neutrons at INFN-Laboratori Nazionali di Legnaro (Legnaro, Italy). The maximum detectable energy, imposed by the thickness of the E stage, is about 8 MeV for the present detector. The scatter plots of the energy deposited in the two stages were acquired using two independent electronic chains. The distributions of the recoil-protons are well-discriminated from those due to secondary electrons for energies above 0.350 MeV. The experimental spectra of the recoil-protons were compared with the results of Monte Carlo simulations using the FLUKA code. An analytical model that takes into account the geometrical structure of the silicon telescope was developed, validated and implemented in an unfolding code. The capability of reproducing continuous neutron spectra was investigated by irradiating the detector with neutrons from a thick beryllium target bombarded with protons. The measured spectra were compared with data taken from the literature. Satisfactory agreement was found.

  8. Robustness of pinning a general complex dynamical network

    International Nuclear Information System (INIS)

    Wang Lei; Sun Youxian

    2010-01-01

    This Letter studies the robustness problem of pinning a general complex dynamical network toward an assigned synchronous evolution. Several synchronization criteria are presented to guarantee the convergence of the pinning process locally and globally by construction of Lyapunov functions. In particular, if a pinning strategy has been designed for synchronization of a given complex dynamical network, then no matter what uncertainties occur among the pinned nodes, synchronization can still be guaranteed through the pinning. The analytical results show that pinning control has a certain robustness against perturbations on network architecture: adding, deleting and changing the weights of edges. Numerical simulations illustrated by scale-free complex networks verify the theoretical results above-acquired.

  9. Is magnetic pinning a dominant mechanism in Nb-Ti

    International Nuclear Information System (INIS)

    Cooley, L.D.; Lee, P.J.; Larbalestier, D.C.

    1991-01-01

    In this paper, the authors compare the pinning behavior of an artificial pinning center (APC) composite and a nanometer-filament Nb 46.5 wt% Ti composite to that of a conventional Nb 48 wt% Ti composite. The microstructure of the APC composite resembles the conventional composite, where ribbons of normal metal form the pinning centers, whereas the nanometer-filament composite has no internal normal metal but pins instead at the filament surface. The APC composite exhibits much stronger pinning relative to B c 2 than the conventional composite (21.4 GN/m 3 , 7 T vs. 18.9 GN/m 3 , 11 T), which is possibly due to the increased amount of pinning center (50 vol.% vs. 25 vol.%), however the proximity effect reduces the B c 2 unfavorably

  10. Ferromagnetic artificial pinning centers in multifilamentary superconducting wires

    International Nuclear Information System (INIS)

    Wang, J.Q.; Rizzo, N.D.; Prober, D.E.

    1997-01-01

    The authors fabricated multifilamentary NbTi wires with ferromagnetic (FM) artificial pinning centers (APCs) to enhance the critical current density (J c ) in magnetic fields. They used a bundle and draw technique to process the APC wires with either Ni or Fe as the pinning centers. Both wires produced higher J c in the high field range (5-9 T) than previous non-magnetic APC wires similarly processed, even though the authors have not yet optimized pin percentage. Using a magnetometer they found that the pins remained ferromagnetic for the wires with maximum J c . However, they did observe a substantial loss of FM material for the wires where the pin diameter approached 3 nm. Thus, they expect further enhancement of J c with better pin quality

  11. Correlation of creep and swelling with fuel pin performance

    International Nuclear Information System (INIS)

    Jackson, R.J.; Washburn, D.F.; Garner, F.A.; Gilbert, E.R.

    1975-09-01

    The HEDL PNL-11 experiment described was one in a series of fueled subassemblies irradiated in EBR-II to demonstrate the adequacy of the FFTF fuel pin design. The cladding material, dimensions, and fuel density are prototypic of FFTF. Because neutron flux in EBR-II is lower than in FFTF, the uranium enrichment is higher in these experimental fuel pins, irradiated in EBR-II, than the FFTF enrichment for comparable linear heat rates. Some pertinent oprating conditions for the center fuel pin in this experiment are listed. This 37-pin subassembly represents, at 110,000 MWd/MTM, the highest burnup yet attained by a prototypic FFTF subassembly. Similarly, this is the highest fluence presently attained by prototypic fuel pins. A cladding breach occurred in one fuel pin which is presently being examined. Results are presented and discussed

  12. Analysis of three idealized reactor configurations: plate, pin, and homogeneous

    International Nuclear Information System (INIS)

    McKnight, R.D.

    1983-01-01

    Detailed Monte Carlo calculations have been performed for three distinct configurations of an idealized fast critical assembly. This idealized assembly was based on the LMFBR benchmark critical assembly ZPR-6/7. In the first configuration, the entire core was loaded with the plate unit cell of ZPR-6/7. In the second configuration, the entire core was loaded with the ZPR sodium-filled pin calandria. The actual ZPR pin calandria are loaded with mixed (U,Pu) oxide pins which closely match the composition of the ZPR-6/7 plate unit cell. For the present study, slight adjustments were made in the atom concentrations and the length of the pin calandria in order to make the core boundaries and average composition for the pin-cell configuration identical to those of the plate-cell configuration. In the third configuration, the core was homogeneous, again with identical core boundaries and average composition as the plate and pin configurations

  13. Analytic models for fuel pin transient performance

    International Nuclear Information System (INIS)

    Bard, F.E.; Fox, G.L.; Washburn, D.F.; Hanson, J.E.

    1976-09-01

    HEDL's ability to analyze various mechanisms that operate within a fuel pin has progressed substantially through development of codes such as PECTCLAD, which solves cladding response, and DSTRESS, which solves fuel response. The PECTCLAD results show good correlation with a variety of mechanical tests on cladding material and also demonstrate the significance of cladding strength when applying the life fraction rule. The DSTRESS results have shown that fuel deforms sufficiently during overpower transient tests that available volumes are filled, whether in the form of a central cavity or start-up cracks

  14. Optimum Prestress of Tanks with Pinned Base

    DEFF Research Database (Denmark)

    Brøndum-Nielsen, Troels

    1998-01-01

    Amin Ghali and Eleanor Elliott presented in their paper an interesting suggestion for prestressing of circular tanks without sliding joints. For many prestressed tanks the following construction procedure is adopted:In order to ensure compressive hoop forces in the wall near the base, the wall...... is allowed to slide freely in the radial direction during tensioning (free base).After tensioning such displacements are prevented (pinned base). The present paper addresses the problem of prestress of such tanks.Keywords: circular prestressing; creep properties; prestressed concrete; redistribution...

  15. On the obstructions to non-Cliffordian pin structures

    Energy Technology Data Exchange (ETDEWEB)

    Chamblin, A. (Dept. of Applied Maths and Theoretical Physics, Univ. of Cambridge (United Kingdom))

    1994-07-01

    We derive the topological obstructions to the existence of non-Cliffordian pin structures on four-dimensional spacetimes. We apply these obstructions to the study of non-Cliffordian pin-Lorentz cobordism. We note that our method of derivation applies equally well in any dimension and in any signature, and we present a general format for calculating obstructions in these situations. Finally, we interpret the breakdown of pin structure and discuss the relevance of this to aspects of physics. (orig.)

  16. Sodium erosion of boron carbide from breached absorber pins

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Baker, D.E.

    1981-03-01

    The purpose of the irradiation experiment was to provide an engineering demonstration of the irradiation behavior of breached boron carbide absorber pins. By building defects into the cladding of prototypic absorber pins, and performing the irradiation under typical FFTF operating conditions, a qualitative assessment of the consequences of a breach was achieved. Additionally, a direct comparison of pin behavior with that of the ex-reactor test could be made

  17. CMOS Imaging of Pin-Printed Xerogel-Based Luminescent Sensor Microarrays.

    Science.gov (United States)

    Yao, Lei; Yung, Ka Yi; Khan, Rifat; Chodavarapu, Vamsy P; Bright, Frank V

    2010-12-01

    We present the design and implementation of a luminescence-based miniaturized multisensor system using pin-printed xerogel materials which act as host media for chemical recognition elements. We developed a CMOS imager integrated circuit (IC) to image the luminescence response of the xerogel-based sensor array. The imager IC uses a 26 × 20 (520 elements) array of active pixel sensors and each active pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. The imager includes a correlated double sampling circuit and pixel address/digital control circuit; the image data is read-out as coded serial signal. The sensor system uses a light-emitting diode (LED) to excite the target analyte responsive luminophores doped within discrete xerogel-based sensor elements. As a prototype, we developed a 4 × 4 (16 elements) array of oxygen (O 2 ) sensors. Each group of 4 sensor elements in the array (arranged in a row) is designed to provide a different and specific sensitivity to the target gaseous O 2 concentration. This property of multiple sensitivities is achieved by using a strategic mix of two oxygen sensitive luminophores ([Ru(dpp) 3 ] 2+ and ([Ru(bpy) 3 ] 2+ ) in each pin-printed xerogel sensor element. The CMOS imager consumes an average power of 8 mW operating at 1 kHz sampling frequency driven at 5 V. The developed prototype system demonstrates a low cost and miniaturized luminescence multisensor system.

  18. Cell homogenization methods for pin-by-pin core calculations tested in slab geometry

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Kitamura, Yasunori; Yamane, Yoshihiro

    2004-01-01

    In this paper, performances of spatial homogenization methods for fuel or non-fuel cells are compared in slab geometry in order to facilitate pin-by-pin core calculations. Since the spatial homogenization methods were mainly developed for fuel assemblies, systematic study of their performance for the cell-level homogenization has not been carried out. Importance of cell-level homogenization is recently increasing since the pin-by-pin mesh core calculation in actual three-dimensional geometry, which is less approximate approach than current advanced nodal method, is getting feasible. Four homogenization methods were investigated in this paper; the flux-volume weighting, the generalized equivalence theory, the superhomogenization (SPH) method and the nonlinear iteration method. The last one, the nonlinear iteration method, was tested as the homogenization method for the first time. The calculations were carried out in simplified colorset assembly configurations of PWR, which are simulated by slab geometries, and homogenization performances were evaluated through comparison with the reference cell-heterogeneous calculations. The calculation results revealed that the generalized equivalence theory showed best performance. Though the nonlinear iteration method can significantly reduce homogenization error, its performance was not as good as that of the generalized equivalence theory. Through comparison of the results obtained by the generalized equivalence theory and the superhomogenization method, important byproduct was obtained; deficiency of the current superhomogenization method, which could be improved by incorporating the 'cell-level discontinuity factor between assemblies', was clarified

  19. Development of 3D pseudo pin-by-pin calculation methodology in ANC

    International Nuclear Information System (INIS)

    Zhang, B.; Mayhue, L.; Huria, H.; Ivanov, B.

    2012-01-01

    Advanced cores and fuel assembly designs have been developed to improve operational flexibility, economic performance and further enhance safety features of nuclear power plants. The simulation of these new designs, along with strong heterogeneous fuel loading, have brought new challenges to the reactor physics methodologies currently employed in the industrial codes for core analyses. Control rod insertion during normal operation is one operational feature in the AP1000 R plant of Westinghouse next generation Pressurized Water Reactor (PWR) design. This design improves its operational flexibility and efficiency but significantly challenges the conventional reactor physics methods, especially in pin power calculations. The mixture loading of fuel assemblies with significant neutron spectrums causes a strong interaction between different fuel assembly types that is not fully captured with the current core design codes. To overcome the weaknesses of the conventional methods, Westinghouse has developed a state-of-the-art 3D Pin-by-Pin Calculation Methodology (P3C) and successfully implemented in the Westinghouse core design code ANC. The new methodology has been qualified and licensed for pin power prediction. The 3D P3C methodology along with its application and validation will be discussed in the paper. (authors)

  20. Trending on Pinterest: an examination of pins about skin tanning.

    Science.gov (United States)

    Banerjee, Smita C; Rodríguez, Vivian M; Greene, Kathryn; Hay, Jennifer L

    2018-04-10

    Rates of melanoma and nonmelanoma skin cancers are on the rise in the USA with data revealing disproportionate increase in female young adults. The popularity of intentional skin tanning among U.S. adolescents is attributed to several factors, including prioritization of physical appearance, media images of tanned celebrities, ease of availability of artificial tanning facilities, and more recently, the prevalence and celebration of tanned skin on social media. Pinterest, as the third most popular social media platform, was searched for "pins" about skin tanning. The resultant "pins" were examined to understand the extent and characteristics of skin tanning portrayed on Pinterest. We analyzed pins on Pinterest about skin tanning (n = 501) through a quantitative content analysis. Overall, results indicated an overwhelmingly protanning characteristic of pins about skin tanning on Pinterest, with over 85% of pins promoting tanning behavior. The pins were generally characterized by the portrayal of a female subject (61%) and provided positive reinforcement for tanning (49%). Use of tanning for enhancing appearance was the main positive outcome expectancy portrayed in the pins (35%), and nudity or exposure of skin on arms (32%) and legs (31%) was evident in about a third of pins. With overwhelmingly positive pins promoting tanning, use of female subjects, exhibiting nudity, and appearance enhancement, there seems be to a consistent targeting of female users to accept tanning as a socially acceptable and popular behavior. The findings indicate a need for developing sun protection messages and the leveraging of social media for dissemination of skin cancer prevention and detection messages.

  1. The pin pixel detector--X-ray imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a soft X-ray gas pixel detector, which uses connector pins for the anodes is reported. Based on a commercial 100 pin connector block, a prototype detector of aperture 25.4 mm centre dot 25.4 mm can be economically fabricated. The individual pin anodes all show the expected characteristics of small gas detectors capable of counting rates reaching 1 MHz per pin. A 2-dimensional resistive divide readout system has been developed to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics.

  2. Reconstruction calculation of pin power for ship reactor core

    International Nuclear Information System (INIS)

    Li Haofeng; Shang Xueli; Chen Wenzhen; Wang Qiao

    2010-01-01

    Aiming at the limitation of the software that pin power distribution for ship reactor core was unavailable, the calculation model and method of the axial and radial pin power distribution were proposed. Reconstruction calculations of pin power along axis and radius was carried out by bicubic and bilinear interpolation and cubic spline interpolation, respectively. The results were compared with those obtained by professional reactor physical soft with fine mesh difference. It is shown that our reconstruction calculation of pin power is simple and reliable as well as accurate, which provides an important theoretic base for the safety analysis and operating administration of the ship nuclear reactor. (authors)

  3. Vortex pinning landscape in MOD-TFA YBCO nanostroctured films

    Science.gov (United States)

    Gutierrez, J.; Puig, T.; Pomar, A.; Obradors, X.

    2008-03-01

    A methodology of general validity to study vortex pinning in YBCO based on Jc transport measurements is described. It permits to identify, separate and quantify three basic vortex pinning contributions associated to anisotropic-strong, isotropic-strong and isotropic-weak pinning centers. Thereof, the corresponding vortex pinning phase diagrams are built up. This methodology is applied to the new solution-derived YBCO nanostructured films, including controlled interfacial pinning by the growth of nanostructured templates by means of self-assembled processes [1] and YBCO-BaZrO3 nanocomposites prepared by modified solution precursors. The application of the methodology and comparison with a standard solution-derived YBCO film [2], enables us to identify the nature and the effect of the additional pinning centers induced. The nanostructured templates films show c-axis pinning strongly increased, controlling most of the pinning phase diagram. On the other hand, the nanocomposites have achieved so far, the highest pinning properties in HTc-superconductors [3], being the isotropic-strong defects contribution the origin of their unique properties. [1] M. Gibert et al, Adv. Mat. vol 19, p. 3937 (2007) [2] Puig.T et al, SuST EUCAS 2007 (to be published) [3] J. Gutierrez et al, Nat. Mat. vol. 6, p. 367 (2007) * Work supported by HIPERCHEM, NANOARTIS and MAT2005-02047

  4. ITP Hanford Type 40 pin electrical connector failure analysis

    International Nuclear Information System (INIS)

    Imrich, K.J.

    1993-01-01

    Corrosion products observed on the ITP Hanford Type 40 pin electrical connectors would be expected to adversely affect the power and control signals supplied to process equipment in the filter cell by the connectors. Corrosion products were consistent with those found on similar pins in DWPF. The recommendations based on the findings in this investigation are as follows: (1) Replace male and female rhodium plated pins with gold plated pins. (2) Replace the galvanized carbon steel spring on the male connector with a stainless steel spring. (3) Install protective caps over Hanford connectors when jumpers are removed

  5. Fuel-pin cladding transient failure strain criterion

    International Nuclear Information System (INIS)

    Bard, F.E.; Duncan, D.R.; Hunter, C.W.

    1983-01-01

    A criterion for cladding failure based on accumulated strain was developed for mixed uranium-plutonium oxide fuel pins and used to interpret the calculated strain results from failed transient fuel pin experiments conducted in the Transient Reactor Test (TREAT) facility. The new STRAIN criterion replaced a stress-based criterion that depends on the DORN parameter and that incorrectly predicted fuel pin failure for transient tested fuel pins. This paper describes the STRAIN criterion and compares its prediction with those of the stress-based criterion

  6. Dynamic Phases of Vortices in Superconductors with Periodic Pinning

    International Nuclear Information System (INIS)

    Reichhardt, C.; Olson, C.; Nori, F.

    1997-01-01

    We present results from extensive simulations of driven vortex lattices interacting with periodic arrays of pinning sites. Changing an applied driving force produces a rich variety of novel dynamical plastic flow phases which are very distinct from those observed in systems with random pinning arrays. Signatures of the transition between these different dynamical phases include sudden jumps in the current-voltage curves as well as marked changes in the vortex trajectories and vortex lattice order. Several dynamical phase diagrams are obtained as a function of commensurability, pinning strength, and spatial order of the pinning sites. copyright 1997 The American Physical Society

  7. Positioning and locking device for fuel pin to grid attachment

    International Nuclear Information System (INIS)

    Frick, T.M.; Wineman, A.L.

    1976-01-01

    A positioning and locking device for fuel pin to grid attachment provides an inexpensive means of positively positioning and locking the individual fuel pins which make up the driver fuel assemblies used in nuclear reactors. The device can be adapted for use with a currently used attachment grid assembly design and insures that the pins remain in their proper position throughout the in-reactor life of the assembly. This device also simplifies fuel bundle assembly in that a complete row of fuel pins can be added to the bundle during each step of assembly. 8 claims, 8 drawing figures

  8. Heat transfer in a fuel pin shipping container

    International Nuclear Information System (INIS)

    Ingham, J.G.

    1980-01-01

    Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800 0 F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800 0 F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33% of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800 0 F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures

  9. Nano-engineered pinning centres in YBCO superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, A., E-mail: adrian.crisan@infim.ro [National Institute for Materials Physics Bucharest, 105 bis Atomistilor Str., 077125 Magurele (Romania); School of Metallurgy and Materials, University of Birmingham, Edgbaston, B15 2TT Birmingham (United Kingdom); Dang, V.S. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, B15 2TT Birmingham (United Kingdom); Nano and Energy Center, VNU Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Mikheenko, P. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, B15 2TT Birmingham (United Kingdom); Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway)

    2017-02-15

    Highlights: • Power applications of YBCO films/coated conductors in technological relevant magnetic fields requires nano-engineered pinning centre. • Three approaches have been proposed: substrate decoration, quasi-multilayers, and targets with secondary phase nano-inclusions. • Combination of all three approaches greatly increased critical current in YBCO films. • Bulk pinning force, pinning potential, and critical current density are estimated and discussed in relation with the type and strength of pinning centres related to the defects evidenced by Transmission Electron Microscopy. - Abstract: For practical applications of superconducting materials in applied magnetic fields, artificial pinning centres in addition to natural ones are required to oppose the Lorentz force. These pinning centres are actually various types of defects in the superconductor matrix. The pinning centres can be categorised on their dimension (volume, surface or point) and on their character (normal cores or Δκ cores). Different samples have been produced by Pulsed Laser Deposition, with various thicknesses, temperatures and nanostructured additions to the superconducting matrix. They have been characterized by SQUID Magnetic Properties Measurement System and Physical Properties Measurement System, as well as by Transmission Electron Microscopy (TEM). Correlations between pinning architecture, TEM images, and critical currents at various fields and field orientations will be shown for a large number of YBa{sub 2}Cu{sub 3}O{sub x} films with various types and architectures of artificial pinning centres.

  10. Mixed functional monomers-based monolithic adsorbent for the effective extraction of sulfonylurea herbicides in water and soil samples.

    Science.gov (United States)

    Pei, Miao; Zhu, Xiangyu; Huang, Xiaojia

    2018-01-05

    Effective extraction is a key step in the determination of sulfonylurea herbicides (SUHs) in complicated samples. According to the chemical properties of SUHs, a new monolithic adsorbent utilizing acrylamidophenylboronic acid and vinylimidazole as mixed functional monomers was synthesized. The new adsorbent was employed as the extraction phase of multiple monolithic fiber solid-phase microextraction (MMF-SPME) of SUHs, and the extracted SUHs were determined by high-performance liquid chromatography with diode array detection (HPLC-DAD). Results well evidence that the prepared adsorbent could extract SUHs in environmental waters and soil effectively through multiply interactions such as boronate affinity, dipole-dipole and π-π interactions. Under the optimized extraction conditions, the limits of detection for target SUHs in environmental water and soil samples were 0.018-0.17μg/L and 0.14-1.23μg/kg, respectively. At the same time, the developed method also displayed some analytical merits including wide linear dynamic ranges, good method reproducibility, satisfactory sensitivity and low consume of organic solvent. Finally, the developed were successfully applied to monitor trace SUHs in environmental water and soil samples. The recoveries at three fortified concentrations were in the range of 70.6-119% with RSD below 11% in all cases. The obtained results well demonstrate the excellent practical applicability of the developed MMF-SPME-HPLC-DAD method for the monitoring of SUHs in water and soil samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Reversed-phase HPLC analysis of levetiracetam in tablets using monolithic and conventional C18 silica columns.

    Science.gov (United States)

    Can, Nafiz O; Arli, Goksel

    2010-01-01

    Development and validation of an RP-HPLC method for determination of levetiracetam in pharmaceutical tablets is described. The separation and quantification of levetiracetam and caffeine (internal standard) were performed using a single analytical procedure with two different types of stationary phases, conventional Phenomenex Gemini C18 (100 x 4.6 mm, 5 microm) and Merck Chromolith Performance RP18e (100 x 4.6 mm, macropore size 2 mm, micropore size 13 nm) monolithic silica. Five-microliter aliquots of samples were injected into the system and eluted using water-acetonitrile (90 + 10, v/v) mobile phase pumped at the rate of 1 mL/min. The analyte peaks were detected at 200 nm using a diode array detector with adequate resolution. Validation studies were performed using the method recommended by the International Conference on Harmonization, the U.S. Pharmacopeia, and AOAC INTERNATIONAL, which includes accuracy, precision, range, limits, robustness, and system suitability parameters. Levetiracetam and caffeine were detected in about 7 min using the conventional column, whereas less than 5 min was required when the monolithic column was used. Calibration plots had r values close to unity in the range of 0.8-8.0 microg/mL. Assay of levetiracetam in a tablet formulation was demonstrated as an application to real samples.

  12. Selective ablation of photovoltaic materials with UV laser sources for monolithic interconnection of devices based on a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Molpeceres, C. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain)], E-mail: carlos.molpeceres@upm.es; Lauzurica, S.; Garcia-Ballesteros, J.J.; Morales, M.; Guadano, G.; Ocana, J.L. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain); Fernandez, S.; Gandia, J.J. [Dept. de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda, Complutense 22, 28040 Madrid (Spain); Villar, F.; Nos, O.; Bertomeu, J. [CeRMAE Dept. Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)

    2009-03-15

    Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.

  13. Selective ablation of photovoltaic materials with UV laser sources for monolithic interconnection of devices based on a-Si:H

    International Nuclear Information System (INIS)

    Molpeceres, C.; Lauzurica, S.; Garcia-Ballesteros, J.J.; Morales, M.; Guadano, G.; Ocana, J.L.; Fernandez, S.; Gandia, J.J.; Villar, F.; Nos, O.; Bertomeu, J.

    2009-01-01

    Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.

  14. FABRICE process for the refrabrication of experimental pins in a hot cell, from pins pre-irradiated in power reactors

    International Nuclear Information System (INIS)

    Vignesoult, N.; Atabek, R.; Ducas, S.

    1982-06-01

    The Fabrice ''hot cell refabrication'' process for small pins from very long irradiated fuel elements was developed at the CEA to allow parametric studies of the irradiation behavior of pins from nuclear power plants. Since this operation required complete assurance of the validity of the process, qualification of the fabrication was performed on test pins, refabricated in the hot cell, as well as irradiation qualification. The latter qualification was intended to demonstrate that, in identical experimental irradiation conditions, the refabricated Fabrice pins behaved in the same way as whole pins with the same initial characteristics. This qualification of the Fabrice process, dealing with more than twenty pins at different burnups, showed that fabrication did not alter: the inherent characteristics of the sampled fuel element and the irradiation behavior of the sampled fuel element [fr

  15. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    Energy Technology Data Exchange (ETDEWEB)

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most

  16. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  17. Material accountancy for metallic fuel pin casting

    International Nuclear Information System (INIS)

    Bucher, R.G.; Orechwa, Y.; Beitel, J.C.

    1995-01-01

    The operation of the Fuel Conditioning Facility (FCF) is based on the electrometallurgical processing of spent metallic reactor fuel. The pin casting operation, although only one of several operations in FCF, was the first to be on-line. As such, it has served to demonstrate the material accountancy system in many of its facets. This paper details, for the operation of the pin casting process with depleted uranium, the interaction between the mass tracking system (MTG) and some of the ancillary computer codes which generate pertinent information for operations and material accountancy. It is necessary to distinguish between two types of material balance calculations -- closeout for operations and material accountancy for safeguards. The two have much in common, for example, the mass tracking system database and the calculation of an inventory difference, but, in general, are not congruent with regard to balance period and balance spatial domain. Moreover, the objective, assessment, and reporting requirements of the calculated inventory difference are very different in the two cases

  18. The Egyptian Hair Pin: practical, sacred, fatal

    Directory of Open Access Journals (Sweden)

    Joann Fletcher

    2016-11-01

    Full Text Available Generally regarded as little more than a mundane tool employed in daily life, the humble hairpin occasionally played a rather more prominent role in history than has perhaps been appreciated. As the most ancient implements associated with hair styling, simple pins of bone and ivory were commonly employed in Egypt by c.4000 BC as a means of securing long hair in an upswept style (e.g. Petrie and Mace 1901, 21, 34. Although their occasional use by men undermines the assumption that hairpins are 'a relatively certain example of a “gendered” artefact' (Wilfong 1997, 67, the vast majority have been found in female burials. They can be made of bone and ivory, wood, steatite, glass, gold, silver and bronze, and two 12cm long bronze examples were found within the hair of Princess Ahmosi c.1550 BC (Fletcher 1995, 376, 441 while the hair of an anonymous woman at Gurob c.AD 110 had been secured in a bun with pins of bone, tortoiseshell and silver (Walker and Bierbrier 1997, 209.

  19. Method and device for cleaning fuel pins

    International Nuclear Information System (INIS)

    Matsumoto, Kaname; Oohigashi, Yoshiaki.

    1985-01-01

    Purpose: To remove clads or scales deposited on the outer surface of fuel pins in BWR type reactors. Method: A fuel assembly taken out of a reactor core is vertically contained without detaching a channel box in a scrubber tower disposed in a liquid tight manner within a fuel pool. Then, a specifically prepared slurry is caused to flow and uprise from the bottom of the scrubber tower into the channel box and then discharged from the top of the tower. The slurry is prepared by mixing pure water and granules (for example, as activated carbon, ion exchanger resin, iron and molecular sieve) of such a granular size as not causing clogging in the channel box of the fuel assembly and having a larger specific gravity than pure water. The slurry flown into the channel box scrubs the surface of fuel pins to scrape off clads or scales. Then, discharged slurry is sent to a hydraulic cyclone to separate the granules from the clads or scales. (Ikeda, J.)

  20. Lightning Pin Injection Testing on MOSFETS

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita

    2009-01-01

    Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.

  1. Edge chipping and flexural resistance of monolithic ceramics☆

    Science.gov (United States)

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  2. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    Science.gov (United States)

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Aspartic acid incorporated monolithic columns for affinity glycoprotein purification.

    Science.gov (United States)

    Armutcu, Canan; Bereli, Nilay; Bayram, Engin; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-02-01

    Novel aspartic acid incorporated monolithic columns were prepared to efficiently affinity purify immunoglobulin G (IgG) from human plasma. The monolithic columns were synthesised in a stainless steel HPLC column (20 cm × 5 mm id) by in situ bulk polymerisation of N-methacryloyl-L-aspartic acid (MAAsp), a polymerisable derivative of L-aspartic acid, and 2-hydroxyethyl methacrylate (HEMA). Monolithic columns [poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid) (PHEMAsp)] were characterised by swelling studies, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The monolithic columns were used for IgG adsorption/desorption from aqueous solutions and human plasma. The IgG adsorption depended on the buffer type, and the maximum IgG adsorption from aqueous solution in phosphate buffer was 0.085 mg/g at pH 6.0. The monolithic columns allowed for one-step IgG purification with a negligible capacity decrease after ten adsorption-desorption cycles. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Monolithic View of Galaxy Formation and Evolution

    Directory of Open Access Journals (Sweden)

    Cesare Chiosi

    2014-07-01

    Full Text Available We review and critically discuss the current understanding of galaxy formation and evolution limited to Early Type Galaxies (ETGs as inferred from the observational data and briefly contrast the hierarchical and quasi-monolithic paradigms of formation and evolution. Since in Cold Dark Matter (CDM cosmogony small scale structures typically collapse early and form low-mass haloes that subsequently can merge to assembly larger haloes, galaxies formed in the gravitational potential well of a halo are also expected to merge thus assembling their mass hierarchically. Mergers should occur all over the Hubble time and large mass galaxies should be in place only recently. However, recent observations of high redshift galaxies tell a different story: massive ETGs are already in place at high redshift. To this aim, we propose here a revision of the quasi-monolithic scenario as an alternative to the hierarchical one, in which mass assembling should occur in early stages of a galaxy lifetime and present recent models of ETGs made of Dark and Baryonic Matter in a Λ-CDM Universe that obey the latter scheme. The galaxies are followed from the detachment from the linear regime and Hubble flow at z ≥ 20 down to the stage of nearly complete assembly of the stellar content (z ∼ 2 − 1 and beyond.  It is found that the total mass (Mh = MDM + MBM and/or initial over-density of the proto-galaxy drive the subsequent star formation histories (SFH. Massive galaxies (Mh ~ _1012M⊙ experience a single, intense burst of star formation (with rates ≥ 103M⊙/yr at early epochs, consistently with observations, with a weak dependence on the initial over-density; intermediate mass haloes (Mh~_ 1010 − 1011M⊙ have star formation histories that strongly depend on their initial over-density; finally, low mass haloes (Mh ~_ 109M⊙ always have erratic, burst-like star forming histories. The present-day properties (morphology, structure, chemistry and photometry of the

  5. BARS - a heterogeneous code for 3D pin-by-pin LWR steady-state and transient calculation

    International Nuclear Information System (INIS)

    Avvakumov, A.V.; Malofeev, V.M.

    2000-01-01

    A 3D pin-by-pin dynamic model for LWR detailed calculation was developed. The model is based on a coupling of the BARS neutronic code with the RELAP5/MOD3.2 thermal hydraulic code. This model is intended to calculate a fuel cycle, a xenon transient, and a wide range of reactivity initiated accidents in a WWER and a PWR. Galanin-Feinberg heterogeneous method was realized in the BARS code. Some results for a validation of the heterogeneous method are presented for reactivity coefficients, a pin-by-pin power distribution, and a fast pulse transient. (Authors)

  6. Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics

    Directory of Open Access Journals (Sweden)

    Sandro Rao

    2016-01-01

    Full Text Available Hydrogenated amorphous silicon (a-Si:H shows interesting optoelectronic and technological properties that make it suitable for the fabrication of passive and active micro-photonic devices, compatible moreover with standard microelectronic devices on a microchip. A temperature sensor based on a hydrogenated amorphous silicon p-i-n diode integrated in an optical waveguide for silicon photonics applications is presented here. The linear dependence of the voltage drop across the forward-biased diode on temperature, in a range from 30 °C up to 170 °C, has been used for thermal sensing. A high sensitivity of 11.9 mV/°C in the bias current range of 34–40 nA has been measured. The proposed device is particularly suitable for the continuous temperature monitoring of CMOS-compatible photonic integrated circuits, where the behavior of the on-chip active and passive devices are strongly dependent on their operating temperature.

  7. Monolithic Chip-Integrated Absorption Spectrometer from 3-5 microns, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A monolithically integrated indium phosphide (InP) to silicon-on-sapphire (SoS) platform is being proposed for a monolithic portable or handheld spectrometer between...

  8. High-temperature performance of gallium-nitride-based pin alpha-particle detectors grown on sapphire substrates

    Science.gov (United States)

    Zhu, Zhifu; Zhang, Heqiu; Liang, Hongwei; Tang, Bin; Peng, Xincun; Liu, Jianxun; Yang, Chao; Xia, Xiaochuan; Tao, Pengcheng; Shen, Rensheng; Zou, Jijun; Du, Guotong

    2018-06-01

    The temperature-dependent radiation-detection performance of an alpha-particle detector that was based on a gallium-nitride (GaN)-based pin structure was studied from 290 K to 450 K. Current-voltage-temperature measurements (I-V-T) of the reverse bias show the exponential dependence of leakage currents on the voltage and temperature. The current transport mechanism of the GaN-based pin diode from the reverse bias I-V fitting was analyzed. The temperature-dependent pulse-height spectra of the detectors were studied using an 241 Am alpha-particle source at a reverse bias of 10 V, and the peak positions shifted from 534 keV at 290 K to 490 keV at 450 K. The variation of full width at half maximum (FWHM) from 282 keV at 290 K to 292 keV at 450 K is almost negligible. The GaN-based pin detectors are highly promising for high-temperature environments up to 450 K.

  9. CHARACTERIZATION OF MONOLITHIC FUEL FOIL PROPERTIES AND BOND STRENGTH

    International Nuclear Information System (INIS)

    D E Burkes; D D Keiser; D M Wachs; J S Larson; M D Chapple

    2007-01-01

    Understanding fuel foil mechanical properties, and fuel/cladding bond quality and strength in monolithic plates is an important area of investigation and quantification. Specifically, what constitutes an acceptable monolithic fuel--cladding bond, how are the properties of the bond measured and determined, and what is the impact of fabrication process or change in parameters on the level of bonding? Currently, non-bond areas are quantified employing ultrasonic determinations that are challenging to interpret and understand in terms of irradiation impact. Thus, determining mechanical properties of the fuel foil and what constitutes fuel/cladding non-bonds is essential to successful qualification of monolithic fuel plates. Capabilities and tests related to determination of these properties have been implemented at the INL and are discussed, along with preliminary results

  10. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Directory of Open Access Journals (Sweden)

    Cheng Chuantong

    2017-07-01

    Full Text Available Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  11. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Science.gov (United States)

    Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda

    2017-07-01

    Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  12. Personal neutron diode dosemeter

    International Nuclear Information System (INIS)

    Barthe, J.; Lahaye, T.; Moiseev, T.; Portal, G.

    1993-01-01

    The control and management of neutron doses, received by workers in nuclear power or research facilities, requires a knowledge of cumulated dose equivalent or dose equivalent rate in real time. Individual dosemeters so far developed for this purpose are scarce and not very satisfactory. Passive dosemeters such as TLD systems based on the albedo effect, nuclear emulsions or solid track detectors, do not give sufficiently accurate measurements. Furthermore, the increase in the quality factor and the more restrictive new ICRP recommendations diminish the maximum admissible threshold making currently used systems obsolete. Other than bubble dosemeter systems, based on thermodynamic effects of a superheated gel, no simple electronic device is available at the present time. The development of diode based dosimetric gamma badges, having a size similar to that of credit cards, has stimulated us to design and develop a personal neutron dosemeter based on a double diode system. The results obtained are very encouraging and practical models should become available in the near future. (author)

  13. Polymer light emitting diodes

    International Nuclear Information System (INIS)

    Gautier-Thianche, Emmmanuelle

    1998-01-01

    We study sandwich type semiconducting polymer light emitting diodes; anode/polymer/cathode. ITO is selected as anode, this polymer is a blend of a commercially available polymer with a high hole transport ability: polyvinyl-carbazole and a laser dye: coumarin-515. Magnesium covered with silver is chosen for the anode. We study the influence of polymer thickness and coumarin doping ratio on electroluminescence spectrum, electric characteristics and quantum efficiency. An important drawback is that diodes lifetime remains low. In the second part of our study we determine degradations causes with X-Ray reflectivity experiments. It may be due to ITO very high roughness. We realize a new type of planar electroluminescent device: a channel type electroluminescent device in which polymer layer is inserted into an aluminium channel. Such a device is by far more stable than using classical sandwich structures with the same polymer composition: indeed, charges are generated by internal-field ionization and there is no injection from the electrode to the polymer. This avoids electrochemical reactions at electrodes, thus reducing degradations routes. (author) [fr

  14. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    OpenAIRE

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructu...

  15. Characterization of the passivation processes for PIN structures

    Energy Technology Data Exchange (ETDEWEB)

    Avila Garcia, Alejandro; Reyes Barranca, Mario Alfredo [Instituto Politecnico Nacional, Mexico, D.F (Mexico); Zarate Corona, Oscar [Universidad Autonoma de Puebla, Puebla (Mexico)

    2001-02-01

    Result on the evaluation of PIN structures made on crystalline silicon, processed in our laboratory, which underwent several gettering treatments are reported. Structures were evaluated through the measurement of lifetime {tau} and I-V characteristic. Also, deep levels due to defects were characterized; the activation energy (E{sub c} -E{sub t}), capture cross section {sigma} and relative concentration (N{sub t} / N{sub d}) were obtained. Techniques used in the characterization were Output Circuit Voltage Decay (OCVD), Current-Voltage measurements (I-V) and Deep Level Transient Spectroscopy (DLTS), respectively. These measurements show variations in the parameters, as a result of the gettering techniques applied. The best results were achieved for two types of samples: the first having high phosphorus concentration, no backside damage and annealed at 850 Celsius degrees without HCI atmosphere; the second having low phosphorus concentration, no backside damage and annealed at 850 Celsius degrees without HCI atmosphere. For these samples, the minority carrier lifetime was near 3{upsilon}s, the I-V characteristics imply that conductivity modulation takes place within the intrinsic region even for low voltages, as in commercial diodes. Two defects were observed to remain after the gettering processes: one is related to the phosphorus-vacant pair and the other to the divacancy. Concentrations could be decreased from {approx}4 x 10{sup 1}1cm{sup -3} down to 3 x 10{sup -9} cm{sup -3} for the first and down to 2 x 10{sup 1}0 cm{sup -3} for the second one. [Spanish] Se reportan resultados de la evaluacion de estructuras PIN en silicio procesadas en nuestro laboratorio, las cuales fueron sometidas a diversos tratamientos de gettering. Las estructuras fueron evaluadas a traves de la medicion de tiempo de vida {tau} y la caracteristica I-V. Se caracterizaron tambien los defectos que introducen niveles profundos en la region activa del dispositivo, obteniendo energia de

  16. Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias.

    Science.gov (United States)

    Stefanov, Konstantin D; Clarke, Andrew S; Ivory, James; Holland, Andrew D

    2018-01-03

    A new pinned photodiode (PPD) CMOS image sensor with reverse biased p-type substrate has been developed and characterized. The sensor uses traditional PPDs with one additional deep implantation step to suppress the parasitic reverse currents, and can be fully depleted. The first prototypes have been manufactured on an 18 µm thick, 1000 Ω·cm epitaxial silicon wafers using 180 nm PPD image sensor process. Both front-side illuminated (FSI) and back-side illuminated (BSI) devices were manufactured in collaboration with Teledyne e2v. The characterization results from a number of arrays of 10 µm and 5.4 µm PPD pixels, with different shape, the size and the depth of the new implant are in good agreement with device simulations. The new pixels could be reverse-biased without parasitic leakage currents well beyond full depletion, and demonstrate nearly identical optical response to the reference non-modified pixels. The observed excessive charge sharing in some pixel variants is shown to not be a limiting factor in operation. This development promises to realize monolithic PPD CIS with large depleted thickness and correspondingly high quantum efficiency at near-infrared and soft X-ray wavelengths.

  17. Pinning in BSCCO above the ordinary irreversibility line

    Science.gov (United States)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Konczykowski, M.; Motohira, N.; Berger, H.; Benoit, W.

    1996-12-01

    Frequency-dependent observations of magnetic flux structures are used to show that pinning plays a principal role in the whole mixed state in Bi2Sr2CaCu2O8 (BSCCO) single crystals. We speculate that the random pinning force on the moving vortices may dominate over thermal fluctuations and considerably modify the position of the vortex lattice phase transition.

  18. Inscuteable Regulates the Pins-Mud Spindle Orientation Pathway

    Science.gov (United States)

    Mauser, Jonathon F.; Prehoda, Kenneth E.

    2012-01-01

    During asymmetric cell division, alignment of the mitotic spindle with the cell polarity axis ensures that the cleavage furrow separates fate determinants into distinct daughter cells. The protein Inscuteable (Insc) is thought to link cell polarity and spindle positioning in diverse systems by binding the polarity protein Bazooka (Baz; aka Par-3) and the spindle orienting protein Partner of Inscuteable (Pins; mPins or LGN in mammals). Here we investigate the mechanism of spindle orientation by the Insc-Pins complex. Previously, we defined two Pins spindle orientation pathways: a complex with Mushroom body defect (Mud; NuMA in mammals) is required for full activity, whereas binding to Discs large (Dlg) is sufficient for partial activity. In the current study, we have examined the role of Inscuteable in mediating downstream Pins-mediated spindle orientation pathways. We find that the Insc-Pins complex requires Gαi for partial activity and that the complex specifically recruits Dlg but not Mud. In vitro competition experiments revealed that Insc and Mud compete for binding to the Pins TPR motifs, while Dlg can form a ternary complex with Insc-Pins. Our results suggest that Insc does not passively couple polarity and spindle orientation but preferentially inhibits the Mud pathway, while allowing the Dlg pathway to remain active. Insc-regulated complex assembly may ensure that the spindle is attached to the cortex (via Dlg) before activation of spindle pulling forces by Dynein/Dynactin (via Mud). PMID:22253744

  19. IMp: The customizable LEGO(®) Pinned Insect Manipulator.

    Science.gov (United States)

    Dupont, Steen; Price, Benjamin; Blagoderov, Vladimir

    2015-01-01

    We present a pinned insect manipulator (IMp) constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble.

  20. Numerical Simulation of Fluid Dynamics in a Monolithic Column

    Directory of Open Access Journals (Sweden)

    Kazuhiro Yamamoto

    2017-01-01

    Full Text Available As for the measurement of polycyclic aromatic hydrocarbons (PAHs, ultra-performance liquid chromatography (UPLC is used for PAH identification and densitometry. However, when a solvent containing a substance to be identified passes through a column of UPLC, a dedicated high-pressure-proof device is required. Recently, a liquid chromatography instrument using a monolithic column technology has been proposed to reduce the pressure of UPLC. The present study tested five types of monolithic columns produced in experiments. To simulate the flow field, the lattice Boltzmann method (LBM was used. The velocity profile was discussed to decrease the pressure drop in the ultra-performance liquid chromatography (UPLC system.

  1. Paladin Enterprises: Monolithic particle physics models global climate.

    CERN Multimedia

    2002-01-01

    Paladin Enterprises presents a monolithic particle model of the universe which will be used by them to build an economical fusion energy system. The model is an extension of the work done by James Clerk Maxwell. Essentially, gravity is unified with electro-magnetic forces and shown to be a product of a closed loop current system, i.e. a particle - monolithic or sub atomic. This discovery explains rapid global climate changes which are evident in the geological record and also provides an explanation for recent changes in the global climate.

  2. Microwave-signal generation in a planar Gunn diode with radiation exposure taken into account

    Energy Technology Data Exchange (ETDEWEB)

    Obolenskaya, E. S., E-mail: bess009@mail.ru, E-mail: obolensk@rf.unn.ru; Tarasova, E. A.; Churin, A. Yu.; Obolensky, S. V. [Lobachevsky State University of Nizhny Novgorod (NNSU) (Russian Federation); Kozlov, V. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-12-15

    Microwave-signal generation in planar Gunn diodes with a two-dimensional electron gas, in which we previously studied steady-state electron transport, is theoretically studied. The applicability of a control electrode similar to a field-effect transistor gate to control the parameters of the output diode microwave signal is considered. The results of physical-topological modeling of semiconductor structures with different diode active-region structures, i.e., without a quantum well, with one and two quantum wells separated by a potential barrier, are compared. The calculated results are compared with our previous experimental data on recording Gunn generation in a Schottky-gate field-effect transistor. It is theoretically and experimentally shown that the power of the signal generated by the planar Gunn diode with a quantum well and a control electrode is sufficient to implement monolithic integrated circuits of different functionalities. It is theoretically and experimentally shown that the use of a control electrode on account of the introduction of corrective feedback allows a significant increase in the radiation resistance of a microwave generator with Schottky-gate field-effect transistors.

  3. Microwave-signal generation in a planar Gunn diode with radiation exposure taken into account

    International Nuclear Information System (INIS)

    Obolenskaya, E. S.; Tarasova, E. A.; Churin, A. Yu.; Obolensky, S. V.; Kozlov, V. A.

    2016-01-01

    Microwave-signal generation in planar Gunn diodes with a two-dimensional electron gas, in which we previously studied steady-state electron transport, is theoretically studied. The applicability of a control electrode similar to a field-effect transistor gate to control the parameters of the output diode microwave signal is considered. The results of physical-topological modeling of semiconductor structures with different diode active-region structures, i.e., without a quantum well, with one and two quantum wells separated by a potential barrier, are compared. The calculated results are compared with our previous experimental data on recording Gunn generation in a Schottky-gate field-effect transistor. It is theoretically and experimentally shown that the power of the signal generated by the planar Gunn diode with a quantum well and a control electrode is sufficient to implement monolithic integrated circuits of different functionalities. It is theoretically and experimentally shown that the use of a control electrode on account of the introduction of corrective feedback allows a significant increase in the radiation resistance of a microwave generator with Schottky-gate field-effect transistors.

  4. Study of Monolithic Active Pixel Sensors for the Upgrade of the ALICE Inner Tracking System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00531401

    The upgrade of the ALICE vertex detector, the Inner Tracking System (ITS), is scheduled to be installed during the next long shutdown period (LS2 in 2019-2020) of the CERN Large Hadron Collider (LHC). The current ITS will be replaced by seven concentric layers of Monolithic Active Pixel Sensors (MAPS) with total active surface of $\\sim$10 m$^2$, thus making ALICE the first LHC experiment implementing MAPS detector technology on a large scale. The scope of this thesis is twofold; to report on the activity on the development and the characterisation of a MAPS for the ITS upgrade and to study the charge collection process using a first-principles Monte Carlo simulation. The performance of a MAPS depends on a large number of design and operational parameters, such as collection diode geometry, reverse bias voltage, and epitaxial layer thickness. I have studied this dependence by measuring the INVESTIGATOR chip response to X-rays emitted by an $^{55}$Fe source and to minimum ionising particles. In particular, I ha...

  5. Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics.

    Science.gov (United States)

    Hertel, S; Waldmann, D; Jobst, J; Albert, A; Albrecht, M; Reshanov, S; Schöner, A; Krieger, M; Weber, H B

    2012-07-17

    Graphene is an outstanding electronic material, predicted to have a role in post-silicon electronics. However, owing to the absence of an electronic bandgap, graphene switching devices with high on/off ratio are still lacking. Here in the search for a comprehensive concept for wafer-scale graphene electronics, we present a monolithic transistor that uses the entire material system epitaxial graphene on silicon carbide (0001). This system consists of the graphene layer with its vanishing energy gap, the underlying semiconductor and their common interface. The graphene/semiconductor interfaces are tailor-made for ohmic as well as for Schottky contacts side-by-side on the same chip. We demonstrate normally on and normally off operation of a single transistor with on/off ratios exceeding 10(4) and no damping at megahertz frequencies. In its simplest realization, the fabrication process requires only one lithography step to build transistors, diodes, resistors and eventually integrated circuits without the need of metallic interconnects.

  6. Cracking Bank PINs by Playing Mastermind

    Science.gov (United States)

    Focardi, Riccardo; Luccio, Flaminia L.

    The bank director was pretty upset noticing Joe, the system administrator, spending his spare time playing Mastermind, an old useless game of the 70ies. He had fought the instinct of telling him how to better spend his life, just limiting to look at him in disgust long enough to be certain to be noticed. No wonder when the next day the director fell on his chair astonished while reading, on the newspaper, about a huge digital fraud on the ATMs of his bank, with millions of Euros stolen by a team of hackers all around the world. The article mentioned how the hackers had 'played with the bank computers just like playing Mastermind', being able to disclose thousands of user PINs during the one-hour lunch break. That precise moment, a second before falling senseless, he understood the subtle smile on Joe's face the day before, while training at his preferred game, Mastermind.

  7. The lumped parameter model for fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W S [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    The use of a lumped fuel-pin model in a thermal-hydraulic code is advantageous because of computational simplicity and efficiency. The model uses an averaging approach over the fuel cross section and makes some simplifying assumptions to describe the transient equations for the averaged fuel, fuel centerline and sheath temperatures. It is shown that by introducing a factor in the effective fuel conductivity, the analytical solution of the mean fuel temperature can be modified to simulate the effects of the flux depression in the heat generation rate and the variation in fuel thermal conductivity. The simplified analytical method used in the transient equation is presented. The accuracy of the lumped parameter model has been compared with the results from the finite difference method. (author). 4 refs., 2 tabs., 4 figs.

  8. Alpha particles spectrometer with photodiode PIN

    International Nuclear Information System (INIS)

    Chacon R, A.; Hernandez V, R.; Hernandez D, V. M.; Vega C, H. R.; Ramirez G, J.

    2009-10-01

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  9. Effective augmentation of networked systems and enhancing pinning controllability

    Science.gov (United States)

    Jalili, Mahdi

    2018-06-01

    Controlling dynamics of networked systems to a reference state, known as pinning control, has many applications in science and engineering. In this paper, we introduce a method for effective augmentation of networked systems, while also providing high levels of pinning controllability for the final augmented network. The problem is how to connect a sub-network to an already existing network such that the pinning controllability is maximised. We consider the eigenratio of the augmented Laplacian matrix as a pinning controllability metric, and use graph perturbation theory to approximate the influence of edge addition on the eigenratio. The proposed metric can be effectively used to find the inter-network links connecting the disjoint networks. Also, an efficient link rewiring approach is proposed to further optimise the pinning controllability of the augmented network. We provide numerical simulations on synthetic networks and show that the proposed method is more effective than heuristic ones.

  10. Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors

    International Nuclear Information System (INIS)

    Matsumoto, Kaname; Mele, Paolo

    2010-01-01

    Crystalline defects on the nano-scale, which are called artificial pinning centers (APCs), were successfully introduced into high-temperature superconductors (HTS) by nanotechnology, in order to strongly pin the quantized vortices. The critical current densities, J c , of the HTS films were dramatically improved by APCs. It is possible to form APCs in high-quality epitaxial films, keeping the desired dimensionality, volume fraction, spatial distribution and so on. The in-field J c of HTS films at 77 K was improved by one order of magnitude compared with previous values using APCs. This technology can be applied to the coated conductor technology in progress, and a high J c has already been reported. A current outline of the research is described in this review.

  11. Constitutive Theory Developed for Monolithic Ceramic Materials

    Science.gov (United States)

    Janosik, Lesley A.

    1998-01-01

    with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.

  12. Polyurea-Based Aerogel Monoliths and Composites

    Science.gov (United States)

    Lee, Je Kyun

    2012-01-01

    aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection for government and commercial applications. The rubbery polyureabased aerogel exhibits little dustiness, good flexibility and toughness, and durability typical of the parent polyurea polymer, yet with the low density and superior insulation properties associated with aerogels. The thermal conductivity values of polyurea-based aerogels at lower temperature under vacuum pressures are very low and better than that of silica aerogels. Flexible, rubbery polyurea-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogels, including polyisocyanurate aerogels, which are generally prepared with the one similar component to polyurethane rubber aerogels. Additionally, with higher content of hydrogen in their structures, the polyurea rubber-based aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. The aerogel materials also demonstrate good hydrophobicity due to their hydrocarbon molecular structure. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven to be one promising approach, providing a conveniently fielded form factor that is relatively robust in industrial environments compared to silica aerogel monoliths. However, the flexible, silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain application environments. Although the cross - linked organic aerogels, such as resorcinol- formaldehyde (RF), polyisocyanurate, and cellulose aerogels, show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient radiation shielding materials due

  13. Retractable Pin Tools for the Friction Stir Welding Process

    Science.gov (United States)

    1998-01-01

    Two companies have successfully commercialized a specialized welding tool developed at the Marshall Space Flight Center (MSFC). Friction stir welding uses the high rotational speed of a tool and the resulting frictional heat created from contact to crush, 'stir' together, and forge a bond between two metal alloys. It has had a major drawback, reliance on a single-piece pin tool. The pin is slowly plunged into the joint between two materials to be welded and rotated as high speed. At the end of the weld, the single-piece pin tool is retracted and leaves a 'keyhole,' something which is unacceptable when welding cylindrical objects such as drums, pipes and storage tanks. Another drawback is the requirement for different-length pin tools when welding materials of varying thickness. An engineer at the MSFC helped design an automatic retractable pin tool that uses a computer-controlled motor to automatically retract the pin into the shoulder of the tool at the end of the weld, preventing keyholes. This design allows the pin angle and length to be adjusted for changes in material thickness and results in a smooth hole closure at the end of the weld. Benefits of friction stir welding, using the MSFC retractable pin tool technology, include the following: The ability to weld a wide range of alloys, including previously unweldable and composite materials; provision of twice the fatigue resistance of fusion welds and no keyholes; minimization of material distortion; no creation of hazards such as welding fumes, radiation, high voltage, liquid metals, or arcing; automatic retraction of the pin at the end of the weld; and maintaining full penetration of the pin.

  14. A pinning puzzle: two similar, non-superconducting chemical deposits in YBCO-one pins, the other does not

    Energy Technology Data Exchange (ETDEWEB)

    Sawh, Ravi-Persad; Weinstein, Roy; Gandini, Alberto; Skorpenske, Harley; Parks, Drew, E-mail: Weinstein@uh.ed [Beam Particle Dynamics Laboratories, University of Houston, Houston, TX 77204-5005 (United States); Department of Physics, University of Houston, Houston, TX 77204-5005 (United States); Texas Center for Superconductivity at UH, University of Houston, Houston, TX 77204-5002 (United States)

    2009-09-15

    The pinning effects of two kinds of U-rich deposits in YBCO (YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}) are compared. One is a five-element compound, (U{sub 0.6}Pt{sub 0.4})YBa{sub 2}O{sub 6}, which is a paramagnetic double perovskite which forms as profuse stable nanosize deposits, and pins very well. The other is a four-element compound, (U{sub 0.4}Y{sub 0.6})BaO{sub 3}, which is a ferromagnetic single perovskite which forms as profuse stable nanosize deposits and pins very weakly or not at all. The pinning comparison is done with nearly equal deposit sizes and number of deposits per unit volume for the two compounds. Evidence for the pinning capability, chemical makeup, x-ray diffraction signature, and magnetic properties of the two compounds is reported.

  15. Atomic spectroscopy with diode lasers

    International Nuclear Information System (INIS)

    Tino, G.M.

    1994-01-01

    Some applications of semiconductor diode lasers in atomic spectroscopy are discussed by describing different experiments performed with lasers emitting in the visible and in the near-infrared region. I illustrate the results obtained in the investigation of near-infrared transitions of atomic oxygen and of the visible intercombination line of strontium. I also describe how two offset-frequency-locked diode lasers can be used to excite velocity selective Raman transitions in Cs. I discuss the spectral resolution, the accuracy of frequency measurements, and the detection sensitivity achievable with diode lasers. (orig.)

  16. Laterally injected light-emitting diode and laser diode

    Science.gov (United States)

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  17. Development and characterization of methacrylate-based hydrazide monoliths for oriented immobilization of antibodies.

    Science.gov (United States)

    Brne, P; Lim, Y-P; Podgornik, A; Barut, M; Pihlar, B; Strancar, A

    2009-03-27

    Convective interaction media (CIM; BIA Separations) monoliths are attractive stationary phases for use in affinity chromatography because they enable fast affinity binding, which is a consequence of convectively enhanced mass transport. This work focuses on the development of novel CIM hydrazide (HZ) monoliths for the oriented immobilization of antibodies. Adipic acid dihydrazide (AADH) was covalently bound to CIM epoxy monoliths to gain hydrazide groups on the monolith surface. Two different antibodies were afterwards immobilized to hydrazide functionalized monolithic columns and prepared columns were tested for their selectivity. One column was further tested for the dynamic binding capacity.

  18. Comparison of monolithic silica and polymethacrylate capillary columns for LC

    Czech Academy of Sciences Publication Activity Database

    Moravcová, D.; Jandera, P.; Urban, J.; Planeta, Josef

    2004-01-01

    Roč. 27, 10-11 (2004), s. 789-800 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA203/02/0023 Keywords : monolithic column s * capillary HPLC * column testing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.927, year: 2004

  19. Characterization of polymer monolithic stationary phases for capillary HPLC

    Czech Academy of Sciences Publication Activity Database

    Moravcová, D.; Jandera, P.; Urban, J.; Planeta, Josef

    2003-01-01

    Roč. 26, č. 11 (2003), s. 1005-1016 ISSN 1615-9306 R&D Projects: GA ČR GA203/02/0023 Institutional research plan: CEZ:AV0Z4031919; CEZ:MSM 253100002 Keywords : monolithic column s * capillary HPLC * column testing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.108, year: 2003

  20. Integration trends in monolithic power ICs: Application and technology challenges

    NARCIS (Netherlands)

    Rose, M.; Bergveld, H.J.

    2016-01-01

    This paper highlights the general trend towards further monolithic integration in power applications by enabling power management and interfacing solutions in advanced CMOS nodes. The need to combine high-density digital circuits, power-management circuits, and robust interfaces in a single

  1. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  2. High density fuels using dispersion and monolithic fuel

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia; Universidade de São Paulo

    2017-01-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  3. A 60-GHz rectenna for monolithic wireless sensor tags

    NARCIS (Netherlands)

    Gao, H.; Johannsen, U.; Matters - Kammerer, M.; Milosevic, D.; Smolders, A.B.; Roermund, van A.H.M.; Baltus, P.G.M.

    2013-01-01

    This paper presents the design of a 60-GHz rectenna with an on-chip antenna and rectifier in 65nm CMOS technology. The rectenna is often the bottleneck in realizing a fully-integrated monolithic wireless sensor tag. In this paper, problems of the mm-wave rectifier are discussed, and the

  4. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge...

  5. High density fuels using dispersion and monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  6. Monolithic microwave integrated circuit with integral array antenna

    International Nuclear Information System (INIS)

    Stockton, R.J.; Munson, R.E.

    1984-01-01

    A monolithic microwave integrated circuit including an integral array antenna. The system includes radiating elements, feed network, phasing network, active and/or passive semiconductor devices, digital logic interface circuits and a microcomputer controller simultaneously incorporated on a single substrate by means of a controlled fabrication process sequence

  7. Dopamine-imprinted monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil

    2017-11-01

    A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5  m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Monolithically-Integrated μGC Chemical Sensor System

    Directory of Open Access Journals (Sweden)

    Davor Copic

    2011-06-01

    Full Text Available Gas chromatography (GC is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA, breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC system is essential for such applications. We describe the design, fabrication and packaging of mGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC, μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%.

  9. Environmentally Benign Production of Stretchable and Robust Superhydrophobic Silicone Monoliths.

    Science.gov (United States)

    Davis, Alexander; Surdo, Salvatore; Caputo, Gianvito; Bayer, Ilker S; Athanassiou, Athanassia

    2018-01-24

    Superhydrophobic materials hold an enormous potential in sectors as important as aerospace, food industries, or biomedicine. Despite this great promise, the lack of environmentally friendly production methods and limited robustness remain the two most pertinent barriers to the scalability, large-area production, and widespread use of superhydrophobic materials. In this work, highly robust superhydrophobic silicone monoliths are produced through a scalable and environmentally friendly emulsion technique. It is first found that stable and surfactantless water-in-polydimethylsiloxane (PDMS) emulsions can be formed through mechanical mixing. Increasing the internal phase fraction of the precursor emulsion is found to increase porosity and microtexture of the final monoliths, rendering them superhydrophobic. Silica nanoparticles can also be dispersed in the aqueous internal phase to create micro/nanotextured monoliths, giving further improvements in superhydrophobicity. Due to the elastomeric nature of PDMS, superhydrophobicity can be maintained even while the material is mechanically strained or compressed. In addition, because of their self-similarity, the monoliths show outstanding robustness to knife-scratch, tape-peel, and finger-wipe tests, as well as rigorous sandpaper abrasion. Superhydrophobicity was also unchanged when exposed to adverse environmental conditions including corrosive solutions, UV light, extreme temperatures, and high-energy droplet impact. Finally, important properties for eventual adoption in real-world applications including self-cleaning, stain-repellence, and blood-repellence are demonstrated.

  10. Study of monolithic prestressed reinforced concrete overhead road.

    Directory of Open Access Journals (Sweden)

    Ya.I. Kovalchyk

    2011-12-01

    Full Text Available Results of inspection and testing of monolithic prestressed reinforced concrete road trestle built in Kyiv are considered. The analysis of the gained results has shown that parametres correspond to the requirements of current standards on design of bridges.

  11. Optimal pin enrichment distributions in nuclear reactor fuel bundles

    International Nuclear Information System (INIS)

    Lim, E.Y.

    1976-01-01

    A methodology has been developed to determine the fuel pin enrichment distribution that yields the best approximation to a prescribed power distribution in nuclear reactor fuel bundles. The problem is formulated as an optimization problem in which the optimal pin enrichments minimize the sum of squared deviations between the actual and prescribed fuel pin powers. A constant average enrichment constraint is imposed to ensure that a suitable value of reactivity is present in the bundle. When constraints are added that limit the fuel pins to a few enrichment types, one must determine not only the optimal values of the enrichment types but also the optimal distribution of the enrichment types amongst the pins. A matrix of boolean variables is used to describe the assignment of enrichment types to the pins. This nonlinear mixed integer programming problem may be rigorously solved with either exhaustive enumeration or branch and bound methods using a modification of the algorithm from the continuous problem as a suboptimization. Unfortunately these methods are extremely cumbersome and computationally overwhelming. Solutions which require only a moderate computational effort are obtained by assuming that the fuel pin enrichments in this problem are ordered as in the solution to the continuous problem. Under this assumption search schemes using either exhaustive enumeration or branch and bound become computationally attractive. An adaptation of the Hooke--Jeeves pattern search technique is shown to be especially efficient

  12. Roles of pinning strength and density in vortex melting

    International Nuclear Information System (INIS)

    Obaidat, I M; Khawaja, U Al; Benkraouda, M

    2008-01-01

    We have investigated the role of pinning strength and density on the equilibrium vortex-lattice to vortex-liquid phase transition under several applied magnetic fields. This study was conducted using a series of molecular dynamic simulations on several samples with different strengths and densities of pinning sites which are arranged in periodic square arrays. We have found a single solid-liquid vortex transition when the vortex filling factor n>1. We have found that, for fixed pinning densities and strengths, the melting temperature, T m , decreases almost linearly with increasing magnetic field. Our results provide direct numerical evidence for the significant role of both the strength and density of pinning centers on the position of the melting line. We have found that the vortex-lattice to vortex-liquid melting line shifts up as the pinning strength or the pinning density was increased. The effect on the melting line was found to be more pronounced at small values of strength and density of pinning sites

  13. Loss of Pin1 Suppresses Hedgehog-Driven Medulloblastoma Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Tao Xu

    2017-03-01

    Full Text Available Medulloblastoma is the most common malignant brain tumor in children. Therapeutic approaches to medulloblastoma (combination of surgery, radiotherapy, and chemotherapy have led to significant improvements, but these are achieved at a high cost to quality of life. Alternative therapeutic approaches are needed. Genetic mutations leading to the activation of the Hedgehog pathway drive tumorigenesis in ~30% of medulloblastoma. In a yeast two-hybrid proteomic screen, we discovered a novel interaction between GLI1, a key transcription factor for the mediation of Hedgehog signals, and PIN1, a peptidylprolyl cis/trans isomerase that regulates the postphosphorylation fate of its targets. The GLI1/PIN1 interaction was validated by reciprocal pulldowns using epitope-tagged proteins in HEK293T cells as well as by co-immunoprecipiations of the endogenous proteins in a medulloblastoma cell line. Our results support a molecular model in which PIN1 promotes GLI1 protein abundance, thus contributing to the positive regulation of Hedgehog signals. Most importantly, in vivo functional analyses of Pin1 in the GFAP-tTA;TRE-SmoA1 mouse model of Hedgehog-driven medulloblastoma demonstrate that the loss of Pin1 impairs tumor development and dramatically increases survival. In summary, the discovery of the GLI1/PIN1 interaction uncovers PIN1 as a novel therapeutic target in Hedgehog-driven medulloblastoma tumorigenesis.

  14. Simultaneous dual-functioning InGaN/GaN multiple-quantum-well diode for transferrable optoelectronics

    Science.gov (United States)

    Shi, Zheng; Yuan, Jialei; Zhang, Shuai; Liu, Yuhuai; Wang, Yongjin

    2017-10-01

    We propose a wafer-level procedure for the fabrication of 1.5-mm-diameter dual functioning InGaN/GaN multiple-quantum-well (MQW) diodes on a GaN-on-silicon platform for transferrable optoelectronics. Nitride semiconductor materials are grown on (111) silicon substrates with intermediate Al-composition step-graded buffer layers, and membrane-type MQW-diode architectures are obtained by a combination of silicon removal and III-nitride film backside thinning. Suspended MQW-diodes are directly transferred from silicon to foreign substrates such as metal, glass and polyethylene terephthalate by mechanically breaking the support beams. The transferred MQW-diodes display strong electroluminescence under current injection and photodetection under light irradiation. Interestingly, they demonstrate a simultaneous light-emitting light-detecting function, endowing the 1.5-mm-diameter MQW-diode with the capability of producing transferrable optoelectronics for adjustable displays, wearable optical sensors, multifunctional energy harvesting, flexible light communication and monolithic photonic circuit.

  15. Thermometric Property of a Diode.

    Science.gov (United States)

    Inman, Fred W.; Woodruff, Dan

    1995-01-01

    Presents a simple way to implement the thermometric property of a semiconductor diode to produce a thermometer with a nearly linear dependence upon temperature over a wide range of temperatures. (JRH)

  16. Enhanced vbasis laser diode package

    Science.gov (United States)

    Deri, Robert J.; Chen, Diana; Bayramian, Andy; Freitas, Barry; Kotovsky, Jack

    2014-08-19

    A substrate having an upper surface and a lower surface is provided. The substrate includes a plurality of v-grooves formed in the upper surface. Each v-groove includes a first side and a second side perpendicular to the first side. A laser diode bar assembly is disposed within each of the v-grooves and attached to the first side. The laser diode bar assembly includes a first adhesion layer disposed on the first side of the v-groove, a metal plate attached to the first adhesion layer, a second adhesion layer disposed over the metal plate, and a laser diode bar attached to the second adhesion layer. The laser diode bar has a coefficient of thermal expansion (CTE) substantially similar to that of the metal plate.

  17. Fuel pin design algorithm for conceptual design studies

    International Nuclear Information System (INIS)

    Uselman, J.P.

    1979-01-01

    Two models are available which are currently verified by part of the requirements and which are adaptable as algorithms for the complete range. Fuel thermal performance is described by the HEDL SIEX model. Cladding damage and total deformation are determined by the GE GRO-II structural analysis code. A preliminary fuel pin performance model for analysis of (U, P/sub U/)O 2 pins in the COROPT core conceptual design system has been constructed by combining the key elements of SIEX and GRO-II. This memo describes the resulting pin performance model and its interfacing with COROPT system. Some exemplary results are presented

  18. Self-organized critical behavior in pinned flux lattices

    International Nuclear Information System (INIS)

    Pla, O.; Nori, F.

    1991-01-01

    We study the response of pinned fluxed lattices, under small perturbations in the driving force, below and close to the pinning-depinning transition. For driving Lorentz forces below F c (the depinning force at which the whole flux lattice slides), the system has instabilities against small force increases, with a power-law distribution characteristic of self-organized criticality. Specifically, D(d)∼d -1,3 , where d is the displacement of a flux line after a very small force increase. We also study the initial stages of the motion of the lattice once the driving force overcomes the pinning forces

  19. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    International Nuclear Information System (INIS)

    Zirker, L.R.; Bottcher, J.H.; Shikakura, S.; Tsai, C.L.

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab

  20. Inverse crystallization if Abrikosov vortex system at periodic pinning

    CERN Document Server

    Zyubin, M V; Kashurnikov, V A

    2002-01-01

    The vortex system in the quasi-two-dimensional HTSC plate is considered in the case of the periodic pinning. The M(H) magnetization curves by various values of the external magnetic field and different temperatures are calculated through the Monte Carlo method. It is shown that in the case of the periodic pinning the crystallization of the vortex system is possible by the temperature increase. A number of peculiarities conditioned by the impact of the pinning centers periodic lattice are identified on the magnetization curves. The pictures of the vortex distribution corresponding to various points on the M(H) curve are obtained

  1. Analyzing the use of pins in safety bearings

    DEFF Research Database (Denmark)

    da Fonseca, Cesar A. L. L.; Weber, Hans I.; Fleischer, Philip F.

    2015-01-01

    A new concept for safety bearings is analyzed: useful in emergency situations, it shall protect the bearing from destruction by the use of pins which impact with a disc, both capable of good energy dissipation. Results of work in progress are presented by validating partial stages......–Kutta method is validated with experimental results. Simulations of rotor orbits due to the impact condition are analyzed and compared to data obtained from the experiment giving a good perspective on the use of pins. The contact interaction between rotor and pins uses an elastic-dissipative model. In addition...

  2. How Helpful is Colour-Cueing of PIN Entry?

    OpenAIRE

    Renaud, Karen; Ramsay, Judith

    2014-01-01

    21st Century citizens are faced with the need to remember numbers of PINs (Personal Identification Numbers) in order to do their daily business, and they often have difficulties due to human memory limitations. One way of helping them could be by providing cues during the PIN entry process. The provision of cues that would only be helpful to the PIN owner is challenging because the cue should only make sense to the legitimate user, and not to a random observer. In this paper we report on an e...

  3. Discovery of novel selenium derivatives as Pin1 inhibitors by high-throughput screening

    International Nuclear Information System (INIS)

    Subedi, Amit; Shimizu, Takeshi; Ryo, Akihide; Sanada, Emiko; Watanabe, Nobumoto; Osada, Hiroyuki

    2016-01-01

    Peptidyl prolyl cis/trans isomerization by Pin1 regulates various oncogenic signals during cancer progression, and its inhibition through multiple approaches has established Pin1 as a therapeutic target. However, lack of simplified screening systems has limited the discovery of potent Pin1 inhibitors. We utilized phosphorylation-dependent binding of Pin1 to its specific substrate to develop a screening system for Pin1 inhibitors. Using this system, we screened a chemical library, and identified a novel selenium derivative as Pin1 inhibitor. Based on structure-activity guided chemical synthesis, we developed more potent Pin1 inhibitors that inhibited cancer cell proliferation. -- Highlights: •Novel screening for Pin1 inhibitors based on Pin1 binding is developed. •A novel selenium compound is discovered as Pin1 inhibitor. •Activity guided chemical synthesis of selenium derivatives resulted potent Pin1 inhibitors.

  4. A PWR Thorium Pin Cell Burnup Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.

    2000-05-01

    As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.

  5. Pinning Control Strategy of Multicommunity Structure Networks

    Directory of Open Access Journals (Sweden)

    Chao Ding

    2017-01-01

    Full Text Available In order to investigate the effects of community structure on synchronization, a pinning control strategy is researched in a class of complex networks with community structure in this paper. A feedback control law is designed based on the network community structure information. The stability condition is given and proved by using Lyapunov stability theory. Our research shows that as to community structure networks, there being a threshold hT≈5, when coupling strength bellows this threshold, the stronger coupling strength corresponds to higher synchronizability; vice versa, the stronger coupling strength brings lower synchronizability. In addition the synchronizability of overlapping and nonoverlapping community structure networks was simulated and analyzed; while the nodes were controlled randomly and intensively, the results show that intensive control strategy is better than the random one. The network will reach synchronization easily when the node with largest betweenness was controlled. Furthermore, four difference networks’ synchronizability, such as Barabási-Albert network, Watts-Strogatz network, Erdös-Rényi network, and community structure network, are simulated; the research shows that the community structure network is more easily synchronized under the same control strength.

  6. Ideal glass transitions by random pinning

    Science.gov (United States)

    Cammarota, Chiara; Biroli, Giulio

    2012-01-01

    We study the effect of freezing the positions of a fraction c of particles from an equilibrium configuration of a supercooled liquid at a temperature T. We show that within the random first-order transition theory pinning particles leads to an ideal glass transition for a critical fraction c = cK(T) even for moderate supercooling; e.g., close to the Mode-Coupling transition temperature. First we derive the phase diagram in the T - c plane by mean field approximations. Then, by applying a real-space renormalization group method, we obtain the critical properties for |c - cK(T)| → 0, in particular the divergence of length and time scales, which are dominated by two zero-temperature fixed points. We also show that for c = cK(T) the typical distance between frozen particles is related to the static point-to-set length scale of the unconstrained liquid. We discuss what are the main differences when particles are frozen in other geometries and not from an equilibrium configuration. Finally, we explain why the glass transition induced by freezing particles provides a new and very promising avenue of research to probe the glassy state and ascertain, or disprove, the validity of the theories of the glass transition. PMID:22623524

  7. Dynamic behaviour of FBR fuel pin bundles

    International Nuclear Information System (INIS)

    Martin, P.H.; Van Dorsselaere, J.P.; Ravenet, A.

    1990-01-01

    A programme of shock tests on a fast neutron reactor subassembly model (SPX1 geometry) including a complete bundle of fuel pins (dummy elements) is being carried out in the BELIER test facility at Cadarache. The purpose of these tests is: to determine the distribution of dynamic forces applied to the fuel rod clads under the impact conditions encountered in a reactor during a earthquake; to reduce as much as possible the conservatism of the methods presently used for the calculation of those forces. The test programme, now being completed, consists of the following steps: impacts on the mock-up in air with an non-compact bundle (situation of the subassembly at beginning of life (BOL) with clearances within the bundle); impacts under the same conditions but with fluid (water) in the subassembly; impacts on the mock-up in air and with a compacted bundle (simulating the conditions of an end-of-life (EOL) bundle with no clearance within the bundle). The accelerations studied in these tests cover the range encountered in design calculations for the subassembly frequencies in beam mode. (author)

  8. Transverse pinning versus intramedullary pinning in fifth metacarpal's neck fractures: A randomized controlled study with patient-reported outcome.

    Science.gov (United States)

    Galal, Sherif; Safwat, Wael

    2017-01-01

    The 5th metacarpal fractures accounts for 38% of all hand fractures given that the neck is the weakest point in metacarpals, so neck fracture is the most common metacarpal fracture. Surgical fixation is also advocated for such fractures to prevent mal-rotation of the little finger which will lead to fingers overlap in a clenched fist. Various methods are available for fixation of such fractures, like intramedullary & transverse pinning. There are very few reports in the literature comparing both techniques. Authors wanted to compare outcomes and complications of transverse pinning versus intramedullary pinning in fifth metacarpal's neck fractures. A single-center, parallel group, prospective, randomized study was conducted at an academic Level 1 Trauma Center from October 2014 to December 2016. A total of 80 patients with 5th metacarpal's neck fractures were randomized to pinning using either transverse pinning (group A) or intramedullary pinning (group B). Patients were assessed clinically on range of motion, patient-reported outcome using the Quick-DASH (Disabilities of the Arm, Shoulder, and Hand) questionnaire & radiographically. Two blinded observers assessed outcomes. At final follow up for each patient (12 months) the statistically significant differences were observed in operative time, the transverse pinning group showed shorter operative time, as well as complication rate as complications were observed only in intramedullary pinning group. No differences were found in range of motion or the Quick -DASH score. Both techniques are equally safe and effective treatment option for 5th metacarpal's neck fractures. The only difference was shorter operative time & less incidence of complications in transverse pinning group. Level II, Therapeutic study.

  9. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes

    Science.gov (United States)

    Cho, Himchan; Jeong, Su-Hun; Park, Min-Ho; Kim, Young-Hoon; Wolf, Christoph; Lee, Chang-Lyoul; Heo, Jin Hyuck; Sadhanala, Aditya; Myoung, NoSoung; Yoo, Seunghyup; Im, Sang Hyuk; Friend, Richard H.; Lee, Tae-Woo

    2015-12-01

    Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.

  10. A MONOLITHIC PREAMPLIFIER-SHAPER FOR MEASUREMENT LOSS AND TRANSITION RADIATION

    International Nuclear Information System (INIS)

    KANDASAMY, A.

    1999-01-01

    A custom monolithic circuit has been developed for the Time Expansion Chamber (TEC) of the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). This detector identifies particles by sampling their ionization energy loss (dE/dx) over a 3 cm drift space and by detecting associated transition radiation (TR) photons. The requirement of being simultaneously sensitive to dE/dx and TR events requires a dual-gain system. We have developed a compact solution featuring an octal preamplifier/shaper (P/S) IC with a split gain stage. The circuit, fabricated in 1.2 microm CMOS process, incorporates a trans-impedance preamplifier and a 70 ns unipolar CR-RC 4 shaper with ion tail compensation and active DC offset cancellation. Digitally selectable gain, peaking time, and tail cancellation as well as channel-by-channel charge injection and disable can be configured in the system via a 3-wire interface. The 3.5 x 5 mm 2 die is packaged in a fine-pitch 64-pin PQFP. Equivalent input noise is less than 1500 rms electrons at a power dissipation of 30 mW per channel. On a sample of 2400 chips, the DC offset was 2.3 ± 3 mV rms without trimming. A chamber-mounted TEC-PS Printed Circuit Board (PCB) houses four PIS chips, on-board calibration circuit, and 64 analog differential line drivers which transmit the shaped pulses to crate-mounted flash ADC's. 7 m apart An RS-422 link provides digital configuration downloading and read back, and supplies the calibration strobe. The 24.6 cm x 9.5 cm board dissipates 8.5 W

  11. A MONOLITHIC PREAMPLIFIER-SHAPER FOR MEASUREMENT LOSS AND TRANSITION RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    KANDASAMY,A.

    1999-11-08

    A custom monolithic circuit has been developed for the Time Expansion Chamber (TEC) of the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). This detector identifies particles by sampling their ionization energy loss (dE/dx) over a 3 cm drift space and by detecting associated transition radiation (TR) photons. The requirement of being simultaneously sensitive to dE/dx and TR events requires a dual-gain system. We have developed a compact solution featuring an octal preamplifier/shaper (P/S) IC with a split gain stage. The circuit, fabricated in 1.2 {micro}m CMOS process, incorporates a trans-impedance preamplifier and a 70 ns unipolar CR-RC{sup 4} shaper with ion tail compensation and active DC offset cancellation. Digitally selectable gain, peaking time, and tail cancellation as well as channel-by-channel charge injection and disable can be configured in the system via a 3-wire interface. The 3.5 x 5 mm{sup 2} die is packaged in a fine-pitch 64-pin PQFP. Equivalent input noise is less than 1500 rms electrons at a power dissipation of 30 mW per channel. On a sample of 2400 chips, the DC offset was 2.3 {+-} 3 mV rms without trimming. A chamber-mounted TEC-PS Printed Circuit Board (PCB) houses four PIS chips, on-board calibration circuit, and 64 analog differential line drivers which transmit the shaped pulses to crate-mounted flash ADC's. 7 m apart An RS-422 link provides digital configuration downloading and read back, and supplies the calibration strobe. The 24.6 cm x 9.5 cm board dissipates 8.5 W.

  12. Close Proximity Robotic Maneuvering through Flux Pinning Manipulation

    Data.gov (United States)

    National Aeronautics and Space Administration — Non-contacting actuation technology like flux pinning has never been demonstrated in space. The development of a nonphysical joint is critical for maneuvers such as...

  13. Pin failure modeling of the A series CABRI tests

    International Nuclear Information System (INIS)

    Young, M.F.; Portugal, J.L.

    1978-01-01

    The EXPAND pin fialure model, a research tool designed to model pin failure under prompt burst conditions, has been used to predict failure conditions for several of the A series CABRI tests as part of the United States participation in the CABRI Joint Project. The Project is an international program involving France, Germany, England, Japan, and the United States and has the goal of obtaining experimental data relating to the safety of LMFBR's. The A series, designed to simulate high ramp rate TOP conditions, initially utilizes single, fresh UO 2 pins of the PHENIX type in a flowing sodium loop. The pins are preheated at constant power in the CABRI reactor to establish steady state conditions (480 w/cm at the axial peak) and then subjected to a power pulse of 14 ms to 24 ms duration

  14. Progress in fuel pin modelling in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Stephen, J D; Biancheria, A; Leibnitz, D; O' Reilly, B D; Liu, Y Y; Labar, M P; Gneiting, B C [General Electric Company, Sunnyvale, CA (United States)

    1979-12-01

    In the USA, the focus for theoretical fuel pin modeling is the LIFE system. This system of codes, algorithms, criteria and analysis guidelines is intended to provide a common basis for communication amongst the development groups, a reference set of analysis guidelines for design, and eventually a consensus on the state-of-the-art for licensing. The technical objective is to predict the effect of design options on fuel pin performance limits, which include fuel temperature, pin deformation and cladding breach during normal operation and design basis transients. The mechanistic approach to modeling is taken in LIFE to the extent possible. That is, the approach is to describe the key phenomena in sufficient detail to provide a fundamental understanding of their synergistic effect on the fuel pin performance limits.

  15. The treatment of burnable poison pins in LWRWIMS

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1982-12-01

    This report describes an investigation into the modelling approximations normally made when the LWR lattice code LWRWIMS is used for design calculations on assemblies containing burnable poison pins. Parameters investigated include energy group structure, intervals between calculations in MWd/te and spatial subdivision of the poison pins. An estimate is made of the effect of using pin-cell smearing with diffusion theory for the assembly geometry, instead of a more exact heterogeneous transport theory calculation. The influence on reactivity of the minor gadolinium isotopes 152, 154, 156, 158 and 160 in a poison pin dominated by the isotopes 155 and 157 is presented, and finally, recommendations on the use of LWRWIMS for this type of calculation are made. (author)

  16. PIN architecture for ultrasensitive organic thin film photoconductors.

    Science.gov (United States)

    Jin, Zhiwen; Wang, Jizheng

    2014-06-17

    Organic thin film photoconductors (OTFPs) are expected to have wide applications in the field of optical communications, artificial vision and biomedical sensing due to their great advantages of high flexibility and low-cost large-area fabrication. However, their performances are not satisfactory at present: the value of responsivity (R), the parameter that measures the sensitivity of a photoconductor to light, is below 1 AW(-1). We believe such poor performance is resulted from an intrinsic self-limited effect of present bare blend based device structure. Here we designed a PIN architecture for OTFPs, the PIN device exhibits a significantly improved high R value of 96.5 AW(-1). The PIN architecture and the performance the PIN device shows here should represent an important step in the development of OTFPs.

  17. Investigation of pinning in MgB2 superconductors

    International Nuclear Information System (INIS)

    Mohammad, S.; Reissner, M.; Steiner, W.; Bauer, E.; Giovannini, M.

    2006-01-01

    Full text: The pinning behaviour of bulk MgB 2 superconductors is peculiar in many respects. Pinning seems to be stronger than in classical high T C materials and there seems to be no weak link problem in these compounds, giving hope to produce bulk samples and wires with current densities appropriate for technical applications. But, although many studies concerning the pinning behaviour in this compound appeared in recent years, the results are still contradictory. In the present work we present results of an investigation of the pinning behaviour by magnetic relaxation measurements of three MgB 2 samples: a pure one, a sample with 8 at% Al substitution and a sample with 10 wt% of SiC admixture. A comparison of different analyses methods is given. (author)

  18. SP-100 Fuel Pin Performance: Results from Irradiation Testing

    Science.gov (United States)

    Makenas, Bruce J.; Paxton, Dean M.; Vaidyanathan, Swaminathan; Marietta, Martin; Hoth, Carl W.

    1994-07-01

    A total of 86 experimental fuel pins with various fuel, liner, and cladding candidate materials have been irradiated in the Experimental Breeder Reactor-II (EBR-II) and the Fast Flux Test Facility (FFTF) reactor as part of the SP-100 fuel pin irradiation testing program. Postirradiation examination results from these fuel pins are key in establishing performance correlations and demonstrating the lifetime and safety of the reactor fuel system. This paper provides a brief description of the in-reactor fuel pin tests and presents the most recent irradiation data on the performance of wrought rhenium (Re) liner material and high density UN fuel at goal burnup of 6 atom percent (at. %). It also provides an overview of the significant variety of other fuel/liner/cladding combinations which were irradiated as part of this program and which may be of interest to more advanced efforts.

  19. Behavior of a bundle of fast fuel pins under irradiation

    International Nuclear Information System (INIS)

    Marbach, G.; Millet, P.; Robert, J.; Languille, A.

    1979-01-01

    In the French design of fuel elements for fast reactors, great deformation of pins can bring about interaction with the hexagonal tube through the spacer wires. The change in such bundles is described here when the diameter of the cladding increases and the outcome of this reaction (bending and ovalization of pins) is calculated with a simplified model. It is shown that the results achieved agree well with the experimental observations [fr

  20. Pin and roller attachment system for ceramic blades

    Science.gov (United States)

    Shaffer, J.E.

    1995-07-25

    In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints. 3 figs.

  1. Cyclic movement pin mechanism for controlling a nuclear reactor

    International Nuclear Information System (INIS)

    Joly, J.G.; Martin, Jean.

    1981-01-01

    This invention concerns a recurring movement pin mechanism for controlling a nuclear reactor by shifting a neutron absorbing assembly, vertically mobile in the nuclear reactor, to adjust the power and for emergency shut-down. This mechanism ensures a continuous movement and accurate shut-down at any level of the travel height of the absorbing assembly in the core. It also prevents the impacts of the pivoting pins in the control rod slots [fr

  2. Theory of activated glassy dynamics in randomly pinned fluids

    Science.gov (United States)

    Phan, Anh D.; Schweizer, Kenneth S.

    2018-02-01

    We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elastically collective generalization [elastically collective nonlinear Langevin equation (ECNLE) theory] of activated dynamics in bulk spherical particle liquids to address the influence of random particle pinning on structural relaxation. The simplest neutral confinement model is analyzed for hard spheres where there is no change of the equilibrium pair structure upon particle pinning. As the pinned fraction grows, cage scale dynamical constraints are intensified in a manner that increases with density. This results in the mobile particles becoming more transiently localized, with increases of the jump distance, cage scale barrier, and NLE theory mean hopping time; subtle changes of the dynamic shear modulus are predicted. The results are contrasted with recent simulations. Similarities in relaxation behavior are identified in the dynamic precursor regime, including a roughly exponential, or weakly supra-exponential, growth of the alpha time with pinning fraction and a reduction of dynamic fragility. However, the increase of the alpha time with pinning predicted by the local NLE theory is too small and severely so at very high volume fractions. The strong deviations are argued to be due to the longer range collective elasticity aspect of the problem which is expected to be modified by random pinning in a complex manner. A qualitative physical scenario is offered for how the three distinct aspects that quantify the elastic barrier may change with pinning. ECNLE theory calculations of the alpha time are then presented based on the simplest effective-medium-like treatment for how random pinning modifies the elastic barrier. The results appear to be consistent with most, but not all, trends seen in recent simulations. Key open problems are discussed with regard to both theory and simulation.

  3. Electro-thermal analysis and optimisation of edge termination of power diode supported by 2-D/3-D numerical modelling and simulation

    International Nuclear Information System (INIS)

    Príbytný, P; Donoval, D; Chvála, A; Marek, J; Molnár, M

    2014-01-01

    Numerical modelling and simulation provide an efficient tool for analysis and optimization of device structure design. In this paper we present the analysis and the geometry optimization of the power module with high power pin diode structure supported by the advanced 2-D/3-D mixed-mode electro-thermal device simulation. The structure under investigation is P + NN + power diode device designed for high reverse voltages and very high forward currents, with a maximum forward surge current up to 2.7 kA.

  4. Calibration of the OPAL jet chamber with UV laser beams. Measurement of the beam position with position-sensitive silicon diodes (PSD)

    International Nuclear Information System (INIS)

    Koch, J.

    1990-03-01

    The OPAL jet chamber is calibrated with tracks produced by UV laser beams. Lateral effect diodes are used for monitoring the laser beam location in the detector. These position sensitive detectors locate the point of impact in two dimensions by the charge division method. Measurements on several diodes were carried out in order to calibrate these devices and to investigate to observed pin-cushion distortion. Using the telegraphers equation suitable expressions were obtained for describing the observed behaviour. It was shown that the magnetic field of OPAL as well as the UV laser wavelength and puls duration had no influence on the position information. (orig.)

  5. Incidence and risk factors for pin tract infection in external fixation of ...

    African Journals Online (AJOL)

    Incidence and risk factors for pin tract infection in external fixation of fractures ... for pin tract infection, there were 93 pins scored grade 1, 32 pins grade 2, 15 ... The incidence increased from 20.5% in closed fractures to 75.9% in open fractures.

  6. Vortex Avalanches with Periodic Arrays of Pinning Sites

    Science.gov (United States)

    Abbas, J.; Heckel, T.; Kakalios, J.

    2001-03-01

    Numerical simulations by Nori and co-workers of dynamical phase transitions for magnetic vortices in type II superconductors when the defects which act as pinning sites are arranged in a periodic array have found a dramatic non-linear relationship between vortex voltage and driving current.2,4 In order to experimentally test the predictions of these simulations, a macroscopic physical analog of an array of flux vortices in the presense of an ordered lattice of pinning sites has been constructed. This simple table-top experimental system consists of conventional household magnets, arranged in an ordered grid (serving as the lattice of fixed pinning centers). A plexiglass sheet is positioned above these fixed magnets, and another collection of magnets (representing the magnetic flux vortices), oriented so that they are attracted to the fixed magnets are placed on top of the sheet. The entire apparatus is then tilted to a given angle (the analog of the driving voltage) and the velocity of the avalanching magnets is recorded using the induced voltage in a pick-up coil. By varying the ratio of movable magnets to fixed pinning magnets, the filling fraction can be adjusted, as can the pinning strength, by adjusting the separation of the plexiglass sheet between the fixed and movable magnets. The velocity of the avalanching magnets as the filling fraction is varied displays a jamming transition, with a non-trivial dependence on the pinning strength of the lattice of fixed magnets below the sheet.

  7. InGaAsP Mach-Zehnder interferometer optical modulator monolithically integrated with InGaAs driver MOSFET on a III-V CMOS photonics platform.

    Science.gov (United States)

    Park, Jin-Kown; Takagi, Shinichi; Takenaka, Mitsuru

    2018-02-19

    We demonstrated the monolithic integration of a carrier-injection InGaAsP Mach-Zehnder interferometer (MZI) optical modulator and InGaAs metal-oxide-semiconductor field-effect transistor (MOSFET) on a III-V-on-insulator (III-V-OI) wafer. A low-resistivity lateral PIN junction was formed along an InGaAsP rib waveguide by Zn diffusion and Ni-InGaAsP alloy, enabling direct driving of the InGaAsP optical modulator by the InGaAs MOSFET. A π phase shift of the InGaAsP optical modulator was obtained through the injection of a drain current from the InGaAs MOSFET with a gate voltage of approximately 1 V. This proof-of-concept demonstration of the monolithic integration of the InGaAsP optical modulator and InGaAs driver MOSFET will enable us to develop high-performance and low-power electronic-photonic integrated circuits on a III-V CMOS photonics platform.

  8. JMCT Monte Carlo simulation analysis of full core PWR Pin-By-Pin and shielding

    International Nuclear Information System (INIS)

    Deng, L.; Li, G.; Zhang, B.; Shangguan, D.; Ma, Y.; Hu, Z.; Fu, Y.; Li, R.; Hu, X.; Cheng, T.; Shi, D.

    2015-01-01

    This paper describes the application of the JMCT Monte Carlo code to the simulation of Kord Smith Challenge H-M model, BEAVRS model and Chinese SG-III model. For H-M model, the 6.3624 millions tally regions and the 98.3 billion neutron histories do. The detailed pin flux and energy deposition densities obtain. 95% regions have less 1% standard deviation. For BEAVRS model, firstly, we performed the neutron transport calculation of 398 axial planes in the Hot Zero Power (HZP) status. Almost the same results with MC21 and OpenMC results are achieved. The detailed pin-power density distribution and standard deviation are shown. Then, we performed the calculation of ten depletion steps in 30 axial plane cases. The depletion regions exceed 1.5 million and 12,000 processors uses. Finally, the Chinese SG-III laser model is simulated. The neutron and photon flux distributions are given, respectively. The results show that the JMCT code well suits for extremely large reactor and shielding simulation. (author)

  9. A polygonal nodal SP3 method for whole core Pin-by-Pin neutronics calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunzhao; Wu, Hongchun; Cao, Liangzhi, E-mail: xjtulyz@gmail.com, E-mail: hongchun@mail.xjtu.edu.cn, E-mail: caolz@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi' an Jiaotong University, Shaanxi (China)

    2011-07-01

    In this polygonal nodal-SP3 method, neutron transport equation is transformed by employing an isotropic SP3 method into two coupled equations that are both in the same mathematic form with the diffusion equation, and then a polygonal nodal method is proposed to solve the two coupled equations. In the polygonal nodal method, adjacent nodes are coupled through partial currents, and a nodal response matrix between incoming and outgoing currents is obtained by expanding detailed nodal flux distribution into a sum of exponential functions. This method avoids the transverse integral technique, which is widely used in regular nodal method and can not be used in triangular geometry because of the mathematical singularity. It is demonstrated by the numerical results of the test problems that the k{sub eff} and power distribution agree well with other codes, the triangular nodal-SP3 method appears faster, and that whole core pin-by-pin transport calculation with fine meshes is feasible after parallelization and acceleration. (author)

  10. Development of modeling tools for pin-by-pin precise reactor simulation

    International Nuclear Information System (INIS)

    Ma Yan; Li Shu; Li Gang; Zhang Baoyin; Deng Li; Fu Yuanguang

    2013-01-01

    In order to develop large-scale transport simulation and calculation method (such as simulation of whole reactor core pin-by-pin problem), the Institute of Applied Physics and Computational Mathematics developed the neutron-photon coupled transport code JMCT and the toolkit JCOGIN. Creating physical calculation model easily and efficiently can essentially reduce problem solving time. Currently, lots of visual modeling programs have been developed based on different CAD systems. In this article, the developing idea of a visual modeling tool based on field oriented development was introduced. Considering the feature of physical modeling, fast and convenient operation modules were developed. In order to solve the storage and conversion problems of large scale models, the data structure and conversional algorithm based on the hierarchical geometry tree were designed. The automatic conversion and generation of physical model input file for JMCT were realized. By using this modeling tool, the Dayawan reactor whole core physical model was created, and the transformed file was delivered to JMCT for transport calculation. The results validate the correctness of the visual modeling tool. (authors)

  11. Repeat biopsy in patients with initial diagnosis of PIN; La biopsia ripetuta nei pazienti con diagnosi iniziale di PIN

    Energy Technology Data Exchange (ETDEWEB)

    De Matteis, Massimo [Azienda Ospedaliera Policlinico S. Orsola-Malpighi, Bologna (Italy). UO Radiologia Albertoni; Poggi, Cristina; De Martino, Antonietta; Pavlica, Pietro [Azienda Ospedaliera Policlinico S. Orsola-Malpighi, Bologna (Italy). UO Radiologia Palagi, Dipartimento area radiologica; Corti, Barbara [Azienda Ospedaliera Policlinico S. Orsola-Malpighi, Bologna (Italy). UO Anatomia ed istologia patologica, Dipartimento oncologico ed ematologico; Barozzi, Libero [Azienda Ospedaliera Policlinico S. Orsola-Malpighi, Bologna (Italy). UO Radiologia d' urgenza, Dipartimento emergenze ed accettazione

    2005-09-15

    Purpose. Prostatic intra-epithelial neoplasia (PIN) is considered a pre-malignant lesion and the main precursor of invasive prostatic adenocarcinoma. A PIN diagnosis established by prostate needle biopsy poses a difficult clinical management. problem. We retrospectively reviewed our three-year experience in order to identify criteria for referring patients to repeat biopsy. Materials and methods. We reviewed the repeat biopsy records of 72 patients in whom PIN had been detected on initial US-guided needle biopsy of the prostate. All the patients had a minimum of 6 biopsy cores taken, and they all had PSA > 4 ng/ml. Results. Adenocarcinoma was detected in 15 patients out of 50 (30%) with an initial diagnosis of low-grade PIN and in 10 patients out of 22 (45.4%) with high grade PIN, in 7 out of 18 (39%) in whom PSA levels had decreased during the observation interval, in 16 patients out of 46 (35%) in whom the PSA had increased and in 2 patients out of 8 (25%) with stable PSA. Conclusions. Our results seem to confirm that PIN can be considered a precursor of prostatic adenocarcinoma or a histological alteration often associated with it. Patients with low-grade PIN and particularly those with high-grade PIN should be regularly subjected to repeat biopsy at short intervals due to the high frequency of the final diagnosis of carcinoma. No agreement has been reached on the time interval between the first and the second biopsy. The PSA changes during the observation period are not a statistically significant parameter to suggest the repetition of prostatic biopsy. [Italian] Scopo. La neoplasia prostatica intraepiteliale (PIN) e considerata una lesione premaligna ed il precursore principale dell'adenocarcinoma prostatico infiltrante. La diagnosi di PIN ottenuta con l'agobiopsia della prostata rappresenta un difficile problema gestionale clinico. In una valutazione retrospettiva della nostra esperienza di 3 anni si e cercato di individuare i criteri che possano

  12. Electrical performance of GaN diode as betavoltaic isotope battery energy converter

    International Nuclear Information System (INIS)

    Wang Guanquan; Yang Yuqing; Liu Yebing; Hu Rui; Li Hao; Zhong Zhengkun; Luo Shunzhong

    2013-01-01

    Two kinds of GaN PiN diodes were prepared to be the energy converters of betavoltaic batteries, and irradiated by 63 Ni and 3 H radioactive sources. The I sc was 5.4 nA and V oc was 771 mV for 63 Ni source; the I sc was 10.8 nA and V oc was 839 mV for 3 H source. These results show that their V oc are far better than silicon diodes', but their I sc are poor. And there are some differences between the theory values and experiment results. There would be greatly improving space in electrical performance of beta voltaic isotope batteries with GaN diodes as the energy converters, if the dislocation could be reduced in GaN material producing process, the Ohmic contact could be prepared very well and the diodes configuration could be designed more optimizedly in the future. (authors)

  13. Interplay between collective pinning and artificial defects on domain wall propagation in Co/Pt multilayers

    International Nuclear Information System (INIS)

    Rodriguez-Rodriguez, G; Hierro-Rodriguez, A; Perez-Junquera, A; Montenegro, N; Alameda, J M; Velez, M; Menendez, J L; Ravelosona, D

    2010-01-01

    The interplay between collective pinning on intrinsic structural defects and artificial pinning at a patterned hole is studied in magnetic multilayers with perpendicular anisotropy. The pinning strength of a patterned hole is measured through its efficiency to stop domain wall (DW) propagation into a consecutive unpatterned nanowire section (using antisymmetric magnetoresistance to detect the direction of DW propagation) whereas collective pinning is characterized by the field dependence of DW velocity. Close to room temperature, collective pinning becomes weaker than artificial pinning so that pinning at the hole compensates nucleation-pad geometry, blocking DW propagation across the nanowire.

  14. Fuel pin bowing and related investigation of WWER-440 control rod influence on power release inside of neighbouring fuel pins

    International Nuclear Information System (INIS)

    Mikus, J.

    2005-01-01

    The purpose of this work consists in investigation of the WWER-440 control rod (CR) influence on space power distribution, especially from viewpoint of the values and gradient occurrence that could result in static and cyclic loads with some consequences, e.g. fuel pin bowing. As known, CR can cause power peaks in periphery fuel pins of adjacent operating assemblies because of the butt joint design of the absorbing adapter to the CR fuel part, that is, presence of the water cavity resulting in a flash up of thermal neutrons. As a consequence, beside well-known peaks in axial power distribution, above power gradients can occur inside of mentioned fuel pins. Because of complicated geometry and material composition of the CR, the detailed calculations concerning both above phenomena are complicated, too. Therefore it is useful to acquire appropriate experimental data to investigate mentioned influence and compare them with calculations. Since detailed power distributions cannot be obtained in the NPP, needed information is provided by means of experiments on research reactors. In case of measurements inside of fuel pins, special (e.g. track) detectors placed between fuel pellets are used. Such works are relatively complicated and time consuming, therefore an evaluation based on mathematical modelling and numerical approximation was proposed by means of that, and using measured power release in some selected fuel pins, information about power release inside of one of these fuel pins, can be obtained. For this purpose, an experiment on light water, zero-power research reactor LR-0 was realized and axial power distribution measurements were performed in a WWER-440 type core near to an authentic CR model. Application of the above evaluation method is demonstrated on one ''investigated'' fuel pin neighbouring CR by means of following results: 1. Axial power distribution inside of investigated fuel pin in two opposite positions on its pellets surface that are situated to

  15. Studies of cold protection diodes

    International Nuclear Information System (INIS)

    Carcagno, R.; Zeigler, J.

    1990-01-01

    The feasibility of a passive quench protection system for the Superconducting Supercollider (SSC) main ring magnets depends on the radiation resistance and reliability of the diodes used as current bypass elements. These diodes would be located inside the magnet cryostat, subjecting them to liquid helium temperature and a relatively high radiation flux. Experimental and theoretical efforts have identified a commercially available diode which appears to be capable of surviving the cryogenic temperature and radiation environment of the accelerator. High current IV measurements indicate that the usable lifetime of this diode, based on an estimate of the peak junction temperature during a quench pulse, is an order of magnitude greater then than the expected lifetime of the SSC itself. However, an unexpected relationship was discovered between the diode turn-on voltage at 5 K and the most recent reverse voltage or temperature excursion. This turn-on voltage as a function of radiation exposure appears to be erratic and indicates a need for further investigation. 14 refs., 8 figs., 2 tabs

  16. Studies of cold protection diodes

    International Nuclear Information System (INIS)

    Carcagno, R.; Zeigler, J.

    1990-03-01

    The feasibility of a passive quench protection system for the Superconducting Supercollider (SSC) main ring magnets depends on the radiation resistance and reliability of the diodes used as current bypass elements. These diodes would be located inside the magnet cryostat, subjecting them to liquid helium temperature and a relatively high radiation flux. Experimental and theoretical efforts have identified a commercially available diode which appears to be capable of surviving the cryogenic temperature and radiation environment of the accelerator. High current 4 measurements indicate that the usable lifetime of this diode, based on an estimate of the peak junction temperature during a quench pulse, is an order of magnitude greater then than the expected lifetime of the SSC itself. However, an unexpected relationship was discovered between the diode turn-on voltage at 5 K and the most recent reverse voltage or temperature excursion. This turn-on voltage as a function of radiation exposure appears to be erratic and indicates a need for further investigation. 11 refs., 8 figs., 2 tabs

  17. Monolithic millimeter-wave and picosecond electronic technologies

    International Nuclear Information System (INIS)

    Talley, W.K.; Luhmann, N.C.

    1996-01-01

    Theoretical and experimental studies into monolithic millimeter-wave and picosecond electronic technologies have been undertaken as a collaborative project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Coherent Millimeter-Wave Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. The work involves the design and fabrication of monolithic frequency multiplier, beam control, and imaging arrays for millimeter-wave imaging and radar, as well as the development of high speed nonlinear transmission lines for ultra-wideband radar imaging, time domain materials characterization and magnetic fusion plasma applications. In addition, the Coherent Millimeter-Wave Group is involved in the fabrication of a state-of-the-art X-band (∼8-11 GHz) RF photoinjector source aimed at producing psec high brightness electron bunches for advanced accelerator and coherent radiation generation studies

  18. Complications after pinning of supracondylar distal humerus fractures.

    Science.gov (United States)

    Bashyal, Ravi K; Chu, Jennifer Y; Schoenecker, Perry L; Dobbs, Matthew B; Luhmann, Scott J; Gordon, J Eric

    2009-01-01

    Supracondylar distal humerus fractures are one of the most common skeletal injuries in children. The current treatment of choice in North America is closed reduction and percutaneous pin fixation. Often surgeons leave the pins exposed beneath a cast but outside the skin. Great variation exists with respect to preoperative skin preparation, and perioperative antibiotic administration. Few data exist regarding the rate of infection and other complications. The purpose of this study is to review a large series of children to evaluate the rate of infection and other complications. A retrospective review was carried out of all patients treated at our institution over an 11-year period. A total of 622 patients were identified that were followed for a minimum of 2 weeks after pin removal. Seventeen patients had flexion-type fractures, 294 had type II fractures, and 311 had type III fractures. Seventy-four fractures (11.9%) had preoperative nerve deficits with anterior interosseous palsies being the most common (33 fractures, 5.3%). Preoperative antibiotics were given to 163 patients (26.2%). Spray and towel draping were used in 362 patients, paint and towel draping were used in 65 patients, alcohol paint and towel draping were used in 146 patients, and a full preparation and draping were used in 13 patients. The pins were left exposed under the cast in 591 fractures (95%), and buried beneath the skin in 31 fractures (5.0%). A medial pin was placed in 311 fractures with a small incision made to aid placement in 18 of these cases. The most common complication was pin migration necessitating unexpected return to the operating room for pin removal in 11 patients (1.8%). One patient developed a deep infection with septic arthritis and osteomyelitis (0.2%). Five additional patients had superficial skin infections and were treated with oral antibiotics for a total infection rate of 6 of 622 patients (1.0%). One patient ultimately had a malunion and 4 others returned to the

  19. High-performance whole core Pin-by-Pin calculation based on EFEN-SP_3 method

    International Nuclear Information System (INIS)

    Yang Wen; Zheng Youqi; Wu Hongchun; Cao Liangzhi; Li Yunzhao

    2014-01-01

    The EFEN code for high-performance PWR whole core pin-by-pin calculation based on the EFEN-SP_3 method can be achieved by employing spatial parallelization based on MPI. To take advantage of the advanced computing and storage power, the entire problem spatial domain can be appropriately decomposed into sub-domains and the assigned to parallel CPUs to balance the computing load and minimize communication cost. Meanwhile, Red-Black Gauss-Seidel nodal sweeping scheme is employed to avoid the within-group iteration deterioration due to spatial parallelization. Numerical results based on whole core pin-by-pin problems designed according to commercial PWRs demonstrate the following conclusions: The EFEN code can provide results with acceptable accuracy; Communication period impacts neither the accuracy nor the parallel efficiency; Domain decomposition methods with smaller surface to volume ratio leads to greater parallel efficiency; A PWR whole core pin-by-pin calculation with a spatial mesh 289 × 289 × 218 and 4 energy groups could be completed about 900 s by using 125 CPUs, and its parallel efficiency is maintained at about 90%. (authors)

  20. Porous polyacrylamide monoliths in hydrophilic interaction capillary electrochromatography of oligosaccharides

    Czech Academy of Sciences Publication Activity Database

    Guryča, Vilém; Mechref, Y.; Palm, A. K.; Michálek, Jiří; Pacáková, V.; Novotny, M. V.

    2007-01-01

    Roč. 70, č. 1 (2007), s. 3-13 ISSN 0165-022X R&D Projects: GA MŠk 1M0538 Grant - others:U.S. Department of Health and Human Services(US) GM24349 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyacrylamide monoliths * analytical glycobiology * capillary electrochromatography Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.338, year: 2007