WorldWideScience

Sample records for monolithic crystal pet

  1. Pilot tests of a PET detector using the TOF-PET ASIC based on monolithic crystals and SiPMs

    International Nuclear Information System (INIS)

    Aguilar, A.; González-Montoro, A.; González, A.J.; Hernández, L.; Monzó, J.M.; Benlloch, J.M.; Bugalho, R.; Ferramacho, L.

    2016-01-01

    In this work we show pilot tests of PET detector blocks using the TOF-PET ASIC, coupled to SiPM detector arrays and different crystal configurations. We have characterized the main ASIC features running calibration processes to compensate the time dispersion among the different ASIC/SiPM paths as well as for the time walk on the arrival of optical photons. The aim of this work is to use of LYSO monolithic crystals and explore their photon Depth of Interaction (DOI) capabilities, keeping good energy and spatial resolutions. First tests have been carried out with crystal arrays. Here we made it possible to reach a coincidence resolving times (CRT) of 370 ps FWHM, with energy resolutions better than 20% and resolving well 2 mm sized crystal elements. When using monolithic crystals, a single-pixel LYSO reference crystal helped to explore the CRT performance. We studied different strategies to provide the best timestamp determination in the monolithic scintillator. Times around 1 ns FWHM have been achieved in these pilot studies. In terms of spatial and energy resolution, values of about 3 mm and better than 30% were found, respectively. We have also demonstrated the capability of this system (monolithic and ASIC) to return accurate DOI information.

  2. A High Resolution Monolithic Crystal, DOI, MR Compatible, PET Detector. Final-Report

    International Nuclear Information System (INIS)

    Miyaoka, Robert S.

    2012-01-01

    The principle objective of this proposal is to develop a positron emission tomography (PET) detector with depth-of-interaction (DOI) positioning capability that will achieve state of the art spatial resolution and sensitivity performance for small animal PET imaging. When arranged in a ring or box detector geometry, the proposed detector module will support 15% absolute detection efficiency. The detector will also be compatible with operation in a MR scanner to support simultaneous multi-modality imaging. The detector design will utilize a thick, monolithic crystal scintillator readout by a two-dimensional array of silicon photomultiplier (SiPM) devices using a novel sensor on the entrance surface (SES) design. Our hypothesis is that our single-ended readout SES design will provide an effective DOI positioning performance equivalent to more expensive dual-ended readout techniques and at a significantly lower cost. Our monolithic crystal design will also lead to a significantly lower cost system. It is our goal to design a detector with state of the art performance but at a price point that is affordable so the technology can be disseminated to many laboratories. A second hypothesis is that using SiPM arrays, the detector will be able to operate in a MR scanner without any degradation in performance to support simultaneous PET/MR imaging. Having a co-registered MR image will assist in radiotracer localization and may also be used for partial volume corrections to improve radiotracer uptake quantitation. The far reaching goal of this research is to develop technology for medical research that will lead to improvements in human health care.

  3. Time walk correction for TOF-PET detectors based on a monolithic scintillation crystal coupled to a photosensor array

    International Nuclear Information System (INIS)

    Vinke, R.; Loehner, H.; Schaart, D.R.; Dam, H.T. van; Seifert, S.; Beekman, F.J.; Dendooven, P.

    2010-01-01

    When optimizing the timing performance of a time-of-flight positron emission tomography (TOF-PET) detector based on a monolithic scintillation crystal coupled to a photosensor array, time walk as a function of annihilation photon interaction location inside the crystal needs to be considered. In order to determine the 3D spatial coordinates of the annihilation photon interaction location, a maximum likelihood estimation algorithm was developed, based on a detector characterization by a scan of a 511 keV photon beam across the front and one of the side surfaces of the crystal. The time walk effect was investigated using a 20 mmx20 mmx12 mm LYSO crystal coupled to a fast 4x4 multi-anode photomultiplier tube (MAPMT). In the plane parallel to the photosensor array, a spatial resolution of 2.4 mm FWHM is obtained. In the direction perpendicular to the MAPMT (depth-of-interaction, DOI), the resolution ranges from 2.3 mm FWHM near the MAPMT to 4 mm FWHM at a distance of 10 mm. These resolutions are uncorrected for the ∼1mm beam diameter. A coincidence timing resolution of 358 ps FWHM is obtained in coincidence with a BaF 2 detector. A time walk depending on the 3D annihilation photon interaction location is observed. Throughout the crystal, the time walk spans a range of 100 ps. Calibration of the time walk vs. interaction location allows an event-by-event correction of the time walk.

  4. The X'tal cube PET detector with a monolithic crystal processed by the 3D sub-surface laser engraving technique: Performance comparison with glued crystal elements

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Hirano, Yoshiyuki; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Moriya, Takahiro; Omura, Tomohide; Watanabe, Mitsuo [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka 434-8601 (Japan); Murayama, Hideo; Yamaya, Taiga [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2013-09-21

    The X'tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from six sides of the crystal block. The X'tal cube is composed of a 3D crystal block with isotropic segments. Each face of the 3D crystal block is covered with a 4×4 array of multi-pixel photon counters (MPPCs). Previously, in order to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving technique to a monolithic crystal block instead of gluing segmented small crystals. A dense arrangement of multiple micro-cracks carved by the laser beam works efficiently as a scattering wall for the scintillation photons. The X'tal cube with the laser-processed block showed excellent performance with respect to crystal identification and energy resolution. In this work, for characteristics comparison between the laser-processed block and the conventional segmented array block, we made the laser-processed block and two types of segmented array blocks, one with air gaps and the other with glued segmented small crystals. All crystal blocks had 3D grids of 2 mm pitch. The 4×4 MPPC arrays were optically coupled to each surface of the crystal block. When performance was evaluated using a uniform irradiation of 511 keV, we found that the X'tal cubes with the laser-processed block could easily achieve 2 mm{sup 3} uniform crystal identification. Also, the average energy resolution of each 3D grid was 11.1±0.7%. On the other hand, the glued segmented array block had a pinched distribution and crystals could not be separated clearly. The segmented array block with air gaps had satisfactory crystal identification performance; however, the laser-processed block had higher crystal identification performance. Also, the energy resolution of the laser-processed block was better than for the segmented array blocks. In summary, we found the laser-processed X'tal cube had

  5. Highly improved operation of monolithic BGO-PET blocks

    Science.gov (United States)

    Gonzalez-Montoro, A.; Sanchez, F.; Majewski, S.; Zanettini, S.; Benlloch, J. M.; Gonzalez, A. J.

    2017-11-01

    In PET scanners both scintillation crystals and photosensors are key components defining the system's performance and cost. Original PET systems used BGO or NaI(Tl) scintillators but achieved limited performance due to its slow decay and relatively low light output. Moreover, NaI(Tl) has low stopping power for 511 keV annihilation photons. In this study we report the possibility to reintroduce BGO crystals, and in particular in the form of monolithic blocks, especially suitable for low-dose large-size PET scanners, offering significantly improved sensitivity at a highly reduced cost compared to LYSO type fast scintillators. We have studied the performance of a monolithic BGO block as large as 50 × 50 × 15 mm3 with black-painted lateral walls to reduce lights spread, enabling accurate photon depth of interaction (DOI) measurements. A directional optical layer, called retro-reflector, was coupled to the entrance face bouncing back the scintillation light in the direction of the emission source and, therefore, adding to the light signal while preserving the narrow light cone distribution. Four configurations namely 12 × 12 and 16 × 16 SiPM arrays (3 mm × 3 mm each) as photosensors, with or without a nanopattern treatment at the crystal exit face, have been studied. This structure consisted of a thin layer of a specific high refractive index material shaped with a periodic nanopattern, increasing the scintillation light extraction. The readout returned information for each SiPM row and column, characterizing the X-Y light distribution projections. We have studied the detector spatial resolution using collimated 22Na sources at normal incidence. The DOI resolution was evaluated using collimated gamma beams with lateral incidence. The overall best detector performance was obtained for the 16× 16 SiPM array offering higher readout granularity. We have determined the spatial resolution for 3 separated DOI layers, obtaining the best results for the DOI region near to

  6. New design of a quasi-monolithic detector module with DOI capability for small animal pet

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Lee, Seung-Jae; Baek, Cheol-Ha; Choi, Yong

    2008-01-01

    We report a new design of a detector module with depth of interaction (DOI) based on a quasi-monolithic LSO crystal, a multi-channel sensor, and maximum-likelihood position-estimation (MLPE) algorithm. Light transport and detection were modeled in a quasi-monolithic crystal using DETECT2000 code, with lookup tables (LUTs) built by simulation. Events were well separated by applying the MLPE method within 2.0 mm spatial resolution in both trans-axial and DOI directions. These results demonstrate that the proposed detector provides dependable positioning capability for small animal positron emission tomography (PET)

  7. Performance study of a PET scanner based on monolithic scintillators for different DoI-dependent methods

    International Nuclear Information System (INIS)

    Preziosi, E.; Sánchez, S.; González, A.J.; Rodriguez-Alvarez, M.J.; González-Montoro, A.; Moliner, L.; Benlloch, J.M.; Pani, R.; Borrazzo, C.; Bettiol, M.

    2016-01-01

    One of the technical objectives of the MindView project is developing a brain-dedicated PET insert based on monolithic scintillation crystals. It will be inserted in MRI systems with the purpose to obtain simultaneous PET and MRI brain images. High sensitivity, high image quality performance and accurate detection of the Depth-of-Interaction (DoI) of the 511keV photons are required. We have developed a DoI estimation method, dedicated to monolithic scintillators, allowing continuous DoI estimation and a DoI-dependent algorithm for the estimation of the photon planar impact position, able to improve the single module imaging capabilities. In this work, through experimental measurements, the proposed methods have been used for the estimation of the impact positions within the monolithic crystal block. We have evaluated the PET system performance following the NEMA NU 4-2008 protocol by reconstructing the images using the STIR 3D platform. The results obtained with two different methods, providing discrete and continuous DoI information, are compared with those obtained from an algorithm without DoI capabilities and with the ideal response of the detector. The proposed DoI-dependent imaging methods show clear improvements in the spatial resolution (FWHM) of reconstructed images, allowing to obtain values from 2mm (at the center FoV) to 3mm (at the FoV edges).

  8. Performance of a DOI-encoding small animal PET system with monolithic scintillators

    International Nuclear Information System (INIS)

    Carles, M.; Lerche, Ch.W.; Sánchez, F.; Orero, A.; Moliner, L.; Soriano, A.; Benlloch, J.M.

    2012-01-01

    PET systems designed for specific applications require high resolution and sensitivity instrumentation. In dedicated system design smaller ring diameters and deeper crystals are widely used in order to increase the system sensitivity. However, this design increases the parallax error, which degrades the spatial image resolution gradually from the center to the edge of the field-of-view (FOV). Our group has designed a depth of interaction(DOI)-encoding small animal PET system based on monolithic crystals. In this work we investigate the restoration of radial resolution for transaxially off-center sources using the DOI information provided by our system. For this purpose we have designed a support for point like sources adapted to our system geometry that allows a spatial compression and resolution response study. For different point source radial positions along vertical and horizontal axes of a FOV transaxial plane we compare the results obtained by three methods: without DOI information, with the DOI provided by our system and with the assumption that all the γ-rays interact at half depth of the crystal thickness. Results show an improvement of the mean resolution of 10% with the half thickness assumption and a 16% achieved using the DOI provided by the system. Furthermore, a 10% restoration of the resolution uniformity is obtained using the half depth assumption and an 18% restoration using measured DOI.

  9. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  10. A novel, SiPM-array-based, monolithic scintillator detector for PET

    International Nuclear Information System (INIS)

    Schaart, Dennis R; Dam, Herman T van; Seifert, Stefan; Beekman, Freek J; Vinke, Ruud; Dendooven, Peter; Loehner, Herbert

    2009-01-01

    Silicon photomultipliers (SiPMs) are of great interest to positron emission tomography (PET), as they enable new detector geometries, for e.g., depth-of-interaction (DOI) determination, are MR compatible, and offer faster response and higher gain than other solid-state photosensors such as avalanche photodiodes. Here we present a novel detector design with DOI correction, in which a position-sensitive SiPM array is used to read out a monolithic scintillator. Initial characterization of a prototype detector consisting of a 4 x 4 SiPM array coupled to either the front or back surface of a 13.2 mm x 13.2 mm x 10 mm LYSO:Ce 3+ crystal shows that front-side readout results in significantly better performance than conventional back-side readout. Spatial resolutions 2 detector, equals 960 ps FWHM.

  11. Monolithic I-Beam Crystal Monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Bagnasco, John

    2001-10-16

    Curved crystal, focusing monochromators featuring cubed-root thickness profiles typically employ side-clamped cooling to reduce thermally induced overall bend deformation of the crystal. While performance is improved, residual bend deformation is often an important limiting factor in the monochromator performance. A slightly asymmetric ``I-beam'' crystal cross section with cubed-root flange profiles has been developed to further reduce this effect. Physical motivation, finite-element modeling evaluation and performance characteristics of this design are discussed. Reduction of high mounting stress at the fixed end of the crystal required the soldering of an Invar support fixture to the crystal. Detailed descriptions of this process along with its performance characteristics are also presented.

  12. Characterization and performance of monolithic detector blocks with a dedicated ASIC front-end readout for PET imaging of the human brain

    International Nuclear Information System (INIS)

    Rato Mendes, Pedro; Sarasola Martin, Iciar; Canadas, Mario; Garcia de Acilu, Paz; Cuypers, Robin; Perez, Jose Manuel; Willmott, Carlos

    2011-01-01

    We are developing a human brain PET scanner prototype compatible with MRI based on monolithic scintillator crystals, APD matrices and a dedicated ASIC front-end readout. In this work we report on the performance of individual detector modules and on the operation of such modules in PET coincidence. Results will be presented on the individual characterization of detector blocks and its ASIC front-end readout, with measured energy resolutions of 13% full-width half-maximum (FWHM) at 511 keV and spatial resolutions of the order of 2 mm FWHM. First results on PET coincidence performance indicate spatial resolutions as good as 2.1 mm FWHM for SSRB/FBP reconstruction of tomographic data obtained using a simple PET demonstrator based on a pair of monolithic detector blocks with ASIC readout.

  13. Monolithic femtosecond Yb-fiber laser with photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    We demonstrate a monolithic stable SESAM-modelocked self-starting Yb-fiber laser. A novel PM all-solid photonic bandgap fiber is used for intra-cavity of dispersion management. The ex-cavity final pulse compression is performed in a spliced-on PM hollow-core photonic crystal fiber. The laser...... directly delivers 9 nJ pulses of 275 fs duration with pulse repetition of 26.7MHz....

  14. Characterization of highly multiplexed monolithic PET / gamma camera detector modules

    Science.gov (United States)

    Pierce, L. A.; Pedemonte, S.; DeWitt, D.; MacDonald, L.; Hunter, W. C. J.; Van Leemput, K.; Miyaoka, R.

    2018-04-01

    PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A 50 × 50 × 10 mm3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with 8 × 8 position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer–Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.

  15. High performance detector head for PET and PET/MR with continuous crystals and SiPMs

    International Nuclear Information System (INIS)

    Llosá, G.; Barrillon, P.; Barrio, J.; Bisogni, M.G.; Cabello, J.; Del Guerra, A.; Etxebeste, A.; Gillam, J.E.; Lacasta, C.; Oliver, J.F.; Rafecas, M.; Solaz, C.; Stankova, V.; La Taille, C. de

    2013-01-01

    A high resolution PET detector head for small animal PET applications has been developed. The detector is composed of a 12mm×12mm continuous LYSO crystal coupled to a 64-channel monolithic SiPM matrix from FBK-irst. Crystal thicknesses of 5 mm and 10 mm have been tested, both yielding an intrinsic spatial resolution around 0.7 mm FWHM with a position determination algorithm that can also provide depth-of-interaction information. The detectors have been tested in a rotating system that makes it possible to acquire tomographic data and reconstruct images of 22 Na sources. An image reconstruction method specifically adapted for continuous crystals has been employed. The Full Width at Half Maximum measured from a point source reconstructed with ML–EM was 0.7 mm with the 5 mm crystal and 0.8 mm with the 10 mm crystal

  16. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.

    Science.gov (United States)

    Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo

    2017-02-01

    Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sub-millimetre DOI detector based on monolithic LYSO and digital SiPM for a dedicated small-animal PET system

    International Nuclear Information System (INIS)

    Marcinkowski, Radosław; Mollet, Pieter; Van Holen, Roel; Vandenberghe, Stefaan

    2016-01-01

    The mouse model is widely used in a vast range of biomedical and preclinical studies. Thanks to the ability to detect and quantify biological processes at the molecular level in vivo, PET has become a well-established tool in these investigations. However, the need to visualize and quantify radiopharmaceuticals in anatomic structures of millimetre or less requires good spatial resolution and sensitivity from small-animal PET imaging systems. In previous work we have presented a proof-of-concept of a dedicated high-resolution small-animal PET scanner based on thin monolithic scintillator crystals and Digital Photon Counter photosensor. The combination of thin monolithic crystals and MLE positioning algorithm resulted in an excellent spatial resolution of 0.7 mm uniform in the entire field of view (FOV). However, the limitation of the scanner was its low sensitivity due to small thickness of the lutetium-yttrium oxyorthosilicate (LYSO) crystals (2 mm). Here we present an improved detector design for a small-animal PET system that simultaneously achieves higher sensitivity and sustains a sub-millimetre spatial resolution. The proposed detector consists of a 5 mm thick monolithic LYSO crystal optically coupled to a Digital Photon Counter. Mean nearest neighbour (MNN) positioning combined with depth of interaction (DOI) decoding was employed to achieve sub-millimetre spatial resolution. To evaluate detector performance the intrinsic spatial resolution, energy resolution and coincidence resolving time (CRT) were measured. The average intrinsic spatial resolution of the detector was 0.60 mm full-width-at-half-maximum (FWHM). A DOI resolution of 1.66 mm was achieved. The energy resolution was 23% FWHM at 511 keV and CRT of 529 ps were measured. The improved detector design overcomes the sensitivity limitation of the previous design by increasing the nominal sensitivity of the detector block and retains an excellent intrinsic spatial resolution. (paper)

  18. Characterization of highly multiplexed monolithic PET / gamma camera detector modules

    DEFF Research Database (Denmark)

    Pierce, L. A.; Pedemonte, Stefano; Dewitt, Sharon

    2018-01-01

    tube with 8 × 8 position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize...... and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge...... the detector response. New methods are developed to reject scattered events and perform depthestimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution...

  19. Non-isothermal crystallization of PET/PLA blends

    International Nuclear Information System (INIS)

    Chen, Huipeng; Pyda, Marek; Cebe, Peggy

    2009-01-01

    Binary blends of poly(ethylene terephthalate) with poly(lactic acid), PET/PLA, were studied by differential scanning calorimetry and X-ray scattering. The PET/PLA blends, prepared by solution casting, were found to be miscible in the melt over the entire composition range. Both quenched amorphous and semicrystalline blends exhibit a single, composition dependent glass transition temperature. We report the non-isothermal crystallization of (a) PET, with and without the presence of PLA crystals and (b) PLA, with and without the presence of PET crystals. PET can crystallize in all blends, regardless of whether PLA is amorphous or crystalline, and degree of crystallinity of PET decreases as PLA content increases. In contrast, PLA crystallization is strongly affected by the mobility of the PET fraction. When PET is wholly amorphous, PLA can crystallize even in 70/30 blends, albeit weakly. But when PET is crystalline, PLA cannot crystallize when its own content drops below 0.90. These different behaviors may possibly be related to the tendency of each polymer to form constrained chains, i.e., to form the rigid amorphous fraction, or RAF. PET is capable of forming a large amount of RAF, whereas relatively smaller amount of RAF forms in PLA. Like the crystals, the rigid amorphous fraction of one polymer component may inhibit the growth of crystals of the other blend partner.

  20. Study and optimization of positioning algorithms for monolithic PET detectors blocks

    International Nuclear Information System (INIS)

    Acilu, P Garcia de; Sarasola, I; Canadas, M; Cuerdo, R; Mendes, P Rato; Romero, L; Willmott, C

    2012-01-01

    We are developing a PET insert for existing MRI equipment to be used in clinical PET/MR studies of the human brain. The proposed scanner is based on annihilation gamma detection with monolithic blocks of cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) coupled to magnetically-compatible avalanche photodiodes (APD) matrices. The light distribution generated on the LYSO:Ce block provides the impinging position of the 511 keV photons by means of a positioning algorithm. Several positioning methods, from the simplest Anger Logic to more sophisticate supervised-learning Neural Networks (NN), can be implemented to extract the incidence position of gammas directly from the APD signals. Finally, an optimal method based on a two-step Feed-Forward Neural Network has been selected. It allows us to reach a resolution at detector level of 2 mm, and acquire images of point sources using a first BrainPET prototype consisting of two monolithic blocks working in coincidence. Neural networks provide a straightforward positioning of the acquired data once they have been trained, however the training process is usually time-consuming. In order to obtain an efficient positioning method for the complete scanner it was necessary to find a training procedure that reduces the data acquisition and processing time without introducing a noticeable degradation of the spatial resolution. A grouping process and posterior selection of the training data have been done regarding the similitude of the light distribution of events which have one common incident coordinate (transversal or longitudinal). By doing this, the amount of training data can be reduced to about 5% of the initial number with a degradation of spatial resolution lower than 10%.

  1. Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities

    International Nuclear Information System (INIS)

    Yang, Jinghui; Gu, Tingyi; Zheng, Jiangjun; Wei Wong, Chee; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2014-01-01

    We report temporal and spectral domain observation of regenerative oscillation in monolithic silicon heterostructured photonic crystals cavities with high quality factor to mode volume ratios (Q/V). The results are interpreted by nonlinear coupled mode theory (CMT) tracking the dynamics of photon, free carrier population, and temperature variations. We experimentally demonstrate effective tuning of the radio frequency tones by laser-cavity detuning and laser power levels, confirmed by the CMT simulations with sensitive input parameters

  2. Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project

    Science.gov (United States)

    Paolozzi, L.; Bandi, Y.; Benoit, M.; Cardarelli, R.; Débieux, S.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ratib, O.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.

    2018-04-01

    The TT-PET collaboration is developing a PET scanner for small animals with 30 ps time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below 600 e‑ RMS and a pulse rise time of less than 2 ns , in accordance with the simulations. The pixels with a capacitance of 0.8 pF were measured to have a detection efficiency greater than 99% and, although in the absence of the post-processing, a time resolution of approximately 200 ps .

  3. Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2010-01-01

    in the oscillator cavity for dispersion balancing and nonlinear optical limiting, and another one is used for low nonlinearity final pulse recompression. The chirped-pulse amplification and recompression of the 232-fs, 45-pJ/pulse oscillator output yields a final direct fiber-end delivery of 7.3-nJ energy pulses......A self-starting, passively stabilized, monolithic all polarizationmaintaining femtosecond Yb-fiber master oscillator / power amplifier with very high operational and environmental stability is demonstrated. The system is based on the use of two different photonic crystal fibers. One is used...... of around 297 fs duration. Our laser shows exceptional stability. No Q-switched modelocking events were detected during 4-days long observation. An average fluctuation of only 7.85 · 10−4 over the mean output power was determined as a result of more than 6-hours long measurement. The laser is stable towards...

  4. Silicon Photomultipliers and Monolithic Scintillators for Time-of-Flight PET

    NARCIS (Netherlands)

    Seifert, S.

    2012-01-01

    Positron emission tomography (PET) is a nuclear medical imaging modality. Its aim is to visualize the 3-dimensional distribution of a radiopharmaceutical (also called the tracer) within a patient (clinical PET) or test-animal (in case of preclinical investigations). The information that can be

  5. New scintillating crystals for PET scanners

    CERN Document Server

    Lecoq, P

    2002-01-01

    Systematic R&D on basic mechanism in inorganic scintillators, initiated by the Crystal Clear Collaboration at CERN 10 years ago, has contributed not to a small amount, to the development of new materials for a new generation of medical imaging devices with increased resolution and sensitivity. The first important requirement for a scintillator to be used in medical imaging devices is the stopping power for the given energy range of X and gamma rays to be considered, and more precisely the conversion efficiency. A high light yield is also mandatory to improve the energy resolution, which is essentially limited by the photostatistics and the electronic noise at these energies. A short scintillation decay time allows to reduce the dead time and therefore to increase the limiting counting rate. When all these requirements are fulfilled the sensitivity and image contrast are increased for a given patient dose, or the dose can be reduced. Examples of new materials under development by the Crystal Clear Collabor...

  6. A novel, SiPM-array-based, monolithic scintillator detector for PET

    NARCIS (Netherlands)

    Schaart, Dennis R.; van Dam, Herman T.; Seifert, Stefan; Vinke, Ruud; Dendooven, Peter; Beekman, Freek J.; Löhner, H.

    2009-01-01

    Silicon photomultipliers (SiPMs) are of great interest to positron emission tomography (PET), as they enable new detector geometries, for e. g., depth-of-interaction (DOI) determination, are MR compatible, and offer faster response and higher gain than other solid-state photosensors such as

  7. Monolithic photonic crystals created by partial coalescence of core-shell particles.

    Science.gov (United States)

    Lee, Joon-Seok; Lim, Che Ho; Yang, Seung-Man; Kim, Shin-Hyun

    2014-03-11

    Colloidal crystals and their derivatives have been intensively studied and developed during the past two decades due to their unique photonic band gap properties. However, complex fabrication procedures and low mechanical stability severely limit their practical uses. Here, we report stable photonic structures created by using colloidal building blocks composed of an inorganic core and an organic shell. The core-shell particles are convectively assembled into an opal structure, which is then subjected to thermal annealing. During the heat treatment, the inorganic cores, which are insensitive to heat, retain their regular arrangement in a face-centered cubic lattice, while the organic shells are partially fused with their neighbors; this forms a monolithic structure with high mechanical stability. The interparticle distance and therefore stop band position are precisely controlled by the annealing time; the distance decreases and the stop band blue shifts during the annealing. The composite films can be further treated to give a high contrast in the refractive index. The inorganic cores are selectively removed from the composite by wet etching, thereby providing an organic film containing regular arrays of air cavities. The high refractive index contrast of the porous structure gives rise to pronounced structural colors and high reflectivity at the stop band position.

  8. arXiv Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project

    CERN Document Server

    Paolozzi, L.; Benoit, M.; Cardarelli, R.; Débieux, S.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ratib, O.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.

    2018-04-12

    The TT-PET collaboration is developing a PET scanner for small animals with  30 ps  time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below  600 e− RMS  and a pulse rise time of less than  2 ns , in accordance with the simulations. The pixels with a capacitance of  0.8 pF  were measured to have a detection efficiency greater than  99%  and, although in the absence of the post-processing, a time resolution of approximately  200 ps .

  9. Intrinsic spatial resolution evaluation of the X'tal cube PET detector based on a 3D crystal block segmented by laser processing.

    Science.gov (United States)

    Yoshida, Eiji; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko; Moriya, Takahiro; Omura, Tomohide; Watanabe, Mitsuo; Murayama, Hideo; Yamaya, Taiga

    2013-01-01

    The X'tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from the six sides of a crystal block. The X'tal cube is composed of the 3D crystal block with isotropic resolution and arrays of multi-pixel photon counters (MPPCs). In this study, to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving (SSLE) technique to a monolithic crystal block instead of gluing segmented small crystals. The SSLE technique provided micro-crack walls which carve a groove into a monolithic scintillator block. Using the fabricated X'tal cube, we evaluated its intrinsic spatial resolution to show a proof of concept of isotropic resolution. The 3D grids of 2 mm pitch were fabricated into an 18 × 18 × 18 mm(3) monolithic lutetium yttrium orthosilicate (LYSO) crystal by the SSLE technique. 4 × 4 MPPCs were optically coupled to each surface of the crystal block. The X'tal cube was uniformly irradiated by (22)Na gamma rays, and all of the 3D grids on the 3D position histogram were separated clearly by an Anger-type calculation from the 96-channel MPPC signals. Response functions of the X'tal cube were measured by scanning with a (22)Na point source. The gamma-ray beam with a 1.0 mm slit was scanned in 0.25 mm steps by positioning of the X'tal cube at vertical and 45° incident angles. The average FWHM resolution at both incident angles was 2.1 mm. Therefore, we confirmed the isotropic spatial resolution performance of the X'tal cube.

  10. Modelling a multi-crystal detector block for PET

    International Nuclear Information System (INIS)

    Carroll, L.R.; Nutt, R.; Casey, M.

    1985-01-01

    A simple mathematical model describes the performance of a modular detector ''block'' which is a key component in an advanced, high-resolution PET Scanner. Each block contains 32 small bismuth germanate (BGO) crystals coupled to four photomultiplier tubes (PMTs) through a coded light pipe. AT each PMT cathode the charge released for 511 keV coincidence events may be characterized as Poisson random variables in which the variance grows as the mean of the observed current. Given the light from BGO, one must; arrange the best coding - the distribution of light to the four PMTs, specify an optimum decoding scheme for choosing the correct crystal location from a noisy ensemble of PMT currents, and estimate the average probability of error. The statistical fluctuation or ''noise'' becomes decoupled from the ''signal'' and can be regarded as independent, additive components with zero mean and unit variance. Moreover, the envelope of the transformed noise distribution approximates very closely a normal (Gaussian) distribution with variance = 1. Specifying the coding and decoding strategy becomes a problem of signalling through a channel corrupted by additive, white, Gaussian noise; a classic problem long since solved within the context of Communication Engineering using geometry: i.e. distance, volume, angle, inner product, etc., in a linear space of higher dimension

  11. High resolution detectors based on continuous crystals and SiPMs for small animal PET

    International Nuclear Information System (INIS)

    Cabello, J.; Barrillon, P.; Barrio, J.; Bisogni, M.G.; Del Guerra, A.; Lacasta, C.; Rafecas, M.; Saikouk, H.; Solaz, C.; Solevi, P.; La Taille, C. de; Llosá, G.

    2013-01-01

    Sensitivity and spatial resolution are the two main factors to maximize in emission imaging. The improvement of one factor deteriorates the other with pixelated crystals. In this work we combine SiPM matrices with monolithic crystals, using an accurate γ-ray interaction position determination algorithm that provides depth of interaction. Continuous crystals provide higher sensitivity than pixelated crystals, while an accurate interaction position determination does not degrade the spatial resolution. Monte Carlo simulations and experimental data show good agreement both demonstrating sub-millimetre intrinsic spatial resolution. A system consisting in two rotating detectors in coincidence is currently under operation already producing tomographic images

  12. GPU-based optical propagation simulator of a laser-processed crystal block for the X'tal cube PET detector.

    Science.gov (United States)

    Ogata, Yuma; Ohnishi, Takashi; Moriya, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Yamaya, Taiga; Haneishi, Hideaki

    2014-01-01

    The X'tal cube is a next-generation DOI detector for PET that we are developing to offer higher resolution and higher sensitivity than is available with present detectors. It is constructed from a cubic monolithic scintillation crystal and silicon photomultipliers which are coupled on various positions of the six surfaces of the cube. A laser-processing technique is applied to produce 3D optical boundaries composed of micro-cracks inside the monolithic scintillator crystal. The current configuration is based on an empirical trial of a laser-processed boundary. There is room to improve the spatial resolution by optimizing the setting of the laser-processed boundary. In fact, the laser-processing technique has high freedom in setting the parameters of the boundary such as size, pitch, and angle. Computer simulation can effectively optimize such parameters. In this study, to design optical characteristics properly for the laser-processed crystal, we developed a Monte Carlo simulator which can model arbitrary arrangements of laser-processed optical boundaries (LPBs). The optical characteristics of the LPBs were measured by use of a setup with a laser and a photo-diode, and then modeled in the simulator. The accuracy of the simulator was confirmed by comparison of position histograms obtained from the simulation and from experiments with a prototype detector composed of a cubic LYSO monolithic crystal with 6 × 6 × 6 segments and multi-pixel photon counters. Furthermore, the simulator was accelerated by parallel computing with general-purpose computing on a graphics processing unit. The calculation speed was about 400 times faster than that with a CPU.

  13. A novel gamma-ray detector with submillimeter resolutions using a monolithic MPPC array with pixelized Ce:LYSO and Ce:GGAG crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T., E-mail: katou.frme.8180@asagi.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo (Japan); Kataoka, J.; Nakamori, T.; Miura, T.; Matsuda, H.; Kishimoto, A. [Research Institute for Science and Engineering, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo (Japan); Sato, K.; Ishikawa, Y.; Yamamura, K.; Nakamura, S.; Kawabata, N. [Solid State Division, Hamamatsu Photonics K. K., 1126-1, Ichino-cho, Hamamatsu, Shizuoka (Japan); Ikeda, H. [ISAS/JAXA, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara-shi, Kanagawa (Japan); Yamamoto, S. [Kobe City College of Technology, 8-3, Gakuenhigashimati, Nishi-ku, Kobe-shi, Hyougo 651-2194 (Japan); Kamada, K. [Materials Research Laboratory, Furukawa Co., Ltd., 1-25-13, Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)

    2013-01-21

    We have developed a large-area monolithic Multi-Pixel Photon Counter (MPPC) array consisting of 4×4 channels with a three-side buttable package. Each channel has a photosensitive area of 3×3 mm{sup 2} and 3600 Geiger mode avalanche photodiodes (APDs). For typical operational gain of 7.5×10{sup 5} at +20 °C, gain fluctuation over the entire MPPC device is only ±5.6%, and dark count rates (as measured at the 1 p.e. level) amount to ≤400kcps per channel. We first fabricated a gamma-ray camera consisting of the MPPC array with one-to-one coupling to a Ce-doped (Lu,Y){sub 2}(SiO{sub 4})O (Ce:LYSO) crystal array (4×4 array of 3×3×10 mm{sup 3} crystals). Energy and time resolutions of 11.5±0.5% (FWHM at 662 keV) and 493±22ps were obtained, respectively. When using the charge division resistor network, which compiles signals into four position-encoded analog outputs, the ultimate positional resolution is estimated as 0.19 mm in both X and Y directions, while energy resolution of 10.2±0.4% (FWHM) was obtained. Finally, we fabricated submillimeter Ce:LYSO and Ce-doped Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12} (Ce:GGAG) scintillator matrices each consisting of 1.0×1.0, 0.7×0.7 and 0.5×0.5 mm{sup 2} pixels, to further improve the spatial resolution. In all types of Ce:LYSO and Ce:GGAG matrices, each crystal was clearly resolved in the position histograms when irradiated by a {sup 137}Cs source. The energy resolutions for 662 keV gamma-rays for each Ce:LYSO and Ce:GGAG scintillator matrix were ≤14.3%. These results suggest excellent potential for its use as a high spatial medical imaging device, particularly in positron emission tomography (PET). -- Highlights: ► We developed a newly designed large-area monolithic MPPC array. ► We obtained fine gain uniformity, and good energy and time resolutions when coupled to the LYSO scintillator. ► We fabricated gamma-ray camera consisting of the MPPC array and submillimeter pixelized LYSO and GGAG scintillators. ► In

  14. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    International Nuclear Information System (INIS)

    Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which

  15. Paul Lecoq assembles a read head made with special crystals for a PET (positron emission tomography) scanner. He is the initiator of the Crystal Clear collaboration, which aims to transfer crystals developed at CERN to applications in medical imaging.

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Paul Lecoq assembles a read head made with special crystals for a PET (positron emission tomography) scanner. He is the initiator of the Crystal Clear collaboration, which aims to transfer crystals developed at CERN to applications in medical imaging.

  16. Thermal oxidative degradation behaviours of flame-retardant thermotropic liquid crystal copolyester/PET blends

    International Nuclear Information System (INIS)

    Du Xiaohua; Zhao Chengshou; Wang Yuzhong; Zhou Qian; Deng Yi; Qu Minghai; Yang Bing

    2006-01-01

    The flame retardancy and the thermal oxidative degradation behaviors of the blend of poly(ethylene terephthalate) (PET) with a kind of phosphorus-containing thermotropic liquid crystal copolyester (TLCP) with high flame retardancy (limited oxygen index, 70%) have been investigated by oxygen index test (LOI), UL-94 rating and thermogravimetric analysis (TGA) in air. The results show that TLCP can dramatically improve the flame retardancy and the melt dripping behavior of PET. Moreover, the apparent activation energies of thermal oxidative degradation of the blends were evaluated using Kissinger and Flynn-Wall-Ozawa methods. It is found that addition of TLCP improve thermal stability and restrain thermal decomposition of PET in air, especially at the primary degradation stage. Py-GC/MS analysis shows that there are remarkable changes in the pyrolysis products when TLCP are blended into PET. The interaction between TLCP and PET has changed their thermal oxidative degradation mechanism

  17. Characterization studies of Silicon Photomultipliers and crystals matrices for a novel time of flight PET detector

    CERN Document Server

    Auffray, Etiennette; Cortinovis, Daniele; Doroud, Katayoun; Garutti, Erika; Lecoq, Paul; Liu, Zheng; Martinez, Rosana; Paganoni, Marco; Pizzichemi, Marco; Silenzi, Alessandro; Xu, Chen; Zvolský, Milan

    2015-01-01

    This paper describes the characterization of crystal matrices and silicon photomultiplier arrays for a novel Positron Emission Tomography (PET) detector, namely the external plate of the EndoTOFPET-US system. The EndoTOFPET-US collaboration aims to integrate Time-Of-Flight PET with ultrasound endoscopy in a novel multimodal device, capable to support the development of new biomarkers for prostate and pancreatic tumors. The detector consists in two parts: a PET head mounted on an ultrasound probe and an external PET plate. The challenging goal of 1 mm spatial resolution for the PET image requires a detector with small crystal size, and therefore high channel density: 4096 LYSO crystals individually readout by Silicon Photomultipliers (SiPM) make up the external plate. The quality and properties of these components must be assessed before the assembly. The dark count rate, gain, breakdown voltage and correlated noise of the SiPMs are measured, while the LYSO crystals are evaluated in terms of light yield and en...

  18. Crystal timing offset calibration method for time of flight PET scanners

    Science.gov (United States)

    Ye, Jinghan; Song, Xiyun

    2016-03-01

    In time-of-flight (TOF) positron emission tomography (PET), precise calibration of the timing offset of each crystal of a PET scanner is essential. Conventionally this calibration requires a specially designed tool just for this purpose. In this study a method that uses a planar source to measure the crystal timing offsets (CTO) is developed. The method uses list mode acquisitions of a planar source placed at multiple orientations inside the PET scanner field-of-view (FOV). The placement of the planar source in each acquisition is automatically figured out from the measured data, so that a fixture for exactly placing the source is not required. The expected coincidence time difference for each detected list mode event can be found from the planar source placement and the detector geometry. A deviation of the measured time difference from the expected one is due to CTO of the two crystals. The least squared solution of the CTO is found iteratively using the list mode events. The effectiveness of the crystal timing calibration method is evidenced using phantom images generated by placing back each list mode event into the image space with the timing offset applied to each event. The zigzagged outlines of the phantoms in the images become smooth after the crystal timing calibration is applied. In conclusion, a crystal timing calibration method is developed. The method uses multiple list mode acquisitions of a planar source to find the least squared solution of crystal timing offsets.

  19. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    Science.gov (United States)

    Kato, T.; Kataoka, J.; Nakamori, T.; Kishimoto, A.; Yamamoto, S.; Sato, K.; Ishikawa, Y.; Yamamura, K.; Kawabata, N.; Ikeda, H.; Kamada, K.

    2013-05-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 105 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  20. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    International Nuclear Information System (INIS)

    Kato, T; Kataoka, J; Nakamori, T; Kishimoto, A; Yamamoto, S; Sato, K; Ishikawa, Y; Yamamura, K; Kawabata, N; Ikeda, H; Kamada, K

    2013-01-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 10 5 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to ≤ 400 kcps per channel. We selected Ce-doped (Lu,Y) 2 (SiO 4 )O (Ce:LYSO) and a brand-new scintillator, Ce-doped Gd 3 Al 2 Ga 3 O 12 (Ce:GAGG) due to their high light yield and density. To improve the spatial resolution, these scintillators were fabricated into 15 × 15 matrices of 0.5 × 0.5 mm 2 pixels. The Ce:LYSO and Ce:GAGG scintillator matrices were assembled into phosphor sandwich (phoswich) detectors, and then coupled to the MPPC array along with an acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22 Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  1. Molecular Weight and Crystallization Temperature Effects on Poly(ethylene terephthalate (PET Homopolymers, an Isothermal Crystallization Analysis

    Directory of Open Access Journals (Sweden)

    Leonardo A. Baldenegro-Perez

    2014-02-01

    Full Text Available The isothermal crystallization of poly(ethylene terephthalate (PET homopolymers with different molecular weight was studied in a wide temperature range (140–230 °C using different experimental techniques. Three different morphological regions, labeled r1, r2 and r3, were distinguished as a function of crystallization temperature (Tc. In r1 (low Tc crystallized samples were characterized by a low crystalline degree with a small spherulite texture containing thin crystals. In r2 (intermediate Tc samples showed medium size spherulites composed of two distinct crystalline families (thin and thick crystals. In this temperature range, the crystallization exhibited a maximum value and it was associated with a high content of secondary crystals. In r3 (high Tc, samples presented considerable amorphous zones and regions consisting of oversized spherulites containing only thick crystals. Time-resolved wide-angle X-ray diffraction measurements, using synchrotron radiation, indicated a rapid evolution of the crystalline degree within the second region, in contrast with the quite slow evolution observed in the third region. On the other hand, by small-angle X-ray scattering (SAXS and time-resolved SAXS experiment, it was found that the long period (L as well as the lamellar thickness (lc increase as a function of Tc, corroborating the formation of the thickest crystals in the third region. From all these observations, a morphological model was proposed for each region.

  2. An inter-crystal scatter correction method for DOI PET image reconstruction

    International Nuclear Information System (INIS)

    Lam, Chih Fung; Hagiwara, Naoki; Obi, Takashi; Yamaguchi, Masahiro; Yamaya, Taiga; Murayama, Hideo

    2006-01-01

    New positron emission tomography (PET) scanners utilize depth-of-interaction (DOI) information to improve image resolution, particularly at the edge of field-of-view while maintaining high detector sensitivity. However, the inter-crystal scatter (ICS) effect cannot be neglected in DOI scanners due to the use of smaller crystals. ICS is the phenomenon wherein there are multiple scintillations for irradiation of a gamma photon due to Compton scatter in detecting crystals. In the case of ICS, only one scintillation position is approximated for detectors with Anger-type logic calculation. This causes an error in position detection and ICS worsens the image contrast, particularly for smaller hotspots. In this study, we propose to model an ICS probability by using a Monte Carlo simulator. The probability is given as a statistical relationship between the gamma photon first interaction crystal pair and the detected crystal pair. It is then used to improve the system matrix of a statistical image reconstruction algorithm, such as maximum likehood expectation maximization (ML-EM) in order to correct for the position error caused by ICS. We apply the proposed method to simulated data of the jPET-D4, which is a four-layer DOI PET being developed at the National Institute of Radiological Sciences. Our computer simulations show that image contrast is recovered successfully by the proposed method. (author)

  3. The melt growth of large LuAP single crystals for PET scanners

    International Nuclear Information System (INIS)

    Petrosyan, Ashot; Ovanesyan, Karine; Shirinyan, Grigory; Butaeva, Tatyana; Derdzyan, Marina; Pedrini, Christian; Dujardin, Christophe; Garnier, Nicolas; Kamenskikh, Irina

    2005-01-01

    Performance properties of LuAP, a material of highly promising potential for future PET scanners, are presented, as they relate to crystal growth and composition. The light yield measured in 2x2x10 mm 3 elements with 0.4-0.5% Ce and cut from large size crystals (100 mm long and 15 mm in diameter) grown by the Bridgman technique is improved to 40% LSO. The ratio between light yield measured in vertical and horizontal arrangements in the best crystals is near 90%. The role of chemical purity in respect to divalent impurities is studied

  4. Development of a Single Detector Ring Micro Crystal Element Scanner: QuickPET II

    Directory of Open Access Journals (Sweden)

    Robert S. Miyaoka

    2005-04-01

    Full Text Available This article describes a single ring version of the micro crystal element scanner (MiCES and investigation of its spatial resolution imaging characteristics for mouse positron emission tomography (PET imaging. This single ring version of the MiCES system, referred to as QuickPET II, consists of 18 MiCE detector modules mounted as a single ring in a vertical gantry. The system has a 5.76-cm transverse field of view and a 1.98-cm axial field of view. In addition to the scanner and data acquisition system, we have developed an iterative reconstruction that includes a model of the system's detector response function. Evaluation images of line sources and mice have been acquired. Using filtered backprojection, the resolution for a reconstructed line source has been measured at 1.2 mm full width at half maximum. F-18-2-fluoro-2-deoxyglucose mouse PET images are provided. The result shows that QuickPET II has the imaging characteristics to support high-resolution, static mouse PET studies using 18-F labeled compounds.

  5. Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging.

    Science.gov (United States)

    Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D

    2017-05-01

    Previously, we proposed to use a coincidence collimator to achieve fractional-crystal resolution in PET imaging. We have designed and fabricated a collimator prototype for a small-animal PET scanner, A-PET. To compensate for imperfections in the fabricated collimator prototype, collimator normalization, as well as scanner normalization, is required to reconstruct quantitative and artifact-free images. In this study, we develop a normalization method for the collimator prototype based on the A-PET normalization using a uniform cylinder phantom. We performed data acquisition without the collimator for scanner normalization first, and then with the collimator from eight different rotation views for collimator normalization. After a reconstruction without correction, we extracted the cylinder parameters from which we generated expected emission sinograms. Single scatter simulation was used to generate the scattered sinograms. We used the least-squares method to generate the normalization coefficient for each LOR based on measured, expected and scattered sinograms. The scanner and collimator normalization coefficients were factorized by performing two normalizations separately. The normalization methods were also verified using experimental data acquired from A-PET with and without the collimator. In summary, we developed a model-base collimator normalization that can significantly reduce variance and produce collimator normalization with adequate statistical quality within feasible scan time.

  6. Nonisothermal melt-crystallization kinetics for in situ prepared poly(ethylene terephthalate)/monmorilonite (PET/OMMT)

    International Nuclear Information System (INIS)

    Antoniadis, G.; Paraskevopoulos, K.M.; Vassiliou, A.A.; Papageorgiou, G.Z.; Bikiaris, D.; Chrissafis, K.

    2011-01-01

    Highlights: → The melting temperature of the nanocomposites was shifted slightly to higher temperatures. → OMMT can act as nucleating agent. → The samples present lower activation energy compared to that of neat PET. → They crystallized by mechanisms with different activation energies. - Abstract: Poly(ethylene terephthalate) (PET) montmorillonite nanocomposites were prepared by in situ polymerization containing 0.5, 1, 2 and 5 wt% of organically modified montmorillonite (OMMT). In order to prepare exfoliated nanocomposites a new thermally stable modifier for montmorillonite nanoparticles like chlorohexadecane triphenylphosphine (CHDTPP) was synthesized. The preparation of nanocomposites was carried out using the two-stage melt polycondensation method. As verified by TEM micrographs, the dispersion of OMMT nanoparticles into the PET matrix was homogeneous while these were dispersed in the exfoliated form, proving the effectiveness of the modifier. The influence of OMMT nanomaterials on the thermal behaviour of PET and its non-isothermal crystallization was studied. Furthermore, the crystallization kinetics of PET and its nanocomposites were investigated by DSC. The activation energy was calculated using the Friedman's method. The Avrami exponent was calculated and analyzed. The effect of OMMT nanoparticles on spherulite growth rate of PET in all nanocomposites was also evaluated using the modified Lauritzen-Hoffman equation. From all these results it was found that OMMT nanoparticles can act as nucleating agents enhancing the crystallization rate of PET. The dispersion of OMMT nanoparticles in exfoliate form plays also an important role.

  7. Crystal Clear - New crystals for LHC experiments help to improve PET scanners Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    Better resolution through smaller crystals Better images through higher light yieldHigh efficiency, stability and gain by using avalanche photodiodes and low noise electronics Reduced cost of crystals (1/10) through mass production

  8. Simulation study of LYSO crystal pixels for In-Beam TOF-PET prototype

    International Nuclear Information System (INIS)

    Chen Ze; Hu Zhengguo; Chen Jinda; Zhang Xiuling

    2014-01-01

    In-beam TOF-PET is currently the only feasible method implemented for in-situ and noninvasive monitoring of the precision of the treatment in highly conformal ion radiotherapy. It ensures the safety of patient and accurate implementation of treatment plan. Therefore, we intent to carry out the development of In-beam TOF-PET prototype, which is made of LYSO crystal, for ion radiotherapy. LYSO crystal has perfect properties such as high light yield, fast decay time, good energy and time resolution, which makes it a good candidate. In the development of positron emission tomography (PET) detectors, understanding and optimizing scintillator light collection and energy resolution is critical for achieving high performance, particularly when the design incorporates depth-of-interaction (DOI) encoding or time-of-flight information. Monte Carlo simulations play an important role in guiding research in detector designs and popular software such as Gate now include models of light transport in scintillators. This study uses Gate software to investigate the influence of crystal length and wrapping materials to the light collection. Accurate physical modeling of scintillation detection process, from scintillation light generation through detection, is devised and performed for varying detector attributes, such as the crystal pixel length, light yield, decay time, attenuation length and surface treatment. The dependence of light output and energy resolution is studied and compared with experiment results. The results show that LYSO pixel with length of 5 mm has better light yield and energy resolution, meanwhile prove that it is possible to accurately simulate the light output using Gate. (authors)

  9. Sensitivity recovery for the AX-PET prototype using inter-crystal scattering events

    CERN Document Server

    Gillam, John E; Oliver, Josep F; Casella, Chiara; Heller, Matthieu; Joram, Christian; Rafecas, Magdalena

    2014-01-01

    The development of novel detection devices and systems such as the AX-positron emission tomography (PET) demonstrator often introduce or increase the measurement of atypical coincidence events such as inter-crystal scattering (ICS). In more standard systems, ICS events often go undetected and the small measured fraction may be ignored. As the measured quantity of such events in the data increases, so too does the importance of considering them during image reconstruction. Generally, treatment of ICS events will attempt to determine which of the possible candidate lines of response (LoRs) correctly determine the annihilation photon trajectory. However, methods of assessment often have low success rates or are computationally demanding. In this investigation alternative approaches are considered. Experimental data was taken using the AX-PET prototype and a NEMA phantom. Three methods of ICS treatment were assessed-each of which considered all possible candidate LoRs during image reconstruction. Maximum likeliho...

  10. Time resolution deterioration with increasing crystal length in a TOF-PET system

    CERN Document Server

    Gundacker, S; Auffray, E; Jarron, P; Meyer, T; Lecoq, P

    2014-01-01

    Highest time resolution in scintillator based detectors is becoming more and more important. In medical detector physics L(Y)SO scintillators are commonly used for time of flight positron emission tomography (TOF-PET). Coincidence time resolutions (CTRs) smaller than 100 ps FWHM are desirable in order to improve the image signal to noise ratio and thus give benefit to the patient by shorter scanning times. Also in high energy physics there is the demand to improve the timing capabilities of calorimeters down to 10 ps. To achieve these goals it is important to study the whole chain, i.e. the high energy particle interaction in the crystal, the scintillation process itself, the scintillation light transfer in the crystal, the photodetector and the electronics. Time resolution measurements for a PET like system are performed with the time-over-threshold method in a coincidence setup utilizing the ultra-fast amplifier-discriminator NINO. With 2×2×3 mm3 LSO:Ce codoped 0.4%Ca crystals coupled to commercially avai...

  11. Monolith electroplating process

    Science.gov (United States)

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  12. PET

    DEFF Research Database (Denmark)

    Mariager, Rasmus Mølgaard; Schmidt, Regin; Heiberg, Morten Rievers

    PET handler om den hemmelige tjenestes arbejde under den kolde krig 1945-1989. Her fortæller Regin Schmidt, Rasmus Mariager og Morten Heiberg om de mest dramatiske og interessante sager fra PET's arkiv. PET er på flere måder en udemokratisk institution, der er sat til at vogte over demokratiet....... Dens virksomhed er skjult for offentligheden, den overvåger borgernes aktiviteter, og den registrerer følsomme personoplysninger. Historien om PET rejser spørgsmålet om, hvad man skal gøre, når befolkningen i et demokrati er kritisk indstillet over for overvågningen af lovlige politiske aktiviteter......, mens myndighederne mener, at det er nødvendigt for at beskytte demokratiet. PET er på en gang en fortælling om konkrete aktioner og begivenheder i PET's arbejde og et stykke Danmarkshistorie. Det handler om overvågning, spioner, politisk ekstremisme og international terrorisme.  ...

  13. Monolithic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  14. A technique for measuring the quality of an elliptically bent pentaerythritol [PET(002)] crystal

    Energy Technology Data Exchange (ETDEWEB)

    Haugh, M. J., E-mail: haughmj@nv.doe.gov; Jacoby, K. D. [National Security Technologies, LLC, Livermore, California 94550 (United States); Barrios, M. A.; Thorn, D.; Emig, J. A.; Schneider, M. B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

    2016-11-15

    We present a technique for determining the X-ray spectral quality from each region of an elliptically curved PET(002) crystal. The investigative technique utilizes the shape of the crystal rocking curve which changes significantly as the radius of curvature changes. This unique quality information enables the spectroscopist to verify where in the spectral range that the spectrometer performance is satisfactory and where there are regions that would show spectral distortion. A collection of rocking curve measurements for elliptically curved PET(002) has been built up in our X-ray laboratory. The multi-lamellar model from the XOP software has been used as a guide and corrections were applied to the model based upon measurements. But, the measurement of R{sub I} at small radius of curvature shows an anomalous behavior; the multi-lamellar model fails to show this behavior. The effect of this anomalous R{sub I} behavior on an X-ray spectrometer calibration is calculated. It is compared to the multi-lamellar model calculation which is completely inadequate for predicting R{sub I} for this range of curvature and spectral energies.

  15. A technique for measuring the quality of an elliptically bent pentaerythritol [PET(002)] crystal

    International Nuclear Information System (INIS)

    Haugh, M. J.; Jacoby, K. D.; Barrios, M. A.; Thorn, D.; Emig, J. A.; Schneider, M. B.

    2016-01-01

    We present a technique for determining the X-ray spectral quality from each region of an elliptically curved PET(002) crystal. The investigative technique utilizes the shape of the crystal rocking curve which changes significantly as the radius of curvature changes. This unique quality information enables the spectroscopist to verify where in the spectral range that the spectrometer performance is satisfactory and where there are regions that would show spectral distortion. A collection of rocking curve measurements for elliptically curved PET(002) has been built up in our X-ray laboratory. The multi-lamellar model from the XOP software has been used as a guide and corrections were applied to the model based upon measurements. But, the measurement of R I at small radius of curvature shows an anomalous behavior; the multi-lamellar model fails to show this behavior. The effect of this anomalous R I behavior on an X-ray spectrometer calibration is calculated. It is compared to the multi-lamellar model calculation which is completely inadequate for predicting R I for this range of curvature and spectral energies.

  16. Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression

    DEFF Research Database (Denmark)

    Kristensen, Jesper Toft; Houmann, Andreas; Liu, Xiaomin

    2008-01-01

    of the splicing process. We also demonstrate that the higher splice loss compromises the PM properties of the splice. Our splicing technique was successfully applied to the realization of a low-loss, environmentally stable monolithic PM fiber laser pulse compressor, enabling direct end-of-the-fiber femtosecond......We report on highly reproducible low-loss fusion splicing of polarization-maintaining single-mode fibers (PM-SMFs) and hollow-core photonic crystal fibers (HC-PCFs). The PM-SMF-to-HC-PCF splices are characterized by the loss of 0.62 ± 0.24 dB, and polarization extinction ratio of 19 ± 0.68 d...... pulse delivery...

  17. High spatial resolution measurement of depth-of-interaction of a PET LSO crystal

    International Nuclear Information System (INIS)

    Simon, A.; Kalinka, G.; Novak, D.; Sipos, A.; Vegh, J.; Molnar, J.

    2004-01-01

    Complete text of publication follows. A new type of experimental technique to investigate the depth-of-interaction (DOI) dependence in small scintillator elements designed for high-resolution animal PET [1] has been introduced at our institute, recently. A lutetium oxyorthosilicate (LSO) crystal (2x2x10 mm 3 ) was irradiated with a highly focused 2 MeV He + beam at the ATOMKI nuclear microprobe laboratory. Pulse height spectra from a photomultiplier (PMT) attached to one end of the LSO crystal were collected in list mode. Sequential scans of 1000x1000 μm 2 areas along the 10 mm long crystal were made to get high lateral resolution images of pulse height spectra at different distances from the window of the PMT. A mean pulse height algorithm was applied to each pixel to generate two dimensional intensity images and the corresponding spectra of 100 μmx1 mm areas. Representative pulse height spectra are shown in Fig. 1 for different distances between the position of irradiation and the PMT. The mean value of the pulse height spectrum describing the position of the full energy peak is a way to measure DOI effects. It is seen that the closer the DOI to the PMT-end of the crystal the higher the energy of the peak. The centre of the detected peak varies about 30 % along the lateral side of the crystal. This effect is due to the increasing number of reflections with associated loss of light when the distance between the DOI position and the light collecting PMT grows. Further these results, no difference in the light intensity was found depending on which position across (perpendicular to the length of) the crystal was irradiated with the microbeam. The obtained results of the overall DOI dependence confirm previous measurements on LSO crystals with similar geometry and wrapping but based on collimated gamma-ray irradiation. Since the present experimental setup allows obtaining data with several orders of magnitude better spatial resolution (from μm up to mm) than with

  18. Experimental study of a depth-encoding PET detector inserting horizontal-striped glass between crystal layers

    Science.gov (United States)

    Yang, J.; Kim, K. B.; Choi, Y.; Kang, J.

    2018-04-01

    A depth-encoding positron emission tomography (PET) detector inserting a horizontal-striped glass between pixilated scintillation crystal layers was developed and experimentally evaluated. The detector consists of 2-layers of 4×4 LYSO array arranged with a 3.37 mm pitch. Horizontal-striped glasses with 1×4 array with different thickness of 3, 4 and 5 mm were inserted between top- and bottom-crystal layers. Bottom surface of bottom-layer was optically coupled to a 4×4 GAPD array. Sixteen output signals from DOI-PET detector were multiplexed by modified resistive charge division (RCD) networks and multiplexed signals were fed into custom-made charge-sensitive preamplifiers. The four amplified signals were digitized and recorded by the custom-made DAQ system based on FPGA. The four digitized outputs were post-processed and converted to flood histograms for each interaction event. Experimental results revealed that all crystal pixels were clearly identified on the 2D flood histogram without overlapping. Patterns of the 2D flood histogram were constituted with arrangements of [bottom–top–bottom–top–\\ldots–top–bottom–top–bottom] crystal responses in X-direction. These could be achieved by employing horizontal-striped glass that controlled the extent of light dispersion towards the X-direction in crystal layers for generation of a different position mapping for each layer and the modified RCD network that controls degree of charge sharing in readout electronics for reduction of identification error. This study demonstrated the proposed DOI-PET detector can extract the 3D γ-ray interaction position without considerable performance degradation of PET detector from the 2D flood histogram.

  19. Pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} on amorphous dielectric layers towards monolithic 3D photonic integration

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haofeng; Brouillet, Jeremy; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2014-11-17

    We demonstrate pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} crystallized on amorphous layers at <450 °C towards 3D Si photonic integration. We developed two approaches to seed the lateral single crystal growth: (1) utilize the Gibbs-Thomson eutectic temperature depression at the tip of an amorphous GeSn nanotaper for selective nucleation; (2) laser-induced nucleation at one end of a GeSn strip. Either way, the crystallized Ge{sub 0.89}Sn{sub 0.11} is dominated by a single grain >18 μm long that forms optoelectronically benign twin boundaries with others grains. These pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} patterns are suitable for monolithic 3D integration of active photonic devices on Si.

  20. Scanner calibration of a small animal PET camera based on continuous LSO crystals and flat panel PSPMTs

    International Nuclear Information System (INIS)

    Benlloch, J.M.; Carrilero, V.; Gonzalez, A.J.; Catret, J.; Lerche, Ch.W.; Abellan, D.; Garcia de Quiros, F.; Gimenez, M.; Modia, J.; Sanchez, F.; Pavon, N.; Ros, A.; Martinez, J.; Sebastia, A.

    2007-01-01

    We have constructed a small animal PET with four identical detector modules, each consisting of a continuous LYSO crystal attached to a Position Sensitive Photomultiplier Tube (PSPMT). The dimensions of the continuous crystal are 50x50 mm 2 and 10 mm thickness. The modules are separated 11 cm between each other in the scanner. In this paper we discuss the method used for the calibration of the camera for this special system with continuous detectors. We also present the preliminary values for the main performance parameters such as spatial and energy resolution, and sensitivity of the system

  1. Compensation Methods for Non-uniform and Incomplete Data Sampling in High Resolution PET with Multiple Scintillation Crystal Layers

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Kim, Soo Mee; Lee, Dong Soo; Hong, Jong Hong; Sim, Kwang Souk; Rhee, June Tak

    2008-01-01

    To establish the methods for sinogram formation and correction in order to appropriately apply the filtered backprojection (FBP) reconstruction algorithm to the data acquired using PET scanner with multiple scintillation crystal layers. Formation for raw PET data storage and conversion methods from listmode data to histogram and sinogram were optimized. To solve the various problems occurred while the raw histogram was converted into sinogram, optimal sampling strategy and sampling efficiency correction method were investigated. Gap compensation methods that is unique in this system were also investigated. All the sinogram data were reconstructed using 2D filtered backprojection algorithm and compared to estimate the improvements by the correction algorithms. Optimal radial sampling interval and number of angular samples in terms of the sampling theorem and sampling efficiency correction algorithm were pitch/2 and 120, respectively. By applying the sampling efficiency correction and gap compensation, artifacts and background noise on the reconstructed image could be reduced. Conversion method from the histogram to sinogram was investigated for the FBP reconstruction of data acquired using multiple scintillation crystal layers. This method will be useful for the fast 2D reconstruction of multiple crystal layer PET data

  2. Non-isothermal crystallization kinetic of poly(ethylene terephthalate)/fumed silica (PET/SiO2) prepared by in situ polymerization

    International Nuclear Information System (INIS)

    Antoniadis, G.; Paraskevopoulos, K.M.; Bikiaris, D.; Chrissafis, K.

    2010-01-01

    A number of poly(ethylene terephthalate) (PET) nanocomposites were prepared by in situ polymerization using different amounts (0.5, 1, 2, 3 and 4 wt%) of fumed silica (SiO 2 ). The polymerization of PET was carried out by the two-stage melt polycondensation method. From DSC studies it was found that the melting point of the nanocomposites was shifted slightly to higher temperatures by the addition of SiO 2 till 3 wt% while for PET-4 wt% SiO 2 nanocomposite the melting point was reduced. As the amount of SiO 2 was increased the crystallization became faster, and there was, also, a shifting of the temperature of the crystallization peak to higher values, this being evidence that SiO 2 can act as nucleating agent. At higher content (3 and 4 wt%) the temperature of the crystallization peak is lower than that of PET-2 wt% SiO 2 due to the formation of crosslinked macromolecules. The activation energy is calculated with the Friedman's method. PET/SiO 2 samples present lower activation energy compared to that of neat PET, except those of PET-4% SiO 2 , in which the activation energy have a maximum value for α = 0.8 probably due to the second crystallization peak. Extensive crystallization studies by using Avrami, Ozawa and Malek methods verified that PET and its nanocomposites must be crystallized by two mechanisms with different activation energies taking place in different degrees of crystallization.

  3. Performance of a PET detector module utilizing an array of silicon photodiodes to identify the crystal of interaction

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.; Nutt, R.; Digby, W.M.; Williams, C.W.; Andreaco, M.

    1993-01-01

    The authors initial performance results for a new multi-layer PET detector module consisting of an array of 3 mm square by 30 mm deep BGO crystals coupled on one end to a single photomultiplier tube and on the opposite end to an array of 3 mm square silicon photodiodes. The photomultiplier tube provides an accurate timing pulse and energy discrimination for all the crystals in the module, while the silicon photodiodes identify the crystal of interaction. When a single BGO crystal at +25 C is excited with 511 keV photons, the authors measure a photodiode signal centered at 700 electrons (e - ) with noise of 375 e - fwhm. When a four crystal/photodiode module is excited with a collimated line source of 511 keV photons, the crystal of interaction is correctly identified 82% of the time. The misidentification rate can be greatly reduced and an 8 x 8 crystal/photodiode module constructed by using thicker depletion layer photodiodes or cooling to 0 C

  4. Performance of a monolithic LaBr{sub 3}:Ce crystal coupled to an array of silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Ulyanov, Alexei, E-mail: alexey.uliyanov@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Morris, Oran [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Department of Computer Science & Applied Physics, Galway-Mayo Institute of Technology, Galway (Ireland); Hanlon, Lorraine; McBreen, Sheila; Foley, Suzanne; Roberts, Oliver J.; Tobin, Isaac; Murphy, David; Wade, Colin [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Nelms, Nick; Shortt, Brian [European Space Agency, ESTEC, 2200 AG Noordwijk (Netherlands); Slavicek, Tomas; Granja, Carlos; Solar, Michael [Institute of Experimental and Applied Physics, Czech Technical University in Prague, 12800 Prague 2 (Czech Republic)

    2016-02-21

    A gamma-ray detector composed of a single 28×28×20 mm{sup 3} LaBr{sub 3}:Ce crystal coupled to a custom built 4×4 array of silicon photomultipliers was tested over an energy range of 30 keV to 9.3 MeV. The silicon photomultipliers were initially calibrated using 20 ns light pulses generated by a light emitting diode. The photodetector responses measured as a function of the number of incident photons were found to be non-linear and consistent with model predictions. Using corrections for the non-linearity of the silicon photomultipliers, the detector showed a linear response to gamma-rays with energies from 100 keV to the maximum available energy of 9.3 MeV. The energy resolution was found to be 4% FWHM at 662 keV. Despite the large thickness of the scintillator (20 mm) and a 5 mm thick optical window, the detector was capable of measuring the positions of the gamma-ray interaction points. The position resolution was measured at 356 keV and was found to be 8 mm FWHM in the detector plane and 11 mm FWHM for the depth of interaction. The detector can be used as a building block of a larger calorimeter system that is capable of measuring gamma-ray energies up to tens of MeV.

  5. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    . The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse......We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror...

  6. Crystal identification for a dual-layer-offset LYSO based PET system via Lu-176 background radiation and mean shift algorithm

    Science.gov (United States)

    Wei, Qingyang; Ma, Tianyu; Xu, Tianpeng; Zeng, Ming; Gu, Yu; Dai, Tiantian; Liu, Yaqiang

    2018-01-01

    Modern positron emission tomography (PET) detectors are made from pixelated scintillation crystal arrays and readout by Anger logic. The interaction position of the gamma-ray should be assigned to a crystal using a crystal position map or look-up table. Crystal identification is a critical procedure for pixelated PET systems. In this paper, we propose a novel crystal identification method for a dual-layer-offset LYSO based animal PET system via Lu-176 background radiation and mean shift algorithm. Single photon event data of the Lu-176 background radiation are acquired in list-mode for 3 h to generate a single photon flood map (SPFM). Coincidence events are obtained from the same data using time information to generate a coincidence flood map (CFM). The CFM is used to identify the peaks of the inner layer using the mean shift algorithm. The response of the inner layer is deducted from the SPFM by subtracting CFM. Then, the peaks of the outer layer are also identified using the mean shift algorithm. The automatically identified peaks are manually inspected by a graphical user interface program. Finally, a crystal position map is generated using a distance criterion based on these peaks. The proposed method is verified on the animal PET system with 48 detector blocks on a laptop with an Intel i7-5500U processor. The total runtime for whole system peak identification is 67.9 s. Results show that the automatic crystal identification has 99.98% and 99.09% accuracy for the peaks of the inner and outer layers of the whole system respectively. In conclusion, the proposed method is suitable for the dual-layer-offset lutetium based PET system to perform crystal identification instead of external radiation sources.

  7. Monoliths in Bioprocess Technology

    Directory of Open Access Journals (Sweden)

    Vignesh Rajamanickam

    2015-04-01

    Full Text Available Monolithic columns are a special type of chromatography column, which can be used for the purification of different biomolecules. They have become popular due to their high mass transfer properties and short purification times. Several articles have already discussed monolith manufacturing, as well as monolith characteristics. In contrast, this review focuses on the applied aspect of monoliths and discusses the most relevant biomolecules that can be successfully purified by them. We describe success stories for viruses, nucleic acids and proteins and compare them to conventional purification methods. Furthermore, the advantages of monolithic columns over particle-based resins, as well as the limitations of monoliths are discussed. With a compilation of commercially available monolithic columns, this review aims at serving as a ‘yellow pages’ for bioprocess engineers who face the challenge of purifying a certain biomolecule using monoliths.

  8. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko; Tashima, Hideaki [National Institute of Radiological Sciences, Chiba (Japan); Suga, Mikio [Chiba University, Chiba (Japan); Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga [National Institute of Radiological Sciences, Chiba (Japan)

    2015-05-18

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  9. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tashima, Hideaki; Suga, Mikio; Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga

    2015-01-01

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  10. X-ray crystal structure of the passenger domain of plasmid encoded toxin(Pet), an autotransporter enterotoxin from enteroaggregative Escherichia coli (EAEC)

    Energy Technology Data Exchange (ETDEWEB)

    Domingo Meza-Aguilar, J. [Departamento de Salud Pública Facultad de Medicina UNAM, Ciudad Universitaria Coyoacán 04510, D.F. (Mexico); Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato Oncología e Investigación, Hospital Infantil de México Federico Gómez 06720, D.F. (Mexico); Fromme, Petra [Department of Chemistry and Biochemistry, Arizona State University, Physical Sciences BLDG D-102, Tempe, AZ 85287 (United States); Torres-Larios, Alfredo [Instituto de Fisiología Celular UNAM, Ciudad Universitaria Coyoacán 04510, D.F. (Mexico); Mendoza-Hernández, Guillermo [Instituto de Química UNAM, Ciudad Universitaria Coyoacán 04510, D.F (Mexico); Hernandez-Chiñas, Ulises [Departamento de Salud Pública Facultad de Medicina UNAM, Ciudad Universitaria Coyoacán 04510, D.F. (Mexico); Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato Oncología e Investigación, Hospital Infantil de México Federico Gómez 06720, D.F. (Mexico); Arreguin-Espinosa de los Monteros, Roberto A. [Instituto de Química UNAM, Ciudad Universitaria Coyoacán 04510, D.F (Mexico); and others

    2014-03-07

    Highlights: • X-ray crystal structure of the passenger domain of Plasmid encoded toxin at 2.3 Å. • Structural differences between Pet passenger domain and EspP protein are described. • High flexibility of the C-terminal beta helix is structurally assigned. - Abstract: Autotransporters (ATs) represent a superfamily of proteins produced by a variety of pathogenic bacteria, which include the pathogenic groups of Escherichia coli (E. coli) associated with gastrointestinal and urinary tract infections. We present the first X-ray structure of the passenger domain from the Plasmid-encoded toxin (Pet) a 100 kDa protein at 2.3 Å resolution which is a cause of acute diarrhea in both developing and industrialized countries. Pet is a cytoskeleton-altering toxin that induces loss of actin stress fibers. While Pet (pdb code: 4OM9) shows only a sequence identity of 50% compared to the closest related protein sequence, extracellular serine protease plasmid (EspP) the structural features of both proteins are conserved. A closer structural look reveals that Pet contains a β-pleaded sheet at the sequence region of residues 181–190, the corresponding structural domain in EspP consists of a coiled loop. Secondary, the Pet passenger domain features a more pronounced beta sheet between residues 135 and 143 compared to the structure of EspP.

  11. Development and evaluation of a LOR-based image reconstruction with 3D system response modeling for a PET insert with dual-layer offset crystal design

    International Nuclear Information System (INIS)

    Zhang, Xuezhu; Thiessen, Jonathan D; Goertzen, Andrew L; Stortz, Greg; Sossi, Vesna; Thompson, Christopher J; Retière, Fabrice; Kozlowski, Piotr

    2013-01-01

    In this study we present a method of 3D system response calculation for analytical computer simulation and statistical image reconstruction for a magnetic resonance imaging (MRI) compatible positron emission tomography (PET) insert system that uses a dual-layer offset (DLO) crystal design. The general analytical system response functions (SRFs) for detector geometric and inter-crystal penetration of coincident crystal pairs are derived first. We implemented a 3D ray-tracing algorithm with 4π sampling for calculating the SRFs of coincident pairs of individual DLO crystals. The determination of which detector blocks are intersected by a gamma ray is made by calculating the intersection of the ray with virtual cylinders with radii just inside the inner surface and just outside the outer-edge of each crystal layer of the detector ring. For efficient ray-tracing computation, the detector block and ray to be traced are then rotated so that the crystals are aligned along the X-axis, facilitating calculation of ray/crystal boundary intersection points. This algorithm can be applied to any system geometry using either single-layer (SL) or multi-layer array design with or without offset crystals. For effective data organization, a direct lines of response (LOR)-based indexed histogram-mode method is also presented in this work. SRF calculation is performed on-the-fly in both forward and back projection procedures during each iteration of image reconstruction, with acceleration through use of eight-fold geometric symmetry and multi-threaded parallel computation. To validate the proposed methods, we performed a series of analytical and Monte Carlo computer simulations for different system geometry and detector designs. The full-width-at-half-maximum of the numerical SRFs in both radial and tangential directions are calculated and compared for various system designs. By inspecting the sinograms obtained for different detector geometries, it can be seen that the DLO crystal

  12. A new PET detector concept for compact preclinical high-resolution hybrid MR-PET

    Science.gov (United States)

    Berneking, Arne; Gola, Alberto; Ferri, Alessandro; Finster, Felix; Rucatti, Daniele; Paternoster, Giovanni; Jon Shah, N.; Piemonte, Claudio; Lerche, Christoph

    2018-04-01

    This work presents a new PET detector concept for compact preclinical hybrid MR-PET. The detector concept is based on Linearly-Graded SiPM produced with current FBK RGB-HD technology. One 7.75 mm x 7.75 mm large sensor chip is coupled with optical grease to a black coated 8 mm x 8 mm large and 3 mm thick monolithic LYSO crystal. The readout is obtained from four readout channels with the linear encoding based on integrated resistors and the Center of Gravity approach. To characterize the new detector concept, the spatial and energy resolutions were measured. Therefore, the measurement setup was prepared to radiate a collimated beam to 25 different points perpendicular to the monolithic scintillator crystal. Starting in the center point of the crystal at 0 mm / 0 mm and sampling a grid with a pitch of 1.75 mm, all significant points of the detector were covered by the collimator beam. The measured intrinsic spatial resolution (FWHM) was 0.74 +/- 0.01 mm in x- and 0.69 +/- 0.01 mm in the y-direction at the center of the detector. At the same point, the measured energy resolution (FWHM) was 13.01 +/- 0.05 %. The mean intrinsic spatial resolution (FWHM) over the whole detector was 0.80 +/- 0.28 mm in x- and 0.72 +/- 0.19 mm in y-direction. The energy resolution (FWHM) of the detector was between 13 and 17.3 % with an average energy resolution of 15.7 +/- 1.0 %. Due to the reduced thickness, the sensitivity of this gamma detector is low but still higher than pixelated designs with the same thickness due to the monolithic crystals. Combining compact design, high spatial resolution, and high sensitivity, the detector concept is particularly suitable for applications where the scanner bore size is limited and high resolution is required - as is the case in small animal hybrid MR-PET.

  13. Monolithic exploding foil initiator

    Science.gov (United States)

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  14. Design and evaluation of the MAMMI dedicated breast PET

    International Nuclear Information System (INIS)

    Moliner, L.; González, A. J.; Soriano, A.; Sánchez, F.; Correcher, C.; Orero, A.; Carles, M.; Vidal, L. F.; Barberá, J.; Caballero, L.; Seimetz, M.; Vázquez, C.; Benlloch, J. M.

    2012-01-01

    Purpose: A breast dedicated positron emission tomography (PET) scanner has been developed based on monolithic LYSO crystals coupled to position sensitive photomultiplier tubes (PSPMTs). In this study, we describe the design of the PET system and report on its performance evaluation. Methods: MAMMI is a breast PET scanner based on monolithic LYSO crystals. It consists of 12 compact modules with a transaxial field of view (FOV) of 170 mm in diameter and 40 mm axial FOV that translates to cover up to 170 mm. The patient lies down in a prone position that facilitates maximum breast elongation. Quantitative performance analysis of the calculated method for the attenuation correction specifically developed for MAMMI, and based on PET image segmentation, has also been conducted in this evaluation. In order to fully determine the MAMMI prototype's performance, we have adapted the measurements suggested for National Electrical Manufacturers Association (NEMA) NU 2-2007 and NU 4-2008 protocol tests, as they are defined for whole-body and small animal PET scanners, respectively. Results: Spatial resolutions of 1.6, 1.8, and 1.9 mm were measured in the axial, radial, and tangential directions, respectively. A scatter fraction of 20.8% was obtained and the maximum NEC was determined to be 25 kcps at 44 MBq. The average sensitivity of the system was observed to be 1% for an energy window of (250 keV–750 keV) and a maximum absolute sensitivity of 1.8% was measured at the FOV center. Conclusions: The overall performance of the MAMMI reported on this evaluation quantifies its ability to produce high quality PET images. Spatial resolution values below 3 mm were measured in most of the FOV. Only the radial component of spatial resolution exceeds the 3 mm at radial positions larger than 60 mm. This study emphasizes the need for standardized testing methodologies for dedicated breast PET systems similar to NEMA standards for whole-body and small animal PET scanners.

  15. Implementation and analysis of list mode algorithm using tubes of response on a dedicated brain and breast PET

    Science.gov (United States)

    Moliner, L.; Correcher, C.; González, A. J.; Conde, P.; Hernández, L.; Orero, A.; Rodríguez-Álvarez, M. J.; Sánchez, F.; Soriano, A.; Vidal, L. F.; Benlloch, J. M.

    2013-02-01

    In this work we present an innovative algorithm for the reconstruction of PET images based on the List-Mode (LM) technique which improves their spatial resolution compared to results obtained with current MLEM algorithms. This study appears as a part of a large project with the aim of improving diagnosis in early Alzheimer disease stages by means of a newly developed hybrid PET-MR insert. At the present, Alzheimer is the most relevant neurodegenerative disease and the best way to apply an effective treatment is its early diagnosis. The PET device will consist of several monolithic LYSO crystals coupled to SiPM detectors. Monolithic crystals can reduce scanner costs with the advantage to enable implementation of very small virtual pixels in their geometry. This is especially useful for LM reconstruction algorithms, since they do not need a pre-calculated system matrix. We have developed an LM algorithm which has been initially tested with a large aperture (186 mm) breast PET system. Such an algorithm instead of using the common lines of response, incorporates a novel calculation of tubes of response. The new approach improves the volumetric spatial resolution about a factor 2 at the border of the field of view when compared with traditionally used MLEM algorithm. Moreover, it has also shown to decrease the image noise, thus increasing the image quality.

  16. Implementation and analysis of list mode algorithm using tubes of response on a dedicated brain and breast PET

    International Nuclear Information System (INIS)

    Moliner, L.; Correcher, C.; González, A.J.; Conde, P.; Hernández, L.; Orero, A.; Rodríguez-Álvarez, M.J.; Sánchez, F.; Soriano, A.; Vidal, L.F.; Benlloch, J.M.

    2013-01-01

    In this work we present an innovative algorithm for the reconstruction of PET images based on the List-Mode (LM) technique which improves their spatial resolution compared to results obtained with current MLEM algorithms. This study appears as a part of a large project with the aim of improving diagnosis in early Alzheimer disease stages by means of a newly developed hybrid PET-MR insert. At the present, Alzheimer is the most relevant neurodegenerative disease and the best way to apply an effective treatment is its early diagnosis. The PET device will consist of several monolithic LYSO crystals coupled to SiPM detectors. Monolithic crystals can reduce scanner costs with the advantage to enable implementation of very small virtual pixels in their geometry. This is especially useful for LM reconstruction algorithms, since they do not need a pre-calculated system matrix. We have developed an LM algorithm which has been initially tested with a large aperture (186 mm) breast PET system. Such an algorithm instead of using the common lines of response, incorporates a novel calculation of tubes of response. The new approach improves the volumetric spatial resolution about a factor 2 at the border of the field of view when compared with traditionally used MLEM algorithm. Moreover, it has also shown to decrease the image noise, thus increasing the image quality

  17. An investigation on continuous depth-of-interaction detection using a monolithic scintillator with single-ended readout

    International Nuclear Information System (INIS)

    Zhang, H; Zhou, R; Yang, C

    2014-01-01

    PET detectors with depth-of-interaction (DOI) capability have been studied to improve imaging resolution widely over the world. Since discrete DOI and continuous DOI detection with dual-ended readout technology have their respective limitations, we in this work focus on the continuous DOI detection with single-ended readout using a monolithic LSO scintillator and a multi-pixel photodetector. Based on a non-linear least squares data fitting method and Geant4 simulation, we studied the relationship between the spatial resolution of gamma positioning and the pixel number of photodetector. The results show that for a pixel number larger than 6x6, the positioning spatial resolution does not become significantly better when increasing the pixel number moreover. Another aspect studied is the effect of crystal thickness on the spatial resolution. Increasing the thickness of crystal leads to higher detection efficiency but lower spatial resolution

  18. A SiPM-based isotropic-3D PET detector X'tal cube with a three-dimensional array of 1 mm{sup 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yamaya, Taiga; Mitsuhashi, Takayuki; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Matsumoto, Takahiro; Kawai, Hideyuki; Suga, Mikio [Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522 (Japan); Watanabe, Mitsuo, E-mail: taiga@nirs.go.jp [Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601 (Japan)

    2011-11-07

    We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm{sup 3} cubic crystals, in contrast to our previous development using 3.0 mm{sup 3} cubic crystals. The crystal block was composed of a 16 x 16 x 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 x 0.993 x 0.993 mm{sup 3} in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 x 4 array of MPPCs), each having a sensitive area of 3.0 x 3.0 mm{sup 2}, were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.

  19. A ''Winner-Take-All'' IC for determining the crystal of interaction in PET detectors

    International Nuclear Information System (INIS)

    Moses, W.W.; Beuville, E.; Ho, M.H.

    1996-01-01

    The authors present performance measurements of a Winner-Take-All (WTA) CMOS integrated circuit to be used with a pixel based PET detector module. Given n input voltages, it rapidly determines the input with the largest voltage, and outputs the encoded address of this input and a voltage proportional to this largest voltage. This is more desirable than a threshold approach for applications that require exactly one channel to be identified or when noise is a significant fraction of the input signal. A sixteen input prototype has been fabricated using two 1.2 microm processes (HP linear MOS capacitance and Orbit double-poly capacitance). ICs from both processes reliably identify (within 50 ns) the maximum channel if ΔV (the difference between the two highest channels) is >20 mV. The key element in the WTA circuit is an array of high gain nonlinear current amplifiers. There is one amplifier for each input channel, and each amplifier is composed of only two FETs. All amplifiers are supplied by a common, limited current source, so the channel with the largest input current takes all of this supply current while the other channels receive virtually none. Thus, these amplifier outputs become a set of logical bits that identify the maximum channel, which is encoded and used to select a multiplexer input. A voltage to current converter at each input channel turns this into a voltage sensitive device. This circuit uses very little power, drawing approximately 100 microA at 5 V

  20. Evaluation of a timing integrated circuit architecture for continuous crystal and SiPM based PET systems

    International Nuclear Information System (INIS)

    Monzo, J M; Ros, A; Herrero-Bosch, V; Perino, I V; Aliaga, R J; Gadea-Girones, R; Colom-Palero, R J

    2013-01-01

    Improving timing resolution in positron emission tomography (PET), thus having fine time information of the detected pulses, is important to increase the reconstructed images signal to noise ratio (SNR) [1]. In the present work, an integrated circuit topology for time extraction of the incoming pulses is evaluated. An accurate simulation including the detector physics and the electronics with different configurations has been developed. The selected architecture is intended for a PET system based on a continuous scintillation crystal attached to a SiPM array. The integrated circuit extracts the time stamp from the first few photons generated when the gamma-ray interacts with the scintillator, thus obtaining the best time resolution. To get the time stamp from the detected pulses, a time to digital converter (TDC) array based architecture has been proposed as in [2] or [3]. The TDC input stage uses a current comparator to transform the analog signal into a digital signal. Individually configurable trigger levels allow us to avoid false triggers due to signal noise. Using a TDC per SiPM configuration results in a very area consuming integrated circuit. One solution to this problem is to join several SiPM outputs to one TDC. This reduces the number of TDCs but, on the other hand, the first photons will be more difficult to be detected. For this reason, it is important to simulate how the time resolution is degraded when the number of TDCs is reduced. Following this criteria, the best configuration will be selected considering the trade-off between achievable time resolution and the cost per chip. A simulation is presented that uses Geant4 for simulation of the physics process and, for the electronic blocks, spice and Matlab. The Geant4 stage simulates the gamma-ray interaction with the scintillator, the photon shower generation and the first stages of the SiPM. The electronics simulation includes an electrical model of the SiPM array and all the integrated circuitry

  1. The system of the designing for PET detectors

    International Nuclear Information System (INIS)

    Fang Zongliang

    2006-01-01

    PET stands for Positron Emission Tomography, a new nuclear medicine imaging device. PET detector is the key of PET. This paper introduces a system of the designing for PET detector. The system can be used to design various PET detector. A PET detector BLOCK with 8 x 8 crystals has been designed and built by this system. (authors)

  2. Evaluation of a timing integrated circuit architecture for continuous crystal and SiPM based PET systems

    OpenAIRE

    Monzó Ferrer, José María; Ros García, Ana; Herrero Bosch, Vicente; Perino Vicentini, Ivan Virgilio; Aliaga Varea, Ramón José; Gadea Gironés, Rafael; Colom Palero, Ricardo José

    2013-01-01

    Improving timing resolution in positron emission tomography (PET), thus having fine time information of the detected pulses, is important to increase the reconstructed images signal to noise ratio (SNR) [1]. In the present work, an integrated circuit topology for time extraction of the incoming pulses is evaluated. An accurate simulation including the detector physics and the electronics with different configurations has been developed. The selected architecture is intended for a PET sys...

  3. TSD current investigations in pristine and 100 MeV Ni-ion irradiated PET/0.3 PHB polymer liquid crystal

    International Nuclear Information System (INIS)

    Quamara, J.K.; Singh, Nafa; Prabhavathi, T.; Sridharbabu, Y.

    2002-01-01

    The dielectric relaxations investigations have been carried out in pristine as well as 100 MeV 58 Ni ion irradiated (PELLETRON facility, Nuclear Science Center, New Delhi) PET/0.3 PHB PLC samples. Thermally stimulated depolarization current technique (TSDC) has been employed for this purpose. The plc samples were polarized at 180 deg C under the influence of various polarizing fields following the usual method. Three current maxima are observed around 35deg, 120deg and 155degC which are ascribed as β', β and α transitions. These transitions are mainly due to the fast reacting dipoles of PHB regions, dipolar character due to carbonyl groups in PET rich phase and to the cold crystallization of PET. The results confirm the biphasic nature of this plc. The high energy irradiation influences both β and α transitions. Increase in fluence shifts the β peak as well as α peak towards higher temperature. This confirms that high energy irradiation has not only affected the carbonyl groups but has created new phases. (author)

  4. Fibrous monolithic ceramics

    International Nuclear Information System (INIS)

    Kovar, D.; King, B.H.; Trice, R.W.; Halloran, J.W.

    1997-01-01

    Fibrous monolithic ceramics are an example of a laminate in which a controlled, three-dimensional structure has been introduced on a submillimeter scale. This unique structure allows this all-ceramic material to fail in a nonbrittle manner. Materials have been fabricated and tested with a variety of architectures. The influence on mechanical properties at room temperature and at high temperature of the structure of the constituent phases and the architecture in which they are arranged are discussed. The elastic properties of these materials can be effectively predicted using existing models. These models also can be extended to predict the strength of fibrous monoliths with an arbitrary orientation and architecture. However, the mechanisms that govern the energy absorption capacity of fibrous monoliths are unique, and experimental results do not follow existing models. Energy dissipation occurs through two dominant mechanisms--delamination of the weak interphases and then frictional sliding after cracking occurs. The properties of the constituent phases that maximize energy absorption are discussed. In this article, the authors examine the structure of Si 3 N 4 -BN fibrous monoliths from the submillimeter scale of the crack-deflecting cell-cell boundary features to the nanometer scale of the BN cell boundaries

  5. Effects of reflector and crystal surface on the performance of a depth-encoding PET detector with dual-ended readout

    International Nuclear Information System (INIS)

    Ren, Silin; Yang, Yongfeng; Cherry, Simon R.

    2014-01-01

    Purpose: Depth encoding detectors are required to improve the spatial resolution and spatial resolution uniformity of small animal positron emission tomography (PET) scanners, as well as dedicated breast and brain scanners. Depth of interaction (DOI) can be measured by using dual-ended readout of lutetium oxyorthosilicate (LSO) scintillator arrays with position-sensitive avalanche photodiodes. Inter-crystal reflectors and crystal surface treatments play important roles in determining the performance of dual-ended detectors. In this paper, the authors evaluated five LSO arrays made with three different intercrystal reflectors and with either polished or unpolished crystal surfaces. Methods: The crystal size in all arrays was 1.5 mm, which is typical of the detector size used in small animal and dedicated breast scanners. The LSO arrays were measured with dual-ended readout and were compared in terms of flood histogram, energy resolution, and DOI resolution performance. Results: The four arrays using enhanced specular reflector (ESR) and Toray reflector provided similar quality flood histograms and the array using Crystal Wrap reflector gave the worst flood histogram. The two arrays using ESR reflector provided the best energy resolution and the array using Crystal Wrap reflector yielded the worst energy resolution. All arrays except the polished ESR array provided good DOI resolution ranging from 1.9 mm to 2.9 mm. DOI resolution improved as the gradient in light collection efficiency with depth (GLCED) increased. The geometric mean energies were also calculated for these dual-ended readout detectors as an alternative to the conventional summed total energy. It was shown that the geometric mean energy is advantageous in that it provides more uniform photopeak amplitude at different depths for arrays with high GLCED, and is beneficial in event selection by allowing a fixed energy window independent of depth. A new method of DOI calculation that improved the linearity

  6. A Monte Carlo simulation study of the impact of novel scintillation crystals on performance characteristics of PET scanners

    DEFF Research Database (Denmark)

    Ghabrial, Amir; Franklin, Daniel; Zaidi, Habib

    2018-01-01

    Objective: The purpose of this study is to validate a Monte Carlo simulation model for the clinical Siemens Biograph mCT PET scanner using the GATE simulation toolkit, and to evaluate the performance of six different scintillation materials in this model using the National Electrical Manufactures...

  7. New developments in PET detector technology

    International Nuclear Information System (INIS)

    Niu Lingxin; Zhao Shujun; Zhang Bin; Liu Haojia

    2010-01-01

    The researches on PET detector are always active and innovative area. The research direction of PET detector includes improving performances of scintillator-based detectors, investigating new detectors suitable for multi-modality imaging (e.g. PET/CT and PET/MRI), meeting requirements of TOF and DOI technologies and boosting the development of the technologies. In this paper, new developments in PET detector technology about scintillation crystal, photodetector and semiconductor detector is introduced. (authors)

  8. Simultaneous PET and MR imaging

    International Nuclear Information System (INIS)

    Yiping Shao; Cherry, Simon R.; Meadors, Ken; Siegel, Stefan; Silverman, Robert W.; Farahani, Keyvan; Marsden, Paul K.

    1997-01-01

    We have developed a prototype PET detector which is compatible with a clinical MRI system to provide simultaneous PET and MR imaging. This single-slice PET system consists of 48 2x2x10mm 3 LSO crystals in a 38 mm diameter ring configuration that can be placed inside the receiver coil of the MRI system, coupled to three multi-channel photomultipliers housed outside the main magnetic field via 4 m long and 2 mm diameter optical fibres. The PET system exhibits 2 mm spatial resolution, 41% energy resolution at 511 keV and 20 ns timing resolution. Simultaneous PET and MR phantom images were successfully acquired. (author)

  9. Porous polymer monolithic col

    Directory of Open Access Journals (Sweden)

    Lydia Terborg

    2015-05-01

    Full Text Available A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation of surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water and ion exchange chromatographic modes (applying gradient of salt in water, respectively.

  10. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  11. Geo-PET: A novel generic organ-pet for small animal organs and tissues

    Science.gov (United States)

    Sensoy, Levent

    reconstruct tomographic images. Results demonstrate good agreement between the simulation and the prototype. Our detector system with pixelated crystals is able to separate small objects as close as 1.25 mm apart, whereas spatial resolution converges to the theoretical limit of 1.6 mm (half the size of the smallest detecting element), which is to comparable to the spatial resolution of the existing commercial small animal PET systems. Better system spatial resolution is achievable with new generation SiPM detector boards with 1 mm x 1 mm cell dimensions. We demonstrate through Monte Carlo simulations that it is possible to achieve sub-millimeter spatial image resolution (0.7 mm for our scanner) in complex objects using monolithic crystals and exploiting the light-sharing mechanism among the neighboring detector cells. Results also suggest that scanner (or object) rotation minimizes artifacts arising from poor angular sampling, which is even more significant in smaller PET designs as the gaps between the sensitive regions of the detector have a more exaggerated effect on the overall reconstructed image quality when the design is more compact. Sensitivity of the system, on the other hand, can be doubled by adding two additional detector heads resulting in a, fully closed, 4? geometry.

  12. Experimental Validation of an Efficient Fan-Beam Calibration Procedure for k-Nearest Neighbor Position Estimation in Monolithic Scintillator Detectors

    Science.gov (United States)

    Borghi, Giacomo; Tabacchini, Valerio; Seifert, Stefan; Schaart, Dennis R.

    2015-02-01

    Monolithic scintillator detectors can achieve excellent spatial resolution and coincidence resolving time. However, their practical use for positron emission tomography (PET) and other applications in the medical imaging field is still limited due to drawbacks of the different methods used to estimate the position of interaction. Common statistical methods for example require the collection of an extensive dataset of reference events with a narrow pencil beam aimed at a fine grid of reference positions. Such procedures are time consuming and not straightforwardly implemented in systems composed of many detectors. Here, we experimentally demonstrate for the first time a new calibration procedure for k-nearest neighbor ( k-NN) position estimation that utilizes reference data acquired with a fan beam. The procedure is tested on two detectors consisting of 16 mm ×16 mm ×10 mm and 16 mm ×16 mm ×20 mm monolithic, Ca-codoped LSO:Ce crystals and digital photon counter (DPC) arrays. For both detectors, the spatial resolution and the bias obtained with the new method are found to be practically the same as those obtained with the previously used method based on pencil-beam irradiation, while the calibration time is reduced by a factor of 20. Specifically, a FWHM of 1.1 mm and a FWTM of 2.7 mm were obtained using the fan-beam method with the 10 mm crystal, whereas a FWHM of 1.5 mm and a FWTM of 6 mm were achieved with the 20 mm crystal. Using a fan beam made with a 4.5 MBq 22Na point-source and a tungsten slit collimator with 0.5 mm aperture, the total measurement time needed to acquire the reference dataset was 3 hours for the thinner crystal and 2 hours for the thicker one.

  13. Determination of the Interaction Position of Gamma Photons in Monolithic Scintillators Using Neural Network Fitting

    Science.gov (United States)

    Conde, P.; Iborra, A.; González, A. J.; Hernández, L.; Bellido, P.; Moliner, L.; Rigla, J. P.; Rodríguez-Álvarez, M. J.; Sánchez, F.; Seimetz, M.; Soriano, A.; Vidal, L. F.; Benlloch, J. M.

    2016-02-01

    In Positron Emission Tomography (PET) detectors based on monolithic scintillators, the photon interaction position needs to be estimated from the light distribution (LD) on the photodetector pixels. Due to the finite size of the scintillator volume, the symmetry of the LD is truncated everywhere except for the crystal center. This effect produces a poor estimation of the interaction positions towards the edges, an especially critical situation when linear algorithms, such as Center of Gravity (CoG), are used. When all the crystal faces are painted black, except the one in contact with the photodetector, the LD can be assumed to behave as the inverse square law, providing a simple theoretical model. Using this LD model, the interaction coordinates can be determined by means of fitting each event to a theoretical distribution. In that sense, the use of neural networks (NNs) has been shown to be an effective alternative to more traditional fitting techniques as nonlinear least squares (LS). The multilayer perceptron is one type of NN which can model non-linear functions well and can be trained to accurately generalize when presented with new data. In this work we have shown the capability of NNs to approximate the LD and provide the interaction coordinates of γ-photons with two different photodetector setups. One experimental setup was based on analog Silicon Photomultipliers (SiPMs) and a charge division diode network, whereas the second setup was based on digital SiPMs (dSiPMs). In both experiments NNs minimized border effects. Average spatial resolutions of 1.9 ±0.2 mm and 1.7 ±0.2 mm for the entire crystal surface were obtained for the analog and dSiPMs approaches, respectively.

  14. Electro-optical effects in porous PET films filled with liquid crystal: new possibilities for fiber optics and THZ applications.

    Science.gov (United States)

    Chopik, A; Pasechnik, S; Semerenko, D; Shmeliova, D; Dubtsov, A; Srivastava, A K; Chigrinov, V

    2014-03-15

    The results of investigation of electro-optical properties of porous polyethylene terephthalate films filled with a nematic liquid crystal (5 CB) are presented. It is established that the optical response of the samples on the applied voltage drastically depends on the frequency range. At low frequencies of applied electrical field (foptical response arises as an impulse of light intensity, which decays for the time essentially shorter than the electric pulse duration. At high frequencies (f>fc) electric field induces an overall change in the light intensity, which is typical for an electro-optical response of a liquid crystal (LC) layer in a conventional "sandwich"-like cell. The dependences of critical frequency fc, threshold voltages, and characteristic times on a pore diameter d were established. The peculiarities of electro-optical effects can be explained in the framework of the approach which connects the variations of light intensity with the corresponding changes of the effective refractive index n(eff) of a composite LC media. The unusual behavior of the electro-optical response at low frequencies is assigned to the orienting action of the specific shear flow typical for electrokinetic phenomena in polar liquids.

  15. Clinical applications of PET/CT

    International Nuclear Information System (INIS)

    Le Ngoc Ha

    2011-01-01

    The purpose of this article is to review the evolution of PET, PET/CT focusing on the technical aspects, PET radiopharmaceutical developments and current clinical applications as well. The newest technologic advances have been reviewed, including improved crystal design, acquisition modes, reconstruction algorithms, etc. These advancements will continue to improve contrast, decrease noise, and increase resolution. Combined PET/CT system provides faster attenuation correction and useful anatomic correlation to PET functional information. A number of new radiopharmaceuticals used for PET imaging have been developed, however, FDG have been considered as the principal PET radiotracer. The current clinical applications of PET and PET/CT are widespread and include oncology, cardiology and neurology. (author)

  16. Acoustic of monolithic dome structures

    Directory of Open Access Journals (Sweden)

    Mostafa Refat Ismail

    2018-03-01

    The interior of monolithic domes have perfect, concave shapes to ensure that sound travels through the dome and perfectly collected at different vocal points. These dome structures are utilized for domestic use because the scale allows the focal points to be positioned across daily life activities, thereby affecting the sonic comfort of the internal space. This study examines the various acoustic treatments and parametric configurations of monolithic dome sizes. A geometric relationship of acoustic treatment and dome radius is established to provide architects guidelines on the correct selection of absorption needed to maintain the acoustic comfort of these special spaces.

  17. Design and simulation of a novel method for determining depth-of-interaction in a PET scintillation crystal array using a single-ended readout by a multi-anode PMT

    International Nuclear Information System (INIS)

    Ito, Mikiko; Sim, Kwang-Souk; Lee, Jae Sung; Park, Min-Jae; Hong, Seong Jong

    2010-01-01

    PET detectors with depth-of-interaction (DOI) encoding capability allow high spatial resolution and high sensitivity to be achieved simultaneously. To obtain DOI information from a mono-layer array of scintillation crystals using a single-ended readout, the authors devised a method based on light spreading within a crystal array and performed Monte Carlo simulations with individual scintillation photon tracking to prove the concept. A scintillation crystal array model was constructed using a grid method. Conventional grids are constructed using comb-shaped reflector strips with rectangular teeth to isolate scintillation crystals optically. However, the authors propose the use of triangularly shaped teeth, such that scintillation photons spread only in the x-direction in the upper halves of crystals and in the y-direction in lower halves. DOI positions can be estimated by considering the extent of two-dimensional light dispersion, which can be determined from the multiple anode outputs of a position-sensitive PMT placed under the crystal array. In the main simulation, a crystal block consisting of a 29 x 29 array of 1.5 mm x 1.5 mm x 20 mm crystals and a multi-anode PMT with 16 x 16 pixels were used. The effects of crystal size and non-uniform PMT output gain were also explored by simulation. The DOI resolution estimated for 1.5 x 1.5 x 20 mm 3 crystals was 2.16 mm on average. Although the flood map was depth dependent, each crystal was well identified at all depths when a corner of the crystal array was irradiated with 511 keV gamma rays (peak-to-valley ratio ∼9:1). DOI resolution was better than 3 mm up to a crystal length of 28 mm with a 1.5 x 1.5 mm 2 or 2.0 x 2.0 mm 2 crystal surface area. The devised light-sharing method allowed excellent DOI resolutions to be obtained without the use of dual-ended readout or multiple crystal arrays.

  18. Monolithic all-PM femtosecond Yb-doped fiber laser using photonic bandgap fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm.......We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm....

  19. Monolithic fiber optic sensor assembly

    Science.gov (United States)

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  20. Monolithic Integrated Ceramic Waveguide Filters

    OpenAIRE

    Hunter, IC; Sandhu, MY

    2014-01-01

    Design techniques for a new class of integrated monolithic high permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled TEM filters with the same unloaded Q-Factor. Designs for both chebyshev and asymmetric generalized chebyshev filter are presented, with experimental results for an 1800 MHz chebyshev filter showing excellent agreement with theory.

  1. Protective Skins for Aerogel Monoliths

    Science.gov (United States)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  2. Lung PET scan

    Science.gov (United States)

    ... Chest PET scan; Lung positron emission tomography; PET - chest; PET - lung; PET - tumor imaging; ... Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, ...

  3. Feasibility of a brain-dedicated PET-MRI system using four-layer DOI detectors integrated with an RF head coil

    International Nuclear Information System (INIS)

    Nishikido, F.; Obata, T.; Shimizu, K.; Suga, M.; Inadama, N.; Tachibana, A.; Yoshida, E.; Ito, H.; Yamaya, T.

    2014-01-01

    We are developing a PET-MRI system which consists of PET detectors integrated with the head coil of the MRI in order to realize high spatial resolution and high sensitivity in simultaneous measurements. In the PET-MRI system, the PET detectors which consist of a scintillator block, photo-detectors and front-end circuits with four-layer depth-of-interaction (DOI) encoding capability are placed close to the measured object. Therefore, the proposed system can achieve high sensitivity without degradation of spatial resolution at the edge of the field-of-view due to parallax error thanks to the four-layer DOI capability. In this paper, we fabricated a prototype system which consists of a prototype four-layer DOI-PET detector, a dummy PET detector and a prototype birdcage type head coil. Then we used the prototype system to evaluate the performance of the four-layer DOI-PET detector and the reciprocal influence between the PET detectors and MRI images. The prototype DOI-PET detector consists of six monolithic multi-pixel photon counter (MPPC) arrays (S11064-050P), a readout circuit board, two scintillator blocks and a copper shielding box. Each scintillator block consists of four layers of Lu 1.8 Gd 0.2 SiO 5 :Ce (LGSO) scintillators and reflectors are inserted between the scintillation crystals. The dummy detector has all these components except the two scintillator blocks. The head coil is dedicated to a 3.0 T MRI (MAGNETOM Verio, Siemens) and the two detectors are mounted in gaps between head coil elements. Energy resolution and crystal identification performance of the prototype four-layer DOI-PET detector were evaluated with and without MRI measurements by the gradient echo and spin echo methods. We identified crystal elements in all four layers from a 2D flood histogram and energy resolution of 15–18% was obtained for single crystal elements in simultaneous measurements. The difference between the average energy resolutions and photo-peak positions with and

  4. Evaluation of pulmonary nodules: comparison of a prototype dual crystal (LSO/NAI) dual head coincidence camera and full ring positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Joshi, U.; Raijmakers, P.G.H.M.; Lingen, A. van; Comans, E.F.I.; Pijpers, R.; Teule, G.J.J.; Hoekstra, O.S.

    2005-01-01

    Purpose: To determine the concordance of a prototype dual head coincidence camera (LSO-PS) and full ring PET (BGO-PET) using 18 F-fluorodeoxyglucose (FDG) in the evaluation of pulmonary nodules (PNs). Materials and methods: Patients referred for evaluation of ≤3 PNs (≤3 cm diameter) were prospectively studied on the same day with both BGO-PET and LSO-PS. Imaging was performed at 60 and 120 min after injection of 370 MBq FDG, respectively. Images were independently interpreted by four observers with each observer blinded to the other modality for the same patient. Lesions were scored in terms of relative intensity versus background. Non-attenuation corrected (nonAC) BGO-PET was used as the reference test. Results: Forty-seven patients with 54 PNs (mean diameter 1.7 cm, S.D. 0.7) were included. Twelve nodules were in the ≤1.0 cm - 27 in the 1.1-2.0 cm - and 15 in the 2.1-3.0 cm range. Interobserver agreement was similar for both FDG imaging modalities. Using a sensitive assessment strategy with LSO-PS (≥ faint intensity deemed positive), there was a 97% (38/39, 95%CI 87-100%) concordance with BGO-PET and one false positive case with LSO-PS. Conservative reading (moderate or intense intensity deemed positive) resulted in a 92% (36/39, 95%CI 80-97%) concordance with BGO-PET, without false positives. The only lesion missed by LSO-PS using both assessment strategies involved a nodule 1.5 cm diameter that demonstrated moderate increased FDG uptake on BGO-PET. Conclusion: Depending on the test positivity criteria, LSO-PS demonstrates a high concordance (92-97%) with nonAC BGO-PET for the characterization of pulmonary nodules

  5. A monolithic silicon detector telescope

    International Nuclear Information System (INIS)

    Cardella, G.; Amorini, F.; Cabibbo, M.; Di Pietro, A.; Fallica, G.; Franzo, G.; Figuera, P.; Papa, M.; Pappalardo, G.; Percolla, G.; Priolo, F.; Privitera, V.; Rizzo, F.; Tudisco, S.

    1996-01-01

    An ultrathin silicon detector (1 μm) thick implanted on a standard 400 μm Si-detector has been built to realize a monolithic telescope detector for simultaneous charge and energy determination of charged particles. The performances of the telescope have been tested using standard alpha sources and fragments emitted in nuclear reactions with different projectile-target colliding systems. An excellent charge resolution has been obtained for low energy (less than 5 MeV) light nuclei. A multi-array lay-out of such detectors is under construction to charge identify the particles emitted in reactions induced by low energy radioactive beams. (orig.)

  6. Imaging monolithic silicon detector telescopes

    International Nuclear Information System (INIS)

    Amorini, F.; Sipala, V.; Cardella, G.; Boiano, C.; Carbone, B.; Cosentino, L.; Costa, E.; Di Pietro, A.; Emanuele, U.; Fallica, G.; Figuera, P.; Finocchiaro, P.; La Guidara, E.; Marchetta, C.; Pappalardo, A.; Piazza, A.; Randazzo, N.; Rizzo, F.; Russo, G.V.; Russotto, P.

    2008-01-01

    We show the results of some test beams performed on a new monolithic strip silicon detector telescope developed in collaboration with the INFN and ST-microelectronics. Using an appropriate design, the induction on the ΔE stages, generated by the charge released in the E stage, was used to obtain the position of the detected particle. The position measurement, together with the low threshold for particle charge identification, allows the new detector to be used for a large variety of applications due to its sensitivity of only a few microns measured in both directions

  7. Exploration of the potential of complex fluids and liquid mineral crystals as templates for obtaining meso-porous monoliths for actinides immobilization; Exploration du potentiel de fluides complexes et cristaux liquides mineraux comme templates pour l'obtention de monolithes mesoporeux pour l'immobilisation d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Guiot, C. [Montpellier-2 Univ., 34 (France)]|[CEA Valrho, Lab. de Chimie des Actinides (LCA), 30 - Marcoule (France)

    2006-07-01

    In the framework of generation IV reactors, the implementation of a closed cycle involves a grouped management of actinides, as well as their united insertion in a new fuel material. The researches carried out for the main variant of fuel cycle are then centred on the synthesis of a material allowing to immobilize these radioelements in an ordered way inside a solid phase of known composition and structure, and in which they have to be dispersed in an homogeneous way. In this work, is considered the study of the synthesis of innovating materials by a molecular engineering approach. The aim is to explore the properties of matrices based on complex mineral fluids for actinides immobilization, to study the confinement potential of these new mineral liquid crystal phases and to understand their interaction with the actinides. (O.M.)

  8. Exceptionally stable and hierarchically porous self-standing zeolite monolith based on a solution-mediated and solid-state transformation synergistic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Do, Manh Huy [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Cheng, Dang-guo, E-mail: dgcheng@zju.edu.cn [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Chen, Fengqiu [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhan, Xiaoli [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2015-11-15

    Although many strategies exist for fabricating hierarchical zeolite monolith, it is still challenging to synthesize pure hierarchical zeolite monolith with intracrystalline meso-/macropores and stability suitable for industrial application in a general and efficient process. Here we describe a simple quasi-solid gel crystallization route to prepare hierarchical self-standing ZSM-5 zeolite monolith via the use of Na{sup +} and OH{sup −} as counterions to modify the breaking and remaking of T–O–T (T = Si or Al) bonds. X-ray diffraction (XRD), scanning electron microcopy (SEM), transmission electron microscopy (TEM), laser scan confocal microscopy (LSCM), N{sub 2} adsorption–desorption, mercury porosimetry, solid-state nuclear magnetic resonance (NMR), and compression mechanical testing were applied to elucidate the structure and mechanical stability of the obtained monolith. The self-standing monolith is composed of self-interconnected meso-/macroporous MFI crystals with tunable intracrystalline meso-/macropores and possesses an unusually mechanical stability with a crushing strength of 5.01 MPa. Combined with controllable structure of the defect-free membrane layer on the monolith top, the self-standing zeolite monolith should widen their potential applications. - Highlights: • Hierarchical self-standing MFI zeolite monoliths were synthesized via a facile method. • Na{sup +} and OH{sup −} are used as counterions for breaking and remaking of T–O–T (T = Si or Al) bonds. • Hierarchical self-standing MFI zeolite monoliths result from zeolite crystal intergrowth. • Self-standing zeolite monolith has an excellent mechanical stability with tunable intracrystalline meso-/macropores.

  9. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    Science.gov (United States)

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  10. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.

    Science.gov (United States)

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  11. Monolithic stabilized Yb-fiber All-PM laser directly delivering nJ-level femtosecond pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality.......We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality....

  12. Development of scintillation materials for PET scanners

    CERN Document Server

    Korzhik, Mikhail; Annenkov, Alexander N; Borissevitch, Andrei; Dossovitski, Alexei; Missevitch, Oleg; Lecoq, Paul

    2007-01-01

    The growing demand on PET methodology for a variety of applications ranging from clinical use to fundamental studies triggers research and development of PET scanners providing better spatial resolution and sensitivity. These efforts are primarily focused on the development of advanced PET detector solutions and on the developments of new scintillation materials as well. However Lu containing scintillation materials introduced in the last century such as LSO, LYSO, LuAP, LuYAP crystals still remain the best PET species in spite of the recent developments of bright, fast but relatively low density lanthanum bromide scintillators. At the same time Lu based materials have several drawbacks which are high temperature of crystallization and relatively high cost compared to alkali-halide scintillation materials. Here we describe recent results in the development of new scintillation materials for PET application.

  13. Microfluidic devices and methods including porous polymer monoliths

    Science.gov (United States)

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  14. Pet Health

    Science.gov (United States)

    ... companionship and a feeling of safety to your life. Before getting a pet, think carefully about which ... Gaining or losing a lot of weight quickly Strange behavior Being sluggish and tired Trouble getting up ...

  15. Pet Allergy Quiz

    Science.gov (United States)

    ... Treatments ▸ Allergies ▸ Pet Allergy ▸ Pet Allergy Quiz Share | Pet Allergy Quiz More than half of U.S. households ... cat family. Yet, millions of people suffer from pet allergies. Take this quiz to test your knowledge ...

  16. Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs

  17. Positron Emission Tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  18. Positron Emission Tomography (PET)

    Science.gov (United States)

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  19. Monolithic solid-state lasers for spaceflight

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  20. Monolithically integrated 8-channel WDM reflective modulator

    NARCIS (Netherlands)

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Smit, M.K.; Leijtens, X.J.M.

    2013-01-01

    In this work the design and characterization of a monolithically integrated photonic circuit acting as a reflective modulator for eight WDM channels is presented. The chip was designed and fabricated in a generic integration technology

  1. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing [Daly City, CA; Yang, Peidong [Kensington, CA; Kim, Woong [Seoul, KR; Fan, Rong [Pasadena, CA

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  2. Decomposition of monolithic web application to microservices

    OpenAIRE

    Zaymus, Mikulas

    2017-01-01

    Solteq Oyj has an internal Wellbeing project for massage reservations. The task of this thesis was to transform the monolithic architecture of this application to microservices. The thesis starts with a detailed comparison between microservices and monolithic application. It points out the benefits and disadvantages microservice architecture can bring to the project. Next, it describes the theory and possible strategies that can be used in the process of decomposition of an existing monoli...

  3. Activated Carbon Fiber Monoliths as Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Gelines Moreno-Fernandez

    2017-01-01

    Full Text Available Activated carbon fibers (ACF are interesting candidates for electrodes in electrochemical energy storage devices; however, one major drawback for practical application is their low density. In the present work, monoliths were synthesized from two different ACFs, reaching 3 times higher densities than the original ACFs’ apparent densities. The porosity of the monoliths was only slightly decreased with respect to the pristine ACFs, the employed PVDC binder developing additional porosity upon carbonization. The ACF monoliths are essentially microporous and reach BET surface areas of up to 1838 m2 g−1. SEM analysis reveals that the ACFs are well embedded into the monolith structure and that their length was significantly reduced due to the monolith preparation process. The carbonized monoliths were studied as supercapacitor electrodes in two- and three-electrode cells having 2 M H2SO4 as electrolyte. Maximum capacitances of around 200 F g−1 were reached. The results confirm that the capacitance of the bisulfate anions essentially originates from the double layer, while hydronium cations contribute with a mixture of both, double layer capacitance and pseudocapacitance.

  4. Uncooled monolithic ferroelectric IRFPA technology

    Science.gov (United States)

    Belcher, James F.; Hanson, Charles M.; Beratan, Howard R.; Udayakumar, K. R.; Soch, Kevin L.

    1998-10-01

    Once relegated to expensive military platforms, occasionally to civilian platforms, and envisioned for individual soldiers, uncooled thermal imaging affords cost-effective solutions for police cars, commercial surveillance, driving aids, and a variety of other industrial and consumer applications. System prices are continuing to drop, and swelling production volume will soon drive prices substantially lower. The impetus for further development is to improve performance. Hybrid barium strontium titanate (BST) detectors currently in production are relatively inexpensive, but have limited potential for improved performance. The MTF at high frequencies is limited by thermal conduction through the optical coating. Microbolometer arrays in development at Raytheon have recently demonstrated performance superior to hybrid detectors. However, microbolometer technology lacks a mature, low-cost system technology and an abundance of upgradable, deployable system implementations. Thin-film ferroelectric (TFFE) detectors have all the performance potential of microbolometers. They are also compatible with numerous fielded and planned system implementations. Like the resistive microbolometer, the TFFE detector is monolithic; i.e., the detector material is deposited directly on the readout IC rather than being bump bonded to it. Imaging arrays of 240 X 320 pixels have been produced, demonstrating the feasibility of the technology.

  5. Solid state polymerization: its action on thermal and rheological properties of PET/PC reactive blends

    Directory of Open Access Journals (Sweden)

    Luis C. Mendes

    2013-01-01

    Full Text Available The solid state polymerization (SSP of PET/PC reactive extrusion blends - with and without cobalt catalyst - at different polymer ratios was studied. Thermal and rheological evaluations were performed. DSC results showed changes in the PET's Tg, Tch, Tm and Xc.. The melt flow rate (MFR decreased for PET and the blends. The intrinsic viscosity increased. The variation in calorimetric and rheological properties might be attributed to the PET's chain extension reactions - esterification and transesterification. These reactions led to an increase in the PET's molar mass, consequently shifting the PET's Tg to lower temperature and PET's crystallization, besides reducing the blend miscibility and flowability.

  6. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    Science.gov (United States)

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  7. Detector block based on arrays of 144 SiPMs and monolithic scintillators: A performance study

    International Nuclear Information System (INIS)

    González, A.J.; Conde, P.; Iborra, A.; Aguilar, A.; Bellido, P.; García-Olcina, R.; Hernández, L.; Moliner, L.; Rigla, J.P.; Rodríguez-Álvarez, M.J.; Sánchez, F.; Seimetz, M.; Soriano, A.; Torres, J.; Vidal, L.F.; Benlloch, J.M.

    2015-01-01

    We have developed a detector block composed by a monolithic LYSO scintillator coupled to a custom made 12×12 SiPMs array. The design is mainly focused to applications such as Positron Emission Tomography. The readout electronics is based on 3 identical and scalable Application Specific Integrated Circuits (ASIC). We have determined the main performance of the detector block namely spatial, energy, and time resolution but also the system capability to determine the photon depth of interaction, for different crystal surface treatments. Intrinsic detector spatial resolution values as good as 1.7 mm FWHM and energies of 15% for black painted crystals were measured

  8. Fire resistance of prefabricated monolithic slab

    Directory of Open Access Journals (Sweden)

    Gravit Marina

    2017-01-01

    Full Text Available A prefabricated monolithic slab (PMS has a number of valuable advantages, they allow to significantly decrease the weight of construction keeping the necessary structural-load capacity, to speed up and cheapen work conduction, to increase the heat isolating properties of an enclosure structure [1]. In order to create a design method of prefabricated monolithic slab fire-resistance, it's necessary to perform a series of PMS testing, one of which is being described in this article. Subjected to the test is a fragment of prefabricated monolithic slab with polystyrene concrete inserts along the beams with bent metal profile 250 mm thick, with a 2.7 m span loaded with evenly spread load equal to 600 kg/m2. After 3 hour testing for fire-resistance [2] no signs of construction ultimate behavior were detected.

  9. Properties of PET/PLA Electrospun Blends

    Science.gov (United States)

    Li, Kevin; Cebe, Peggy

    2012-02-01

    Electrospun membranes were fabricated from poly(ethylene terephthalate), PET, co-spun with poly(lactic acid), PLA. The PLA contained 2% of the D-isomer, which served to limit the overall degree of crystallinity. Membranes were deposited from blended solutions of PET/PLA in hexafluoroisopropanol. The PET/PLA composition ranged from 0/100, 75/25, 50/50, 25/75, and 100/0. Electrospun membranes were made using either a static flat plate or a rotating wheel as the counter electrode, yielding unoriented mats or highly oriented tapes, respectively. We report on our investigation of the crystallinity, crystal perfection, and mechanical properties of these materials using differential scanning calorimetry, wide and small angle X-ray scattering, and dynamic mechanical analysis. In particular, we study the ability of one blend component (PET) to crystallize in the presence of existing crystals of the second blend component (PLA) which crystallizes first and at a lower temperature than PET.

  10. Monolithic JFET preamplifier for ionization chamber calorimeter

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Manfredi, P.F.; Speziali, V.

    1990-10-01

    A monolithic charge sensitive preamplifier using exclusively n-channel diffused JFETs has been designed and is now being fabricated by INTERFET Corp. by means of a dielectrically isolated process which allows preserving as much as possible the technology upon which discrete JFETs are based. A first prototype built by means of junction isolated process has been delivered. The characteristics of monolithically integrated JFETs compare favorably with discrete devices. First results of tests of a preamplifier which uses these devices are reported. 4 refs

  11. Increased thermal conductivity monolithic zeolite structures

    Science.gov (United States)

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  12. Technology development for SOI monolithic pixel detectors

    International Nuclear Information System (INIS)

    Marczewski, J.; Domanski, K.; Grabiec, P.; Grodner, M.; Jaroszewicz, B.; Kociubinski, A.; Kucharski, K.; Tomaszewski, D.; Caccia, M.; Kucewicz, W.; Niemiec, H.

    2006-01-01

    A monolithic detector of ionizing radiation has been manufactured using silicon on insulator (SOI) wafers with a high-resistivity substrate. In our paper the integration of a standard 3 μm CMOS technology, originally designed for bulk devices, with fabrication of pixels in the bottom wafer of a SOI substrate is described. Both technological sequences have been merged minimizing thermal budget and providing suitable properties of all the technological layers. The achieved performance proves that fully depleted monolithic active pixel matrix might be a viable option for a wide spectrum of future applications

  13. Thermal and tensile properties of alumina filled PET nanocomposites

    Science.gov (United States)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2018-05-01

    In the present investigation, nanocomposites of poly(ethylene terephathalate)(PET) with different content (0 to 5 wt.%) of alumina nanoparticles (n-Al2O3) were prepared by melt-extrusion technique. Morphological characterization of samples was examined by transmission electron microscopy (TEM). Morphological analysis revealed that degree of dispersion of alumina nanoparticles (ANPs) was increased at lower content (i.e. upto 2 wt.%), which observed by TEM. Thermal and tensile measurements were carried out using and differential scanning calorimetry (DSC) and universal testing machine (UTM). The thermal analysis showed that the glass transition termperature (Tg), melting temperature (Tm), crystallization temperature (Tc) of PET/alumina nanocomposites (PNCs) were higher than neat PET (PET0). The heat enthalpy (ΔHm) of crystallization for PNCs was increased compared to PET0, which indicates that degree of crystallinity of PNCs also increased compared to PET0. The half-time (t0.5) of crystallization of PNCs were decreased compared to PET0 which indicates that the incorporation of ANPs nucleate the PET molecular chains and allowing the easily crystallization during nonisothermal process. The tensile analysis revealed that the tensile elastic modulus (i.e. Young's modulus) of PNCs increased almost linearly with increasing the content of ANPs while tensile elongation at break decreased nonlinearly. The tensile strength of PNCs increased with a 1 wt.% of ANPs whereas the higher content of ANPs decreased the tensile strength.

  14. Healthy Pets and People

    Science.gov (United States)

    ... prevent the spread of germs between pets and people. Keep pets and their supplies out of the kitchen, and ... a local wildlife rehabilitation facility. More Information Healthy Pets Healthy People Clean Hands Save Lives! Stay Healthy at Animal ...

  15. Dedicated brain PET system of PET/MR for brain research

    International Nuclear Information System (INIS)

    Cheng, Li; Liu, Yaqiang; Ma, Tianyu; Wang, Shi; Wei, Qingyang; Xu, Tianpeng

    2015-01-01

    This work is to replace PET ring in human brain PET/MR system with a dedicated wearable PET insert, aimed at improving both patient feasibility and system performance for brain imaging. The designed PET/MR system includes two parts: the inside parts, including a radio frequency (RF) coil and PET ring, are mounted on patient’s head, and the outside part, a MR imager, is dependent of patient. The RF coil is the innermost layer, surrounded by an outer PET-ring layer. They are supported by a MRcompatible structure. And both RF coil and PET detectors are placed inside a standard clinical 3-T MR imager. From the design of the system we can infer that some advantages can be achieved. First, high sensitivity will be achieved with the same amount crystals as the PET ring is more close to region-of-interest area, at a reduced cost. Second, by using a 2-layer depth of interaction (DOI) detector, the parallax effect can be minimized. The resolution will benefit from short positron range caused by magnetic field and smaller ring diameter will also reduce the effect of non-collinearity. Thirdly, as the PET ring is mounted on head, impact of patient motion will be reduced.

  16. Dedicated brain PET system of PET/MR for brain research

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Li; Liu, Yaqiang; Ma, Tianyu; Wang, Shi; Wei, Qingyang; Xu, Tianpeng [Institute of Medical Physics, Department of Engineering Physics, Tsinghua University, Beijing (China)

    2015-05-18

    This work is to replace PET ring in human brain PET/MR system with a dedicated wearable PET insert, aimed at improving both patient feasibility and system performance for brain imaging. The designed PET/MR system includes two parts: the inside parts, including a radio frequency (RF) coil and PET ring, are mounted on patient’s head, and the outside part, a MR imager, is dependent of patient. The RF coil is the innermost layer, surrounded by an outer PET-ring layer. They are supported by a MRcompatible structure. And both RF coil and PET detectors are placed inside a standard clinical 3-T MR imager. From the design of the system we can infer that some advantages can be achieved. First, high sensitivity will be achieved with the same amount crystals as the PET ring is more close to region-of-interest area, at a reduced cost. Second, by using a 2-layer depth of interaction (DOI) detector, the parallax effect can be minimized. The resolution will benefit from short positron range caused by magnetic field and smaller ring diameter will also reduce the effect of non-collinearity. Thirdly, as the PET ring is mounted on head, impact of patient motion will be reduced.

  17. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    International Nuclear Information System (INIS)

    Jantzen, C

    2006-01-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO 2 and steam, and nitrate/nitrite components, if any, to N 2 . The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO 4 , I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the 2 durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form

  18. Package Holds Five Monolithic Microwave Integrated Circuits

    Science.gov (United States)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  19. Methacrylate monolithic columns functionalized with epinephrine for capillary electrochromatography applications.

    Science.gov (United States)

    Carrasco-Correa, Enrique Javier; Ramis-Ramos, Guillermo; Herrero-Martínez, José Manuel

    2013-07-12

    Epinephrine-bonded polymeric monoliths for capillary electrochromatography (CEC) were developed by nucleophilic substitution reaction of epoxide groups of poly(glycidyl-methacrylate-co-ethylenedimethacrylate) (poly(GMA-co-EDMA)) monoliths using epinephrine as nucleophilic reagent. The ring opening reaction under dynamic conditions was optimized. Successful chemical modification of the monolith surface was ascertained by in situ Raman spectroscopy characterization. In addition, the amount of epinephrine groups that was bound to the monolith surface was evaluated by oxidation of the catechol groups with Ce(IV), followed by spectrophotometric measurement of unreacted Ce(IV). About 9% of all theoretical epoxide groups of the parent monolith were bonded to epinephrine. The chromatographic behavior of the epinephrine-bonded monolith in CEC conditions was assessed with test mixtures of alkyl benzenes, aniline derivatives and substituted phenols. In comparison to the poly(GMA-co-EDMA) monoliths, the epinephrine-bonded monoliths exhibited a much higher retention and slight differences in selectivity. The epinephrine-bonded monolith was further modified by oxidation with a Ce(IV) solution and compared with the epinephrine-bonded monoliths. The resulting monolithic stationary phases were evaluated in terms of reproducibility, giving RSD values below 9% in the parameters investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Role of the substrate in monolithic AlGaAs nonlinear nanoantennas

    Directory of Open Access Journals (Sweden)

    Gili Valerio Flavio

    2017-06-01

    Full Text Available We report the effect of the aluminum oxide substrate on the emission of monolithic AlGaAs-on-insulator nonlinear nanoantennas. By coupling nonlinear optical measurements with electron diffraction and microscopy observations, we find that the oxidation-induced stress causes negligible crystal deformation in the AlGaAs nanostructures and only plays a minor role in the polarization state of the harmonic field. This result highlights the reliability of the wet oxidation of thick AlGaAs optical substrates and further confirms the bulk χ(2 origin of second harmonic generation at 1.55 μm in these nanoantennas, paving the way for the development of AlGaAs-on-insulator monolithic metasurfaces.

  1. Peculiarities of forming diffusion bimetallic joints of aluminum foam with a monolithic magnesium alloy

    Directory of Open Access Journals (Sweden)

    M. Khokhlov

    2016-12-01

    Full Text Available The work is carried out to determine an optimal method to obtain the welded bimetallic joints of monolithic Mg-alloy with porous Al-alloy using gallium as chemical activator and heating up to 300 °C by two different methods: long-term in vacuum oven and short-term without vacuum by passing of low voltage current. There is no microstructure change in Al-foam but indentation test records the negligible reduction of the mechanical properties. SEM showed the crystallization of two types of Mg5Ga2 and Mg2Ga inter-metallic phases in the wavy uneven diffusion zone on Mg-alloy side with significant increase of micro-hardness and Young's modulus. The narrow depth of the diffusion zone takes place in joints by short-term heating, so this method is more applicable for welding of monolithic and porous alloys at chemical activation using gallium.

  2. Detector Position Estimation for PET Scanners.

    Science.gov (United States)

    Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul

    2012-06-11

    Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks.

  3. Detector position estimation for PET scanners

    International Nuclear Information System (INIS)

    Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul

    2012-01-01

    Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks.

  4. Pet Problems at Home: Pet Problems in the Community.

    Science.gov (United States)

    Soltow, Willow

    1984-01-01

    Discusses problems of pets in the community, examining the community's role related to disruptive pets and pet overpopulation. Also discusses pet problems at home, offering advice on selecting a pet, meeting a pet's needs, and disciplining pets. Includes a list of books, films/filmstrips, teaching materials, and various instructional strategies.…

  5. Brain PET scan

    Science.gov (United States)

    ... results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  6. Phase Field Modeling Using PetIGA

    KAUST Repository

    Vignal, Philippe; Collier, Nathan; Calo, Victor M.

    2013-01-01

    , and having a highly efficient and parallel framework to solve them is necessary. In this work, a brief review on phase field models is given, followed by a short analysis of the Phase Field Crystal Model solved with Isogeometric Analysis us- ing PetIGA. We

  7. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation

    Energy Technology Data Exchange (ETDEWEB)

    Espana, S; Herraiz, J L; Vicente, E; Udias, J M [Grupo de Fisica Nuclear, Departmento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid (Spain); Vaquero, J J; Desco, M [Unidad de Medicina y CirugIa Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain)], E-mail: jose@nuc2.fis.ucm.es

    2009-03-21

    Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.

  8. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation

    International Nuclear Information System (INIS)

    Espana, S; Herraiz, J L; Vicente, E; Udias, J M; Vaquero, J J; Desco, M

    2009-01-01

    Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.

  9. A monolithic integrated photonic microwave filter

    Science.gov (United States)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2017-02-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  10. Test of the TRAPPISTe monolithic detector system

    Science.gov (United States)

    Soung Yee, L.; Álvarez, P.; Martin, E.; Cortina, E.; Ferrer, C.

    2013-12-01

    A monolithic pixel detector named TRAPPISTe-2 has been developed in Silicon-on-Insulator (SOI) technology. A p-n junction is implanted in the bottom handle wafer and connected to readout electronics integrated in the top active layer. The two parts are insulated from each other by a buried oxide layer resulting in a monolithic detector. Two small pixel matrices have been fabricated: one containing a 3-transistor readout and a second containing a charge sensitive amplifier readout. These two readout structures have been characterized and the pixel matrices were tested with an infrared laser source. The readout circuits are adversely affected by the backgate effect, which limits the voltage that can be applied to the metal back plane to deplete the sensor, thus narrowing the depletion width of the sensor. Despite the low depletion voltages, the integrated pixel matrices were able to respond to and track a laser source.

  11. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  12. CYBPET: a cylindrical PET system for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Karimian, A. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) and Nuclear Research Center for Agriculture and Medicine (NRCAM-AEOI), P.O. BOX. (31485-498), Karaj, Iran, Islamic Republic of and Department of Experimental Medicine and Pathology, University of Rome, La Sapienza, Rome (Italy)]. E-mail: akarimian@nrcam.org; Thompson, C.J. [Montreal Neurological Institute, McGill University, Montreal QC (Canada); Sarkar, S. [Medical physics Department of Tehran University of Medical Sciences and (RCSTIM), Tehran (Iran, Islamic Republic of); Raisali, G. [Nuclear Research Center for Agriculture and Medicine (NRCAM-AEOI), P.O. BOX. (31485-498), Karaj (Iran, Islamic Republic of); Pani, R. [Department of Experimental Medicine and Pathology, University of Rome La Sapienza, Rome (Italy); Davilu, H. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Sardari, D. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2005-06-11

    We propose a Cylindrical Breast PET (CYBPET) system for breast imaging with patients in the prone position. An individual pendulous breast is covered by thin plastic to provide reduced pressure fixation and surrounded by the crystals inside the CYBPET ring. Each breast is imaged separately. The rest of the body is shielded properly to minimize the contribution of scattered photons from the other breast and the rest of the body. To compare the CYBPET with whole-body PET (WB-PET) the simulations of CYBPET and a WB-PET (GE-Advance) for a 10 mm tumor inside the breast with a lesion to background (breast) activity concentration of 6 to 1 were made. The noise effective count rate (NECR) of CYBPET is about twice that of WB-PET at activity concentrations less than 3.1 {mu}Ci/cc. The spatial resolution of CYBPET is better by 25% than the WB-PET.

  13. CYBPET: a cylindrical PET system for breast imaging

    International Nuclear Information System (INIS)

    Karimian, A.; Thompson, C.J.; Sarkar, S.; Raisali, G.; Pani, R.; Davilu, H.; Sardari, D.

    2005-01-01

    We propose a Cylindrical Breast PET (CYBPET) system for breast imaging with patients in the prone position. An individual pendulous breast is covered by thin plastic to provide reduced pressure fixation and surrounded by the crystals inside the CYBPET ring. Each breast is imaged separately. The rest of the body is shielded properly to minimize the contribution of scattered photons from the other breast and the rest of the body. To compare the CYBPET with whole-body PET (WB-PET) the simulations of CYBPET and a WB-PET (GE-Advance) for a 10 mm tumor inside the breast with a lesion to background (breast) activity concentration of 6 to 1 were made. The noise effective count rate (NECR) of CYBPET is about twice that of WB-PET at activity concentrations less than 3.1 μCi/cc. The spatial resolution of CYBPET is better by 25% than the WB-PET

  14. An overview of monolithic zirconia in dentistry

    Directory of Open Access Journals (Sweden)

    Özlem Malkondu

    2016-07-01

    Full Text Available Zirconia restorations have been used successfully for years in dentistry owing to their biocompatibility and good mechanical properties. Because of their lack of translucency, zirconia cores are generally veneered with porcelain, which makes restorations weaker due to failure of the adhesion between the two materials. In recent years, all-ceramic zirconia restorations have been introduced in the dental sector with the intent to solve this problem. Besides the elimination of chipping, the reduced occlusal space requirement seems to be a clear advantage of monolithic zirconia restorations. However, scientific evidence is needed to recommend this relatively new application for clinical use. This mini-review discusses the current scientific literature on monolithic zirconia restorations. The results of in vitro studies suggested that monolithic zirconia may be the best choice for posterior fixed partial dentures in the presence of high occlusal loads and minimal occlusal restoration space. The results should be supported with much more in vitro and particularly in vivo studies to obtain a final conclusion.

  15. Characterization of SOI monolithic detector system

    Science.gov (United States)

    Álvarez-Rengifo, P. L.; Soung Yee, L.; Martin, E.; Cortina, E.; Ferrer, C.

    2013-12-01

    A monolithic active pixel sensor for charged particle tracking was developed. This research is performed within the framework of an R&D project called TRAPPISTe (Tracking Particles for Physics Instrumentation in SOI Technology) whose aim is to evaluate the feasibility of developing a Monolithic Active Pixel Sensor (MAPS) with Silicon-on-Insulator (SOI) technology. Two chips were fabricated: TRAPPISTe-1 and TRAPPISTe-2. TRAPPISTe-1 was produced at the WINFAB facility at the Université catholique de Louvain (UCL), Belgium, in a 2 μm fully depleted (FD-SOI) CMOS process. TRAPPISTe-2 was fabricated with the LAPIS 0.2 μm FD-SOI CMOS process. The electrical characterization on single transistor test structures and of the electronic readout for the TRAPPISTe series of monolithic pixel detectors was carried out. The behavior of the prototypes’ electronics as a function of the back voltage was studied. Results showed that both readout circuits exhibited sensitivity to the back voltage. Despite this unwanted secondary effect, the responses of TRAPPISTe-2 amplifiers can be improved by a variation in the circuit parameters.

  16. Metal oxide nanorod arrays on monolithic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    2018-01-02

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can include a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.

  17. Fracture-resistant monolithic dental crowns.

    Science.gov (United States)

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-03-01

    To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Experimental measurements and XFEM predictions were self-consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. Copyright © 2015 Academy of Dental Materials. All rights reserved.

  18. Monolithic Ytterbium All-single-mode Fiber Laser with Direct Fiber-end Delivery of nJ-level Femtosecond Pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry

    2008-01-01

    We demonstrate a monolithic, i.e. without any free-space coupling, all-single-mode passively modelocked Yb-fiber laser, with direct fiber-end delivery of 364−405 fs pulses of 4 nJ pulse energy using a low-loss hollow-core photonic crystal fiber compression....

  19. The MiniPET: a didactic PET system

    International Nuclear Information System (INIS)

    Pedro, R; Silva, J; Maio, A; Gurriana, L; Silva, J M; Augusto, J Soares

    2013-01-01

    The MiniPET project aims to design and build a small PET system. It consists of two 4 × 4 matrices of 16 LYSO scintillator crystals and two PMTs with 16 channels resulting in a low cost system with the essential functionality of a clinical PET instrument. It is designed to illustrate the physics of the PET technique and to provide a didactic platform for the training of students and nuclear imaging professionals as well as for scientific outreach. The PET modules can be configured to test for the coincidence of 511 keV gamma rays. The model has a flexible mechanical setup [1] and can simulate 14 diferent ring geometries, from a configuration with as few as 18 detectors per ring (ring radius φ=51 mm), up to a geometry with 70 detectors per ring (φ=200 mm). A second version of the electronic system [2] allowed measurement and recording of the energy deposited in 4 detector channels by photons from a 137 Cs radioactive source and by photons resulting of the annihilation of positrons from a 22 Na radioactive source. These energy spectra are used for detector performance studies, as well as angular dependency studies. In this paper, the mechanical setup, the front-end high-speed analog electronics, the digital acquisition and control electronics implemented in a FPGA, as well as the data-transfer interface between the FPGA board and a host PC are described. Recent preliminary results obtained with the 4 active channels in the prototype are also presented.

  20. PET reconstruction

    International Nuclear Information System (INIS)

    O'Sullivan, F.; Pawitan, Y.; Harrison, R.L.; Lewellen, T.K.

    1990-01-01

    In statistical terms, filtered backprojection can be viewed as smoothed Least Squares (LS). In this paper, the authors report on improvement in LS resolution by: incorporating locally adaptive smoothers, imposing positivity and using statistical methods for optimal selection of the resolution parameter. The resulting algorithm has high computational efficiency relative to more elaborate Maximum Likelihood (ML) type techniques (i.e. EM with sieves). Practical aspects of the procedure are discussed in the context of PET and illustrations with computer simulated and real tomograph data are presented. The relative recovery coefficients for a 9mm sphere in a computer simulated hot-spot phantom range from .3 to .6 when the number of counts ranges from 10,000 to 640,000 respectively. The authors will also present results illustrating the relative efficacy of ML and LS reconstruction techniques

  1. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner.

    Science.gov (United States)

    Catana, Ciprian; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Cherry, Simon R

    2006-12-01

    PET and MRI are powerful imaging techniques that are largely complementary in the information they provide. We have designed and built a MR-compatible PET scanner based on avalanche photodiode technology that allows simultaneous acquisition of PET and MR images in small animals. The PET scanner insert uses magnetic field-insensitive, position-sensitive avalanche photodiode (PSAPD) detectors coupled, via short lengths of optical fibers, to arrays of lutetium oxyorthosilicate (LSO) scintillator crystals. The optical fibers are used to minimize electromagnetic interference between the radiofrequency and gradient coils and the PET detector system. The PET detector module components and the complete PET insert assembly are described. PET data were acquired with and without MR sequences running, and detector flood histograms were compared with the ones generated from the data acquired outside the magnet. A uniform MR phantom was also imaged to assess the effect of the PET detector on the MR data acquisition. Simultaneous PET and MRI studies of a mouse were performed ex vivo. PSAPDs can be successfully used to read out large numbers of scintillator crystals coupled through optical fibers with acceptable performance in terms of energy and timing resolution and crystal identification. The PSAPD-LSO detector performs well in the 7-T magnet, and no visible artifacts are detected in the MR images using standard pulse sequences. The first images from the complete system have been successfully acquired and reconstructed, demonstrating that simultaneous PET and MRI studies are feasible and opening up interesting possibilities for dual-modality molecular imaging studies.

  2. Imaging and PET - PET/CT imaging

    International Nuclear Information System (INIS)

    Von Schulthess, G.K.; Hany, Th.F.

    2008-01-01

    PET/CT has grown because the lack of anatomic landmarks in PET makes 'hardware-fusion' to anatomic cross-sectional data extremely useful. Addition of CT to PET improves specificity, but also sensitivity, and adding PET to CT adds sensitivity and specificity in tumor imaging. The synergistic advantage of adding CT is that the attenuation correction needed for PET data can also be derived from the CT data. This makes PET-CT 25-30% faster than PET alone, leading to higher patient throughput and a more comfortable examination for patients typically lasting 20 minutes or less. FDG-PET-CT appears to provide relevant information in the staging and therapy monitoring of many tumors, such as lung carcinoma, colorectal cancer, lymphoma, gynaecological cancers, melanoma and many others, with the notable exception of prostatic cancer. for this cancer, choline derivatives may possibly become useful radiopharmaceuticals. The published literature on the applications of FDG-PET-CT in oncology is still limited but several designed studies have demonstrated the benefits of PET-CT. (authors)

  3. Progress on photonic crystals

    CERN Document Server

    Lecoq, P; Gundacker, S; Hillemanns, H; Jarron, P; Knapitsch, A; Leclercq, J L; Letartre, X; Meyer, T; Pauwels, K; Powolny, F; Seassal, C

    2010-01-01

    The renewal of interest for Time of Flight Positron Emission Tomography (TOF PET) has highlighted the need for increasing the light output of scintillating crystals and in particular for improving the light extraction from materials with a high index of refraction. One possible solution to overcome the problem of total internal reflection and light losses resulting from multiple bouncing within the crystal is to improve the light extraction efficiency at the crystal/photodetector interface by means of photonic crystals, i.e. media with a periodic modulation of the dielectric constant at the wavelength scale. After a short reminder of the underlying principles this contribution proposes to present the very encouraging results we have recently obtained on LYSO pixels and the perspectives on other crystals such as BGO, LuYAP and LuAG. These results confirm the impressive predictions from our previously published Monte Carlo simulations. A detailed description of the sample preparation procedure is given as well ...

  4. Fully integrated monolithic opoelectronic transducer for real.time protein and DNA detection

    DEFF Research Database (Denmark)

    Misiakos, Konstatinos; S. Petrou, Panagiota; E. Kakabakos, Sotirios

    2010-01-01

    The development and testing of a portable bioanalytical device which was capable for real-time monitoring of binding assays was demonstrated. The device was based on arrays of nine optoelectronic transducers monolithically integrated on silicon chips. The optocouplers consisted of nine silicon av...... by exploiting wavelength filtering on photonic crystal engineered waveguides. The proposed miniaturized sensing device with proper packaging and accompanied by a portable instrument can find wide application as a platform for reliable and cost effective point-of-care diagnosis....

  5. Multiple-hit parameter estimation in monolithic detectors.

    Science.gov (United States)

    Hunter, William C J; Barrett, Harrison H; Lewellen, Tom K; Miyaoka, Robert S

    2013-02-01

    We examine a maximum-a-posteriori method for estimating the primary interaction position of gamma rays with multiple interaction sites (hits) in a monolithic detector. In assessing the performance of a multiple-hit estimator over that of a conventional one-hit estimator, we consider a few different detector and readout configurations of a 50-mm-wide square cerium-doped lutetium oxyorthosilicate block. For this study, we use simulated data from SCOUT, a Monte-Carlo tool for photon tracking and modeling scintillation- camera output. With this tool, we determine estimate bias and variance for a multiple-hit estimator and compare these with similar metrics for a one-hit maximum-likelihood estimator, which assumes full energy deposition in one hit. We also examine the effect of event filtering on these metrics; for this purpose, we use a likelihood threshold to reject signals that are not likely to have been produced under the assumed likelihood model. Depending on detector design, we observe a 1%-12% improvement of intrinsic resolution for a 1-or-2-hit estimator as compared with a 1-hit estimator. We also observe improved differentiation of photopeak events using a 1-or-2-hit estimator as compared with the 1-hit estimator; more than 6% of photopeak events that were rejected by likelihood filtering for the 1-hit estimator were accurately identified as photopeak events and positioned without loss of resolution by a 1-or-2-hit estimator; for PET, this equates to at least a 12% improvement in coincidence-detection efficiency with likelihood filtering applied.

  6. Trends in PET imaging

    International Nuclear Information System (INIS)

    Moses, William W.

    2000-01-01

    Positron Emission Tomography (PET) imaging is a well established method for obtaining information on the status of certain organs within the human body or in animals. This paper presents an overview of recent trends PET instrumentation. Significant effort is being expended to develop new PET detector modules, especially those capable of measuring depth of interaction. This is aided by recent advances in scintillator and pixellated photodetector technology. The other significant area of effort is development of special purpose PET cameras (such as for imaging breast cancer or small animals) or cameras that have the ability to image in more than one modality (such as PET / SPECT or PET / X-Ray CT)

  7. PET / MRI vs. PET / CT. Indications Oncology

    International Nuclear Information System (INIS)

    Oliva González, Juan P.

    2016-01-01

    Hybrid techniques in Nuclear Medicine is currently a field in full development for diagnosis and treatment of various medical conditions. With the recent advent of PET / MRI much it speculated about whether or not it is superior to PET / CT especially in oncology. The Conference seeks to clarify this situation by dealing issues such as: State of the art technology PET / MRI; Indications Oncology; Some clinical cases. It concludes by explaining the oncological indications of both the real and current situation of the PET / MRI. (author)

  8. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    Science.gov (United States)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  9. Development of compact DOI-measurable PET detectors for simultaneous PET/MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yiping; Sun, Xishan [University of Texas MD Anderson Cancer Center (United States); Lou, Kai [Rice University (United States)

    2015-05-18

    It is critically needed yet challenging to develop compact PET detectors with high sensitivity and uniform, high imaging resolution for improving the performance of simultaneous PET/MR imaging, particularly for an integrated/inserted small-bore system. Using the latest “edge-less” SiPM arrays for DOI measurement using the design of dual-ended-scintillator readout, we developed several compact PET detectors suited for PET/MR imaging. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together along all sides to form a large detector panel. Detectors with 1.5x1.5 and 2.0x2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or capacitor-based signal multiplexing was used to transfer 3D interaction position-coded analog signals through flexible-print-circuit cables to dedicated ASIC frontend electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition positioned outside the MRI scanner for coincidence event selection. Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ~18% and 2.8 ns energy and timing resolutions, and around 2-3 mm DOI resolution. A large size detector panel can be scaled up with these modular detectors and different PET systems can be flexibly configured with the scalable readout electronics and data acquisition, providing an important design advantage for different system and application requirements. It is expected that standard shielding of detectors, electronics and signal transfer lines can be applied for simultaneous PET/MR imaging applications, with desired DOI measurement capability to enhance the PET performance and image quality.

  10. Development of compact DOI-measurable PET detectors for simultaneous PET/MR Imaging

    International Nuclear Information System (INIS)

    Shao, Yiping; Sun, Xishan; Lou, Kai

    2015-01-01

    It is critically needed yet challenging to develop compact PET detectors with high sensitivity and uniform, high imaging resolution for improving the performance of simultaneous PET/MR imaging, particularly for an integrated/inserted small-bore system. Using the latest “edge-less” SiPM arrays for DOI measurement using the design of dual-ended-scintillator readout, we developed several compact PET detectors suited for PET/MR imaging. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together along all sides to form a large detector panel. Detectors with 1.5x1.5 and 2.0x2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or capacitor-based signal multiplexing was used to transfer 3D interaction position-coded analog signals through flexible-print-circuit cables to dedicated ASIC frontend electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition positioned outside the MRI scanner for coincidence event selection. Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ~18% and 2.8 ns energy and timing resolutions, and around 2-3 mm DOI resolution. A large size detector panel can be scaled up with these modular detectors and different PET systems can be flexibly configured with the scalable readout electronics and data acquisition, providing an important design advantage for different system and application requirements. It is expected that standard shielding of detectors, electronics and signal transfer lines can be applied for simultaneous PET/MR imaging applications, with desired DOI measurement capability to enhance the PET performance and image quality.

  11. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  12. Pets and Parasites

    Science.gov (United States)

    ... good news is that this rarely happens. Most pet-to-people diseases can be avoided by following a few ... your doctor Can a parasite cause death in people and pets? Can human disease from a parasite be treated ...

  13. Heart PET scan

    Science.gov (United States)

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  14. [Principles of PET].

    Science.gov (United States)

    Beuthien-Baumann, B

    2018-05-01

    Positron emission tomography (PET) is a procedure in nuclear medicine, which is applied predominantly in oncological diagnostics. In the form of modern hybrid machines, such as PET computed tomography (PET/CT) and PET magnetic resonance imaging (PET/MRI) it has found wide acceptance and availability. The PET procedure is more than just another imaging technique, but a functional method with the capability for quantification in addition to the distribution pattern of the radiopharmaceutical, the results of which are used for therapeutic decisions. A profound knowledge of the principles of PET including the correct indications, patient preparation, and possible artifacts is mandatory for the correct interpretation of PET results.

  15. AX-PET: A novel PET concept with G-APD readout

    CERN Document Server

    Heller, M; Casella, C; Chesi, E; De Leo, R; Dissertori, G; Fanti, V; Gillam, J E; Joram, C; Lustermann, W; Nappi, E; Oliver, J F; Pauss, F; Rafecas, M; Rudge, A; Ruotsalainen, U; Schinzel, D; Schneider, T; Seguinot, J; Solevi, P; Stapnes, S; Tuna, U; Weilhammer, P

    2012-01-01

    The AX-PET collaboration has developed a novel concept for high resolution PET imaging to overcome some of the performance limitations of classical PET cameras, in particular the compromise between spatial resolution and sensitivity introduced by the parallax error. The detector consists of an arrangement of long LYSO scintillating crystals axially oriented around the field of view together with arrays of wave length shifter strips orthogonal to the crystals. This matrix allows a precise 3D measurement of the photon interaction point. This is valid both for photoelectric absorption at 511 key and for Compton scattering down to deposited energies of about 100 keV. Crystals and WLS strips are individually read out using Geiger-mode Avalanche Photo Diodes (G-APDs). The sensitivity of such a detector can be adjusted by changing the number of layers and the resolution is defined by the crystal and strip dimensions. Two AX-PET modules were built and fully characterized in dedicated test set-ups at CERN, with point-...

  16. Safety characteristics of the monolithic CFC divertor

    International Nuclear Information System (INIS)

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-01-01

    The main distinguishing feature of the monolithic CFC divertor is the use of a single material, a carbon fibre reinforced carbon, for the protective armour, the heat sink and the cooling channels. This removes joint interface problems which are one of the most important concerns related to the reference solutions of the ITER CDA divertor. An activation analysis of the different coolant options for this concept is presented. It turns out that neither short-term nor long-term activation are a concern for any coolants investigated. Therefore the proposed concept proves to be attractive from a safety stand-point also. ((orig.))

  17. Safety characteristics of the monolithic CFC divertor

    Science.gov (United States)

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-09-01

    The main distinguishing feature of the monolithic CFC divertor is the use of a single material, a carbon fibre reinforced carbon, for the protective armour, the heat sink and the cooling channels. This removes joint interface problems which are one of the most important concerns related to the reference solutions of the ITER CDA divertor. An activation analysis of the different coolant options for this concept is presented. It turns out that neither short-term nor long-term activation are a concern for any coolants investigated. Therefore the proposed concept proves to be attractive from a safety stand-point also.

  18. A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis

    NARCIS (Netherlands)

    Du, P.; Carneiro, J.T.; Moulijn, J.A.; Mul, Guido

    2008-01-01

    A novel reactor for multi-phase photocatalysis is presented, the so-called internally illuminated monolith reactor (IIMR). In the concept of the IIMR, side light emitting fibers are placed inside the channels of a ceramic monolith, equipped with a TiO2 photocatalyst coated on the wall of each

  19. Immobilisation of shredded soft waste in cement monolith

    International Nuclear Information System (INIS)

    Brown, D.J.; Dalton, M.J.; Smith, D.L.

    1983-04-01

    A grouting process for the immobilisation of shredded contaminated laboratory waste in a cement monolith is being developed at the Atomic Energy Establishment Winfrith. The objective is to produce a 'monolithic' type package which is acceptable both for sea and land disposal. The work carried out on this project in the period April 1982 - March 1983 is summarised in this report. (author)

  20. Fabrication of mesoporous polymer monolith: a template-free approach.

    Science.gov (United States)

    Okada, Keisuke; Nandi, Mahasweta; Maruyama, Jun; Oka, Tatsuya; Tsujimoto, Takashi; Kondoh, Katsuyoshi; Uyama, Hiroshi

    2011-07-14

    Mesoporous polyacrylonitrile (PAN) monolith has been fabricated by a template-free approach using the unique affinity of PAN towards a water/dimethyl sulfoxide (DMSO) mixture. A newly developed Thermally Induced Phase Separation Technique (TIPS) has been used to obtain the polymer monoliths and their microstructures have been controlled by optimizing the concentration and cooling temperature.

  1. Creating deep soil core monoliths: Beyond the solum

    Science.gov (United States)

    Soil monoliths serve as useful teaching aids in the study of the Earth’s critical zone where rock, soil, water, air, and organisms interact. Typical monolith preparation has so far been confined to the 1 to 2-m depth of the solum. Critical ecosystem services provided by soils include materials from ...

  2. A Monolithic Perovskite Structure for Use as a Magnetic Regenerator

    DEFF Research Database (Denmark)

    Pryds, Nini; Clemens, Frank; Menon, Mohan

    2011-01-01

    A La0.67Ca0.26Sr0.07Mn1.05O3 (LCSM) perovskite was prepared for the first time as a ceramic monolithic regenerator used in a regenerative magnetic refrigeration device. The parameters influencing the extrusion process and the performance of the regenerator, such as the nature of the monolith paste...

  3. Fine-grain concrete from mining waste for monolithic construction

    Science.gov (United States)

    Lesovik, R. V.; Ageeva, M. S.; Lesovik, G. A.; Sopin, D. M.; Kazlitina, O. V.; Mitrokhin, A. A.

    2018-03-01

    The technology of a monolithic construction is a well-established practice among most Russian real estate developers. The strong points of the technology are low cost of materials and lower demand for qualified workers. The monolithic construction uses various types of reinforced slabs and foamed concrete, since they are easy to use and highly durable; they also need practically no additional treatment.

  4. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    NARCIS (Netherlands)

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  5. Media Presentation Synchronisation for Non-monolithic Rendering Architectures

    NARCIS (Netherlands)

    I. Vaishnavi (Ishan); D.C.A. Bulterman (Dick); P.S. Cesar Garcia (Pablo Santiago); B. Gao (Bo)

    2007-01-01

    htmlabstractNon-monolithic renderers are physically distributed media playback engines. Non-monolithic renderers may use a number of different underlying network connection types to transmit media items belonging to a presentation. There is therefore a need for a media based and inter-network- type

  6. Neutral Guest Capture via Lewis Acid/Base Molecular Square Receptors. X-ray Crystal Structure of {Cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis- (PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)- ((-)OSO(2)CF(3))(6).

    Science.gov (United States)

    Whiteford, Jeffery A.; Stang, Peter J.; Huang, Songping D.

    1998-10-19

    Interaction of {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(L)M)]Ag(2)}(+6)((-)OSO(2)CF(3))(6), where M = Pt(II) or Pd(II) and L = dppp or 2PEt(3), with pyridine, pyrazine, phenazine, or 4,4'-dipyridyl ketone results in coordination Lewis acid/base host-guest assemblies via the "pi-tweezer effect" and mono or bis neutral guest coordination. All host-guest complexes are air stable microcrystalline solids with decomposition points greater than 170 degrees C. The homometallic Pt(II) receptors are more stable than the heteroaromatic Pt(II)-Pd(II) receptors toward heteratom-containing aromatic guests. The X-ray crystal structure of the host-guest complex {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)((-)OSO(2)CF(3))(6) is reported. The crystals with the empirical formula C(62)H(68)AgF(9)N(3)O(9)P(4)Pt(2)S(3) are triclinic P&onemacr; with a = 12.3919(8) Å, b = 17.160(1) Å, c = 18.932(1) Å, alpha = 90.892(1) degrees, beta = 97.127(1) degrees, gamma = 89.969(1) degrees, and Z = 2.

  7. Synthesis of Porous Carbon Monoliths Using Hard Templates.

    Science.gov (United States)

    Klepel, Olaf; Danneberg, Nina; Dräger, Matti; Erlitz, Marcel; Taubert, Michael

    2016-03-21

    The preparation of porous carbon monoliths with a defined shape via template-assisted routes is reported. Monoliths made from porous concrete and zeolite were each used as the template. The porous concrete-derived carbon monoliths exhibited high gravimetric specific surface areas up to 2000 m²·g -1 . The pore system comprised macro-, meso-, and micropores. These pores were hierarchically arranged. The pore system was created by the complex interplay of the actions of both the template and the activating agent as well. On the other hand, zeolite-made template shapes allowed for the preparation of microporous carbon monoliths with a high volumetric specific surface area. This feature could be beneficial if carbon monoliths must be integrated into technical systems under space-limited conditions.

  8. Crystals against cancer

    CERN Multimedia

    2009-01-01

    This is a remarkable example of direct technology transfer from particle physics to medicine. Clinical trials have begun in Portugal on a new medical imaging system for the diagnosis of breast cancer, which uses positron emission tomography (PET). The system, developed by a Portuguese consortium in collaboration with CERN and laboratories participating in the Crystal Clear collaboration, will detect even the smallest tumours and thus help avoid unnecessary biopsies.

  9. Development and evaluation of an ultra-fast ASIC for future PET scanners using TOF-capable MPPC array detectors

    International Nuclear Information System (INIS)

    Ambe, T.; Ikeda, H.; Kataoka, J.; Matsuda, H.; Kato, T.

    2015-01-01

    We developed a front-end ASIC for future PET scanners with Time-Of-Flight (TOF) capability to be coupled with 4×4 Multi-Pixel Photon Counter (MPPC) arrays. The ASIC is designed based on the open-IP project proposed by JAXA and realized in TSMC 0.35 μm CMOS technology. The circuit comprises 16-channel, low impedance current conveyors for effectively acquiring fast MPPC signals. For precise measurement of the coincidence timing of 511-keV gamma rays, the leading-edge method was used to discriminate the signals. We first tested the time response of the ASIC by illuminating each channel of a MPPC array device 3×3 mm 2 in size with a Pico-second Light Pulsar with a light emission peak of 655 nm and pulse duration of 54 ps (FWHM). We obtained 105 ps (FWHM) on average for each channel in time jitter measurements. Moreover, we compensated for the time lag of each channel with inner delay circuits and succeeded in suppressing about a 700-ps lag to only 15 ps. This paper reports TOF measurements using back-to-back 511-keV signals, and suggests that the ASIC can be a promising device for future TOF-PET scanners based on the MPPC array. - Highlights: • We developed a newly designed large-area monolithic MPPC array. • We obtained fine gain uniformity, and good energy and time resolutions when coupled to the LYSO scintillator. • We fabricated gamma-ray camera consisting of the MPPC array and the submillimeter pixelized LYSO and GGAG scintillators. • In the flood images, each crystal of scintillator matrices was clearly resolved. • Good energy resolutions for 662 keV gamma-rays for each LYSO and GGAG scintillator matrices were obtained

  10. Growth techniques for monolithic YBCO solenoidal magnets

    International Nuclear Information System (INIS)

    Scruggs, S.J.; Putman, P.T.; Fang, H.; Alessandrini, M.; Salama, K.

    2006-01-01

    The possibility of growing large single domain YBCO solenoids by the use of a large seed has been investigated. There are two known methods for producing a similar solenoid. This first is a conventional top seeded melt growth process followed by a post processing machining step to create the bore. The second involves using multiple seeds spaced around the magnet bore. The appeal of the new technique lies in decreasing processing time compared to the single seed technique, while avoiding alignment problems found in the multiple seeding technique. By avoiding these problems, larger diameter monoliths can be produced. Large diameter monoliths are beneficial because the maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that traditionally have been considered to require wound electromagnets, such as beam bending magnets for particle accelerators or electric propulsion. A comparison of YBCO solenoids grown by the use of a large seed and grown by the use of two small seeds simulating multiple seeding is made. Trapped field measurements as well as microstructure evaluation were used in characterization of each solenoid. Results indicate that high quality growth occurs only in the vicinity of the seeds for the multiple seeded sample, while the sample with the large seeded exhibited high quality growth throughout the entire sample

  11. Growth techniques for monolithic YBCO solenoidal magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scruggs, S.J. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States)]. E-mail: Sscruggs2@uh.edu; Putman, P.T. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Fang, H. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Alessandrini, M. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Salama, K. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States)

    2006-10-01

    The possibility of growing large single domain YBCO solenoids by the use of a large seed has been investigated. There are two known methods for producing a similar solenoid. This first is a conventional top seeded melt growth process followed by a post processing machining step to create the bore. The second involves using multiple seeds spaced around the magnet bore. The appeal of the new technique lies in decreasing processing time compared to the single seed technique, while avoiding alignment problems found in the multiple seeding technique. By avoiding these problems, larger diameter monoliths can be produced. Large diameter monoliths are beneficial because the maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that traditionally have been considered to require wound electromagnets, such as beam bending magnets for particle accelerators or electric propulsion. A comparison of YBCO solenoids grown by the use of a large seed and grown by the use of two small seeds simulating multiple seeding is made. Trapped field measurements as well as microstructure evaluation were used in characterization of each solenoid. Results indicate that high quality growth occurs only in the vicinity of the seeds for the multiple seeded sample, while the sample with the large seeded exhibited high quality growth throughout the entire sample.

  12. Energy spectra analysis of the four-layer DOI detector for the brain PET scanner: jPET-D4

    International Nuclear Information System (INIS)

    Yoshida, Eiji; Kitamura, Keishi; Tsuda, Tomoaki; Shibuya, Kengo; Yamaya, Taiga; Inadama, Naoko; Hasegawa, Tomoyuki; Murayama, Hideo

    2006-01-01

    A depth of interaction (DOI) detector is being developed for the brain PET scanner, jPET-D4. We introduce a light output correction procedure to compensate for variations among the crystal elements in the DOI detector. Under uniform irradiation with 511 keV gamma rays, we estimate the light output of each crystal element by identifying each crystal element, and generate a look-up table (LUT) for light output correction. We evaluate the energy resolution of all crystal elements. The energy resolution of 16% is achieved after light output correction for all crystal elements. The DOI detector can correct light output variations that are related to the DOI. We analyze the crystal position dependence of the energy spectra due to inter-crystal scattering among the multiple crystal elements in the DOI detector. It is highly possible that gamma rays interacting with central crystal elements in the crystal array are absorbed by surrounding crystal elements and the Compton part of the energy spectrum is decreased. Inter-crystal scattering has less impact on the energy resolution of the DOI detector

  13. Method for making a single-step etch mask for 3D monolithic nanostructures

    International Nuclear Information System (INIS)

    Grishina, D A; Harteveld, C A M; Vos, W L; Woldering, L A

    2015-01-01

    Current nanostructure fabrication by etching is usually limited to planar structures as they are defined by a planar mask. The realization of three-dimensional (3D) nanostructures by etching requires technologies beyond planar masks. We present a method for fabricating a 3D mask that allows one to etch three-dimensional monolithic nanostructures using only CMOS-compatible processes. The mask is written in a hard-mask layer that is deposited on two adjacent inclined surfaces of a Si wafer. By projecting in a single step two different 2D patterns within one 3D mask on the two inclined surfaces, the mutual alignment between the patterns is ensured. Thereby after the mask pattern is defined, the etching of deep pores in two oblique directions yields a three-dimensional structure in Si. As a proof of concept we demonstrate 3D mask fabrication for three-dimensional diamond-like photonic band gap crystals in silicon. The fabricated crystals reveal a broad stop gap in optical reflectivity measurements. We propose how 3D nanostructures with five different Bravais lattices can be realized, namely cubic, tetragonal, orthorhombic, monoclinic and hexagonal, and demonstrate a mask for a 3D hexagonal crystal. We also demonstrate the mask for a diamond-structure crystal with a 3D array of cavities. In general, the 2D patterns on the different surfaces can be completely independently structured and still be in perfect mutual alignment. Indeed, we observe an alignment accuracy of better than 3.0 nm between the 2D mask patterns on the inclined surfaces, which permits one to etch well-defined monolithic 3D nanostructures. (paper)

  14. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    Capt Todd D. Church APPROVED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials C~t) Kraig/[ Vandewalle Date...copyrighted material in the thesis/dissertation manuscript entitled: "Translucency arid Strength of High-Translucency Monolithic Zirconium -Oxide...Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  15. Influence of different carbon monolith preparation parameters on pesticide adsorption

    Directory of Open Access Journals (Sweden)

    Vukčević Marija

    2013-01-01

    Full Text Available The capacity of carbon monolith for pesticide removal from water, and the mechanism of pesticide interaction with carbon surface were examined. Different carbon monolith samples were obtained by varying the carbonization and activation parameters. In order to examine the role of surface oxygen groups in pesticide adsorption, carbon monolith surface was functionalized by chemical treatment in HNO3, H2O2 and KOH. The surface properties of the obtained samples were investigated by BET surface area, pore size distribution and temperature-programmed desorption. Adsorption of pesticides from aqueous solution onto activated carbon monolith samples was studied by using five pesticides belonging to different chemical groups (acetamiprid, dimethoate, nicosulfuron, carbofuran and atrazine. Presented results show that higher temperature of carbonization and the amount of activating agent allow obtaining microporous carbon monolith with higher amount of surface functional groups. Adsorption properties of the activated carbon monolith were more readily affected by the amount of the surface functional groups than by specific surface area. Results obtained by carbon monolith functionalisation showed that π-π interactions were the main force for adsorption of pesticides with aromatic structure, while acidic groups play an important role in adsorption of pesticides with no aromatic ring in the chemical structure.

  16. Biomimetic small peptide functionalized affinity monoliths for monoclonal antibody purification.

    Science.gov (United States)

    Wang, Xiangyu; Xia, Donghai; Han, Hai; Peng, Kun; Zhu, Peijie; Crommen, Jacques; Wang, Qiqin; Jiang, Zhengjin

    2018-08-09

    The rapid development of monoclonal antibodies (mAbs) in therapeutic and diagnostic applications has necessitated the advancement of mAbs purification technologies. In this study, a biomimetic small peptide ligand 3,5-di-tert-butyl-4-hydroxybenzoic acid-Arg-Arg-Gly (DAAG) functionalized monolith was fabricated through a metal ion chelation-based multi-step approach. The resulting monolith showed good chromatographic performance. Compared with the Ni 2+ based IMAC monolith, the DAAG functionalized monolith exhibited not only excellent specificity but also higher dynamic binding capacity (DBC). The 10% DBC and 50% DBC for hIgG reached as high values as 26.0 and 34.6 mg/mL, respectively, at a ligand density of 8.8 μmol/mL, due to the high porosity and accessibility of the monolithic matrix. Moreover, the stability of the DAAG functionalized monolith in successive breakthrough experiments indicates that it has a promising potential for long-term use in mAbs purification. Finally, the DAAG functionalized monolith was successfully applied to the purification of trastuzumab or human immunoglobulin G (hIgG) from biological samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Selecting Safe Pets (For Parents)

    Science.gov (United States)

    ... supplies (pet bowls, pet bed, leash, etc.) as gifts, then selecting the pet as a family. That way, everyone has time to really think about whether your family is ready for a pet. Key Questions Before adopting or purchasing any pet, talk to all family members, discuss ...

  18. Pet-Related Infections.

    Science.gov (United States)

    Day, Michael J

    2016-11-15

    Physicians and veterinarians have many opportunities to partner in promoting the well-being of people and their pets, especially by addressing zoonotic diseases that may be transmitted between a pet and a human family member. Common cutaneous pet-acquired zoonoses are dermatophytosis (ringworm) and sarcoptic mange (scabies), which are both readily treated. Toxoplasmosis can be acquired from exposure to cat feces, but appropriate hygienic measures can minimize the risk to pregnant women. Persons who work with animals are at increased risk of acquiring bartonellosis (e.g., cat-scratch disease); control of cat fleas is essential to minimize the risk of these infections. People and their pets share a range of tick-borne diseases, and exposure risk can be minimized with use of tick repellent, prompt tick removal, and appropriate tick control measures for pets. Pets such as reptiles, amphibians, and backyard poultry pose a risk of transmitting Salmonella species and are becoming more popular. Personal hygiene after interacting with these pets is crucial to prevent Salmonella infections. Leptospirosis is more often acquired from wildlife than infected dogs, but at-risk dogs can be protected with vaccination. The clinical history in the primary care office should routinely include questions about pets and occupational or other exposure to pet animals. Control and prevention of zoonoses are best achieved by enhancing communication between physicians and veterinarians to ensure patients know the risks of and how to prevent zoonoses in themselves, their pets, and other people.

  19. Imaging results and TOF studies with axial PET detectors

    Science.gov (United States)

    Joram, Christian

    2013-12-01

    We have developed a fully operational PET demonstrator setup which allows true 3D reconstruction of the 511 keV photons and therefore leads to practically parallax free images. The AX-PET concept is based on thin 100 mm long scintillation crystals (LYSO), axially oriented and arranged in layers around the field of view. Layers of wavelength shifting plastic strips mounted in between the crystal layers give the axial coordinate. Both crystals and WLS strips are individually read out by G-APD (SiPM) photodetectors. The fully scalable concept overcomes the dilemma of sensitivity versus spatial resolution which is inherent to classical PET designs. A demonstrator set-up based on two axial modules was exhaustively characterized using point-like sources, phantoms filled with radiotracer and finally rats and a mouse. The results entirely meet the performance expectations (PET concept making use of the novel digital SiPM detectors by Philips. After reproducing comparable energy and spatial resolution on a small digital AX-PET set-up with 100 mm long crystals, we demonstrated a coincidence resolving time of about 210 ps FWHM.

  20. Determining leach rates of monolithic waste forms

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Dole, L.R.

    1986-01-01

    The ANS 16.1 Leach Procedure provides a conservative means of predicting long-term release from monolithic waste forms, offering a simple and relatively quick means of determining effective solid diffusion coefficients. As presented here, these coefficients can be used in a simple model to predict maximum release rates or be used in more complex site-specific models to predict actual site performance. For waste forms that pass the structural integrity test, this model also allows the prediction of EP-Tox leachate concentrations from these coefficients. Thus, the results of the ANS 16.1 Leach Procedure provide a powerful tool that can be used to predict the waste concentration limits in order to comply with the EP-Toxicity criteria for characteristically nonhazardous waste. 12 refs., 3 figs

  1. Silver deposition on chemically treated carbon monolith

    Directory of Open Access Journals (Sweden)

    Jovanović Zoran M.

    2009-01-01

    Full Text Available Carbon monolith was treated with HNO3, KOH and H2O2. Effects of these treatments on the surface functional groups and on the amount of silver deposited on the CM surface were studied by temperature programmed desorption (TPD and atomic absorption spectrometry (AAS. As a result of chemical treatment there was an increase in the amount of surface oxygen complexes. The increase in the amount of silver deposit is proportional to the amount of surface groups that produce CO under decomposition. However, the high amount of CO groups, decomposing above 600°C, induces the smaller Ag crystallite size. Therefore, the high temperature CO evolving oxides are, most likely, the initial centers for Ag deposition.

  2. Monolithic microwave integrated circuit water vapor radiometer

    Science.gov (United States)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  3. Present status of the MONOLITH project

    International Nuclear Information System (INIS)

    Petrukhin, A.A.

    2001-01-01

    MONOLITH is a proposed massive (34 kt) magnetized tracking calorimeter at the Gran Sasso laboratory in Italy, optimized for the detection of atmospheric muon neutrinos. The main goal is to establish (or reject) the neutrino oscillation hypothesis through an explicit observation of the full first oscillation swing. The Δm 2 sensitivity range for this measurement comfortably covers the complete Super-Kamiokande allowed region. Other measurements include studies of matter effects, the NC up/down ratio, ν bar / ν ratio, the study of cosmic ray muons in the multi-TeV range, and auxiliary measurements from the CERN to Gran Sasso neutrino beam. Depending on approval, data taking with the part of the detector could start towards the end of 2004

  4. Monolithic fuel injector and related manufacturing method

    Science.gov (United States)

    Ziminsky, Willy Steve [Greenville, SC; Johnson, Thomas Edward [Greenville, SC; Lacy, Benjamin [Greenville, SC; York, William David [Greenville, SC; Stevenson, Christian Xavier [Greenville, SC

    2012-05-22

    A monolithic fuel injection head for a fuel nozzle includes a substantially hollow vesicle body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween, an internal baffle plate extending radially outwardly from a downstream end of the bore, terminating short of the peripheral wall, thereby defining upstream and downstream fuel plenums in the vesicle body, in fluid communication by way of a radial gap between the baffle plate and the peripheral wall. A plurality of integral pre-mix tubes extend axially through the upstream and downstream fuel plenums in the vesicle body and through the baffle plate, with at least one fuel injection hole extending between each of the pre-mix tubes and the upstream fuel plenum, thereby enabling fuel in the upstream plenum to be injected into the plurality of pre-mix tubes. The fuel injection head is formed by direct metal laser sintering.

  5. Bioinspired Synthesis of Monolithic and Layered Aerogels.

    Science.gov (United States)

    Han, Xiao; Hassan, Khalil T; Harvey, Alan; Kulijer, Dejan; Oila, Adrian; Hunt, Michael R C; Šiller, Lidija

    2018-04-25

    Aerogels are the least dense and most porous materials known to man, with potential applications from lightweight superinsulators to smart energy materials. To date their use has been seriously hampered by their synthesis methods, which are laborious and expensive. Taking inspiration from the life cycle of the damselfly, a novel ambient pressure-drying approach is demonstrated in which instead of employing low-surface-tension organic solvents to prevent pore collapse during drying, sodium bicarbonate solution is used to generate pore-supporting carbon dioxide in situ, significantly reducing energy, time, and cost in aerogel production. The generic applicability of this readily scalable new approach is demonstrated through the production of granules, monoliths, and layered solids with a number of precursor materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The MINDView brain PET detector, feasibility study based on SiPM arrays

    Energy Technology Data Exchange (ETDEWEB)

    González, Antonio J., E-mail: agonzalez@i3m.upv.es [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain); Majewski, Stan [Radiology Research, Department of Radiology, University of Virginia, VA 22903 (United States); Sánchez, Filomeno [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain); Aussenhofer, Sebastian [NORAS MRI products GmbH, Hochberg (Germany); Aguilar, Albert; Conde, Pablo; Hernández, Liczandro; Vidal, Luis F. [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain); Pani, Roberto; Bettiol, Marco; Fabbri, Andrea [Department of Molecular Medicine, Sapienza University of Rome (Italy); Bert, Julien; Visvikis, Dimitris [Université de Bretagne Occidentale, Brest (France); Jackson, Carl; Murphy, John; O’Neill, Kevin [SensL Technologies, Cork (Ireland); Benlloch, Jose M. [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain)

    2016-05-11

    The Multimodal Imaging of Neurological Disorders (MINDView) project aims to develop a dedicated brain Positron Emission Tomography (PET) scanner with sufficient resolution and sensitivity to visualize neurotransmitter pathways and their disruptions in mental disorders for diagnosis and follow-up treatment. The PET system should be compact and fully compatible with a Magnetic Resonance Imaging (MRI) device in order to allow its operation as a PET brain insert in a hybrid imaging setup with most MRI scanners. The proposed design will enable the currently-installed MRI base to be easily upgraded to PET/MRI systems. The current design for the PET insert consists of a 3-ring configuration with 20 modules per ring and an axial field of view of ~15 cm and a geometrical aperture of ~33 cm in diameter. When coupled to the new head Radio Frequency (RF) coil, the inner usable diameter of the complete PET-RF coil insert is reduced to 26 cm. Two scintillator configurations have been tested, namely a 3-layer staggered array of LYSO with 1.5 mm pixel size, with 35×35 elements (6 mm thickness each) and a black-painted monolithic LYSO block also covering about 50×50 mm{sup 2} active area with 20 mm thickness. Laboratory test results associated with the current MINDView PET module concept are presented in terms of key parameters' optimization, such as spatial and energy resolution, sensitivity and Depth of Interaction (DOI) capability. It was possible to resolve all pixel elements from the three scintillator layers with energy resolutions as good as 10%. The monolithic scintillator showed average detector resolutions varying from 3.5 mm in the entrance layer to better than 1.5 mm near the photosensor, with average energy resolutions of about 17%.

  7. BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET

    NARCIS (Netherlands)

    Brunner, S.E.K.; Schaart, D.R.

    2017-01-01

    Due to detector developments in the last decade, the time-of-flight (TOF) method is now commonly used to improve the quality of positron emission tomography (PET) images. Clinical TOF-PET systems based on L(Y)SO:Ce crystals and silicon photomultipliers (SiPMs) with coincidence resolving times

  8. Pets and the immunocompromised person

    Science.gov (United States)

    ... marrow transplant patients and pets; Chemotherapy patients and pets ... Centers for Disease Control and Prevention website. Healthy pets healthy people. www.cdc.gov/healthypets . Updated July 19, 2016. ...

  9. Sensory analysis of pet foods.

    Science.gov (United States)

    Koppel, Kadri

    2014-08-01

    Pet food palatability depends first and foremost on the pet and is related to the pet food sensory properties such as aroma, texture and flavor. Sensory analysis of pet foods may be conducted by humans via descriptive or hedonic analysis, pets via acceptance or preference tests, and through a number of instrumental analysis methods. Sensory analysis of pet foods provides additional information on reasons behind palatable and unpalatable foods as pets lack linguistic capabilities. Furthermore, sensory analysis may be combined with other types of information such as personality and environment factors to increase understanding of acceptable pet foods. Most pet food flavor research is proprietary and, thus, there are a limited number of publications available. Funding opportunities for pet food studies would increase research and publications and this would help raise public awareness of pet food related issues. This mini-review addresses current pet food sensory analysis literature and discusses future challenges and possibilities. © 2014 Society of Chemical Industry.

  10. Catalytic Oxidation of Cyanogen Chloride over a Monolithic Oxidation Catalyst

    National Research Council Canada - National Science Library

    Campbell, Jeffrey

    1997-01-01

    The catalytic oxidation of cyanogen chloride was evaluated over a monolithic oxidation catalyst at temperatures between 200 and 300 deg C in air employing feed concentrations between 100 and 10,000 ppm...

  11. Effect of accelerated aging on translucency of monolithic zirconia

    Directory of Open Access Journals (Sweden)

    O. Abdelbary

    2016-12-01

    Conclusion: Thickness of zirconia has significant effect on translucency. Aging has significant effect on thinner sections of zirconia. More research is required on zirconia towards making the material more translucent for its potential use as esthetic monolithic restoration.

  12. Microchip-based monolithic column for high performance liquid chromatography

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed microchip based monolithic columns that can be used for liquid chromatography of small organic molecules, as well as, macromolecules such as...

  13. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin; Blasi, Benedikt; Eisenlohr, Johannes; Kohlstadt, Markus; Lee, Seunghun; Mastroianni, Simone; Mundt, Laura; Mundus, Markus; Ndione, Paul; Reichel, Christian; Schubert, Martin; Schulze, Patricia S.; Tucher, Nico; Veit, Clemens; Veurman, Welmoed; Wienands, Karl; Winkler, Kristina; Wurfel, Uli; Glunz, Stefan W.; Hermle, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  14. Shear bond strength of indirect composite material to monolithic zirconia.

    Science.gov (United States)

    Sari, Fatih; Secilmis, Asli; Simsek, Irfan; Ozsevik, Semih

    2016-08-01

    This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). Bond strength was significantly lower in untreated specimens than in sandblasted specimens (Pcomposite material and monolithic zirconia.

  15. Reliability Analysis and Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, Hans F.; Christiani, E.

    1994-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of the most important failure modes, sliding failure, failure of the foundation and overturning failure are described . Relevant design variables are identified...

  16. Plant oil-based shape memory polymer using acrylic monolith

    Directory of Open Access Journals (Sweden)

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  17. Clinical PET application

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Moo; Hong, Song W.; Choi, Chang W.; Yang, Seong Dae [Korea Cancer Center Hospital, Seoul (Korea)

    1997-12-01

    PET gives various methabolic images, and is very important, new diagnostic modality in clinical oncology. In Korea Cancer Center Hospital, PET is installed as a research tool of long-mid-term atomic research project. For the efficient use of PET for clinical and research projects, income from the patients should be managed to get the raw material, equipment, manpower, and also for the clinical PET research. 1. Support the clinical application of PET in oncology. 2. Budgetary management of income, costs for raw material, equipment, manpower, and the clinical PET research project. In this year, 250 cases of PET images were obtained, which resulted total income of 180,000,000 won. 50,000,000 won was deposited for the 1998 PET clinical research. Second year PET clinical research should be managed under unified project. Increased demand for {sup 18}FDG in and outside KCCH need more than 2 times production of {sup 18}FDG in a day purchase of HPLC pump and {sup 68}Ga pin source which was delayed due to economic crisis, should be done early in 1998. (author). 2 figs., 3 tabs.

  18. Imaging with PET system

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    PET deals with biochemistry and metabolic changes that occur at molecular level. Hence, PET differs fundamentally from other imaging modalities. CT imaging is based on tissue density, whereas MRI conveys anatomic information based on proton density and proton relaxation dynamics. CT and MRI are useful in clinical diagnosis only when disease process has caused significant anatomic alterations. However, in most disease conditions chemical changes precede anatomic changes, that can be detected by PET technology. Thus, PET can provide earliest and unique information about ongoing disease process long before anatomic or structural changes take place. There is no other modality available at present that can replace PET technology. Although PET produces cross-sectional images like that obtained in MRI or CT, they represent circulation, function and metabolism, and not anatomic structure. PET is extremely sensitive measuring quantitatively concentration of tracers in nano to pico-molar range. Thus, PET enables merger of biochemistry and biology in medicine giving birth to molecular medicine that focuses on identifying the molecular errors of disease leading to developing molecular corrections including gene therapy. Molecular imaging with PET has been playing a role in examining the biological nature of a disease condition and its characterization to guide selection and evaluation of treatment. (author)

  19. New DOI identification approach for high-resolution PET detectors

    International Nuclear Information System (INIS)

    Choghadi, Amin; Takahashi, Hiroyuki; Shimazoe, Kenji

    2016-01-01

    Depth-of-interaction (DOI) Identification in positron emission tomography (PET) detectors is getting importance as it improves spatial resolution in both conventional and time-of-flight (TOF) PET, and coincidence time resolution (CTR) in TOF-PET. In both prototypes, spatial resolution is affected by parallax error caused by length of scintillator crystals. This long length also contributes substantial timing uncertainty to the time resolution of TOF-PET. Through DOI identification, both parallax error and the timing uncertainty caused by the length of crystal can be resolved. In this work, a novel approach to estimate DOI was investigated, enjoying the interference of absorbance spectrum of scintillator crystals with their emission spectrum. Because the absorption length is close to zero for shorter wavelengths of crystal emission spectrum, the counts in this range of spectrum highly depend on DOI; that is, higher counts corresponds to deeper interactions. The ratio of counts in this range to the total counts is a good measure to estimate DOI. In order to extract such ratio, two photodetectors for each crystal are used and an optical filter is mounted only on top of one of them. The ratio of filtered output to non-filtered output can be utilized as DOI estimator. For a 2×2×20 mm 3 GAGG:Ce scintillator, 8-mm DOI resolution achieved in our simulations. (author)

  20. Towards a Technique for Extracting Microservices from Monolithic Enterprise Systems

    OpenAIRE

    Levcovitz, Alessandra; Terra, Ricardo; Valente, Marco Tulio

    2016-01-01

    The idea behind microservices architecture is to develop a single large, complex application as a suite of small, cohesive, independent services. On the other way, monolithic systems get larger over the time, deviating from the intended architecture, and becoming risky and expensive to evolve. This paper describes a technique to identify and define microservices on monolithic enterprise systems. As the major contribution, our evaluation shows that our approach was able to identify relevant ca...

  1. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  2. Microwaves integrated circuits: hybrids and monolithics - fabrication technology

    International Nuclear Information System (INIS)

    Cunha Pinto, J.K. da

    1983-01-01

    Several types of microwave integrated circuits are presented together with comments about technologies and fabrication processes; advantages and disadvantages in their utilization are analysed. Basic structures, propagation modes, materials used and major steps in the construction of hybrid thin film and monolithic microwave integrated circuits are described. Important technological applications are revised and main activities of the microelectronics lab. of the University of Sao Paulo (Brazil) in the field of hybrid and monolithic microwave integrated circuits are summarized. (C.L.B.) [pt

  3. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, H. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-09

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  4. Nano-Doped Monolithic Materials for Molecular Separation

    Directory of Open Access Journals (Sweden)

    Caleb Acquah

    2017-01-01

    Full Text Available Monoliths are continuous adsorbents that can easily be synthesised to possess tuneable meso-/macropores, convective fluid transport, and a plethora of chemistries for ligand immobilisation. They are grouped into three main classes: organic, inorganic, and hybrid, based on their chemical composition. These classes may also be differentiated by their unique morphological and physicochemical properties which are significantly relevant to their specific separation applications. The potential applications of monoliths for molecular separation have created the need to enhance their characteristic properties including mechanical strength, electrical conductivity, and chemical and thermal stability. An effective approach towards monolith enhancement has been the doping and/or hybridization with miniaturized molecular species of desirable functionalities and characteristics. Nanoparticles are usually preferred as dopants due to their high solid phase dispersion features which are associated with improved intermolecular adsorptive interactions. Examples of such nanomaterials include, but are not limited to, carbon-based, silica-based, gold-based, and alumina nanoparticles. The incorporation of these nanoparticles into monoliths via in situ polymerisation and/or post-modification enhances surface adsorption for activation and ligand immobilisation. Herein, insights into the performance enhancement of monoliths as chromatographic supports by nanoparticles doping are presented. In addition, the potential and characteristics of less common nanoparticle materials such as hydroxyapatite, ceria, hafnia, and germania are discussed. The advantages and challenges of nanoparticle doping of monoliths are also discussed.

  5. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.

    Science.gov (United States)

    Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi

    2015-02-28

    The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.

  6. Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests

    OpenAIRE

    Mustafa Demir; Türkay Toklu; Mohammad Abuqbeitah; Hüseyin Çetin; H. Sezer Sezgin; Nami Yeyin; Kerim Sönmezoğlu

    2018-01-01

    Objective: The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. Methods: According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated...

  7. Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests

    OpenAIRE

    Demir, Mustafa; Toklu, Türkay; Abuqbeitah, Mohammad; Çetin, Hüseyin; Sezgin, H. Sezer; Yeyin, Nami; Sönmezoğlu, Kerim

    2018-01-01

    Objective: The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. Methods: According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated asp...

  8. PET/CT: underlying physics, instrumentation, and advances.

    Science.gov (United States)

    Torres Espallardo, I

    Since it was first introduced, the main goal of PET/CT has been to provide both PET and CT images with high clinical quality and to present them to radiologists and specialists in nuclear medicine as a fused, perfectly aligned image. The use of fused PET and CT images quickly became routine in clinical practice, showing the great potential of these hybrid scanners. Thanks to this success, manufacturers have gone beyond considering CT as a mere attenuation corrector for PET, concentrating instead on design high performance PET and CT scanners with more interesting features. Since the first commercial PET/CT scanner became available in 2001, both the PET component and the CT component have improved immensely. In the case of PET, faster scintillation crystals with high stopping power such as LYSO crystals have enabled more sensitive devices to be built, making it possible to reduce the number of undesired coincidence events and to use time of flight (TOF) techniques. All these advances have improved lesion detection, especially in situations with very noisy backgrounds. Iterative reconstruction methods, together with the corrections carried out during the reconstruction and the use of the point-spread function, have improved image quality. In parallel, CT instrumentation has also improved significantly, and 64- and 128-row detectors have been incorporated into the most modern PET/CT scanners. This makes it possible to obtain high quality diagnostic anatomic images in a few seconds that both enable the correction of PET attenuation and provide information for diagnosis. Furthermore, nowadays nearly all PET/CT scanners have a system that modulates the dose of radiation that the patient is exposed to in the CT study in function of the region scanned. This article reviews the underlying physics of PET and CT imaging separately, describes the changes in the instrumentation and standard protocols in a combined PET/CT system, and finally points out the most important

  9. Poster - 01: LabPET II Pixelated APD-Based PET Scanner for High-Resolution Preclinical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte, Roger; Arpin, Louis; Beaudoin, Jean-François; Bergeron, Mélanie; Bouchard, Jonathan; Bouziri, Haithem; Cadorette, Jules; Gaudin, Émilie; Jürgensen, Nadia; Koua, Konin Calliste; Trépanier, Pierre-Yves Lauzier; Leroux, Jean-Daniel; Loignon-Houle, Francis; Njejimana, Larissa; Paillé, Maxime; Paulin, Caroline; Pepin, Catherine; Pratte, Jean-François; Samson, Arnaud; Thibaudeau, Christian [Université de Sherbrooke, Université de Sherbrooke, CIMS/CRCHUS, Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke, CIMS/CRCHUS, Université de Sherbrooke, Université de Sherbrooke, 3IT, Université de Sherbrooke, Novalgo Inc., Université de Sherbrooke, Université de Sherbrooke, CIMS/CRCHUS, 3IT, Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke, 3IT, Université de Sherbrooke (Canada); and others

    2016-08-15

    Purpose: LabPET II is a new generation APD-based PET scanner designed to achieve sub-mm spatial resolution using truly pixelated detectors and highly integrated parallel front-end processing electronics. Methods: The basic element uses a 4×8 array of 1.12×1.12 mm{sup 2} Lu{sub 1.9}Y{sub 0.1}SiO{sub 5}:Ce (LYSO) scintillator pixels with one-to-one coupling to a 4×8 pixelated monolithic APD array mounted on a ceramic carrier. Four detector arrays are mounted on a daughter board carrying two flip-chip, 64-channel, mixed-signal, application-specific integrated circuits (ASIC) on the backside interfacing to two detector arrays each. Fully parallel signal processing was implemented in silico by encoding time and energy information using a dual-threshold Time-over-Threshold (ToT) scheme. The self-contained 128-channel detector module was designed as a generic component for ultra-high resolution PET imaging of small to medium-size animals. Results: Energy and timing performance were optimized by carefully setting ToT thresholds to minimize the noise/slope ratio. ToT spectra clearly show resolved 511 keV photopeak and Compton edge with ToT resolution well below 10%. After correction for nonlinear ToT response, energy resolution is typically 24±2% FWHM. Coincidence time resolution between opposing 128-channel modules is below 4 ns FWHM. Initial imaging results demonstrate that 0.8 mm hot spots of a Derenzo phantom can be resolved. Conclusion: A new generation PET scanner featuring truly pixelated detectors was developed and shown to achieve a spatial resolution approaching the physical limit of PET. Future plans are to integrate a small-bore dedicated mouse version of the scanner within a PET/CT platform.

  10. Crystallization of poly(ethyleneterephthalate) modified with codiols

    NARCIS (Netherlands)

    Bouma, K.; Regelink, Marc; Gaymans, R.J.

    2001-01-01

    The nucleation of poly(ethylene terephthalate) (PET) by codiols and olefinic segments was studied. The codiols 1,5-pentanediol, 1,8-octanediol, 2,5-hexanediol, and 1,3-dihydroxymethyl benzene were copolymerized into PET in a concentration range of 0-10 mol %. The melting (Tm), crystallization (Tc),

  11. Monolithic CMOS imaging x-ray spectrometers

    Science.gov (United States)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  12. Development of a PET Insert for simultaneously small animal PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yingjie; Zhang, Zhiming; Li, Daowu; Liu, Shuangquan; Wang, Peilin; Feng, Baotong; Chai, Pei; Wei, Long [Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 (China); Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing, 100049 (China)

    2015-05-18

    PET/MR is a new multi-modality imaging system which provide both structural and functional information with good soft tissue imaging ability and no ionizing radiation. In recent years, PET/MR is under major progress because of the development of silicon photomultipliers (SiPM). The goal of this study is to develop a MRI compatible PET insert based on SiPM and LYSO scintillator. The PET system was constituted by the detector ring, electronics and software. The detector ring consists of 16 detector module. The inner diameter of the ring was 151 mm, the external diameter was 216 mm, which was big enough for small animal research, e.g. rat, rabbit and tupaia. The sensor of each module was 2*2 SensL SPMArraySL, coupled with an array of 14 x 14 LYSO crystals, each crystal measuring 2 mm x 2 mm 10 mm. The detector was encapsulated in a copper box for light and magnetic shielding. Resister charge multiplexing circuit was used in the front end electronics. Each detector output 8X and 8Y position signals. One summed timing signal was extracted from the common cathode of all 64 channels. All these signals were transmitted to digital electronic board by a 3 m long coaxial cable from inside of the MR to the outside. Each digital electronic board handled 8 detector modules based on FPGA to obtain the timing, position and energy information of a single event. And then these single events were sent to the coincidence processing board to produce coincidence packets which are prepared for further processing. A 0.2mCi 68Ge line source was used to do the preliminary imaging test. The image was reconstructed by 3D-OSEM algorithm. The initial result proved the system to be feasible as a PET. FDG phantom imaging and simultaneous PET/MR imaging are in progress.

  13. Simulation study comparing the helmet-chin PET with a cylindrical PET of the same number of detectors

    Science.gov (United States)

    Ahmed, Abdella M.; Tashima, Hideaki; Yoshida, Eiji; Nishikido, Fumihiko; Yamaya, Taiga

    2017-06-01

    There is a growing interest in developing brain PET scanners with high sensitivity and high spatial resolution for early diagnosis of neurodegenerative diseases and studies of brain functions. Sensitivity of the PET scanner can be improved by increasing the solid angle. However, conventional PET scanners are designed based on a cylindrical geometry, which may not be the most efficient design for brain imaging in terms of the balance between sensitivity and cost. We proposed a dedicated brain PET scanner based on a hemispheric shape detector and a chin detector (referred to as the helmet-chin PET), which is designed to maximize the solid angle by increasing the number of lines-of-response in the hemisphere. The parallax error, which PET scanners with a large solid angle tend to have, can be suppressed by the use of depth-of-interaction detectors. In this study, we carry out a realistic evaluation of the helmet-chin PET using Monte Carlo simulation based on the 4-layer GSO detector which consists of a 16  ×  16  ×  4 array of crystals with dimensions of 2.8  ×  2.8  ×  7.5 mm3. The purpose of this simulation is to show the gain in imaging performance of the helmet-chin PET compared with the cylindrical PET using the same number of detectors in each configuration. The sensitivity of the helmet-chin PET evaluated with a cylindrical phantom has a significant increase, especially at the top of the (field-of-view) FOV. The peak-NECR of the helmet-chin PET is 1.4 times higher compared to the cylindrical PET. The helmet-chin PET provides relatively low noise images throughout the FOV compared to the cylindrical PET which exhibits enhanced noise at the peripheral regions. The results show the helmet-chin PET can significantly improve the sensitivity and reduce the noise in the reconstructed images.

  14. Birds Kept as Pets

    Science.gov (United States)

    ... your pet’s health Visit a veterinarian who has experience with pet birds for routine check-ups to keep your bird healthy and prevent infectious diseases. If your bird becomes sick or dies within a month after purchase or adoption: Contact your veterinarian. Inform the pet ...

  15. Model PET Scan Activity

    Science.gov (United States)

    Strunk, Amber; Gazdovich, Jennifer; Redouté, Oriane; Reverte, Juan Manuel; Shelley, Samantha; Todorova, Vesela

    2018-05-01

    This paper provides a brief introduction to antimatter and how it, along with other modern physics topics, is utilized in positron emission tomography (PET) scans. It further describes a hands-on activity for students to help them gain an understanding of how PET scans assist in detecting cancer. Modern physics topics provide an exciting way to introduce students to current applications of physics.

  16. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  17. Finite Element Modeling of Reheat Stretch Blow Molding of PET

    Science.gov (United States)

    Krishnan, Dwarak; Dupaix, Rebecca B.

    2004-06-01

    Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.

  18. Usage of Recycled Pet

    Directory of Open Access Journals (Sweden)

    A. Ebru Tayyar

    2010-01-01

    Full Text Available The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PET bottles are commonly used in beverage industry and can be reused after physical and chemical recycling processes. Usage areas of recycled PET have been developed rapidly. Although recycled PET is used in plastic industry, composite industry also provides usage alternatives of recycled PET. Textile is a suitable sector for recycling of some plastics made of polymers too. In this study, the recycling technologies and applications of waste PET bottles have been investigated and scientific works in this area have been summarized.

  19. Oncology PET imaging

    International Nuclear Information System (INIS)

    Inubushi, Masayuki

    2014-01-01

    At the beginning of this article, likening medical images to 'Where is Waldo?' I indicate the concept of diagnostic process of PET/CT imaging, so that medical physics specialists could understand the role of each imaging modality and infer our distress for image diagnosis. Then, I state the present situation of PET imaging and the basics (e.g. health insurance coverage, clinical significance, principle, protocol, and pitfall) of oncology FDG-PET imaging which accounts for more than 99% of all clinical PET examinations in Japan. Finally, I would like to give a wishful prospect of oncology PET that will expand to be more cancer-specific in order to assess therapeutic effects of emerging molecular targeted drugs targeting the 'hallmarks of cancer'. (author)

  20. Properties of glass-bonded zeolite monoliths

    International Nuclear Information System (INIS)

    Lewis, M.A.; Fischer, D.F.; Murphy, C.D.

    1994-01-01

    It has been shown that mineral waste forms can be used to immobilize waste salt generated during the pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR). Solid, leach resistant monoliths were formed by hot-pressing mixtures of salt-occluded zeolite A powders and glass frit at 990 K and 28 MPa. Additional samples have now been fabricated and tested. Normalized release rates for all elements, including iodide and chloride, were less than 1 g/m 2 d in 28-day tests in deionized water and in brine at 363 K (90 degrees C). Preliminary results indicate that these rates fall with time with both leachants and that the zeolite phase in the glass-bonded zeolite does not function as an ion exchanger. Some material properties were measured. The Poisson ratio and Young's modulus were slightly smaller in glass-bonded zeolite than in borosilicate glass. Density depended on zeolite fraction. The glass-bonded zeolite represents a promising mineral waste form for IFR salt

  1. Neutron spectrometry with a monolithic silicon telescope.

    Science.gov (United States)

    Agosteo, S; D'Angelo, G; Fazzi, A; Para, A Foglio; Pola, A; Zotto, P

    2007-01-01

    A neutron spectrometer was set-up by coupling a polyethylene converter with a monolithic silicon telescope, consisting of a DeltaE and an E stage-detector (about 2 and 500 microm thick, respectively). The detection system was irradiated with monoenergetic neutrons at INFN-Laboratori Nazionali di Legnaro (Legnaro, Italy). The maximum detectable energy, imposed by the thickness of the E stage, is about 8 MeV for the present detector. The scatter plots of the energy deposited in the two stages were acquired using two independent electronic chains. The distributions of the recoil-protons are well-discriminated from those due to secondary electrons for energies above 0.350 MeV. The experimental spectra of the recoil-protons were compared with the results of Monte Carlo simulations using the FLUKA code. An analytical model that takes into account the geometrical structure of the silicon telescope was developed, validated and implemented in an unfolding code. The capability of reproducing continuous neutron spectra was investigated by irradiating the detector with neutrons from a thick beryllium target bombarded with protons. The measured spectra were compared with data taken from the literature. Satisfactory agreement was found.

  2. 2D imaging simulations of a small animal PET scanner with DOI measurement. jPET-RD

    International Nuclear Information System (INIS)

    Yamaya, Taiga; Hagiwara, Naoki

    2005-01-01

    We present a preliminary study on the design of a high sensitivity small animal depth of interaction (DOI)-PET scanner: jPET-RD (for Rodents with DOI detectors), which will contribute to molecular imaging. The 4-layer DOI block detector for the jPET-RD that consists of scintillation crystals (1.4 mm x 1.4 mm x 4.5 mm) and a flat panel position-sensitive photomultiplier tube (52 mm x 52 mm) was previously proposed. In this paper, we investigate imaging performance of the jPET-RD through numerical simulations. The scanner has a hexagonal geometry with a small diameter and a large axial aperture. Therefore DOI information is expected to improve resolution uniformity in the whole field of view (FOV). We simulate the scanner for various parameters of the number of DOI channels and the crystal length. Simulated data are reconstructed using the maximum likelihood expectation maximization with accurate system modeling. The trade-off results between background noise and spatial resolution show that only shortening the length of crystal does not improve the trade-off at all, and that 4-layer DOI information improves uniformity of spatial resolution in the whole FOV. Excellent performance of the jPET-RD can be expected based on the numerical simulation results. (author)

  3. Simulation of time curves in small animal PET using GATE

    International Nuclear Information System (INIS)

    Simon, Luc; Strul, Daniel; Santin, Giovanni; Krieguer, Magalie; Morel, Christian

    2004-01-01

    The ClearPET project of the Crystal Clear Collaboration (CCC) is building spin-off technology for high resolution small animal Positron Emission Tomography (PET). Monte Carlo simulation is essential for optimizing the specifications of these systems with regards to their most important characteristics, such as spatial resolution, sensitivity, or count rate performance. GATE, the Geant4 Application for Tomographic Emission simulates the passing of time during real acquisitions, allowing to handle dynamic systems such as decaying source distributions or moving detectors. GATE output is analyzed on an event-by-event basis. The time associated with each single event allows to sort coincidences and to model dead-time. This leads to the study of time curves for a prospective small animal PET scanner design. The count rates of true, and random coincidences are discussed together with the corresponding Noise Equivalent Count (NEC) rates as a function of some PET scanner specifications such as detector dead time, or coincidence time window

  4. Validation of a simultaneous PET/MR system model for PET simulation using GATE

    International Nuclear Information System (INIS)

    Monnier, Florian; Fayad, Hadi; Bert, Julien; Schmidt, Holger; Visvikis, Dimitris

    2015-01-01

    Simultaneous PET/MR acquisition shows promise in a range of applications. Simulation using GATE is an essential tool that allows obtaining the ground truth for such acquisitions and therefore helping in the development and the validation of innovative processing methods such as PET image reconstruction, attenuation correction and motion correction. The purpose of this work is to validate the GATE simulation of the Siemens Biograph mMR PET/MR system. A model of the Siemens Biograph mMR was developed. This model includes the geometry and spatial positioning of the crystals inside the scanner and the characteristics of the detection process. The accuracy of the model was tested by comparing, on a real physical phantom study, GATE simulated results to reconstructed PET images using measured results obtained from a Siemens Biograph mMR system. The same parameters such as the acquisition time and phantom position inside the scanner were fixed for our simulations. List-mode outputs were recovered in both cases and reconstructed using the OPL-EM algorithm. Several parameters were used to compare the two reconstructed images such as profile comparison, signal-to-noise ratio and activity contrast analysis. Finally patient acquired MR images were segmented and used for the simulation of corresponding PET images. The simulated and acquired sets of reconstructed phantom images showed close emission values in regions of interest with relative differences lower than 5%. The scatter fraction was within a <3% agreement. Close matching of profiles and contrast indices were obtained between simulated and corresponding acquired PET images. Our results indicate that the GATE developed Biograph mMR model is accurate in comparison to the real scanner performance and can be used for evaluating innovative processing methods for applications in clinical PET/MR protocols.

  5. Large microwave tunability of GaAs-based multiferroic heterostructure for applications in monolithic microwave integrated circuits

    International Nuclear Information System (INIS)

    Chen Yajie; Gao Jinsheng; Vittoria, C; Harris, V G; Heiman, D

    2010-01-01

    Microwave magnetoelectric coupling in a ferroelectric/ferromagnetic/semiconductor multiferroic (MF) heterostructure, consisting of a Co 2 MnAl epitaxial film grown on a GaAs substrate bonded to a lead magnesium niobate-lead titanate (PMN-PT) crystal, is reported. Ferromagnetic resonance measurements were carried out at X-band under the application of electric fields. Results indicate a frequency tuning of 125 MHz for electric field strength of 8 kV cm -1 resulting in a magnetoelectric coupling coefficient of 3.4 Oe cm kV -1 . This work explores the potential of electronically controlled MF devices for use in future monolithic microwave integrated circuits.

  6. Scintillator studies for the HPD-PET concept

    CERN Document Server

    Braem, D; Ciocia, F; De Leo, R; Joram, C; Lagamba, L; Nappi, E; Séguinot, Jacques; Vilardi, I; Weilhammer, P

    2007-01-01

    The spatial, energy, and time resolutions of 10 cm long polished YAP:Ce and LYSO:Ce crystals have been measured. The work is part of the novel HPD-PET concept, based on a full three-dimensional, free of parallax errors, reconstruction of the γ-ray interaction point in 10–15 cm long scintillators. The effective light attenuation length, a key parameter of the HPD-PET concept, and the resolutions have been measured for various wrappings and coatings of the crystal lateral surfaces. Even if the final HPD-PET prototype could use scintillators and/or wrappings different from those tested, the results here presented prove the feasibility of the concept and provide hints on its potential capabilities.

  7. Next generation PET data acquisition architectures

    Science.gov (United States)

    Jones, W. F.; Reed, J. H.; Everman, J. L.; Young, J. W.; Seese, R. D.

    1997-06-01

    New architectures for higher performance data acquisition in PET are proposed. Improvements are demanded primarily by three areas of advancing PET state of the art. First, larger detector arrays such as the Hammersmith ECAT/sup (R/) EXACT HR/sup ++/ exceed the addressing capacity of 32 bit coincidence event words. Second, better scintillators (LSO) make depth-of interaction (DOI) and time-of-flight (TOF) operation more practical. Third, fully optimized single photon attenuation correction requires higher rates of data collection. New technologies which enable the proposed third generation Real Time Sorter (RTS III) include: (1) 80 Mbyte/sec Fibre Channel RAID disk systems, (2) PowerPC on both VMEbus and PCI Local bus, and (3) quadruple interleaved DRAM controller designs. Data acquisition flexibility is enhanced through a wider 64 bit coincidence event word. PET methodology support includes DOI (6 bits), TOF (6 bits), multiple energy windows (6 bits), 512/spl times/512 sinogram indexes (18 bits), and 256 crystal rings (16 bits). Throughput of 10 M events/sec is expected for list-mode data collection as well as both on-line and replay histogramming. Fully efficient list-mode storage for each PET application is provided by real-time bit packing of only the active event word bits. Real-time circuits provide DOI rebinning.

  8. Next generation PET data acquisition architectures

    International Nuclear Information System (INIS)

    Jones, W.F.; Reed, J.H.; Everman, J.L.

    1996-01-01

    New architectures for higher performance data acquisition in PET are proposed. Improvements are demanded primarily by three areas of advancing PET state of the art. First, larger detector arrays such as the Hammersmith ECAT reg-sign EXACT HR ++ exceed the addressing capacity of 32 bit coincidence event words. Second, better scintillators (LSO) make depth-of-interaction (DOI) and time-of-flight (TOF) operation more practical. Third, fully optimized single photon attenuation correction requires higher rates of data collection. New technologies which enable the proposed third generation Real Time Sorter (RTS III) include: (1) 80 M byte/sec Fibre Channel RAID disk systems, (2) PowerPC on both VMEbus and PCI Local bus, and (3) quadruple interleaved DRAM controller designs. Data acquisition flexibility is enhanced through a wider 64 bit coincidence event word. PET methodology support includes DOI (6 bits), TOF (6 bits), multiple energy windows (6 bits), 512 x 512 sinogram indexes (18 bits), and 256 crystal rings (16 bits). Throughput of 10 M events/sec is expected for list-mode data collection as well as both on-line and replay histogramming. Fully efficient list-mode storage for each PET application is provided by real-time bit packing of only the active event word bits. Real-time circuits provide DOI rebinning

  9. ClearPEM: prototype PET device dedicated to breast imaging

    CERN Multimedia

    Joao Varela

    2009-01-01

    Clinical trials have begun in Portugal on a new breast imaging system (ClearPEM) using positron emission tomography (PET). The system, developed by a Portuguese consortium in collaboration with CERN and laboratories participating in the Crystal Clear collaboration, will detect even the smallest tumours and thus help avoid unnecessary biopsies.

  10. The performance characteristics of the Philips Gemini PET/CT scanner

    International Nuclear Information System (INIS)

    O'Keefe, G.J.; Papenfuss, A.T.; Scott, A.M.; Rowe, C.C.

    2002-01-01

    Full text: The Department of Nuclear Medicine, Centre for PET at the ARMC is commissioning a next generation PET/CT scanner based on gadolinium silicic dioxide (GSO) crystal technology to replace the BGO crystal PET scanner that has been in operation since 1992. The Gemini PET/CT scanner is a fully 3D PET system which offers significantly increased resolution and sensitivity allowing wholebody scans in under 30 minutes. Until the late 90's, PET scanners were largely used with septa for neurological imaging and the performance characteristics of PET scanners were presented according to the NEMA-NU2-94 standard which specifically addresses the performance of PET scanners for neurological applications. PET is now largely used without septa for oncological imaging and as such, the NEMA-NU2-94 standard does not adequately reflect performance. The NEMA-NU2-2001 standard was designed to incorporate the effects of out-of-FOV activity and its contribution to performance by virtue of the increased scatter and randoms that result when performing wholebody scans without the use of septa. As part of the acceptance program of the Allegro/Gemini systems, the NEMA-NU2-2001 standard will be used to characterise the spatial resolution, sensitivity, randoms and scatter contributions and the Noise Equivalent Count rate (NECr). These results will be presented and compared with the ECAT 951/31R performance characteristics. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  11. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    Energy Technology Data Exchange (ETDEWEB)

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most

  12. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  13. Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests.

    Science.gov (United States)

    Demir, Mustafa; Toklu, Türkay; Abuqbeitah, Mohammad; Çetin, Hüseyin; Sezgin, H Sezer; Yeyin, Nami; Sönmezoğlu, Kerim

    2018-02-01

    The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated aspects were spatial resolution, sensitivity, scatter fraction, count rate performance, image quality, count loss and random events correction accuracy. The findings of this study demonstrated superior sensitivity (~ 4 folds) of PET scanner in PET/MR compared to PET/CT system. Image quality test exhibited higher contrast in PET/MR (~ 9%) compared with PET/CT. The scatter fraction of PET/MR was 43.4% at noise equivalent count rate (NECR) peak of 218 kcps and the corresponding activity concentration was 17.7 kBq/cc. Whereas the scatter fraction of PET/CT was found as 39.2% at NECR peak of 72 kcps and activity concentration of 24.3 kBq/cc. The percentage error of the random event correction accuracy was 3.4% and 3.1% in PET/MR and PET/CT, respectively. It was concluded that PET/MR system is about 4 times more sensitive than PET/CT, and the contrast of hot lesions in PET/MR was ~ 9% higher than PET/CT. These outcomes also emphasize the possibility to achieve excellent clinical PET images with low administered dose and/or a short acquisition time in PET/MR.

  14. Edge chipping and flexural resistance of monolithic ceramics☆

    Science.gov (United States)

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  15. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    Science.gov (United States)

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Aspartic acid incorporated monolithic columns for affinity glycoprotein purification.

    Science.gov (United States)

    Armutcu, Canan; Bereli, Nilay; Bayram, Engin; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-02-01

    Novel aspartic acid incorporated monolithic columns were prepared to efficiently affinity purify immunoglobulin G (IgG) from human plasma. The monolithic columns were synthesised in a stainless steel HPLC column (20 cm × 5 mm id) by in situ bulk polymerisation of N-methacryloyl-L-aspartic acid (MAAsp), a polymerisable derivative of L-aspartic acid, and 2-hydroxyethyl methacrylate (HEMA). Monolithic columns [poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid) (PHEMAsp)] were characterised by swelling studies, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The monolithic columns were used for IgG adsorption/desorption from aqueous solutions and human plasma. The IgG adsorption depended on the buffer type, and the maximum IgG adsorption from aqueous solution in phosphate buffer was 0.085 mg/g at pH 6.0. The monolithic columns allowed for one-step IgG purification with a negligible capacity decrease after ten adsorption-desorption cycles. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Monolithic View of Galaxy Formation and Evolution

    Directory of Open Access Journals (Sweden)

    Cesare Chiosi

    2014-07-01

    Full Text Available We review and critically discuss the current understanding of galaxy formation and evolution limited to Early Type Galaxies (ETGs as inferred from the observational data and briefly contrast the hierarchical and quasi-monolithic paradigms of formation and evolution. Since in Cold Dark Matter (CDM cosmogony small scale structures typically collapse early and form low-mass haloes that subsequently can merge to assembly larger haloes, galaxies formed in the gravitational potential well of a halo are also expected to merge thus assembling their mass hierarchically. Mergers should occur all over the Hubble time and large mass galaxies should be in place only recently. However, recent observations of high redshift galaxies tell a different story: massive ETGs are already in place at high redshift. To this aim, we propose here a revision of the quasi-monolithic scenario as an alternative to the hierarchical one, in which mass assembling should occur in early stages of a galaxy lifetime and present recent models of ETGs made of Dark and Baryonic Matter in a Λ-CDM Universe that obey the latter scheme. The galaxies are followed from the detachment from the linear regime and Hubble flow at z ≥ 20 down to the stage of nearly complete assembly of the stellar content (z ∼ 2 − 1 and beyond.  It is found that the total mass (Mh = MDM + MBM and/or initial over-density of the proto-galaxy drive the subsequent star formation histories (SFH. Massive galaxies (Mh ~ _1012M⊙ experience a single, intense burst of star formation (with rates ≥ 103M⊙/yr at early epochs, consistently with observations, with a weak dependence on the initial over-density; intermediate mass haloes (Mh~_ 1010 − 1011M⊙ have star formation histories that strongly depend on their initial over-density; finally, low mass haloes (Mh ~_ 109M⊙ always have erratic, burst-like star forming histories. The present-day properties (morphology, structure, chemistry and photometry of the

  18. Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator

    Science.gov (United States)

    Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.

    2014-02-01

    We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.

  19. Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Rollo, F.D.; Hines, H.

    2001-01-01

    ADAC Laboratories has two main imaging strengths: PET and Gamma Cameras. PET's three-dimensional imaging of metabolic function is used in oncology, with emerging opportunties in cardiology, genetic mapping and pharmaceuticals research. In oncology, PET imaging can provide comprehensive and accurate staging information which is not available from CT or MRI. In some cases, this information can lead to modification of treatment, for example from an aggressive approach to one of palliation. The SKYLight is the world's first and only gantry-free camera. It is a dual-detector variable angle camera designed for high throughput, with unsurpassed openness and patient access. (orig.)

  20. Monolithic Chip-Integrated Absorption Spectrometer from 3-5 microns, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A monolithically integrated indium phosphide (InP) to silicon-on-sapphire (SoS) platform is being proposed for a monolithic portable or handheld spectrometer between...

  1. High-Q/V Monolithic Diamond Microdisks Fabricated with Quasi-isotropic Etching.

    Science.gov (United States)

    Khanaliloo, Behzad; Mitchell, Matthew; Hryciw, Aaron C; Barclay, Paul E

    2015-08-12

    Optical microcavities enhance light-matter interactions and are essential for many experiments in solid state quantum optics, optomechanics, and nonlinear optics. Single crystal diamond microcavities are particularly sought after for applications involving diamond quantum emitters, such as nitrogen vacancy centers, and for experiments that benefit from diamond's excellent optical and mechanical properties. Light-matter coupling rates in experiments involving microcavities typically scale with Q/V, where Q and V are the microcavity quality-factor and mode-volume, respectively. Here we demonstrate that microdisk whispering gallery mode cavities with high Q/V can be fabricated directly from bulk single crystal diamond. By using a quasi-isotropic oxygen plasma to etch along diamond crystal planes and undercut passivated diamond structures, we create monolithic diamond microdisks. Fiber taper based measurements show that these devices support TE- and TM-like optical modes with Q > 1.1 × 10(5) and V < 11(λ/n) (3) at a wavelength of 1.5 μm.

  2. CHARACTERIZATION OF MONOLITHIC FUEL FOIL PROPERTIES AND BOND STRENGTH

    International Nuclear Information System (INIS)

    D E Burkes; D D Keiser; D M Wachs; J S Larson; M D Chapple

    2007-01-01

    Understanding fuel foil mechanical properties, and fuel/cladding bond quality and strength in monolithic plates is an important area of investigation and quantification. Specifically, what constitutes an acceptable monolithic fuel--cladding bond, how are the properties of the bond measured and determined, and what is the impact of fabrication process or change in parameters on the level of bonding? Currently, non-bond areas are quantified employing ultrasonic determinations that are challenging to interpret and understand in terms of irradiation impact. Thus, determining mechanical properties of the fuel foil and what constitutes fuel/cladding non-bonds is essential to successful qualification of monolithic fuel plates. Capabilities and tests related to determination of these properties have been implemented at the INL and are discussed, along with preliminary results

  3. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Directory of Open Access Journals (Sweden)

    Cheng Chuantong

    2017-07-01

    Full Text Available Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  4. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Science.gov (United States)

    Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda

    2017-07-01

    Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  5. Four-layer depth-of-interaction PET detector for high resolution PET using a multi-pixel S8550 avalanche photodiode

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Inadama, Naoko; Oda, Ichiro; Shibuya, Kengo; Yoshida, Eiji; Yamaya, Taiga; Kitamura, Keishi; Murayama, Hideo

    2010-01-01

    Avalanche photodiodes (APDs) are being used as photodetectors in positron emission tomography (PET) because they have many advantages over photomultipliers (PMTs) typically used in PET detectors. We have developed a PET detector that consists of a multi-pixel APD and a 6x6x4 array of 1.46x1.46 mm 2 x4.5 m LYSO crystals for a small animal PET scanner. The detector can identify four-layer depth of interaction (DOI) with a position-sensitive APD coupled to the backside of a crystal array by just an optimized reflector arrangement. Since scintillation lights are shared among many pixels by the method, weaker signals in APD pixels far from the interacting crystals are affected by noise. To evaluate the performance of the four-layer DOI detector with the APD and the influence of electrical noise on our method, we constructed a prototype DOI detector and tested its performance. We found, except for crystal elements on the edge of the crystal array, all crystal elements could be identified from the 2D position histogram. An energy resolution of 16.9% was obtained for the whole crystal array of the APD detector. The results of noise dependence of detector performances indicated that the DOI detector using the APD could achieve sufficient performance even when using application-specific integrated circuits.

  6. Four-layer depth-of-interaction PET detector for high resolution PET using a multi-pixel S8550 avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko, E-mail: funis@nirs.go.j [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Inadama, Naoko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Oda, Ichiro [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Shibuya, Kengo; Yoshida, Eiji; Yamaya, Taiga [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kitamura, Keishi [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Murayama, Hideo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2010-09-21

    Avalanche photodiodes (APDs) are being used as photodetectors in positron emission tomography (PET) because they have many advantages over photomultipliers (PMTs) typically used in PET detectors. We have developed a PET detector that consists of a multi-pixel APD and a 6x6x4 array of 1.46x1.46 mm{sup 2}x4.5 m LYSO crystals for a small animal PET scanner. The detector can identify four-layer depth of interaction (DOI) with a position-sensitive APD coupled to the backside of a crystal array by just an optimized reflector arrangement. Since scintillation lights are shared among many pixels by the method, weaker signals in APD pixels far from the interacting crystals are affected by noise. To evaluate the performance of the four-layer DOI detector with the APD and the influence of electrical noise on our method, we constructed a prototype DOI detector and tested its performance. We found, except for crystal elements on the edge of the crystal array, all crystal elements could be identified from the 2D position histogram. An energy resolution of 16.9% was obtained for the whole crystal array of the APD detector. The results of noise dependence of detector performances indicated that the DOI detector using the APD could achieve sufficient performance even when using application-specific integrated circuits.

  7. An improved multicrystal 2-D BGO detector for PET

    International Nuclear Information System (INIS)

    Rogers, J.G.; Taylor, A.J.; Rahimi, M.F.; Nutt, R.; Andreaco, M.; Williams, C.W.

    1992-01-01

    In this paper, the authors evaluate and compare two new 2-D array detectors for PET. Both consist of an 8 x 8 array of small BGO crystals coupled to a 2 x 2 array of photomultiplier tubes. The depth of the crystals is 3 cm in one detector and 2 cm in the other. The 2 cm detector is obviously superior in terms of material costs, but is also superior in energy resolution per crystal, and in its ability to clearly identify the crystal containing the primary interaction. The authors present a flexible and robust algorithm for crystal identification in such array detectors. The prospect of obtaining still better spatial resolution from such block detectors, with increased numbers of crystals, is discussed

  8. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    OpenAIRE

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructu...

  9. EFFECT OF INTERFACIAL ADHESION ON CRYSTALLIZATION AND MECHANICAL PROPERTIES OF POLY (ETHYLENE TEREPHTHALATE)/GLASS BEAD COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    OU Yuchun; YU Zhongzhen; ZHU Jin; LI Ge; ZHU Shanguang

    1996-01-01

    The interfacial adhesion between poly (ethylene terephthalate) (PET) and glass bead was investigated by scanning electron microscope and parallel-plate rheometer. Effect of interfacial adhesion on the crystallization and mechanical properties of PET/glass bead composites was also studied by differential scanning calorimeter and mechanical testers.The results obtained indicate that the glass bead has a heterogeneous nucleation effect on the PET crystallization. Although better interfacial adhesion is advantageous to the increase of the tensile strength of the composite, yet it is unfavorable to the crystallization of PET. It should be pointed out that the crystallization rate of filled PET is always higher than that of pure PET, regardless of the state of interfacial adhesion.

  10. PET studies in epilepsy

    Science.gov (United States)

    Sarikaya, Ismet

    2015-01-01

    Various PET studies, such as measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and receptor bindings are availabe for epilepsy. 18Fluoro-2-deoxyglucose (18F-FDG) PET imaging of brain glucose metabolism is a well established and widely available technique. Studies have demonstrated that the sensitivity of interictal FDG-PET is higher than interictal SPECT and similar to ictal SPECT for the lateralization and localization of epileptogenic foci in presurgical patients refractory to medical treatments who have noncontributory EEG and MRI. In addition to localizing epileptogenic focus, FDG-PET provide additional important information on the functional status of the rest of the brain. The main limitation of interictal FDG-PET is that it cannot precisely define the surgical margin as the area of hypometabolism usually extends beyond the epileptogenic zone. Various neurotransmitters (GABA, glutamate, opiates, serotonin, dopamine, acethylcholine, and adenosine) and receptor subtypes are involved in epilepsy. PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches. PET receptor imaging studies have demonstrated reduced 11C-flumazenil (GABAA-cBDZ) and 18F-MPPF (5-HT1A serotonin) and increased 11C-cerfentanil (mu opiate) and 11C-MeNTI (delta opiate) bindings in the area of seizure. 11C-flumazenil has been reported to be more sensitive than FDG-PET for identifying epileptic foci. The area of abnormality on GABAAcBDZ and opiate receptor images is usually smaller and more circumscribed than the area of hypometabolism on FDG images. Studies have demonstrated that 11C-alpha-methyl-L-tryptophan PET (to study synthesis of serotonin) can detect the epileptic focus within malformations of cortical development and helps in differentiating epileptogenic from non-epileptogenic tubers in patients with tuberous sclerosis complex

  11. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar

    Science.gov (United States)

    Suckow, Will; Roberts, Tony; Switzer, Gregg; Terwilliger, Chelle

    2011-01-01

    Current fiber switch technologies use mechanical means to redirect light beams, resulting in slow switch time, as well as poor reliability due to moving parts wearing out quickly at high speeds. A non-mechanical ability to switch laser output into one of multiple fibers within a fiber array can provide significant power, weight, and costs savings to an all-fiber system. This invention uses an array of crystals that act as miniature prisms to redirect light as an electric voltage changes the prism s properties. At the heart of the electro-optic fiber-optic switch is an electro- optic crystal patterned with tiny prisms that can deflect the beam from the input fiber into any one of the receiving fibers arranged in a linear array when a voltage is applied across the crystal. Prism boundaries are defined by a net dipole moment in the crystal lattice that has been poled opposite to the surrounding lattice fabricated using patterned, removable microelectrodes. When a voltage is applied across the crystal, the resulting electric field changes the index of refraction within the prism boundaries relative to the surrounding substrate, causing light to deflect slightly according to Snell s Law. There are several materials that can host the necessary monolithic poled pattern (including, but not limited to, SLT, KTP, LiNbO3, and Mg:LiNbO3). Be cause this is a solid-state system without moving parts, it is very fast, and does not wear down easily. This invention is applicable to all fiber networks, as well as industries that use such networks. The unit comes in a compact package, can handle both low and high voltages, and has a high reliability (100,000 hours without maintenance).

  12. PET and Recycling

    OpenAIRE

    Funda Sevencan; Songul A. Vaizoglu

    2007-01-01

    This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET) is the most commonly used plastics. PET is used to protect food, drinking water,...

  13. Numerical Simulation of Fluid Dynamics in a Monolithic Column

    Directory of Open Access Journals (Sweden)

    Kazuhiro Yamamoto

    2017-01-01

    Full Text Available As for the measurement of polycyclic aromatic hydrocarbons (PAHs, ultra-performance liquid chromatography (UPLC is used for PAH identification and densitometry. However, when a solvent containing a substance to be identified passes through a column of UPLC, a dedicated high-pressure-proof device is required. Recently, a liquid chromatography instrument using a monolithic column technology has been proposed to reduce the pressure of UPLC. The present study tested five types of monolithic columns produced in experiments. To simulate the flow field, the lattice Boltzmann method (LBM was used. The velocity profile was discussed to decrease the pressure drop in the ultra-performance liquid chromatography (UPLC system.

  14. Paladin Enterprises: Monolithic particle physics models global climate.

    CERN Multimedia

    2002-01-01

    Paladin Enterprises presents a monolithic particle model of the universe which will be used by them to build an economical fusion energy system. The model is an extension of the work done by James Clerk Maxwell. Essentially, gravity is unified with electro-magnetic forces and shown to be a product of a closed loop current system, i.e. a particle - monolithic or sub atomic. This discovery explains rapid global climate changes which are evident in the geological record and also provides an explanation for recent changes in the global climate.

  15. Constitutive Theory Developed for Monolithic Ceramic Materials

    Science.gov (United States)

    Janosik, Lesley A.

    1998-01-01

    with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.

  16. Polyurea-Based Aerogel Monoliths and Composites

    Science.gov (United States)

    Lee, Je Kyun

    2012-01-01

    aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection for government and commercial applications. The rubbery polyureabased aerogel exhibits little dustiness, good flexibility and toughness, and durability typical of the parent polyurea polymer, yet with the low density and superior insulation properties associated with aerogels. The thermal conductivity values of polyurea-based aerogels at lower temperature under vacuum pressures are very low and better than that of silica aerogels. Flexible, rubbery polyurea-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogels, including polyisocyanurate aerogels, which are generally prepared with the one similar component to polyurethane rubber aerogels. Additionally, with higher content of hydrogen in their structures, the polyurea rubber-based aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. The aerogel materials also demonstrate good hydrophobicity due to their hydrocarbon molecular structure. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven to be one promising approach, providing a conveniently fielded form factor that is relatively robust in industrial environments compared to silica aerogel monoliths. However, the flexible, silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain application environments. Although the cross - linked organic aerogels, such as resorcinol- formaldehyde (RF), polyisocyanurate, and cellulose aerogels, show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient radiation shielding materials due

  17. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-11

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm{sup 3} uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm){sup 3} to (2 mm){sup 3} in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm){sup 3} to (9 mm){sup 3}. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm){sup 3} even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm){sup 3} cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial

  18. PET performance evaluation of MADPET4: a small animal PET insert for a 7 T MRI scanner

    Science.gov (United States)

    Omidvari, Negar; Cabello, Jorge; Topping, Geoffrey; Schneider, Florian R.; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I.

    2017-11-01

    MADPET4 is the first small animal PET insert with two layers of individually read out crystals in combination with silicon photomultiplier technology. It has a novel detector arrangement, in which all crystals face the center of field of view transaxially. In this work, the PET performance of MADPET4 was evaluated and compared to other preclinical PET scanners using the NEMA NU 4 measurements, followed by imaging a mouse-size hot-rod resolution phantom and two in vivo simultaneous PET/MRI scans in a 7 T MRI scanner. The insert had a peak sensitivity of 0.49%, using an energy threshold of 350 keV. A uniform transaxial resolution was obtained up to 15 mm radial offset from the axial center, using filtered back-projection with single-slice rebinning. The measured average radial and tangential resolutions (FWHM) were 1.38 mm and 1.39 mm, respectively. The 1.2 mm rods were separable in the hot-rod phantom using an iterative image reconstruction algorithm. The scatter fraction was 7.3% and peak noise equivalent count rate was 15.5 kcps at 65.1 MBq of activity. The FDG uptake in a mouse heart and brain were visible in the two in vivo simultaneous PET/MRI scans without applying image corrections. In conclusion, the insert demonstrated a good overall performance and can be used for small animal multi-modal research applications.

  19. Kinetic analysis of dynamic PET data

    Energy Technology Data Exchange (ETDEWEB)

    Knittel, B.

    1983-12-01

    Our goal is to quantify regional physiological processes such as blood flow and metabolism by means of tracer kinetic modeling and positron emission tomography (PET). Compartmental models are one way of characterizing the behavior of tracers in physiological systems. This paper describes a general method of estimating compartmental model rate constants from measurements of the concentration of tracers in blood and tissue, taken at multiple time intervals. A computer program which applies the method is described, and examples are shown for simulated and actual data acquired from the Donner 280-Crystal Positron Tomograph.

  20. Kinetic analysis of dynamic PET data

    International Nuclear Information System (INIS)

    Knittel, B.

    1983-12-01

    Our goal is to quantify regional physiological processes such as blood flow and metabolism by means of tracer kinetic modeling and positron emission tomography (PET). Compartmental models are one way of characterizing the behavior of tracers in physiological systems. This paper describes a general method of estimating compartmental model rate constants from measurements of the concentration of tracers in blood and tissue, taken at multiple time intervals. A computer program which applies the method is described, and examples are shown for simulated and actual data acquired from the Donner 280-Crystal Positron Tomograph

  1. Development and characterization of methacrylate-based hydrazide monoliths for oriented immobilization of antibodies.

    Science.gov (United States)

    Brne, P; Lim, Y-P; Podgornik, A; Barut, M; Pihlar, B; Strancar, A

    2009-03-27

    Convective interaction media (CIM; BIA Separations) monoliths are attractive stationary phases for use in affinity chromatography because they enable fast affinity binding, which is a consequence of convectively enhanced mass transport. This work focuses on the development of novel CIM hydrazide (HZ) monoliths for the oriented immobilization of antibodies. Adipic acid dihydrazide (AADH) was covalently bound to CIM epoxy monoliths to gain hydrazide groups on the monolith surface. Two different antibodies were afterwards immobilized to hydrazide functionalized monolithic columns and prepared columns were tested for their selectivity. One column was further tested for the dynamic binding capacity.

  2. The journey: from X-rays to PET-MRI

    International Nuclear Information System (INIS)

    Sheikh, Tariq Hussain

    2010-01-01

    has a common patient palette (bed), which travels from the CT gantry to the PET gantry. These advancements have led to better image registration and higher patient throughput. With further developments in crystal design, time of flight processing, CT based partial volume correction, multi-detector CT, short breath holding times, respiratory gating and newer reconstruction algorithms. PET-CTs of today have reached an unprecedented resolution reaching 2 mm across the field of view in the PET component with sub millimeter resolutions in CT. In short we have reached a long way over the last century, from X-Rays to the inception of PET-MRI, the only hindrance is the availability and high cost which we hope will improve in the days to come

  3. Comparison of monolithic silica and polymethacrylate capillary columns for LC

    Czech Academy of Sciences Publication Activity Database

    Moravcová, D.; Jandera, P.; Urban, J.; Planeta, Josef

    2004-01-01

    Roč. 27, 10-11 (2004), s. 789-800 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA203/02/0023 Keywords : monolithic column s * capillary HPLC * column testing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.927, year: 2004

  4. Characterization of polymer monolithic stationary phases for capillary HPLC

    Czech Academy of Sciences Publication Activity Database

    Moravcová, D.; Jandera, P.; Urban, J.; Planeta, Josef

    2003-01-01

    Roč. 26, č. 11 (2003), s. 1005-1016 ISSN 1615-9306 R&D Projects: GA ČR GA203/02/0023 Institutional research plan: CEZ:AV0Z4031919; CEZ:MSM 253100002 Keywords : monolithic column s * capillary HPLC * column testing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.108, year: 2003

  5. Integration trends in monolithic power ICs: Application and technology challenges

    NARCIS (Netherlands)

    Rose, M.; Bergveld, H.J.

    2016-01-01

    This paper highlights the general trend towards further monolithic integration in power applications by enabling power management and interfacing solutions in advanced CMOS nodes. The need to combine high-density digital circuits, power-management circuits, and robust interfaces in a single

  6. High density fuels using dispersion and monolithic fuel

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia; Universidade de São Paulo

    2017-01-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  7. A 60-GHz rectenna for monolithic wireless sensor tags

    NARCIS (Netherlands)

    Gao, H.; Johannsen, U.; Matters - Kammerer, M.; Milosevic, D.; Smolders, A.B.; Roermund, van A.H.M.; Baltus, P.G.M.

    2013-01-01

    This paper presents the design of a 60-GHz rectenna with an on-chip antenna and rectifier in 65nm CMOS technology. The rectenna is often the bottleneck in realizing a fully-integrated monolithic wireless sensor tag. In this paper, problems of the mm-wave rectifier are discussed, and the

  8. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge...

  9. High density fuels using dispersion and monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  10. Monolithic microwave integrated circuit with integral array antenna

    International Nuclear Information System (INIS)

    Stockton, R.J.; Munson, R.E.

    1984-01-01

    A monolithic microwave integrated circuit including an integral array antenna. The system includes radiating elements, feed network, phasing network, active and/or passive semiconductor devices, digital logic interface circuits and a microcomputer controller simultaneously incorporated on a single substrate by means of a controlled fabrication process sequence

  11. Dopamine-imprinted monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil

    2017-11-01

    A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5  m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Monolithically-Integrated μGC Chemical Sensor System

    Directory of Open Access Journals (Sweden)

    Davor Copic

    2011-06-01

    Full Text Available Gas chromatography (GC is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA, breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC system is essential for such applications. We describe the design, fabrication and packaging of mGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC, μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%.

  13. Environmentally Benign Production of Stretchable and Robust Superhydrophobic Silicone Monoliths.

    Science.gov (United States)

    Davis, Alexander; Surdo, Salvatore; Caputo, Gianvito; Bayer, Ilker S; Athanassiou, Athanassia

    2018-01-24

    Superhydrophobic materials hold an enormous potential in sectors as important as aerospace, food industries, or biomedicine. Despite this great promise, the lack of environmentally friendly production methods and limited robustness remain the two most pertinent barriers to the scalability, large-area production, and widespread use of superhydrophobic materials. In this work, highly robust superhydrophobic silicone monoliths are produced through a scalable and environmentally friendly emulsion technique. It is first found that stable and surfactantless water-in-polydimethylsiloxane (PDMS) emulsions can be formed through mechanical mixing. Increasing the internal phase fraction of the precursor emulsion is found to increase porosity and microtexture of the final monoliths, rendering them superhydrophobic. Silica nanoparticles can also be dispersed in the aqueous internal phase to create micro/nanotextured monoliths, giving further improvements in superhydrophobicity. Due to the elastomeric nature of PDMS, superhydrophobicity can be maintained even while the material is mechanically strained or compressed. In addition, because of their self-similarity, the monoliths show outstanding robustness to knife-scratch, tape-peel, and finger-wipe tests, as well as rigorous sandpaper abrasion. Superhydrophobicity was also unchanged when exposed to adverse environmental conditions including corrosive solutions, UV light, extreme temperatures, and high-energy droplet impact. Finally, important properties for eventual adoption in real-world applications including self-cleaning, stain-repellence, and blood-repellence are demonstrated.

  14. Study of monolithic prestressed reinforced concrete overhead road.

    Directory of Open Access Journals (Sweden)

    Ya.I. Kovalchyk

    2011-12-01

    Full Text Available Results of inspection and testing of monolithic prestressed reinforced concrete road trestle built in Kyiv are considered. The analysis of the gained results has shown that parametres correspond to the requirements of current standards on design of bridges.

  15. Evaluation of pulmonary nodules and lung cancer with one-inch crystal gamma coincidence positron emission tomography/CT versus dedicated positron emission tomography/CT

    International Nuclear Information System (INIS)

    Moodie, K.; Lau, E.; Hicks, R. J.; Cherk, M. H.; Turlakow, A.; Skinner, S.; Kelly, M. J.; Kalff, V.

    2009-01-01

    Full text: Dedicated positron emission tomography (PET)/CT scanners using BGO and related detectors (d-PET) have become standard imaging instruments in many malignancies. Hybrid gamma camera systems using Nal detectors in coincidence mode (g-PET) have been compared to d-PET but reported usefulness has been variable when gamma cameras with half-inch to three-fourth-inch thick crystals have been used without CT. Our aim was to compare g-PET with a 1-in.-thick crystal and inbuilt CT for lesion localization and attenuation correction (g-PET/CT) and d-PET/CT in patients presenting with potential and confirmed lung malignancies. One hour after 18F-fluorodeoxyglucose (FDG), patients underwent BGO d-PET/CT from jaw to proximal thigh. This was followed by one to two bed position g-PET/CT 194 + 27 min after FDG. Each study pair was independently analysed with concurrent CT. d-PET/CT was interpreted by a radiologist experienced in both PET and CT, and g-PET/CT by consensus reading of an experienced PET physician and an experienced CT radiologist, A TNM score was assigned and studies were then unblinded and compared. Fifty-seven patients underwent 58 scan pairs over 2 years. Eighty-nine percent concordance was shown between g-PET/CT and d-PET/CT for the assessment of I intrapulmonary lesions, with 100% concordance for intrapulmonary lesions I >10 mm (36 of 36). Eighty-eight per cent (51 of 58) concordance was shown between g-PET/CTand d-PET/CTforTNM staging. Coincidence imaging usingan optimized dual-head 1-in.-thick crystal gamma camera with inbuilt CT compares reasonably well with dedicated PET/CT for evaluation of indeterminate pulmonary lesions and staging of pulmonary malignancies and may be of some] value when d-PET/CT is not readily available.

  16. Estimation of position resolution for DOI-PET detector using diameter 0.2 mm WLS fibers [ANIMMA--2015-IO-x5

    International Nuclear Information System (INIS)

    Kaneko, Naomi; Ito, H.; Han, S.; Kawai, H.; Kodama, S.; Kobayashi, A.; Tabata, M.; Kamada, K.; Shoji, Y.; Yoshikawa, A.

    2015-01-01

    We have been developing a submillimeter resolution and low-cost DOI-PET detector using wavelength shifting fibers (WLSF), scintillating crystal plates and MPPCs (Hamamatsu Photonics). Conventional design of DOI-PET detectors had approximately mm 3 of resolution by using some scintillating blocks with a volume of 1 mm 3 , which detects gamma-ray. They are expensive due to difficulties in processing scintillating crystals and a large number of photo-detectors, and these technologies are likely to reach the limit of the resolution. Development of a lower cost DOI-PET detector with higher resolution is challenging to popularize the PET diagnosis. We propose two type of PET detector. One is a whole body PET system, and the other is a PET system for brain or small animals. Each PET system consists 6 blocks. The former consists of 6 layers of crystal plates with 300 mm x 300 mm x 4 mm. The latter consists of 16 crystal layers, forming 4 x 4 crystal arrays. The size of the crystal plate is 40 mm x 40 mm x 1 mm. Wavelength shifting fiber (WLSF) sheets are attached to above and up and down side of crystal planes. The whole PET system has 8 MPPCs attached on each side. For the brain PET detector, 9 WLSF fibers are attached on the each side. The expected position resolution would be less than 1 mm at the former system. We have performed an experimental performance estimation for the system component using 22 Na radioactive source. We achieved a collection efficiency of 10% using the WLSF sheet and Ce:Gd 3 (Al,Ga) 5 O 12 (GAGG) crystals at 511 keV. The linear relationship between reconstruction position and incident position was obtained, and a resolution of 0.7 mm (FWHM) for x-axis of DOI by the WLSF readout was achieved. (authors)

  17. Medical application of PET technology

    International Nuclear Information System (INIS)

    Lim, Sang Moo; Choi, C. W.; An, S. H.; Woo, K. S.; Chung, W. S.; Yang, S. D.; Jun, G. S. and others

    1999-04-01

    We performed following studies using PET technology: 1. Clinical usefulness of [ 18 F]FDG whole body PET in malignant disease 2. Clinical usefulness of quantitative evaluation of F-18-FDG 3. Pilot study of C-11 methionine PET in brain tumor 4. PET study in patients with Parkinson's disease 5. A study on the clinical myocardial PET image. PET gives various metabolic information for the living human body, and is very important, new diagnostic modality. The PET study will give us the information of cancer patients such as early detection of cancer, staging, recurrence detection and characterization of cancer. The quantitative analysis using PET could be applied to evaluate the pathophysiology of various diseases and develop new drugs and develop new radiopharmaceuticals

  18. PET in neuro-oncology

    NARCIS (Netherlands)

    Roelcke, U; Leenders, K.L.

    This article reviews possible clinical applications of positron emission tomography (PET) in brain tumor patients. PET allows quantitative assessment of brain tumor pathophysiology and biochemistry. It therefore provides different information about tumors when compared to histological or

  19. Take Care with Pet Reptiles

    Science.gov (United States)

    ... young children. [775 KB] Animals and Health Healthy Pets Healthy People : CDC website with helpful resources and information on health benefits of pets and disease risks Safe Handling Tips for Reptiles ...

  20. Medical application of PET technology

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Moo; Choi, C. W.; An, S. H.; Woo, K. S.; Chung, W. S.; Yang, S. D.; Jun, G. S. and others

    1999-04-01

    We performed following studies using PET technology: 1. Clinical usefulness of [{sup 18}F]FDG whole body PET in malignant disease 2. Clinical usefulness of quantitative evaluation of F-18-FDG 3. Pilot study of C-11 methionine PET in brain tumor 4. PET study in patients with Parkinson's disease 5. A study on the clinical myocardial PET image. PET gives various metabolic information for the living human body, and is very important, new diagnostic modality. The PET study will give us the information of cancer patients such as early detection of cancer, staging, recurrence detection and characterization of cancer. The quantitative analysis using PET could be applied to evaluate the pathophysiology of various diseases and develop new drugs and develop new radiopharmaceuticals.

  1. PET applications in pediatrics

    Energy Technology Data Exchange (ETDEWEB)

    Shulkin, B. L. [Ann Arbor, Univ. of Michigan Medical Center (United States). Pediatric Nuclear Medicine Section

    1997-12-01

    This article summarizes the major PET studies which have been performed in pediatric patients to elucidate and characterize diseases and normal development. Issues special for the application of the technique in children, such as dosimetry, patient preparation, and image acquisition are discussed. Studies of central nervous system (CNS) development and pathology, including epilepsy, intraventricular hemorrhage, neonatal asphyxia, tumors, and effects on the CNS from treatment of other tumors are reviewed. These have contributed information fundamental to their understanding of CNS development and pathology. PET investigations into the pathophysiology of congenital heart disease have begun and hold great promise to aid their understanding of these conditions. The second major area in which PET has been applied is the study of non CNS neoplasms. Neuroblastoma has been investigated with tracers which explore basic biochemical features which characterize this tumor, as well as with tracers which explore biochemical events relatively specific for this malignancy. Other common and uncommon tumors of childhood are discussed. The PET technique has been shown useful for answering questions of clinical relevance for the management of these uncommon neoplasms. PET is likely to continue to aid their understanding of many pediatric diseases and may gain more widespread clinical acceptance as the technology continues to disseminate rapidly.

  2. Combined PET/MRI

    DEFF Research Database (Denmark)

    Bailey, D L; Pichler, B J; Gückel, B

    2018-01-01

    The 6th annual meeting to address key issues in positron emission tomography (PET)/magnetic resonance imaging (MRI) was held again in Tübingen, Germany, from March 27 to 29, 2017. Over three days of invited plenary lectures, round table discussions and dialogue board deliberations, participants c...... of response to pharmacological interventions and therapies. As such, PET/MRI is a key to advancing medicine and patient care.......The 6th annual meeting to address key issues in positron emission tomography (PET)/magnetic resonance imaging (MRI) was held again in Tübingen, Germany, from March 27 to 29, 2017. Over three days of invited plenary lectures, round table discussions and dialogue board deliberations, participants...... critically assessed the current state of PET/MRI, both clinically and as a research tool, and attempted to chart future directions. The meeting addressed the use of PET/MRI and workflows in oncology, neurosciences, infection, inflammation and chronic pain syndromes, as well as deeper discussions about how...

  3. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Biao, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com; Xu, Jianquan; Sun, Shuzheng; Liu, Yue; Yang, Juping; Zhang, Li; Wang, Xinping, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com [Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-06-21

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.

  4. PET imaging in multiple sclerosis

    NARCIS (Netherlands)

    Faria, Daniele de Paula; Copray, Sjef; Buchpiguel, Carlos; Dierckx, Rudi; de Vries, Erik

    Positron emission tomography (PET) is a non-invasive technique for quantitative imaging of biochemical and physiological processes in animals and humans. PET uses probes labeled with a radioactive isotope, called PET tracers, which can bind to or be converted by a specific biological target and thus

  5. PET imaging of inflammation

    International Nuclear Information System (INIS)

    Buscombe, J. R.

    2014-01-01

    Inflammatory diseases are common place and often chronic. Most inflammatory cells have increased uptake of glucose which is enhanced in the presence of local cytokines. Therefore, imaging glucose metabolism by the means of 18F-fluoro-deoxy-glucose (FDG) positron emission tomography (PET) holds significant promise in imaging focal inflammation. Most of the work published involved small series of patients with either vasculitis, sarcoid or rheumatoid arthritis. It would appear that FDG PET is a simple and effective technique to identify inflammatory tissue in these conditions. There is even some work to suggest that by comparing baseline and early post therapy scans clinical outcome can be predicted. This would appear to be true with vasculitis as well as retroperitoneal fibrosis. The number of patients in each study is small but the evidence is compelling enough to recommend FDG PET imaging in the routine care of these patients.

  6. Pet in Clinical oncology

    International Nuclear Information System (INIS)

    Hunsche, A.; Grossman, G.; Santana, M.; Santana, C.; Halkar, R.; Garcia, E.

    2003-01-01

    The utility of the PET (positron emission tomography in clinical oncology has been recognized for more than two decades, locating it as a sensible technique for the diagnosis and the prognosis stratification of the oncology patients. The sensitivity and specificity of the PET in comparation to other image studies have demonstrated to be greater. For some years, there was a restriction of PET because of the high cost of the equipment and the cyclotrons. Nevertheless, the relation of cost/benefits is considered as a priority as this technique offers important clinical information. In this article the results observed when using it in diverse types of cancer, as well as the effectiveness shown in the pre-operating evaluation, the evaluation of residual disease, diagnosis of recurrences, pursuit and prognosis stratification of the patients with cancer. (The author)

  7. Metabolic imaging using PET

    International Nuclear Information System (INIS)

    Kudo, Takashi

    2007-01-01

    There is growing evidence that myocardial metabolism plays a key role not only in ischaemic heart disease but also in a variety of diseases which involve myocardium globally, such as heart failure and diabetes mellitus. Understanding myocardial metabolism in such diseases helps to elucidate the pathophysiology and assists in making therapeutic decisions. As well as providing information on regional changes, PET can deliver quantitative information about both regional and global changes in metabolism. This capability of quantitative measurement is one of the major advantages of PET along with physiological positron tracers, especially relevant in evaluating diseases which involve the whole myocardium. This review discusses major PET tracers for metabolic imaging and their clinical applications and contributions to research regarding ischaemic heart disease and other diseases such as heart failure and diabetic heart disease. Future applications of positron metabolic tracers for the detection of vulnerable plaque are also highlighted briefly. (orig.)

  8. The AX-PET demonstrator-Design, construction and characterization

    International Nuclear Information System (INIS)

    Beltrame, P.; Bolle, E.; Braem, A.; Casella, C.; Chesi, E.; Clinthorne, N.; De Leo, R.; Dissertori, G.; Djambazov, L.; Fanti, V.; Heller, M.; Joram, C.; Kagan, H.; Lustermann, W.; Meddi, F.; Nappi, E.; Nessi-Tedaldi, F.; Oliver, J.F.; Pauss, F.; Rafecas, M.

    2011-01-01

    Axial PET is a novel geometrical concept for Positron Emission Tomography (PET), based on layers of long scintillating crystals axially aligned with the bore axis. The axial coordinate is obtained from arrays of wavelength shifting (WLS) plastic strips placed orthogonally to the crystals. This article describes the design, construction and performance evaluation of a demonstrator set-up which consists of two identical detector modules, used in coincidence. Each module comprises 48 LYSO crystals of 100 mm length and 156 WLS strips. Crystals and strips are readout by Geiger-mode Avalanche Photo Diodes (G-APDs). The signals from the two modules are processed by fully analog front-end electronics and recorded in coincidence by a VME-based data acquisition system. Measurements with point-like 22 Na sources, with the modules used both individually and in coincidence mode, allowed for a complete performance evaluation up to the focal plane reconstruction of point sources. The results obtained are in good agreement with expectations and proved the set-up to be ready for the next evaluation phase with PET phantoms filled with radiotracers.

  9. Evaluation of PET performance and MR compatibility of a preclinical PET/MR insert with digital silicon photomultiplier technology

    Energy Technology Data Exchange (ETDEWEB)

    Hallen, Patrick; Schug, David; Wehner, Jakob [Department of Physics of Molecular Imaging Systems, RWTH Aachen University (Germany); Weissler, Bjorn [Department of Chemical Application Research, Philips Research (Germany); Gebhardt, Pierre [Division of Imaging Sciences and Biomedical Engineering, King’s College London (United Kingdom); Goldschmidt, Benjamin [Department of Physics of Molecular Imaging Systems, RWTH Aachen University (Germany); Salomon, Andre [Department of Oncology Solutions, Philips Research (Germany); Duppenbecker, Peter [Department of Physics of Molecular Imaging Systems, RWTH Aachen University (Germany); Kiessling, Fabian [Institute for Experimental Molecular Imaging, RWTH Aachen University (Germany); Schultz, Volkmar [Department of Physics of Molecular Imaging Systems, RWTH Aachen University (Germany)

    2015-05-18

    In this work we present detailed characterizations of our preclinical high resolution PET/MR insert based on the Hyperion-IID platform. The PET/MR insert consists of a ring of 10 singles detection modules, each comprising 2x3 scintillation detector stacks. Each detector stack features a 30x30 pixelated LYSO crystal array with a height of 12 mm and a pitch of 1 mm, coupled via a slit 2 mm light guide to a digital SiPM tile. The PET performance is stable under a wide range of operating points. The spatial resolution is below 1Ä,mm and the CRT reaches 260 or 450 ps depending on trigger settings. The energy resolution is 12.6% FWHM. The characterization of the MR compatibility showed no relevant degradation in PET performance during MRI operation. On the MRI side, we observe a degradation in B0 homogeneity from a VRMS of 0.03 ppm to 0.08 ppm with active shimming, while observing only minor degradations in the B0 field. The noise floor is slightly increased by 2-15% without any observable dependence on the activity. The Z gradients induces an observable eddy current inside the PET inserts which can lead to ghosting artifacts for EPI sequences. However, we don't observe any visible image degradation for widely used anatomical imaging sequences such as gradient echo and turbo spin echo sequences. To prove the viability of our PET/MR insert for in vivo small animal studies, we successfully performed a longitudinal mouse study with subcutaneously injected tumor model cells. The simultaneously acquired PET/MR images provide a high level of anatomical information and soft tissue contrast in the MR layer together with a high resolution image of the FDG tracer distribution in the PET layer.

  10. Novel PET sensors

    International Nuclear Information System (INIS)

    Cooper, C.R.

    2001-03-01

    This thesis describes the design, synthesis and evaluation of novel molecular sensors that utilize the phenomena of Photoinduced Electron Transfer (PET). PET design can be incorporated into molecules to allow them to selectively bind certain guest molecules. PET works by the modulation of electron potentials within a molecule. Binding events between a host and guest can, if designed suitably, change these potentials enough to cause a transfer of electronic charge within the molecular sensor. This event can be accurately and sensitively monitored by the use of ultra violet or fluorescence spectroscopy. A sensor molecule can be constructed by matching the guest to a suitable receptor site and incorporating this into a molecule containing a fluorophore with the correct electron potential characteristics. By using existing synthetic routes as well as exploiting new pathways these sensor molecules C n be constructed to contain a fluorophore separated from a guest receptor(s) by suitable spacers units. When put together these facets go to creating molecules that by design are sensitive and selective for certain guest molecules or functional groups. This methodology allows the synthetic chemist to rationally design and synthesise PET sensors, tailored to the needs of the guest. In this thesis the synthesis and evaluation of a novel PET sensors for D-glucosamine, disaccharides and fluoride is presented. It is believed that the novel sensors using the PET phenomenon presented in this thesis are a worthwhile extension of previous works undertaken by other groups around the world and shows new pathways to increasingly complex and sophisticated sensor molecular design. (author)

  11. PET and endocrine tumors

    International Nuclear Information System (INIS)

    Rigo, P.; Belhocine, T.; Hustinx, R.; Foidart-Willems, J.

    2000-01-01

    The authors review the main indications of PET examination, and specifically of 18 FDG, in the assessment of endocrine tumors: of the thyroid, of the parathyroid, of the adrenal and of the pituitary glands. Neuroendocrine tumors, gastro-entero-pancreatic or carcinoid tumors are also under the scope. Usually, the most differentiated tumors show only poor uptake of the FDG as they have a weak metabolic and proliferative activity. In the assessment of endocrine tumors, FDG-PET should be used only after most specific nuclear examinations been performed. (author)

  12. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI

    Energy Technology Data Exchange (ETDEWEB)

    Maramraju, Sri Harsha; Ravindranath, Bosky; Vaska, Paul; Schlyer, David J [Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY (United States); Smith, S David; Schulz, Daniela [Medical Department, Brookhaven National Laboratory, Upton, NY (United States); Junnarkar, Sachin S; Rescia, Sergio [Instrumentation Division, Brookhaven National Laboratory, Upton, NY (United States); Stoll, Sean; Purschke, Martin L; Woody, Craig L [Physics Department, Brookhaven National Laboratory, Upton, NY (United States); Southekal, Sudeepti [Brigham and Women' s Hospital, Boston, MA (United States); Pratte, Jean-Francois, E-mail: schlyer@bnl.gov [Universite de Sherbrooke, Sherbrooke, Quebec (Canada)

    2011-04-21

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 x 8 array of lutetium oxyorthosilicate crystals (2.22 x 2.22 x 5 mm{sup 3}) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [{sup 11}C]raclopride and 2-deoxy-2-[{sup 18}F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  13. PET/MR in oncology

    DEFF Research Database (Denmark)

    Balyasnikova, Svetlana; Löfgren, Johan; de Nijs, Robin

    2012-01-01

    of the challenges inherent in this new technology, but focus on potential applications for simultaneous PET/MR in the field of oncology. Methods and tracers for use with the PET technology will be familiar to most readers of this journal; thus this paper aims to provide a short and basic introduction to a number...... be applied together with PET increasing the amount of information about the tissues of interest. The potential clinical benefit of applying PET/MR in staging, radiotherapy planning and treatment evaluation in oncology, as well as the research perspectives for the use of PET/MR in the development of new...

  14. Performance characteristics of 3D GSO PET/CT scanner (Philips GEMINI PET/CT)

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Jae Sung; Lee, Byeong Il; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul

    2004-01-01

    Philips GEMINI is a newly introduced whole-body GSO PET/CT scanner. In this study, performance of the scanner including spatial resolution, sensitivity, scatter fraction, noise equivalent count ratio (NECR) was measured utilizing NEMA NU2-2001 standard protocol and compared with performance of LSO, BGO crystal scanner. GEMINI is composed of the Philips ALLEGRO PET and MX8000 D multi-slice CT scanners. The PET scanner has 28 detector segments which have an array of 29 by 22 GSO crystals (4*6*20 mm), covering axial FOV of 18 cm. PET data to measure spatial resolution, sensitivity, scatter fraction, and NECR were acquired in 3D mode according to the NEMA NU2 protocols (coincidence window: 8 ns, energy window : 409∼664 keV). For the measurement of spatial resolution, images were reconstructed with FBP using ramp filter and an iterative reconstruction algorithm, 3D RAMLA. Data for sensitivity measurement were acquired using NEMA sensitivity phantom filled with F-18 solution and surrounded by 1∼5 aluminum sleeves after we confirmed that dead time loss did not exceed 1%. To measure NECR and scatter fraction, 1110 MBq of F-18 solution was injected into a NEMA scatter phantom with a length of 70 cm and dynamic scan with 20-min frame duration was acquired for 7 half-lives. Oblique sinograms were collapsed into transaxial slices using single slice rebinning method, and true to background (scatter + random) ratio for each slice and frame was estimated. Scatter fraction was determined by averaging the true to background ratio of last 3 frames in which the dead time loss was below 1%. Transverse and axial resolutions at 1 cm radius were (1) 5.3 and 6.5 mm (FBP), (2) 5.1 and 5.9 mm (3D RAMLA). Transverse radial, transverse tangential, and axial resolution at 10 cm were (1) 5.7, 5.7, and 7.0 mm (FBP), (2) 5.4, 5.4, and 6.4 mm (3D RAMLA). Attenuation free values of sensitivity were 3,620 counts/sec/MBq at the center of transaxial FOV and 4,324 counts/sec/MBq at 10 cm offset

  15. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface

  16. Algebraic 2D PET image reconstruction using depth-of-interaction information

    International Nuclear Information System (INIS)

    Yamaya, Taiga; Obi, Takashi; Yamaguchi, Masahiro; Kita, Kouichi

    2001-01-01

    Recently a high-performance PET scanner, which measures depth-of-interaction (DOI) information, is being developed for molecular imaging. DOI measurement of multi-layered thin crystals can improve spatial resolution and scanner sensitivity simultaneously. In this paper, we apply an algebraic image reconstruction method to 2-dimensional (2D) DOI-PET scanners using accurate system modeling, in order to evaluate the effects of using DOI information on PET image quality. Algebraic image reconstruction methods have been successfully used to improve PET image quality, compared with the conventional filtered backprojection method. The proposed method is applied to simulated data for a small 2D DOI-PET scanner. The results show that accurate system modeling improves spatial resolution without noise emphasis, and that DOI information improves uniformity of spatial resolution. (author)

  17. Spatial resolution evaluation with a pair of two four-layer DOI detectors for small animal PET scanner: jPET-RD

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tsuda, Tomoaki; Yoshida, Eiji; Inadama, Naoko; Shibuya, Kengo; Yamaya, Taiga; Kitamura, Keishi; Takahashi, Kei; Ohmura, Atsushi; Murayama, Hideo

    2008-01-01

    We are developing a small animal PET scanner, 'jPET-RD' to achieve high sensitivity as well as high spatial resolution by using four-layer depth-of-interaction (DOI) detectors. The jPET-RD is designed with two detector rings. Each detector ring is composed of six DOI detectors arranged hexagonally. The diameter of the field-of-view (FOV) is 8.8 cm, which is smaller than typical small animal PET scanners on the market now. Each detector module consists of a crystal block and a 256-channel flat panel position-sensitive photomultiplier tube. The crystal block, consisting of 32x32x4 crystal (4096 crystals, each 1.46 mmx1.46 mmx4.5 mm) and a reflector, is mounted on the 256ch FP-PMT. In this study, we evaluated the spatial resolution of reconstructed images with the evaluation system of two four-layer DOI detectors which consist of 32x32x4 LYSO (Lu: 98%, Y: 2%) crystals coupled on the 256ch FP-PMT by using RTV rubber. The spatial resolution of 1.5 mm was obtained at the center of the FOV by the filtered back projection. The spatial resolution, better than 2 mm in the whole FOV, was also achieved with DOI while the spatial resolution without DOI was degraded to 3.3 mm

  18. Spatial resolution evaluation with a pair of two four-layer DOI detectors for small animal PET scanner: jPET-RD

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)], E-mail: funis@nirs.go.jp; Tsuda, Tomoaki [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Yoshida, Eiji; Inadama, Naoko; Shibuya, Kengo; Yamaya, Taiga [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Kitamura, Keishi [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Takahashi, Kei [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Graduate School of Science and Technology, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba-shi, Chiba 263-8522 (Japan); Ohmura, Atsushi [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Graduate School of Advanced Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555 (Japan); Murayama, Hideo [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2008-01-01

    We are developing a small animal PET scanner, 'jPET-RD' to achieve high sensitivity as well as high spatial resolution by using four-layer depth-of-interaction (DOI) detectors. The jPET-RD is designed with two detector rings. Each detector ring is composed of six DOI detectors arranged hexagonally. The diameter of the field-of-view (FOV) is 8.8 cm, which is smaller than typical small animal PET scanners on the market now. Each detector module consists of a crystal block and a 256-channel flat panel position-sensitive photomultiplier tube. The crystal block, consisting of 32x32x4 crystal (4096 crystals, each 1.46 mmx1.46 mmx4.5 mm) and a reflector, is mounted on the 256ch FP-PMT. In this study, we evaluated the spatial resolution of reconstructed images with the evaluation system of two four-layer DOI detectors which consist of 32x32x4 LYSO (Lu: 98%, Y: 2%) crystals coupled on the 256ch FP-PMT by using RTV rubber. The spatial resolution of 1.5 mm was obtained at the center of the FOV by the filtered back projection. The spatial resolution, better than 2 mm in the whole FOV, was also achieved with DOI while the spatial resolution without DOI was degraded to 3.3 mm.

  19. PET and PET/CT in malignant melanoma; PET y PET/CT en melanoma maligno

    Energy Technology Data Exchange (ETDEWEB)

    Garcia O, J R [Nuclear Medicine and Molecular Imaging PET/CT, Centro Medico ABC, Mexico D.F. (Mexico)

    2007-07-01

    The advantages that it has the PET/CT are: 1. It diminishes mainly positive false lesions. It identifies physiologic accumulate places. 2. It diminishes in smaller grade false negative. Small injuries. Injuries with low grade concentration. Injure on intense activity areas. 3. Precise anatomical localization of accumulate places. 4. Reduction of the acquisition time. (Author)

  20. Combined PET/MRI

    DEFF Research Database (Denmark)

    Bailey, D. L.; Pichler, B. J.; Gückel, B.

    2015-01-01

    This paper summarises key themes and discussions from the 4th international workshop dedicated to the advancement of the technical, scientific and clinical applications of combined positron emission tomography (PET)/magnetic resonance imaging (MRI) systems that was held in Tübingen, Germany, from...

  1. I Love Petting Zoos!

    Centers for Disease Control (CDC) Podcasts

    2010-03-23

    This Kidtastics podcast helps children learn about how to stay safe and healthy when visiting petting zoos and other animal exhibits.  Created: 3/23/2010 by Centers for Disease Control and Prevention (CDC).   Date Released: 3/23/2010.

  2. PET's indsats under lup

    DEFF Research Database (Denmark)

    Hansen, Peer Henrik

    2006-01-01

    En undersøgelseskommission nedsat i 1999. Fem medlemmer skal undersøge PET's efterretningsvirksomhed i forhold til politiske partier, faglige konflikter og politisk ideologiske bevægelser i Danmark under den kolde krig. Kommissionens rapport forventes færdig næste år. Udgivelsesdato: 2. juli 2006...

  3. Choosing a Pet

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    THE capital boasts countless markets of all kinds,but some of its insect,bird and pet markets immortalize Beijing culture and folkloric traditions.Don’t miss it! The Huasheng Tianqiao Market,south of the famous Panjiayuan Antique Market, was moved a few years ago and rebuilt in the

  4. PET CT and lymphomas

    International Nuclear Information System (INIS)

    Castro, R.

    2012-01-01

    This presentation is about Tc and lymphomas. Classification and clinical cases of various cancer such as gastro duodenal or ulcer, mama, medullary, lymph and neck, leukemia, nodular sclerosis. Metabolic information, anatomical nature of lymphoma and its clinical presentation determine the extent that PET should be used in the patient.

  5. Timing Calibration for Time-of-Flight PET Using Positron-Emitting Isotopes and Annihilation Targets

    Science.gov (United States)

    Li, Xiaoli; Burr, Kent C.; Wang, Gin-Chung; Du, Huini; Gagnon, Daniel

    2016-06-01

    Adding time-of-flight (TOF) technology has been proven to improve image quality in positron emission tomography (PET). In order for TOF information to significantly reduce the statistical noise in reconstructed PET images, good timing resolution is needed across the scanner field of view (FOV). This work proposes an accurate, robust, and practical crystal-based timing calibration method using 18F - FDG positron-emitting sources together with a spatially separated annihilation target. We calibrated a prototype Toshiba TOF PET scanner using this method and then assessed its timing resolution at different locations in the scanner FOV.

  6. Monolithic millimeter-wave and picosecond electronic technologies

    International Nuclear Information System (INIS)

    Talley, W.K.; Luhmann, N.C.

    1996-01-01

    Theoretical and experimental studies into monolithic millimeter-wave and picosecond electronic technologies have been undertaken as a collaborative project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Coherent Millimeter-Wave Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. The work involves the design and fabrication of monolithic frequency multiplier, beam control, and imaging arrays for millimeter-wave imaging and radar, as well as the development of high speed nonlinear transmission lines for ultra-wideband radar imaging, time domain materials characterization and magnetic fusion plasma applications. In addition, the Coherent Millimeter-Wave Group is involved in the fabrication of a state-of-the-art X-band (∼8-11 GHz) RF photoinjector source aimed at producing psec high brightness electron bunches for advanced accelerator and coherent radiation generation studies

  7. Silicon monolithic microchannel-cooled laser diode array

    International Nuclear Information System (INIS)

    Skidmore, J. A.; Freitas, B. L.; Crawford, J.; Satariano, J.; Utterback, E.; DiMercurio, L.; Cutter, K.; Sutton, S.

    2000-01-01

    A monolithic microchannel-cooled laser diode array is demonstrated that allows multiple diode-bar mounting with negligible thermal cross talk. The heat sink comprises two main components: a wet-etched Si layer that is anodically bonded to a machined glass block. The continuous wave (cw) thermal resistance of the 10 bar diode array is 0.032 degree sign C/W, which matches the performance of discrete microchannel-cooled arrays. Up to 1.5 kW/cm 2 is achieved cw at an emission wavelength of ∼808 nm. Collimation of a diode array using a monolithic lens frame produced a 7.5 mrad divergence angle by a single active alignment. This diode array offers high average power/brightness in a simple, rugged, scalable architecture that is suitable for large two-dimensional areas. (c) 2000 American Institute of Physics

  8. Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de; Parl, C.; Liu, C. C.; Pichler, B. J. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen (Germany); Mantlik, F. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany and Department of Empirical Inference, Max Planck Institute for Intelligent Systems, 72076 Tübingen (Germany); Lorenz, E. [Max Planck Institute for Physics, Föhringer Ring 6, 80805 München (Germany); Renker, D. [Department of Physics, Technische Universität München, 85748 Garching (Germany)

    2014-08-15

    Purpose: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. Methods: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated {sup 18}F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. Results: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90

  9. Porous polyacrylamide monoliths in hydrophilic interaction capillary electrochromatography of oligosaccharides

    Czech Academy of Sciences Publication Activity Database

    Guryča, Vilém; Mechref, Y.; Palm, A. K.; Michálek, Jiří; Pacáková, V.; Novotny, M. V.

    2007-01-01

    Roč. 70, č. 1 (2007), s. 3-13 ISSN 0165-022X R&D Projects: GA MŠk 1M0538 Grant - others:U.S. Department of Health and Human Services(US) GM24349 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyacrylamide monoliths * analytical glycobiology * capillary electrochromatography Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.338, year: 2007

  10. Improved monolithic reinforced concrete construction for nuclear power stations

    International Nuclear Information System (INIS)

    Guenther, P.; Fischer, K.

    1983-01-01

    Experience has shown that in applying monolithic reinforced concrete in nuclear power plant construction the following auxiliary means are useful: measuring sheets in assembling, welding gauges for reaching high tolerance accuracies of prefabricated reinforced concrete members, suitable lining materials, formwork anchorage and formwork release agents, concrete workability agents, mechanized procedures for finishing and assembling. These means were successfully tested in constructing the Greifswald nuclear power station

  11. Optical properties of pre-colored dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun

    2016-12-01

    The purposes of this study were to evaluate the optical properties of recently marketed pre-colored monolithic zirconia ceramics and to compare with those of veneered zirconia and lithium disilicate glass ceramics. Various shades of pre-colored monolithic zirconia, veneered zirconia, and lithium disilicate glass ceramic specimens were tested (17.0×17.0×1.5mm, n=5). CIELab color coordinates were obtained against white, black, and grey backgrounds with a spectrophotometer. Color differences of the specimen pairs were calculated by using the CIEDE2000 (ΔE 00 ) formula. The translucency parameter (TP) was derived from ΔE 00 of the specimen against a white and a black background. X-ray diffraction was used to determine the crystalline phases of monolithic zirconia specimens. Data were analyzed with 1-way ANOVA, Scheffé post hoc, and Pearson correlation testing (α=0.05). For different shades of the same ceramic brand, there were significant differences in L * , a * , b * , and TP values in most ceramic brands. With the same nominal shade (A2), statistically significant differences were observed in L * , a * , b * , and TP values among different ceramic brands and systems (Pceramics of the corresponding nominal shades ranged beyond the acceptability threshold. Due to the high L * values and low a * and b * values, pre-colored monolithic zirconia ceramics can be used with additional staining to match neighboring restorations or natural teeth. Due to their high value and low chroma, unacceptable color mismatch with adjacent ceramic restorations might be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A Symmetric Positive Definite Formulation for Monolithic Fluid Structure Interaction

    Science.gov (United States)

    2010-08-09

    more likely to converge than simply iterating the partitioned approach to convergence in a simple Gauss - Seidel manner. Our approach allows the use of...conditions in a second step. These approaches can also be iterated within a given time step for increased stability, noting that in the limit if one... converges one obtains a monolithic (albeit expensive) approach. Other approaches construct strongly coupled systems and then solve them in one of several

  13. Thermal measurement a requirement for monolithic microwave integrated circuit design

    OpenAIRE

    Hopper, Richard; Oxley, C. H.

    2008-01-01

    The thermal management of structures such as Monolithic Microwave Integrated Circuits (MMICs) is important, given increased circuit packing densities and RF output powers. The paper will describe the IR measurement technology necessary to obtain accurate temperature profiles on the surface of semiconductor devices. The measurement procedure will be explained, including the device mounting arrangement and emissivity correction technique. The paper will show how the measurement technique has be...

  14. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Science.gov (United States)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    1984-01-01

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  15. Monolithic microwave integrated circuit technology for advanced space communication

    Science.gov (United States)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  16. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Science.gov (United States)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  17. Electroactive monolithic μchip for electrochemically-responsive chromatography

    OpenAIRE

    Power, Aoife

    2013-01-01

    The EMμ project’s focus is ultimately, the development of an electroactive monolith that can be incorporated into a microfluidic system for electroanalytical applications such as sensing and electrochemically-controlled extractions and separations. To date our have made several significant advances to achieving this end goal. Firstly a facile fabrication method which allows for the production of fully disposable, gasket–free thin–layer cells suitable for EMμ was developed. A polydimethylsilox...

  18. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lanigan, David C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, H. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-12

    This revision to the original report adds two longer term leach sets of data to the report and provides more discussion and graphics on how to interpret the results from long-term laboratory leach tests. The leach tests were performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams.

  19. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion....... As representative examples, a metal (Pt), an alloy (PtSn), and a metal carbide (beta-Mo2C) were supported on conventional and mesoporous zeolite carriers, respectively, and the degree of particle dispersion was compared by TEM imaging. On conventional zeolites, the supported material aggregated on the outer surface...

  20. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    International Nuclear Information System (INIS)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S.C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55 Fe double peak at room temperature. To achieve high granularity (10–20 µm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption

  1. Application of monolithic polycapillary focusing optics in MXRF

    International Nuclear Information System (INIS)

    Gao, N.; Ponomarev, I.; Xiao, Q.F.; Gibson, W.M.

    1996-01-01

    A monolithic polycapillary focusing optic, consisting of hundreds of thousands of small tapered glass capillaries, can collect a large solid angle of x rays from a point source and guide them through the capillaries by multiple total reflections to form an intense focused beam. Such a focused beam has many applications in microbeam x-ray fluorescence (MXRF) analysis. Two monolithic polycapillary focusing optics were tested and characterized in a MXRF set-up using a microfocusing x-ray source (50microm x 10microm). For the Cu K α line, the measured focal spot sizes of these optics were 105microm and 43microm Full-Width-Half-Maximum (FWHM), respectively. When the source was operated at 16W, the average Cu K α intensities over the focal spots were measured to be 2.4 x 10 4 photons/s/microm 2 and 8.9 x 10 4 photons/s/microm 2 , respectively. When the authors compared the monolithic optics to straight monocapillary optics (single channel capillary) with approximately the same output beam sizes, intensity gains of 16 and 44 were obtained. The optics were applied to the MXRF set-up to analyze trace elements in various samples and a Minimum Detection Limit (MDL) of about 2 pg was achieved for the transition elements (V, Cr, Mn, and Fe). The optics were also used to map the distributions of trace elements in various samples

  2. Tannin-based monoliths from emulsion-templating

    International Nuclear Information System (INIS)

    Szczurek, A.; Martinez de Yuso, A.; Fierro, V.; Pizzi, A.; Celzard, A.

    2015-01-01

    Highlights: • Efficient preparation procedures are presented for new and “green” tannin-based organic polyHIPEs. • Highest homogeneity and strength are obtained at an oil fraction near the close-packing value. • Structural and mechanical properties abruptly change above such critical value. - Abstract: Highly porous monoliths prepared by emulsion-templating, frequently called polymerised High Internal Phase Emulsions (polyHIPEs) in the literature, were prepared from “green” precursors such as Mimosa bark extract, sunflower oil and ethoxylated castor oil. Various oil fractions, ranging from 43 to 80 vol.%, were used and shown to have a dramatic impact on the resultant porous structure. A critical oil fraction around 70 vol.% was found to exist, close to the theoretical values of 64% and 74% for random and compact sphere packing, respectively, at which the properties of both emulsions and derived porous monoliths changed. Such change of behaviour was observed by many different techniques such as viscosity, electron microscopy, mercury intrusion, and mechanical studies. We show and explain why this critical oil fraction is the one leading to the strongest and most homogeneous porous monoliths

  3. Cholesterol-imprinted macroporous monoliths: Preparation and characterization.

    Science.gov (United States)

    Stepanova, Mariia А; Kinziabulatova, Lilia R; Nikitina, Anna A; Korzhikova-Vlakh, Evgenia G; Tennikova, Tatiana B

    2017-11-01

    The development of sorbents for selective binding of cholesterol, which is a risk factor for cardiovascular disease, has a great importance for analytical science and medicine. In this work, two series of macroporous cholesterol-imprinted monolithic sorbents differing in the composition of functional monomers (methacrylic acid, butyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate), amount of a template (4, 6 and 8 mol%) used for molecular imprinting, as well as mean pore size were synthesized by in situ free-radical process in stainless steel housing of 50 mm × 4.6 mm i.d. All prepared materials were characterized regarding to their hydrodynamic permeability and porous properties, as well as examined by BET and SEM methods. Imprinting factors, apparent dynamic dissociation constants, the maximum binding capacity, the number of theoretical plates and the height equivalent to a theoretical palate of MIP monoliths at different mobile phase flow rates were determined. The separation of a mixture of structural analogues, namely, cholesterol and prednisolone, was demonstrated. Additionally, the possibility of using the developed monoliths for cholesterol solid-phase extraction from simulated biological solution was shown. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed

    2016-11-17

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  5. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed A.; Ghaffar, Farhan A.; Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  6. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    CERN Document Server

    Giubilato, P; Snoeys, W; Bisello, D; Marchioro, A; Battaglia, M; Demaria, L; Mansuy, S C; Pantano, D; Rousset, J; Mattiazzo, S; Kloukinas, K; Potenza, A; Ikemoto, Y; Rivetti, A; Chalmet, P; Mugnier, H; Silvestrin, L

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV Fe-55 double peak at room temperature. To achieve high granularity (10-20 mu m pitch pixels) over large detector areas maintaining high readout speed, a complet...

  7. Oxygen Barrier Properties and Melt Crystallization Behavior of Poly(ethylene terephthalate/Graphene Oxide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Anna Szymczyk

    2015-01-01

    Full Text Available Poly(ethylene terephthalate nanocomposites with low loading (0.1–0.5 wt% of graphene oxide (GO have been prepared by using in situ polymerization method. TEM study of nanocomposites morphology has shown uniform distribution of highly exfoliated graphene oxide nanoplatelets in PET matrix. Investigations of oxygen permeability of amorphous films of nanocomposites showed that the nanocomposites had better oxygen barrier properties than the neat PET. The improvement of oxygen permeability for PET nanocomposite films over the neat PET is approximately factors of 2–3.3. DSC study on the nonisothermal crystallization behaviors proves that GO acts as a nucleating agent to accelerate the crystallization of PET matrix. The evolution of the lamellar nanostructure of nanocomposite and neat PET was monitored by SAXS during nonisothermal crystallization from the melt. It was found that unfilled PET and nanocomposite with the highest concentration of GO (0.5 wt% showed almost similar values of the long period (L=11.4 nm for neat PET and L=11.5 nm for PET/0.5GO.

  8. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  9. single crystals

    Indian Academy of Sciences (India)

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  10. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  11. Comparison of the imaging performances for recently developed monolithic scintillators: CRY018 and CRY019 for dual isotope gamma ray imaging applications

    International Nuclear Information System (INIS)

    Polito, C.; Pani, R.; Trigila, C.; Cinti, M.N.; Fabbri, A.; Pellegrini, R.; Frantellizzi, V.; Vincentis, G. De; Pani, R.

    2017-01-01

    The growing interest for new scintillation crystals with outstanding imaging performances (i.e. resolution and efficiency) has suggested the study of recently discovered scintillators named CRY018 and CRY019 . The crystals under investigation are monolithic and have shown enhanced characteristics both for gamma ray spectrometry and for Nuclear Medicine imaging applications such as the dual isotope imaging. Moreover, the non-hygroscopic nature and the absence of afterglow make these scintillators even more attractive for the potential improvement in a wide range of applications. These scintillation crystals show a high energy resolution in the energy range involved in Nuclear Medicine, allowing the discrimination between very close energy values. Moreover, in order to prove their suitability of being powerful imaging systems, the imaging performances like the position linearity and the intrinsic spatial resolution have been evaluated obtaining satisfactory results thanks to the implementation of an optimized algorithm for the images reconstruction.

  12. Comparison of the imaging performances for recently developed monolithic scintillators: CRY018 and CRY019 for dual isotope gamma ray imaging applications

    Science.gov (United States)

    Polito, C.; Pani, R.; Trigila, C.; Cinti, M. N.; Fabbri, A.; Frantellizzi, V.; De Vincentis, G.; Pellegrini, R.; Pani, R.

    2017-01-01

    The growing interest for new scintillation crystals with outstanding imaging performances (i.e. resolution and efficiency) has suggested the study of recently discovered scintillators named CRY018 and CRY019. The crystals under investigation are monolithic and have shown enhanced characteristics both for gamma ray spectrometry and for Nuclear Medicine imaging applications such as the dual isotope imaging. Moreover, the non-hygroscopic nature and the absence of afterglow make these scintillators even more attractive for the potential improvement in a wide range of applications. These scintillation crystals show a high energy resolution in the energy range involved in Nuclear Medicine, allowing the discrimination between very close energy values. Moreover, in order to prove their suitability of being powerful imaging systems, the imaging performances like the position linearity and the intrinsic spatial resolution have been evaluated obtaining satisfactory results thanks to the implementation of an optimized algorithm for the images reconstruction.

  13. Development of high-throughput analysis system using highly-functional organic polymer monoliths

    International Nuclear Information System (INIS)

    Umemura, Tomonari; Kojima, Norihisa; Ueki, Yuji

    2008-01-01

    The growing demand for high-throughput analysis in the current competitive life sciences and industries has promoted the development of high-speed HPLC techniques and tools. As one of such tools, monolithic columns have attracted increasing attention and interest in the last decade due to the low flow-resistance and excellent mass transfer, allowing for rapid separations and reactions at high flow rates with minimal loss of column efficiency. Monolithic materials are classified into two main groups: silica- and organic polymer-based monoliths, each with their own advantages and disadvantages. Organic polymer monoliths have several distinct advantages in life-science research, including wide pH stability, less irreversible adsorption, facile preparation and modification. Thus, we have so far tried to develop organic polymer monoliths for various chemical operations, such as separation, extraction, preconcentration, and reaction. In the present paper, recent progress in the development of organic polymer monoliths is discussed. Especially, the procedure for the preparation of methacrylate-based monoliths with various functional groups is described, where the influence of different compositional and processing parameters on the monolithic structure is also addressed. Furthermore, the performance of the produced monoliths is demonstrated through the results for (1) rapid separations of alklybenzenes at high flow rates, (2) flow-through enzymatic digestion of cytochrome c on a trypsin-immobilized monolithic column, and (3) separation of the tryptic digest on a reversed-phase monolithic column. The flexibility and versatility of organic polymer monoliths will be beneficial for further enhancing analytical performance, and will open the way for new applications and opportunities both in scientific and industrial research. (author)

  14. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  15. Preliminary results of a prototype C-shaped PET designed for an in-beam PET system

    International Nuclear Information System (INIS)

    Kim, Hyun-Il; Chung, Yong Hyun; Lee, Kisung; Kim, Kyeong Min; Kim, Yongkwon; Joung, Jinhun

    2016-01-01

    Positron emission tomography (PET) can be utilized in particle beam therapy to verify the dose distribution of the target volume as well as the accuracy of the treatment. We present an in-beam PET scanner that can be integrated into a particle beam therapy system. The proposed PET scanner consisted of 14 detector modules arranged in a C-shape to avoid blockage of the particle beam line by the detector modules. Each detector module was composed of a 9×9 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals optically coupled to four 29-mm-diameter PMTs using the photomultiplier-quadrant-sharing (PQS) technique. In this study, a Geant4 Application for Tomographic Emission (GATE) simulation study was conducted to design a C-shaped PET scanner and then experimental evaluation of the proposed design was performed. The spatial resolution and sensitivity were measured according to NEMA NU2-2007 standards and were 6.1 mm and 5.61 cps/kBq, respectively, which is in good agreement with our simulation, with an error rate of 12.0%. Taken together, our results demonstrate the feasibility of the proposed C-shaped in-beam PET system, which we expect will be useful for measuring dose distribution in particle therapy.

  16. Imaging results and TOF studies with axial PET detectors

    CERN Document Server

    Joram, Christian

    2013-01-01

    We have developed a fully operational PET demonstrator setup which allows true 3D reconstruction of the 511 keV photons and therefore leads to practically parallax free images. The AX-PET concept is based on thin 100 mm long scintillation crystals (LYSO), axially oriented and arranged in layers around the held of view. Layers of wavelength shifting plastic strips mounted in between the crystal layers give the axial coordinate. Both crystals and WLS strips are individually read out by G-APD (SiPM) photodetectors. The Fully scalable concept overcomes the dilemma of sensitivity versus spatial resolution which is inherent to classical PET designs. A demonstrator set-up based on two axial modules was exhaustively characterized using point-like sources, phantoms filled with radiotracer and finally rats and a mouse. The results entirely meet the performance expectations ( <2 mm FWHM in all three coordinates over the complete held of view) and also demonstrated the ability to include Compton interactions (inter-cr...

  17. PET or PET-CT with cancer screening

    International Nuclear Information System (INIS)

    Wang Taisong; Zhao Jinhua; Song Jianhua

    2007-01-01

    At present, cancer screening remains a lot of debate in contemporary medical practice. Many constitutes have done a lot of experiments in cancer screening. The same version is that recommendations and decisions regarding cancer screening should be based on reliable data, not self- approbation. Now, some institutes advocate 18 F-FDG PET or 18 F-FDG PET-CT for cancer screening, here, discussed status quo, potential financial, radiation safety and statistical data in 18 F-FDG PET or 18 F-FDG PET- CT cancer screening. (authors)

  18. Molecularly Imprinted Porous Monolithic Materials from Melamine-Formaldehyde for Selective Trapping of Phosphopeptides

    DEFF Research Database (Denmark)

    Liu, Mingquan; Tran, Tri Minh; Abbas Elhaj, Ahmed Awad

    2017-01-01

    monoliths, chosen based on the combination of meso- and macropores providing optimal percolative flow and accessible surface area, was synthesized in the presence of N-Fmoc and O-Et protected phosphoserine and phosphotyrosine to prepare molecularly imprinted monoliths with surface layers selective...... for phosphopeptides. These imprinted monoliths were characterized alongside nonimprinted monoliths by a variety of techniques and finally evaluated by liquid chromatography-mass spectrometry in the capillary format to assess their abilities to trap and release phosphorylated amino acids and peptides from partly...

  19. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    Science.gov (United States)

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  20. Read the Label First: Protect Your Pets

    Science.gov (United States)

    Learn about the importance of reading pet products labels before purchasing and using any product to insure the safety of your pets. Find tips for ways to reduce the changes of pets accessing potentially dangerous products.

  1. Cyclotron/PET project in Uruguay

    International Nuclear Information System (INIS)

    Engler, H.

    2006-01-01

    The Positron Computed Tomography (PET) is a tri dimensional image technique which shows biochemical information. PET is used in neurology and cardiology diseases. The National Center Cyclotron PET has been found to research, development and health science applications.

  2. A phoswich detector design for improved spatial sampling in PET

    Science.gov (United States)

    Thiessen, Jonathan D.; Koschan, Merry A.; Melcher, Charles L.; Meng, Fang; Schellenberg, Graham; Goertzen, Andrew L.

    2018-02-01

    Block detector designs, utilizing a pixelated scintillator array coupled to a photosensor array in a light-sharing design, are commonly used for positron emission tomography (PET) imaging applications. In practice, the spatial sampling of these designs is limited by the crystal pitch, which must be large enough for individual crystals to be resolved in the detector flood image. Replacing the conventional 2D scintillator array with an array of phoswich elements, each consisting of an optically coupled side-by-side scintillator pair, may improve spatial sampling in one direction of the array without requiring resolving smaller crystal elements. To test the feasibility of this design, a 4 × 4 phoswich array was constructed, with each phoswich element consisting of two optically coupled, 3 . 17 × 1 . 58 × 10mm3 LSO crystals co-doped with cerium and calcium. The amount of calcium doping was varied to create a 'fast' LSO crystal with decay time of 32.9 ns and a 'slow' LSO crystal with decay time of 41.2 ns. Using a Hamamatsu R8900U-00-C12 position-sensitive photomultiplier tube (PS-PMT) and a CAEN V1720 250 MS/s waveform digitizer, we were able to show effective discrimination of the fast and slow LSO crystals in the phoswich array. Although a side-by-side phoswich array is feasible, reflections at the crystal boundary due to a mismatch between the refractive index of the optical adhesive (n = 1 . 5) and LSO (n = 1 . 82) caused it to behave optically as an 8 × 4 array rather than a 4 × 4 array. Direct coupling of each phoswich element to individual photodetector elements may be necessary with the current phoswich array design. Alternatively, in order to implement this phoswich design with a conventional light sharing PET block detector, a high refractive index optical adhesive is necessary to closely match the refractive index of LSO.

  3. Monomial Crystals and Partition Crystals

    Science.gov (United States)

    Tingley, Peter

    2010-04-01

    Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

  4. PET studies in dementia

    International Nuclear Information System (INIS)

    Herholz, K.

    2003-01-01

    Measurement of local cerebral glucose metabolism (lCMRGlc) by positron emission tomography (PET) and 18 F-2-fluoro-2-deoxy-D-glucose (FDG) has become a standard technique during the past 20 years and is now available at many university hospitals in all highly developed countries. Many studies have documented a close relation between lCMRGlc and localized cognitive functions, such as language and visuoconstructive abilities. Alzheimer's disease (AD) is characterized by regional impairment of cerebral glucose metabolism in neocortical association areas (posterior cingulate, temporoparietal and frontal multimodal association cortex), whereas primary visual and sensorimotor cortex, basal ganglia, and cerebellum are relatively well preserved. In a multicenter study comprising 10 PET centers (Network for Efficiency and Standardization of Dementia Diagnosis, NEST-DD) that employed an automated voxel-based analysis of FDG PET images, the distinction between controls and AD patients was 93% sensitive and 93% specific, and even in very mild dementia (at Mini Mental Status Examination (MMSE) 24 or higher) sensitivity was still 84% at 93% specificity. Significantly abnormal metabolism in mild cognitive deficit (MCI) indicates a high risk to develop dementia within the next two years. Reduced neocortical glucose metabolism can probably be detected with FDG PET in AD on average one year before onset of subjective cognitive impairment. In addition to glucose metabolism, specific tracers for dopamine synthesis ( 18 F-F-DOPA) and for ( 11 C-MP4A) are of interest for differentiation among dementia subtypes. Cortical acetylcholine esterase activity (AChE) activity is significantly lower in patients with AD or with dementia with Lewy bodies (DLB) than in age-matched normal controls. In LBD there is also impairment of dopamine synthesis, similar to Parkinson disease. (author) 115 refs

  5. PET studies in dementia

    Energy Technology Data Exchange (ETDEWEB)

    Herholz, K. [Neurologische Universitaetsklinik and Max-Planck-Inst. fuer neurologische Forschung, Koeln (Germany)

    2003-04-01

    Measurement of local cerebral glucose metabolism (lCMRGlc) by positron emission tomography (PET) and {sup 18}F-2-fluoro-2-deoxy-D-glucose (FDG) has become a standard technique during the past 20 years and is now available at many university hospitals in all highly developed countries. Many studies have documented a close relation between lCMRGlc and localized cognitive functions, such as language and visuoconstructive abilities. Alzheimer's disease (AD) is characterized by regional impairment of cerebral glucose metabolism in neocortical association areas (posterior cingulate, temporoparietal and frontal multimodal association cortex), whereas primary visual and sensorimotor cortex, basal ganglia, and cerebellum are relatively well preserved. In a multicenter study comprising 10 PET centers (Network for Efficiency and Standardization of Dementia Diagnosis, NEST-DD) that employed an automated voxel-based analysis of FDG PET images, the distinction between controls and AD patients was 93% sensitive and 93% specific, and even in very mild dementia (at Mini Mental Status Examination (MMSE) 24 or higher) sensitivity was still 84% at 93% specificity. Significantly abnormal metabolism in mild cognitive deficit (MCI) indicates a high risk to develop dementia within the next two years. Reduced neocortical glucose metabolism can probably be detected with FDG PET in AD on average one year before onset of subjective cognitive impairment. In addition to glucose metabolism, specific tracers for dopamine synthesis ({sup 18}F-F-DOPA) and for ({sup 11}C-MP4A) are of interest for differentiation among dementia subtypes. Cortical acetylcholine esterase activity (AChE) activity is significantly lower in patients with AD or with dementia with Lewy bodies (DLB) than in age-matched normal controls. In LBD there is also impairment of dopamine synthesis, similar to Parkinson disease. (author) 115 refs.

  6. Pet Overpopulation: An Economic Analysis

    OpenAIRE

    Stephen Coate; Brian Knight

    2009-01-01

    This paper considers the problem of pet overpopulation. It develops a tractable dynamic model whose positive predictions square well with key features of the current U.S. market for pets. The model is used to understand, from a welfare economic perspective, the sense in which there is \\overpopulation" of pets and the underlying causes of the problem. The paper also employs the model to consider what policies might be implemented to deal with the problem. A calibrated example is developed to i...

  7. Click synthesis of PET radiopharmaceuticals

    International Nuclear Information System (INIS)

    Xu Mei; Kuang Chunxiang

    2009-01-01

    Increasing attention has been focused on synthesis radiopharmaceuticals for positron emission tomography (PET). The recent years witnessed applications of click chemistry to PET radiopharmaceutical synthesis,because of its distinctive advantages including high speed,yield and stereospecificity under mild conditions. Synthesis of 18 F-labeled and 11 C-labeled radiopharmaceuticals and intermediates via click chemistry are reviewed. The future trend of click chemistry for the synthesis of PET radiopharmaceutical is prospected. (authors)

  8. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull. 2007; 6(4: 307-312

  9. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull 2007; 6(4.000: 307-312

  10. Extended suicide with a pet.

    Science.gov (United States)

    Cooke, Brian K

    2013-01-01

    The combination of the killing of a pet and a suicide is a perplexing scenario that is largely unexplored in the literature. Many forensic psychiatrists and psychologists may be unaccustomed to considering the significance of the killing of a pet. The subject is important, however, because many people regard their pets as members of their family. A case is presented of a woman who killed her pet dog and herself by carbon monoxide poisoning. The purpose of this article is to provide an initial exploration of the topic of extended suicide with a pet. Forensic mental health evaluations may have a role in understanding the etiology of this event and in opining as to the culpability of individuals who attempt to or successfully kill a pet and then commit suicide. Because the scientific literature is lacking, there is a need to understand this act from a variety of perspectives. First, a social and anthropological perspective will be presented that summarizes the history of the practice of killing of one's pet, with a focus on the ancient Egyptians. A clinical context will examine what relationship animals have to mental illness. A vast body of existing scientific data showing the relevance of human attachment to pets suggests that conclusions from the phenomena of homicide-suicide and filicide-suicide are applicable to extended suicide with a pet. Finally, recommendations will be proposed for both clinical and forensic psychiatrists faced with similar cases.

  11. PET/CT and radiotherapy

    International Nuclear Information System (INIS)

    Messa, C.; CNR, Milano; S. Gerardo Hospital, Monza; Di Muzio, N.; Picchio, M.; Bettinardi, V.; Gilardi, M.C.; CNR, Milano; San Raffaele Scientific Institute, Milano; Fazio, F.; CNR, Milano; San Raffaele Scientific Institute, Milano; San Raffaele Scientific Institute, Milano

    2006-01-01

    This article reviews the state of the art of PET/CT applications in radiotherapy, specifically its use in disease staging, patient selection, treatment planning and treatment evaluation. Diseases for which radiotherapy with radical intent is indicated will be considered, as well as those in which PET/CT may actually change the course of disease. The methodological and technological aspects of PET/CT in radiotherapy are discussed, focusing on the problem of target volume definition with CT and PET functional imaging and the problem of tumor motion with respect to imaging and dose delivery

  12. Stable polarization short pulse passively Q-switched monolithic microchip laser with [110] cut Cr4+:YAG

    International Nuclear Information System (INIS)

    Wang, Y; Gong, M; Yan, P; Huang, L; Li, D

    2009-01-01

    A monolithic Nd:YAG microchip laser with [110] cut Cr 4+ :YAG is presented. The output beam is linearly polarized with polarization ratio higher than 100:1. The polarization direction is stable, independent of pump power, crystal temperature, LD temperature. In single longitudinal mode operation, stable 259 ps pulses at 2.5 kHz with 82 kW peak power and diffraction limited beam mode are output. With a simple and compact one-pass Nd:YVO 4 amplifier, 144 kW peak power is achieved. Single longitudinal and fundamental transverse mode is kept after passing through the amplifier stage. The microchip laser can be operated in two longitudinal modes with two sets of output pulses by increasing the pump power

  13. Data quality objectives summary report for the 105-N monolith off-gas issue

    International Nuclear Information System (INIS)

    Pisarcik, D.J.

    1997-01-01

    The 105-N Basin hardware waste with radiation exposure rates high enough to make above-water handling and packaging impractical has been designated high exposure rate hardware (HERH) waste. This material, consisting primarily of irradiated reactor components, is packaged underwater for subsequent disposal as a grout-encapsulated solid monolith. The third HERH waste package that was created (Monolith No. 3) was not immediately removed from the basin because of administrative delays. During a routine facility walkdown, Monolith No. 3 was observed to be emitting bubbles. Mass spectroscopic analysis of a gas sample from Monolith No. 3 indicated that the gas was 85.2% hydrogen along with a trace of fission gases (stable isotopes of xenon). Gamma energy analysis of a gas sample from Monolith No. 3 also identified trace quantities of 85 Kr. The monolith off-gas Data Quality Objective (DQO) process concluded the following: Monolith No. 3 and similar monoliths can be safely transported following installation of spacers between the lids of the L3-181 transport cask to vent the hydrogen gas; The 85 Kr does not challenge personnel or environmental safety; Fumaroles in the surface of gassing monoliths renders them incompatible with Hanford Site Solid Waste Acceptance Criteria requirements unless placed in a qualified high integrity container overpack; and Gassing monoliths do meet Environmental Restoration Disposal Facility Waste Acceptance Criteria requirements. This DQO Summary Report is both an account of the Monolith Off-Gas DQO Process and a means of documenting the concurrence of each of the stakeholder organizations

  14. Preparation of organic monolithic columns in polytetrafluoroethylene tubes for reversed-phase liquid chromatography

    International Nuclear Information System (INIS)

    Catalá-Icardo, M.; Torres-Cartas, S.; Meseguer-Lloret, S.; Gómez-Benito, C.; Carrasco-Correa, E.; Simó-Alfonso, E.F.; Ramis-Ramos, G.; Herrero-Martínez, J.M.

    2017-01-01

    In this work, a method for the preparation and anchoring of polymeric monoliths in a polytetrafluoroethylene (PTFE) tubing as a column housing for microbore HPLC is described. In order to assure a covalent attachment of the monolith to the inner wall of the PTFE tube, a two-step procedure was developed. Two surface etching reagents, a commercial sodium naphthalene solution (Fluoroetch"®), or mixtures of H_2O_2 and H_2SO_4, were tried and compared. Then, the obtained hydroxyl groups on the PTFE surface were modified by methacryloylation. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and scanning electron microscopy (SEM) confirmed the successful modification of the tubing wall and the stable anchorage of monolith to the wall, respectively. Special emphasis was also put on the reduction of the unwanted effects of shrinking of monolith during polymerization, by using an external proper mold and by selecting the adequate monomers in order to increase the flexibility of the polymer. Poly(glycidyl methacrylate-co-divinylbenzene) monoliths were in situ synthesized by thermal polymerization within the confines of surface-vinylized PTFE tubes. The modified PTFE tubing tightly held the monolith, and the monolithic column exhibited good pressure resistance up to 20 MPa. The column performance was also evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode. The optimized monolithic columns gave plate heights ranged between 70 and 80 μm. The resulting monoliths were also satisfactorily applied to the separation of proteins. - Highlights: • Successful surface etching of PTFE inner wall tubing was done. • The modified PTFE support was next methacryloylated with GMA. • Organic polymeric monolith was in situ prepared in the functionalized PTFE tube. • The monolithic columns gave suitable pressure resistance and separation of proteins.

  15. Preparation of organic monolithic columns in polytetrafluoroethylene tubes for reversed-phase liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Catalá-Icardo, M., E-mail: mocaic@qim.upv.es [Research Institute for Integrated Management of Coastal Areas, Universitat Politècnica de València, Paranimf 1, 46730, Grao de Gandía, Valencia (Spain); Torres-Cartas, S.; Meseguer-Lloret, S.; Gómez-Benito, C. [Research Institute for Integrated Management of Coastal Areas, Universitat Politècnica de València, Paranimf 1, 46730, Grao de Gandía, Valencia (Spain); Carrasco-Correa, E.; Simó-Alfonso, E.F.; Ramis-Ramos, G. [Department of Analytical Chemistry, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia (Spain); Herrero-Martínez, J.M., E-mail: jmherrer@uv.es [Department of Analytical Chemistry, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia (Spain)

    2017-04-01

    In this work, a method for the preparation and anchoring of polymeric monoliths in a polytetrafluoroethylene (PTFE) tubing as a column housing for microbore HPLC is described. In order to assure a covalent attachment of the monolith to the inner wall of the PTFE tube, a two-step procedure was developed. Two surface etching reagents, a commercial sodium naphthalene solution (Fluoroetch{sup ®}), or mixtures of H{sub 2}O{sub 2} and H{sub 2}SO{sub 4}, were tried and compared. Then, the obtained hydroxyl groups on the PTFE surface were modified by methacryloylation. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and scanning electron microscopy (SEM) confirmed the successful modification of the tubing wall and the stable anchorage of monolith to the wall, respectively. Special emphasis was also put on the reduction of the unwanted effects of shrinking of monolith during polymerization, by using an external proper mold and by selecting the adequate monomers in order to increase the flexibility of the polymer. Poly(glycidyl methacrylate-co-divinylbenzene) monoliths were in situ synthesized by thermal polymerization within the confines of surface-vinylized PTFE tubes. The modified PTFE tubing tightly held the monolith, and the monolithic column exhibited good pressure resistance up to 20 MPa. The column performance was also evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode. The optimized monolithic columns gave plate heights ranged between 70 and 80 μm. The resulting monoliths were also satisfactorily applied to the separation of proteins. - Highlights: • Successful surface etching of PTFE inner wall tubing was done. • The modified PTFE support was next methacryloylated with GMA. • Organic polymeric monolith was in situ prepared in the functionalized PTFE tube. • The monolithic columns gave suitable pressure resistance and separation of proteins.

  16. A comparison of dedicated and hybrid PET imaging in detection of recurrences of colorectal cancer with [18]-FDG

    International Nuclear Information System (INIS)

    Montravers, F.; Grahek, D.; Kerrou, K.; Younsi, N.; Petegnief, Y.; Talbot, J.N.

    2002-01-01

    Full text: The aim of this study was to assess the clinical performances of FDG using a CDET system (hybrid dual-head MARCONI gamma camera with sodium iodine crystal 19 mm flick) or a dedicated PET system (C-PET, ADAC) for the detection of colorectal cancer recurrences. We report an experience of 4 years with CDET (July 1997 - July 2001) and of 1.5 years with PET (January 2000 - July 2001). After fasting for 6h or more, 3-5 MBq/kg (for 2D - CDET) or 2 MBq/kg (for 3D - PET) of [18F]-FDG were injected i.v. and imaging (whole-body scan and at least one tomoscintigram for CDET or scanning of the torso for PET) was started one hour later. Reconstruction was performed by an iterative algorithm. Attenuation correction by an external source was only available for PET. 304 examinations (ex) were performed with CDET and 164 with PET. 230 CDET cases and 73 PET cases are currently available according to histology or to follow-up. These examinations were performed for suspicion of recurrence (157 CDET cases, 39 PET cases), in search for other localization when one or more resectable lesion(s) was (were) known (48 CDET cases, 24 CDET cases) or for evaluation of the therapeutic efficacy (25 CDET cases, 10 PET cases). Globally, sensitivity was 89 % with CDET and 92 % with PET, specificity was 93 % with CDET and 100 % with PET and accuracy was 90 % with CDET and 93 % with PET. These results confirmed that FDG is a powerful tool for the detection of colorectal recurrences and showed that no significative difference in accuracy (chi2 = .75 ; p = .4) was detectable between the two modalities interpreted by the same team and both performed 1 hour after injection. (author)

  17. Cost-effectiveness of PET and PET/Computed Tomography

    DEFF Research Database (Denmark)

    Gerke, Oke; Hermansson, Ronnie; Hess, Søren

    2015-01-01

    measure by means of incremental cost-effectiveness ratios when considering the replacement of the standard regimen by a new diagnostic procedure. This article discusses economic assessments of PET and PET/computed tomography reported until mid-July 2014. Forty-seven studies on cancer and noncancer...

  18. Comparison of single and dual layer detector blocks for pre-clinical MRI–PET

    International Nuclear Information System (INIS)

    Thompson, Christopher; Stortz, Greg; Goertzen, Andrew; Berg, Eric; Retière, Fabrice; Kozlowski, Piotr; Ryner, Lawrence; Sossi, Vesna; Zhang, Xuezhu

    2013-01-01

    Dual or multi-layer crystal blocks have been proposed to minimise the radial blurring effect in PET scanners with small ring diameters. We measured two potential PET detector blocks' performance in a configuration which would allow 16 blocks in a ring which could be inserted in a small animal 7T MRI scanner. Two crystal sizes, 1.60×1.60 mm 2 and 1.20×1.20 mm 2 , were investigated. Single layer blocks had 10 or 12 mm deep crystals, the dual layer blocks had 4 mm deep crystals on the top layer and 6 mm deep crystals on the bottom layer. The crystals in the dual layer blocks are offset by ½ of the crystal pitch to allow for purely geometric crystal identification. Both were read out with SensL 4×4 SiPM arrays. The software identifies 64 crystals in the single layer and either 85 or 113 crystals in the dual layer array, (either 49 or 64 in the lower layers and 36 or 49 in the upper layers). All the crystals were clearly visible in the crystal identification images and their resolvability indexes (average FWHM/crystal separation) were shown to range from 0.29 for the best single layer block to 0.33 for the densest dual layer block. The best coincidence response FWHM was 0.95 mm for the densest block at the centre of the field. This degraded to 1.83 mm at a simulated radial offset of 16 mm from the centre, while the single layer crystals blurred this result to 3.4 mm. The energy resolution was 16.4±2.2% averaged over the 113 crystals of the densest block

  19. Epitaxial Ge-crystal arrays for X-ray detection

    International Nuclear Information System (INIS)

    Kreiliger, T; Falub, C V; Müller, E; Känel, H von; Isa, F; Isella, G; Chrastina, D; Bergamaschini, R; Marzegalli, A; Miglio, L; Kaufmann, R; Niedermann, P; Neels, A; Dommann, A; Meduňa, M

    2014-01-01

    Monolithic integration of an X-ray absorber layer on a Si CMOS chip might be a potentially attractive way to improve detector performance at acceptable costs. In practice this requires, however, the epitaxial growth of highly mismatched layers on a Si-substrate, both in terms of lattice parameters and thermal expansion coefficients. The generation of extended crystal defects, wafer bowing and layer cracking have so far made it impossible to put the simple concept into practice. Here we present a way in which the difficulties of fabricating very thick, defect-free epitaxial layers may be overcome. It consists of an array of densely packed, three-dimensional Ge-crystals on a patterned Si(001) substrate. The finite gap between neighboring micron-sized crystals prevents layer cracking and substrate bowing, while extended defects are driven to the crystal sidewalls. We show that the Ge-crystals are indeed defect-free, despite the lattice misfit of 4.2%. The electrical characteristics of individual Ge/Si heterojunction diodes are obtained from in-situ measurements inside a scanning electron microscope. The fabrication of monolithically integrated detectors is shown to be compatible with Si-CMOS processing

  20. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  1. 10Gbps monolithic silicon FTTH transceiver for PON

    Science.gov (United States)

    Zhang, J.; Liow, T. Y.; Lo, G. Q.; Kwong, D. L.

    2010-05-01

    We propose a new passive optical network (PON) configuration and a novel silicon photonic transceiver architecture for optical network unit (ONU), eliminating the need for an internal laser source in ONU. We adopt dual fiber network configuration. The internal light source in each of the ONUs is eliminated. Instead, an extra seed laser source in the optical line termination (OLT) operates in continuous wave mode to serve the ONUs in the PON as a shared and centralized laser source. λ1 from OLT Tx and λ2 from the seed laser are combined by using a WDM combiner and connected to serve the multiple ONUs through the downstream fibers. The ONUs receive the data in λ1. Meanwhile, the ONUs encode and transmit data in λ2, which are sent back to OLT. The monolithic ONU transceiver contains a wavelength-division-multiplexing (WDM) filter component, a silicon modulator and a Ge photo-detector. The WDM in ONU selectively guides λ1 to the Ge-PD where the data in λ1 are detected and converted to electrical signals, and λ2 to the transmitter where the light is modulated by upstream data. The modulated optical signals in λ2 from ONUs are connected back to OLT through upstream fibers. The monolithic ONU transceiver chip size is only 2mm by 4mm. The crosstalk between the Tx and Rx is measured to be less than -20dB. The transceiver chip is integrated on a SFP+ transceiver board. Both Tx and Rx demonstrated data rate capabilities of up to 10Gbps. By implementing this scheme, the ONU transceiver size can be significantly reduced and the assembly processes will be greatly simplified. The results demonstrate the feasibility of mass manufacturing monolithic silicon ONU transceivers via low cost

  2. Fiber-based monolithic columns for liquid chromatography.

    Science.gov (United States)

    Ladisch, Michael; Zhang, Leyu

    2016-10-01

    Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale. Graphical Abstract Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram.

  3. Temperature Characteristics of Monolithically Integrated Wavelength-Selectable Light Sources

    International Nuclear Information System (INIS)

    Han Liang-Shun; Zhu Hong-Liang; Zhang Can; Ma Li; Liang Song; Wang Wei

    2013-01-01

    The temperature characteristics of monolithically integrated wavelength-selectable light sources are experimentally investigated. The wavelength-selectable light sources consist of four distributed feedback (DFB) lasers, a multimode interferometer coupler, and a semiconductor optical amplifier. The oscillating wavelength of the DFB laser could be modulated by adjusting the device operating temperature. A wavelength range covering over 8.0nm is obtained with stable single-mode operation by selecting the appropriate laser and chip temperature. The thermal crosstalk caused by the lateral heat spreading between lasers operating simultaneously is evaluated by oscillating-wavelength shift. The thermal crosstalk approximately decreases exponentially as the increasing distance between lasers

  4. Transverse mode selection in a monolithic microchip laser

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-11-01

    Full Text Available selection in a monolithic microchip laser Darryl Naidooa,b, Thomas Godinc, Michael Fromagerc, Emmanuel Cagniotc, Nicolas Passillyd, Andrew Forbesa,b and Kamel A?t-Ameurc1 a:CSIR National Laser Centre, P. O. Box 395, Pretoria 0001, South Africa b.... Lett. 77 (2000) 34-36. [14] W. Zhao, J. Tan and L. Qui, ?Improvement of confocal microscope performance by shaped annular beam and heterodyne confocal techniques,? Optik 116 (2005) 111-117. [15] T. Shiina, K. Yoshida, M. Ito and Y. Okamura, ?Long...

  5. A hybrid FIA/HPLC system incorporating monolithic column chromatography

    International Nuclear Information System (INIS)

    Adcock, Jacqui L.; Francis, Paul S.; Agg, Kent M.; Marshall, Graham D.; Barnett, Neil W.

    2007-01-01

    We have combined the generation of solvent gradients using milliGAT pumps, chromatographic separations with monolithic columns and chemiluminescence detection in an instrument manifold that approaches the automation and separation efficiency of HPLC, whilst maintaining the positive attributes of flow injection analysis (FIA), such as manifold versatility, speed of analysis and portability. As preliminary demonstrations of this hybrid FIA/HPLC system, we have determined six opiate alkaloids (morphine, pseudomorphine, codeine, oripavine, ethylmorphine and thebaine) and four biogenic amines (vanilmandelic acid, serotonin, 5-hydroxyindole-3-acetic acid and homovanillic acid) in human urine, using tris(2,2'-bipyridyl)ruthenium(III) and acidic potassium permanganate chemiluminescence detection

  6. Inherent polarization entanglement generated from a monolithic semiconductor chip

    DEFF Research Database (Denmark)

    Horn, Rolf T.; Kolenderski, Piotr; Kang, Dongpeng

    2013-01-01

    Creating miniature chip scale implementations of optical quantum information protocols is a dream for many in the quantum optics community. This is largely because of the promise of stability and scalability. Here we present a monolithically integratable chip architecture upon which is built...... a photonic device primitive called a Bragg reflection waveguide (BRW). Implemented in gallium arsenide, we show that, via the process of spontaneous parametric down conversion, the BRW is capable of directly producing polarization entangled photons without additional path difference compensation, spectral...... as a serious contender on which to build large scale implementations of optical quantum processing devices....

  7. On drift fields in CMOS monolithic active pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Deveaux, Michael [Goethe-Universitaet, Frankfurt (Germany); Collaboration: CBM-MVD-Collaboration

    2016-07-01

    CMOS Monolithic Active Pixel Sensors (MAPS) combine an excellent spatial resolution of few μm with a very low material budget of 0.05% X{sub 0}. To extend their radiation tolerance to the level needed for future experiments like e.g. CBM, it is regularly considered to deplete their active volume. We discuss the limits of this strategy accounting for the specific features of the sensing elements of MAPS. Moreover, we introduce an alternative approach to generate the drift fields needed to provoke a faster charge collection by means of doping gradients.

  8. Development of the multiwavelength monolithic integrated fiber optics terminal

    Science.gov (United States)

    Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.

    1982-01-01

    This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.

  9. Crystallization mechanisms of acicular crystals

    Science.gov (United States)

    Puel, François; Verdurand, Elodie; Taulelle, Pascal; Bebon, Christine; Colson, Didier; Klein, Jean-Paul; Veesler, Stéphane

    2008-01-01

    In this contribution, we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals. For all organic crystals studied in this article, layer-by-layer growth of the lateral faces is very slow and clear, as soon as the supersaturation is high enough, there is competition between growth and surface-activated secondary nucleation. This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis; this is explained by regular over- and inter-growths as in the case of twinning. And when supersaturation is even higher, nucleation is fast and random. In an industrial continuous crystallization, the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles, which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds, thus leading to slower growing faces. When an activated mechanism is involved such as a secondary surface nucleation, it is no longer possible to obtain a steady state. Therefore, the crystal number, size and habit vary significantly with time, leading to troubles in the downstream processing operations and to modifications of the final solid-specific properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals, and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.

  10. Preparation of a zeolite-modified polymer monolith for identification of synthetic colorants in lipsticks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqi; Li, Zheng [College of Chemistry, Jilin University, Changchun 130012 (China); Niu, Qian [Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Ma, Jiutong [College of Chemistry, Jilin University, Changchun 130012 (China); Jia, Qiong, E-mail: jiaqiong@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2015-10-30

    Graphical abstract: Poly(methacrylic acid-ethylene dimethacrylate) monolithic column embedded with zeolites was prepared and employed for the polymer monolith microextraction of colorants combined with HPLC. - Highlights: • Zeolite, as a kind of mesoporous material, was firstly combined with PMME. • Zeolite@poly(MAA-EDMA) monolith columns were prepared for the enrichment of colorants. • Zeolite@poly(MAA-EDMA) monolith columns demonstrated relatively high extraction capacity. - Abstract: A novel zeolite-modified poly(methacrylic acid-ethylenedimethacrylate) (zeolite@poly(MAA-EDMA)) monolithic column was prepared with the in situ polymerization method and employed in polymer monolith microextraction for the separation and preconcentration of synthetic colorants combined with high performance liquid chromatography. The polymer was characterized by scanning electronmicroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. The method was applied to the determination of synthetic colorants in lipsticks with recoveries ranged from 70.7% to 109.7%. Compared with conventional methacrylic acid-based monoliths, the developed monolith exhibited high enrichment capacity because of the introduction of zeolites into the preparation process. The extraction efficiency followed the order: zeolite@poly(MAA-EDMA) > poly(MAA-EDMA) > direct HPLC analysis.

  11. Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artificial membrane chromatography.

    Science.gov (United States)

    Wang, Qiqin; Peng, Kun; Chen, Weijia; Cao, Zhen; Zhu, Peijie; Zhao, Yumei; Wang, Yuqiang; Zhou, Haibo; Jiang, Zhengjin

    2017-01-06

    This study described a simple synthetic methodology for preparing biomembrane mimicking monolithic column. The suggested approach not only simplifies the preparation procedure but also improves the stability of double chain phosphatidylcholine (PC) functionalized monolithic column. The physicochemical properties of the optimized monolithic column were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and nano-LC. Satisfactory column permeability, efficiency, stability and reproducibility were obtained on this double chain PC functionalized monolithic column. It is worth noting that the resulting polymeric monolith exhibits great potential as a useful alternative of commercial immobilized artificial membrane (IAM) columns for in vitro predication of drug-membrane interactions. Furthermore, the comparative study of both double chain and single chain PC functionalized monoliths indicates that the presence or absence of glycerol backbone and the number of acyl chains are not decisive for the predictive ability of IAM monoliths on drug-membrane interactions. This novel PC functionalized monolithic column also exhibited good selectivity for a protein mixture and a set of pharmaceutical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Recent advances in the preparation and application of monolithic capillary columns in separation science

    International Nuclear Information System (INIS)

    Hong, Tingting; Yang, Xi; Xu, Yujing; Ji, Yibing

    2016-01-01

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  13. Recent advances in the preparation and application of monolithic capillary columns in separation science

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tingting; Yang, Xi; Xu, Yujing [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China); Ji, Yibing, E-mail: jiyibing@msn.com [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China)

    2016-08-10

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  14. Monolithic junction field-effect transistor charge preamplifier for calorimetry at high luminosity hadron colliders

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Rehn, L.A.; Manfredi, P.F.; Speziali, V.

    1991-11-01

    The outstanding noise and radiation hardness characteristics of epitaxial-channel junction field-effect transistors (JFET) suggest that a monolithic preamplifier based upon them may be able to meet the strict specifications for calorimetry at high luminosity colliders. Results obtained so far with a buried layer planar technology, among them an entire monolithic charge-sensitive preamplifier, are described

  15. Progress on dedicated animal PET

    International Nuclear Information System (INIS)

    Liu Wei

    2002-01-01

    Positron emission tomography, as the leading technology providing molecular imaging of biological processes, is widely used on living laboratory animals. High-resolution dedicated animal PET scanners have been developed. Although the dedicated animal PET faces obstacles and challenges, this advanced technology would play an important role in molecular biomedicine researches, such as diseases study, medicine development, and gene therapy

  16. Small Molecule PET-Radiopharmaceuticals

    NARCIS (Netherlands)

    Elsinga, Philip H.; Dierckx, Rudi A. J. O.

    This review describes several aspects required for the development of small molecule PET-tracers. Design and selection criteria are important to consider before starting to develop novel PET-tracers. Principles and latest trends in C-11 and F-18-radiochemistry are summarized. In addition an update

  17. Welfare assessment in pet rabbits

    NARCIS (Netherlands)

    Schepers, F.; Koene, P.; Beerda, B.

    2009-01-01

    One million pet rabbits are kept in The Netherlands, but there are no data available on their behaviour and welfare. This study seeks to assess the welfare of pet rabbits in Dutch households and is a first step in the development of a welfare assessment system. In an internet survey, housing

  18. Selected PET radiomic features remain the same.

    Science.gov (United States)

    Tsujikawa, Tetsuya; Tsuyoshi, Hideaki; Kanno, Masafumi; Yamada, Shizuka; Kobayashi, Masato; Narita, Norihiko; Kimura, Hirohiko; Fujieda, Shigeharu; Yoshida, Yoshio; Okazawa, Hidehiko

    2018-04-17

    We investigated whether PET radiomic features are affected by differences in the scanner, scan protocol, and lesion location using 18 F-FDG PET/CT and PET/MR scans. SUV, TMR, skewness, kurtosis, entropy, and homogeneity strongly correlated between PET/CT and PET/MR images. SUVs were significantly higher on PET/MR 0-2 min and PET/MR 0-10 min than on PET/CT in gynecological cancer ( p = 0.008 and 0.008, respectively), whereas no significant difference was observed between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images in oral cavity/oropharyngeal cancer. TMRs on PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min increased in this order in gynecological cancer and oral cavity/oropharyngeal cancer. In contrast to conventional and histogram indices, 4 textural features (entropy, homogeneity, SRE, and LRE) were not significantly different between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images. 18 F-FDG PET radiomic features strongly correlated between PET/CT and PET/MR images. Dixon-based attenuation correction on PET/MR images underestimated tumor tracer uptake more significantly in oral cavity/oropharyngeal cancer than in gynecological cancer. 18 F-FDG PET textural features were affected less by differences in the scanner and scan protocol than conventional and histogram features, possibly due to the resampling process using a medium bin width. Eight patients with gynecological cancer and 7 with oral cavity/oropharyngeal cancer underwent a whole-body 18 F-FDG PET/CT scan and regional PET/MR scan in one day. PET/MR scans were performed for 10 minutes in the list mode, and PET/CT and 0-2 min and 0-10 min PET/MR images were reconstructed. The standardized uptake value (SUV), tumor-to-muscle SUV ratio (TMR), skewness, kurtosis, entropy, homogeneity, short-run emphasis (SRE), and long-run emphasis (LRE) were compared between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images.

  19. Neurotransmission imaging by PET

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Akihiro; Suhara, Tetsuya [National Inst. of Radiological Sciences, Chiba (Japan)

    2001-08-01

    PET studies on neurotransmission in psychological disorders to evaluate abnormal neurotransmission and therapeutic effects are thoroughly reviewed by type of major neurotransmitters. Studies on dopaminergic neurotransmission have focused on the function of dopamine D{sub 2} receptors, receptor subtypes, such as the D{sub 1} receptor, and ligands, such as transporters. PET studies of dopamine D{sub 2} receptor, which began in the early 1980s, have predominantly been performed in schizophrenia, and most have failed to detect any statistically significant differences between schizophrenia patients and controls. The studies in the early 1980s were performed by using [{sup 11}C]N-methyl-spiperone (NMSP) and [{sup 11}C]raclopride, ligands for striatal dopamine D{sub 2} receptors. [{sup 11}C]FLB457, which has much higher affinity for D{sub 2} receptors than raclopride, began to be used in the 1990s. Dopamine D{sub 2} occupancy after drug ingestion has also been investigated to clarify the mechanisms and effects of antipsychotic drugs, and there have also been studies on the effect of aging and personality traits on dopamine D{sub 2} receptor levels in healthy subjects. In studies on dopamine receptor subtypes other than D{sub 2}, dopamine D{sub 1} receptors have been studied in connection with assessments of cognitive functions. Most studies on dopamine transporters have been related to drug dependence. Serotonin 5-HT{sub 2A} receptors have been studied with [{sup 11}C]NMSP in schizophrenia patients, while studies of another serotonin receptor subtype, 5-HT{sub 1A} receptors, have been mainly conducted in patients with depression. [{sup 11}C]NMSP PET showed no difference between schizophrenia patients who had not undergone phamacotherapy and normal subjects. Because serotonin selective reuptake inhibitors (SSRIs) affect serotonin transporters, and abnormalities in serotonin transporters detected in mood disorders, PET ligands for serotonin transporters have increasingly

  20. Neurotransmission imaging by PET

    International Nuclear Information System (INIS)

    Takano, Akihiro; Suhara, Tetsuya

    2001-01-01

    PET studies on neurotransmission in psychological disorders to evaluate abnormal neurotransmission and therapeutic effects are thoroughly reviewed by type of major neurotransmitters. Studies on dopaminergic neurotransmission have focused on the function of dopamine D 2 receptors, receptor subtypes, such as the D 1 receptor, and ligands, such as transporters. PET studies of dopamine D 2 receptor, which began in the early 1980s, have predominantly been performed in schizophrenia, and most have failed to detect any statistically significant differences between schizophrenia patients and controls. The studies in the early 1980s were performed by using [ 11 C]N-methyl-spiperone (NMSP) and [ 11 C]raclopride, ligands for striatal dopamine D 2 receptors. [ 11 C]FLB457, which has much higher affinity for D 2 receptors than raclopride, began to be used in the 1990s. Dopamine D 2 occupancy after drug ingestion has also been investigated to clarify the mechanisms and effects of antipsychotic drugs, and there have also been studies on the effect of aging and personality traits on dopamine D 2 receptor levels in healthy subjects. In studies on dopamine receptor subtypes other than D 2 , dopamine D 1 receptors have been studied in connection with assessments of cognitive functions. Most studies on dopamine transporters have been related to drug dependence. Serotonin 5-HT 2A receptors have been studied with [ 11 C]NMSP in schizophrenia patients, while studies of another serotonin receptor subtype, 5-HT 1A receptors, have been mainly conducted in patients with depression. [ 11 C]NMSP PET showed no difference between schizophrenia patients who had not undergone phamacotherapy and normal subjects. Because serotonin selective reuptake inhibitors (SSRIs) affect serotonin transporters, and abnormalities in serotonin transporters detected in mood disorders, PET ligands for serotonin transporters have increasingly been developed, and serotonin transporters have recently begun to be

  1. Phase Field Modeling Using PetIGA

    KAUST Repository

    Vignal, Philippe

    2013-06-01

    Phase field modeling has become a widely used framework in the computational material science community. Its ability to model different problems by defining appropriate phase field parameters and relating it to a free energy functional makes it highly versatile. Thermodynamically consistent partial differential equations can then be generated by assuming dissipative dynamics, and setting up the problem as one of minimizing this free energy. The equations are nonetheless challenging to solve, and having a highly efficient and parallel framework to solve them is necessary. In this work, a brief review on phase field models is given, followed by a short analysis of the Phase Field Crystal Model solved with Isogeometric Analysis us- ing PetIGA. We end with an introduction to a new modeling concept, where free energy functions are built with a periodic equilibrium structure in mind.

  2. A High Resolution Clinical PET with Breast and Whole Body Transfigurations

    Science.gov (United States)

    2006-08-01

    random (acci- dental ) coincidence events were measured using a second de- layed coincidence window and then subtracted from the sino- grams measured in the...limits the coincidence timing resolution. For a PET camera with bismuth germinate crystals (BGO), like our HOTPET, the relatively wide timing gate is... germinate crystal) and a new synchronization process must also be set up between the delayed trigger and the energy/position signals before being passed

  3. Cherenkov radiation-based three-dimensional position-sensitive PET detector: A Monte Carlo study.

    Science.gov (United States)

    Ota, Ryosuke; Yamada, Ryoko; Moriya, Takahiro; Hasegawa, Tomoyuki

    2018-05-01

    Cherenkov radiation has recently received attention due to its prompt emission phenomenon, which has the potential to improve the timing performance of radiation detectors dedicated to positron emission tomography (PET). In this study, a Cherenkov-based three-dimensional (3D) position-sensitive radiation detector was proposed, which is composed of a monolithic lead fluoride (PbF 2 ) crystal and a photodetector array of which the signals can be readout independently. Monte Carlo simulations were performed to estimate the performance of the proposed detector. The position- and time resolution were evaluated under various practical conditions. The radiator size and various properties of the photodetector, e.g., readout pitch and single photon timing resolution (SPTR), were parameterized. The single photon time response of the photodetector was assumed to be a single Gaussian for the simplification. The photo detection efficiency of the photodetector was ideally 100% for all wavelengths. Compton scattering was included in simulations, but partly analyzed. To estimate the position at which a γ-ray interacted in the Cherenkov radiator, the center-of-gravity (COG) method was employed. In addition, to estimate the depth-of-interaction (DOI) principal component analysis (PCA), which is a multivariate analysis method and has been used to identify the patterns in data, was employed. The time-space distribution of Cherenkov photons was quantified to perform PCA. To evaluate coincidence time resolution (CTR), the time difference of two independent γ-ray events was calculated. The detection time was defined as the first photon time after the SPTR of the photodetector was taken into account. The position resolution on the photodetector plane could be estimated with high accuracy, by using a small number of Cherenkov photons. Moreover, PCA showed an ability to estimate the DOI. The position resolution heavily depends on the pitch of the photodetector array and the radiator

  4. Validation of GEANT3 simulation studies with a dual-head PMT ClearPET TM prototype

    CERN Document Server

    Ziemons, K; Streun, M; Pietrzyk, U

    2004-01-01

    The ClearPET TM project is proposed by working groups of the Crystal Clear Collaboration (CCC) to develop a 2/sup nd/ generation high performance small animal positron emission tomograph (PET). High sensitivity and high spatial resolution is foreseen for the ClearPET TM camera by using a phoswich arrangement combining mixed lutetium yttrium aluminum perovskite (LuYAP:Ce) and lutetium oxyorthosilicate (LSO) scintillating crystals. Design optimizations for the first photomultiplier tube (PMT) based ClearPET camera are done with a Monte-Carlo simulation package implemented on GEANT3 (CERN, Geneva, Switzerland). A dual-head prototype has been built to test the frontend electronics and was used to validate the implementation of the GEANT3 simulation tool. Multiple simulations were performed following the experimental protocols to measure the intrinsic resolution and the sensitivity profile in axial and radial direction. Including a mean energy resolution of about 27.0% the simulated intrinsic resolution is about (...

  5. Influence of expanded graphite (EG and graphene oxide (GO on physical properties of PET based nanocomposites

    Directory of Open Access Journals (Sweden)

    Paszkiewicz Sandra

    2014-12-01

    Full Text Available This work is the continuation and refinement of already published communications based on PET/EG nanocomposites prepared by in situ polymerization1, 2. In this study, nanocomposites based on poly(ethylene terephthalate with expanded graphite were compared to those with functionalized graphite sheets (GO. The results suggest that the degree of dispersion of nanoparticles in the PET matrix has important effect on the structure and physical properties of the nanocomposites. The existence of graphene sheets nanoparticles enhances the crystallization rate of PET. It has been confirmed that in situ polymerization is the effective method for preparation nanocomposites which can avoid the agglomeration of nanoparticles in polymer matrices and improve the interfacial interaction between nanofiller and polymer matrix. The obtained results have shown also that due to the presence of functional groups on GO surface the interactions with PET matrix can be stronger than in the case of exfoliated graphene (EG and matrix.

  6. Seismic waves and earthquakes in a global monolithic model

    Science.gov (United States)

    Roubíček, Tomáš

    2018-03-01

    The philosophy that a single "monolithic" model can "asymptotically" replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The "monolithic-type" models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth's layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys' viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger's viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.

  7. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    International Nuclear Information System (INIS)

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.

    2010-01-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC 2 shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using μ-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 (micro)m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  8. Monolithically integrated Helmholtz coils by 3-dimensional printing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Longguang [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Abedini-Nassab, Roozbeh; Yellen, Benjamin B., E-mail: yellen@duke.edu [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2014-06-23

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  9. Monolithically integrated Helmholtz coils by 3-dimensional printing

    International Nuclear Information System (INIS)

    Li, Longguang; Abedini-Nassab, Roozbeh; Yellen, Benjamin B.

    2014-01-01

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  10. Characterization and testing of monolithic RERTR fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D.D.; Jue, J.F.; Burkes, D.E. [Idaho National Lab., Idaho Falls, ID (United States)

    2007-07-01

    Monolithic fuel plates are being developed as a LEU (low enrichment uranium) fuel for application in research reactors throughout the world. These fuel plates are comprised of a U-Mo alloy foil encased in aluminum alloy cladding. Three different fabrication techniques have been looked at for producing monolithic fuel plates: hot isostatic pressing (HIP), transient liquid phase bonding (TLPB), and friction stir welding (FSW). Of these three techniques, HIP and FSW are currently being emphasized. As part of the development of these fabrication techniques, fuel plates are characterized and tested to determine properties like hardness and the bond strength at the interface between the fuel and cladding. Testing of HIP-made samples indicates that the foil/cladding interaction behavior depends on the Mo content in the UMo foil, the measured hardness values are quite different for the fuel, cladding, and interaction zone phase and Ti, Zr and Nb are the most effective diffusion barriers. For FSW samples, there is a dependence of the bond strength at the foil/cladding interface on the type of tool that is employed for performing the actual FSW process. (authors)

  11. Affinity monolith chromatography: A review of general principles and applications.

    Science.gov (United States)

    Li, Zhao; Rodriguez, Elliott; Azaria, Shiden; Pekarek, Allegra; Hage, David S

    2017-11-01

    Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics

    Science.gov (United States)

    Shi, Zheng; Gao, Xumin; Yuan, Jialei; Zhang, Shuai; Jiang, Yan; Zhang, Fenghua; Jiang, Yuan; Zhu, Hongbo; Wang, Yongjin

    2017-12-01

    A monolithic III-nitride photonic circuit with integrated functionalities was implemented by integrating multiple components with different functions into a single chip. In particular, the III-nitride-on-silicon platform is used as it integrates a transmitter, a waveguide, and a receiver into a suspended III-nitride membrane via a wafer-level procedure. Here, a 0.8-mm-diameter suspended device architecture is directly transferred from silicon to a foreign substrate by mechanically breaking the support beams. The transferred InGaN/GaN multiple-quantum-well diode (MQW-diode) exhibits a turn-on voltage of 2.8 V with a dominant electroluminescence peak at 453 nm. The transmitter and receiver share an identical InGaN/GaN MQW structure, and the integrated photonic circuit inherently works for on-chip power monitoring and in-plane visible light communication. The wire-bonded monolithic photonic circuit on glass experimentally demonstrates in-plane data transmission at 120 Mb/s, paving the way for diverse applications in intelligent displays, in-plane light communication, flexible optical sensors, and wearable III-nitride optoelectronics.

  13. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.; /Fermilab

    2010-11-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  14. Monolithically Integrated Ge-on-Si Active Photonics

    Directory of Open Access Journals (Sweden)

    Jifeng Liu

    2014-07-01

    Full Text Available Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS processing. In this paper, we present a review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation. We first discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties. We then give a brief overview of epitaxial Ge-on-Si materials growth, followed by a summary of recent investigations towards low-temperature, direct growth of high crystallinity Ge and GeSn alloys on dielectric layers for 3D photonic integration. Finally, we review the most recent studies on waveguide-integrated Ge-on-Si photodetectors (PDs, electroabsorption modulators (EAMs, and laser diodes (LDs, and suggest possible future research directions for large-scale monolithic electronic-photonic integrated circuits on a Si platform.

  15. Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits.

    Science.gov (United States)

    Liu, Yuanda; Ang, Kah-Wee

    2017-07-25

    Two-dimensional (2D) inverters are a fundamental building block for flexible logic circuits which have previously been realized by heterogeneously wiring transistors with two discrete channel materials. Here, we demonstrate a monolithically integrated complementary inverter made using a homogeneous black phosphorus (BP) nanosheet on flexible substrates. The digital logic inverter circuit is demonstrated via effective threshold voltage tuning within a single BP material, which offers both electron and hole dominated conducting channels with nearly symmetric pinch-off and current saturation. Controllable electron concentration is achieved by accurately modulating the aluminum (Al) donor doping, which realizes BP n-FET with a room-temperature on/off ratio >10 3 . Simultaneously, work function engineering is employed to obtain a low Schottky barrier contact electrode that facilities hole injection, thus enhancing the current density of the BP p-FET by 9.4 times. The flexible inverter circuit shows a clear digital logic voltage inversion operation along with a larger-than-unity direct current voltage gain, while exhibits alternating current dynamic signal switching at a record high frequency up to 100 kHz and remarkable electrical stability upon mechanical bending with a radii as small as 4 mm. Our study demonstrates a practical monolithic integration strategy for achieving functional logic circuits on one material platform, paving the way for future high-density flexible electronic applications.

  16. Monolithic integration of microfluidic channels and semiconductor lasers

    Science.gov (United States)

    Cran-McGreehin, Simon J.; Dholakia, Kishan; Krauss, Thomas F.

    2006-08-01

    We present a fabrication method for the monolithic integration of microfluidic channels into semiconductor laser material. Lasers are designed to couple directly into the microfluidic channel, allowing submerged particles pass through the output beams of the lasers. The interaction between particles in the channel and the lasers, operated in either forward or reverse bias, allows for particle detection, and the optical forces can be used to trap and move particles. Both interrogation and manipulation are made more amenable for lab-on-a-chip applications through monolithic integration. The devices are very small, they require no external optical components, have perfect intrinsic alignment, and can be created with virtually any planar configuration of lasers in order to perform a variety of tasks. Their operation requires no optical expertise and only low electrical power, thus making them suitable for computer interfacing and automation. Insulating the pn junctions from the fluid is the key challenge, which is overcome by using photo-definable SU8-2000 polymer.

  17. CMOS monolithic active pixel sensors for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Snoeys, W., E-mail: walter.snoeys@cern.ch

    2014-11-21

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon are only now starting to make their way into high energy physics. Two major requirements are radiation tolerance and low power consumption. For the most extreme radiation levels, signal charge has to be collected by drift from a depletion layer onto a designated collection electrode without losing the signal charge elsewhere in the in-pixel circuit. Low power consumption requires an optimization of Q/C, the ratio of the collected signal charge over the input capacitance [1]. Some solutions to combine sufficient Q/C and collection by drift require exotic fabrication steps. More conventional solutions up to now require a simple in-pixel readout circuit. Both high voltage CMOS technologies and Monolithic Active Pixel Sensors (MAPS) technologies with high resistivity epitaxial layers offer high voltage diodes. The choice between the two is not fundamental but more a question of how much depletion can be reached and also of availability and cost. This paper tries to give an overview.

  18. Development of stable monolithic wide-field Michelson interferometers.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping

    2011-07-20

    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ∼800 m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations. © 2011 Optical Society of America

  19. Immobilization of trypsin on sub-micron skeletal polymer monolith

    Energy Technology Data Exchange (ETDEWEB)

    Yao Chunhe [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Qi Li, E-mail: qili@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hu Wenbin [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Wang Fuyi [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang Gengliang [College of Pharmacy, Hebei University, Baoding 071002 (China)

    2011-04-29

    A new kind of immobilized trypsin reactor based on sub-micron skeletal polymer monolith has been developed. Covalent immobilization of trypsin on this support was performed using the epoxide functional groups in either a one- or a multi-step reaction. The proteolytic activity of the immobilized trypsin was measured by monitoring the formation of N-{alpha}-benzoyl-L-arginine (BA) which is the digestion product of a substrate N-{alpha}-benzoyl-L-arginine ethyl ester (BAEE). Results showed that the digestion speed was about 300 times faster than that performed in free solution. The performance of such an enzyme reactor was further demonstrated by digesting protein myoglobin. It has been found that the protein digestion could be achieved in 88 s at 30 deg. C, which is comparable to 24 h digestion in solution at 37 {sup o}C. Furthermore, the immobilized trypsin exhibits increased stability even after continuous use compared to that in free solution. The present monolithic enzyme-reactor provides a promising platform for the proteomic research.

  20. Gamma camera based FDG PET in oncology

    International Nuclear Information System (INIS)

    Park, C. H.

    2002-01-01

    Positron Emission Tomography(PET) was introduced as a research tool in the 1970s and it took about 20 years before PET became an useful clinical imaging modality. In the USA, insurance coverage for PET procedures in the 1990s was the turning point, I believe, for this progress. Initially PET was used in neurology but recently more than 80% of PET procedures are in oncological applications. I firmly believe, in the 21st century, one can not manage cancer patients properly without PET and PET is very important medical imaging modality in basic and clinical sciences. PET is grouped into 2 categories; conventional (c) and gamma camera based ( CB ) PET. CB PET is more readily available utilizing dual-head gamma cameras and commercially available FDG to many medical centers at low cost to patients. In fact there are more CB PET in operation than cPET in the USA. CB PET is inferior to cPET in its performance but clinical studies in oncology is feasible without expensive infrastructures such as staffing, rooms and equipments. At Ajou university Hospital, CBPET was installed in late 1997 for the first time in Korea as well as in Asia and the system has been used successfully and effectively in oncological applications. Our was the fourth PET operation in Korea and I believe this may have been instrumental for other institutions got interested in clinical PET. The following is a brief description of our clinical experience of FDG CBPET in oncology

  1. Development of a SiPM-based PET imaging system for small animals

    International Nuclear Information System (INIS)

    Lu, Yanye; Yang, Kun; Zhou, Kedi; Zhang, Qiushi; Pang, Bo; Ren, Qiushi

    2014-01-01

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development

  2. Development of a SiPM-based PET imaging system for small animals

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanye [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Yang, Kun, E-mail: yangkun9999@hotmail.com [Department of Control Technology and Instrumentation, College of Quality and Technical Supervision, Hebei University, Baoding, 071000 (China); Zhou, Kedi; Zhang, Qiushi; Pang, Bo [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Ren, Qiushi, E-mail: renqsh@coe.pku.edu.cn [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2014-04-11

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development.

  3. Novel design of a parallax free Compton enhanced PET scanner

    International Nuclear Information System (INIS)

    Braem, A.; Chamizo, M.; Chesi, E.; Colonna, N.; Cusanno, F.; De Leo, R.; Garibaldi, F.; Joram, C.; Marrone, S.; Mathot, S.; Nappi, E.; Schoenahl, F.; Seguinot, J.; Weilhammer, P.; Zaidi, H.

    2004-01-01

    Molecular imaging by PET is a powerful tool in modern clinical practice for cancer diagnosis. Nevertheless, improvements are needed with respect to the spatial resolution and sensitivity of the technique for its application to specific human organs (breast, prostate, brain, etc.), and to small animals. Presently, commercial PET scanners do not detect the depth of interaction of photons in scintillators, which results in a not negligible parallax error. We describe here a novel concept of PET scanner design that provides full three-dimensional (3D) gamma reconstruction with high spatial resolution over the total detector volume, free of parallax errors. It uses matrices of long scintillators read at both ends by hybrid photon detectors. This so-called 3D axial concept also enhances the gamma detection efficiency since it allows one to reconstruct a significant fraction of Compton scattered events. In this note, we describe the concept, a possible design and the expected performance of this new PET device. We also report about first characterization measurements of 10 cm long YAP:Ce scintillation crystals

  4. Neuropsychiatry: PET and SPECT

    International Nuclear Information System (INIS)

    Quintana F, Juan Carlos

    2002-01-01

    Functional brain imaging with PET and SPECT have a definitive and well established role in the investigation of a variety of conditions such as dementia, epilepsy and drug addiction. With these methods it is possible to detect early rCBF (regional Cerebral Blood Flow) changes seen in dementia (even before clinical symptoms) and differentiate Alzheimer's disease from other dementias by means of the rCBF pattern change. 18-F-FDG PET imaging is a useful tool in partial epilepsy because both rCBF and brain metabolism are compromised at the epileptogenic focus. During the seizure, rCBF dramatically increases locally. Using SPECT it is possible to locate such foci with 97% accuracy. In drug addiction, particularly with cocaine, functional imaging has proven to be very sensitive to detect brain flow and metabolism derangement early in the course of this condition. These findings are important in many ways: prognostic value, they are used as a powerful reinforcement tool and to monitor functional recovery with rehabilitation. There are many other conditions in which functional brain imaging is of importance such as acute stroke treatment assessment, trauma rehabilitation and in psychiatric and abnormal movement diseases specially with the development of receptor imaging (au)

  5. FDG PET imaging dementia

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byeong Cheol [Kyungpook National University Medical School and Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2007-04-15

    Dementia is a major burden for many countries including South Korea, where life expectancy is continuously growing and the proportion of aged people is rapidly growing. Neurodegenerative disorders, such as, Alzheimer disease, dementia with Lewy bodies, frontotemporal dementia. Parkinson disease, progressive supranuclear palsy, corticobasal degeneration, Huntington disease, can cause dementia, and cerebrovascular disease also can cause dementia. Depression or hypothyroidism also can cause cognitive deficits, but they are reversible by management of underlying cause unlike the forementioned dementias. Therefore these are called pseudodementia. We are entering an era of dementia care that will be based upon the identification of potentially modifiable risk factors and early disease markers, and the application of new drugs postpone progression of dementias or target specific proteins that cause dementia. Efficient pharmacologic treatment of dementia needs not only to distinguish underlying causes of dementia but also to be installed as soon as possible. Therefore, differential diagnosis and early diagnosis of dementia are utmost importance. F-18 FDG PET is useful for clarifying dementing diseases and is also useful for early detection of the disease. Purpose of this article is to review the current value of FDG PET for dementing diseases including differential diagnosis of dementia and prediction of evolving dementia.

  6. FDG PET imaging dementia

    International Nuclear Information System (INIS)

    Ahn, Byeong Cheol

    2007-01-01

    Dementia is a major burden for many countries including South Korea, where life expectancy is continuously growing and the proportion of aged people is rapidly growing. Neurodegenerative disorders, such as, Alzheimer disease, dementia with Lewy bodies, frontotemporal dementia. Parkinson disease, progressive supranuclear palsy, corticobasal degeneration, Huntington disease, can cause dementia, and cerebrovascular disease also can cause dementia. Depression or hypothyroidism also can cause cognitive deficits, but they are reversible by management of underlying cause unlike the forementioned dementias. Therefore these are called pseudodementia. We are entering an era of dementia care that will be based upon the identification of potentially modifiable risk factors and early disease markers, and the application of new drugs postpone progression of dementias or target specific proteins that cause dementia. Efficient pharmacologic treatment of dementia needs not only to distinguish underlying causes of dementia but also to be installed as soon as possible. Therefore, differential diagnosis and early diagnosis of dementia are utmost importance. F-18 FDG PET is useful for clarifying dementing diseases and is also useful for early detection of the disease. Purpose of this article is to review the current value of FDG PET for dementing diseases including differential diagnosis of dementia and prediction of evolving dementia

  7. CERN crystals used in medical imaging

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    This crystal is a type of material known as a scintillator. When a high energy charged particle or photon passes through a scintillator it glows. These materials are widely used in particle physics for particle detection, but their uses are being realized in further fields, such as Positron Emission Tomography (PET), an area of medical imaging that monitors the regions of energy use in the body.

  8. National Electrical Manufacturers Association NU-4 performance evaluation of the PET component of the NanoPET/CT preclinical PET/CT scanner.

    Science.gov (United States)

    Szanda, Istvan; Mackewn, Jane; Patay, Gergely; Major, Peter; Sunassee, Kavitha; Mullen, Gregory E; Nemeth, Gabor; Haemisch, York; Blower, Philip J; Marsden, Paul K

    2011-11-01

    The NanoPET/CT represents the latest generation of commercial preclinical PET/CT systems. This article presents a performance evaluation of the PET component of the system according to the National Electrical Manufacturers Association (NEMA) NU-4 2008 standard. The NanoPET/CT consists of 12 lutetium yttrium orthosilicate:cerium modular detectors forming 1 ring, with 9.5-cm axial coverage and a 16-cm animal port. Each detector crystal is 1.12 × 1.12 × 13 mm, and 1 module contains 81 × 39 of these crystals. An optical light guide transmits the scintillation light to the flat-panel multianode position-sensitive photomultiplier tubes. Analog-to-digital converter cards and a field-programmable gate array-based data-collecting card provide the readout. Spatial resolution, sensitivity, counting rate capabilities, and image quality were evaluated in accordance with the NEMA NU-4 standard. Energy and temporal resolution measurements and a mouse imaging study were performed in addition to the standard. Energy resolution was 19% at 511 keV. The spatial resolution, measured as full width at half maximum on single-slice rebinning/filtered backprojection-reconstructed images, approached 1 mm on the axis and remained below 2.5 mm in the central 5-cm transaxial region both in the axial center and at one-quarter field of view. The maximum absolute sensitivity for a point source at the center of the field of view was 7.7%. The maximum noise equivalent counting rates were 430 kcps at 36 MBq and 130 kcps at 27 MBq for the mouse- and rat-sized phantoms, respectively. The uniformity and recovery coefficients were measured with the image-quality phantom, giving good-quality images. In a mouse study with an (18)F-labeled thyroid-specific tracer, the 2 lobes of the thyroid were clearly distinguishable, despite the small size of this organ. The flexible readout system allowed experiments to be performed in an efficient manner, and the system remained stable throughout. The large number

  9. A high resolution TOF-PET concept with axial geometry and digital SiPM readout

    CERN Document Server

    Casella, C; Joram, C; Schneider, T

    2014-01-01

    The axial arrangement of long scintillation crystals is a promising concept in PET instrumentation to address the need for optimized resolution and sensitivity. Individual crystal readout and arrays of wavelength shifter strips placed orthogonally to the crystals lead to a 3D-detection of the annihilations photons. A fully operational demonstrator scanner, developed by the AX-PET collaboration, proved the potential of this concept in terms of energy and spatial resolution as well as sensitivity. This paper describes a feasibility study, performed on axial prototype detector modules with 100 mm long LYSO crystals, read out by the novel digital Silicon Photomultipliers (dSiPM) from Philips. With their highly integrated readout electronics and excellent intrinsic time resolution, dSiPMs allow for compact, axial detector modules which may extend the potential of the axial PET concept by time of fl ight capabilities (TOF-PET). A coincidence time resolution of 211 ps (FWHM) was achieved in the coincidence of two ax...

  10. Assessment of MR-compatibility of SiPM PET insert using short optical fiber bundles for small animal research

    International Nuclear Information System (INIS)

    Kang, H.G.; Hong, S.J.; Ko, G.B.; Yoon, H.S.; Lee, J.S.; Song, I.C.; Rhee, J.T.

    2015-01-01

    Simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) can provide new perspectives in human disease research because of their complementary in-vivo imaging techniques. Previously, we have developed an MR-compatible PET insert based on optical fibers using silicon photomultipliers (SiPM). However when echo planar imaging (EPI) sequence was performed, signal intensity was slowly decreased by −0.9% over the 5.5 minutes and significant geometrical distortion was observed as the PET insert was installed inside an MRI bore, indicating that the PET electronics and its shielding boxes might have been too close to an MR imaging object. In this paper, optical fiber bundles with a length of 54 mm instead of 31 mm were employed to minimize PET interference on MR images. Furthermore, the LYSO crystals with a size of 1.5 × 1.5 × 7.0 mm 3 were used instead of 2.47 × 2.74 × 20.0 mm 3 for preclinical PET/MR applications. To improve the MR image quality, two receive-only loop coils were used. The effects of the PET insert on the SNR of the MR image either for morphological or advanced MR pulse sequences such as diffusion weighted imaging (DWI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS) were investigated. The quantitative MR compatibility such as B 0 and B 1 field homogeneity without PET, with 'PET OFF', and with 'PET ON' was also evaluated. In conclusion, B 0 maps were not affected by the proposed PET insert whereas B 1 maps were significantly affected by the PET insert. The advanced MRI sequences such as DWI, EPI, and MRS can be performed without a significant MR image quality degradation

  11. The KFA TierPET: Performance characteristics and measurements

    International Nuclear Information System (INIS)

    Weber, S.; Herzog, H.; Mueller-Gaertner, H.W.

    1996-01-01

    We will present first results of the KFA Tier-PET, a positron emission tomograph with flexible geometry dedicated to in vivo studies of small animals. The flexible geometry allows us to change between measurements with high spatial resolution and measurements with increased sensitivity at the cost of resolution. The detectors consist of yttrium aluminum perovskit scintillator arrays which are glued together from 20 x 20 optically isolated crystals, coupled to position sensitive photomultiplier tubes. The fundamental design features concerning crystal dimensions and detector arrangement have been simulated. Based on this data, the definite dimensional outline of the crystals was determined. The YAP:Ce matrix in combination with a position sensitive photomultiplier leads to a detector block with a high spatial resolution. In first measurements a system sensitivity of 1.8 kcps/μCi/ml has been evaluated for a detector-to-detector distance of 16 cm

  12. Investigation of a whole-body DOI-PET system

    International Nuclear Information System (INIS)

    Ohi, Junichi; Tonami, Hiromichi

    2007-01-01

    In this study, we were conducting basic research on a whole-body depth of gamma-ray interaction (DOI) positron emission tomography system which provides spatial resolution that is both high and uniform, and also minimizes costs. The detectors consist of double-layer 9x10 GSO/GSO phoswich crystal blocks, a light guide and two rectangular PMTs. Individual crystal sizes are 2.45x5.1x15 mm 3 , and each layer of crystal blocks has a different decay time. Many of the circuit boards used in our current conventional PET system (SET-3000G SHIMADZU Japan) have been optimized for DOI acquisition. The detectors are arranged to form a 332.5 mm radius detection ring, and spatial resolution is obtained from the center to the edge of the 250 mm radius field of view. The effect of DOI was confirmed using a comparison with the non-DOI systems

  13. Pet ownership and physical health.

    Science.gov (United States)

    Matchock, Robert L

    2015-09-01

    Pet ownership and brief human-animal interactions can serve as a form of social support and convey a host of beneficial psychological and physiological health benefits. This article critically examines recent relevant literature on the pet-health connection. Cross-sectional studies indicate correlations between pet ownership and numerous aspects of positive health outcomes, including improvements on cardiovascular measures and decreases in loneliness. Quasi-experimental studies and better controlled experimental studies corroborate these associations and suggest that owning and/or interacting with a pet may be causally related to some positive health outcomes. The value of pet ownership and animal-assisted therapy (AAT), as a nonpharmacological treatment modality, augmentation to traditional treatment, and healthy preventive behavior (in the case of pet ownership), is starting to be realized. However, more investigations that employ randomized controlled trials with larger sample sizes and investigations that more closely examine the underlying mechanism of the pet-health effect, such as oxytocin, are needed.

  14. Development of a single-ring OpenPET prototype

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Wakizaka, Hidekatsu; Nishikido, Fumihiko; Hirano, Yoshiyuki; Inadama, Naoko; Murayama, Hideo; Ito, Hiroshi; Yamaya, Taiga

    2013-11-21

    One of the challenging applications of PET is implementing it for in-beam PET, which is an in situ monitoring method for charged particle therapy. For this purpose, we have previously proposed an open-type PET scanner, OpenPET. The original OpenPET had a physically opened field-of-view (FOV) between two detector rings through which irradiation beams pass. This dual-ring OpenPET (DROP) had a wide axial FOV including the gap. This geometry was not necessarily the most efficient for application to in-beam PET in which only a limited FOV around the irradiation field is required. Therefore, we have proposed a new single-ring OpenPET (SROP) geometry which can provide an accessible and observable open space with higher sensitivity and a reduced number of detectors than the DROP. The proposed geometry was a cylinder shape with its ends cut at a slant, in which the shape of each cut end became an ellipse. In this work, we developed and evaluated a small prototype of the SROP geometry for proof-of-concept. The SROP prototype was designed with 2 ellipse-shaped detector rings of 16 depth-of-interaction (DOI) detectors each. The DOI detectors consisted of 1024 GSOZ scintillator crystals which were arranged in 4 layers of 16×16 arrays, coupled to a 64-channel FP-PMT. Each ellipse-shaped detector ring had a major axis of 281.6 mm and a minor axis of 207.5 mm. For the slant mode, the rings were placed at a 45-deg slant from the axial direction and for the non-slant mode (used as a reference) they were at 90 deg from the axial direction with no gap. The system sensitivity measured from a {sup 22}Na point source was 5.0% for the slant mode. The average spatial resolutions of major and minor axis directions were calculated as 3.8 mm FWHM and 4.9 mm FWHM, respectively for the slant mode. This difference resulted from the ellipsoidal ring geometry and the spatial resolution of the minor axis direction degraded by the parallax error. Comparison between the slant mode and the non

  15. PET and PET/CT in tumour of undetermined origin

    International Nuclear Information System (INIS)

    Garcia O, J.R.

    2007-01-01

    In this presentation the following conclusions were obtained regarding the use of PET and PET/CT in patient with cancer of unknown primary: 1. Detection of the primary one in 1/3 at 1/2 of patient. 2. It detects metastases in other places in 50%. 3. It changes the initial therapy planned in 1/3 at 1/2 of patient. 4. Useful in initial phases of protocol study to limit the other procedures. After standard evaluation. Before advanced protocol. 5. PET/CT study increases the % of primary detection, although in a non significant way vs. PET. 6. They are required more studies to value their utility to a more objective manner. (Author)

  16. Agglomerated polymer monoliths with bimetallic nano-particles as flow-through micro-reactors

    International Nuclear Information System (INIS)

    Floris, P.; Twamley, B.; Nesterenko, P.N.; Paull, B.; Connolly, D.

    2012-01-01

    Polymer monoliths in capillary format have been prepared as solid supports for the immobilisation of platinum/palladium bimetallic nano-flowers. Optimum surface coverage of nano-flowers was realised by photografting the monoliths with vinyl azlactone followed by amination with ethylenediamine prior to nano-particle immobilisation. Field emission SEM imaging was used as a characterisation tool for evaluating nano-particle coverage, together with BET surface area analysis to probe the effect of nano-particle immobilisation upon monolith morphology. Ion exchange chromatography was also used to confirm the nature of the covalent attachment of nano-flowers on the monolithic surface. In addition, EDX and ICP analyses were used to quantify platinum and palladium on modified polymer monoliths. Finally the catalytic properties of immobilised bimetallic Pd/Pt nano-flowers were evaluated in flow-through mode, exploiting the porous interconnected flow-paths present in the prepared monoliths (pore diameter ∼ 1-2 μm). Specifically, the reduction of Fe (III) to Fe (II) and the oxidation of NADH to NAD+ were selected as model redox reactions. The use of a porous polymer monolith as an immobilisation substrate (rather than aminated micro-spheres) eliminated the need for a centrifugation step after the reaction. (author)

  17. Peculiarities of Thermal Treatment of Monolithic Reinforced Concrete Structures

    Science.gov (United States)

    Kuchin, V. N.; Shilonosova, N. V.

    2017-11-01

    A mathematical program has been developed that allows one to determine the parameters of heat treatment of monolithic structures. One of the quality indicators of monolithic reinforced concrete structures is the level of temperature stresses arising in the process of heat treatment and further operation of structures. In winter at heat treatment the distribution of temperatures along the cross-section of the structure is uneven. A favorable thermo-stressed state in a concrete massif occurs when using the preheating method, providing the concrete temperature in the center of the structure is greater than at the periphery. In this case, after the strength is set and the temperature is later equalized along the cross-section, the central part of the structure tends to decrease its dimensions more but the extreme zones prevent it. Therefore, the center is in a state of tension, and the extreme zones on the periphery are compressed. In compressed concrete there is a lesser chance of cracks or defects. The temperature gradient over the section of the structure, the stress in the concrete and its strength are determined. When calculating the temperature and strength fields, the stress level was determined - a value equal to the ratio of the tensile stresses in the section under consideration to the tensile strength of the concrete in this section at the same time. The nature of the change in stress level is determined by the massive structure and power of the formwork heaters. It is shown that under unfavorable conditions the stress level is close to the critical value. The greatest temperature gradient occurs in the outer layers adjacent to the heating formwork. A technology for concrete conditioning is proposed which makes it possible to reduce the temperature stresses along the cross-section of the structure. The time for concrete conditioning in the formwork is reduced. In its turn, it further reduces labor costs and the cost of concrete work along with the cost of

  18. PET/TAC in Oncology; PET/TAC en Oncologia

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez V, A M [Especialista en Medicina Nuclear, Profa. Depto. Radiologia de la Facultad de Medicina, Universidad Complutense de Madrid, Madrid (Spain)

    2007-07-01

    From this presentation of PET-TAC in oncology the following advantages on the conventional PET are obtained: 1. More short study and stadium in one session. 2. It adds the information of both techniques. 3. Better localization of leisure: affected organ, stadium change (neck, mediastinum, abdomen). 4. Reduction of false positive (muscle, brown fat, atelectasis, pneumonias, intestine, urinary vials, etc.). 5. Reduction of negative false. 6. Reduction of not conclusive. 7. More understandable for other specialists. 8. Biopsies guide. 9. Planning radiotherapy.

  19. Two-dimensional thermal analysis of radial heat transfer of monoliths in small-scale steam methane reforming

    DEFF Research Database (Denmark)

    Cui, Xiaoti; Kær, Søren Knudsen

    2018-01-01

    Monolithic catalysts have received increasing attention for application in the small-scale steam methane reforming process. The radial heat transfer behaviors of monolith reformers were analyzed by two-dimensional computational fluid dynamic (CFD) modeling. A parameter study was conducted...... by a large number of simulations focusing on the thermal conductivity of the monolith substrate, washcoat layer, wall gap, radiation heat transfer and the geometric parameters (cell density, porosity and diameter of monolith). The effective radial thermal conductivity of the monolith structure, kr......,eff, showed good agreement with predictions made by the pseudo-continuous symmetric model. This influence of the radiation heat transfer is low for highly conductive monoliths. A simplified model has been developed to evaluate the importance of radiation for monolithic reformers under different conditions...

  20. A new generation of PET scanners for small animal studies

    International Nuclear Information System (INIS)

    Hegyesi, G.; Imrek, J.; Kalinka, G.; Molnar, J.; Novak, D.; Valastyan, I.; Balkay, L.; Emri, M.; Kis, S.; Tron, L.

    2008-01-01

    processing algorithms, or the same method with different parameters. The miniPET-II small animal PET scanner consists of 12 independent detector modules. The inner diameter of the scanner is 206 mmm. On each module there is a segmented scintillator block (35 x 35 crystals of 1.27 mm x 1.27 mm x 12 mm) coupled to a Hamamatsu H9500 position sensitive photomultiplier tube (PSPMT) which detects the incoming gamma photons. The timing, energy and position signals of the PSPMT are digitized by four channel ADC running at 50 MHz, and analyzed by a Digital Signal Processing (DSP) block. The DSP block and a 'System-on-Module' embedded system are implemented in a Field Programmable Gate Array (FPGA, Virtex-4 FX12) based small piggyback card. The System-on-Module runs a custom embedded Linux operating system. This Linux provides a convenient platform for application development, debugging and for system integration. The collected data are sent to the computing cluster for further processing via a gigabit Ethernet link. The miniPETII detector module can also be used independently from the PET scanner as a general purpose physics measurement device

  1. Study of pulse shapes in Ge detectors with PET

    Energy Technology Data Exchange (ETDEWEB)

    Grabmayr, Peter; Hegai, Alexander; Jochum, Josef; Schmitt, Christopher; Schuetz, Ann-Kathrin [Eberhard Karls Univeritaet Tuebingen (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    The Gerda collaboration aims to determine the half life of the neutrinoless double beta decay (0νββ) of {sup 76}Ge. For Phase II Gerda wants to reduce the background contribution significantly by active background-suppression techniques. One of such techniques is the pulse shape analysis of signals induced by the interaction of radiation with the detector. The pulse shapes depend not only on the energy of the interacting gamma, the geometry and field configuration but also on the location of interaction in the crystal. The waveform and the location of the interaction in the germanium can be determined by positron-emission-tomography (PET). First results of this novel pulse shape study with the PET will be presented in this talk.

  2. Compensation strategies for PET scanners with unconventional scanner geometry

    CERN Document Server

    Gundlich, B; Oehler, M

    2006-01-01

    The small animal PET scanner ClearPET®Neuro, developed at the Forschungszentrum Julich GmbH in cooperation with the Crystal Clear Collaboration (CERN), represents scanners with an unconventional geometry: due to axial and transaxial detector gaps ClearPet®Neuro delivers inhomogeneous sinograms with missing data. When filtered backprojection (FBP) or Fourier rebinning (FORE) are applied, strong geometrical artifacts appear in the images. In this contribution we present a method that takes the geometrical sensitivity into account and converts the measured sinograms into homogeneous and complete data. By this means artifactfree images are achieved using FBP or FORE. Besides an advantageous measurement setup that reduces inhomogeneities and data gaps in the sinograms, a modification of the measured sinograms is necessary. This modification includes two steps: a geometrical normalization and corrections for missing data. To normalize the measured sinograms, computed sinograms are used that describe the geometric...

  3. Evaluation of static physics performance of the jPET-D4 by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Tomoyuki [Allied Health Sciences, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa, 228-8555 (Japan); Yoshida, Eiji [Molecular Imaging Centre, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba, 263-8555 (Japan); Kobayashi, Ayako [Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, 116-8551 (Japan); Shibuya, Kengo [Molecular Imaging Centre, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba, 263-8555 (Japan); Nishikido, Fumihiko [Molecular Imaging Centre, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba, 263-8555 (Japan); Kobayashi, Tetsuya [Graduate School of Science and Technology, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Suga, Mikio [Graduate School of Science and Technology, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Yamaya, Taiga [Molecular Imaging Centre, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba, 263-8555 (Japan); Kitamura, Keishi [Shimadzu Corporation, 1 Nishinokyo-kuwabara-cho, Nakagyo-ku, Kyoto, 604-8511 (Japan); Maruyama, Koichi [Allied Health Sciences, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa, 228-8555 (Japan); Murayama, Hideo [Molecular Imaging Centre, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba, 263-8555 (Japan)

    2007-01-07

    The jPET-D4 is the first PET scanner to introduce a unique four-layer depth-of-interaction (DOI) detector scheme in order to achieve high sensitivity and uniform high spatial resolution. This paper compares measurement and Monte Carlo simulation results of the static physics performance of this prototype research PET scanner. Measurement results include single and coincidence energy spectra, point and line source sensitivities, axial sensitivity profile (slice profile) and scatter fraction. We use GATE (Geant4 application for tomographic emission) as a Monte Carlo radiation transport model. Experimental results are reproduced well by the simulation model with reasonable assumptions on characteristic responses of the DOI detectors. In a previous study, the jPET-D4 was shown to provide a uniform spatial resolution as good as 3 mm (FHWM). In the present study, we demonstrate that a high sensitivity, 11.3 {+-} 0.5%, is provided at the FOV centre. However, about three-fourths of this sensitivity is related to multiple-crystal events, for which some misidentification of the crystal cannot be avoided. Therefore, it is crucial to develop a more efficient way to identify the crystal of interaction and to reduce misidentification in order to make use of these high performance values simultaneously. We expect that effective sensitivity can be improved by replacing the GSO crystals with more absorptive crystals such as BGO and LSO. The results we describe here are essential to take full advantage of the next generation PET systems that have DOI recognition capability.

  4. Monolitni katalizatori i reaktori: osnovne značajke, priprava i primjena (Monolith catalysts and reactors: preparation and applications

    Directory of Open Access Journals (Sweden)

    Tomašić, V.

    2004-12-01

    Full Text Available Monolithic (honeycomb catalysts are continuous unitary structures containing many narrow, parallel and usually straight channels (or passages. Catalytically active components are dispersed uniformly over the whole porous ceramic monolith structure (so-called incorporated monolithic catalysts or are in a layer of porous material that is deposited on the walls of channels in the monolith's structure (washcoated monolithic catalysts. The material of the main monolithic construction is not limited to ceramics but includes metals, as well. Monolithic catalysts are commonly used in gas phase catalytic processes, such as treatment of automotive exhaust gases, selective catalytic reduction of nitrogen oxides, catalytic removal of volatile organic compounds from industrial processes, etc. Monoliths continue to be the preferred support for environmental applications due to their high geometric surface area, different design options, low pressure drop, high temperature durability, mechanical strength, ease of orientation in a reactor and effectiveness as a support for a catalytic washcoat. As known, monolithic catalysts belong to the class of the structured catalysts and/or reactors (in some cases the distinction between "catalyst" and "reactor" has vanished. Structured catalysts can greatly intensify chemical processes, resulting in smaller, safer, cleaner and more energy efficient technologies. Monolith reactors can be considered as multifunctional reactors, in which chemical conversion is advantageously integrated with another unit operation, such as separation, heat exchange, a secondary reaction, etc. Finally, structured catalysts and/or reactors appear to be one of the most significant and promising developments in the field of heterogeneous catalysis and chemical engineering of the recent years. This paper gives a description of the background and perspectives for application and development of monolithic materials. Different methods and techniques

  5. Failure analysis of various monolithic posterior aesthetic dental crowns using finite element method

    Science.gov (United States)

    Porojan, Liliana; Topală, Florin

    2017-08-01

    The aim of the study was to assess the effect of material stiffness and load on the biomechanical performance of the monolithic full-coverage posterior aesthetic dental crowns using finite element analysis. Three restorative materials for monolithic dental crowns were selected for the study: zirconia; lithium disilicate glass-ceramic, and resin-based composite. Stresses were calculated in the crowns for all materials and in the teeth structures, under different load values. The experiments show that dental crowns made from all this new aesthetic materials processed by CAD/CAM technologies would be indicated as monolithic dental crowns for posterior areas.

  6. Stanley Kubrick and B.F. Skinner : Is a Teaching Machine a Monolith ?

    OpenAIRE

    浜野, 保樹; ハマノ, ヤスキ; Yasuki, Hamano

    1990-01-01

    The teaching machine invented by B.F. Skinner was recog-nized as one of few clear achievements of scientific pedagogy and even appeared in SF. Arthur C. Clarke who wrote the script of the SF movie "2001: A Space Odyssey" with Stanley Kubrick wanted to scientifically define a monolith to be a God who had given intelligence to our ancestors. In other words, he wanted to describe a monolith as a teaching machine as well as a God. However Kubrick did not want to make clear about what a monolith i...

  7. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: an attractive technology.

    Science.gov (United States)

    Ladner, Y; Cretier, G; Faure, K

    2015-01-01

    Electrochromatography (EC) on a porous monolithic stationary phase prepared within the channels of a microsystem is an attractive alternative for on-chip separation. It combines the separation mechanisms of electrophoresis and liquid chromatography. Moreover, the porous polymer monolithic materials have become popular as stationary phase due to the ease and rapidity of fabrication via free radical photopolymerization. Here, we describe a hexyl acrylate (HA)-based porous monolith which is simultaneously in situ synthesized and anchored to the inner walls of the channel of a cyclic olefin copolymer (COC) device in only 2 min. The baseline separation of a mixture of neurotransmitters including six amino acids and two catecholamines is realized.

  8. PET and PET/CT in tumour of undetermined origin; PET y PET/CT en tumor de origen indeterminado

    Energy Technology Data Exchange (ETDEWEB)

    Garcia O, J R [Nuclear Medicine and Molecular Imaging, PET/CT, Centro Medico ABC, Mexico D.F. (Mexico)

    2007-07-01

    In this presentation the following conclusions were obtained regarding the use of PET and PET/CT in patient with cancer of unknown primary: 1. Detection of the primary one in 1/3 at 1/2 of patient. 2. It detects metastases in other places in 50%. 3. It changes the initial therapy planned in 1/3 at 1/2 of patient. 4. Useful in initial phases of protocol study to limit the other procedures. After standard evaluation. Before advanced protocol. 5. PET/CT study increases the % of primary detection, although in a non significant way vs. PET. 6. They are required more studies to value their utility to a more objective manner. (Author)

  9. PET imaging for brain function

    International Nuclear Information System (INIS)

    Fukuda, Hiroshi

    2003-01-01

    Described are the principle of PET and its characteristics, imaging of human brain function, mapping of detailed human cerebral functions and PET imaging of nerve transmission. Following compounds labeled by positron emitters are used for PET imaging of brain functions: for blood flow and oxygen metabolism, 15 O-O 2 gas, water and carbon dioxide; for energy metabolism, 18 F-fluorodeoxyglucose; and for nerve transmission functions in receptor binding, transporter, transmitter synthesis and enzyme, 11 C- or 18 F-dopamine, serotonin and their analogues, and acetylcholine analogues. For brain mapping, examples of cognition tasks, results and their statistics are presented with images for blood flow. Nerve transmissions in schizophrenia and Alzheimer disease are imaged with labeled analogues of dopamine and acetylcholine, respectively. PET is becoming more and more important in the field of psychiatric science particularly in the coming society of increasing aged people. (N.I.)

  10. Measuring receptor occupancy with PET

    NARCIS (Netherlands)

    van Waarde, A

    Many physiological and biochemical measurements can be performed noninvasively in humans with modern imaging techniques like magnetic resonance imaging (MRI), positron emission tomography (PET) or single-photon emission computed tomography (SPECT). This review focuses on the monitoring of

  11. Alumina composites for oxide/oxide fibrous monoliths

    International Nuclear Information System (INIS)

    Cruse, T. A.; Polzin, B. J.; Picciolo, J. J.; Singh, D.; Tsaliagos, R. N.; Goretta, K. C.

    2000-01-01

    Most work on ceramic fibrous monoliths (FMs) has focused on the Si 3 N 4 /BN system. In an effort to develop oxidation-resistant FMs, several oxide systems have recently been examined. Zirconia-toughened alumina and alumina/mullite appear to be good candidates for the cell phase of FMs. These composites offer higher strength and toughness than pure alumina and good high-temperature stability. By combining these oxides, possibly with a weaker high-temperature oxide as the cell-boundary phase, it should be possible to product a strong, resilient FM that exhibits graceful failure. Several material combinations have been examined. Results on FM fabrication and microstructural development are presented

  12. Highly tailorable thiol-ene based emulsion-templated monoliths

    DEFF Research Database (Denmark)

    Lafleur, J. P.; Kutter, J. P.

    2014-01-01

    The attractive surface properties of thiol-ene polymers combined with their ease of processing make them ideal substrates in many bioanalytical applications. We report the synthesis of highly tailorable emulsion-templated porous polymers and beads in microfluidic devices based on off-stoichiometr......The attractive surface properties of thiol-ene polymers combined with their ease of processing make them ideal substrates in many bioanalytical applications. We report the synthesis of highly tailorable emulsion-templated porous polymers and beads in microfluidic devices based on off......-stoichiometry thiolene chemistry. The method allows monolith synthesis and anchoring inside thiol-ene microchannels in a single step. Variations in the monomer stoichiometric ratios and/or amount of porogen used allow for the creation of extremely varied polymer morphologies, from foam-like materials to dense networks...

  13. Transferrable monolithic multicomponent system for near-ultraviolet optoelectronics

    Science.gov (United States)

    Qin, Chuan; Gao, Xumin; Yuan, Jialei; Shi, Zheng; Jiang, Yuan; Liu, Yuhuai; Wang, Yongjin; Amano, Hiroshi

    2018-05-01

    A monolithic near-ultraviolet multicomponent system is implemented on a 0.8-mm-diameter suspended membrane by integrating a transmitter, waveguide, and receiver into a single chip. Two identical InGaN/Al0.10Ga0.90N multiple-quantum well (MQW) diodes are fabricated using the same process flow, which separately function as a transmitter and receiver. There is a spectral overlap between the emission and detection spectra of the MQW diodes. Therefore, the receiver can respond to changes in the emission of the transmitter. The multicomponent system is mechanically transferred from silicon, and the wire-bonded transmitter on glass experimentally demonstrates spatial light transmission at 200 Mbps using non-return-to-zero on–off keying modulation.

  14. FLUIDIZED BED STEAM REFORMER (FBSR) PRODUCT: MONOLITH FORMATION AND CHARACTERIZATION

    International Nuclear Information System (INIS)

    Jantzen, C

    2006-01-01

    The most important requirement for Hanford's low activity waste (LAW) form for shallow land disposal is the chemical durability of the product. A secondary, but still essential specification, is the compressive strength of the material with regards to the strength of the material under shallow land disposal conditions, e.g. the weight of soil overburden and potential intrusion by future generations, because the term ''near-surface disposal'' indicates disposal in the uppermost portion, or approximately the top 30 meters, of the earth's surface. The THOR(reg s ign) Treatment Technologies (TTT) mineral waste form for LAW is granular in nature because it is formed by Fluidized Bed Steam Reforming (FBSR). As a granular product it has been shown to be as durable as Hanford's LAW glass during testing with ASTM C-1285-02 known as the Product Consistency Test (PCT) and with the Single Pass Flow Through Test (SPFT). Hanford Envelope A and Envelope C simulants both performed well during PCT and SPFT testing and during subsequent performance assessment modeling. This is partially due to the high aluminosilicate content of the mineral product which provides a natural aluminosilicate buffering mechanism that inhibits leaching and is known to occur in naturally occurring aluminosilicate mineral analogs. In order for the TTT Na-Al-Si (NAS) granular mineral product to meet the compressive strength requirements (ASTM C39) for a Hanford waste form, the granular product needs to be made into a monolith or disposed of in High Integrity Containers (HIC's). Additionally, the Hanford intruder scenario for disposal in the Immobilized Low Activity Waste (ILAW) trench is mitigated as there is reduced intruder exposure when a waste form is in a monolithic form. During the preliminary testing of a monolith binder for TTT's FBSR mineral product, four parameters were monitored: (1) waste loading (not optimized for each waste form tested); (2) density; (3) compressive strength; and (4

  15. Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors

    Science.gov (United States)

    Chmiola, John; Largeot, Celine; Taberna, Pierre-Louis; Simon, Patrice; Gogotsi, Yury

    2010-04-01

    Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.

  16. Monolithic Controlled Delivery Systems: Part I. Basic Characteristics and Mechanisms

    Directory of Open Access Journals (Sweden)

    Rumiana Blagoeva

    2006-04-01

    Full Text Available The article considers contemporary systems for controlled delivery of active agents, such as drugs, agricultural chemicals, pollutants and additives in the environment. A useful classification of the available controlled release systems (CRS is proposed according to the type of control (passive, active or self-preprogrammed and according to the main controlling mechanism (diffusion, swelling, dissolution or erosion. Special attention is given to some of the most used CRS - polymer monoliths. The structural and physical-chemical characteristics of CRS as well as the basic approaches to their production are examined. The basic mechanisms of controlled agent release are reviewed in detail and factors influencing the release kinetics are classified according to their importance. The present study can be helpful for understanding and applying the available mathematical models and for developing more comprehensive ones intended for design of new controlled delivery systems.

  17. Technological Advancement in Preparation and Application of Monolithic Refractories

    Institute of Scientific and Technical Information of China (English)

    LIZaigeng; ZHOUNingsheng

    2001-01-01

    This paper highlighted the advancement in preparation and application technologies of monolithic refactories in recent two decaes,in terms of raw materials,processing technology,particle size distrbution,binders,additives,workabiity,installation and applications,Facts and dicussions indicated that monolitihic refractoriesare advancing rapidly,from material point of view,towards higher grade and higher performance mateials and oxide-non-oxide composites;from installation point of view,towards higher efficiency,less man-power and time consuming terchinques;from drying-out point of view,towards quicker or even drying-out free,and from application point of view,towards the working linings of high temperature smelters and vessles under tougher serivce conditions ,and on the other hand,with more functions.

  18. Monolithic active pixel radiation detector with shielding techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz W.

    2018-03-20

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  19. Monolithic integration of SOI waveguide photodetectors and transimpedance amplifiers

    Science.gov (United States)

    Li, Shuxia; Tarr, N. Garry; Ye, Winnie N.

    2018-02-01

    In the absence of commercial foundry technologies offering silicon-on-insulator (SOI) photonics combined with Complementary Metal Oxide Semiconductor (CMOS) transistors, monolithic integration of conventional electronics with SOI photonics is difficult. Here we explore the implementation of lateral bipolar junction transistors (LBJTs) and Junction Field Effect Transistors (JFETs) in a commercial SOI photonics technology lacking MOS devices but offering a variety of n- and p-type ion implants intended to provide waveguide modulators and photodetectors. The fabrication makes use of the commercial Institute of Microelectronics (IME) SOI photonics technology. Based on knowledge of device doping and geometry, simple compact LBJT and JFET device models are developed. These models are then used to design basic transimpedance amplifiers integrated with optical waveguides. The devices' experimental current-voltage characteristics results are reported.

  20. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    Science.gov (United States)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  1. Monolithic microwave integrated circuit devices for active array antennas

    Science.gov (United States)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  2. Monolithic growth of partly cured polydimethylsiloxane thin film layers

    DEFF Research Database (Denmark)

    Yu, Liyun; Skov, Anne Ladegaard

    2014-01-01

    at different curing times. The monolithic films are investigated by rheology, scanning electron microscope, mechanical testing, dielectric relaxation spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The morphology, mechanical and dielectric properties, as well...... to enable interlayer crosslinking reactions either by application of an adhesion promoter or by ensuring that there are reactive, complementary sites available on the two surfaces. Polydimethylsiloxane (PDMS) is a widely used polymer for DEAPs. In this work, two-layered PDMS films are adhered together...... as thermal stabilities of the bilayer elastomer films are observed to change with the curing time of the monolayers before lamination. The objective of this work is to create adhesion of two layers without destroying the original viscoelastic properties of the PDMS films, and hence enable, for example...

  3. Analysis of the performance of the MONOLITH prototype

    International Nuclear Information System (INIS)

    Bari, G.; Candela, A.; De Deo, M.; D'Incecco, M.; Garbini, M.; Giusti, P.; Gustavino, C.; Lindozzi, M.; Menghetti, H.; Sartorelli, G.; Satta, G.; Selvi, M.

    2003-01-01

    In the framework of the study for a large magnetic detector suitable for the physics at a neutrino factory, the data collected with the MONOLITH prototype at the T7-PS facility at CERN has been analyzed. The hadron shower angular resolution for pions followed a 10.4/√E(GeV)+10.1/E law for orthogonally incident particles. For a baseline of 732 km, this performance would allow the rejection of wrong sign muon background at the level of 10 -6 , and a capability to measure sin θ 13 down to 10 -3 . A preliminary analysis of about 10 6 downward going muons collected at LNGS is also presented. The readout system upgrade allowed the monitoring of each glass RPC with a granularity of 1 cm 2

  4. Cost and Potential of Monolithic CIGS Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey; Woodhouse, Michael

    2015-06-17

    A bottom-up cost analysis of monolithic, glass-glass Cu(In,Ga)(Se,S)2 (CIGS) modules is presented, illuminating current cost drivers for this technology and possible pathways to reduced cost. At 14% module efficiency, for the case of U.S. manufacturing, a manufacturing cost of $0.56/WDC and a minimum sustainable price of $0.72/WDC were calculated. Potential for reduction in manufacturing costs to below $0.40/WDC in the long-term may be possible if module efficiency can be increased without significant increase in $/m2 costs. The levelized cost of energy (LCOE) in Phoenix, AZ under different conditions is assessed and compared to standard c-Si.

  5. Method of producing monolithic ceramic cross-flow filter

    Science.gov (United States)

    Larsen, David A.; Bacchi, David P.; Connors, Timothy F.; Collins, III, Edwin L.

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  6. Monolithic amorphous silicon modules on continuous polymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Grimmer, D.P. (Iowa Thin Film Technologies, Inc., Ames, IA (United States))

    1992-03-01

    This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

  7. Design of ultra-lightweight concrete: towards monolithic concrete structures

    Directory of Open Access Journals (Sweden)

    Yu Qing Liang

    2014-04-01

    Full Text Available This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K; and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm . This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.

  8. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    Science.gov (United States)

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities.

  9. Radiation monitoring of PET staff

    International Nuclear Information System (INIS)

    Trang, A.

    2004-01-01

    Full text: Positron emission tomography (PET) is becoming a common diagnostic tool in hospitals, often located in and employing staff from the Nuclear Medicine or Radiology departments. Although similar in some ways, staff in PET departments are commonly found to have the highest radiation doses in the hospital environment due to unique challenges which PET tracers present in administration as well as production. The establishment of a PET centre with a dedicated cyclotron has raised concerns of radiation protection to the staff at the WA PET Centre and the Radiopharmaceutical Production and Development (RAPID) team. Since every PET centre has differing designs and practices, it was considered important to closely monitor the radiation dose to our staff so that improvements to practices and design could be made to reduce radiation dose. Electronic dosimeters (MGP DMC 2000XB), which have a facility to log time and dose at 10 second intervals, were provided to three PET technologists and three PET nurses. These were worn in the top pocket of their lab coats throughout a whole day. Each staff member was then asked to note down their duties throughout the day and also note the time they performed each duty. The duties would then correlate with the dose with which the electronic monitor recorded and an estimate of radiation dose per duty could be given. Also an estimate of the dose per day to each staff member could be made. PET nurses averaged approximately 20 μ8v per day getting their largest dose from caring for occasional problematic patients. Smaller doses of a 1-2 μ8v were recorded for injections and removing cannulas. PET technologists averaged approximately 15 μ8v per day getting their largest dose of 1-5μ8v mainly from positioning of patients and sometimes larger doses due to problematic patients. Smaller doses of 1-2 μ5v were again recorded for injections and removal of cannulas. Following a presentation given to staff, all WA PET Centre and RAPID staff

  10. Device Simulation of Monolithic Active Pixel Sensors: Radiation Damage Effects

    International Nuclear Information System (INIS)

    Fourches, N.T.

    2009-01-01

    Vertexing for the future International Linear Collider represents a challenging goal because of the high spatial resolution required with low material budget and high ionizing radiation tolerance. CMOS Monolithic Active Pixel Sensors (MAPS) represent a good potential solution for this purpose. Up to now many MAPS sensors have been developed. They are based on various architectures and manufactured in different processes. However, up so far, the sensor diode has not been the subject of extensive modelization and simulation. Published simulation studies of sensor-signal formation have been less numerous than measurements on real sensors. This is a cause for concern because such sensor is physically based on the partially depleted diode, in the vicinity of which the electric field collects the minority carriers generated by an incident MIP (minimum ionizing particle). Although the microscopic mechanisms are well known and modelled, the global physical mechanisms for signal formation are not very rigorously established. This is partly due to the presence of a predominant diffusion component in the charge transport. We present here simulations mainly based on the S-PISCES code, in which physical mechanisms affecting transport are taken into account. Diffusion, influence of residual carrier concentration due to the doping level in the sensitive volume, and more importantly charge trapping due to deep levels in the active (detecting) layer are studied together with geometric aspects. The effect of neutron irradiation is studied to assess the effects of deep traps. A comparison with available experimental data, obtained on processed MAPS before or after neutron irradiation will be introduced. Simulated reconstruction of the Minimum Ionizing Particle (MIP) point of impact in two dimensions is also investigated. For further steps, guidelines for process choices of next Monolithic Active Pixel Sensors are introduced. (authors)

  11. Monolithic graphene fibers for solid-phase microextraction.

    Science.gov (United States)

    Fan, Jing; Dong, Zelin; Qi, Meiling; Fu, Ruonong; Qu, Liangti

    2013-12-13

    Monolithic graphene fibers for solid-phase microextraction (SPME) were fabricated through a dimensionally confined hydrothermal strategy and their extraction performance was evaluated. For the fiber fabrication, a glass pipeline was innovatively used as a hydrothermal reactor instead of a Teflon-lined autoclave. Compared with conventional methods for SPME fibers, the proposed strategy can fabricate a uniform graphene fiber as long as several meters or more at a time. Coupled to capillary gas chromatography (GC), the monolithic graphene fibers in a direct-immersion (DI) mode achieved higher extraction efficiencies for aromatics than those for n-alkanes, especially for polycyclic aromatic hydrocarbons (PAHs), thanks to π-π stacking interaction and hydrophobic effect. Additionally, the fibers exhibited excellent durability and can be repetitively used more than 160 times without significant loss of extraction performance. As a result, an optimum extraction condition of 40°C for 50min with 20% NaCl (w/w) was finally used for SPME of PAHs in aqueous samples. For the determination of PAHs in water samples, the proposed DI-SPME-GC method exhibited linear range of 0.05-200μg/L, limits of detection (LOD) of 4.0-50ng/L, relative standard deviation (RSD) less than 9.4% and 12.1% for one fiber and different fibers, respectively, and recoveries of 78.9-115.9%. The proposed method can be used for analysis of PAHs in environmental water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. PET/TAC in Oncology

    International Nuclear Information System (INIS)

    Jimenez V, A.M.

    2007-01-01

    From this presentation of PET-TAC in oncology the following advantages on the conventional PET are obtained: 1. More short study and stadium in one session. 2. It adds the information of both techniques. 3. Better localization of leisure: affected organ, stadium change (neck, mediastinum, abdomen). 4. Reduction of false positive (muscle, brown fat, atelectasis, pneumonias, intestine, urinary vials, etc.). 5. Reduction of negative false. 6. Reduction of not conclusive. 7. More understandable for other specialists. 8. Biopsies guide. 9. Planning radiotherapy

  13. PET imaging in pediatric oncology

    International Nuclear Information System (INIS)

    Shulkin, B.L.

    2004-01-01

    High-quality PET imaging of pediatric patients is challenging and requires attention to issues commonly encountered in the practice of pediatric nuclear medicine, but uncommon to the imaging of adult patients. These include intravenous access, fasting, sedation, consent, and clearance of activity from the urinary tract. This paper discusses some technical differences involved in pediatric PET to enhance the quality of scans and assure the safety and comfort of pediatric patients. (orig.)

  14. Quantitative PET of liver functions.

    Science.gov (United States)

    Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord

    2018-01-01

    Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[ 18 F]fluoro- D -galactose ( 18 F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value ( SUV ) from a static liver 18 F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11 C-palmitate and with the conjugated bile acid tracer [ N -methyl- 11 C]cholylsarcosine ( 11 C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood ( K 1 ; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion , SUV of non-invasive static PET with 18 F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET.

  15. Quantitative PET of liver functions

    Science.gov (United States)

    Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord

    2018-01-01

    Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[18F]fluoro-D-galactose (18F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value (SUV) from a static liver 18F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11C-palmitate and with the conjugated bile acid tracer [N-methyl-11C]cholylsarcosine (11C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood (K 1; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion, SUV of non-invasive static PET with 18F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET. PMID:29755841

  16. Do carotid MR surface coils affect PET quantification in PET/MR imaging?

    International Nuclear Information System (INIS)

    Willemink, Martin J; Eldib, Mootaz; Leiner, Tim; Fayad, Zahi A; Mani, Venkatesh

    2015-01-01

    To evaluate the effect of surface coils for carotid MR imaging on PET quantification in a clinical simultaneous whole-body PET/MR scanner. A cylindrical phantom was filled with a homogeneous 2L water-FDG mixture at a starting dose of 301.2MBq. Clinical PET/MR and PET/CT systems were used to acquire PET-data without a coil (reference standard) and with two carotid MRI coils (Siemens Special Purpose 8-Channel and Machnet 4-Channel Phased Array). PET-signal attenuation was evaluated with Osirix using 51 (PET/MR) and 37 (PET/CT) circular ROIs. Mean and maximum standardized uptake values (SUVs) were quantified for each ROI. Furthermore, SUVs of PET/MR and PET/CT were compared. For validation, a patient was scanned with an injected dose of 407.7MBq on both a PET/CT and a PET/MR system without a coil and with both coils. PET/MR underestimations were -2.2% (Siemens) and -7.8% (Machnet) for SUVmean, and -1.2% (Siemens) and -3.3% (Machnet) for SUVmax, respectively. For PET/CT, underestimations were -1.3% (Siemens) and -1.4% (Machnet) for SUVmean and -0.5% (both Siemens and Machnet) for SUVmax, respectively using no coil data as reference. Except for PET/CT SUVmax values all differences were significant. SUVs differed significantly between PET/MR and PET/CT with SUVmean values of 0.51-0.55 for PET/MR and 0.68-0.69 for PET/CT, respectively. The patient examination showed that median SUVmean values measured in the carotid arteries decreased from 0.97 without a coil to 0.96 (Siemens) and 0.88 (Machnet). Carotid surface coils do affect attenuation correction in both PET/MR and PET/CT imaging. Furthermore, SUVs differed significantly between PET/MR and PET/CT.

  17. AX-PET A novel PET detector concept with full 3D reconstruction

    CERN Document Server

    Braem, A; Séguinot, J; Dissertori, G; Djambazov, L; Lustermann, W; Nessi-Tedaldi, F; Pauss, F; Schinzel, D; Solevi, P; Lacasta, C; Oliver, J F; Rafecas, M; De Leo, R; Nappi, E; Vilardi, I; Chesi, E; Cochran, E; Honscheid, K; Kagan, H; Rudge, A; Smith, S; Weilhammer, P; Johnson, I; Renker, D; Clinthorne, N; Huh, S; Bolle, E; Stapnes, S; Meddi, F

    2009-01-01

    We describe the concept and first experimental tests of a novel 3D axial Positron Emission Tomography (PET) geometry. It allows for a new way of measuring the interaction point in the detector with very high precision. It is based on a matrix of long Lutetium-Yttrium OxyorthoSilicate (LYSO) crystals oriented in the axial direction, each coupled to one Geiger Mode Avalanche Photodiode (G-APD) array. To derive the axial coordinate, Wave Length Shifter (WLS) strips are mounted orthogonally and interleaved between the crystals. The light from the WLS strips is read by custom-made G-APDs. The weighted mean of the signals in the WLS strips has proven to give very precise axial resolution. The achievable resolution along the three axes is mainly driven by the dimensions of the LYSO crystals and WLS strips. This concept is inherently free of parallax errors. Furthermore, it will allow identification of Compton interactions in the detector and for reconstruction of a fraction of them, which is expected to enhance imag...

  18. Are Pets in the Bedroom a Problem?

    Science.gov (United States)

    Krahn, Lois E; Tovar, M Diane; Miller, Bernie

    2015-12-01

    The presence of pets in the bedroom can alter the sleep environment in ways that could affect sleep. Data were collected by questionnaire and interview from 150 consecutive patients seen at the Center for Sleep Medicine, Mayo Clinic in Arizona. Seventy-four people (49%) reported having pets, with 31 (41% of pet owners) having multiple pets. More than half of pet owners (56%) allowed their pets to sleep in the bedroom. Fifteen pet owners (20%) described their pets as disruptive, whereas 31 (41%) perceived their pets as unobtrusive or even beneficial to sleep. Health care professionals working with patients with sleep concerns should inquire about the presence of companion animals in the sleep environment to help them find solutions and optimize their sleep. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  19. Sub-10ps monolithic and low-power photodetector readout

    International Nuclear Information System (INIS)

    Varner, Gary S.; Ruckman, Larry L.

    2009-01-01

    Recent advances in photon detectors have resulted in high-density imaging arrays that offer many performance and cost advantages. In particular, the excellent transit time spread of certain devices show promise to provide tangible benefits in applications such as Positron Emission Tomography (PET). Meanwhile, high-density, high-performance readout techniques have not kept on pace for exploiting these developments. Photodetector readout for next generation high event rate particle identification and time-resolved PET requires a highly-integrated, low-power, and cost-effective readout technique. We propose fast waveform sampling as a method that meets these criteria and demonstrate that sub-10ps resolution can be obtained for an existing device

  20. Sub-10ps monolithic and low-power photodetector readout

    Energy Technology Data Exchange (ETDEWEB)

    Varner, Gary S.; Ruckman, Larry L.

    2009-02-20

    Recent advances in photon detectors have resulted in high-density imaging arrays that offer many performance and cost advantages. In particular, the excellent transit time spread of certain devices show promise to provide tangible benefits in applications such as Positron Emission Tomography (PET). Meanwhile, high-density, high-performance readout techniques have not kept on pace for exploiting these developments. Photodetector readout for next generation high event rate particle identification and time-resolved PET requires a highly-integrated, low-power, and cost-effective readout technique. We propose fast waveform sampling as a method that meets these criteria and demonstrate that sub-10ps resolution can be obtained for an existing device.

  1. Noise and physical limits to maximum resolution of PET images

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.L.; Espana, S. [Dpto. Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain); Vicente, E.; Vaquero, J.J.; Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital GU ' Gregorio Maranon' , E-28007 Madrid (Spain); Udias, J.M. [Dpto. Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain)], E-mail: jose@nuc2.fis.ucm.es

    2007-10-01

    In this work we show that there is a limit for the maximum resolution achievable with a high resolution PET scanner, as well as for the best signal-to-noise ratio, which are ultimately related to the physical effects involved in the emission and detection of the radiation and thus they cannot be overcome with any particular reconstruction method. These effects prevent the spatial high frequency components of the imaged structures to be recorded by the scanner. Therefore, the information encoded in these high frequencies cannot be recovered by any reconstruction technique. Within this framework, we have determined the maximum resolution achievable for a given acquisition as a function of data statistics and scanner parameters, like the size of the crystals or the inter-crystal scatter. In particular, the noise level in the data as a limitation factor to yield high-resolution images in tomographs with small crystal sizes is outlined. These results have implications regarding how to decide the optimal number of voxels of the reconstructed image or how to design better PET scanners.

  2. Noise and physical limits to maximum resolution of PET images

    International Nuclear Information System (INIS)

    Herraiz, J.L.; Espana, S.; Vicente, E.; Vaquero, J.J.; Desco, M.; Udias, J.M.

    2007-01-01

    In this work we show that there is a limit for the maximum resolution achievable with a high resolution PET scanner, as well as for the best signal-to-noise ratio, which are ultimately related to the physical effects involved in the emission and detection of the radiation and thus they cannot be overcome with any particular reconstruction method. These effects prevent the spatial high frequency components of the imaged structures to be recorded by the scanner. Therefore, the information encoded in these high frequencies cannot be recovered by any reconstruction technique. Within this framework, we have determined the maximum resolution achievable for a given acquisition as a function of data statistics and scanner parameters, like the size of the crystals or the inter-crystal scatter. In particular, the noise level in the data as a limitation factor to yield high-resolution images in tomographs with small crystal sizes is outlined. These results have implications regarding how to decide the optimal number of voxels of the reconstructed image or how to design better PET scanners

  3. Game Design to Introduce Pets

    Directory of Open Access Journals (Sweden)

    Wahyu Febriyanto

    2017-02-01

    Full Text Available Introduction of animals from an early age can make children to love animals, especially pets. Children are the easiest group to receive stimulation, such as for example the stimulation of introducing children to the pet. Various media are used by parents to introduce pet. For examplle, by the media of books, multimedia, etc. One of the interesting media to introduce pet is with game. Of these problems then need to know how to make concept and design game to introduced pets for children age 3-6 years. In this paper, author formulate how to make pet game design include game genre, user interface design, image model selection, game characters, and game engine. The expected design of this game can be formulation of learning through proper game as a learning tool children. Game design derived from this writing by using model 2-dimensional images are funny and interesting coloring. And combines several game genres into one, or use the mini games that children do not get bored quickly. Design of GUI (Graphical User Interface is made as simple as possible so that children easily understand in playing this game, but also must use an interesting image

  4. Nutritional sustainability of pet foods.

    Science.gov (United States)

    Swanson, Kelly S; Carter, Rebecca A; Yount, Tracy P; Aretz, Jan; Buff, Preston R

    2013-03-01

    Sustainable practices meet the needs of the present without compromising the ability of future generations to meet their needs. Applying these concepts to food and feed production, nutritional sustainability is the ability of a food system to provide sufficient energy and essential nutrients required to maintain good health in a population without compromising the ability of future generations to meet their nutritional needs. Ecological, social, and economic aspects must be balanced to support the sustainability of the overall food system. The nutritional sustainability of a food system can be influenced by several factors, including the ingredient selection, nutrient composition, digestibility, and consumption rates of a diet. Carbon and water footprints vary greatly among plant- and animal-based ingredients, production strategy, and geographical location. Because the pet food industry is based largely on by-products and is tightly interlinked with livestock production and the human food system, however, it is quite unique with regard to sustainability. Often based on consumer demand rather than nutritional requirements, many commercial pet foods are formulated to provide nutrients in excess of current minimum recommendations, use ingredients that compete directly with the human food system, or are overconsumed by pets, resulting in food wastage and obesity. Pet food professionals have the opportunity to address these challenges and influence the sustainability of pet ownership through product design, manufacturing processes, public education, and policy change. A coordinated effort across the industry that includes ingredient buyers, formulators, and nutritionists may result in a more sustainable pet food system.

  5. Design and development of 1 mm resolution PET detectors with position-sensitive PMTs

    CERN Document Server

    Shao, Y; Chatziioannou, A F

    2002-01-01

    We report our investigation of a positron emission tomography (PET) detector with 1 m spatial resolution. The prototype detector consists of a 9x9 array of 1x1x10 mm sup 3 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to Hamamatsu R5900-M64 or R5900-C12 position sensitive PMT by either optical fibers or an optical fiber bundle. With a 511 eV gamma source, the intrinsic spatial resolution of this detector was measured to be 0.92 mm. All crystals were well resolved in the flood source histogram. The measured energy and coincidence timing resolutions were around 26% and 4 ns, respectively, demonstrating that sufficient light can be extracted from these small crystals for PET applications.

  6. Study of continuous DOI positioning for solid-state PET detectors

    International Nuclear Information System (INIS)

    Lee, Chae Hun

    2007-02-01

    PET is a nuclear imaging technique that measures the spatial and temporal distribution of compounds labeled with a positron emitting radionuclide introduced into a subject to be determined non-invasively. Spatial resolution degradation occurs at the edge of Field Of View (FOV) due to parallax error. To improve spatial resolution at the edge of FOV, Depth-Of-Interaction (DOI) PET has been investigated and there are several methods for DOI positioning. Among DOI positioning methods, sharing scintillation light output is the cost-effective and accurate method while solid-state photosensors such as Avalanche Photodiodes have been well developed. Avalanche photodiodes have internal gain by impact ionizations in high electric field. High gain and low noise are good characteristics for use in PET. In this thesis, DOI-PET detector using two APD with LSO scintillation crystal was designed and evaluated, and parameter to affect DOI positioning was investigated. Energy resolution of the designed detector was 12 % in 662 keV photopeak. Comparing photopeak channels of two APD output, DOI position was measured. DOI positioning error was ±2.5 mm. DOI resolution in current DOI-PET systems is still ∼ cm. Minimum 4 step positions can be obtained with 2 cm long LSO crystal in this result

  7. What do we measure in oncology PET?

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Kyoung June; Kim, Seong Jang [Dept. of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan (Korea, Republic of)

    2017-09-15

    Positron emission tomography (PET) has come to the practice of oncology. It is known that {sup 18}F-fluorodeoxyglucose (FDG) PET is more sensitive for the assessment of treatment response than conventional imaging. In addition, PET has an advantage in the use of quantitative analysis of the study. Nowadays, various PET parameters are adopted in clinical settings. In addition, a wide range of factors has been known to be associated with FDG uptake. Therefore, there has been a need for standardization and harmonization of protocols and PET parameters. We will introduce PET parameters and discuss major issues in this review.

  8. Temperature dependence of APD-based PET scanners

    International Nuclear Information System (INIS)

    Keereman, Vincent; Van Holen, Roel; Vandenberghe, Stefaan; Vanhove, Christian

    2013-01-01

    Purpose: Solid state detectors such as avalanche photodiodes (APDs) are increasingly being used in PET detectors. One of the disadvantages of APDs is the strong decrease of their gain factor with increasing ambient temperature. The light yield of most scintillation crystals also decreases when ambient temperature is increased. Both effects lead to considerable temperature dependence of the performance of APD-based PET scanners. In this paper, the authors propose a model for this dependence and the performance of the LabPET8 APD-based small animal PET scanner is evaluated at different temperatures.Methods: The model proposes that the effect of increasing temperature on the energy histogram of an APD-based PET scanner is a compression of the histogram along the energy axis. The energy histogram of the LabPET system was acquired at 21 °C and 25 °C to verify the validity of this model. Using the proposed model, the effect of temperature on system sensitivity was simulated for different detector temperature coefficients and temperatures. Subsequently, the effect of short term and long term temperature changes on the peak sensitivity of the LabPET system was measured. The axial sensitivity profile was measured at 21 °C and 24 °C following the NEMA NU 4-2008 standard. System spatial resolution was also evaluated. Furthermore, scatter fraction, count losses and random coincidences were evaluated at different temperatures. Image quality was also investigated.Results: As predicted by the model, the photopeak energy at 25 °C is lower than at 21 °C with a shift of approximately 6% per °C. Simulations showed that this results in an approximately linear decrease of sensitivity when temperature is increased from 21 °C to 24 °C and energy thresholds are constant. Experimental evaluation of the peak sensitivity at different temperatures showed a strong linear correlation for short term (2.32 kcps/MBq/°C = 12%/°C, R = −0.95) and long term (1.92 kcps/MBq/°C = 10%/

  9. Impact of event positioning algorithm on performance of a whole-body PET scanner using one-to-one coupled detectors

    Science.gov (United States)

    Surti, S.; Karp, J. S.

    2018-03-01

    The advent of silicon photomultipliers (SiPMs) has introduced the possibility of increased detector performance in commercial whole-body PET scanners. The primary advantage of these photodetectors is the ability to couple a single SiPM channel directly to a single pixel of PET scintillator that is typically 4 mm wide (one-to-one coupled detector design). We performed simulation studies to evaluate the impact of three different event positioning algorithms in such detectors: (i) a weighted energy centroid positioning (Anger logic), (ii) identifying the crystal with maximum energy deposition (1st max crystal), and (iii) identifying the crystal with the second highest energy deposition (2nd max crystal). Detector simulations performed with LSO crystals indicate reduced positioning errors when using the 2nd max crystal positioning algorithm. These studies are performed over a range of crystal cross-sections varying from 1  ×  1 mm2 to 4  ×  4 mm2 as well as crystal thickness of 1 cm to 3 cm. System simulations were performed for a whole-body PET scanner (85 cm ring diameter) with a long axial FOV (70 cm long) and show an improvement in reconstructed spatial resolution for a point source when using the 2nd max crystal positioning algorithm. Finally, we observe a 30-40% gain in contrast recovery coefficient values for 1 and 0.5 cm diameter spheres when using the 2nd max crystal positioning algorithm compared to the 1st max crystal positioning algorithm. These results show that there is an advantage to implementing the 2nd max crystal positioning algorithm in a new generation of PET scanners using one-to-one coupled detector design with lutetium based crystals, including LSO, LYSO or scintillators that have similar density and effective atomic number as LSO.

  10. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    Science.gov (United States)

    Farmer, Joseph C; Stadermann, Michael

    2013-11-12

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  11. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins.

    Science.gov (United States)

    Kurdi, Said El; Muaileq, Dina Abu; Alhazmi, Hassan A; Bratty, Mohammed Al; Deeb, Sami El

    2017-06-27

    HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5) and precision (RSD ≤ 0.6 %). Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  12. Folsom Dam Outlet Works Modification Project; Simplified Three-Dimensional Stress Analysis of Monolith 12

    National Research Council Canada - National Science Library

    Matheu, Enrique E; Garner, Sharon B

    2005-01-01

    This report presents a finite-element stress analysis of monolith 12 conducted to assess any potential adverse effects caused by the proposed dimensions of the air vent near the base of the spillway pier wall...

  13. Fabrication of Monolithic Bridge Structures by Vacuum-Assisted Capillary-Force Lithography

    KAUST Repository

    Kwak, Rhokyun; Jeong, Hoon Eui; Suh, Kahp Y.

    2009-01-01

    Monolithic bridge structures were fabricated by using capillary-force lithography (CFL), which was developed for patterning polymers over a large area by combining essential features of nanoimprint lithography and capillarity. A patterned soft mold

  14. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles

    KAUST Repository

    Lv, Yongqin; Alejandro, Fernando Maya; Frechet, Jean; Švec, František

    2012-01-01

    monoliths. The materials were then analyzed using both energy dispersive X-ray spectroscopy and thermogravimetric analysis. We found that the quantity of attached gold was dependent on the size of nanoparticles, with the maximum attachment of more than 60

  15. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins

    Directory of Open Access Journals (Sweden)

    Kurdi Said El

    2017-06-01

    Full Text Available HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5 and precision (RSD ≤ 0.6 %. Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  16. Monoliths of activated carbon from coconut shell and impregnation with nickel and copper

    International Nuclear Information System (INIS)

    Giraldo, Liliana; Moreno, Juan

    2008-01-01

    A series of different monoliths of activated carbon were prepared from coconut shell By means of chemical activation with phosphoric acid at different concentrations Without using binders or plastics. The monolith that developed the biggest surface area was impregnated by humidic route with solutions of Ni and Cu at different molar relations. The structures were characterized by N2 adsorption at 77 K, and the morphology was explored by means of scanning electron microscopy. The carbonaceous materials obtained, Nickel-Copper-Monolith, were analyzed by Thermal Programmed Reduction (TPR). The experimental results indicated that the activation with the acid generated a micro porosity, with micropores volume between 0.40 and 0.81 cm 3 g-1 and surface areas between 703 and 1450 m 2 g-1, and a good mechanical properties. It shows that, both the copper and the nickel, are fixed to the monolith and TPR's results are interpreted when these molar relation are modified.

  17. Broadband EM Performance Characteristics of Single Square Loop FSS Embedded Monolithic Radome

    Directory of Open Access Journals (Sweden)

    Raveendranath U. Nair

    2013-01-01

    Full Text Available A monolithic half-wave radome panel, centrally loaded with aperture-type single square loop frequency selective surface (SSL-FSS, is proposed here for broadband airborne radome applications. Equivalent transmission line method in conjunction with equivalent circuit model (ECM is used for modeling the SSL-FSS embedded monolithic half-wave radome panel and evaluating radome performance parameters. The design parameters of the SSL-FSS are optimized at different angles of incidence such that the new radome wall configuration offers superior EM performance from L-band to X-band as compared to the conventional monolithic half-wave slab of identical material and thickness. The superior EM performance of SSL-FSS embedded monolithic radome wall makes it suitable for the design of normal incidence and streamlined airborne radomes.

  18. Demonstration of an Axial PET concept for brain and small animal imaging

    CERN Document Server

    Beltrame, P; Clinthorne, N; Meddi, F; Kagan, H; Braem, A; Pauss, F; Djambazov, L; Lustermann, W; Weilhammer, P; Nessi-Tedaldi, F; Dissertori, G; Renker, D; Schneider, T; Schinzel, D; De Leo, R; Bolle, E; Fanti, V; Rafecas, M; Rudge, A; Stapnes, S; Casella, C; Chesi, E; Seguinot, J; Solevi, P; Joram, C; Oliver, J F

    2011-01-01

    Standard Positron Emission Tomography (PET) cameras need to reach a compromise between spatial resolution and sensitivity. To overcome this limitation we developed a novel concept of PET. Our AX-PET demonstrator is made of LYSO crystals aligned along the z coordinate (patient's axis) and WLS strips orthogonally placed with respect to the crystals. This concept offers full 3D localization of the photon interaction inside the camera. Thus the spatial resolution and the sensitivity can be simultaneously improved and the reconstruction of Compton interactions inside the detector is also possible. Moreover, by means of G-APDs for reading out the photons, both from LYSO and WLS, the detector is insensitive to magnetic fields and it is then suitable to be used in a combined PET/MRI apparatus. A complete Monte Carlo simulation and dedicated reconstruction software have been developed. The two final modules, each composed of 48 crystals and 156 WLS strips, have been built and fully characterized in a dedicated test se...

  19. Monte Carlo simulation of a four-layer DOI detector with relative offset in animal PET

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Hwang, Ji Yeon; Baek, Cheol-Ha; Lee, Seung-Jae; Ito, Mikiko; Lee, Jae Sung; Hong, Seong Jong

    2011-01-01

    We have built a four-layer detector to obtain depth of interaction (DOI) information in which all four layers have a relative offset of half a crystal pitch with each other. The main characteristics of the detector, especially the energy and spatial resolutions, strongly depend on the crystal surface treatments. As a part of the development of an animal PET, we have investigated the effect of crystal surface treatment on detector performances using Monte Carlo simulations in order to optimize the surface conditions of crystals composing a four-layer detector. The proposed detector consists of four LYSO layers with crystal dimensions of 1.5x1.5x7.0 and 1.5x1.5x5.0 mm 3 . A simulation tool (DETECT2000) was used and validated against the experimental results; flood images were acquired by a prototype module. Flood images were simulated by varying the surface treatment of the crystals. The optimal surface conditions of the four-layer crystals were derived for a small animal PET with a view towards achieving high sensitivity, as well as high and uniform radial resolution.

  20. Mathematical Modelling of Optimization of Structures of Monolithic Coverings Based on Liquid Rubbers

    Science.gov (United States)

    Turgumbayeva, R. Kh; Abdikarimov, M. N.; Mussabekov, R.; Sartayev, D. T.

    2018-05-01

    The paper considers optimization of monolithic coatings compositions using a computer and MPE methods. The goal of the paper was to construct a mathematical model of the complete factorial experiment taking into account its plan and conditions. Several regression equations were received. Dependence between content components and parameters of rubber, as well as the quantity of a rubber crumb, was considered. An optimal composition for manufacturing the material of monolithic coatings compositions was recommended based on experimental data.