WorldWideScience

Sample records for monolayer-protected gold clusters

  1. Design, Synthesis, and Characterization of Novel Thiol-Derivatized Ibuprofen Monolayer Protected Gold Clusters

    International Nuclear Information System (INIS)

    Lee, K.H.; Lee, K.H.; Lin, Y.Sh.; Huang, P.J.

    2013-01-01

    A series of new thiol-derivatized ibuprofen monolayer protected gold clusters have been prepared by amidation of ibuprofen with alkyl alcohol or aminophenol affording the carboxamide, N-hydroxyalkyl amide 2, and N-hydroxyphenyl amide 6, which were then tosylate with p-toluenesulfonyl chloride at hydroxyl group to give 3 and 7. Reactions of 3 and 7 with NaSH afforded the mercapto derivatives 4 and 8. Conducting Brust’s reaction with a 3:1 mole ratio of thiolate ibuprofen/ AuCl 4 - yielded polydisperse thiol-derivatized ibuprofen-MPCs 5 and 9. All compounds have been identified by NMR, MS, UV, and IR spectroscopies. Compounds 4 and 8 and the MPCs 5 and 9 have been investigated by using the method of 1 H NMR spectroscopy. The broadening of the signals from 0.8 to 2.0 ppm in 1 H NMR spectrum of MPCs 5 and 9 confirmed the success of the conjugation of thiol-containing derivatives with nano gold cluster.

  2. Exploring the atomic structure of 1.8 nm monolayer-protected gold clusters with aberration-corrected STEM

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J. [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Lahtinen, Tanja; Salorinne, Kirsi [Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Häkkinen, Hannu [Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Palmer, Richard E., E-mail: richardepalmerwork@yahoo.com [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2017-05-15

    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au{sub 144}(SCH{sub 2}CH{sub 2}Ph){sub 60} provided by two different research groups. The MP Au clusters were “weighed” by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123–151 atoms, only 3% of clusters matched the theoretically predicted Au{sub 144}(SR){sub 60} structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters. - Highlights: • Chemically synthesised gold clusters were “weighed” by atom counting to get true size. • Image simulations show a few percent of clusters have the predicted atomic structure. • But a specific ring-dot feature indicates local icosahedral order in many clusters.

  3. Monolayer-protected clusters of gold nanoparticles: impacts of stabilizing ligands on the heterogeneous electron transfer dynamics and voltammetric detection.

    Science.gov (United States)

    Pillay, Jeseelan; Ozoemena, Kenneth I; Tshikhudo, Robert T; Moutloali, Richard M

    2010-06-01

    Surface electrochemistry of novel monolayer-protected gold nanoparticles (MPCAuNPs) is described. Protecting ligands, (1-sulfanylundec-11-yl)tetraethylene glycol (PEG-OH) and (1-sulfanylundec-11-yl)poly(ethylene glycol)ic acid (PEG-COOH), of three different percent ratios (PEG-COOH:PEG-OH), 1:99 (MPCAuNP-COOH(1%)), 50:50 (MPCAuNP-COOH(50%)), and 99:1 (MPCAuNP-COOH(99%)), were studied. The electron transfer rate constants (k(et)/s(-1)) in organic medium decreased as the concentration of the surface-exposed -COOH group in the protecting monolayer ligand is increased: MPCAuNP-COOH(1%) (approximately 5 s(-1)) > MPCAuNP-COOH(50%) (approximately 4 s(-1)) > MPCAuNP-COOH(99%) (approximately 0.5 s(-1)). In aqueous medium, the trend is reversed. The surface pK(a) was estimated as approximately 8.2 for the MPCAuNP-COOH(1%), while both MPCAuNP-COOH(50%) and MPCAuNP-COOH(99%) showed two pK(a) values of about 5.0 and approximately 8.0. These results have been interpreted in terms of the quasi-solidity and quasi-liquidity of the terminal -OH and -COOH head groups, respectively. MPCAuNP-COOH(99%) excellently suppressed the voltammetric response of the ascorbic acid but enhanced the electrocatalytic detection of epinephrine compared to the other MPCAuNPs studied. This study reveals important factors that should be considered when designing electrode devices that employ monolayer-protected gold nanoparticles and possibly for some other redox-active metal nanoparticles.

  4. Dendritic functionalization of monolayer-protected gold nanoparticles

    International Nuclear Information System (INIS)

    Cutler, Erin C.; Lundin, Erik; Garabato, B. Davis; Choi, Daeock; Shon, Young-Seok

    2007-01-01

    This paper describes the facile synthesis of nanoparticle-cored dendrimers (NCDs) and nanoparticle megamers from monolayer-protected gold clusters using either single or multi-step reactions. First, 11-mercaptoundecanoic acid/hexanethiolate-protected gold clusters were synthesized using the Schiffrin reaction followed by the ligand place-exchange reaction. A convergent approach for the synthesis of nanoparticle-cored dendrimers uses a single step reaction that is an ester coupling reaction of hydroxy-functionalized dendrons with carboxylic acid-functionalized gold clusters. A divergent approach, which is based on multi-step reactions, employs the repetition of an amide coupling reaction and a Michael addition reaction to build polyamidoamine dendritic architectures around a nanoparticle core. Nanoparticle megamers, which are large dendrimer-induced nanoparticle aggregates with an average diameter of more than 300 nm, were prepared by the amide coupling reaction between polyamiodoamine [G-2] dendrimers and carboxylic acid-functionalized gold clusters. 1 H NMR spectroscopy, FT-IR spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) were used for the characterization of these hybrid nanoparticles

  5. Reactivity of Monolayer Protected Silver Clusters Towards Excess Ligand: A Calorimetric Study

    KAUST Repository

    Baksi, Ananya; Bootharaju, Megalamane Siddaramappa; Chhotaray, Pratap K.; Chakraborty, Papri; Mondal, Biswajit; Bhat, Shridevi; Gardas, Ramesh L.; Pradeep, Thalappil

    2017-01-01

    Reactivity of monolayer protected atomically precise clusters of noble metals is of significant research interest. Till date very few experimental data are available on the reaction thermodynamics of such clusters. Here we report a calorimetric

  6. Hydrophilic Cucurbit[7]uril-Pseudorotaxane-Anchored-Monolayer-Protected Gold Nanorods

    Science.gov (United States)

    2013-03-20

    FULL PAPER DOI:10.1002/ejic.201300010 Hydrophilic Cucurbit[7]uril-Pseudorotaxane-Anchored- Monolayer-Protected Gold Nanorods Xiang Ma,[a] Yuhua Xue... Cao , Q. Wang, H. Tian, Chem. Commun. 2011, 47, 3559–3561. [8] a) I. Hwang, K. Baek, M. Jung, Y. Kim, K. M. Park, D. W. Lee, N. Selvapalam, K. Kim, J. Am

  7. Solvent Effect on Redox Properties of Hexanethiolate Monolayer-Protected Gold Nanoclusters

    OpenAIRE

    Su, B; Zhang, M; Shao, Y; Girault, HH

    2006-01-01

    The capacitance of monolayer-protected gold nanoclusters (MPCs), CMPC, in solution has been theoretically reconsidered from an electrostatic viewpoint, in which an MPC is considered as an isolated charged sphere within two dielectric layers, the intrinsic coating monolayer, and the bulk solvent. The model predicts that the bulk solvent provides an important contribution to CMPC and influences the redox properties of MPCs. This theoretical prediction is then examined experimentally by comparin...

  8. Synthesis and stability of monolayer-protected Au38 clusters

    NARCIS (Netherlands)

    Toikkanen, O.; Ruiz, V.; Rönnholm, G.; Kalkkinen, N.; Liljeroth, P.W.; Quinn, B.M.

    2008-01-01

    A synthesis strategy to obtain monodisperse hexanethiolate-protected Au38 clusters based on their resistance to etching upon exposure to a hyperexcess of thiol is reported. The reduction time in the standard Brust−Schiffrin two-phase synthesis was optimized such that Au38 were the only clusters that

  9. Solvent effect on redox properties of hexanethiolate monolayer-protected gold nanoclusters.

    Science.gov (United States)

    Su, Bin; Zhang, Meiqin; Shao, Yuanhua; Girault, Hubert H

    2006-11-02

    The capacitance of monolayer-protected gold nanoclusters (MPCs), C(MPC), in solution has been theoretically reconsidered from an electrostatic viewpoint, in which an MPC is considered as an isolated charged sphere within two dielectric layers, the intrinsic coating monolayer, and the bulk solvent. The model predicts that the bulk solvent provides an important contribution to C(MPC) and influences the redox properties of MPCs. This theoretical prediction is then examined experimentally by comparing the redox properties of MPCs in four organic solvents: 1,2-dichloroethane (DCE), dichloromethane (DCM), chlorobenzene (CB), and toluene (TOL), in all of which MPCs have excellent solubility. Furthermore, this set of organic solvents features a dielectric constant in a range from 10.37 (DCE) to 2.38 (TOL), which is wide enough to probe the solvent effect. In these organic solvents, tetrahexylammonium bis(trifluoromethylsulfonyl)imide (THATf2N) is used as the supporting electrolyte. Cyclic and differential pulse voltammetric results provide concrete evidence that, despite the monolayer protection, the solvent plays a significant effect on the properties of MPCs in solution.

  10. The Shell Structure Effect on the Vapor Selectivity of Monolayer-Protected Gold Nanoparticle Sensors

    Directory of Open Access Journals (Sweden)

    Rui-Xuan Huang

    2014-02-01

    Full Text Available Four types of monolayer-protected gold nanoclusters (MPCs were synthesized and characterized as active layers of vapor sensors. An interdigitated microelectrode (IDE and quartz crystal microbalance (QCM were used to measure the electrical resistance and mass loading changes of MPC films during vapor sorption. The vapor sensing selectivity was influenced by the ligand structure of the monolayer on the surface of gold nanoparticles. The responses of MPC-coated QCM were mainly determined according to the affinity between the vapors and surface ligands of MPCs. The responses to the resistance changes of the MPC films were due to the effectiveness of the swelling when vapor was absorbed. It was observed that resistive sensitivity to polar organics could be greatly enhanced when the MPC contained ligands that contain interior polar functional groups with exterior nonpolar groups. This finding reveals that reducing interparticle attraction by using non-polar exterior groups could increase effective swelling and therefore enhance the sensitivity of MPC-coated chemiresistors.

  11. Controlled assembly and single electron charging of monolayer protected Au144 clusters: an electrochemistry and scanning tunneling spectroscopy study

    Science.gov (United States)

    Bodappa, Nataraju; Fluch, Ulrike; Fu, Yongchun; Mayor, Marcel; Moreno-García, Pavel; Siegenthaler, Hans; Wandlowski, Thomas

    2014-11-01

    Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups

  12. Reactivity of Monolayer Protected Silver Clusters Towards Excess Ligand: A Calorimetric Study

    KAUST Repository

    Baksi, Ananya

    2017-10-31

    Reactivity of monolayer protected atomically precise clusters of noble metals is of significant research interest. Till date very few experimental data are available on the reaction thermodynamics of such clusters. Here we report a calorimetric study of the reaction of glutathione (GSH) protected silver clusters in presence of excess ligand, GSH using isothermal titration calorimetry (ITC). We have studied Ag11(SG)7 and Ag32(SG)19 clusters and compared their reactivity with GSH protected silver nanoparticles (AgNPs) and silver ions. Clusters show intermediate reactivity towards excess ligand com-pared to nanoparticles and silver ions. Several control experiments were performed to understand the degradation mech-anism of these silver clusters and nanoparticles. Effect of dissolved oxygen in the degradation process was studied in de-tail and found that it did not have a significant role, although alternate pathways of degradation with the involvement of oxygen cannot be ruled out. Direct confirmation of the fact that functionalized metal clusters fall in-between NPs and atomic systems in their stability is obtained experimentally for the first time. Several other thermophysical parameters of these clusters were also determined including, density, speed of sound, isentropic compressibility and coefficient of thermal expansion.

  13. Establishing linear solvation energy relationships between VOCs and monolayer-protected gold nanoclusters using quartz crystal microbalance.

    Science.gov (United States)

    Li, Chi-Lin; Lu, Chia-Jung

    2009-08-15

    Linear solvation energy relationships (LSERs) have been recognized as a useful model for investigating the chemical forces behind the partition coefficients between vapor molecules and absorbents. This study is the first to determine the solvation properties of monolayer-protected gold nanoclusters (MPCs) with different surface ligands. The ratio of partition coefficients/MPC density (K/rho) of 18 volatile organic compounds (VOCs) for four different MPCs obtained through quartz crystal microbalance (QCM) experiments were used for the LSER model calculations. LSER modeling results indicate that all MPC surfaces showed a statistically significant (pattraction, 4-methoxythiophenol-capped MPCs can also interact with polar organics (s=1.04). Showing a unique preference for the hydrogen bond basicity of vapors (b=1.11), 2-benzothiazolethiol-capped MPCs provide evidence of an intra-molecular, proton-shift mechanism on surface of nano-gold.

  14. Ultrafast, 2 min synthesis of monolayer-protected gold nanoclusters (d < 2 nm)

    Science.gov (United States)

    Martin, Matthew N.; Li, Dawei; Dass, Amala; Eah, Sang-Kee

    2012-06-01

    An ultrafast synthesis method is presented for hexanethiolate-coated gold nanoclusters (d gold nanoclusters are separated from the reaction byproducts fast and easily without any need for post-synthesis cleaning.An ultrafast synthesis method is presented for hexanethiolate-coated gold nanoclusters (d gold nanoclusters are separated from the reaction byproducts fast and easily without any need for post-synthesis cleaning. Electronic supplementary information (ESI) available: Experimental details of gold nanocluster synthesis and mass-spectrometry. See DOI: 10.1039/c2nr30890h

  15. Organic vapor discrimination with chemiresistor arrays of temperature modulated tin-oxide nanowires and thiolate-monolayer-protected gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Scholten, K; Bohrer, F I; Dattoli, E; Lu, W; Zellers, E T, E-mail: ezellers@umich.edu [Center for Wireless Integrated Microsystems, University of Michigan, Ann Arbor, MI 48109-2122 (United States)

    2011-03-25

    This paper explores the discrimination of organic vapors with arrays of chemiresistors (CRs) employing interface layers of tin-oxide nanowires (NWs) and thiolate-monolayer-protected gold nanoparticles (MPNs). The former devices use contact-printed mats of NWs on micro-hotplate membranes to bridge a pair of metal electrodes. Oxidation at the NW surface causes changes in charge transport, the temperature dependence of which differs among different vapors, permitting vapor discrimination. The latter devices use solvent cast films of MPNs on interdigital electrodes operated at room temperature. Sorption into the organic monolayers causes changes in film tunneling resistance that differ among different vapors and MPN structures, permitting vapor discrimination. Here, we compare the performance and assess the 'complementarity' of these two types of sensors. Calibrated responses from an NW CR operated at two different temperatures and from a set of four different MPN CRs were generated for three test vapors: n-hexane, toluene, and nitromethane. This pooled data set was then analyzed using principal components regression classification models with varying degrees of random error superimposed on the responses via Monte Carlo simulation in order to estimate the rates of recognition/discrimination for arrays comprising different combinations of sensors. Results indicate that the diversity of most of the dual MPN-CR arrays exceeds that of the dual NW-CR array. Additionally, in assessing all possible arrays of 4-6 CR sensors, the recognition rates of the hybrid arrays (i.e. MPN + NW) were no better than that of the 4-sensor array containing only MPN CRs.

  16. Charge-Transfer Effects in Ligand Exchange Reactions of Au25 Monolayer-Protected Clusters.

    Science.gov (United States)

    Carducci, Tessa M; Blackwell, Raymond E; Murray, Royce W

    2015-04-16

    Reported here are second-order rate constants of associative ligand exchanges of Au25L18 nanoparticles (L = phenylethanethiolate) of various charge states, measured by proton nuclear magnetic resonance at room temperature and below. Differences in second-order rate constants (M(-1) s(-1)) of ligand exchange (positive clusters ∼1.9 × 10(-5) versus negative ones ∼1.2 × 10(-4)) show that electron depletion retards ligand exchange. The ordering of rate constants between the ligands benzeneselenol > 4-bromobenzene thiol > benzenethiol reveals that exchange is accelerated by higher acidity and/or electron donation capability of the incoming ligand. Together, these observations indicate that partial charge transfer occurs between the nanoparticle and ligand during the exchange and that this is a rate-determining effect in the process.

  17. Fabrication of conducting polymer-gold nanoparticles film on electrodes using monolayer protected gold nanoparticles and its electrocatalytic application

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Palanisamy [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Dindigul (India); School of Chemical and Biomedical Engineering, N1.3, B4-01, 70 Nanyang Drive, Nanyang Technological University, Singapore 637457 (Singapore); John, S. Abraham, E-mail: abrajohn@yahoo.co.in [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Dindigul (India)

    2011-08-01

    We wish to report a simple and new strategy for the fabrication of gold nanoparticles-conducting polymer film on glassy carbon (GC) and indium tin oxide (ITO) surfaces using 5-amino-2-mercapto-1,3,4-thiadiazole capped gold nanoparticles (AMT-AuNPs) in 0.01 M H{sub 2}SO{sub 4} by electropolymerization. The presence of amine groups on the surface of the AuNPs was responsible for the deposition of the AMT-AuNPs film on the electrode surface. The atomic force microscopy (AFM) studies reveal that the fabricated p-AMT-AuNPs film showed homogeneously distributed AuNPs with a spherical shape of {approx}8 nm diameter. The XPS spectrum shows the binding energies at 83.8 and 87.5 eV in the Au 4f region corresponding to 4f{sub 7/2} and 4f{sub 5/2}, respectively. The position and difference between these two peaks (3.7 eV) exactly match the value reported for Au{sup 0}. The N1s XPS showed three binding energies at 396.7, 399.6 and 403.3 eV, corresponding to the =NH, -NH- and -N{sup +}H-, respectively, confirming that the electropolymerization proceeded through the oxidation of -NH{sub 2} groups present on the periphery of the AMT-AuNPs. The application of the present p-AMT-AuNPs modified electrode was demonstrated by studying the electro reduction of oxygen at pH 7.2. The p-AMT-AuNPs film enhanced the oxygen reduction current more than three times than that of p-AMT film prepared under identical conditions.

  18. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.

    2012-02-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  19. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.; Bowick, M. J.; Ma, X.; Majumdar, A.

    2012-01-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  20. sp magnetism in clusters of gold thiolates

    International Nuclear Information System (INIS)

    Ayuela, A; Hernando, A; Echenique, P M; Crespo, P; García, M A

    2012-01-01

    Using first-principles calculations, we consider the bond between thiolate and small Au clusters, with particular emphasis on the resulting magnetic moment. The moment of pure gold clusters is 1 μ B for clusters with an odd number of Au atoms and zero for those with an even number. The addition of the thiolate, having an odd number of electrons itself, shifts the phase of the odd-even oscillations so that particles with an even number of Au atoms now have unit moment. Surprisingly, gold thiolate exhibits a dramatic and non-intuitive distribution of charge and spin moment. Our results show that the S-Au bond is such that sulfur does not get charge and an electron is transferred to the Au cluster. This extra electron is mainly sp in character and resides in an electronic shell below the Au surface. The calculations suggest that any thiolate-induced magnetism occurs in the gold nanoparticle and not the thiolate, and can be controlled by modifying the thiolate coverage. (paper)

  1. Site-Specific Biomolecule Labeling with Gold Clusters

    Science.gov (United States)

    Ackerson, Christopher J.; Powell, Richard D.; Hainfeld, James F.

    2013-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: Linker-mediated bioconjugation, direct gold–biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (His)-tagged proteins. PMID:20887859

  2. Site-Specific Biomolecule Labeling with Gold Clusters

    OpenAIRE

    Ackerson, Christopher J.; Powell, Richard D.; Hainfeld, James F.

    2010-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: Linker-mediated bioconjugation, direct gold–biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (...

  3. A theoretical study on interaction of proline with gold cluster

    Indian Academy of Sciences (India)

    with Au3 (Pakiari and Jamshidi 2007) and interaction of. ∗. Author for correspondence (harjinder.singh@iiit.ac.in) small gold clusters with xDNA base pairs (Sharma et al. 2009) have motivated us to carry out a theoretical study on interaction of proline with gold nanoparticles. Proline is unique among the natural amino acids ...

  4. GOLD CLUSTER LABELS AND RELATED TECHNOLOGIES IN MOLECULAR MORPHOLOGY.

    Energy Technology Data Exchange (ETDEWEB)

    HAINFELD,J.F.; POWELL,R.D.

    2004-02-04

    Although intensely colored, even the largest colloidal gold particles are not, on their own, sufficiently colored for routine use as a light microscopy stain: only with very abundant antigens or with specialized illumination methods can bound gold be seen. Colloidal gold probes were developed primarily as markers for electron microscopy, for which their very high electron density and selectivity for narrow size distributions when prepared in different ways rendered them highly suited. The widespread use of gold labeling for light microscopy was made possible by the introduction of autometallographic enhancement methods. In these processes, the bound gold particles are exposed to a solution containing metal ions and a reducing agent; they catalyze the reduction of the ions, resulting in the deposition of additional metal selectively onto the particles. On the molecular level, the gold particles are enlarged up to 30-100 nm in diameter; on the macroscale level, this results in the formation of a dark stain in regions containing bound gold particles, greatly increasing visibility and contrast. The applications of colloidal gold have been described elsewhere in this chapter, we will focus on the use of covalently linked cluster complexes of gold and other metals. A gold cluster complex is a discrete molecular coordination compound comprising a central core, or ''cluster'' of electron-dense metal atoms, ligated by a shell of small organic molecules (ligands), which are linked to the metal atoms on the surface of the core. This structure gives clusters several important advantages as labels. The capping of the metal surface by ligands prevents non-specific binding to cell and tissue components, which can occur with colloidal gold. Cluster compounds are more stable and may be used under a wider range of conditions. Unlike colloidal gold, clusters do not require additional macromolecules such as bovine serum albumin or polyethylene glycol for

  5. A grand unified model for liganded gold clusters

    Science.gov (United States)

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi

    2016-12-01

    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.

  6. Structural properties of gold clusters at different temperatures

    CSIR Research Space (South Africa)

    Mahladisa, MA

    2005-09-01

    Full Text Available A series of gold clusters consisting of aggregates of from 13 to 147 atoms was studied using the Sutton-Chen type many-body potential in molecular dynamics simulations. The properties of these clusters at temperatures from 10 K to 1000 K were...

  7. Fluorescent Thiol-Derivatized Gold Clusters Embedded in Polymers

    Directory of Open Access Journals (Sweden)

    G. Carotenuto

    2013-01-01

    Full Text Available Owing to aurophilic interactions, linear and/or planar Au(I-thiolate molecules spontaneously aggregate, leading to molecular gold clusters passivated by a thiolate monolayer coating. Differently from the thiolate precursors, such cluster compounds show very intensive visible fluorescence characteristics that can be tuned by alloying the gold clusters with silver atoms or by conjugating the electronic structure of the metallic core with unsaturated electronic structures in the organic ligand through the sulphur atom. Here, the photoluminescence features of some examples of these systems are shortly described.

  8. Structures of 38-atom gold-platinum nanoalloy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yee Pin; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atoms are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.

  9. The adsorption of helium atoms on small cationic gold clusters.

    Science.gov (United States)

    Goulart, Marcelo; Gatchell, Michael; Kranabetter, Lorenz; Kuhn, Martin; Martini, Paul; Gitzl, Norbert; Rainer, Manuel; Postler, Johannes; Scheier, Paul; Ellis, Andrew M

    2018-04-04

    Adducts formed between small gold cluster cations and helium atoms are reported for the first time. These binary ions, Aun+Hem, were produced by electron ionization of helium nanodroplets doped with neutral gold clusters and were detected using mass spectrometry. For a given value of n, the distribution of ions as a function of the number of added helium atoms, m, has been recorded. Peaks with anomalously high intensities, corresponding to so-called magic number ions, are identified and interpreted in terms of the geometric structures of the underlying Aun+ ions. These features can be accounted for by planar structures for Aun+ ions with n ≤ 7, with the addition of helium having no significant effect on the structures of the underlying gold cluster ions. According to ion mobility studies and some theoretical predictions, a 3-D structure is expected for Au8+. However, the findings for Au8+ in this work are more consistent with a planar structure.

  10. Small gold clusters on graphene, their mobility and clustering: a DFT study

    International Nuclear Information System (INIS)

    Amft, Martin; Sanyal, Biplab; Eriksson, Olle; Skorodumova, Natalia V

    2011-01-01

    Motivated by the experimentally observed high mobility of gold atoms on graphene and their tendency to form nanometer-sized clusters, we present a density functional theory study of the ground state structures of small gold clusters on graphene, their mobility and clustering. Our detailed analysis of the electronic structures identifies the opportunity to form strong gold-gold bonds and the graphene-mediated interaction of the pre-adsorbed fragments as the driving forces behind gold's tendency to aggregate on graphene. While clusters containing up to three gold atoms have one unambiguous ground state structure, both gas phase isomers of a cluster with four gold atoms can be found on graphene. In the gas phase the diamond-shaped Au 4 D cluster is the ground state structure, whereas the Y-shaped Au 4 Y becomes the actual ground state when adsorbed on graphene. As we show, both clusters can be produced on graphene by two distinct clustering processes. We also studied in detail the stepwise formation of a gold dimer out of two pre-adsorbed adatoms, as well as the formation of Au 3 . All reactions are exothermic and no further activation barriers, apart from the diffusion barriers, were found. The diffusion barriers of all studied clusters range from 4 to 36 meV only, and are substantially exceeded by the adsorption energies of - 0.1 to - 0.59 eV. This explains the high mobility of Au 1-4 on graphene along the C-C bonds.

  11. Ligand-protected gold clusters: the structure, synthesis and applications

    International Nuclear Information System (INIS)

    Pichugina, D A; Kuz'menko, N E; Shestakov, A F

    2015-01-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Au n with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au 15 and Au 25 ) and on anchorage to a support surface (Au 25 /SiO 2 , Au 20 /C, Au 10 /FeO x ) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR) n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters M x Au n L m (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR) x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active

  12. Ligand-protected gold clusters: the structure, synthesis and applications

    Science.gov (United States)

    Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.

    2015-11-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.

  13. The nature and role of the gold-krypton interactions in small neutral gold clusters.

    Science.gov (United States)

    Mancera, Luis A; Benoit, David M

    2015-03-26

    We investigate the nature and role of krypton embedding in small neutral gold clusters. For some of these clusters, we observe a particular site-dependent character of the Kr binding that does not completely follow the criterion of binding at low-coordinated sites, widely accepted for interaction of a noble gas with closed-shell metal systems such as metal surfaces. We aim at understanding the effect of low dimensionality and open-shell electronic structure of the odd-numbered clusters on the noble gas-metal cluster interaction. First, we investigate the role of attractive and repulsive forces, and the frontier molecular orbitals. Second, we investigate the Au-Kr interaction in terms of reactivity and bonding character. We use a reactivity index derived from Fukui formalism, and criteria provided by the electron localization function (ELF), in order to classify the type of bonding. We carry out this study on the minimum energy structures of neutral gold clusters, as obtained using pseudo potential plane-wave density functional theory (DFT). A model is proposed that includes the effect of attractive electrostatic, van der Waals and repulsive forces, together with effects originating from orbital overlap. This satisfactorily explains minimum configurations of the noble gas-gold cluster systems, the site preference of the noble gas atoms, and changes in electronic properties.

  14. Gold cluster carbonyls: saturated adsorption of CO on gold cluster cations, vibrational spectroscopy, and implications for their structures.

    Science.gov (United States)

    Fielicke, André; von Helden, Gert; Meijer, Gerard; Pedersen, David B; Simard, Benoit; Rayner, David M

    2005-06-15

    We report on the interaction of carbon monoxide with cationic gold clusters in the gas phase. Successive adsorption of CO molecules on the Au(n)(+) clusters proceeds until a cluster size specific saturation coverage is reached. Structural information for the bare gold clusters is obtained by comparing the saturation stoichiometry with the number of available equivalent sites presented by candidate structures of Au(n)(+). Our findings are in agreement with the planar structures of the Au(n)(+) cluster cations with n < or = 7 that are suggested by ion mobility experiments [Gilb, S.; Weis, P.; Furche, F.; Ahlrichs, R.; Kappes, M. M. J. Chem. Phys. 2001, 116, 4094]. By inference we also establish the structure of the saturated Au(n)(CO)(m)(+) complexes. In certain cases we find evidence suggesting that successive adsorption of CO can distort the metal cluster framework. In addition, the vibrational spectra of the Au(n)(CO)(m)(+) complexes in both the CO stretching region and in the region of the Au-C stretch and the Au-C-O bend are measured using infrared photodepletion spectroscopy. The spectra further aid in the structure determination of Au(n)(+), provide information on the structure of the Au(n)(+)-CO complexes, and can be compared with spectra of CO adsorbates on deposited clusters or surfaces.

  15. Molecular dynamics simulation of gold cluster growth during sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J. W., E-mail: abraham@theo-physik.uni-kiel.de; Bonitz, M., E-mail: bonitz@theo-physik.uni-kiel.de [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel (Germany); Strunskus, T.; Faupel, F. [Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde, Christian-Albrechts-Universität zu Kiel, Kaiserstraße 2, D-24143 Kiel (Germany)

    2016-05-14

    We present a molecular dynamics simulation scheme that we apply to study the time evolution of the self-organized growth process of metal cluster assemblies formed by sputter-deposited gold atoms on a planar surface. The simulation model incorporates the characteristics of the plasma-assisted deposition process and allows for an investigation over a wide range of deposition parameters. It is used to obtain data for the cluster properties which can directly be compared with recently published experimental data for gold on polystyrene [M. Schwartzkopf et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)]. While good agreement is found between the two, the simulations additionally provide valuable time-dependent real-space data of the surface morphology, some of whose details are hidden in the reciprocal-space scattering images that were used for the experimental analysis.

  16. Chemically induced magnetism in atomically precise gold clusters.

    Science.gov (United States)

    Krishna, Katla Sai; Tarakeshwar, Pilarisetty; Mujica, Vladimiro; Kumar, Challa S S R

    2014-03-12

    Comparative theoretical and experimental investigations are reported into chemically induced magnetism in atomically-precise, ligand-stabilized gold clusters Au25 , Au38 and Au55 . The results indicate that [Au25 (PPh3 )10 (SC12 H25 )5 Cl2 ](2+) and Au38 (SC12 H25 )24 are diamagnetic, Au25 (SC2 H4 Ph)18 is paramagnetic, and Au55 (PPh3 )12 Cl6 , is ferromagnetic at room temperature. Understanding the magnetic properties resulting from quantum size effects in such atomically precise gold clusters could lead to new fundamental discoveries and applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Impact of slow gold clusters on various solids

    International Nuclear Information System (INIS)

    Benguerba, M.; Brunelle, A.; Della-Negra, S.; Depauw, J.; Joret, H.; Beyec, Y. Le; Schweikert, E.A.; Assayag, G.B.; Sudraud, P.

    1991-01-01

    A liquid metal ion source has been installed on a pulsed ion gun. The time of flight (TOF) spectra of the pulsed beam were recorded. With the gold source several cluster ions (up to 10 atoms in the cluster) and doubly charged ions were identified in the ion beam TOF spectra. With a second pulsation, single cluster ions can be selected as projectiles for secondary ion TOF mass spectrometry. The secondary ion emission induced by cluster impact from a variety of targets (organic, CsI, metallic) was studied. A large enhancement of yield is observed by comparison to single atomic ion impact (e.g., a factor of 30 between Au 3 + and Au + ). The secondary ion yields increase nonlinearly with the number of constituents in the cluster. A comparison with other types of clusters and also fission fragments of 252 Cf has been performed. The rate of secondary emission stimulated by cluster is similar to the secondary ion yield induced by fission fragments. (author) 47 refs., 18 figs., 5 tabs

  18. Binding motif of terminal alkynes on gold clusters.

    Science.gov (United States)

    Maity, Prasenjit; Takano, Shinjiro; Yamazoe, Seiji; Wakabayashi, Tomonari; Tsukuda, Tatsuya

    2013-06-26

    Gold clusters protected by terminal alkynes (1-octyne (OC-H), phenylacetylene (PA-H) and 9-ethynyl-phenanthrene (EPT-H)) were prepared by the ligand exchange of small (diameter alkynes on Au clusters was investigated using various spectroscopic methods. FTIR and Raman spectroscopy revealed that terminal hydrogen is lost during the ligand exchange and that the C≡C bond of the alkynyl group is weakened upon attachment to the Au clusters. Acidification of the water phase after the ligand exchange indicated that the ligation of alkynyl groups to the Au clusters proceeds via deprotonation of the alkynes. A series of precisely defined Au clusters, Au34(PA)16, Au54(PA)26, Au30(EPT)13, Au35(EPT)18, and Au(41-43)(EPT)(21-23), were synthesized and characterized in detail to obtain further insight into the interfacial structures. Careful mass analysis confirmed the ligation of the alkynes in the dehydrogenated form. An upright configuration of the alkynes on Au clusters was suggested from the Au to alkyne ratios and photoluminescence from the excimer of the EPT ligands. EXAFS analysis implied that the alkynyl carbon is bound to bridged or hollow sites on the cluster surface.

  19. Photoemission on gold-55-clusters derived from gold-phosphine AuP(C6H5)3Cl

    International Nuclear Information System (INIS)

    Quinten, M.; Sander, I.; Steiner, P.; Kreibig, U.; Fauth, K.; Schmid, G.

    1991-01-01

    We measured XPS and UPS spectra of gold clusters with 55 atoms, embedded in an electrically isolating phosphine matrix, and of gold-phosphine, from which the clusters were chemically derived. Compared to the spectra of bulk gold the valence band spectrum and the core level spectra of the clusters showed shifts of the peaks and the fermi level to higher binding energies. The shift of the peaks could qualitatively be interpreted by a final state effect. We succeeded in a separation of bulk and surface contributions to the core level spectra and in a reasonable quantitative analysis of the valence band spectrum of the clusters. The Au 4f core level spectrum of gold-phosphine showed two peaks at 1.5 eV higher binding energies than the corresponding peaks of the clusters. (orig.)

  20. Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ligare, Marshall R.; Baker, Erin M.; Laskin, Julia; Johnson, Grant E.

    2017-01-01

    Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry. Phosphine ligated Au8 clusters are shown to adopt more “extended” type structures with increasing exchange of methyldiphenylphosphine (MePPh2) for triphenylphosphine (PPh3). These ligand-dependant structure-property relationships are critical to applications of clusters in catalysis.

  1. Dynamic cellular uptake of mixed-monolayer protected nanoparticles.

    Science.gov (United States)

    Carney, Randy P; Carney, Tamara M; Mueller, Marie; Stellacci, Francesco

    2012-12-01

    Nanoparticles (NPs) are gaining increasing attention for potential application in medicine; consequently, studying their interaction with cells is of central importance. We found that both ligand arrangement and composition on gold nanoparticles play a crucial role in their cellular internalization. In our previous investigation, we showed that 66-34OT nanoparticles coated with stripe-like domains of hydrophobic (octanethiol, OT, 34%) and hydrophilic (11-mercaptoundecane sulfonate, MUS, 66%) ligands permeated through the cellular lipid bilayer via passive diffusion, in addition to endo-/pino-cytosis. Here, we show an analysis of NP internalization by DC2.4, 3T3, and HeLa cells at two temperatures and multiple time points. We study four NPs that differ in their surface structures and ligand compositions and report on their cellular internalization by intracellular fluorescence quantification. Using confocal laser scanning microscopy we have found that all three cell types internalize the 66-34OT NPs more than particles coated only with MUS, or particles coated with a very similar coating but lacking any detectable ligand shell structure, or 'striped' particles but with a different composition (34-66OT) at multiple data points.

  2. Cyanide leaching of Au/CeO2: highly active gold clusters for 1,3-butadiene hydrogenation

    NARCIS (Netherlands)

    Guan, Y.; Hensen, E.J.M.

    2009-01-01

    Ceria-supported gold catalysts before and after leaching by NaCN were investigated by X-ray absorption spectroscopy at the Au LIII edge. After gold leaching, isolated gold cations remain in close interaction with the support. These ions form an ideal precursor to very small clusters of a few gold

  3. Density functional study of structural and electronic properties of bimetallic silver-gold clusters: Comparison with pure gold and silver clusters

    Science.gov (United States)

    Bonacic-Koutecky, Vlasta; Burda, Jaroslav; Mitric, Roland; Ge, Maofa; Zampella, Giuseppe; Fantucci, Piercarlo

    2002-08-01

    Bimetallic silver-gold clusters offer an excellent opportunity to study changes in metallic versus "ionic" properties involving charge transfer as a function of the size and the composition, particularly when compared to pure silver and gold clusters. We have determined structures, ionization potentials, and vertical detachment energies for neutral and charged bimetallic AgmAun 3[less-than-or-equal](m+n)[less-than-or-equal]5 clusters. Calculated VDE values compare well with available experimental data. In the stable structures of these clusters Au atoms assume positions which favor the charge transfer from Ag atoms. Heteronuclear bonding is usually preferred to homonuclear bonding in clusters with equal numbers of hetero atoms. In fact, stable structures of neutral Ag2Au2, Ag3Au3, and Ag4Au4 clusters are characterized by the maximum number of hetero bonds and peripheral positions of Au atoms. Bimetallic tetramer as well as hexamer are planar and have common structural properties with corresponding one-component systems, while Ag4Au4 and Ag8 have 3D forms in contrast to Au8 which assumes planar structure. At the density functional level of theory we have shown that this is due to participation of d electrons in bonding of pure Aun clusters while s electrons dominate bonding in pure Agm as well as in bimetallic clusters. In fact, Aun clusters remain planar for larger sizes than Agm and AgnAun clusters. Segregation between two components in bimetallic systems is not favorable, as shown in the example of Ag5Au5 cluster. We have found that the structures of bimetallic clusters with 20 atoms Ag10Au10 and Ag12Au8 are characterized by negatively charged Au subunits embedded in Ag environment. In the latter case, the shape of Au8 is related to a pentagonal bipyramid capped by one atom and contains three exposed negatively charged Au atoms. They might be suitable for activating reactions relevant to catalysis. According to our findings the charge transfer in bimetallic

  4. Scanning probe microscopy investigation of gold clusters deposited on atomically flat substrates

    International Nuclear Information System (INIS)

    Vandamme, N; Janssens, E; Vanhoutte, F; Lievens, P; Haesendonck, C van

    2003-01-01

    We systematically studied the influence of the substrate on the shape, mobility, and stability of deposited gold clusters. The Au n clusters were produced in a laser vaporization source and deposited with low kinetic energy (∼0.4 eV/atom) on atomically flat substrates (graphite, mica, and gold and silver films on mica) under UHV conditions. Their size distribution is probed with time-of-flight mass spectrometry and ranges from dimers to several hundreds of atoms. Scanning probe microscopy is used to characterize the deposited clusters and the formation of islands by cluster aggregation. On all substrates, Au n islands can be clearly distinguished and the islands are flattened despite the small impact energy. The shape and size of the island configurations are strongly system dependent. Gold clusters deposited on Au(111) and Ag(111) films grown on mica do not aggregate, but deform due to strong cluster-substrate interactions. The clusters tend to grow epitaxially on these surfaces. On graphite and on mica, deposited clusters do diffuse and aggregate. On the graphite surface, large ramified islands are formed by juxtaposition of small islands and trapping of the clusters at the step edges. On the other hand, the diffusion of the clusters on mica results in a total coalescence of the Au n clusters into compact islands

  5. Influence of Structure and Charge State on the Mechanism of CO Oxidation on Gold Clusters

    Science.gov (United States)

    Johnson, Grant; Burgel, Christian; Reilly, Nelly; Mitric, Roland; Kimble, Michele; Tyo, Eric; Castleman, A. W.; Bonacic-Koutecky, Vlasta

    2008-05-01

    Gas-phase reactivity experiments and high level theoretical calculations have been employed to study the interaction of both positively and negatively charged gold oxide clusters with carbon monoxide (CO). We demonstrate that for negatively charged clusters CO is oxidized to CO2 by an Eley-Ridel-like (ER-) mechanism involving the attack of CO on oxygen rather than gold. In contrast, for positively charged clusters, the oxidation reaction may also occur by a Langmuir-Hinshelwood-like (LH-) mechanism involving the initial binding of CO to a gold atom followed by subsequent migration to an oxygen site. The LH mechanism is made possible through the large energy gain associated with the adsorption of two CO molecules onto cationic gold clusters. Structure-reactivity relationships are also established which demonstrate that terminally bound oxygen atoms are the most active sites for CO oxidation. Bridge bonded oxygen atoms and molecularly bound O2 units are shown to be inert. We also establish an inverse relationship between the binding energy of CO to gold clusters and the energy of the clusters lowest unoccupied molecular orbital (LUMO).

  6. Melting behaviour of gold-platinum nanoalloy clusters by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yee Pin; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    The melting behavior of bimetallic gold-platinum nanoclusters is studied by applying Brownian-type isothermal molecular dynamics (MD) simulation, a program modified from the cubic coupling scheme (CCS). The process begins with the ground-state structures obtained from global minimum search algorithm and proceeds with the investigation of the effect of temperature on the thermal properties of gold-platinum nanoalloy clusters. N-body Gupta potential has been employed in order to account for the interactions between gold and platinum atoms. The ground states of the nanoalloy clusters, which are core-shell segregated, are heated until they become thermally segregated. The detailed melting mechanism of the nanoalloy clusters is studied via this approach to provide insight into the thermal stability of the nanoalloy clusters.

  7. Organo-Soluble Porphyrin Mixed Monolayer-Protected Gold Nanorods with Intercalated Fullerenes

    Science.gov (United States)

    2012-03-16

    Polymer Science, The University of Akron, Akron, Ohio 44325, United States, §Department of Chemical Engineering, Case Western Reserve University...Tognalli, N. G.; Fainstein, A.; Vela, M. E.; Jares- Erijman, E. A.; Salvarezza, R. C. Self-Assembly of Thiolated Cyanine Aggregates on Au(111) and Au

  8. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    Science.gov (United States)

    Liu, Siqi; Xu, Yi-Jun

    2016-03-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters-TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability.

  9. Investigation of Carbon Monoxide Adsorption on Cationic Gold- Palladium Clusters

    Science.gov (United States)

    Chen, Yang-Mei; Kuang, Xiao-Yu; Sheng, Xiao-Wei; Wang, Huai-Qian; Shao, Peng; Zhong, Min-Ming

    2013-11-01

    Density functional calculations have been performed for the carbon monoxide molecule adsorption on AunPd+m(n+m ≤ 6) clusters. In the process of CO adsorption, small Au clusters and Pd clusters tend to be an Au atom and three Pd atoms adsorption, respectively. For the mixed Au-Pd clusters, an Au atom, a Pd atom, two atoms consisted of an Au atom and a Pd atom, two Pd atoms, and three Pd atoms adsorption structures are displayed. The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps and natural bond orbital charge population are calculated. Moreover, CO adsorption energy, CO stretching frequency, and CO bond length (upon adsorption) are also analysed in detail. The results predict that the adsorption strength of Au clusters with CO and the C-O vibration strength is enhanced and reduced after doping of Pd in the AunPdmCO+ complexes, respectively

  10. Controlled Clustering of Gold Nanoparticles using Solid-support for Surface-enhanced Raman Spectroscopic Probes

    International Nuclear Information System (INIS)

    Chang, Hyejin; Chae, Jinjoo; Jeong, Hong; Kang, Homan; Lee, Yoonsik

    2014-01-01

    We fabricated small clusters of gold nanoparticles by using solid-supported aggregation of gold nanoparticles. The fabricated Au nanoclusters consisting mainly of dimers showed homogeneous characteristics in cluster size and SERS intensity. The SERS enhancement of 4-ABT molecules in an effective area within 2-nm gap appeared to be approximately 10. Detachment process by ultrasonication was successively carried out in order to use the nanoclusters as SERS probes. The possibility of these clusters as SERS probe was proved in terms of signal and cluster size. Single molecule-level sensitivity of surface-enhanced Raman scattering (SERS) was known approximately fifteen years ago. Ever since there have been many different applications benefiting from the ultra-high sensitivity such as single molecule detection, chemical sensing and bio-molecular probes. Especially, SERS has drawn much attention in bio-multiplexing probes owing to its unique optical characteristics claiming extremely narrow bandwidth, high sensitivity of light signals, and non-bleaching feature

  11. Controlled Clustering of Gold Nanoparticles using Solid-support for Surface-enhanced Raman Spectroscopic Probes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyejin; Chae, Jinjoo; Jeong, Hong [Department of Chemistry Education, Seoul (Korea, Republic of); Kang, Homan; Lee, Yoonsik [Interdisciplinary Program in Nano-Science and Technology, Pohang (Korea, Republic of)

    2014-03-15

    We fabricated small clusters of gold nanoparticles by using solid-supported aggregation of gold nanoparticles. The fabricated Au nanoclusters consisting mainly of dimers showed homogeneous characteristics in cluster size and SERS intensity. The SERS enhancement of 4-ABT molecules in an effective area within 2-nm gap appeared to be approximately 10. Detachment process by ultrasonication was successively carried out in order to use the nanoclusters as SERS probes. The possibility of these clusters as SERS probe was proved in terms of signal and cluster size. Single molecule-level sensitivity of surface-enhanced Raman scattering (SERS) was known approximately fifteen years ago. Ever since there have been many different applications benefiting from the ultra-high sensitivity such as single molecule detection, chemical sensing and bio-molecular probes. Especially, SERS has drawn much attention in bio-multiplexing probes owing to its unique optical characteristics claiming extremely narrow bandwidth, high sensitivity of light signals, and non-bleaching feature.

  12. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.

    Science.gov (United States)

    Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan

    2017-09-08

    In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

  13. Complexes of DNA bases and Watson-Crick base pairs with small neutral gold clusters.

    Science.gov (United States)

    Kryachko, E S; Remacle, F

    2005-12-08

    The nature of the DNA-gold interaction determines and differentiates the affinity of the nucleobases (adenine, thymine, guanine, and cytosine) to gold. Our preliminary computational study [Kryachko, E. S.; Remacle, F. Nano Lett. 2005, 5, 735] demonstrates that two major bonding factors govern this interaction: the anchoring, either of the Au-N or Au-O type, and the nonconventional N-H...Au hydrogen bonding. In this paper, we offer insight into the nature of nucleobase-gold interactions and provide a detailed characterization of their different facets, i.e., geometrical, energetic, and spectroscopic aspects; the gold cluster size and gold coordination effects; proton affinity; and deprotonation energy. We then investigate how the Watson-Crick DNA pairing patterns are modulated by the nucleobase-gold interaction. We do so in terms of the proton affinities and deprotonation energies of those proton acceptors and proton donors which are involved in the interbase hydrogen bondings. A variety of properties of the most stable Watson-Crick [A x T]-Au3 and [G x C]-Au3 hybridized complexes are described and compared with the isolated Watson-Crick A x T and G x C ones. It is shown that enlarging the gold cluster size to Au6 results in a rather short gold-gold bond in the Watson-Crick interbase region of the [G x C]-Au6 complex that bridges the G x C pair and thus leads to a significant strengthening of G x C pairing.

  14. Properties of the gold-sulphur interface: from self-assembled monolayers to clusters.

    Science.gov (United States)

    Bürgi, Thomas

    2015-10-14

    The gold-sulphur interface of self-assembled monolayers (SAMs) was extensively studied some time ago. More recently tremendous progress has been made in the preparation and characterization of thiolate-protected gold clusters. In this feature article we address different properties of the two systems such as their structure, the mobility of the thiolates on the surface and other dynamical aspects, the chirality of the structures and characteristics related to it and their vibrational properties. SAMs and clusters are in the focus of different communities that typically use different experimental approaches to study the respective systems. However, it seems that the nature of the Au-S interfaces in the two cases is quite similar. Recent single crystal X-ray structures of thiolate-protected gold clusters reveal staple motifs characterized by gold ad-atoms sandwiched between two sulphur atoms. This finding contradicts older work on SAMs. However, newer studies on SAMs also reveal ad-atoms. Whether this finding can be generalized remains to be shown. In any case, more and more studies highlight the dynamic nature of the Au-S interface, both on flat surfaces and in clusters. At temperatures slightly above ambient thiolates migrate on the gold surface and on clusters. Evidence for desorption of thiolates at room temperature, at least under certain conditions, has been demonstrated for both systems. The adsorbed thiolate can lead to chirality at different lengths scales, which has been shown both on surfaces and for clusters. Chirality emerges from the organization of the thiolates as well as locally at the molecular level. Chirality can also be transferred from a chiral surface to an adsorbate, as evidenced by vibrational spectroscopy.

  15. Properties of the gold-sulphur interface: from self-assembled monolayers to clusters

    Science.gov (United States)

    Bürgi, Thomas

    2015-09-01

    The gold-sulphur interface of self-assembled monolayers (SAMs) was extensively studied some time ago. More recently tremendous progress has been made in the preparation and characterization of thiolate-protected gold clusters. In this feature article we address different properties of the two systems such as their structure, the mobility of the thiolates on the surface and other dynamical aspects, the chirality of the structures and characteristics related to it and their vibrational properties. SAMs and clusters are in the focus of different communities that typically use different experimental approaches to study the respective systems. However, it seems that the nature of the Au-S interfaces in the two cases is quite similar. Recent single crystal X-ray structures of thiolate-protected gold clusters reveal staple motifs characterized by gold ad-atoms sandwiched between two sulphur atoms. This finding contradicts older work on SAMs. However, newer studies on SAMs also reveal ad-atoms. Whether this finding can be generalized remains to be shown. In any case, more and more studies highlight the dynamic nature of the Au-S interface, both on flat surfaces and in clusters. At temperatures slightly above ambient thiolates migrate on the gold surface and on clusters. Evidence for desorption of thiolates at room temperature, at least under certain conditions, has been demonstrated for both systems. The adsorbed thiolate can lead to chirality at different lengths scales, which has been shown both on surfaces and for clusters. Chirality emerges from the organization of the thiolates as well as locally at the molecular level. Chirality can also be transferred from a chiral surface to an adsorbate, as evidenced by vibrational spectroscopy.

  16. Structures, stabilities, and electronic properties for rare-earth lanthanum doped gold clusters

    International Nuclear Information System (INIS)

    Zhao, Ya-Ru

    2015-01-01

    The structures, stabilities, and electronic properties of rare-earth lanthanum doped gold La 2 Au n (n = 1-9) and pure gold Au n (n ≤ 11) clusters have been investigated by using density functional theory. The optimized geometries show that the lowest energy structures of La 2 Au n clusters favour the 3D structure at n ≥ 3. The lanthanum atoms can strongly enhance the stabilities of gold clusters and tend to occupy the most highly coordinated position. By analysing the gap, vertical ionization potential, and chemical hardness, it is found that the La 2 Au 6 isomer possesses higher stability for small-sized La 2 Au n clusters (n = 1-9). The charges in the La 2 Au n clusters transfer from La atoms to the Au n host. In addition, Wiberg bond indices analysis reveals that the intensity of different bonds of La 2 Au n clusters exhibits a sequence of La-La bond > La-Au bond > Au-Au bond.

  17. From atoms to layers: in situ gold cluster growth kinetics during sputter deposition

    Science.gov (United States)

    Schwartzkopf, Matthias; Buffet, Adeline; Körstgens, Volker; Metwalli, Ezzeldin; Schlage, Kai; Benecke, Gunthard; Perlich, Jan; Rawolle, Monika; Rothkirch, André; Heidmann, Berit; Herzog, Gerd; Müller-Buschbaum, Peter; Röhlsberger, Ralf; Gehrke, Rainer; Stribeck, Norbert; Roth, Stephan V.

    2013-05-01

    The adjustment of size-dependent catalytic, electrical and optical properties of gold cluster assemblies is a very significant issue in modern applied nanotechnology. We present a real-time investigation of the growth kinetics of gold nanostructures from small nuclei to a complete gold layer during magnetron sputter deposition with high time resolution by means of in situ microbeam grazing incidence small-angle X-ray scattering (μGISAXS). We specify the four-stage growth including their thresholds with sub-monolayer resolution and identify phase transitions monitored in Yoneda intensity as a material-specific characteristic. An innovative and flexible geometrical model enables the extraction of morphological real space parameters, such as cluster size and shape, correlation distance, layer porosity and surface coverage, directly from reciprocal space scattering data. This approach enables a large variety of future investigations of the influence of different process parameters on the thin metal film morphology. Furthermore, our study allows for deducing the wetting behavior of gold cluster films on solid substrates and provides a better understanding of the growth kinetics in general, which is essential for optimization of manufacturing parameters, saving energy and resources.The adjustment of size-dependent catalytic, electrical and optical properties of gold cluster assemblies is a very significant issue in modern applied nanotechnology. We present a real-time investigation of the growth kinetics of gold nanostructures from small nuclei to a complete gold layer during magnetron sputter deposition with high time resolution by means of in situ microbeam grazing incidence small-angle X-ray scattering (μGISAXS). We specify the four-stage growth including their thresholds with sub-monolayer resolution and identify phase transitions monitored in Yoneda intensity as a material-specific characteristic. An innovative and flexible geometrical model enables the extraction

  18. Moessbauer studies of non-linear excitations and gold cluster compounds

    International Nuclear Information System (INIS)

    Smit, H.H.A.

    1988-01-01

    Moessbauer effect spectroscopy has been applied to the study of three polynuclear gold cluster compounds. The resulting information on the local vibrational density of states has been compared to several models which take the finite size of the particles into consideration. 188 refs.; 34 figs.; 103 schemes; 8 tabs

  19. Ligand-free gold atom clusters adsorbed on graphene nano sheets generated by oxidative laser fragmentation in water

    Science.gov (United States)

    Lau, Marcus; Haxhiaj, Ina; Wagener, Philipp; Intartaglia, Romuald; Brandi, Fernando; Nakamura, Junji; Barcikowski, Stephan

    2014-08-01

    Over three decades after the first synthesis of stabilized Au55-clusters many scientific questions about gold cluster properties are still unsolved and ligand-free colloidal clusters are difficult to fabricate. Here we present a novel route to produce ultra-small gold particles by using a green technique, the laser ablation and fragmentation in water, without using reductive or stabilizing agents at any step of the synthesis. For fabrication only a pulsed laser, a gold-target, pure water, sodium hydroxide and hydrogen peroxide are deployed. The particles are exemplarily hybridized to graphene supports showing that these carbon-free colloidal clusters might serve as versatile building blocks.

  20. Observing the real time formation of phosphine-ligated gold clusters by electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ligare, Marshall R.; Johnson, Grant E.; Laskin, Julia

    2017-01-01

    Early stages of the reduction and nucleation of solution-phase gold clusters are largely unknown. This is due, in part, to the high reaction rates and the complexity of the cluster synthesis process. Through the addition of a diphosphine ligand, 1-4,Bis(diphenylphosphino)butane (L4) to the gold precursor, chloro(triphenylphosphine) gold(I) (Au(PPh3)Cl), in methanol organometallic complexes of the type, [Au(L4)x(L4O)y(PPh3)z]+, are formed. These complexes lower the rate of reduction so that the reaction can be directly monitored from 1 min to over an hour using on-line electrospray ionization mass spectrometry (ESI-MS). Our results indicate that the formation of Au8(L4)42+, Au9(L4)4H2+ and Au10(L4)52+ cationic clusters occurs through different reaction pathways that may be kinetically controlled either through the reducing agent concentration or the extent of oxidation of L4. Through comparison of selected ion chronograms our results indicate that Au2(L4)2H+ may be an intermediate in the formation of Au8(L4)42+and Au10(L4)52+ while a variety of chlorinated clusters are involved in the formation of Au9(L4)4H2+. Additionally, high-resolution mass spectrometry was employed to identify 53 gold containing species produced under highly oxidative conditions. New intermediate species are identified which help understand how different gold cluster nuclearities can be stabilized during the growth process.

  1. Cyanide leaching of Au/CeO2: highly active gold clusters for 1,3-butadiene hydrogenation.

    Science.gov (United States)

    Guan, Y; Hensen, E J M

    2009-11-07

    Ceria-supported gold catalysts before and after leaching by NaCN were investigated by X-ray absorption spectroscopy at the Au L(III) edge. After gold leaching, isolated gold cations remain in close interaction with the support. These ions form an ideal precursor to very small clusters of a few gold atoms upon reduction. The resulting gold clusters exhibit a very high intrinsic activity in the hydrogenation of 1,3-butadiene, which is at least one order of magnitude higher than that of the nanometre-sized gold particles in the non-leached parent catalyst. These findings point to a very strong structure sensitivity of the gold-catalyzed hydrogenation of dienes.

  2. Gold clusters sliding on graphite: a possible quartz crystal microbalance experiment?

    International Nuclear Information System (INIS)

    Pisov, S; Tosatti, E; Tartaglino, U; Vanossi, A

    2007-01-01

    A large measured two-dimensional (2D) diffusion coefficient of gold nanoclusters on graphite has been known experimentally and theoretically for about a decade. When subjected to a lateral force, these clusters should slide with an amount of friction that can be measured. We examine the hypothetical possibility of measuring by quartz crystal microbalance (QCM) the phononic sliding friction of gold clusters in the size range around 250 atoms on a graphite substrate between 300 and 600 K. Assuming the validity of Einstein's relations of ordinary Brownian motion and making use of the experimentally available activated behaviour of the diffusion coefficients, we can predict the sliding friction and slip times as a function of temperature. It is found that a prototypical deposited gold cluster could yield slip times at the standard measurable size of 10 -9 s for temperatures around 450-500 K, or 200 0 C. Since gold nanoclusters may also melt at around these temperatures, QCM could offer the additional chance of observing this phenomenon through a frictional change

  3. Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species

    International Nuclear Information System (INIS)

    Popolan, Denisia M.; Bernhardt, Thorsten M.

    2011-01-01

    The oxidation of carbon monoxide with nitrous oxide on mass-selected Au 3 + and Ag 3 + clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au 3 + the cluster itself acts as reactive species that facilitates the formation of CO 2 from N 2 O and CO, for silver the oxidized clusters Ag 3 O x + (n= 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N 2 O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

  4. Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species

    Science.gov (United States)

    Popolan, Denisia M.; Bernhardt, Thorsten M.

    2011-03-01

    The oxidation of carbon monoxide with nitrous oxide on mass-selected Au3+ and Ag3+ clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au3+ the cluster itself acts as reactive species that facilitates the formation of CO2 from N2O and CO, for silver the oxidized clusters Ag3Ox+ (n = 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N2O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

  5. Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Marquez, Miguel A., E-mail: miguel.angel@icmse.csic.es; Guerrero, Estefania; Fernandez, Asuncion [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain); Crespo, Patricia; Hernando, Antonio [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC) (Spain); Lucena, Raquel; Conesa, Jose C. [Instituto de Catalisis y Petroleoquimica (CSIC) (Spain)

    2010-05-15

    Magnetometry results have shown that gold NPs ({approx}2 nm in size) protected with phosphine and chlorine ligands exhibit permanent magnetism. When the NPs size decreases down to the subnanometric size range, e.g. undecagold atom clusters, the permanent magnetism disappears. The near edge structure of the X-ray absorption spectroscopy data points out that charge transfer between gold and the capping system occurs in both cases. These results strongly suggest that nearly metallic Au bonds are also required for the induction of a magnetic response. Electron paramagnetic resonance observations indicate that the contribution to magnetism from eventual iron impurities can be disregarded.

  6. Non-linear sputtering effects induced by MeV energy gold clusters

    International Nuclear Information System (INIS)

    Boussofiane-Baudin, K.; Brunelle, A.; Chaurand, P.; Della-Negra, S.; Depauw, J.; Le Beyec, Y.; Hakansson, P.

    1993-09-01

    Gold clusters Au n + with 1 < n ≤ 4, accelerated to MeV energies at the Orsay tandem accelerator, have been used to induce secondary ion emission from the surface of thin organic and inorganic films. A non-linear enhancement of the secondary ion yields is observed when cluster impacts are compared to single atom impacts at the same velocity. It has been shown that the collective effects propagate in the solid over a depth larger than 2000 A. The equilibrium charge state of cluster constituents after their passage through a thin carbon foil (1000 A) has been measured. The mean value for the cluster constituents is the same as for single atoms at the same velocity. (authors). 41 refs., 8 figs., 1 tab

  7. Composition dependent selectivity in the coadsorption of H2O and CO on pure and binary silver-gold clusters

    Science.gov (United States)

    Fleischer, Irene; Popolan, Denisia M.; Krstić, Marjan; Bonačić-Koutecký, Vlasta; Bernhardt, Thorsten M.

    2013-04-01

    Small cationic gold clusters exhibit a strong affinity toward carbon monoxide. This prevents the coadsorption of water which would be the first step of a catalytic water gas shift chemistry on these clusters. In a gas phase ion trap experiment with mass selected AgnAum+ it was however possible to demonstrate that the replacement of gold by silver atoms in triatomic cluster ions liberates sites for H2O adsorption. The resulting observed coadsorption effect occurs at a cross-over in the molecular binding energies of carbon monoxide and water to these clusters determined by reaction kinetics measurements and first principles calculations.

  8. Molecular geometries and relative stabilities of titanium oxide and gold-titanium oxide clusters

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Rohan J.; Falcinella, Alexander; Metha, Gregory F., E-mail: greg.metha@adelaide.edu.au

    2016-09-30

    Titanium oxide and gold-titanium oxide clusters of stoichiometry M{sub x}O{sub y} (M{sub x} = Ti{sub 3}, Ti{sub 4} & AuTi{sub 3}; y = 0 − (2x + 2)) have been investigated using density functional theory. Geometries of determined global energy minimum structures are reported and other isomers predicted up to 0.5 eV higher in energy. The Ti{sub 3}O{sub n} geometries build upon a triangular Ti{sub 3} motif, while Ti{sub 4}O{sub n} stoichiometries template upon a pseudo-tetrahedral Ti{sub 4} structure. Addition of a gold atom to the Ti{sub 3}O{sub n} series does not significantly alter the cluster geometry, with the gold atom preferentially binding to titanium atoms over oxygen atoms. Adiabatic ionization energies, electron affinities and HOMO/LUMO energies increase in magnitude with increasing oxygenation. The HOMO-LUMO energy gaps reach the bulk anatase band gap energy at stoichiometry (Au)Ti{sub m}O{sub 2m−1}, and increase above this upon further oxygen addition. The most stable structural moieties are found to be a cage-like, C{sub 3v} symmetric Ti{sub 4}O{sub 6/7} geometry and a Ti{sub 3}O{sub 6} structure with an η{sup 3}-bound oxygen atom.

  9. Fluorescence Imaging Assisted Photodynamic Therapy Using Photosensitizer-Linked Gold Quantum Clusters.

    Science.gov (United States)

    Nair, Lakshmi V; Nazeer, Shaiju S; Jayasree, Ramapurath S; Ajayaghosh, Ayyappanpillai

    2015-06-23

    Fluorescence imaging assisted photodynamic therapy (PDT) is a viable two-in-one clinical tool for cancer treatment and follow-up. While the surface plasmon effect of gold nanorods and nanoparticles has been effective for cancer therapy, their emission properties when compared to gold nanoclusters are weak for fluorescence imaging guided PDT. In order to address the above issues, we have synthesized a near-infrared-emitting gold quantum cluster capped with lipoic acid (L-AuC with (Au)18(L)14) based nanoplatform with excellent tumor reduction property by incorporating a tumor-targeting agent (folic acid) and a photosensitizer (protoporphyrin IX), for selective PDT. The synthesized quantum cluster based photosensitizer PFL-AuC showed 80% triplet quantum yield when compared to that of the photosensitizer alone (63%). PFL-AuC having 60 μg (0.136 mM) of protoporphyrin IX was sufficient to kill 50% of the tumor cell population. Effective destruction of tumor cells was evident from the histopathology and fluorescence imaging, which confirm the in vivo PDT efficacy of PFL-AuC.

  10. Toward high value sensing: monolayer-protected metal nanoparticles in multivariable gas and vapor sensors.

    Science.gov (United States)

    Potyrailo, Radislav A

    2017-08-29

    For detection of gases and vapors in complex backgrounds, "classic" analytical instruments are an unavoidable alternative to existing sensors. Recently a new generation of sensors, known as multivariable sensors, emerged with a fundamentally different perspective for sensing to eliminate limitations of existing sensors. In multivariable sensors, a sensing material is designed to have diverse responses to different gases and vapors and is coupled to a multivariable transducer that provides independent outputs to recognize these diverse responses. Data analytics tools provide rejection of interferences and multi-analyte quantitation. This review critically analyses advances of multivariable sensors based on ligand-functionalized metal nanoparticles also known as monolayer-protected nanoparticles (MPNs). These MPN sensing materials distinctively stand out from other sensing materials for multivariable sensors due to their diversity of gas- and vapor-response mechanisms as provided by organic and biological ligands, applicability of these sensing materials for broad classes of gas-phase compounds such as condensable vapors and non-condensable gases, and for several principles of signal transduction in multivariable sensors that result in non-resonant and resonant electrical sensors as well as material- and structure-based photonic sensors. Such features should allow MPN multivariable sensors to be an attractive high value addition to existing analytical instrumentation.

  11. The weak lensing analysis of the CFHTLS and NGVS RedGOLD galaxy clusters

    Science.gov (United States)

    Parroni, C.; Mei, S.; Erben, T.; Van Waerbeke, L.; Raichoor, A.; Ford, J.; Licitra, R.; Meneghetti, M.; Hildebrandt, H.; Miller, L.; Côté, P.; Covone, G.; Cuillandre, J.-C.; Duc, P.-A.; Ferrarese, L.; Gwyn, S. D. J.; Puzia, T. H.

    2017-12-01

    An accurate estimation of galaxy cluster masses is essential for their use in cosmological and astrophysical studies. We studied the accuracy of the optical richness obtained by our RedGOLD cluster detection algorithm tep{licitra2016a, licitra2016b} as a mass proxy, using weak lensing and X-ray mass measurements. We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2z<0.5, in the optical richness range 10-70. We tested different weak lensing mass models that account for miscentering, non-weak shear, the two-halo term, the contribution of the Brightest Cluster Galaxy, and the intrinsic scatter in the mass-richness relation. We calculated the coefficients of the mass-richness relation, and of the scaling relations between the lensing mass and X-ray mass proxies.

  12. Influence of the photothermal effect of a gold nanorod cluster on biofilm disinfection

    International Nuclear Information System (INIS)

    Jo, Wonjin; Kim, Min Jun

    2013-01-01

    We evaluate a method for biofilm disinfection by raising biofilm temperature using the photothermal effect of a gold nanorod cluster. Gold nanorods (GNRs) are capable of generating enough heat to lyse bacteria by heating biofilm via laser irradiation. To test this, GNRs are synthesized using wet chemistry and a single GNR cluster is fabricated using photo-lithography technique. The GNR cluster is directly applied to the biofilm and its effects on bacteria are measured before and after laser irradiation. The photothermal effect of GNRs on the biofilm structure results in a considerable reduction of cell viability and biofilm thickness. Several quantitative measurements of bacterial mortality and biofilm destruction show an increase in efficacy with increasing durations of laser irradiation. Scanning electron microscopy images of the irradiated bacteria show obvious morphological damage such as rupture or collapse of the bacterial cell membrane in the biofilm. These results indicate that GNRs are useful and a potential material for use in photothermal treatments, particularly biofilm disinfection. (paper)

  13. Determination of the structures of small gold clusters on stepped magnesia by density functional calculations.

    Science.gov (United States)

    Damianos, Konstantina; Ferrando, Riccardo

    2012-02-21

    The structural modifications of small supported gold clusters caused by realistic surface defects (steps) in the MgO(001) support are investigated by computational methods. The most stable gold cluster structures on a stepped MgO(001) surface are searched for in the size range up to 24 Au atoms, and locally optimized by density-functional calculations. Several structural motifs are found within energy differences of 1 eV: inclined leaflets, arched leaflets, pyramidal hollow cages and compact structures. We show that the interaction with the step clearly modifies the structures with respect to adsorption on the flat defect-free surface. We find that leaflet structures clearly dominate for smaller sizes. These leaflets are either inclined and quasi-horizontal, or arched, at variance with the case of the flat surface in which vertical leaflets prevail. With increasing cluster size pyramidal hollow cages begin to compete against leaflet structures. Cage structures become more and more favourable as size increases. The only exception is size 20, at which the tetrahedron is found as the most stable isomer. This tetrahedron is however quite distorted. The comparison of two different exchange-correlation functionals (Perdew-Burke-Ernzerhof and local density approximation) show the same qualitative trends. This journal is © The Royal Society of Chemistry 2012

  14. Gold atomic cluster mediated electrochemical aptasensor for the detection of lipopolysaccharide.

    Science.gov (United States)

    Posha, Biyas; Nambiar, Sindhu R; Sandhyarani, N

    2018-03-15

    We have constructed an aptamer immobilized gold atomic cluster mediated, ultrasensitive electrochemical biosensor (Apt/AuAC/Au) for LPS detection without any additional signal amplification strategy. The aptamer self-assemble onto the gold atomic clusters makes Apt/AuAC/Au an excellent platform for the LPS detection. Differential pulse voltammetry and EIS were used for the quantitative LPS detection. The Apt/AuAC/Au sensor offers an ultrasensitive and selective detection of LPS down to 7.94 × 10 -21 M level with a wide dynamic range from 0.01 attomolar to 1pM. The sensor exhibited excellent selectivity and stability. The real sample analysis was performed by spiking the diluted insulin sample with various concentration of LPS and obtained recovery within 2% error value. The sensor is found to be more sensitive than most of the literature reports. The simple and easy way of construction of this sensor provides an efficient and promising detection of an even trace amount of LPS. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Detection of gold cluster ions by ion-to-ion conversion using a CsI-converter

    International Nuclear Information System (INIS)

    Nguyen, V.-T.; Novilkov, A.C.; Obnorskii, V.V.

    1997-01-01

    Gold cluster ions in the m/z range of 10 4 -2 x 10 6 u were produced by bombarding a thin film of gold with 252 Cf-fission fragments. The gold covering a C-Al substrate formed islets having a mean diameter of 44 A. Their size- and mass-distribution was determined by means of electron microscopy. The main task was to measure the m/z distribution of the cluster ions ejected from the sample surface. For this purpose we built a time-of-flight (TOF) mass spectrometer, which could be used as a linear TOF instrument or, alternatively, as a tandem-TOF instrument being equipped with an ion-to-ion converter. Combining the results obtained in both modes, it turned out that the linear TOF instrument equipped with micro-channel plates had a mean detection efficiency for 20 keV cluster ions of about 40%. In the tandem mode, the cluster ions hit a CsI converter with energies of 40z keV (z = charge state), from where secondary ions - mainly Cs + and (CsI) n Cs + cluster ions - were ejected. These ions were used to measure the TOF spectrum of the gold cluster ions. The detection efficiency of the cluster ions was found to vary in the available mass range from 99.7% to 96.5%. The complete mass distribution between 4 x 10 4 and 4 x 10 6 u was determined and compared with the corresponding mass distribution of the gold islets covering the substrate. (orig.)

  16. Dual effects of water vapor on ceria-supported gold clusters.

    Science.gov (United States)

    Li, Zhimin; Li, Weili; Abroshan, Hadi; Ge, Qingjie; Li, Gao; Jin, Rongchao

    2018-04-05

    Atomically precise nanocatalysts are currently being intensely pursued in catalysis research. Such nanocatalysts can serve as model catalysts for gaining fundamental insights into catalytic processes. In this work we report a discovery that water vapor provokes the mild removal of surface long-chain ligands on 25-atom Au25(SC12H25)18 nanoclusters in a controlled manner. Using the resultant Au25(SC12H25)18-x/CeO2 catalyst and CO oxidation as a probe reaction, we found that the catalytic activity of cluster/CeO2 is enhanced from nearly zero conversion of CO (in the absence of water) to 96.2% (in the presence of 2.3 vol% H2O) at the same temperature (100 °C). The cluster catalysts exhibit high stability during the CO oxidation process under moisture conditions (up to 20 vol% water vapor). Water vapor plays a dual role in gold cluster-catalyzed CO oxidation. FT-IR and XPS analyses in combination with density functional theory (DFT) simulations suggest that the "-SC12H25" ligands are easier to be removed under a water vapor atmosphere, thus generating highly active sites. Moreover, the O22- peroxide species constitutes the active oxygen species in CO oxidation, evidenced by Raman spectroscopy analysis and isotope experiments on the CeO2 and cluster/CeO2. The results also indicate the perimeter sites of the interface of Au25(SC12H25)18-x/CeO2 to be active sites for catalytic CO oxidation. The controlled exposure of active sites under mild conditions is of critical importance for the utilization of clusters in catalysis.

  17. Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures.

    Science.gov (United States)

    Tripathi, Manoj; Paolicelli, Guido; D'Addato, Sergio; Valeri, Sergio

    2012-06-22

    The effect of temperature on the onset of movement of gold nanoclusters (diameter 27 nm) deposited on highly oriented pyrolytic graphite (HOPG) has been studied by atomic force microscopy (AFM) techniques. Using the AFM with amplitude modulation (tapping mode AFM) we have stimulated and controlled the movement of individual clusters. We show how, at room temperature, controlled detachments and smooth movements can be obtained for clusters having dimensions comparable to or smaller than the tip radius. Displacement is practically visible in real time and it can be started and stopped easily by adjusting only one parameter, the tip amplitude oscillation. Analysing the energy dissipation signal at the onset of nanocluster sliding we evaluated a detachment threshold energy as a function of temperature in the range 300-413 K. We also analysed single cluster thermal induced displacement and combining this delicate procedure with AFM forced movement behaviour we conclude that detachment threshold energy is directly related to the activation energy of nanocluster diffusion and it scales linearly with temperature as expected for a single-particle thermally activated process.

  18. Ligand-modulated interactions between charged monolayer-protected Au144 (SR)60 gold nanoparticles in physiological saline

    Science.gov (United States)

    Villarreal, Oscar; Chen, Liao; Whetten, Robert; Yacaman, Miguel

    2015-03-01

    We studied the interactions of functionalized Au144 nanoparticles (NPs) in a near-physiological environment through all-atom molecular dynamics simulations. The AuNPs were coated with a homogeneous selection of 60 thiolates: 11-mercapto-1-undecanesulfonate, 5-mercapto-1-pentanesulfonate, 5-mercapto-1-pentane-amine, 4-mercapto-benzoate or 4-mercapto-benzamide. These ligands were selected to elucidate how the aggregation behavior depends on the ligands' sign of charge, length, and flexibility. Simulating the dynamics of a pair of identical AuNPs in a cell of saline of 150 mM NaCl in addition to 120 Na+/Cl- counter-ions, we computed the aggregation affinities from the potential of mean force as a function of the pair separation. We found that NPs coated with negatively charged, short ligands have the strongest affinities mediated by multiple Na+ counter-ions residing on a plane in-between the pair and forming ``salt bridges'' to both NPs. Positively charged NPs have weaker affinities, as Cl counter-ions form fewer and weaker salt bridges. The longer ligands' large fluctuations disfavor the forming of salt bridges, enable hydrophobic contact between the exposed hydrocarbon chains and interact at greater separations due to the fact that the screening effect is rather incomplete. Supported by the CONACYT, NIH, NSF and TACC.

  19. Binding energy and preferred adsorption sites of CO on gold and silver-gold cluster cations: adsorption kinetics and quantum chemical calculations.

    Science.gov (United States)

    Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M

    2008-01-01

    We revisit the reactivity of trapped pure gold (Au(n)+, n cations (Ag(m)Au(n)+, m + n carbon monoxide as studied in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The experimental results are discussed in terms of ab initio computations which provide a comprehensive picture of the chemical binding behaviour (like binding energy, adsorption sites, associated vibrational frequencies) of CO to the noble metal as a function of cluster size and composition. Starting from results for pure gold cluster cations for which an overall decrease of CO binding energy with increasing cluster size was experimentally observed--from about 1.09 +/- 0.1 eV (for n = 6) to below 0.65 +/- 0.1 eV (for n > 26) we demonstrate that metal--CO bond energies correlate with the total electron density and with the energy of the lowest unoccupied molecular orbital (LUMO) on the bare metal cluster cation as obtained by density functional theory (DFT) computations. This is a consequence of the predominantly sigma-donating character of the CO-M bond. Further support for this concept is found by contrasting the predictions of binding energies to the experimental results for small alloy cluster cations (Ag(m)Au(n)+, 4 < m + n < 7) as a function of composition. Here, binding energy drops with increasing silver content, while CO still binds always in a head-on fashion to a gold atom. Finally we show how the CO stretch frequency of Ag(m)Au(n)CO+ may be used to identify possible adsorption sites and pre-screen favorable isomers.

  20. Gold Cluster Diffusion Kinetics on Stoichiometric and Reduced Surfaces of Rutile TiO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Nir; Browning, Nigel D.

    2011-06-16

    Gold clusters on rutile TiO2 are known to serve as efficient oxidation catalysts for pollutants and environmental contaminants. However, the mechanism by which highly mobile small clusters migrate and aggregate into larger species relevant to gold’s catalytic activity remains unresolved. We report herein on ab initio simulations of the diffusion of atomic gold clusters up to the trimer on rutile TiO2(110) surfaces. We show that, on the stoichiometric surface, both the dimer and the trimer can exhibit relatively low surface mobility due to high energetic barriers for diffusion out of their energetic minima coupled with low barriers for the reverse motion. On the reduced surface, these clusters can diffuse relatively quickly between energetic minima within the oxygen vacancy site due to the large degree of vibrational entropy in their transition states. Our computed diffusion times provide a point of comparison for future experiments and will aid in development of models of gold cluster island sintering.

  1. Far-infrared spectra of yttrium-doped gold clusters Au(n)Y (n=1-9).

    Science.gov (United States)

    Lin, Ling; Claes, Pieterjan; Gruene, Philipp; Meijer, Gerard; Fielicke, André; Nguyen, Minh Tho; Lievens, Peter

    2010-06-21

    The geometric, spectroscopic, and electronic properties of neutral yttrium-doped gold clusters Au(n)Y (n=1-9) are studied by far-infrared multiple photon dissociation (FIR-MPD) spectroscopy and quantum chemical calculations. Comparison of the observed and calculated vibrational spectra allows the structures of the isomers present in the molecular beam to be determined. Most of the isomers for which the IR spectra agree best with experiment are calculated to be the energetically most stable ones. Attachment of xenon to the Au(n)Y cluster can cause changes in the IR spectra, which involve band shifts and band splittings. In some cases symmetry changes, as a result of the attachment of xenon atoms, were also observed. All the Au(n)Y clusters considered prefer a low spin state. In contrast to pure gold clusters, which exhibit exclusively planar lowest-energy structures for small sizes, several of the studied species are three-dimensional. This is particularly the case for Au(4)Y and Au(9)Y, while for some other sizes (n=5, 8) the 3D structures have an energy similar to that of their 2D counterparts. Several of the lowest-energy structures are quasi-2D, that is, slightly distorted from planar shapes. For all the studied species the Y atom prefers high coordination, which is different from other metal dopants in gold clusters.

  2. Lanthanide-based NMR: a tool to investigate component distribution in mixed-monolayer-protected nanoparticles.

    Science.gov (United States)

    Guarino, Gaetano; Rastrelli, Federico; Scrimin, Paolo; Mancin, Fabrizio

    2012-05-02

    Gd(3+) ions, once bound to the monolayer of organic molecules coating the surface of gold nanoparticles, produce a paramagnetic relaxation enhancement (PRE) that broadens and eventually cancels the signals of the nuclear spins located nearby (within 1.6 nm distance). In the case of nanoparticles coated with mixed monolayers, the signals arising from the different coating molecules experience different PRE, depending on their distance from the binding site. As a consequence, observation of the signal broadening patterns provides direct information on the monolayer organization. © 2012 American Chemical Society

  3. Lipophilic phosphorescent gold(I) clusters as selective probes for visualization of lipid droplets by two-photon microscopy

    Czech Academy of Sciences Publication Activity Database

    Koshel, E. I.; Cheluskin, P. S.; Melnikov, A. S.; Serdobintsev, P. Y.; Stolbovaia, A. Y.; Saifitdinova, A. F.; Scheslavskiy, V. I.; Chernyavskiy, Oleksandr; Gaginskaya, E. R.; Koshevoy, I. O.; Tunik, S. P.

    2017-01-01

    Roč. 332, Jan 1 (2017), s. 122-130 ISSN 1010-6030 R&D Projects: GA MŠk(CZ) LM2015062 Institutional support: RVO:67985823 Keywords : polynuclear gold-alkynyl cluster * lipophilic probe * phosphorescence * adipocyte * two-photon microscopy * PLIM Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Medical laboratory technology (including laboratory samples analysis Impact factor: 2.625, year: 2016

  4. Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules.

    Science.gov (United States)

    Zheng, Ming; Li, Zhigang; Huang, Xueying

    2004-05-11

    The usefulness of the hybrid materials of nanoparticles and biological molecules on many occasions depends on how well one can achieve a rational design based on specific binding and programmable assembly. Nonspecific binding between nanoparticles and biomolecules is one of the major barriers for achieving their utilities in a biological system. In this paper, we demonstrate a new approach to eliminate nonspecific interactions between nanoparticles and biological molecules by shielding the nanoparticle with a monolayer of ethylene glycol. A direct synthesis of di-, tri-, and tetra(ethylene glycol)-protected gold nanoparticles (Au-S-EGn, n = 2, 3, and 4) was achieved under the condition that the water content was optimized in the range of 9-18% in the reaction mixture. With controlled ratio of [HAuCl4]/[EGn-SH] at 2, the synthesized particles have an average diameter of 3.5 nm and a surface plasma resonance band around 510 nm. Their surface structures were confirmed by 1H NMR spectra. These gold nanoparticles are bonded with a uniform monolayer with defined lengths of 0.8, 1.2, and 1.6 nm for Au-S-EG2, Au-S-EG3, and Au-S-EG4, respectively. They have great stabilities in aqueous solutions with a high concentration of electrolytes as well as in organic solvents. Thermogravimetric analysis revealed that the ethylene glycol monolayer coating is ca. 14% of the total nanoparticle weight. Biological binding tests by using ion-exchange chromatography and gel electrophoresis demonstrated that these Au-S-EGn (n = 2, 3, or 4) nanoparticles are free of any nonspecific bindings with various proteins, DNA, and RNA. These types of nanoparticles provide a fundamental starting material for designing hybrid materials composed of metallic nanoparticles and biomolecules.

  5. The nanocoherer: an electrically and mechanically resettable resistive switching device based on gold clusters assembled on paper

    Science.gov (United States)

    Minnai, Chloé; Mirigliano, Matteo; Brown, Simon A.; Milani, Paolo

    2018-03-01

    We report the realization of a resettable resistive switching device based on a nanostructured film fabricated by supersonic cluster beam deposition of gold clusters on plain paper substrates. Through the application of suitable voltage ramps, we obtain, in the same device, either a complex pattern of resistive switchings, or reproducible and stable switchings between low resistance and high resistance states, with an amplitude up to five orders of magnitude. Our device retains a state of internal resistance following the history of the applied voltage similar to that reported for memristors. The two different switching regimes in the same device are both stable, the transition between them is reversible, and it can be controlled by applying voltage ramps or by mechanical deformation of the substrate. The device behavior can be related to the formation, growth and breaking of junctions between the loosely aggregated gold clusters forming the nanostructured films. The fact that our cluster-assembled device is mechanically resettable suggests that it can be considered as the analog of the coherer: a switching device based on metallic powders used for the first radio communication system.

  6. Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Marsico, Alyssa L M; Creran, Brian; Duncan, Bradley; Elci, S Gokhan; Jiang, Ying; Onasch, Timothy B; Wormhoudt, Joda; Rotello, Vincent M; Vachet, Richard W

    2015-11-01

    Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.

  7. A comparison of three clustering methods for finding subgroups in MRI, SMS or clinical data: SPSS TwoStep Cluster analysis, Latent Gold and SNOB.

    Science.gov (United States)

    Kent, Peter; Jensen, Rikke K; Kongsted, Alice

    2014-10-02

    There are various methodological approaches to identifying clinically important subgroups and one method is to identify clusters of characteristics that differentiate people in cross-sectional and/or longitudinal data using Cluster Analysis (CA) or Latent Class Analysis (LCA). There is a scarcity of head-to-head comparisons that can inform the choice of which clustering method might be suitable for particular clinical datasets and research questions. Therefore, the aim of this study was to perform a head-to-head comparison of three commonly available methods (SPSS TwoStep CA, Latent Gold LCA and SNOB LCA). The performance of these three methods was compared: (i) quantitatively using the number of subgroups detected, the classification probability of individuals into subgroups, the reproducibility of results, and (ii) qualitatively using subjective judgments about each program's ease of use and interpretability of the presentation of results.We analysed five real datasets of varying complexity in a secondary analysis of data from other research projects. Three datasets contained only MRI findings (n = 2,060 to 20,810 vertebral disc levels), one dataset contained only pain intensity data collected for 52 weeks by text (SMS) messaging (n = 1,121 people), and the last dataset contained a range of clinical variables measured in low back pain patients (n = 543 people). Four artificial datasets (n = 1,000 each) containing subgroups of varying complexity were also analysed testing the ability of these clustering methods to detect subgroups and correctly classify individuals when subgroup membership was known. The results from the real clinical datasets indicated that the number of subgroups detected varied, the certainty of classifying individuals into those subgroups varied, the findings had perfect reproducibility, some programs were easier to use and the interpretability of the presentation of their findings also varied. The results from the artificial datasets

  8. Nanoparticle-Mediated Rescue of p53 Through Targeted Degradation of MDM2

    National Research Council Canada - National Science Library

    Fischer, Nicholas; Rotello, Vincent M

    2004-01-01

    .... By incorporating traditional peptide inhibitors of mdm2 with mixed monolayer protected gold cluster nanoparticles, we hope to effect mdm2 denaturation on the nanoparticle surface, increase peptide...

  9. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo; Coluccio, Maria Laura; Alabastri, Alessandro; Barberio, Marianna; Causa, Filippo; Netti, Paolo Antonio; Di Fabrizio, Enzo M.; Gentile, Francesco

    2016-01-01

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  10. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo

    2016-12-15

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  11. Monoatomic and cluster beam effect on ToF-SIMS spectra of self-assembled monolayers on gold

    Energy Technology Data Exchange (ETDEWEB)

    Tuccitto, N. [Dipartimento di Scienze Chimiche Universita degli Studi di Catania, v.le A. Doria 6, 95125, Catania (Italy)], E-mail: n.tuccitto@unict.it; Torrisi, V.; Delfanti, I.; Licciardello, A. [Dipartimento di Scienze Chimiche Universita degli Studi di Catania, v.le A. Doria 6, 95125, Catania (Italy)

    2008-12-15

    Self-assembled monolayers represent well-defined systems that is a good model surface to study the effect of primary ion beams used in secondary ion mass spectrometry. The effect of polyatomic primary beams on both aliphatic and aromatic self-assembled monolayers has been studied. In particular, we analysed the variation of the relative secondary ion yield of both substrate metal-cluster (Au{sub n}{sup -}) in comparison with the molecular ions (M{sup -}) and clusters (M{sub x}Au{sub y}{sup -}) by using Bi{sup +}, Bi{sub 3}{sup +}, Bi{sub 5}{sup +} beams. Moreover, the differences in the secondary ion generation efficiency are discussed. The main effect of the cluster beams is related to an increased formation of low-mass fragments and to the enhancement of the substrate related gold-clusters. The results show that, at variance of many other cases, the static SIMS of self-assembled monolayers does not benefit of the use of polyatomic primary ions.

  12. Macrocluster desorption effect caused by single MCI: charges of gold clusters (2-20 nm) desorbed due to electronic processes induced by fission fragment bombardment in nanodispersed gold targets

    International Nuclear Information System (INIS)

    Baranov, I.; Jarmiychuk, S.; Kirillov, S.; Novikov, A.; Obnorskii, V.; Pchelintsev, A.; Wien, K.; Reimann, C.

    1999-01-01

    In this work the charge state of the negatively charged gold nanocluster ions (2-20 nm) that were desorbed from nanodispersed gold islet targets by 252 Cf fission fragments via electronic processes is studied. Mean cluster charge was calculated as a ratio of mean cluster mass to mean mass-to-charge ratio . Cluster masses were measured by means of a collector technique employing transmission electron microscopy and scanning force microscopy, while m/q was measured by means of a tandem TOF-spectrometer. It is shown that the nanocluster ions are mostly multiply charged (2-16e) and the charge increases non-linearly with the cluster size. The results are discussed

  13. A density functional study of carbon monoxide adsorption on small cationic, neutral, and anionic gold clusters

    Science.gov (United States)

    Wu, X.; Senapati, L.; Nayak, S. K.; Selloni, A.; Hajaligol, M.

    2002-08-01

    CO adsorption on small cationic, neutral, and anionic Aun (n=1-6) clusters has been investigated using density functional theory in the generalized gradient approximation. Among various possible CO adsorption sites, the on-top (one-fold coordinated) is found to be the most favorable one, irrespective of the charge state of the cluster. In addition, planar structures are preferred by both the bare and the CO-adsorbed clusters. The adsorption energies of CO on the cationic clusters are generally greater than those on the neutral and anionic complexes, and decrease with size. The adsorption energies on the anions, instead, increase with cluster size and reach a local maximum at Au5CO-, in agreement with recent experiment. The differences in adsorption energies for the different charge states decrease with increasing cluster size.

  14. On the origin of bonding and vibrational frequency shifts for CO adsorbed on neutral, cationic and anionic gold clusters

    International Nuclear Information System (INIS)

    Bagus, P S; Pacchioni, G

    2008-01-01

    We report a detailed analysis of the electronic mechanisms which determine the bond strength and the vibrational frequency of CO molecules adsorbed on neutral or charged gold nanoparticles. To this end we have considered a simple cluster model, Au 5 CO q (q = +1, 0, -1), and decomposed the Au-CO interaction energy into the sum of various contributions according to a Constrained Space Orbital Variation approach. While the adsorption energy is relatively insensitive to the value of q, the C-O stretch frequency, ω e (CO), changes substantially, and allows the use of this molecule as a direct probe of the gold oxidation state. The results show that two major terms contribute to the red or blue shift of ω e (CO) as a function of q: the interaction with the electric field associated to the charged nanoparticle (Stark effect) and the Au → CO Φ back donation. The CO → Au σ donation is about half as important as the Φ back-donation and all other terms are much less important

  15. Systematic Study of Au6 to Au12 Gold Clusters on MgO(100) F Centers Using Density-Functional Theory

    DEFF Research Database (Denmark)

    Vilhelmsen, Lasse; Hammer, Bjørk

    2012-01-01

    We present an optimized genetic algorithm used in conjunction with density-functional theory in the search for stable gold clusters and O2 adsorption ensembles in F centers at MgO(100). For Au8 the method recovers known structures and identifies several more stable ones. When O2 adsorption...

  16. Bi-Directional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils.

    Science.gov (United States)

    Debord, J Daniel; Della-Negra, Serge; Fernandez-Lima, Francisco A; Verkhoturov, Stanislav V; Schweikert, Emile A

    2012-04-12

    Carbon cluster emission from thin carbon foils (5-40 nm) impacted by individual Au(n) (+q) cluster projectiles (95-125 qkeV, n/q = 3-200) reveals features regarding the energy deposition, projectile range, and projectile fate in matter as a function of the projectile characteristics. For the first time, the secondary ion emission from thin foils has been monitored simultaneously in both forward and backward emission directions. The projectile range and depth of emission were examined as a function of projectile size, energy, and target thickness. A key finding is that the massive cluster impact develops very differently from that of a small polyatomic projectile. The range of the 125 qkeV Au(100q) (+q) (q ≈ 4) projectile is estimated to be 20 nm (well beyond the range of an equal velocity Au(+)) and projectile disintegration occurs at the exit of even a 5 nm thick foil.

  17. Giant metal sputtering yields induced by 20-5000 keV/atom gold clusters

    International Nuclear Information System (INIS)

    Andersen, H.H.; Brunelle, A.; Della-Negra, S.; Depauw, J.; Jacquet, D.; Le Beyec, Y.

    1997-01-01

    Very large non-linear effects have been found in cluster-induced metal sputtering over a broad projectile energy interval for the first time. Recently available cluster beams from tandem accelerators have allowed sputtering yield measurements to be made with Au 1 to Au 5 from 20 keV/atom to 5 MeV/atom. The cluster-sputtering yield maxima were found at the same total energy but not at the same energy/atom as expected. For Au 5 a yield as high as 3000 was reached at 150 keV/atom while the Au 1 yield was only 55 at the same velocity. The Sigmund-Claussen thermal spike theory, which fits published data at low energy, cannot reproduce our extended new data set. (author)

  18. Bi-Directional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils

    OpenAIRE

    DeBord, J. Daniel; Della-Negra, Serge; Fernandez-Lima, Francisco A.; Verkhoturov, Stanislav V.; Schweikert, Emile A.

    2012-01-01

    Carbon cluster emission from thin carbon foils (5–40 nm) impacted by individual Aun+q cluster projectiles (95–125 qkeV, n/q = 3–200) reveals features regarding the energy deposition, projectile range, and projectile fate in matter as a function of the projectile characteristics. For the first time, the secondary ion emission from thin foils has been monitored simultaneously in both forward and backward emission directions. The projectile range and depth of emission were examined as a function...

  19. Geometric, stability, and electronic properties of gold-doped Pd clusters (Pd{sub n}Au, n = 3~20)

    Energy Technology Data Exchange (ETDEWEB)

    Huan, Hao; Chen, Yan; Wang, Tao; Ye, Xiang, E-mail: yexiang@shnu.edu.cn [Shanghai Normal University, Department of Physics (China); Gu, Xiao, E-mail: gx@cqu.edu.cn [Chongqing University, Department of Applied Physics (China)

    2016-11-15

    The structure, stability, and electronic properties of Pd{sub n}Au (n = 3~20) clusters are studied by density functional theory. The results show that the clusters studied here prefer three-dimensional structures even with very small atom number. It is found that the binding energies of Pd{sub n}Au clusters are higher than the corresponding pure Pd{sub n} clusters with the same atom number. Most Pd{sub n}Au clusters studied here are magnetic with magnetic moments ranging from 1.0 to 7.0 μ{sub B.} The dissociation energies of Pd atoms are lower than the doped gold atom, that is the doped Au atom will increase the mother clusters stability and activity.

  20. Reductive Deprotection of Monolayer Protected Nanoclusters: An Efficient Route to Supported Ultrasmall Au Nanocatalysts for Selective Oxidation

    Czech Academy of Sciences Publication Activity Database

    Das, S.; Goswami, A.; Hesari, M.; Al-Sharab, J. F.; Mikmeková, Eliška; Maran, F.; Asefa, T.

    2014-01-01

    Roč. 10, č. 8 (2014), s. 1473-1478 ISSN 1613-6810 R&D Projects: GA MŠk(CZ) LO1212 Keywords : gold nanoclusters * selective oxidation * heterogeneous nanocatalysis * styrene oxidation * borohydride reduction Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 8.368, year: 2014

  1. Assessment of interaction-strength interpolation formulas for gold and silver clusters

    Science.gov (United States)

    Giarrusso, Sara; Gori-Giorgi, Paola; Della Sala, Fabio; Fabiano, Eduardo

    2018-04-01

    The performance of functionals based on the idea of interpolating between the weak- and the strong-interaction limits the global adiabatic-connection integrand is carefully studied for the challenging case of noble-metal clusters. Different interpolation formulas are considered and various features of this approach are analyzed. It is found that these functionals, when used as a correlation correction to Hartree-Fock, are quite robust for the description of atomization energies, while performing less well for ionization potentials. Future directions that can be envisaged from this study and a previous one on main group chemistry are discussed.

  2. Gold atoms and clusters on MgO(100) films; an EPR and IRAS study

    Science.gov (United States)

    Yulikov, M.; Sterrer, M.; Risse, T.; Freund, H.-J.

    2009-06-01

    Single gold atoms deposited on single crystalline MgO(1 0 0) films grown on Mo(1 0 0) are characterized by electron paramagnetic resonance spectroscopy as well as IR spectroscopy using CO as probe molecules. In this article we describe the first angular dependent measurements to determine the principal hyperfine components of a secondary hyperfine interaction, namely, with 17O of the MgO. The values determined here are in perfect agreement with theoretical expectations and corroborate the previously reported binding mechanism of Au atoms on the oxygen anions of the MgO terrace. The temperature dependent EPR data reveal an onset of Au atom mobility at about 80 K while the formation of Au particles occurs only above 125 K. By an analysis of the EPR line width in combination with STM measurements it is possible to deduce an increase of the interatomic distance above 80 K. The Au/CO complexes show a somewhat smaller temperature stability as compared to the Au atoms. The observed thermal stability is in perfect agreement with theoretical predictions for CO desorption.

  3. Is the largest aqueous gold cluster a superatom complex? Electronic structure & optical response of the structurally determined Au146(p-MBA)57.

    Science.gov (United States)

    López-Lozano, Xóchitl; Plascencia-Villa, G; Calero, G; Whetten, R L; Weissker, Hans-Christian

    2017-12-07

    The new water-soluble gold cluster Au 146 (p-MBA) 57 , the structure of which has been recently determined at sub-atomic resolution by Vergara et al., is the largest aqueous gold cluster ever structurally determined and likewise the smallest cluster with a stacking fault. The core presents a twinned truncated octahedron, while additional peripheral gold atoms follow a C 2 rotational symmetry. According to the usual counting rules of the superatom complex (SAC) model, the compound attains a number of 92 SAC electrons if the overall net charge is 3- (three additional electrons). As this is the number of electrons required for a major shell closing, the question arises of whether Au 146 (p-MBA) 57 should be regarded as a superatom complex. Starting from the experimental coordinates we have analyzed the structure using density-functional theory. The optimized (relaxed) structure retains all the connectivity of the experimental coordinates, while removing much of its irregularities in interatomic distances, thereby enhancing the C 2 -symmetry feature. On analyzing the angular-momentum-projected states, we show that, despite a small gap, the electronic structure does not exhibit SAC model character. In addition, optical absorption spectra are found to be relatively smooth compared to the example of the Au 144 (SR) 60 cluster. The Au 146 (SR) 57 does not derive its stability from SAC character; it cannot be considered as a superatom complex.

  4. Gold chloride clusters with Au(III) and Au(I) probed by FT-ICR mass spectrometry and MP2 theory.

    Science.gov (United States)

    Lemke, Kono H

    2014-05-07

    Microsolvated clusters of gold chloride are probed by electrospray ionization mass spectrometry (ESI-MS) and scalar relativistic electronic structure calculations. Electrospray ionization of aqueous AuCl3 leads to mononuclear clusters of types [AuCl2](+)(H2O)n (n = 0-4), [AuOHCl](+)(H2O)n (n = 0-1) and [AuCl2](+)(HCl)2(H2O)n (n = 0-4). In addition, strong ion signals due to dinuclear [Au2Cl5-xOHx](+)(H2O)n (x = 0-1) are present in ESI mass spectra of aqueous AuCl3, with the abundance of individual dinuclear species controlled by the concentration-dependent variation of the precursor complexes [AuCl2-xOHx](+)(H2O)n and AuCl3. Equilibrium structures, energies and thermodynamic properties of mono- and dinuclear gold clusters have been predicted using MP2 and CCSD(T) theory, and these data have been applied to examine the influence of microsolvation on cluster stability. Specifically, results from CCSD(T) calculations indicate that non-covalently bound ion-neutral complexes Au(+)(Cl2)(H2O)n, with formal Au(I), are the dominant forms of mononuclear gold with n = 0-2, while higher hydrates (n > 2) are covalently bound [AuCl2](+)(H2O)n complexes in which gold exists as Au(III). MP2 calculations show that the lowest energy structure of dinuclear gold is an ion-molecule cluster [Au2Cl(Cl2)2](+) consisting of a single-bridged digold-chloronium ion bound end-on to two dichlorine ligands, with two higher energy isomers, single-bridged [Au2Cl3(Cl2)](+) and double-bridged [Au2Cl5](+) clusters. Finally, AuAu interactions in the singly-bridged clusters [Au2Cl(Cl2)2](+)(H2O)n and [Au2Cl3(Cl2)](+)(H2O)n are examined employing a wide range of computational tools, including natural bond order (NBO) analysis and localized orbital locator (LOL) profiles.

  5. Ferric hydroxide supported gold subnano clusters or quantum dots: enhanced catalytic performance in chemoselective hydrogenation.

    Science.gov (United States)

    Liu, Lequan; Qiao, Botao; Ma, Yubo; Zhang, Juan; Deng, Youquan

    2008-05-21

    An attempt to prepare ferric hydroxide supported Au subnano clusters via modified co-precipitation without any calcination was made. High resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) have been employed to study the structure and chemical states of these catalysts. No Au species could be observed in the HRTEM image nor from the XRD pattern, suggesting that the sizes of the Au species in and on the ferric hydroxide support were less than or around 1 nm. Chemoselective hydrogenation of aromatic nitro compounds and alpha,beta-unsaturated aldehydes was selected as a probe reaction to examine the catalytic properties of this catalyst. Under the same reaction conditions, such as 100 degrees C and 1 MPa H2 in the hydrogenation of aromatic nitro compounds, a 96-99% conversion (except for 4-nitrobenzonitrile) with 99% selectivity was obtained over the ferric hydroxide supported Au catalyst, and the TOF values were 2-6 times higher than that of the corresponding ferric oxide supported catalyst with 3-5 nm size Au particles. For further evaluation of this Au catalyst in the hydrogenation of citral and cinnamaldehyde, selectivity towards unsaturated alcohols was 2-20 times higher than that of the corresponding ferric oxide Au catalyst.

  6. Enhanced Emission from Single Isolated Gold Quantum Dots Investigated Using Two-Photon-Excited Fluorescence Near-Field Scanning Optical Microscopy.

    Science.gov (United States)

    Abeyasinghe, Neranga; Kumar, Santosh; Sun, Kai; Mansfield, John F; Jin, Rongchao; Goodson, Theodore

    2016-12-21

    New approaches in molecular nanoscopy are greatly desired for interrogation of biological, organic, and inorganic objects with sizes below the diffraction limit. Our current work investigates emergent monolayer-protected gold quantum dots (nanoclusters, NCs) composed of 25 Au atoms by utilizing two-photon-excited fluorescence (TPEF) near-field scanning optical microscopy (NSOM) at single NC concentrations. Here, we demonstrate an approach to synthesize and isolate single NCs on solid glass substrates. Subsequent investigation of the NCs using TPEF NSOM reveals that, even when they are separated by distances of several tens of nanometers, we can excite and interrogate single NCs individually. Interestingly, we observe an enhanced two-photon absorption (TPA) cross section for single Au 25 NCs that can be attributed to few-atom local field effects and to local field-induced microscopic cascading, indicating their potential for use in ultrasensitive sensing, disease diagnostics, cancer cell therapy, and molecular computers. Finally, we report room-temperature aperture-based TPEF NSOM imaging of these NCs for the first time at 30 nm point resolution, which is a ∼5-fold improvement compared to the previous best result for the same technique. This report unveils the unique combination of an unusually large TPA cross section and the high photostability of Au NCs to (non-destructively) investigate stable isolated single NCs using TPEF NSOM. This is the first reported optical study of monolayer-protected single quantum clusters, opening some very promising opportunities in spectroscopy of nanosized objects, bioimaging, ultrasensitive sensing, molecular computers, and high-density data storage.

  7. Reactions of mixed silver-gold cluster cations AgmAun+ (m+n=4,5,6) with CO: Radiative association kinetics and density functional theory computations

    International Nuclear Information System (INIS)

    Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M.

    2006-01-01

    Near thermal energy reactive collisions of small mixed metal cluster cations Ag m Au n + (m+n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu 3 + and Ag 2 Au 2 + are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu 2 CO + . In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77 to 1.09 eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a ''head-on'' fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag 2 Au 2 + suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed

  8. Reactions of mixed silver-gold cluster cations AgmAun+ (m+n=4,5,6) with CO: Radiative association kinetics and density functional theory computations

    Science.gov (United States)

    Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M.

    2006-09-01

    Near thermal energy reactive collisions of small mixed metal cluster cations AgmAun+ (m +n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu3+ and Ag2Au2+ are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu2CO+. In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77to1.09eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a "head-on" fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag2Au2+ suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed.

  9. Theoretical study of oxygen adsorption on pure Au-n+1(+) and doped MAun+ cationic gold clusters for M = Ti, Fe and n=3-7

    DEFF Research Database (Denmark)

    Torres, M. Begona; Fernandez Sanchez, Eva; Balbas, Luis C.

    2008-01-01

    A comparative study of the adsorption of an O-2 molecule on pure Au-n+1(+) and doped MAun+ cationic gold clusters for n = 3-7 and M = Ti, Fe is presented. The simultaneous adsorption of two oxygen atoms also was studied. This work was performed by means of first principles calculations based...... with adsorption energies of 0.56 and 0.69 eV, respectively. The ground-state geometry of Au-n(+) is almost unperturbed after O-2 adsorption. The electronic charge flows towards O-2 when the molecule is adsorbed in bridge positions and towards the gold cluster when O-2 is adsorbed on top of An atoms, and both...... with size n are rationalized in terms of O-O and O-M bond distances, as well as charge transfer between oxygen and cluster substrates. The spin multiplicity of those (MAunO2+)(ad) complexes with the highest O-2 adsorption energy is a maximum (minimum) for M = Fe (Ti), corresponding to parallel (anti...

  10. Probing the structural and electronic properties of cationic rubidium-gold clusters: [AunRb]+ (n = 1-10)

    Science.gov (United States)

    Zhao, Ya-Ru; Zhang, Hai-Rong; Qian, Yu; Duan, Xu-Chao; Hu, Yan-Fei

    2016-03-01

    Density functional theory has been applied to study the geometric structures, relative stabilities, and electronic properties of cationic [AunRb]+ and Aun + 1+ (n = 1-10) clusters. For the lowest energy structures of [AunRb]+ clusters, the planar to three-dimensional transformation is found to occur at cluster size n = 4 and the Rb atoms prefer being located at the most highly coordinated position. The trends of the averaged atomic binding energies, fragmentation energies, second-order difference of energies, and energy gaps show pronounced even-odd alternations. It indicated that the clusters containing odd number of atoms maintain greater stability than the clusters in the vicinity. In particular, the [Au6Rb]+ clusters are the most stable isomer for [AunRb]+ clusters in the region of n = 1-10. The charges in [AunRb]+ clusters transfer from the Rb atoms to Aun host. Density of states revealed that the Au-5d, Au-5p, and Rb-4p orbitals hardly participated in bonding. In addition, it is found that the most favourable channel of the [AunRb]+ clusters is Rb+ cation ejection. The electronic localisation function (ELF) analysis of the [AunRb]+ clusters shown that strong interactions are not revealed in this study.

  11. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging

    KAUST Repository

    Croissant, Jonas G.; Zhang, Dingyuan; Alsaiari, Shahad K.; Lu, Jie; Deng, Lin; Tamanoi, Fuyuhiko; Zink, Jeffrey I.; Khashab, Niveen M.

    2016-01-01

    Functional nanocarriers capable of transporting high drug contents without premature leakage and to controllably deliver several drugs are needed for better cancer treatments. To address this clinical need, gold cluster bovine serum albumin (AuNC@BSA) nanogates were engineered on mesoporous silica nanoparticles (MSN) for high drug loadings and co-delivery of two different anticancer drugs. The first drug, gemcitabine (GEM, 40 wt%), was loaded in positively-charged ammonium-functionalized MSN (MSN-NH3+). The second drug, doxorubicin (DOX, 32 wt%), was bound with negatively-charged AuNC@BSA electrostatically-attached onto MSN-NH3+, affording highly loaded pH-responsive MSN-AuNC@BSA nanocarriers. The co-delivery of DOX and GEM was achieved for the first time via an inorganic nanocarrier, possessing a zero-premature leakage behavior as well as drug loading capacities seven times higher than polymersome NPs. Besides, unlike the majority of strategies used to cap the pores of MSN, AuNC@BSA nanogates are biotools and were applied for targeted red nuclear staining and in-vivo tumor imaging. The straightforward non-covalent combination of MSN and gold-protein cluster bioconjugates thus leads to a simple, yet multifunctional nanotheranostic for the next generation of cancer treatments.

  12. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging

    KAUST Repository

    Croissant, Jonas G.

    2016-03-23

    Functional nanocarriers capable of transporting high drug contents without premature leakage and to controllably deliver several drugs are needed for better cancer treatments. To address this clinical need, gold cluster bovine serum albumin (AuNC@BSA) nanogates were engineered on mesoporous silica nanoparticles (MSN) for high drug loadings and co-delivery of two different anticancer drugs. The first drug, gemcitabine (GEM, 40 wt%), was loaded in positively-charged ammonium-functionalized MSN (MSN-NH3+). The second drug, doxorubicin (DOX, 32 wt%), was bound with negatively-charged AuNC@BSA electrostatically-attached onto MSN-NH3+, affording highly loaded pH-responsive MSN-AuNC@BSA nanocarriers. The co-delivery of DOX and GEM was achieved for the first time via an inorganic nanocarrier, possessing a zero-premature leakage behavior as well as drug loading capacities seven times higher than polymersome NPs. Besides, unlike the majority of strategies used to cap the pores of MSN, AuNC@BSA nanogates are biotools and were applied for targeted red nuclear staining and in-vivo tumor imaging. The straightforward non-covalent combination of MSN and gold-protein cluster bioconjugates thus leads to a simple, yet multifunctional nanotheranostic for the next generation of cancer treatments.

  13. Au70S20(PPh3)12: an intermediate sized metalloid gold cluster stabilized by the Au4S4 ring motif and Au-PPh3 groups.

    Science.gov (United States)

    Kenzler, Sebastian; Schrenk, Claudio; Frojd, Andrew R; Häkkinen, Hannu; Clayborne, Andre Z; Schnepf, Andreas

    2018-01-02

    Reducing (Ph 3 P)AuSC(SiMe 3 ) 3 with l-Selectride® gives the medium-sized metalloid gold cluster Au 70 S 20 (PPh 3 ) 12 . Computational studies show that the phosphine bound Au-atoms not only stabilize the electronic structure of Au 70 S 20 (PPh 3 ) 12 , but also behave as electron acceptors leading to auride-like gold atoms on the exterior.

  14. Flow cytometry with gold nanoparticlesand their clusters as scattering contrast agents: FDTD simulation of light-cell interaction

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Sun, Wenbo; Pond, James

    2009-01-01

    refractive index matching conditions and by cells labeled by gold nanoparticles. The optical schematics including phase contrast (OPCM) microscopy as a prospective modality for in vivo flow cytometry is also analyzed. The validation of the FDTD approach for the simulation of flow cytometry may open a new...

  15. clusters

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...

  16. clusters

    Indian Academy of Sciences (India)

    environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.

  17. Combined Experimental and Theoretical DFT Study of Molecular Nanowires Negative Differential Resistance and Interaction With Gold Clusters

    Czech Academy of Sciences Publication Activity Database

    Záliš, Stanislav; Kratochvílová, Irena; Zambova, A.; Mbindyo, J.; Mallouk, T. E.; Mayer, T. S.

    2005-01-01

    Roč. 18, č. 2 (2005), s. 201-206 ISSN 1292-8941 R&D Projects: GA AV ČR 1ET400400413; GA AV ČR IAA400400501 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : molecule/gold transport interfaces * single molecules * metal nanowires * junctions Subject RIV: CG - Electrochemistry Impact factor: 2.503, year: 2005

  18. Evaluation of secondary ion yield enhancement from polymer material by using TOF-SIMS equipped with a gold cluster ion source

    Energy Technology Data Exchange (ETDEWEB)

    Aimoto, K. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)]. E-mail: dm053502@cc.seikei.ac.jp; Aoyagi, S. [Department of Regional Development, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504 (Japan); Kato, N. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan); Iida, N. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Yamamoto, A. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Kudo, M. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)

    2006-07-30

    We investigated the enhancement of the secondary ion intensity in the TOF-SIMS spectra obtained by Au{sup +} and Au{sub 3} {sup +} bombardment in comparison with Ga{sup +} excitation using polymer samples with different molecular weight distributions. Since the polymer samples used in this experiment have a wide molecular weight distribution, the advantages of the gold cluster primary ion source over monoatomic ion could accurately be evaluated. It was observed that the degree of fragmentation decreased by the usage of cluster primary ion beam compared with monoatomic ion beam, which was observed as a shift of the intensity distribution in the spectra. It was also found out that the mass effect of Au{sup +} and Ga{sup +} as monoatomic primary ion, resulted in about 10-60 times of enhancement for both samples with different molecular distributions. On the other hand, the Au{sub 3} {sup +} bombardment caused intensity enhancement about 100-2600 compared with Ga{sup +} bombardment, depending on the mass range of the detected secondary ion species. The cluster primary ion effect of Au{sub 3} {sup +}, compared with Au{sup +}, therefore, was estimated to be about 10-45.

  19. Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles.

    Science.gov (United States)

    Devi, J Meena

    2017-06-01

    The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Synthesis of highly fluorescent and thio-linkers stabilize gold quantum dots and nano clusters in DMF for bio-labeling

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Shiva K., E-mail: srastogi@uidaho.edu [University of Idaho, Department of Chemistry (United States); Denn, Benjamin D.; Branen, A. Larry [University of Idaho, Coeur D' Alene, Biosensors and Nanotechnology Application Laboratory (BNAL) (United States)

    2012-01-15

    This study demonstrates a one versus two-step synthesis of fluorescent gold quantum dots (F-AuQDs) and nano clusters (F-AuNCs) functionalized with thiolated organic linkers using reduction of gold precursor in N,N Prime -dimethylformamide in 1 h of reaction. The F-AuQDs and F-AuNCs show fluorescence emission at 425 {+-} 5 nm upon excitation at 345 {+-} 5 nm of wavelength, with good water solubility and stability. Five different thiolated organic binary linkers consisting of various functional groups including: carboxylic acid, hydroxyl, and aromatic amine, were conjugated with the F-AuQDs and F-AuNCs. The formation mechanism and functionalization of the F-AuQDs and F-AuNCs was characterized using UV-vis absorption spectra, UV-vis light, fluorescent emission spectra, pH, TEM, and FTIR. The fluorescence emission of the F-AuQDs and F-AuNCs is greatly dependent on the thio-linker. This novel one-step approach provides facile and fast synthesis of F-AuQDs and F-AuNCs over the two-step method, with less than 5 h of reaction and workup compared to more than 28 h of reaction for the two-step approach. These thio-linker functionalized F-AuQDs and F-AuNCs have a wide application in fluorescent labeling of biomolecules, optical devices, imaging, energy transfer, and biosensing.

  1. A phosphorescent silver(I)-gold (I) cluster complex that specifically lights up the nucleolus of living cells with FLIM imaging.

    Science.gov (United States)

    Chen, Min; Lei, Zhen; Feng, Wei; Li, Chunyan; Wang, Quan-Ming; Li, Fuyou

    2013-06-01

    The phosphorescent silver(I)-gold(I) cluster complex [CAu6Ag2(dppy)6](BF4)4 (N1) selectively stains the nucleolus, with a much lower uptake in the nucleus and cytoplasm, and exhibits excellent photostability. This Ag-Au cluster, which has a photoluminescent lifetime of microseconds, is particularly attractive as a probe in applications of time-gated microscopy. Investigation of the pathway of cellular entry indicated that N1 permeates the outer membrane and nuclear membrane of living cells through an energy-dependent and non-endocytic route within 10 min. High concentrations of N1 in the nucleolus have been quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and transmission electron microscopy coupled with an energy dispersive X-ray analysis (TEM-EDXA), which also helped to elucidate the mechanism of the specific staining. Intracellular selective staining may be correlated with the microenvironment of the nucleolus, which is consistent with experiments conducted at different phases of the cell cycle. These results prove that N1 is a very attractive phosphorescent staining reagent for visualizing the nucleolus of living cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Flow cytometry with gold nanoparticles and their clusters as scattering contrast agents: FDTD simulation of light-cell interaction.

    Science.gov (United States)

    Tanev, Stoyan; Sun, Wenbo; Pond, James; Tuchin, Valery V; Zharov, Vladimir P

    2009-09-01

    The formulation of the finite-difference time-domain (FDTD) approach is presented in the framework of its potential applications to in-vivo flow cytometry based on light scattering. The consideration is focused on comparison of light scattering by a single biological cell alone in controlled refractive-index matching conditions and by cells labeled by gold nanoparticles. The optical schematics including phase contrast (OPCM) microscopy as a prospective modality for in-vivo flow cytometry is also analyzed. The validation of the FDTD approach for the simulation of flow cytometry may open up a new avenue in the development of advanced cytometric techniques based on scattering effects from nanoscale targets. 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  3. A novel colorimetric assay for rapid detection of cysteine and Hg²⁺ based on gold clusters.

    Science.gov (United States)

    Wang, Yi-Wei; Tang, Shurong; Yang, Huang-Hao; Song, Hongbo

    2016-01-01

    Inhibition and recovery of the catalytic activity of bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) is observed for the first time by introduction of cysteine and Hg(2+). The prepared BSA-AuNCs possess highly intrinsic peroxidase-like activity. It can catalyze the oxidation of 3, 3, 5, 5-tetramethylbenzidine by H2O2 to produce a blue colored product. Based on this phenomenon, a new colorimetric assay for rapid, selective and sensitive detection of cysteine and Hg(2+) in aqueous solution has been demonstrated. The interaction process between target molecule and BSA-AuNCs is very fast, so that the whole test can be completed within ten minutes. Moreover, the fabricated colorimetric sensor is simple and cost-effective, without the need of nucleic acid based recognition element and complicated washing, separation and labeling process, thus holds great promise for routine analysis of cysteine and Hg(2+) in real samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Interaction of proteins with ionic liquid, alcohol and DMSO and in situ generation of gold nano-clusters in a cell.

    Science.gov (United States)

    Nandi, Somen; Parui, Sridip; Halder, Ritaban; Jana, Biman; Bhattacharyya, Kankan

    2018-06-01

    In this review, we give a brief overview on how the interaction of proteins with ionic liquids, alcohols and dimethyl sulfoxide (DMSO) influences the stability, conformational dynamics and function of proteins/enzymes. We present experimental results obtained from fluorescence correlation spectroscopy on the effect of ionic liquid or alcohol or DMSO on the size (more precisely, the diffusion constant) and conformational dynamics of lysozyme, cytochrome c and human serum albumin in aqueous solution. The interaction of ionic liquid with biomolecules (e.g. protein, DNA etc.) has emerged as a current frontier. We demonstrate that ionic liquids are excellent stabilizers of protein and DNA and, in some cases, cause refolding of a protein already denatured by chemical denaturing agents. We show that in ethanol-water binary mixture, proteins undergo non-monotonic changes in size and dynamics with increasing ethanol content. We also discuss the effect of water-DMSO mixture on the stability of proteins. We demonstrate how large-scale molecular dynamics simulations have revealed the molecular origin of this observed phenomenon and provide a microscopic picture of the immediate environment of the biomolecules. Finally, we describe how favorable interactions of ionic liquids may be utilized for in situ generation of fluorescent gold nano-clusters for imaging a live cell.

  5. Study on dependence of dose enhancement on cluster morphology of gold nanoparticles in radiation therapy using a body-centred cubic model

    Science.gov (United States)

    Ahn, Sang Hee; Chung, Kwangzoo; Shin, Jung Wook; Cheon, Wonjoong; Han, Youngyih; Park, Hee Chul; Choi, Doo Ho

    2017-10-01

    Gold nanoparticles (GNPs) injected in a body for dose enhancement in radiation therapy are known to form clusters. We investigated the dependence of dose enhancement on the GNP morphology using Monte-Carlo simulations and compared the model predictions with experimental data. The cluster morphology was approximated as a body-centred cubic (BCC) structure by placing GNPs at the 8 corners and the centre of a cube with an edge length of 0.22-1.03 µm in a 4  ×  4  ×  4 µm3 water-filled phantom. We computed the dose enhancement ratio (DER) for 50 and 260 kVp photons as a function of the distance from the cube centre for 12 different cube sizes. A 10 nm-wide concentric shell shaped detector was placed up to 100 nm away from a GNP at the cube centre. For model validation, simulations based on BCC and nanoparticle random distribution (NRD) models were performed using parameters that corresponded to the experimental conditions, which measured increases in the relative biological effect due to GNPs. We employed the linear quadratic model to compute cell surviving fraction (SF) and sensitizer enhancement ratio (SER). The DER is inversely proportional to the distance to the GNPs. The largest DERs were 1.97 and 1.80 for 50 kVp and 260 kVp photons, respectively. The SF predicted by the BCC model agreed with the experimental value within 10%, up to a 5 Gy dose, while the NRD model showed a deviation larger than 10%. The SERs were 1.21  ±  0.13, 1.16  ±  0.11, and 1.08  ±  0.11 according to the experiment, BCC, and NRD models, respectively. We most accurately predicted the GNP radiosensitization effect using the BCC approximation and suggest that the BCC model is effective for use in nanoparticle dosimetry.

  6. SU-F-T-661: Dependence of Gold Nano Particles Cluster Morphology On Dose Enhancement of Photon Radiation Therapy Apply for Radiation Biology Effect

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University (Korea, Republic of); Chung, K; Han, Y; Park, H [Samsung Medical Center, Sungkyunkwan University School of Medicine radiation oncology (Korea, Republic of)

    2016-06-15

    Purpose: Injected gold nano particles (GNPs) to a body for dose enhancement are known to form in the tumorcell cluster morphology. We investigated the dependence of dose enhancement on the morphology characteristic with an approximated morphology model by using Monte Carlo simulations. Methods: For MC simulation, TOPAS version 2.0P-03 was used. GNP cluster morphology was approximated as a body center cubic(BCC) model by placing 8 GNPs at the corner and one at the center of cube with length from 2.59 µm to 0.25 µm located in a 4 µm length water filled cube phantom. 4 µm length square shaped beams of poly-energetic 50, 260 kVp photons were irradiated to the water filled cube phantom with 100 nm diameter GNPs in it. Dose enhancement ratio(DER) was computed as a function of distance from the surface of the GNP at the cube center for 18 cubes geometries. For scoring particles, 10 nm width of concentric shell shaped detector was constructed up to 100 nm from the center. Total dose in a sphere of 100 nm radius of detector were normalized to 2.59 µm length cube morphology. To verified biological effect of BCC model applied to cell survival curve fitting. Results: DER increase as the distance of the GNPs reduces. DER was largest for 0.25 µm length cube. Dependence of GNP distance DER increment was 1.73, 1.60 for 50 kVp, 260 kVp photons, respectively. Also, Using BCC model applied to cell survival curve was well prediction. Conclusion: DER with GNPs was larger when they are closely packed in the phantom. Therefore, better therapeutic effects can be expected with close-packed GNPs. This research was supported by the NRF funded by the Ministry of Science, ICT & Future Planning (2012M3A9B6055201 and 2012R1A1A2042414), Samsung Medical Center grant[GFO1130081].

  7. Structure and bonding in gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.

    1988-01-01

    Recent developments in chemical applications of 197 Au Moessbauer spectroscopy are reviewed. For gold(I) and gold(III), systematic variations in isomer shift and quadrupole splitting are seen as the ligands are changed; the effects of change in coordination number of the gold atoms are also systematic. Data for gold(II) systems involving gold-gold bonds lie between those for corresponding gold(I) and gold(III) materials, showing a small increase in isomer shift and a larger increase in quadrupole splitting as the oxidation state decreases; these trends are explained in terms of the structures. Data for mixed-metal cluster compounds are much more sensitive to structural effects than in homonuclear clusters. Both sets of data show systematic changes with increase in the number of metal atoms to which the gold atom is bound. The connectivity also influences the recoil-free fraction. (orig.)

  8. Polymorphism of Ag29(BDT)12(TPP)43- cluster: interactions of secondary ligands and their effect on solid state luminescence.

    Science.gov (United States)

    Nag, Abhijit; Chakraborty, Papri; Bodiuzzaman, Mohammad; Ahuja, Tripti; Antharjanam, Sudhadevi; Pradeep, Thalappil

    2018-05-31

    We present the first example of polymorphism (cubic & trigonal) in single crystals of an atomically precise monolayer protected cluster, Ag29(BDT)12(TPP)43-. We demonstrate that C-Hπ interactions of the secondary ligands (TPP) are dominant in a cubic lattice compared to a trigonal lattice, resulting in a greater rigidity of the structure, which in turn, results in a higher luminescence efficiency in it.

  9. Size selected metal clusters

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. The Optical Absorption Spectra of Small Silver Clusters (5-11) ... Soft Landing and Fragmentation of Small Clusters Deposited in Noble-Gas Films. Harbich, W.; Fedrigo, S.; Buttet, J. Phys. Rev. B 1998, 58, 7428. CO combustion on supported gold clusters. Arenz M ...

  10. Cluster-cluster clustering

    International Nuclear Information System (INIS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  11. Cluster dynamics at different cluster size and incident laser wavelengths

    International Nuclear Information System (INIS)

    Desai, Tara; Bernardinello, Andrea

    2002-01-01

    X-ray emission spectra from aluminum clusters of diameter -0.4 μm and gold clusters of dia. ∼1.25 μm are experimentally studied by irradiating the cluster foil targets with 1.06 μm laser, 10 ns (FWHM) at an intensity ∼10 12 W/cm 2 . Aluminum clusters show a different spectra compared to bulk material whereas gold cluster evolve towards bulk gold. Experimental data are analyzed on the basis of cluster dimension, laser wavelength and pulse duration. PIC simulations are performed to study the behavior of clusters at higher intensity I≥10 17 W/cm 2 for different size of the clusters irradiated at different laser wavelengths. Results indicate the dependence of cluster dynamics on cluster size and incident laser wavelength

  12. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly( -caprolactone)-b-poly(acrylic acid)

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Hvilsted, Søren

    2008-01-01

    Amphiphilic poly(c-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) bearing thiol functionality at the PCL terminal has been synthesized by a combination of ring-opening polymerization (ROP) of c-caprolactone (c-CL), esterification of hydroxy chain end with protected mercaptoacetic acid, subsequ....... As a result stable, aggregation-free nanopaticles with moderate dispersity as estimated from UV-visible spectroscopy and transmission electron microscopy (TEM) data were obtained....... chromatography (SEC), nuclear magnetic resonance eR NMR) and infrared (FT IR) spectroscopy. The capacity of the resulting block copolymer in preparation of monolayer-protected gold nanoparticles has been examined by reduction of a gold salt in the presence of this macroligand under thiol-deficient conditions...

  13. Gold prices

    OpenAIRE

    Joseph G. Haubrich

    1998-01-01

    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  14. Subnanometer Gold Clusters on Amino-Functionalized Silica: An Efficient Catalyst for the Synthesis of 1,3-Diynes by Oxidative Alkyne Coupling

    Czech Academy of Sciences Publication Activity Database

    Vilhanová, B.; Václavík, Jiří; Artiglia, L.; Ranocchiari, M.; Togni, A.; van Bokhoven, J. A.

    2017-01-01

    Roč. 7, č. 5 (2017), s. 3414-3418 ISSN 2155-5435 Institutional support: RVO:61388963 Keywords : alkyne coupling * gold * heterogeneous catalysis * hypervalent iodine * subnanometer Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 10.614, year: 2016

  15. Vacancy clusters at nanoparticle surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Moxom, J.; Somieski, B.; White, C.W. [Oak Ridge National Lab., TN (United States); Mills, A.P. Jr. [Bell Labs., Lucent Technologies, Murray Hill, NJ (United States); Suzuki, R.; Ishibashi, S. [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Ueda, A.; Henderson, D. [Physics Dept., Fisk Univ., Nashville, TN (United States)

    2001-07-01

    We detect vacancy clusters at Au nanoparticle surfaces using a combination of positron lifetime spectroscopy, 1- detector, and 2-detector measurements of Doppler broadening of annihilation radiation. Gold nanoparticles are formed by MeV implantation of gold ions into MgO (100) followed by annealing. Clusters of two Mg and two O vacancies (v{sub 4}) are attached to the gold nanoparticle surfaces within the projected range (R{sub p}). (orig.)

  16. Vacancy clusters at nanoparticle surfaces

    International Nuclear Information System (INIS)

    Xu, J.; Moxom, J.; Somieski, B.; White, C.W.; Mills, A.P. Jr.; Suzuki, R.; Ishibashi, S.; Ueda, A.; Henderson, D.

    2001-01-01

    We detect vacancy clusters at Au nanoparticle surfaces using a combination of positron lifetime spectroscopy, 1- detector, and 2-detector measurements of Doppler broadening of annihilation radiation. Gold nanoparticles are formed by MeV implantation of gold ions into MgO (100) followed by annealing. Clusters of two Mg and two O vacancies (v 4 ) are attached to the gold nanoparticle surfaces within the projected range (R p ). (orig.)

  17. Implications of Pearl, Gold, Silver (PGS) craft industrial cluster towards settlements region in Karang Pule Village, Sekarbela District Of Mataram City

    Science.gov (United States)

    Sushanti, I. R.; Fitri, I. S.

    2017-06-01

    The existence of industry clusters in Mataram City gave effect to the surrounding residential areas [1]. In accordance Spatial Plan of Mataram City in 2011-2031 PGS industry cluster in the village of Karang Pule, Sekarbela district established as shopping tourism area. Distribution of industrial locations were in four of seven environments in Karang Pule. Distribution of PGS industry is divided into three (3) groups: craftsmen, craftsmen who is also a seller, and the seller (merchant). The location of the craftsmen, craftsmen who are also businessmen and entrepreneurs are also used as a dwelling house or workshop and store. So most of the people living in settlements around clusters of industry that there is a link between industry cluster and settlements. This study aims to determine the implications or the impact of the presence of PGS industry clusters the surrounding residential areas. The method used in this research is descriptive qualitative with the collection of primary data through direct observation and questionnaires. Based on direct observation on the shopping tourism area there are inequality between the conditions of industry clusters and settlements area by the presence of slums. The results showed that the PGS industry cluster impact on social, economic and environment near settlements area. Impacts that occur are: 1) the social aspect, there is a significant change in the level of education, social welfare and social disparities but less significant to the formation of institutions, particularly in community participation, 2) the economic aspect of the change status of community work, and increased revenue and 3) the environmental aspects of the change to the condition of the building, the quality of public housing, the presence of slums, changes in infrastructure and the environmental pollution.

  18. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    Science.gov (United States)

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gold Returns

    OpenAIRE

    Robert J. Barro; Sanjay P. Misra

    2013-01-01

    From 1836 to 2011, the average real rate of price change for gold in the United States is 1.1% per year and the standard deviation is 13.1%, implying a one-standard-deviation confidence band for the mean of (0.1%, 2.1%). The covariances of gold's real rate of price change with consumption and GDP growth rates are small and statistically insignificantly different from zero. These negligible covariances suggest that gold's expected real rate of return--which includes an unobserved dividend yiel...

  20. Nonlinear optical studies of single gold nanoparticles

    NARCIS (Netherlands)

    Dijk, Meindert Alexander van

    2007-01-01

    Gold nanoparticles are spherical clusters of gold atoms, with diameters typically between 1 and 100 nanometers. The applications of these particles are rather diverse, from optical labels for biological experiments to data carrier for optical data storage. The goal of my project was to develop new

  1. Studying the varied shapes of gold clusters by an elegant optimization algorithm that hybridizes the density functional tight-binding theory and the density functional theory

    Science.gov (United States)

    Yen, Tsung-Wen; Lim, Thong-Leng; Yoon, Tiem-Leong; Lai, S. K.

    2017-11-01

    We combined a new parametrized density functional tight-binding (DFTB) theory (Fihey et al. 2015) with an unbiased modified basin hopping (MBH) optimization algorithm (Yen and Lai 2015) and applied it to calculate the lowest energy structures of Au clusters. From the calculated topologies and their conformational changes, we find that this DFTB/MBH method is a necessary procedure for a systematic study of the structural development of Au clusters but is somewhat insufficient for a quantitative study. As a result, we propose an extended hybridized algorithm. This improved algorithm proceeds in two steps. In the first step, the DFTB theory is employed to calculate the total energy of the cluster and this step (through running DFTB/MBH optimization for given Monte-Carlo steps) is meant to efficiently bring the Au cluster near to the region of the lowest energy minimum since the cluster as a whole has explicitly considered the interactions of valence electrons with ions, albeit semi-quantitatively. Then, in the second succeeding step, the energy-minimum searching process will continue with a skilledly replacement of the energy function calculated by the DFTB theory in the first step by one calculated in the full density functional theory (DFT). In these subsequent calculations, we couple the DFT energy also with the MBH strategy and proceed with the DFT/MBH optimization until the lowest energy value is found. We checked that this extended hybridized algorithm successfully predicts the twisted pyramidal structure for the Au40 cluster and correctly confirms also the linear shape of C8 which our previous DFTB/MBH method failed to do so. Perhaps more remarkable is the topological growth of Aun: it changes from a planar (n =3-11) → an oblate-like cage (n =12-15) → a hollow-shape cage (n =16-18) and finally a pyramidal-like cage (n =19, 20). These varied forms of the cluster's shapes are consistent with those reported in the literature.

  2. Gold monetization and gold discipline

    OpenAIRE

    Robert P. Flood; Peter M. Garber

    1981-01-01

    The paper is a study of the price level and relative price effects of a policy to monetize gold and fix its price at a given future time and at the then prevailing nominal price. Price movements are analyzed both during the transition to the gold standard and during the post-monetization period. The paper also explores the adjustments to fiat money which are necessary to ensure that this type of gold monetization is non-inflationary. Finally, some conditions which produce a run on the governm...

  3. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...

  4. Enhanced thermal lens effect in gold nanoparticle-doped Lyotropic liquid crystal by nanoparticle clustering probed by Z-scan technique

    International Nuclear Information System (INIS)

    Gomez, S.L.; Lenart, V.M.

    2015-01-01

    This work presents an experimental study of the thermal lens effect in Au nanoparticles-doped lyotropic liquid crystals under cw 532 nm optical excitation. Spherical Au nanoparticles of about 12 nm were prepared by Turkevich’s method, and the lyotropic liquid crystal was a ternary mixture of SDS, 1-DeOH, and water that exhibits an isotropic phase at room temperature. The lyotropic matrix induces aggregation of the nanoparticles, leading to a broad and a red-shifted surface plasmon resonance. The thermal nonlinear optical refraction coefficient n 2 increases as a power of number density of nanoparticles, being possible to address this behavior to nanoparticle clustering. (author)

  5. Enhanced thermal lens effect in gold nanoparticle-doped Lyotropic liquid crystal by nanoparticle clustering probed by Z-scan technique

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, S.L.; Lenart, V.M., E-mail: sgomez@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Dept. de Fisica; Turchiello, R.T. [Universidade Federal Tecnologica do Parana (UFTPR), Ponta Grossa, PR (Brazil). Dept. de Fisica; Goya, G.F. [Department of Condensed Matter Physics, Aragon Institute of Nanoscience, Zaragoza (Spain)

    2015-10-01

    This work presents an experimental study of the thermal lens effect in Au nanoparticles-doped lyotropic liquid crystals under cw 532 nm optical excitation. Spherical Au nanoparticles of about 12 nm were prepared by Turkevich’s method, and the lyotropic liquid crystal was a ternary mixture of SDS, 1-DeOH, and water that exhibits an isotropic phase at room temperature. The lyotropic matrix induces aggregation of the nanoparticles, leading to a broad and a red-shifted surface plasmon resonance. The thermal nonlinear optical refraction coefficient n{sub 2} increases as a power of number density of nanoparticles, being possible to address this behavior to nanoparticle clustering. (author)

  6. Structure and Stability of GeAun, n = 1-10 clusters: A Density Functional Study

    International Nuclear Information System (INIS)

    Priyanka,; Dharamvir, Keya; Sharma, Hitesh

    2011-01-01

    The structures of Germanium doped gold clusters GeAu n (n = 1-10) have been investigated using ab initio calculations based on density functional theory (DFT). We have obtained ground state geometries of GeAu n clusters and have it compared with Silicon doped gold clusters and pure gold clusters. The ground state geometries of the GeAu n clusters show patterns similar to silicon doped gold clusters except for n = 5, 6 and 9. The introduction of germanium atom increases the binding energy of gold clusters. The binding energy per atom of germanium doped cluster is smaller than the corresponding silicon doped gold cluster. The HUMO-LOMO gap for Au n Ge clusters have been found to vary between 0.46 eV-2.09 eV. The mullikan charge analysis indicates that charge of order of 0.1e always transfers from germanium atom to gold atom.

  7. Gold Museum

    OpenAIRE

    Efraín Sánchez Cabra

    2003-01-01

    On 22 december 1939, the Banco de la República, the Central Bank of Colombia, purchased a 23.5 centimetres high pre-Columbian gold arte fact weighing 777·7 grams that was to become the Gold M useum's foundation stone. Described as a Quimbaya poporo, it is a masterpiece of pre-Hispanic goldwork, an object of beauty whose brightly burnished body and neck, crowned with four sphere-like or naments, rest on an exquisite cast metal tiligree base and which seems to ftoat in a space of its own. The b...

  8. Green Gold

    International Nuclear Information System (INIS)

    Salamandra Martinez, Carlos

    2004-01-01

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  9. Comprehensive cluster analysis with Transitivity Clustering.

    Science.gov (United States)

    Wittkop, Tobias; Emig, Dorothea; Truss, Anke; Albrecht, Mario; Böcker, Sebastian; Baumbach, Jan

    2011-03-01

    Transitivity Clustering is a method for the partitioning of biological data into groups of similar objects, such as genes, for instance. It provides integrated access to various functions addressing each step of a typical cluster analysis. To facilitate this, Transitivity Clustering is accessible online and offers three user-friendly interfaces: a powerful stand-alone version, a web interface, and a collection of Cytoscape plug-ins. In this paper, we describe three major workflows: (i) protein (super)family detection with Cytoscape, (ii) protein homology detection with incomplete gold standards and (iii) clustering of gene expression data. This protocol guides the user through the most important features of Transitivity Clustering and takes ∼1 h to complete.

  10. Determination of gold in gold ores

    International Nuclear Information System (INIS)

    Keedy, C.R.; Parson, L.; Shen, J.

    1989-01-01

    The gold content of placer gold flakes and gold bearing ores was determined by instrumental and radiochemical neutron activation analysis, respectively. It was discovered that significant errors result in the instrumental method for gold flakes as small as 10 mg due to sample self-absorption of neutrons during irradiation. Reliable results were obtained for both ore samples and gold flakes by dissolving the samples in aqua regia prior to irradiation. (author) 7 refs.; 3 tabs

  11. A new route to gold nanoflowers

    Science.gov (United States)

    Liebig, Ferenc; Henning, Ricky; Sarhan, Radwan M.; Prietzel, Claudia; Bargheer, Matias; Koetz, Joachim

    2018-05-01

    Catanionic vesicles spontaneously formed by mixing the anionic surfactant bis(2-ethylhexyl) sulfosuccinate sodium salt with the cationic surfactant cetyltrimethylammonium bromide were used as a reducing medium to produce gold clusters, which are embedded and well-ordered into the template phase. The gold clusters can be used as seeds in the growth process that follows by adding ascorbic acid as a mild reducing component. When the ascorbic acid was added very slowly in an ice bath round-edged gold nanoflowers were produced. When the same experiments were performed at room temperature in the presence of Ag+ ions, sharp-edged nanoflowers could be synthesized. The mechanism of nanoparticle formation can be understood to be a non-diffusion-limited Ostwald ripening process of preordered gold nanoparticles embedded in catanionic vesicle fragments. Surface-enhanced Raman scattering experiments show an excellent enhancement factor of 1.7 · 105 for the nanoflowers deposited on a silicon wafer.

  12. Clustering of near clusters versus cluster compactness

    International Nuclear Information System (INIS)

    Yu Gao; Yipeng Jing

    1989-01-01

    The clustering properties of near Zwicky clusters are studied by using the two-point angular correlation function. The angular correlation functions for compact and medium compact clusters, for open clusters, and for all near Zwicky clusters are estimated. The results show much stronger clustering for compact and medium compact clusters than for open clusters, and that open clusters have nearly the same clustering strength as galaxies. A detailed study of the compactness-dependence of correlation function strength is worth investigating. (author)

  13. Computer simulation of the vertical growth of subsurface cobalt nanoclusters in gold

    NARCIS (Netherlands)

    Kulikov, D.V.; Kurnosikov, O.; Sicot, M.V.; Trushin, Yu.V.

    2009-01-01

    The vertical growth of nanodimensional cobalt clusters buried under the surface of a gold substrate has been studied using computer simulation methods with allowance for the interdiffusion of Au and Co atoms and the fields of elastic stresses generated by cobalt clusters in the gold matrix. The

  14. Plasmon resonances in large noble-metal clusters

    International Nuclear Information System (INIS)

    Soennichsen, C; Franzl, T; Wilk, T; Plessen, G von; Feldmann, J

    2002-01-01

    We investigate the optical properties of spherical gold and silver clusters with diameters of 20 nm and larger. The light scattering spectra of individual clusters are measured using dark-field microscopy, thus avoiding inhomogeneous broadening effects. The dipolar plasmon resonances of the clusters are found to have nearly Lorentzian line shapes. With increasing size we observe polaritonic red-shifts of the plasmon line and increased radiation damping for both gold and silver clusters. Apart from some cluster-to-cluster variations of the plasmon lines, agreement with Mie theory is reasonably good for the gold clusters. However, it is less satisfactory for the silver clusters, possibly due to cluster faceting or chemical effects

  15. Synthesis of gold nanoclusters: a fluorescent marker for water-soluble TiO2 nanotubes

    International Nuclear Information System (INIS)

    Ratanatawanate, Chalita; Yu Jing; Zhou Chen; Zheng Jie; Balkus, Kenneth J Jr

    2011-01-01

    The first example of a water-soluble wrapped titania nanotube (TNT) decorated with fluorescent gold nanoparticles has been prepared. Gold nanoparticles ∼ 1.6 nm in diameter were grown on the TiO 2 nanotubes using a thiolactic acid linker to control the size. The gold clusters emit at 660 nm in water and were imaged using confocal microscopy. The gold decorated TNTs were suspended in water by wrapping the nanotubes with poly-L-arginine.

  16. Frontiers in Gold Chemistry

    OpenAIRE

    Ahmed A. Mohamed

    2015-01-01

    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  17. Gold in plants

    International Nuclear Information System (INIS)

    Girling, C.A.; Peterson, P.J.

    1980-01-01

    Many plants have the ability to take up gold from the soil and to accumulate it in their tisssue. Advances have been made in understanding these processes to the point where their exploitation in the field of prospecting for gold appears practically feasible. Neutron activation analysis is used for the determination of the small quantities of gold in plants

  18. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

      Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...... of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...

  19. Molecular dynamics simulation of cascade damage in gold

    International Nuclear Information System (INIS)

    Alonso, E.; Caturla, M.J.; Tang, M.; Huang, H.; Diaz de la Rubia, T.

    1997-01-01

    High-energy cascades have been simulated in gold using molecular dynamics with a modified embedded atom method potential. The results show that both vacancy and interstitial clusters form with high probability as a result of intracascade processes. The formation of clusters has been interpreted in terms of the high pressures generated in the core of the cascade during the early stages. The authors provide evidence that correlation between interstitial and vacancy clustering exists

  20. Cluster-to-cluster transformation among Au6, Au8 and Au11 nanoclusters.

    Science.gov (United States)

    Ren, Xiuqing; Fu, Junhong; Lin, Xinzhang; Fu, Xuemei; Yan, Jinghui; Wu, Ren'an; Liu, Chao; Huang, Jiahui

    2018-05-22

    We present the cluster-to-cluster transformations among three gold nanoclusters, [Au6(dppp)4]2+ (Au6), [Au8(dppp)4Cl2]2+ (Au8) and [Au11(dppp)5]3+ (Au11). The conversion process follows a rule that states that the transformation of a small cluster to a large cluster is achieved through an oxidation process with an oxidizing agent (H2O2) or with heating, while the conversion of a large cluster to a small one occurs through a reduction process with a reducing agent (NaBH4). All the reactions were monitored using UV-Vis spectroscopy and ESI-MS. This work may provide an alternative approach to the synthesis of novel gold nanoclusters and a further understanding of the structural transformation relationship of gold nanoclusters.

  1. Cluster headache

    Science.gov (United States)

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... Doctors do not know exactly what causes cluster headaches. They ... (chemical in the body released during an allergic response) or ...

  2. Gold and uranium extraction

    International Nuclear Information System (INIS)

    James, G.S.; Davidson, R.J.

    1977-01-01

    A process for extracting gold and uranium from an ore containing them both comprising the steps of pulping the finely comminuted ore with a suitable cyanide solution at an alkaline pH, acidifying the pulp for uranium dissolution, adding carbon activated for gold recovery to the pulp at a suitable stage, separating the loaded activated carbon from the pulp, and recovering gold from the activated carbon and uranium from solution

  3. Gold mineralogy and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, J.D.; Brown, L.J. [Monash University, Physics Department (Australia)

    1998-12-15

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed.

  4. Gold mineralogy and extraction

    International Nuclear Information System (INIS)

    Cashion, J.D.; Brown, L.J.

    1998-01-01

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed

  5. Geometric, stable and electronic properties of Aun–2Y2 (n = 3–8) clusters

    International Nuclear Information System (INIS)

    Kai-Tian, Qi; Yong, Sheng; Hua-Ping, Mao; Hong-Yan, Wang

    2010-01-01

    Employing first-principles methods, based on the density function theory, and using the LANL2DZ basis sets, the ground-state geometric, the stable and the electronic properties of Au n–2 Y 2 clusters are investigated in this paper. Meanwhile, the differences in property among pure gold clusters, pure yttrium clusters, gold clusters doped with one yttrium atom, and gold clusters doped with two yttrium atoms are studied. We find that when gold clusters are doped by two yttrium atoms, the odd-even oscillatory behaviours of Au n–1 Y and Au n disappear. The properties of Au n–2 Y 2 clusters are close to those of pure yttrium clusters

  6. Random Surface Texturing of Silicon Dioxide Using Gold Agglomerates

    Science.gov (United States)

    2016-07-01

    a visual indicator of the formation of gold clusters on the SiO2 . The glass would make observing a color change in the gold film easier later in the...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT A fabrication process for creating a silicon dioxide ( SiO2 ) light-trapping structure as part of...even distribution of irregular agglomerates, also known as “complete islanding”. By using these gold agglomerations as a metal mask, the SiO2 can be

  7. BROOKHAVEN: High energy gold

    International Nuclear Information System (INIS)

    Bleser, Ed

    1992-01-01

    On April 24, Brookhaven's Alternating Gradient Synchrotron (AGS) started to deliver gold ions at 11.4 GeV per nucleon (2,000 GeV per ion) to experimenters who were delighted not only to receive the world's highest energy gold beam but also to receive it on schedule

  8. Vibrational properties of gold nanoparticles obtained by green synthesis

    Science.gov (United States)

    Alvarez, Ramón A. B.; Cortez-Valadez, M.; Bueno, L. Oscar Neira; Britto Hurtado, R.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C. E.; Serrano-Corrales, Luis Ivan; Arizpe-Chávez, H.; Flores-Acosta, M.

    2016-10-01

    This study reports the synthesis and characterization of gold nanoparticles through an ecological method to obtain nanostructures from the extract of the plant Opuntia ficus-indica. Colloidal nanoparticles show sizes that vary between 10-20 nm, and present various geometric morphologies. The samples were characterized through optical absorption, Raman Spectroscopy and Transmission Electron Microscopy (TEM). Additionally, low energy metallic clusters of Aun (n=2-20 atoms) were modeled by computational quantum chemistry. The theoretical results were obtained with Density Functional Theory (DFT). The predicted results of Au clusters show a tendency and are correlated with the experimental results concerning the optical absorption bands and Raman spectroscopy in gold nanoparticles.

  9. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  10. Subcellular localization of alkaline phosphatase in Bacillus licheniformis 749/C by immunoelectron microscopy with colloidal gold

    International Nuclear Information System (INIS)

    Tinglu, G.; Ghosh, A.; Ghosh, B.K.

    1984-01-01

    Subcellular distribution of the alkaline phosphatase of Bacillus licheniformis 749/C was determined by an immunoelectron microscopy method. Anti-alkaline phosphatase antibody labeled with 15- to 18-nm colloidal gold particles (gold-immunoglobulin G [IgG] complex) were used for the study. Both the plasma membrane and cytoplasmic material were labeled with the gold-IgG particles. These particles formed clusters in association with the plasma membrane; in contrast, in the cytoplasm the particles were largely dispersed, and only a few clusters were found. The gold-IgG binding was quantitatively estimated by stereological analysis of labeled, frozen thin sections. This estimation of a variety of control samples showed that the labeling was specific for the alkaline phosphatase. Cluster formation of the gold -IgG particles in association with the plasma membrane suggests that existence of specific alkaline phosphatase binding sites (receptors) in the plasma membrane of B. licheniformis 749/C. 27 references, 6 figures, 1 table

  11. Aqueous gold nanosols stabilized by electrostatic protection generated by X-ray irradiation assisted radical reduction

    International Nuclear Information System (INIS)

    Wang, C.-H.; Hua, Tzu-En; Chien, C.-C.; Yu, Y.-L.; Yang, T.-Y.; Liu, C.-J.; Leng, W.-H.; Hwu, Y.; Yang, Y.-C.; Kim, Chong-Cook; Je, Jung-Ho; Chen, C.-H.; Lin, H.-M.; Margaritondo, G.

    2007-01-01

    Reductant, stabilizer-free colloidal gold solutions were fabricated by a new room-temperature synchrotron X-ray irradiation method. The influence of process parameters such as the pH value and the exposure time on the structure of gold nanoparticles was investigated. The mechanisms underlying the X-ray-triggered reduction of gold ions and the formation of gold clusters are discussed in detail. The X-ray irradiation derived highly concentrated gold nanoparticles are readily to be re-dispersed and possess suitable colloidal stability within cellular environment. The characterization included a study of the possible cytotoxicity for the EMT-6 tumor cell line: the negative results indicate that the gold clusters produced with our approach are biocompatible

  12. Cluster management.

    Science.gov (United States)

    Katz, R

    1992-11-01

    Cluster management is a management model that fosters decentralization of management, develops leadership potential of staff, and creates ownership of unit-based goals. Unlike shared governance models, there is no formal structure created by committees and it is less threatening for managers. There are two parts to the cluster management model. One is the formation of cluster groups, consisting of all staff and facilitated by a cluster leader. The cluster groups function for communication and problem-solving. The second part of the cluster management model is the creation of task forces. These task forces are designed to work on short-term goals, usually in response to solving one of the unit's goals. Sometimes the task forces are used for quality improvement or system problems. Clusters are groups of not more than five or six staff members, facilitated by a cluster leader. A cluster is made up of individuals who work the same shift. For example, people with job titles who work days would be in a cluster. There would be registered nurses, licensed practical nurses, nursing assistants, and unit clerks in the cluster. The cluster leader is chosen by the manager based on certain criteria and is trained for this specialized role. The concept of cluster management, criteria for choosing leaders, training for leaders, using cluster groups to solve quality improvement issues, and the learning process necessary for manager support are described.

  13. Medicinal gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.; Cottrill, S.M.

    1987-01-01

    A major use of gold compounds in the pharmaceutical industry is for anti-arthritic agents. The disease itself is not understood and little is known about the way in which the drugs act, but detailed pictures of the distribution of gold in the body are available, and some of the relevant biochemistry is beginning to emerge. The purpose of this article is to give a survey of the types of compounds presently employed in medicine, of the distribution of gold in the body which results from their use, and of some relevant chemistry. Emphasis is placed on results obtained in the last few years

  14. Isotopic clusters

    International Nuclear Information System (INIS)

    Geraedts, J.M.P.

    1983-01-01

    Spectra of isotopically mixed clusters (dimers of SF 6 ) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  15. Cluster Headache

    Science.gov (United States)

    ... a role. Unlike migraine and tension headache, cluster headache generally isn't associated with triggers, such as foods, hormonal changes or stress. Once a cluster period begins, however, drinking alcohol ...

  16. Cluster Headache

    OpenAIRE

    Pearce, Iris

    1985-01-01

    Cluster headache is the most severe primary headache with recurrent pain attacks described as worse than giving birth. The aim of this paper was to make an overview of current knowledge on cluster headache with a focus on pathophysiology and treatment. This paper presents hypotheses of cluster headache pathophysiology, current treatment options and possible future therapy approaches. For years, the hypothalamus was regarded as the key structure in cluster headache, but is now thought to be pa...

  17. Categorias Cluster

    OpenAIRE

    Queiroz, Dayane Andrade

    2015-01-01

    Neste trabalho apresentamos as categorias cluster, que foram introduzidas por Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten e Gordana Todorov, com o objetivo de categoriíicar as algebras cluster criadas em 2002 por Sergey Fomin e Andrei Zelevinsky. Os autores acima, em [4], mostraram que existe uma estreita relação entre algebras cluster e categorias cluster para quivers cujo grafo subjacente é um diagrama de Dynkin. Para isto desenvolveram uma teoria tilting na estrutura triang...

  18. The Gold Standard Programme

    DEFF Research Database (Denmark)

    Neumann, Tim; Rasmussen, Mette; Ghith, Nermin

    2013-01-01

    To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates.......To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates....

  19. Gold nanoprobes for theranostics

    Science.gov (United States)

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  20. Meaningful Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  1. Horticultural cluster

    OpenAIRE

    SHERSTIUK S.V.; POSYLAYEVA K.I.

    2013-01-01

    In the article there are the theoretical and methodological approaches to the nature and existence of the cluster. The cluster differences from other kinds of cooperative and integration associations. Was develop by scientific-practical recommendations for forming a competitive horticultur cluster.

  2. Facts and Fantasies about Gold

    OpenAIRE

    Klement, Joachim

    2015-01-01

    Due to the increasing popularity of gold as an investment the demand for effective risk management techniques for gold investments has increased as well. In this paper we analyze several drivers of the price of gold that have been proposed in the past. Our analysis indicates that short-term volatility of the price of gold remains rather unpredictable with many of the explanations like the fund flows in physical gold ETF either unreliable or unstable over time. Our analysis suggests that there...

  3. Cluster Matters

    DEFF Research Database (Denmark)

    Gulati, Mukesh; Lund-Thomsen, Peter; Suresh, Sangeetha

    2018-01-01

    sell their products successfully in international markets, but there is also an increasingly large consumer base within India. Indeed, Indian industrial clusters have contributed to a substantial part of this growth process, and there are several hundred registered clusters within the country...... of this handbook, which focuses on the role of CSR in MSMEs. Hence we contribute to the literature on CSR in industrial clusters and specifically CSR in Indian industrial clusters by investigating the drivers of CSR in India’s industrial clusters....

  4. Isolated single-molecule magnets on native gold.

    Science.gov (United States)

    Zobbi, Laura; Mannini, Matteo; Pacchioni, Mirko; Chastanet, Guillaume; Bonacchi, Daniele; Zanardi, Chiara; Biagi, Roberto; Del Pennino, Umberto; Gatteschi, Dante; Cornia, Andrea; Sessoli, Roberta

    2005-03-28

    The incorporation of thioether groups in the structure of a Mn12 single-molecule magnet, [Mn12(O12)(L)16(H2O)4] with L = 4-(methylthio)benzoate, is a successful route to the deposition of well-separated clusters on native gold surfaces and to the addressing of individual molecules by scanning tunnelling microscopy.

  5. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  6. Gold Nanoparticle Chemiresistor Arrays for Micro-Gas Chromatography Applications

    Science.gov (United States)

    Covington, Elizabeth Laura

    Thiolate-monolayer-protected gold nanoparticle (MPN) chemiresistors were studied as the sensing devices for micro-gas chromatography (microGC) systems. Because transport through chemiresistors is dominated by tunneling, they are highly sensitive. In order to improve their limit of detection, their fundamental noise was studied. Chemiresistors exhibit 1/f type noise where noise scales inversely with frequency. Chemiresistor noise was found to scale inversely with MPN film thickness. We lowered the noise prefactor of a 50x60 microm2 chemiresistor by coating a thick rather than monolayer MPN film. Electron beam induced crosslinking (EBIX) of the MPN film slightly reduced chemiresistor noise. A technique for patterning chemiresistor arrays with MPN films using EBIX was developed, and an array with four distinct MPNs was fabricated in an area ˜600 microm 2. This is the smallest chemiresistor array reported to date. Chemiresistors were exposed to vapors and provided differential sensitivities comparable to those from larger uncrosslinked chemiresistors. Chemiresistors were studied to assess their long term stability. Chemiresistors exhibited decreases in resistance over time that is likely caused by loss of MPN ligands. Temperature dependent current-voltage measurements verified the resistance change was not due to changes in the size of the MPN core. While resistance could change by orders of magnitude, vapor sensitivity did not show significant changes. Heating increased the change in resistance, but chemiresistors remained responsive after being held at 80°C for a cumulative 400 hours. It was unknown whether tunneling in the MPN film is through the highest unoccupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO). A new technique was explored to distinguish tunneling through the HOMO and LUMO by measuring the induced thermoelectric voltage caused by a temperature difference across the MPN film. For integration into a microGC system, we

  7. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  8. Cluster evolution

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-01-01

    The galaxy and cluster luminosity functions are constructed from a model of the mass distribution based on hierarchical clustering at an epoch where the matter distribution is non-linear. These luminosity functions are seen to reproduce the present distribution of objects as can be inferred from the observations. They can be used to deduce the redshift dependence of the cluster distribution and to extrapolate the observations towards the past. The predicted evolution of the cluster distribution is quite strong, although somewhat less rapid than predicted by the linear theory

  9. GOLD IS EARNED FROM THE PRODUCTION OF THAI GOLD LEAF

    Directory of Open Access Journals (Sweden)

    Dirk Bax

    2010-06-01

    Full Text Available Thai people like to cover sacred objects or things dear to them with gold leaf.. Statues of Buddha are sometimes covered with so many layers of gold leaf that they become formless figures, that can hardly be recognized. Portraits of beloved ancestors, statues of elephants and grave tombs are often covered with gold leaf. If one considers the number of Thai people and the popularity of the habit, the amount of gold involved could be considerable.

  10. Influence of the graphene substrate on morphology of the gold thin film. Spectroscopic ellipsometry study

    International Nuclear Information System (INIS)

    Kostruba, A.M.

    2013-01-01

    In metal optics gold assumes a special status because of its practical importance in optoelectronic and nanooptical devices, and its role huge increases when occurs combination of gold with two-dimension materials. We performed spectroscopic ellipsometry measurements on evaporated gold, and gold–graphene nanostructures to determine the optical dielectric function across a broad spectral range from 250 to 1000 nm. It was found that the deposition of gold film on the quartz substrate covered by graphene flake leads to significant changes in structural and dielectric properties of thin gold layer. Such changes can be explained by increasing of the gold cluster size. The model fit of the ellipsometric data demonstrates that the bilayer “graphene-gold” nanostructure can be described as a uniform optically homogeneous layer with modified optical properties. We can suggest that graphene flake creates a matrix for epitaxial alignment of the crystalline structure of the gold film during its growing. Effective doping of the graphene by free electrons of the gold clusters tends to decrease the optical contrast at the graphene-gold interface.

  11. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  12. Activated carbons and gold

    International Nuclear Information System (INIS)

    McDougall, G.J.; Hancock, R.D.

    1980-01-01

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  13. Electronic Absorption and MCD Spectra for Pd(AuPPh(3))(8)(2+), Pt(AuPPh(3))(8)(2+), and Related Platinum-Centered Gold Cluster Complexes.

    Science.gov (United States)

    Adrowski, Michael J.; Mason, W. Roy

    1997-03-26

    Electronic absorption and 7.0 T magnetic circular dichroism (MCD) spectra in the UV-vis region, 1.6 to approximately 4.0 &mgr;m(-)(1) (1 &mgr;m(-)(1) = 10(4) cm(-)(1)) are reported for [Pd(AuPPh(3))(8)](NO(3))(2) and [Pt(AuPPh(3))(8)](NO(3))(2) in acetonitrile solutions at room temperature. The MCD spectra are better resolved than the absorption spectra and consist of both A and B terms. The spectra are interpreted in terms of D(4)(d)() skeletal geometry and MO's that are approximated by 5s and 6s orbitals for Pd and Pt/Au atoms, respectively. The lowest energy excited configurations and states are attributed to intraframework (IF) Au(8)(2+) transitions. Evidence is also presented for Pt 5d --> Au 6s transitions in the MCD spectra for Pt(AuPPh(3))(8)(2+). Acetonitrile solution absorption and MCD spectra for the related Pt-centered cluster complexes [Pt(CO)(AuPPh(3))(8)](NO(3))(2), [Pt(AuP(p-tolyl)(3))(8)](NO(3))(2), [Pt(CuCl)(AuPPh(3))(8)](NO(3))(2), [Pt(AgNO(3))(AuPPh(3))(8)](NO(3))(2), [Pt(Hg)(2)(AuPPh(3))(8)](NO(3))(2), [Pt(HgCl)(2)(AuPPh(3))(8)](BF(4))(2), and [Pt(HgNO(3))(2)(AuPPh(3))(8)](BF(4))(2) are also reported and interpreted within the context of the model developed for the M(AuPPh(3))(8)(2+) complexes.

  14. Pinning of size-selected gold and nickel nanoclusters on graphite

    NARCIS (Netherlands)

    Di Vece, M.|info:eu-repo/dai/nl/248753355; Paloma, S.; Palmer, R.E.

    2005-01-01

    Size-selected gold and nickel nanoclusters are of interest from an electronic, catalytic, and biological point of view. These applications require the deposition of the clusters on a surface, and a key challenge is to retain the cluster size. Here controlled energy impact is used to immobilize the

  15. ['Gold standard', not 'golden standard'

    NARCIS (Netherlands)

    Claassen, J.A.H.R.

    2005-01-01

    In medical literature, both 'gold standard' and 'golden standard' are employed to describe a reference test used for comparison with a novel method. The term 'gold standard' in its current sense in medical research was coined by Rudd in 1979, in reference to the monetary gold standard. In the same

  16. Spectroscopic diagnostic of gold plasma

    International Nuclear Information System (INIS)

    Busquet, M.

    1986-01-01

    Results of a simulation of a gold-aluminium alloy target irradiated by laser are presented. FCI code has been used with a processing out of LTE of atomic physics of gold and of multigroup photonics. Emission and reabsorption of gold and aluminium lines are included [fr

  17. Spectroscopic diagnostic of gold plasma

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, M.

    1986-06-01

    Results of a simulation of a gold-aluminium alloy target irradiated by laser are presented. FCI code has been used with a processing out of LTE of atomic physics of gold and of multigroup photonics. Emission and reabsorption of gold and aluminium lines are included.

  18. Ethical implications of excessive cluster sizes in cluster randomised trials.

    Science.gov (United States)

    Hemming, Karla; Taljaard, Monica; Forbes, Gordon; Eldridge, Sandra M; Weijer, Charles

    2018-02-20

    The cluster randomised trial (CRT) is commonly used in healthcare research. It is the gold-standard study design for evaluating healthcare policy interventions. A key characteristic of this design is that as more participants are included, in a fixed number of clusters, the increase in achievable power will level off. CRTs with cluster sizes that exceed the point of levelling-off will have excessive numbers of participants, even if they do not achieve nominal levels of power. Excessively large cluster sizes may have ethical implications due to exposing trial participants unnecessarily to the burdens of both participating in the trial and the potential risks of harm associated with the intervention. We explore these issues through the use of two case studies. Where data are routinely collected, available at minimum cost and the intervention poses low risk, the ethical implications of excessively large cluster sizes are likely to be low (case study 1). However, to maximise the social benefit of the study, identification of excessive cluster sizes can allow for prespecified and fully powered secondary analyses. In the second case study, while there is no burden through trial participation (because the outcome data are routinely collected and non-identifiable), the intervention might be considered to pose some indirect risk to patients and risks to the healthcare workers. In this case study it is therefore important that the inclusion of excessively large cluster sizes is justifiable on other grounds (perhaps to show sustainability). In any randomised controlled trial, including evaluations of health policy interventions, it is important to minimise the burdens and risks to participants. Funders, researchers and research ethics committees should be aware of the ethical issues of excessively large cluster sizes in cluster trials. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is

  19. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  20. Bioassisted Phytomining of Gold

    Science.gov (United States)

    Maluckov, Biljana S.

    2015-05-01

    Bioassisted phytomining implies targeted use of microorganisms and plants for the selective recovery of the metal. Metals from undissolved compounds are dissolved by applying specially chosen microorganisms and therefore become available to the hyperaccumulating plants. In the article, the selective extraction method of base metals and the precious metal gold by using microorganisms and plants is discussed.

  1. Digging for Gold

    Science.gov (United States)

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  2. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  3. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  4. Disintegration of swift carbon clusters during passage through matter

    International Nuclear Information System (INIS)

    Koch, K.; Otteken, D.; Tuszynski, W.; Seidl, M.; Voit, H.

    2003-01-01

    Thin luminescent foils covered upstream with layers of Formvar or gold of various thicknesses were bombarded with C 8 clusters with energies between 5 and 10 MeV. The C 8 induced relative luminescence yield Φ 8 increases with growing layer thickness and approaches smoothly the value 8Φ 1 , i.e., the luminescence yield induced by eight well-separated C 1 cluster constituents. This is a clear demonstration of the gradual separation between the cluster constituents during the passage of the cluster through the layers. The layer thickness necessary to separate cluster constituents far enough to act as independent atomic ions with respect to the luminescence process was calculated. The result is that Formvar layers with a thickness of about 1150 nm or ≅250-nm-thick gold layers are necessary to establish this mutual independence of the cluster constituents. Both calculated values agree roughly with the layer thickness obtained from an extrapolation of the experimental data

  5. Gold and gold working in Late Bronze Age Northern Greece

    Science.gov (United States)

    Vavelidis, M.; Andreou, S.

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium b.c. Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  6. Identification of Paracoccidioides brasiliensis by gold nanoprobes

    Science.gov (United States)

    Martins, Jaciara F. S.; Castilho, Maiara L.; Cardoso, Maria A. G.; Carreiro, Andrea P.; Martin, Airton A.; Raniero, Leandro

    2012-01-01

    Paracoccidioides brasiliensis (P. brasiliensis) is a thermal dimorphic fungus and causal agent of paracoccidioidomycosis. Epidemiological data shows that it is mainly concentrated in Central and South America countries, with most registered cases in Colombia, Brazil, and Venezuela. The histopathological similarity with others fungal infection makes the diagnosis of P. brasiliensis more complicated. Therefore, the aim of this work was to find a positive and negative test for P. brasiliensis using gold nanoprobes as a new tool for P. brasiliensis detection. Gold nanoparticles were synthesized by reduction of gold chloride with sodium citrate. The results of this procedure is a wine-red solution with a maximum absorption in the range of ~520-530nm. A specific P. brasiliensis sequence of oligonucleotide was bonded to the nanoparticles, which maintained the wine-red color. The color changes from red to blue for negative diagnostic and is unchanged for a positive test. The H-bond interaction of DNA with the complementary DNA keeps strands together and forms double helical structure, maintaining the colloid stability. However, for non-complimentary DNA sequence the nanoprobes merge into a cluster, changing the light absorption.

  7. Clustering Dycom

    KAUST Repository

    Minku, Leandro L.

    2017-10-06

    Background: Software Effort Estimation (SEE) can be formulated as an online learning problem, where new projects are completed over time and may become available for training. In this scenario, a Cross-Company (CC) SEE approach called Dycom can drastically reduce the number of Within-Company (WC) projects needed for training, saving the high cost of collecting such training projects. However, Dycom relies on splitting CC projects into different subsets in order to create its CC models. Such splitting can have a significant impact on Dycom\\'s predictive performance. Aims: This paper investigates whether clustering methods can be used to help finding good CC splits for Dycom. Method: Dycom is extended to use clustering methods for creating the CC subsets. Three different clustering methods are investigated, namely Hierarchical Clustering, K-Means, and Expectation-Maximisation. Clustering Dycom is compared against the original Dycom with CC subsets of different sizes, based on four SEE databases. A baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number of CC subsets to be pre-defined, and a poor choice can negatively affect predictive performance. EM enables Dycom to automatically set the number of CC subsets while still maintaining or improving predictive performance with respect to the baseline WC model. Clustering Dycom with Hierarchical Clustering did not offer significant advantage in terms of predictive performance. Conclusion: Clustering methods can be an effective way to automatically generate Dycom\\'s CC subsets.

  8. Clustering analysis

    International Nuclear Information System (INIS)

    Romli

    1997-01-01

    Cluster analysis is the name of group of multivariate techniques whose principal purpose is to distinguish similar entities from the characteristics they process.To study this analysis, there are several algorithms that can be used. Therefore, this topic focuses to discuss the algorithms, such as, similarity measures, and hierarchical clustering which includes single linkage, complete linkage and average linkage method. also, non-hierarchical clustering method, which is popular name K -mean method ' will be discussed. Finally, this paper will be described the advantages and disadvantages of every methods

  9. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  10. Cluster editing

    DEFF Research Database (Denmark)

    Böcker, S.; Baumbach, Jan

    2013-01-01

    . The problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications......The Cluster Editing problem asks to transform a graph into a disjoint union of cliques using a minimum number of edge modifications. Although the problem has been proven NP-complete several times, it has nevertheless attracted much research both from the theoretical and the applied side...

  11. Moessbauerspectroscopy on Gold Ruby Glass

    International Nuclear Information System (INIS)

    Haslbeck, S.

    2005-01-01

    In this thesis, the chemical states of gold and the physical mechanisms of the growing process of the particles under the influence of additional ingredients like tin, lead, antimony and selenium before, during and after the colouring process are investigated by using the Moessbauer spectroscopy on 197 Au, 119 Sn and 121 Sb, optical spectroscopy and X-ray-diffraction. Gold in an unnealed, colourless state of the glasses consists of monovalent forming linear bonds to two neighbouring oxygen atoms. The Lamb-Moessbauer factor of these gold oxide bondings is observed as 0.095 at 4.2 K. The gold in it's oxide state transforms to gold particles with a diameter of 3 nm to 60 nm. The size of the gold particles is quite definable within the optical spectra and certain sizes are also discernable within the Moessbauer spectra. One component of the Moessbauer spectra is assigned to the surface layer of the gold particles. By comparing this surface component with the amount of the bulk metallic core, one can calculate the size of the gold particles. In the Moessbauer spectra of the colourless glass one also can find parts of bulk metallic gold. Investigations with X-ray diffraction show that these are gold particles with a diameter of 100 nm to 300 nm and therefore have no additional colouring effect within the visible spectrum. The Moessbauer spectra on gold of the remelt glasses are similar to those which have been measured on the initial colourless glasses

  12. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review

    International Nuclear Information System (INIS)

    Korotcenkov, Ghenadii; Cho, Beong K.; Brinzari, Vladimir

    2016-01-01

    This review (with 170 refs.) discusses approaches towards surface functionalizaton of metal oxides by gold nanoparticles, and the application of the resulting nanomaterials in resistive gas sensors. The articles is subdivided into sections on (a) methods for modification of metal oxides with gold nanoparticles; (b) the response of gold nanoparticle-modified metal oxide sensors to gaseous species, (c) a discussion of the limitations of such sensors, and (d) a discussion on future tasks and trends along with an outlook. It is shown that, in order to achieve significant improvements in sensor parameters, it is necessary to warrant a good control the size and density of gold nanoparticles on the surface of metal oxide crystallites, the state of gold in the cluster, and the properties of the metal oxide support. Current challenges include an improved reproducibility of sensor preparation, better long-term stabilities, and a better resistance to sintering and poisoning of gold clusters during operation. Additional research focused on better understanding the role of gold clusters and nanoparticles in gas-sensing effects is also required. (author)

  13. For the love of gold

    International Nuclear Information System (INIS)

    Young, J.E.

    1993-01-01

    Gold is found in minute quantities and gold mining generates enormous amounts of waste materials and long history of environmental destruction: mercury in tailing, eroded land, and acid mine drainage are legacies of the past. The problem has become worse in recent years in North America, Australia, the Amazon basin, Philippines. This paper describes the economics of gold and the changes in the world economy which has precipitated the new gold rushes. Current technology uses a cyanide solution for leaching small amounts of gold from tons of waste, and mercury remains a toxic waste of gold mining. Both short and long term results of gold mining, on the environment and on indiginous populations are described

  14. Kinetic Assembly of Near-IR Active Gold Nanoclusters using Weakly Adsorbing Polymers to Control Size

    Science.gov (United States)

    Tam, Jasmine M.; Murthy, Avinash K.; Ingram, Davis R.; Nguyen, Robin; Sokolov, Konstantin V.; Johnston, Keith P.

    2013-01-01

    Clusters of metal nanoparticles with an overall size less than 100 nm and high metal loadings for strong optical functionality, are of interest in various fields including microelectronics, sensors, optoelectronics and biomedical imaging and therapeutics. Herein we assemble ~5 nm gold particles into clusters with controlled size, as small as 30 nm and up to 100 nm, which contain only small amounts of polymeric stabilizers. The assembly is kinetically controlled with weakly adsorbing polymers, PLA(2K)-b-PEG(10K)-b-PLA(2K) or PEG (MW = 3350), by manipulating electrostatic, van der Waals (VDW), steric, and depletion forces. The cluster size and optical properties are tuned as a function of particle volume fractions and polymer/gold ratios to modulate the interparticle interactions. The close spacing between the constituent gold nanoparticles and high gold loadings (80–85% w/w gold) produce a strong absorbance cross section of ~9×10−15 m2 in the NIR at 700 nm. This morphology results from VDW and depletion attractive interactions that exclude the weakly adsorbed polymeric stabilizer from the cluster interior. The generality of this kinetic assembly platform is demonstrated for gold nanoparticles with a range of surface charges from highly negative to neutral, with the two different polymers. PMID:20361735

  15. DNA-mediated self-assembly of tetrahedral plasmonic clusters for metafluids

    Science.gov (United States)

    Schade, Nicholas; Sun, Li; Lee, You-Jin; Fan, Jonathan; Capasso, Federico; Yi, Gi-Ra; Manoharan, Vinothan

    2014-03-01

    We direct the self-assembly of clusters of gold nanospheres with the goal of creating a bulk, isotropic, optical metafluid. We use spherical gold nanoparticles that are exceptionally smooth, monocrystalline, and monodisperse. These particles exhibit highly reproducible scattering spectra compared with commercially available gold colloids. We label them with DNA sequences and mix them together to self-assemble small clusters. By controlling the particle sizes and the interactions between them, we maximize the yield of tetrahedral clusters, the ideal structures for isotropic metamaterials.

  16. Occupational Clusters.

    Science.gov (United States)

    Pottawattamie County School System, Council Bluffs, IA.

    The 15 occupational clusters (transportation, fine arts and humanities, communications and media, personal service occupations, construction, hospitality and recreation, health occupations, marine science occupations, consumer and homemaking-related occupations, agribusiness and natural resources, environment, public service, business and office…

  17. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan

    2000-01-01

    A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  18. Cluster generator

    Science.gov (United States)

    Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  19. Cluster Bulleticity

    OpenAIRE

    Massey, Richard; Kitching, Thomas; Nagai, Daisuke

    2010-01-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, such as the bullet cluster (1E 0657−56) and baby bullet (MACS J0025−12). These systems provide evidence for an additional, invisible mass in the separation between the distributions of their total mass, measured via gravitational lensing, and their ordinary ‘baryonic’ matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by their rarity. C...

  20. Cluster headache

    OpenAIRE

    Leroux, Elizabeth; Ducros, Anne

    2008-01-01

    Abstract Cluster headache (CH) is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes) of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye). It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name) in bouts that can occur ...

  1. A series of intrinsically chiral gold nanocage structures.

    Science.gov (United States)

    Liu, X J; Hamilton, I P

    2017-07-27

    We present a series of intrinsically chiral gold nanocage structures, Au 9n+6 , which are stable for n ≥ 2. These structures consist of an Au 9n tube which is capped with Au 3 units at each end. Removing the Au 3 caps, we obtain a series of intrinsically chiral gold nanotube structures, Au 9n , which are stable for n ≥ 4. The intrinsic chirality of these structures results from the helicity of the gold strands which form the tube and not because an individual Au atom is a chiral center. The symmetry of these structures is C 3 and substructures of gold hexagons with a gold atom in the middle are particularly prominent. We focus on the properties of Au 42 (C 3 ) and Au 105 (C 3 ) which are the two smallest gold nanocage structures to be completely tiled by these Au 7 "golden-eye" substructures. Our main focus is on Au 42 (C 3 ) since gold clusters in the 40-50 atom regime are currently being investigated in gas phase experiments. We show that the intrinsically chiral Au 42 cage structure is energetically comparable with previously reported achiral cage and compact Au 42 structures. Cage structures are of particular interest because species can be encapsulated (and stabilized) inside the cage and we provide strong evidence that Au 6 @Au 42 (C 3 ) is the global minimum Au 48 structure. The intrinsically chiral gold nanocage structures, which exhibit a range of size-related properties, have potential applications in chiral catalysis and as components in nanostructured devices.

  2. Rushing for gold

    DEFF Research Database (Denmark)

    Jønsson, Jesper Bosse; Bryceson, Deborah Fahy

    2009-01-01

    African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sit...... affluent than the others, suggesting that movement can be rewarding for those willing to 'try their luck' with the hard work and social networking demands of mining another site.......African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sites...

  3. Gold' 82 - technical sessions

    International Nuclear Information System (INIS)

    Viewing, K.

    1983-01-01

    Sulphur-isotope studies had been applied by Dr. I. Lambert to a number of deposits in Western Australia and also to certain samples from Vubachickwe and other deposits in Zimbabwe. A study of the sulphur isotopes at the Dickenson Mine, revealed a wide spread of values in the mineralised zones. Metamorphic processes were likely to be significant in the concentration of gold. The iron formations at the Old Jardine Mine had been unfolded by Dr. W.S. Hallager and the pattern of sedimentation was unraveled. A gold-rich zone was separated by a barren gap from the other part of the mineralised zone. Research was also done on the effects of the metamorphic processes, and the ages of mineralisation

  4. Radioactive gold ring dermatitis

    International Nuclear Information System (INIS)

    Miller, R.A.; Aldrich, J.E.

    1990-01-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy

  5. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    International Nuclear Information System (INIS)

    Xia, Xiaodong; Long, Yunfei; Wang, Jianxiu

    2013-01-01

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ em max = 650 nm, λ ex max = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O 2 to produce H 2 O 2 , which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10 −6 –140 × 10 −6 M and a detection limit of 0.7 × 10 −6 M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells

  6. Functionalization of lamellar molybdenum disulphide nanocomposite with gold nanoparticles

    International Nuclear Information System (INIS)

    Lavayen, V.; O'Dwyer, C.; Ana, M.A. Santa; Mirabal, N.; Benavente, E.; Cardenas, G.; Gonzalez, G.; Torres, C.M. Sotomayor

    2007-01-01

    This work explores the functionalization of an organic-inorganic MoS 2 lamellar compound, prepared by a chemical liquid deposition method (CLD), that has an interlamellar distance of ∼5.2 nm, using clusters of gold nanoparticles. The gold nanoparticles have a mean diameter of 1.2 nm, a stability of ∼85 days, and a zeta potential measured to be ζ -6.8 mV (solid). The nanoparticles are localized in the hydrophilic zones, defined by the presence of amine groups of the surfactant between the lamella of MoS 2 . SEM, TEM, EDAX and electron diffraction provide conclusive evidence of the interlamellar insertion of the gold nanoparticles in the MoS 2

  7. Functionalization of lamellar molybdenum disulphide nanocomposite with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lavayen, V. [Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork (Ireland) and Department of Chemistry, Faculty of Sciences, Universidad de Chile, P.O. Box 653, Santiago (Chile)]. E-mail: vlavayen@tyndall.ie; O' Dwyer, C. [Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork (Ireland); Ana, M.A. Santa [Department of Chemistry, Faculty of Sciences, Universidad de Chile, P.O. Box 653, Santiago (Chile); Mirabal, N. [Department of Chemistry, Faculty of Sciences, Universidad de Chile, P.O. Box 653, Santiago (Chile); Benavente, E. [Department of Chemistry, Universidad Tecnologica Metropolitana, P.O. Box 9845, Santiago (Chile); Cardenas, G. [Department of Polymers, Faculty of Chemistry Science, Universidad de Concepcion, P.O. Box 160-C, Concepcion (Chile); Gonzalez, G. [Department of Chemistry, Faculty of Sciences, Universidad de Chile, P.O. Box 653, Santiago (Chile); Torres, C.M. Sotomayor [Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork (Ireland)

    2007-01-30

    This work explores the functionalization of an organic-inorganic MoS{sub 2} lamellar compound, prepared by a chemical liquid deposition method (CLD), that has an interlamellar distance of {approx}5.2 nm, using clusters of gold nanoparticles. The gold nanoparticles have a mean diameter of 1.2 nm, a stability of {approx}85 days, and a zeta potential measured to be {zeta} -6.8 mV (solid). The nanoparticles are localized in the hydrophilic zones, defined by the presence of amine groups of the surfactant between the lamella of MoS{sub 2}. SEM, TEM, EDAX and electron diffraction provide conclusive evidence of the interlamellar insertion of the gold nanoparticles in the MoS{sub 2}.

  8. The expanding universe of thiolated gold nanoclusters and beyond.

    Science.gov (United States)

    Jiang, De-en

    2013-08-21

    Thiolated gold nanoclusters form a universe of their own. Researchers in this field are constantly pushing the boundary of this universe by identifying new compositions and in a few "lucky" cases, solving their structures. Such solved structures, even if there are only few, provide important hints for predicting the many identified compositions that are yet to be crystallized or structure determined. Structure prediction is the most pressing issue for a computational chemist in this field. The success of the density functional theory method in gauging the energetic ordering of isomers for thiolated gold clusters has been truly remarkable, but to predict the most stable structure for a given composition remains a great challenge. In this feature article from a computational chemist's point of view, the author shows how one understands and predicts structures for thiolated gold nanoclusters based on his old and new results. To further entertain the reader, the author also offers several "imaginative" structures, claims, and challenges for this field.

  9. Immunological properties of gold nanoparticles.

    Science.gov (United States)

    Dykman, Lev A; Khlebtsov, Nikolai G

    2017-03-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo . For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.

  10. The extractive metallurgy of gold

    Energy Technology Data Exchange (ETDEWEB)

    Kongolo, K.; Mwema, M.D. [University of Lubumbashi, Zaire, Gecamines Metallurgical Research Centre, Likasi, Zaire, c/o Gecamines Brussels (Belgium)

    1998-12-15

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied.

  11. The extractive metallurgy of gold

    Science.gov (United States)

    Kongolo, K.; Mwema, M. D.

    1998-12-01

    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  12. The extractive metallurgy of gold

    International Nuclear Information System (INIS)

    Kongolo, K.; Mwema, M.D.

    1998-01-01

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied

  13. Surface-stabilized gold nanocatalysts

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  14. Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation

    Science.gov (United States)

    Guo, Li-Wen; Du, Pei-Pei; Fu, Xin-Pu; Ma, Chao; Zeng, Jie; Si, Rui; Huang, Yu-Ying; Jia, Chun-Jiang; Zhang, Ya-Wen; Yan, Chun-Hua

    2016-11-01

    Small-size (carbon monoxide at room temperature, by the aid of in situ X-ray absorption fine structure analysis and in situ diffuse reflectance infrared Fourier transform spectroscopy. We find that the metallic gold component in clusters or particles plays a much more critical role as the active site than the cationic single-atom gold species for the room-temperature carbon monoxide oxidation reaction.

  15. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as provided...

  16. Intrinsic multistate switching of gold clusters through electrochemical gating

    DEFF Research Database (Denmark)

    Albrecht, Tim; Mertens, S.F.L.; Ulstrup, Jens

    2007-01-01

    The electrochemical behavior of small metal nanoparticles is governed by Coulomb-like charging and equally spaced charge-transfer transitions. Using electrochemical gating at constant bias voltage, we show, for the first time, that individual nanoparticles can be operated as multistate switches i...

  17. Determining gold content

    International Nuclear Information System (INIS)

    Clayton, C.G.; Wormald, M.R.

    1981-01-01

    A method for determining the gold content of a material, comprises irradiating a body of the material with neutrons and determining the intensity of γ-rays having an energy of 279 keV arising from the reaction 179 Au(nn') 179 Au → 279 keV. The apparatus has means for conveying the materials past an assembly, which has a neutron source, which does not produce neutrons having sufficient energy to excite fast neutron reactions in non-auriferous constituents. (author)

  18. Turning lead into gold

    DEFF Research Database (Denmark)

    Jensen, Steffen Moltrup Ernø

    For years the field of entrepreneurship has been blinded by the alchemical promise of turning lead into gold, of finding the ones most likely to become the next Branson, Zuckerberg or Gates. The promise has been created in the midst of political and scientific agendas where certain individuals...... is not to accumulate state or market wealth, but for entrepreneurial skills to become tools towards the liberation of the individual from oppressive systems of control – essentially to add public value rather than economic value. In this presentation I will sketch an anarchist perspective on entrepreneurship, looking...

  19. Determination of Gold from Gold Matrix of North Western Nigeria ...

    African Journals Online (AJOL)

    The research paper presents analytical results of Au, Mn and V concentrations of some Nigerian gold ores using two techniques: epithermal neutron activation analysis (ENAA) and proton induced X-ray emission (PIXE). Fourteen samples were collected from gold fields of North Western Nigeria, prepared separately to a ...

  20. Phosphate-mediated electrochemical adsorption of cisplatin on gold electrodes

    International Nuclear Information System (INIS)

    Kolodziej, Adam; Figueiredo, Marta C.; Koper, Marc T.M.; Fernandez-Trillo, Francisco; Rodriguez, Paramaconi

    2017-01-01

    Highlights: •The potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode is mediated by the adsorption of phosphate anions on gold electrode. •Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. •Upon reduction of the phosphate-mediated cisplatin adsorption, the platinum deposits are formed by 3D nanoclusters -- Abstract: This manuscript reports the potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode. It was found that this process is mediated by the adsorption of phosphate anions on the gold electrode and that the maximum coverage of Pt adsorbed is given by the maximum coverage of phosphate adsorbed at a given potential. The interaction of cisplatin with the phosphate groups was confirmed by in situ FTIR spectroscopy under external reflexion configuration. Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. Moreover, the relationship between the charge of the Pt deposited and the charge of the electrochemical surface area of the Pt deposited on the gold electrodes indicates that 3D nanoclusters of a few atoms of Pt were formed over the gold electrode upon the electrochemical reduction of the adsorbed cisplatin. The Pt nanoclusters formed under these conditions were later evaluated for the oxidation of a monolayer of carbon monoxide. The Pt nanoclusters showed a high overpotential for the oxidation of the carbon monoxide monolayer and the high oxidation overpotential was attributed to the absence of adsorption sites for OH species on the Pt clusters: only at potentials where the OH species are adsorbed at the edge between the Pt nanocluster and the gold support, the oxidation of the carbon monoxide on the Pt nanoparticles takes place.

  1. Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities.

    Science.gov (United States)

    Mejia, Camilo A; Huang, Ningfeng; Povinelli, Michelle L

    2012-09-01

    We predict the formation of optically trapped, metal-dielectric nanoparticle clusters above photonic crystal microcavities. We determine the conditions on particle size and position for a gold particle to be trapped above the microcavity. We then show that strong field redistribution and enhancement near the trapped gold nanoparticle results in secondary trapping sites for a pair of dielectric nanoparticles.

  2. Clustering Dycom

    KAUST Repository

    Minku, Leandro L.; Hou, Siqing

    2017-01-01

    baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number

  3. Transformation of thiolated chitosan-templated gold nanoparticles to huge microcubes

    International Nuclear Information System (INIS)

    Sun, Yudie; Liu, Honglin; Yang, Liangbao; Sun, Bai; Liu, Jinhuai

    2014-01-01

    Graphical abstract: - Highlights: • Mercapto groups were grafted to chitosan molecule by a reactive amine reduction. • Functional polymer with well-defined monomer units controls AuNPs assembly. • Assembled morphologies depend on the ratio of AuNPs to thiolate groups. • Microcubes with side length of ∼20 μm was synthesized through a dialysis step. • A edge-to-middle growth mechanism of gold microcubes was observed. - Abstract: The L-cysteine molecules were successfully grafted to the 2-amino group of chitosan by a reactive amine reduction, and the as-synthesized thiolated chitosan (TC) molecules were used as the templates to direct the self-assembly of gold nanoparticles and induce the transformation of these assemblies to gold microcubes through a deep-going dialysis. We found that the ratio of gold nanoparticles to TC molecules could greatly affect the shape of the assembled clusters. Different stages of these clusters and microstructures during the dialysis process were characterized by scanning electron microscope (SEM), and the microcubes with average side length of about 20 μm were successfully synthesized. According to the morphology evolution of the assembly, it could be concluded that the microcubes were formed from external to internal. The SERS area mapping images of microcubes and some clusters were also collected to study the formation mechanism of gold microcubes. Our work demonstrates a simple and highly effective way to assemble gold nanoparticles into microcubes with unique properties

  4. Transformation of thiolated chitosan-templated gold nanoparticles to huge microcubes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yudie [School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026 (China); Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Honglin, E-mail: hlliu@iim.ac.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Yang, Liangbao, E-mail: lbyang@iim.ac.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Bai; Liu, Jinhuai [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-05-01

    Graphical abstract: - Highlights: • Mercapto groups were grafted to chitosan molecule by a reactive amine reduction. • Functional polymer with well-defined monomer units controls AuNPs assembly. • Assembled morphologies depend on the ratio of AuNPs to thiolate groups. • Microcubes with side length of ∼20 μm was synthesized through a dialysis step. • A edge-to-middle growth mechanism of gold microcubes was observed. - Abstract: The L-cysteine molecules were successfully grafted to the 2-amino group of chitosan by a reactive amine reduction, and the as-synthesized thiolated chitosan (TC) molecules were used as the templates to direct the self-assembly of gold nanoparticles and induce the transformation of these assemblies to gold microcubes through a deep-going dialysis. We found that the ratio of gold nanoparticles to TC molecules could greatly affect the shape of the assembled clusters. Different stages of these clusters and microstructures during the dialysis process were characterized by scanning electron microscope (SEM), and the microcubes with average side length of about 20 μm were successfully synthesized. According to the morphology evolution of the assembly, it could be concluded that the microcubes were formed from external to internal. The SERS area mapping images of microcubes and some clusters were also collected to study the formation mechanism of gold microcubes. Our work demonstrates a simple and highly effective way to assemble gold nanoparticles into microcubes with unique properties.

  5. Melting of gold microclusters

    International Nuclear Information System (INIS)

    Garzon, I.L.; Jellinek, J.

    1991-01-01

    The transition from solid-like to liquid-like behavior in Au n , n=6, 7, 13, clusters is studied using molecular dynamics simulations. A Gupta-type potential with all-neighbour interactions is employed to incorporate n-body effects. The melting-like transition is described in terms of short-time averages of the kinetic energy per particle, root-mean-square bond length fluctuations and mean square displacements. A comparison between melting temperatures of Au n and Ni n clusters is presented. (orig.)

  6. Activation analysis in gold industry

    International Nuclear Information System (INIS)

    Kist, A. A.

    2003-01-01

    Nuclear techniques and methods were, are, and will be very important for many fields of science, agriculture, industry, etc. Among other examples one can remember role of the nuclear medicine (radiotherapy and radiodiagnostic methods) or semiconductors (communication, computing, information, etc.) which industrial production has been on initial stage based on activation analysis. One of very illustrative examples is application of nuclear methods in gold industry. This is given by favorable nuclear properties of gold. Uzbekistan is one of the main producers of gold. Open-cast mining and hydro metallurgic extraction (using leaching by cyanide and sorption by ion-exchange resin) is the mostly used technology. The typical gold ores are sulfide and contain elevated concentration of As and Sb. That needs special technology of gold extraction. Importance of gold for Uzbekistan economy is a reason why for many years there are carried out studies concerning to gold production. These studies include also nuclear methods and their results are successfully used in gold industry. The present paper gives a brief overview for period of 25 years. For many reasons most of these studies were not published before completely. Despite some results are obtained decades ago we decided to present the overview as an example how nuclear methods can cover requirements of the whole process. We are trying to sort these studies according to methods and applications

  7. Cluster forcing

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    The cluster theory attributed to Michael Porter has significantly influenced industrial policies in countries across Europe and North America since the beginning of the 1990s. Institutions such as the EU, OECD and the World Bank and governments in countries such as the UK, France, The Netherlands...... or management. Both the Accelerate Wales and the Accelerate Cluster programmes target this issue by trying to establish networks between companies that can be used to supply knowledge from research institutions to manufacturing companies. The paper concludes that public sector interventions can make...... businesses. The universities were not considered by the participating companies to be important parts of the local business environment and inputs from universities did not appear to be an important source to access knowledge about new product development or new techniques in production, distribution...

  8. Regional Innovation Clusters

    Data.gov (United States)

    Small Business Administration — The Regional Innovation Clusters serve a diverse group of sectors and geographies. Three of the initial pilot clusters, termed Advanced Defense Technology clusters,...

  9. Colorimetric gold nanoparticles-based aptasensors

    Directory of Open Access Journals (Sweden)

    Rezavn Yazdian-Robati

    2018-01-01

    Full Text Available Recognition of different agents including chemical and biological plays important role in forensic, biomedical and environmentalfield.In recent decades, nanotechnology and nano materials had a high impact on development of sensors. Using  nanomaterials in construction of biosensors can effectively improve the Sensitivity and other features of biosensors. Different type of nanostructures including nanotubes, nanodiamonds, thin films ,nanorods, nanoparticles(NP, nanofibers andvarious clusters have been explored and applied in construction of biosensors. Among nanomaterials mentioned above, gold nanoparticle (GNPas a new class of unique fluorescence quenchers, is receiving significant attention in developing of optical biosensors because of their unique physical, chemical and biological properties. In this mini review, we discussed the use of GNPs in construction of colorimetric aptasensorsas a class of optical sensors for detection of antibiotics, toxins and infection diseases.

  10. Cluster analysis

    OpenAIRE

    Mucha, Hans-Joachim; Sofyan, Hizir

    2000-01-01

    As an explorative technique, duster analysis provides a description or a reduction in the dimension of the data. It classifies a set of observations into two or more mutually exclusive unknown groups based on combinations of many variables. Its aim is to construct groups in such a way that the profiles of objects in the same groups are relatively homogenous whereas the profiles of objects in different groups are relatively heterogeneous. Clustering is distinct from classification techniques, ...

  11. Stealing the Gold

    International Nuclear Information System (INIS)

    Whittington, S G

    2005-01-01

    Stealing the Gold presents a survey of some of the most exciting topics in condensed matter physics today, from the perspective of the pioneering work of Sam Edwards. Original articles from leaders in the field, including several Nobel laureates, highlight the historical development as well as new and emerging areas. This book would be of interest to graduate students and researchers in condensed matter physics, statistical physics and theoretical physics. Over the course of nearly half a century, Sam Edwards has led the field of condensed matter physics in new directions, ranging from the electronic and statistical properties of disordered materials to the mechanical properties of granular materials. Along the way he has provided seminal contributions to fluid mechanics, polymer science, surface science and statistical mechanics. This volume celebrates the immense scope of his influence by presenting a collection of original articles by recognized leaders in theoretical physics, including two Nobel laureates and a Fields medalist, which describe the genesis, evolution and future prospects of the various sub-fields of condensed matter theory, along with reprints of a selection of Edwards' seminal papers that helped give birth to the subject. Stealing the Gold, Edwards' favourite caricature of the relationship between theoretical physicists and nature, will be of singular interest to graduate students looking for an overview of some of the most exciting areas of theoretical physics, as well as to researchers in condensed matter physics looking for a comprehensive, broad and uniquely incisive snapshot of their subject at the dawn of the 21st century. (book review)

  12. A multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration.

    Science.gov (United States)

    Goovaerts, P; Albuquerque, Teresa; Antunes, Margarida

    2016-11-01

    This paper describes a multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration, with an application to an abandoned sedimentary gold mining region in Portugal. The main challenge was the existence of only a dozen gold measurements confined to the grounds of the old gold mines, which precluded the application of traditional interpolation techniques, such as cokriging. The analysis could, however, capitalize on 376 stream sediment samples that were analyzed for twenty two elements. Gold (Au) was first predicted at all 376 locations using linear regression (R 2 =0.798) and four metals (Fe, As, Sn and W), which are known to be mostly associated with the local gold's paragenesis. One hundred realizations of the spatial distribution of gold content were generated using sequential indicator simulation and a soft indicator coding of regression estimates, to supplement the hard indicator coding of gold measurements. Each simulated map then underwent a local cluster analysis to identify significant aggregates of low or high values. The one hundred classified maps were processed to derive the most likely classification of each simulated node and the associated probability of occurrence. Examining the distribution of the hot-spots and cold-spots reveals a clear enrichment in Au along the Erges River downstream from the old sedimentary mineralization.

  13. Scanning tunneling microscopy studies of glucose oxidase on gold surface

    International Nuclear Information System (INIS)

    Losic, D.; Shapter, J.G.; Gooding, J.J.

    2002-01-01

    Full text: Three immobilization methods have been used for scanning tunneling microscopy (STM) studies of glucose oxidase (GOD) on gold. They are based on a) physical adsorption from solution, b) microcontact printing and c) covalent bonding onto self-assembled monolayers (SAM) of 3-mercaptopropionic acid (MPA). The STM images are used to provide information about the organization of individual GOD molecules and more densely packed monolayers of GOD on electrode surfaces, thus providing information of the role of interfacial structure on biosensor performance. The use of atomically flat gold substrates enables easy distinction of deposited enzyme features from the flat gold substrate. Microcontact printing is found to be a more reliable method than adsorption from solution for preparing individual GOD molecules on the gold surface STM images of printed samples reveal two different shapes of native GOD molecules. One is a butterfly shape with dimensions of 10 ± 1 nm x 6 ± 1 nm, assigned to the lying position of molecule while the second is an approximately spherical shape with dimensions of 6.5 ± 1 nm x 5 ± 1nm assigned to a standing position. Isolated clusters of 5 to 6 GOD molecules are also observed. With monolayer coverage, GOD molecules exhibit a tendency to organize themselves into a two dimensional array with adequate sample stability to obtain high-resolution STM images. Within these two-dimensional arrays are clearly seen repeating clusters of five to six enzyme molecules in a unit STM imaging of GOD monolayers covalently immobilized onto SAM (MPA) are considerably more difficult than when the enzyme is adsorbed directly onto the metal. Cluster structures are observed both high and low coverage despite the fact that native GOD is a negatively charged molecule. Copyright (2002) Australian Society for Electron Microscopy Inc

  14. In Situ Scanning Tunneling Microscopy Topography Changes of Gold (111) in Aqueous Sulfuric Acid Produced by Electrochemical Surface Oxidation and Reduction and Relaxation Phenomena

    Science.gov (United States)

    Pasquale, M. A.; Nieto, F. J. Rodríguez; Arvia, A. J.

    The electrochemical formation and reduction of O-layers on gold (111) films in 1 m sulfuric acid under different potentiodynamic routines are investigated utilizing in situ scanning tunneling microscopy. The surface dynamics is interpreted considering the anodic and cathodic reaction pathways recently proposed complemented with concurrent relaxation phenomena occurring after gold (111) lattice mild disruption (one gold atom deep) and moderate disruption (several atoms deep). The dynamics of both oxidized and reduced gold topographies depends on the potentiodynamic routine utilized to form OH/O surface species. The topography resulting from a mild oxidative disruption is dominated by quasi-2D holes and hillocks of the order of 5 nm, involving about 500-600 gold atoms each, and their coalescence. A cooperative turnover process at the O-layer, in which the anion ad-layer and interfacial water play a key role, determines the oxidized surface topography. The reduction of these O-layers results in gold clusters, their features depending on the applied potential routine. A moderate oxidative disruption produces a surface topography of hillocks and holes several gold atoms high and deep, respectively. The subsequent reduction leads to a spinodal gold pattern. Concurrent coalescence appears to be the result of an Ostwald ripening that involves the surface diffusion of both gold atoms and clusters. These processes produce an increase in surface roughness and an incipient gold faceting. The dynamics of different topographies can be qualitatively explained employing the arguments from colloidal science theory. For 1.1 V ≤ E ≅ Epzc weak electrostatic repulsions favor gold atom/cluster coalescence, whereas for E < Epzc the attenuated electrostatic repulsions among gold surfaces stabilize small clusters over the substrate producing string-like patterns.

  15. Vacancy Clusters on Surfaces of Au Nanoparticles Embedded in MgO

    International Nuclear Information System (INIS)

    Xu, Jun; Mills, A. P. Jr.; Ueda, A.; Henderson, D. O.; Suzuki, R.; Ishibashi, S.

    1999-01-01

    MeV implantation of gold ions into MgO(100) followed by annealing is a method to form gold nanoparticles for obtaining modified optical properties. We show from variable-energy positron spectroscopy that clusters of 2 Mg and 2 O vacancies (v 4 ) are attached to the gold nanoparticle surfaces within the projected range (R p ) . We also find that v 4 vacancy clusters are created at depths less than R p , and extend into the region greater than R p due to damage induced by knock-on collisions. (c) 1999 The American Physical Society

  16. Directed Assembly of Gold Nanoparticles

    DEFF Research Database (Denmark)

    Westerlund, Axel Rune Fredrik; Bjørnholm, Thomas

    2009-01-01

    As a complement to common "top-down" lithography techniques, "bottom-up" assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures...... due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using...

  17. GOLD and the fixed ratio

    Directory of Open Access Journals (Sweden)

    Vestbo J

    2012-09-01

    Full Text Available Jørgen VestboUniversity of Manchester, Manchester, UKI read with interest the paper entitled "Diagnosis of airway obstruction in the elderly: contribution of the SARA study" by Sorino et al in a recent issue of this journal.1 Being involved in the Global Initiative for Obstructive Lung Diseases (GOLD, it is nice to see the interest sparked by the GOLD strategy document. However, in the paper by Sorino et al, there are a few misunderstandings around GOLD and the fixed ratio (forced expiratory volume in 1 second/forced volume vital capacity < 0.70 that need clarification.View original paper by Sorino and colleagues.

  18. Understanding the catalytic activity of gold nanoparticles through multi-scale simulations

    DEFF Research Database (Denmark)

    Brodersen, Simon Hedegaard; Vej-Hansen, Ulrik Grønbjerg; Larsen, Britt Hvolbæk

    2011-01-01

    We investigate how the chemical reactivity of gold nanoparticles depends on the cluster size and shape using a combination of simulation techniques at different length scales, enabling us to model at the atomic level the shapes of clusters in the size range relevant for catalysis. The detailed......-coordinated active sites is found, and their reactivities are extracted from models based on Density Functional Theory calculations. This enables us to determine the chemical activity of clusters in the same range of particle sizes that is accessible experimentally. The variation of reactivity with particle size...... is in excellent agreement with experiments, and we conclude that the experimentally observed trends are mostly explained by the high reactivity of under-coordinated corner atoms on the gold clusters. Other effects, such as the effect of the substrate, may influence the reactivities significantly, but the presence...

  19. GOLD predictivity mapping in French Guiana using an expert-guided data-driven approach based on a regional-scale GIS

    Science.gov (United States)

    Cassard, Daniel; Billa, Mario; Lambert, Alain; Picot, Jean-Claude; Husson, Yves

    2008-05-01

    The realistic estimation of gold mining in French Guiana requires including the numerous illegal gold washing activities in predictivity mapping. The combination of a classical approach, based on the algebraic method of Knox-Robinson and Groves, with innovative processing grid-type geochemical and radiometric data, as well as cluster analysis technique provides a better understanding of the structure of studied mineralized areas.

  20. Enhancement of gold recovery using bioleaching from gold concentrate

    Science.gov (United States)

    Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.

  1. X-Ray Spectroscopy of Gold Nanoparticles

    Science.gov (United States)

    Nahar, Sultana N.; Montenegro, M.; Pradhan, A. K.; Pitzer, R.

    2009-06-01

    Inner shell transitions, such as 1s-2p, in heavy elements can absorb or produce hard X-rays, and hence are widely used in nanoparticles. Bio-medical research for cancer treatment has been using heavy element nanoparticles, embeded in malignant tumor, for efficient absorption of irradiated X-rays and leading emission of hard X-rays and energetic electrons to kill the surrounding cells. Ejection of a 1s electron during ionization of the element by absorption of a X-ray photon initiates the Auger cascades of emission of photons and electrons. We have investigated gold nanoparticles for the optimal energy range, below the K-edge (1s) ionization threshold, that corresponds to resonant absorption of X-rays with large attenuation coefficients, orders of magnitude higher over the background as well as to that at K-edge threshold. We applied these attenuation coefficients in Monte Carlo simulation to study the intensities of emission of photons and electrons by Auger cascades. The numerical experiments were carried out in a phantom of water cube with a thin layer, 0.1mm/g, of gold nanoparticles 10 cm inside from the surface using the well-known code Geant4. We will present results on photon and electron emission spectra from passing monochromatic X-ray beams at 67 keV, which is the resonant energy for resonant K_{α} lines, at 82 keV, the K-shell ionization threshold, and at 2 MeV where the resonant effect is non-existent. Our findings show a high peak in the gold nanoparticle absorption curve indicating complete absorption of radiation within the gold layer. The photon and electron emission spectra show resonant features. Acknowledgement: Partially supported by a Large Interdisciplinary Grant award of the Ohio State University and NASA APRA program (SNN). The computational work was carried out on the Cray X1 and Itanium 4 cluster at the Ohio Supercomputer Center, Columbus Ohio. "Resonant X-ray Irradiation of High-Z Nanoparticles For Cancer Theranostics" (refereed

  2. Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics

    KAUST Repository

    Lee, You-Jin

    2013-12-23

    Ultrasmooth, highly spherical monocrystalline gold particles were prepared by a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices. The etching process effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even showing Fano-like resonances in small clusters. The high monodispersity of the particles we demonstrate should facilitate the self-assembly of nanoparticle clusters with uniform optical resonances, which could in turn be used to fabricate optical metafluids. Narrow size distributions are required to control not only the spectral features but also the morphology and yield of clusters in certain assembly schemes. © 2013 American Chemical Society.

  3. In harmony with gold and uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A profile is given on Mr Clive Knobbs as managing director of Harmony gold mine. From March 1 1983 he succeeded as deputy chairman of the group's gold and uranium division, and became the Rand Mines representative on the Gold Producers Committee and the Executive Committee of the Chamber of Mines. The article also takes a look at gold and uranium mining in general

  4. 41 CFR 101-45.002 - Gold.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed bid...

  5. Size fraction assaying of gold bearing rocks (for gold extraction) by ...

    African Journals Online (AJOL)

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite ...

  6. Gold--a controversial sensitizer

    DEFF Research Database (Denmark)

    Bruze, M; Andersen, Klaus Ejner

    1999-01-01

    allergy to gold sodium thiosulfate were published at the beginning of the 1990s, the allergic nature of the reported positive patch test reactions to gold was questioned. The major argument for such questioning was the lack of demonstrable clinical relevance in most positive reactors. A major reason......Until recently, gold allergy was considered to be extremely rare. Gold has been used and worshipped for thousands of years without any obvious complaints of skin problems, either in those participating in mining and other ways of prospecting, or in those wearing jewellery. When studies on contact...... for the questioning may have been confusion in differentiating between contact allergy and allergic contact dermatitis. To arrive at a diagnosis of allergic contact dermatitis, 3 steps have, in principle, to be fulfilled: (i) establishment of contact allergy; (ii) demonstration of present exposure; (iii) assessment...

  7. Gold, currencies and market efficiency

    Science.gov (United States)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2016-05-01

    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  8. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  9. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  10. Ligand-Enhanced Optical Response of Gold Nanomolecules and Its Fragment Projection Analysis: The Case of Au 30 (SR) 18

    Energy Technology Data Exchange (ETDEWEB)

    Sementa, Luca; Barcaro, Giovanni; Baseggio, Oscar; De Vetta, Martina; Dass, Amala; Apra, Edoardo; Stener, Mauro; Fortunelli, Alessandro

    2017-01-10

    Here we investigate via first-principles simulations the optical absorption spectra of three different Au30(SR)18 monolayer-protected clusters (MPC): Au30(StBu)18, which is known in the literature and whose crystal structure is available, and two species – Au30(SPh)18 and Au30(SPh-pNO2)18 – which have been designed by replacing the tert-butyl organic residues with aromatic ones so as to investigate the effects of ligand replacement on the optical response of Au nanomolecules. In analogy with previously studied but rather different Au23(SR)16- anionic species, a substantial ligand-enhancement of the absorption intensity in the optical region is obtained for the Au30(SPhpNO2)18 neutral MPC. This demonstrates that using conjugated aromatic ligands with properly chosen electron withdrawal substituents and exhibiting steric hindrance so as to also achieve charge decompression at the surface is a general approach to enhance MPC photo-absorption intensity in the optical region. Moreover, the ligand-enhancement phenomenon is subjected to a detailed analysis based on fragment projection of electronic excited states and on induced transition densities, leading to a better understanding of its physical origin, thus opening avenues to its more precise control and exploitation.

  11. Immunological properties of gold nanoparticles

    OpenAIRE

    Dykman, Lev A.; Khlebtsov, Nikolai G.

    2016-01-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be...

  12. Biosensors based on gold nanostructures

    OpenAIRE

    Vidotti,Marcio; Carvalhal,Rafaela F.; Mendes,Renata K.; Ferreira,Danielle C. M.; Kubota,Lauro T.

    2011-01-01

    The present review discusses the latest advances in biosensor technology achieved by the assembly of biomolecules associated with gold nanoparticles in analytical devices. This review is divided in sections according to the biomolecule employed in the biosensor development: (i) immunocompounds; (ii) DNA/RNA and functional DNA/RNA; and (iii) enzymes and Heme proteins. In order to facilitate the comprehension each section was subdivided according to the transduction mode. Gold nanoparticles bas...

  13. Characterisation of gold from Fiji

    OpenAIRE

    Naden, Jon; Henney, P.J.

    1995-01-01

    This is a study of the variation in chemistry and inclusion mineralogy of bedrock and placer gold from Fiji. It forms part of a large project, undertaking gold characterisation from a wide range of geological environments in Ecuador, Zimbabwe, Malaysia and Fiji. The work was carried out under the Overseas Development AdministratiodBritish Geological Survey Technology Development and Research programme (Project R5549) as part of the British Government’s provision of technical...

  14. Why can a gold salt react as a base?

    Science.gov (United States)

    Anania, Mariarosa; Jašíková, Lucie; Jašík, Juraj; Roithová, Jana

    2017-09-26

    This study shows that gold salts [(L)AuX] (L = PMe 3 , PPh 3 , JohnPhos, IPr; X = SbF 6 , PF 6 , BF 4 , TfO, Tf 2 N) act as bases in aqueous solutions and can transform acetone to digold acetonyl complexes [(L) 2 Au 2 (CH 2 COCH 3 )] + without any additional base present in solution. The key step is the formation of digold hydroxide complexes [(L) 2 Au 2 (OH)] + . The kinetics of the formation of the digold complexes and their mutual transformation is studied by electrospray ionization mass spectrometry and the delayed reactant labelling method. We show that the formation of digold hydroxide is the essential first step towards the formation of the digold acetonyl complex, the reaction is favoured by more polar solvents, and the effect of counter ions is negligible. DFT calculations suggest that digold hydroxide and digold acetonyl complexes can exist in solution only due to the stabilization by the interaction with two gold atoms. The reaction between the digold hydroxide and acetone proceeds towards the dimer {[(L)Au(OH)]·[(L)Au(CH 3 COCH 3 )] + }. The monomeric units interact at the gold atoms in the perpendicular arrangement typical of the gold clusters bound by the aurophilic interaction. The hydrogen is transferred within the dimer and the reaction continues towards the digold acetonyl complex and water.

  15. Synthesis, Structure, Stability and Redispersion of Gold-based Nanoparticles

    Science.gov (United States)

    Tiruvalam, Ram Chandra

    activated carbon and graphite substrates, with the exclusive formation of isolated gold atoms, dimeric species, and sub-nm clusters.

  16. Nuclear clustering - a cluster core model study

    International Nuclear Information System (INIS)

    Paul Selvi, G.; Nandhini, N.; Balasubramaniam, M.

    2015-01-01

    Nuclear clustering, similar to other clustering phenomenon in nature is a much warranted study, since it would help us in understanding the nature of binding of the nucleons inside the nucleus, closed shell behaviour when the system is highly deformed, dynamics and structure at extremes. Several models account for the clustering phenomenon of nuclei. We present in this work, a cluster core model study of nuclear clustering in light mass nuclei

  17. Goldenphilicity: Luminescent gold compounds

    International Nuclear Information System (INIS)

    Sansores, L.E.

    2002-01-01

    In the solids and molecules different types of bonds are presented depending on the involved atoms, covalent bonds are common among elements of open shell, where more bond orbitals are filled than anti bond orbitals. It is expected that ionic bonds among closed shell atoms which have charges of opposite sign. Bonds type Van der Waals are presented among molecules which have a bipolar moment. It would not be expected bonds among zero charge species, or more generally with the same nominal charge and in any case the attractive forces would be very small. In fact it is expected that two metallic cations to be repelled each other. There recently is evidence that in organic or organometallic compounds could exist attractive interactions between two cations of the d 8 -d 10 -s 2 families. These bonds are weak but stronger than those of Van der Waals. They are compared with the hydrogen bonds. In this work it was reviewed some examples in which the goldenphilicity plays an important role in the luminescence that the gold complexes present. Examples of mono, bi and trinuclear and the structures that these organometallic compounds could take are examined. (Author)

  18. Gold nanoparticles for cancer detection and treatment: The role of adhesion

    International Nuclear Information System (INIS)

    Oni, Y.; Hao, K.; Dozie-Nwachukwu, S.; Odusanya, O. S.; Obayemi, J.D.; Anuku, N.; Soboyejo, W. O.

    2014-01-01

    This paper presents the results of an experimental study of the effects of adhesion between gold nanoparticles and surfaces that are relevant to the potential applications in cancer detection and treatment. Adhesion is measured using a dip coating/atomic force microscopy (DC/AFM) technique. The adhesion forces are obtained for dip-coated gold nanoparticles that interact with peptide or antibody-based molecular recognition units (MRUs) that attach specifically to breast cancer cells. They include MRUs that attach specifically to receptors on breast cancer cells. Adhesion forces between anti-cancer drugs such as paclitaxel, and the constituents of MRU-conjugated Au nanoparticle clusters, are measured using force microscopy techniques. The implications of the results are then discussed for the design of robust gold nanoparticle clusters and for potential applications in localized drug delivery and hyperthermia

  19. Catalytic enhancement of gold nanocages induced by undercoordination-charge-polarization

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2017-05-01

    Full Text Available Principle behind the highest catalytic ability of the least coordinated gold remains a puzzle. With the aid of density functional theory calculations, we show that in 3-coordinated gold cages (i the Au–Au bond contracts by ∼5% in average, (ii the valance density-of-states shift up to Fermi level when the Au55 cluster turns into an Au12 cage, and (iii the activation energy for CO oxidation drops in sequence, Au55 cluster (13.6 Kcal/mol, Au42 cage (8.0 Kcal/mol, Au13(6.5 Kcal/mol, and Au12 cage (5.1 Kcal/mol, with comparing the reaction paths and spin states. The principle clarified here paves the way for the design of gold nanocatalyst.

  20. Gold nanoparticles for cancer detection and treatment: The role of adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Oni, Y. [Princeton Institute for Science and Technology of Materials (PRISM), Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Hao, K. [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Dozie-Nwachukwu, S.; Odusanya, O. S. [African University of Science and Technology (AUST), Kilometer 10, Airport Road, Abuja, Federal Capital Territory (Nigeria); Sheda Science and Technology Complex (SHESTCO), Gwagwalada, Abuja, Federal Capital Territory (Nigeria); Obayemi, J.D. [African University of Science and Technology (AUST), Kilometer 10, Airport Road, Abuja, Federal Capital Territory (Nigeria); Anuku, N. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Department of Chemistry and Chemical Technology, Bronx Community College, New York, New York 10453 (United States); Soboyejo, W. O. [Princeton Institute for Science and Technology of Materials (PRISM), Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); African University of Science and Technology (AUST), Kilometer 10, Airport Road, Abuja, Federal Capital Territory (Nigeria)

    2014-02-28

    This paper presents the results of an experimental study of the effects of adhesion between gold nanoparticles and surfaces that are relevant to the potential applications in cancer detection and treatment. Adhesion is measured using a dip coating/atomic force microscopy (DC/AFM) technique. The adhesion forces are obtained for dip-coated gold nanoparticles that interact with peptide or antibody-based molecular recognition units (MRUs) that attach specifically to breast cancer cells. They include MRUs that attach specifically to receptors on breast cancer cells. Adhesion forces between anti-cancer drugs such as paclitaxel, and the constituents of MRU-conjugated Au nanoparticle clusters, are measured using force microscopy techniques. The implications of the results are then discussed for the design of robust gold nanoparticle clusters and for potential applications in localized drug delivery and hyperthermia.

  1. An interpretation of the absorption and emission spectra of the gold dimer using modern theoretical tools

    DEFF Research Database (Denmark)

    Geethalakshmi, K. R.; Ruiperez, F.; Knecht, S.

    2012-01-01

    The excited states of the gold dimer have been investigated using modern theoretical tools including the multiconfigurational exact molecular mean-field intermediate Hamiltonian Fock-space Coupled Cluster, X2Cmmf-IHFSCC, and the complete active space self-consistent field followed by second order...

  2. An interpretation of the absorption and emission spectra of the gold dimer using modern theoretical tools

    NARCIS (Netherlands)

    Geethalakshmi, K R; Ruipérez, Fernando; Knecht, Stefan; Ugalde, Jesus M.; Morse, Michael D.; Infante, Ivan

    2012-01-01

    The excited states of the gold dimer have been investigated using modern theoretical tools including the multiconfigurational exact molecular mean-field intermediate Hamiltonian Fock-space Coupled Cluster, X2Cmmf-IHFSCC, and the complete active space self-consistent field followed by second order

  3. Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

    Directory of Open Access Journals (Sweden)

    Silvia Varela-Aramburu

    2016-09-01

    Full Text Available Gold nanoclusters are small (1–3 nm nanoparticles with a high surface area that are useful for biomedical studies and drug delivery. The synthesis of small, surface-functionalized gold nanoclusters is greatly dependent on the reaction conditions. Here, we describe a straightforward, efficient and robust room temperature one-pot synthesis of 2 nm gold nanoclusters using thioglucose as a reducing and stabilizing agent, which was discovered by serendipity. The resultant monodisperse gold nanoclusters are more stable than those generated using some other common methods. The carboxylic acid contained in the stabilizing agent on the cluster surface serves as anchor for nanocluster functionalization. Alternatively, the addition of thiols serves to functionalize the nanoclusters. The resulting non-cytotoxic nanoclusters are taken up by cells and constitute a tuneable platform for biomedical applications including drug delivery.

  4. Cluster headache

    Directory of Open Access Journals (Sweden)

    Ducros Anne

    2008-07-01

    Full Text Available Abstract Cluster headache (CH is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye. It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name in bouts that can occur during specific months of the year. Alcohol is the only dietary trigger of CH, strong odors (mainly solvents and cigarette smoke and napping may also trigger CH attacks. During bouts, attacks may happen at precise hours, especially during the night. During the attacks, patients tend to be restless. CH may be episodic or chronic, depending on the presence of remission periods. CH is associated with trigeminovascular activation and neuroendocrine and vegetative disturbances, however, the precise cautive mechanisms remain unknown. Involvement of the hypothalamus (a structure regulating endocrine function and sleep-wake rhythms has been confirmed, explaining, at least in part, the cyclic aspects of CH. The disease is familial in about 10% of cases. Genetic factors play a role in CH susceptibility, and a causative role has been suggested for the hypocretin receptor gene. Diagnosis is clinical. Differential diagnoses include other primary headache diseases such as migraine, paroxysmal hemicrania and SUNCT syndrome. At present, there is no curative treatment. There are efficient treatments to shorten the painful attacks (acute treatments and to reduce the number of daily attacks (prophylactic treatments. Acute treatment is based on subcutaneous administration of sumatriptan and high-flow oxygen. Verapamil, lithium, methysergide, prednisone, greater occipital nerve blocks and topiramate may be used for prophylaxis. In refractory cases, deep-brain stimulation of the

  5. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaodong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Long, Yunfei, E-mail: l_yunfei927@163.com [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Wang, Jianxiu, E-mail: jxiuwang@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ{sub em} {sub max} = 650 nm, λ{sub ex} {sub max} = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O{sub 2} to produce H{sub 2}O{sub 2}, which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10{sup −6}–140 × 10{sup −6} M and a detection limit of 0.7 × 10{sup −6} M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells.

  6. Annealing relaxation of ultrasmall gold nanostructures

    Science.gov (United States)

    Chaban, Vitaly

    2015-01-01

    Except serving as an excellent gift on proper occasions, gold finds applications in life sciences, particularly in diagnostics and therapeutics. These applications were made possible by gold nanoparticles, which differ drastically from macroscopic gold. Versatile surface chemistry of gold nanoparticles allows coating with small molecules, polymers, biological recognition molecules. Theoretical investigation of nanoscale gold is not trivial, because of numerous metastable states in these systems. Unlike elsewhere, this work obtains equilibrium structures using annealing simulations within the recently introduced PM7-MD method. Geometries of the ultrasmall gold nanostructures with chalcogen coverage are described at finite temperature, for the first time.

  7. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  8. Brightest Cluster Galaxies in REXCESS Clusters

    Science.gov (United States)

    Haarsma, Deborah B.; Leisman, L.; Bruch, S.; Donahue, M.

    2009-01-01

    Most galaxy clusters contain a Brightest Cluster Galaxy (BCG) which is larger than the other cluster ellipticals and has a more extended profile. In the hierarchical model, the BCG forms through many galaxy mergers in the crowded center of the cluster, and thus its properties give insight into the assembly of the cluster as a whole. In this project, we are working with the Representative XMM-Newton Cluster Structure Survey (REXCESS) team (Boehringer et al 2007) to study BCGs in 33 X-ray luminous galaxy clusters, 0.055 < z < 0.183. We are imaging the BCGs in R band at the Southern Observatory for Astrophysical Research (SOAR) in Chile. In this poster, we discuss our methods and give preliminary measurements of the BCG magnitudes, morphology, and stellar mass. We compare these BCG properties with the properties of their host clusters, particularly of the X-ray emitting gas.

  9. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  10. Nano-jewellery: C5Au12--a gold-plated diamond at molecular level.

    Science.gov (United States)

    Naumkin, F

    2006-06-07

    A mixed carbon-metal cluster is designed by combining the tetrahedral C(5) radical (with a central atom-the skeleton of the C(5)H(12) molecule) and the spherical Au(12) layer (the external atomic shell of the Au(13) cluster). The C(5)Au(12) cluster and its negative and positive ionic derivatives, C(5)Au(12)(+/-), are investigated ab initio (DFT) in terms of optimized structures and relative energies of a few spin-states, for the icosahedral-like and octahedral-like isomers. The cluster is predicted to be generally more stable in its octahedral shape (similar to C(5)H(12)) which prevails for the negative ion and may compete with the icosahedral shape for the neutral system and positive ion. Adiabatic ionization energies (AIE) and electron affinities (AEA) of C(5)Au(12), vertical electron-detachment (VDE) energies of C(5)Au(12)(-), and vertical ionization and electron-attachment energies (VIE, VEA) of C(5)Au(12) are calculated as well, and compared with those for the corresponding isomers of the Au(13) cluster. The AIE and VIE values are found to be close for the two systems, while the AEA and VDE values are significantly reduced for the radical-based species. A simple fragment-based model is proposed for the decomposition of the total interaction into carbon-gold and gold-gold components.

  11. Gold nanoparticles stabilized by chitosan

    International Nuclear Information System (INIS)

    Geraldes, Adriana N.; Oliveira, Maria Jose A.; Silva, Andressa A. da; Leal, Jessica; Batista, Jorge G.S.; Lugao, Ademar B.

    2015-01-01

    In our laboratory has been growing the interest in studying gold nanoparticles and for this reason, the aim of this work is report the first results of the effect of chitosan as stabilizer in gold nanoparticle formulation. AuNPs were synthesized by reducing hydrogen tetrachloroaurate (HAuCl 4 ) using NaBH 4 or gamma irradiation (25kGy) as reduction agent. The chitosan (3 mol L -1 ) was added at 0.5; 1.0 and 1.5 mL. The gold nanoparticles were characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Their physical stability was determined using a UV-Vis spectrophotometer over one week during storage at room temperature. Absorption measurements indicated that the plasmon resonance wavelength appears at a wavelength around 530 nm. Has been observed that Chitosan in such quantities were not effective in stabilizing the AuNPs. (author)

  12. Plasmonic Horizon in Gold Nanosponges.

    Science.gov (United States)

    Vidal, Cynthia; Sivun, Dmitry; Ziegler, Johannes; Wang, Dong; Schaaf, Peter; Hrelescu, Calin; Klar, Thomas A

    2018-02-14

    An electromagnetic wave impinging on a gold nanosponge coherently excites many electromagnetic hot-spots inside the nanosponge, yielding a polarization-dependent scattering spectrum. In contrast, a hole, recombining with an electron, can locally excite plasmonic hot-spots only within a horizon given by the lifetime of localized plasmons and the speed carrying the information that a plasmon has been created. This horizon is about 57 nm, decreasing with increasing size of the nanosponge. Consequently, photoluminescence from large gold nanosponges appears unpolarized.

  13. New Trends in Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta

    2014-07-01

    Full Text Available Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growing fields in science and is proven by the promising applications in several fields, such as green chemistry and environmental catalysis, in the synthesis of single-walled carbon nanotubes, as modifiers of Ni catalysts for methane steam and dry reforming reactions and in biological and electrochemistry applications. The range of reactions catalyzed by gold, as well as the suitability of different supports and the influence of the preparation conditions have been widely explored and optimized in applied research [2]. Gold catalysts appeared to be very different from the other noble metal-based catalysts, due to their marked dependence on the preparation method, which is crucial for the genesis of the catalytic activity. Several methods, including deposition-precipitation, chemical vapor deposition and cation adsorption, have been applied for the preparation of gold catalysts over reducible oxides, like TiO2. Among these methods, deposition-precipitation has been the most frequently employed method for Au loading, and it involves the use of tetrachloroauric (III acid as a precursor. On the other hand, the number of articles dealing with Au-loaded acidic supports is smaller than that on basic supports, possibly because the deposition of [AuCl4]− or [AuOHxCl4−x]− species on acidic supports is difficult, due to their very low point of zero charge. Despite this challenge, several groups have reported the use of acidic zeolites as supports for gold. Zeolites

  14. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold

  15. Ligations of Gold Atoms with Iron Porphyrin

    DEFF Research Database (Denmark)

    Zhang, Ling; Kepp, Kasper Planeta; Ulstrup, Jens

    Gold is an exotic material with d-electrons deciding electronic mappings andconfigurations of adsorbed molecules. The specific interaction of Au atoms and S-, Ncappedmolecules make gold nanoparticles widely applied in the medicine transport andimmunoassay. Density functional theory demonstrates t...

  16. Metallic gold beads in hyaluronic acid

    DEFF Research Database (Denmark)

    Pedersen, Dan Sonne; Tran, Thao Phuong; Smidt, Kamille

    2013-01-01

    . In conclusion, our findings support that bio-liberation of gold from metallic gold surfaces have anti-inflammatory properties similar to classic gold compounds, warranting further studies into the pharmacological potential of this novel gold-treatment and the possible synergistic effects of hyaluronic acid....... by exploiting macrophage-induced liberation of gold ions (dissolucytosis) from gold surfaces. Injecting gold beads in hyaluronic acid (HA) as a vehicle into the cavities of the brain can delay clinical signs of disease progression in the MS model, experimental autoimmune encephalitis (EAE). This study...... investigates the anti-inflammatory properties of metallic gold/HA on the gene expression of tumor necrosis factor (Tnf-α), Interleukin (Il)-1β, Il-6, Il-10, Colony-stimulating factor (Csf)-v2, Metallothionein (Mt)-1/2, Bcl-2 associated X protein (Bax) and B cell lymphoma (Bcl)-2 in cultured J774 macrophages...

  17. Adsorption and Vibrational Study of Folic Acid on Gold Nanopillar Structures Using Surface-enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Rozo, Ciro E.

    2015-01-01

    on the nanopillars within the high electromagnetic field areas. The adsorption behaviour of folic acid and the band assignment of the main vibrations together with the optimized geometry of folic acid and folic acid in the presence of a cluster of 10 gold atoms were assessed using the density functional theory (B3......LYP(6-31G(d))) and the scalar relativistic effective core potential with a double-zeta basis set (LANL2DZ). The vibrations obtained from the solid-state folic acid and the folic acid on a gold cluster were in accordance with those observed experimentally. The analysis of the main vibrations indicated...

  18. The geology of the gold deposits of Prestea gold belt of Ghana ...

    African Journals Online (AJOL)

    This paper presents the geology of the gold deposits along the Prestea gold belt of Ghana to assist exploration work for new orebodies along the belt. Prestea district is the third largest gold producer in West Africa after Obuasi and Tarkwa districts (over 250 metric tonnes Au during the last century). The gold deposits are ...

  19. Gold Dispersion and Activation on the Basal Plane of Single-Layer MoS2

    KAUST Repository

    Merida, Cindy S.; Le, Duy; Echeverrí a, Elena M.; Nguyen, Ariana E.; Rawal, Takat B; Naghibi Alvillar, Sahar; Kandyba, Viktor; Al-Mahboob, Abdullah; Losovyj, Yaroslav B.; Katsiev, Khabiboulakh; Valentin, Michael D.; Huang, Chun-Yu; Gomez, Michael J.; Lu, I-Hsi; Guan, Alison; Barinov, Alexei; Rahman, Talat S; Dowben, Peter A.; Bartels, Ludwig

    2017-01-01

    Gold islands are typically associated with high binding affinity to adsorbates and catalytic activity. Here we present the growth of such dispersed nanoscale gold islands on single layer MoS2, prepared on an inert SiO2/Si support by chemical vapor deposition (CVD). This study offers a combination of growth process development, optical characterization, photoelectron spectroscopy at sub-micron spatial resolution, and advanced density functional theory modeling for detailed insight into the electronic interaction between gold and single-layer MoS2. In particular, we find the gold density of states in Au/MoS2/SiO2/Si to be far less well-defined than Au islands on other 2-dimensional materials such as graphene, for which we also provide data. We attribute this effect to the presence of heterogeneous Au adatom/MoS2-support interactions within the nanometer-scale gold cluster. As a consequence, theory predicts that CO will exhibit adsorption energies in excess of 1 eV at the Au cluster edges, where the local density of states is dominated by Au 5dz2 symmetry.

  20. Gold Dispersion and Activation on the Basal Plane of Single-Layer MoS2

    KAUST Repository

    Merida, Cindy S.

    2017-12-09

    Gold islands are typically associated with high binding affinity to adsorbates and catalytic activity. Here we present the growth of such dispersed nanoscale gold islands on single layer MoS2, prepared on an inert SiO2/Si support by chemical vapor deposition (CVD). This study offers a combination of growth process development, optical characterization, photoelectron spectroscopy at sub-micron spatial resolution, and advanced density functional theory modeling for detailed insight into the electronic interaction between gold and single-layer MoS2. In particular, we find the gold density of states in Au/MoS2/SiO2/Si to be far less well-defined than Au islands on other 2-dimensional materials such as graphene, for which we also provide data. We attribute this effect to the presence of heterogeneous Au adatom/MoS2-support interactions within the nanometer-scale gold cluster. As a consequence, theory predicts that CO will exhibit adsorption energies in excess of 1 eV at the Au cluster edges, where the local density of states is dominated by Au 5dz2 symmetry.

  1. Gold Nanoparticle Mediated Phototherapy for Cancer

    International Nuclear Information System (INIS)

    Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H.; Zhang, Z.

    2016-01-01

    Gold nanoparticles exhibit very unique physiochemical and optical properties, which now are extensively studied in range of medical diagnostic and therapeutic applications. In particular, gold nanoparticles show promise in the advancement of cancer treatments. This review will provide insights into the four different cancer treatments such as photothermal therapy, gold nanoparticle-aided photodynamic therapy, gold nanoparticle-aided radiation therapy, and their use as drug carrier. We also discuss the mechanism of every method and the adverse effects and its limitations

  2. Diversity among galaxy clusters

    International Nuclear Information System (INIS)

    Struble, M.F.; Rood, H.J.

    1988-01-01

    The classification of galaxy clusters is discussed. Consideration is given to the classification scheme of Abell (1950's), Zwicky (1950's), Morgan, Matthews, and Schmidt (1964), and Morgan-Bautz (1970). Galaxies can be classified based on morphology, chemical composition, spatial distribution, and motion. The correlation between a galaxy's environment and morphology is examined. The classification scheme of Rood-Sastry (1971), which is based on clusters's morphology and galaxy population, is described. The six types of clusters they define include: (1) a cD-cluster dominated by a single large galaxy, (2) a cluster dominated by a binary, (3) a core-halo cluster, (4) a cluster dominated by several bright galaxies, (5) a cluster appearing flattened, and (6) an irregularly shaped cluster. Attention is also given to the evolution of cluster structures, which is related to initial density and cluster motion

  3. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  4. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  5. Cancer caused by radioactive gold rings

    International Nuclear Information System (INIS)

    Callary, E.M.

    1989-01-01

    Two recent cases of skin cancer caused by radioactive gold rings are described. The gold was contaminated with radon daughters from hollow goldseeds used to hold radon, back in the 1930s or possibly later. Other radioactive gold rings are probably being worn. The Canadian AECB offers free testing

  6. Linker-mediated assembly of gold nanoparticles into multimeric motifs

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, Mateusz; Cieplak, Marek [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland); Szymczak, Piotr [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ulica Hoza 69, 00-681 Warsaw (Poland); Thompson, Damien, E-mail: mc@ifpan.edu.pl [Tyndall National Institute, Lee Maltings, University College Cork, Cork (Ireland)

    2011-11-04

    We present a theoretical description of linker-mediated self-assembly of gold nanoparticles (Au-NP). Using mesoscale simulations with a coarse-grained model for the Au NPs and dirhenium-based linker molecules, we investigate the conditions under which large clusters can grow and construct a phase diagram that identifies favorable growth conditions in terms of floating and bound linker concentrations. The findings can be considered as generic, as we expect other NP-linker systems to behave in a qualitatively similar way. In particular, we also discuss the case of antibody-functionalised Au NPs connected by the C-reactive proteins (CRPs). We extract some general rules for NP linking that may aid the production of size- and shape-specific NP clusters for technology applications.

  7. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  8. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We elucid...

  9. What Makes Clusters Decline?

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    2015-01-01

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark. The longit...... but being quick to withdraw in times of crisis....

  10. Clustering of correlated networks

    OpenAIRE

    Dorogovtsev, S. N.

    2003-01-01

    We obtain the clustering coefficient, the degree-dependent local clustering, and the mean clustering of networks with arbitrary correlations between the degrees of the nearest-neighbor vertices. The resulting formulas allow one to determine the nature of the clustering of a network.

  11. Relevant Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2009-01-01

    Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of possible subspace projections is exponential in the number of dimensions, the result is often tremendously large. Recent approaches fail to reduce results to relevant subspace...... clusters. Their results are typically highly redundant, i.e. many clusters are detected multiple times in several projections. In this work, we propose a novel model for relevant subspace clustering (RESCU). We present a global optimization which detects the most interesting non-redundant subspace clusters...... achieves top clustering quality while competing approaches show greatly varying performance....

  12. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  13. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    Science.gov (United States)

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  14. Cluster ion beam facilities

    International Nuclear Information System (INIS)

    Popok, V.N.; Prasalovich, S.V.; Odzhaev, V.B.; Campbell, E.E.B.

    2001-01-01

    A brief state-of-the-art review in the field of cluster-surface interactions is presented. Ionised cluster beams could become a powerful and versatile tool for the modification and processing of surfaces as an alternative to ion implantation and ion assisted deposition. The main effects of cluster-surface collisions and possible applications of cluster ion beams are discussed. The outlooks of the Cluster Implantation and Deposition Apparatus (CIDA) being developed in Guteborg University are shown

  15. Gold and not so real gold in Medieval treatises

    Directory of Open Access Journals (Sweden)

    Srebrenka Bogovic-Zeskoski

    2015-01-01

    Full Text Available The aim of this study is to evidence diverse materials and processes used by artisans (and alchemists required to synthesize a visually viable replacement for gold. The emphasis of the research is upon the production of mosaic gold or porporina, a pigment that has survived into modern times, which was used as ink and as paint. Base metals, mostly tin, but also alloys were used both into foils coated with glazes and varnishes and as pigment. The research focuses upon recipes documented in treatises dating from Antiquity to the late Medieval period (ca. 1500 and an attempt is made to answer two questions. In the first place, why was there a need for a surrogate? Secondly, why are there so few tangible examples detected on surviving artifacts? In conclusion, an argument is offered pointing out that, although much can be learned by scientific examination of artifacts, textual analysis is equally important and necessary to unravel mysteries of ancient technologies

  16. PREFACE: Nuclear Cluster Conference; Cluster'07

    Science.gov (United States)

    Freer, Martin

    2008-05-01

    The Cluster Conference is a long-running conference series dating back to the 1960's, the first being initiated by Wildermuth in Bochum, Germany, in 1969. The most recent meeting was held in Nara, Japan, in 2003, and in 2007 the 9th Cluster Conference was held in Stratford-upon-Avon, UK. As the name suggests the town of Stratford lies upon the River Avon, and shortly before the conference, due to unprecedented rainfall in the area (approximately 10 cm within half a day), lay in the River Avon! Stratford is the birthplace of the `Bard of Avon' William Shakespeare, and this formed an intriguing conference backdrop. The meeting was attended by some 90 delegates and the programme contained 65 70 oral presentations, and was opened by a historical perspective presented by Professor Brink (Oxford) and closed by Professor Horiuchi (RCNP) with an overview of the conference and future perspectives. In between, the conference covered aspects of clustering in exotic nuclei (both neutron and proton-rich), molecular structures in which valence neutrons are exchanged between cluster cores, condensates in nuclei, neutron-clusters, superheavy nuclei, clusters in nuclear astrophysical processes and exotic cluster decays such as 2p and ternary cluster decay. The field of nuclear clustering has become strongly influenced by the physics of radioactive beam facilities (reflected in the programme), and by the excitement that clustering may have an important impact on the structure of nuclei at the neutron drip-line. It was clear that since Nara the field had progressed substantially and that new themes had emerged and others had crystallized. Two particular topics resonated strongly condensates and nuclear molecules. These topics are thus likely to be central in the next cluster conference which will be held in 2011 in the Hungarian city of Debrechen. Martin Freer Participants and Cluster'07

  17. Nanotoxicity of gold and gold-cobalt nanoalloy.

    Science.gov (United States)

    Girgis, E; Khalil, W K B; Emam, A N; Mohamed, M B; Rao, K V

    2012-05-21

    Nanotoxicology test of gold nanoparticles (Au NPs) and gold-cobalt (Au-Co) nanoalloy is an important step in their safety evaluation for biomedical applications. The Au and Au-Co NPs were prepared by reducing the metal ions using sodium borohydride (NaBH(4)) in the presence of polyvinyl pyrrolidone (PVP) as a capping material. The average size and shape of the nanoparticles (NPs) were characterized using high resolution transmission electron microscopy (HRTEM). Cobalt presence in the nanoalloy was confirmed by energy dispersive X-ray spectroscopy (EDX) analysis, and the magnetic properties of these particles were determined using a vibrating sample magnetometer (VSM). The Gold and gold-cobalt NPs of average size 15 ± 1.5 nm were administered orally to mice with a dose of 80, 160, and 320 mg/kg per body weight (bw) using gavages. Samples were collected after 7 and 14 days of the treatment. The results indicated that the Au-Co NPs were able to induce significant alteration in the tumor-initiating genes associated with an increase of micronuclei (MNs) formation and generation of DNA adduct (8-hydroxy-2-deoxyguanosine, 8-OHdG) as well as a reduction in the glutathione peroxidase activity. This action of Au-Co NPs was observed using 160 and 320 mg/kg bw at both time intervals. However, Au NPs had much lower effects than Au-Co NPs on alteration in the tumor-initiating genes, frequency of MNs, and generation of 8-OHdG as well as glutathione peroxidase activity except with the highest dose of Au NPs. This study suggests that the potential to cause in vivo genetic and antioxidant enzyme alterations due to the treatment by Au-Co nanoalloy may be attributed to the increase in oxidative stress in mice.

  18. Molecular oxygen adsorption and dissociation on Au12M clusters with M = Cu, Ag or Ir

    Science.gov (United States)

    Jiménez-Díaz, Laura M.; Pérez, Luis A.

    2018-03-01

    In this work, we present a density functional theory study of the structural and electronic properties of isolated neutral clusters of the type Au12M, with M = Cu, Ag, or Ir. On the other hand, there is experimental evidence that gold-silver, gold-copper and gold-iridium nanoparticles have an enhanced catalytic activity for the CO oxidation reaction. In order to address these phenomena, we also performed density functional calculations of the adsorption and dissociation of O2 on these nanoparticles. Moreover, to understand the effects of Cu, Ag, and Ir impurity atoms on the dissociation of O2, we also analyze this reaction in the corresponding pure gold cluster. The results indicate that the substitution of one gold atom in a Au13 cluster by Ag, Cu or Ir diminishes the activation energy barrier for the O2 dissociation by nearly 1 eV. This energy barrier is similar for Au12Ag and Au12Cu, whereas for Au12Ir is even lower. These results suggest that the addition of other transition metal atoms to gold nanoclusters can enhance their catalytic activity towards the CO oxidation reaction, independently of the effect that the substrate could have on supported nanoclusters.

  19. Management of cluster headache

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer C; Jensen, Rigmor H

    2012-01-01

    The prevalence of cluster headache is 0.1% and cluster headache is often not diagnosed or misdiagnosed as migraine or sinusitis. In cluster headache there is often a considerable diagnostic delay - an average of 7 years in a population-based survey. Cluster headache is characterized by very severe...... or severe orbital or periorbital pain with a duration of 15-180 minutes. The cluster headache attacks are accompanied by characteristic associated unilateral symptoms such as tearing, nasal congestion and/or rhinorrhoea, eyelid oedema, miosis and/or ptosis. In addition, there is a sense of restlessness...... and agitation. Patients may have up to eight attacks per day. Episodic cluster headache (ECH) occurs in clusters of weeks to months duration, whereas chronic cluster headache (CCH) attacks occur for more than 1 year without remissions. Management of cluster headache is divided into acute attack treatment...

  20. Symmetries of cluster configurations

    International Nuclear Information System (INIS)

    Kramer, P.

    1975-01-01

    A deeper understanding of clustering phenomena in nuclei must encompass at least two interrelated aspects of the subject: (A) Given a system of A nucleons with two-body interactions, what are the relevant and persistent modes of clustering involved. What is the nature of the correlated nucleon groups which form the clusters, and what is their mutual interaction. (B) Given the cluster modes and their interaction, what systematic patterns of nuclear structure and reactions emerge from it. Are there, for example, families of states which share the same ''cluster parents''. Which cluster modes are compatible or exclude each other. What quantum numbers could characterize cluster configurations. There is no doubt that we can learn a good deal from the experimentalists who have discovered many of the features relevant to aspect (B). Symmetries specific to cluster configurations which can throw some light on both aspects of clustering are discussed

  1. Distribution and composition of gold in porphyry gold systems: example from the Biely Vrch deposit, Slovakia

    Science.gov (United States)

    Koděra, Peter; Kozák, Jaroslav; Brčeková, Jana; Chovan, Martin; Lexa, Jaroslav; Jánošík, Michal; Biroň, Adrián; Uhlík, Peter; Bakos, František

    2018-03-01

    The Biely Vrch deposit in the Western Carpathians is assigned to the shallow, sulfide-poor porphyry gold deposit type and has an exceptionally low Cu/Au ratio. According to 3-D geochemical models, there is a limited spatial correlation between Au and Cu due to the primary introduction of gold by a salt melt and Cu by low-density vapor. Despite a rough spatial correlation of gold grades with quartz stockwork intensity, gold is hosted mostly by altered rock, exclusively in native form. Three main gold mineral assemblages were recognized here. In the deepest parts of the system, the K- and Ca-Na silicate gold assemblage is associated with minerals of high-temperature alteration (plagioclase, K-feldspar, actinolite), with gold grades and fineness depending on depth and potassium content of the host rock: K-silicate alteration hosts the lowest fineness gold ( 914), whereas Ca-Na silicate alteration has the highest ( 983). The intermediate argillic gold assemblage is the most widespread, with gold hosted mainly by chlorite, illite, smectite, and interstratified illite-chlorite-smectite minerals. The gold fineness is mostly variable (875-990) and inherited from the former gold mineral assemblages. The latest advanced argillic gold assemblage has its gold mostly in kaolinite. The extremely high fineness ( 994) results from gold remobilization by late-stage aqueous magmatic-hydrothermal fluids. Uncommon bonanza-grade appears where the earlier gold mineral assemblages were further enriched by this remobilized gold. Primary precipitation of gold occurred during ascent and cooling of salt melts at 450 to 309 °C, mostly during retrograde quartz solubility.

  2. Byzantine gold coins and jewellery

    International Nuclear Information System (INIS)

    Oddy, A.; La Niece, S.

    1986-01-01

    The article deals with the dating of Byzantine gold coinage. The results of such a study are of fundamental importance for the study of the economic history of the later Byzantine Empire and they are also of importance for the historian of technology when studying the composition of the contemporary Byzantine jewellery. Although Carbon-14 dating cannot be used as a method af dating, historians can still benefit from the analysis of the alloy of which the antiquity is made, as this is sometimes characteristic of the period in which it was used. A number of pieces of Byzantine jewellery has been analysed by x-ray fluorescence analysis, after first gently abrading a small area of the surface of the gold with the carborundum paper in an inconspicious position on the back or side of the object. A table is given on the results of this analysis

  3. Reverse Transfection Using Gold Nanoparticles

    Science.gov (United States)

    Yamada, Shigeru; Fujita, Satoshi; Uchimura, Eiichiro; Miyake, Masato; Miyake, Jun

    Reverse transfection from a solid surface has the potential to deliver genes into various types of cell and tissue more effectively than conventional methods of transfection. We present a method for reverse transfection using a gold colloid (GC) as a nanoscaffold by generating nanoclusters of the DNA/reagentcomplex on a glass surface, which could then be used for the regulation of the particle size of the complex and delivery of DNA into nuclei. With this method, we have found that the conjugation of gold nanoparticles (20 nm in particle size) to the pEGFP-N1/Jet-PEI complex resulted in an increase in the intensity of fluorescence of enhanced green fluorescent protein (EGFP) (based on the efficiency of transfection) from human mesenchymal stem cells (hMSCs), as compared with the control without GC. In this manner, we constructed a method for reverse transfection using GC to deliver genes into the cells effectively.

  4. CMS Industries awarded gold, crystal

    CERN Multimedia

    2006-01-01

    The CMS collaboration honoured 10 of its top suppliers in the seventh annual awards ceremony The representatives of the firms that recieved the CMS Gold and Crystal Awards stand with their awards after the ceremony. The seventh annual CMS Awards ceremony was held on Monday 13 March to recognize the industries that have made substantial contributions to the construction of the collaboration's detector. Nine international firms received Gold Awards, and General Tecnica of Italy received the prestigious Crystal Award. Representatives from the companies attended the ceremony during the plenary session of CMS week. 'The role of CERN, its machines and experiments, beyond particle physics is to push the development of equipment technologies related to high-energy physics,'said CMS Awards Coordinator Domenico Campi. 'All of these industries must go beyond the technologies that are currently available.' Without the involvement of good companies over the years, the construction of the CMS detector wouldn't be possible...

  5. Nanobubble trouble on gold surfaces

    DEFF Research Database (Denmark)

    Holmberg, Maria; Kuhle, A.; Garnaes, J.

    2003-01-01

    When analyzing surfaces related to biosensors with in situ atomic force microscopy (AFM), the existence of nanobubbles called for our attention. The bubbles seem to form spontaneously when gold surfaces are immersed in clean water and are probably a general phenomenon at water-solid interfaces....... Besides from giving rise to undesired effects in, for example, biosensors, nanobubbles can also cause artifacts in AFM imaging. We have observed nanobubbles on unmodified gold surfaces, immersed in clean water, using standard silicon AFM probes. Nanobubbles can be made to disappear from contact mode AFM...... images and then to reappear by changing the scanning force. By combining contact mode AFM imaging and local force measurements, the interaction between the nanobubbles and the probe can be analyzed and give information about the characteristics of nanobubbles. A model of the forces between the AFM probe...

  6. Gold, currencies and market efficiency

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Vošvrda, Miloslav

    2016-01-01

    Roč. 449, č. 1 (2016), s. 27-34 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Efficient market hypothesis, * Gold * Currencies, * Fractal dimension * Entropy * Long-Term memory Subject RIV: AH - Economics Impact factor: 2.243, year: 2016 http://library.utia.cas.cz/separaty/2016/E/kristoufek-0455876.pdf

  7. Ground Optical Lightning Detector (GOLD)

    Science.gov (United States)

    Jackson, John, Jr.; Simmons, David

    A photometer developed to characterize lightning from the ground is discussed. The detector and the electronic signal processing and data storage systems are presented along with field data measured by the system. The discussion will include improvements that will be incorporated to enhance the measurement of lightning and the data storage capability to record for many days without human involvement. Finally, the calibration of the GOLD system is presented.

  8. Extinction Coefficient of Gold Nanostars

    OpenAIRE

    de Puig, Helena; Tam, Justina O.; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-01-01

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 108 to 26.8 × 108 M−1cm−1. Measured values correl...

  9. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  10. Gold Nanocages for Biomedical Applications**

    OpenAIRE

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where ...

  11. Jabiluka gold-uranium project

    International Nuclear Information System (INIS)

    1988-01-01

    The Jabiluka gold-uranium deposit, 230km east of Darwin in the Alligator Rivers Region of the Northern Territory, was discovered by Pancontinental Mining Limited in 1971. Jabiluka, with reserves in excess of 200,000 tonnes of contained U 3 O 8 in two deposits 500 metres apart, is the world's largest high grade uranium deposit and also contains nearly 12 tonnes of gold. It is proposed that only the larger deposit, Jabiluka II will be mined - by underground extraction methods, and that 275,000 tonnes of ore per year will be mined and processed to produce 1,500 tonnes of U 3 O 8 and up to 30,000 oz of gold. The revenue from the uranium sales is estimated to be of the order of A$100 million per year at A$30/lb. By the end of 1982 all necessary mining and environmental approvals had been obtained and significant marketing progress made. With the Australian Labor Party winning Commonwealth Government in the 1983 election, Pancontinental's permission to seek sales contracts was withdrawn and development of the Jabiluka deposit ceased. Jabiluka remains undeveloped - awaiting a change in Australian Government policy on uranium. figs., maps

  12. Analysis of gold and silver concentration on gold mining tailings by neutron activation analysis

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Salimov, M.I.; Sadykova, Z.O.

    2014-01-01

    Full text: Instrumental neutron-activation analysis without radiochemical separation is one of most applicable and often used methods to analyze the concentration of gold, silver and other rare and noble metals in gold ores. This method is not suitable for analyzing low concentration of gold and silver in gold mining tailings due to rather high concentration of some elements. Samples are dissolved by boiling in a mixture of concentrated hydrochloric and nitric acids to extract gold and silver into the solution. Chemical yield of gold and silver after dissolution of the sample and further chromatographic separation is between 92 and 95 percent respectively

  13. Cluster Decline and Resilience

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark, 1963......-2011. Our longitudinal study reveals that technological lock-in and exit of key firms have contributed to impairment of the cluster’s resilience in adapting to disruptions. Entrepreneurship has a positive effect on cluster resilience, while multinational companies have contradicting effects by bringing...... in new resources to the cluster but being quick to withdraw in times of crisis....

  14. Desorption of large molecules with light-element clusters: Effects of cluster size and substrate nature

    Energy Technology Data Exchange (ETDEWEB)

    Delcorte, Arnaud, E-mail: arnaud.delcorte@uclouvain.be [Institute of Condensed Matter and Nanosciences - Bio and Soft Matter, Universite catholique de Louvain, Croix du Sud, 1 bte 3, B-1348 Louvain-la-Neuve (Belgium); Garrison, Barbara J. [Department of Chemistry, Penn State University, University Park, PA 16802 (United States)

    2011-07-15

    This contribution focuses on the conditions required to desorb a large hydrocarbon molecule using light-element clusters. The test molecule is a 7.5 kDa coil of polystyrene (PS61). Several projectiles are compared, from C{sub 60} to 110 kDa organic droplets and two substrates are used, amorphous polyethylene and mono-crystalline gold. Different aiming points and incidence angles are examined. Under specific conditions, 10 keV nanodrops can desorb PS61 intact from a gold substrate and from a soft polyethylene substrate. The prevalent mechanism for the desorption of intact and 'cold' molecules is one in which the molecules are washed away by the projectile constituents and entrained in their flux, with an emission angle close to {approx}70 deg. The effects of the different parameters on the dynamics and the underlying physics are discussed in detail and the predictions of the model are compared with other published studies.

  15. Desorption of large molecules with light-element clusters: Effects of cluster size and substrate nature

    International Nuclear Information System (INIS)

    Delcorte, Arnaud; Garrison, Barbara J.

    2011-01-01

    This contribution focuses on the conditions required to desorb a large hydrocarbon molecule using light-element clusters. The test molecule is a 7.5 kDa coil of polystyrene (PS61). Several projectiles are compared, from C 60 to 110 kDa organic droplets and two substrates are used, amorphous polyethylene and mono-crystalline gold. Different aiming points and incidence angles are examined. Under specific conditions, 10 keV nanodrops can desorb PS61 intact from a gold substrate and from a soft polyethylene substrate. The prevalent mechanism for the desorption of intact and 'cold' molecules is one in which the molecules are washed away by the projectile constituents and entrained in their flux, with an emission angle close to ∼70 deg. The effects of the different parameters on the dynamics and the underlying physics are discussed in detail and the predictions of the model are compared with other published studies.

  16. LMC clusters: young

    International Nuclear Information System (INIS)

    Freeman, K.C.

    1980-01-01

    The young globular clusters of the LMC have ages of 10 7 -10 8 y. Their masses and structure are similar to those of the smaller galactic globular clusters. Their stellar mass functions (in the mass range 6 solar masses to 1.2 solar masses) vary greatly from cluster to cluster, although the clusters are similar in total mass, age, structure and chemical composition. It would be very interesting to know why these clusters are forming now in the LMC and not in the Galaxy. The author considers the 'young globular' or 'blue populous' clusters of the LMC. The ages of these objects are 10 7 to 10 8 y, and their masses are 10 4 to 10 5 solar masses, so they are populous enough to be really useful for studying the evolution of massive stars. The author concentrates on the structure and stellar content of these young clusters. (Auth.)

  17. Star clusters and associations

    International Nuclear Information System (INIS)

    Ruprecht, J.; Palous, J.

    1983-01-01

    All 33 papers presented at the symposium were inputted to INIS. They dealt with open clusters, globular clusters, stellar associations and moving groups, and local kinematics and galactic structures. (E.S.)

  18. Cluster beam injection

    International Nuclear Information System (INIS)

    Bottiglioni, F.; Coutant, J.; Fois, M.

    1978-01-01

    Areas of possible applications of cluster injection are discussed. The deposition inside the plasma of molecules, issued from the dissociation of the injected clusters, has been computed. Some empirical scaling laws for the penetration are given

  19. Recovery of carrier-free gold-195

    International Nuclear Information System (INIS)

    Iofa, B.Z.; Ivanova, N.A.

    1995-01-01

    It is known that gold(III) is readily extracted from nitric acid solutions with ethers. The authors have studied extraction of trace amounts of gold(III) from nitric acid solutions with diethyl and diisopropyl ethers in the presence of significant excess of Pt(IV). Distribution coefficients of gold(III) were measured radiometrically using carrier-free gold-195 or spectrophotometrically in the presence of platinum(IV). Very high coefficients of gold separation from platinum may be achieved. Preliminary experiments have shown that zinc-65 was not extracted with ethers from nitric acid solutions. As an extraction system, the authors have chosen the system 10 M HNO 3 -diisopropyl ether. After model experiments, the authors have performed recovery of carrier-free gold-195 from a real platinum target irradiated with protons in a cyclotron

  20. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  1. Physiological investigation of gold nanorods toward watermelon.

    Science.gov (United States)

    Wan, Yujie; Li, Junli; Ren, Hongxuan; Huang, Jin; Yuan, Hong

    2014-08-01

    The objective of the present study was to evaluate the phytotoxicity and oxidant stress of the gold nanorods toward watermelon, and hence give a quantitative risk assessment of both seeds and plants phase. The seed germination, the activity of antioxidant enzymes, and the contents of soluble protein and malondialdehyde (MDA) have been measured while the plant roots were observed by transmission electron microscopy (TEM). It was found that the gold nanorods significantly promoted the root elongation. Furthermore, the results on the enzymes activities of plant indicated that oxidative stress happened in the plant treated with gold nanorods. However, the gold nanorods resulted in the phytotoxicity toward plant especially at high concentration. The TEM images of the plant roots with and without the treatment of gold nanorods showed the significant different size of starch granules. In conclusion, significant physiological changes of plant occurred after treatment with the gold nanorods.

  2. Clustering at high redshifts

    International Nuclear Information System (INIS)

    Shaver, P.A.

    1986-01-01

    Evidence for clustering of and with high-redshift QSOs is discussed. QSOs of different redshifts show no clustering, but QSOs of similar redshifts appear to be clustered on a scale comparable to that of galaxies at the present epoch. In addition, spectroscopic studies of close pairs of QSOs indicate that QSOs are surrounded by a relatively high density of absorbing matter, possibly clusters of galaxies

  3. Cluster Physics with Merging Galaxy Clusters

    Directory of Open Access Journals (Sweden)

    Sandor M. Molnar

    2016-02-01

    Full Text Available Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard LCDM model, where the total density is dominated by the cosmological constant ($Lambda$ and the matter density by cold dark matter (CDM, structure formation is hierarchical, and clusters grow mostly by merging.Mergers of two massive clusters are the most energetic events in the universe after the Big Bang,hence they provide a unique laboratory to study cluster physics.The two main mass components in clusters behave differently during collisions:the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulenceare developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thusour review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clustersis to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses.New high spatial and spectral resolution ground and space based telescopeswill come online in the near future. Motivated by these new opportunities,we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  4. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  5. Geochemical indicators of gold ore fields

    International Nuclear Information System (INIS)

    Shcherbakov, Yu.G.

    1995-01-01

    The principles of selection of indicators for genetic reconstructions and prognostic valuations of gold mineralization of diverse morphological and geochemical types have been substantiated. The neutron-activation analysis with radiochemical separation and detection limit of 1-10 -8 %, instrumental neutron-activation analysis and atomic-absorption analysis are the main methods of determination of gold low contents in the rocks, as well as diverse elements, including transition, rare earth elements and tellurium, in gold. 50 refs.; 1 fig.; 3 tabs

  6. Glyco-gold nanoparticles: synthesis and applications

    OpenAIRE

    Compostella, Federica; Pitirollo, Olimpia; Silvestri, Alessandro; Polito, Laura

    2017-01-01

    Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco ...

  7. Glyco-gold nanoparticles: synthesis and applications

    Directory of Open Access Journals (Sweden)

    Federica Compostella

    2017-05-01

    Full Text Available Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco nanoparticle design.

  8. The Durban Auto Cluster

    DEFF Research Database (Denmark)

    Lorentzen, Jochen; Robbins, Glen; Barnes, Justin

    2004-01-01

    The paper describes the formation of the Durban Auto Cluster in the context of trade liberalization. It argues that the improvement of operational competitiveness of firms in the cluster is prominently due to joint action. It tests this proposition by comparing the gains from cluster activities...

  9. Marketing research cluster analysis

    Directory of Open Access Journals (Sweden)

    Marić Nebojša

    2002-01-01

    Full Text Available One area of applications of cluster analysis in marketing is identification of groups of cities and towns with similar demographic profiles. This paper considers main aspects of cluster analysis by an example of clustering 12 cities with the use of Minitab software.

  10. Marketing research cluster analysis

    OpenAIRE

    Marić Nebojša

    2002-01-01

    One area of applications of cluster analysis in marketing is identification of groups of cities and towns with similar demographic profiles. This paper considers main aspects of cluster analysis by an example of clustering 12 cities with the use of Minitab software.

  11. Minimalist's linux cluster

    International Nuclear Information System (INIS)

    Choi, Chang-Yeong; Kim, Jeong-Hyun; Kim, Seyong

    2004-01-01

    Using barebone PC components and NIC's, we construct a linux cluster which has 2-dimensional mesh structure. This cluster has smaller footprint, is less expensive, and use less power compared to conventional linux cluster. Here, we report our experience in building such a machine and discuss our current lattice project on the machine

  12. Range-clustering queries

    NARCIS (Netherlands)

    Abrahamsen, M.; de Berg, M.T.; Buchin, K.A.; Mehr, M.; Mehrabi, A.D.

    2017-01-01

    In a geometric k -clustering problem the goal is to partition a set of points in R d into k subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set S : given a query box Q and an integer k>2 , compute

  13. Cosmology with cluster surveys

    Indian Academy of Sciences (India)

    Abstract. Surveys of clusters of galaxies provide us with a powerful probe of the den- sity and nature of the dark energy. The red-shift distribution of detected clusters is highly sensitive to the dark energy equation of state parameter w. Upcoming Sunyaev–. Zel'dovich (SZ) surveys would provide us large yields of clusters to ...

  14. Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.

    Science.gov (United States)

    Manzoor, Dar; Pal, Sourav

    2015-06-18

    Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.

  15. Coal gold agglomeration: an innovative approach to the recovery of gold in environmentally sensitive areas

    Energy Technology Data Exchange (ETDEWEB)

    Wall, N.C.; Hughes-Narborough, C.; Willey, G. [Davy (Stockton) Ltd., Stockton-on-Tees (United Kingdom)

    1994-11-01

    Coal Gold Agglomeration (CGA) was developed by BP Minerals and involves the selective recovery of oleophilic gold particles from an aqueous slurry into coal-oil agglomerates. These agglomerates are allowed to build up to a high gold loading and are then separated from the slurry. The loaded agglomerates are burned and the gold is finally recovered from the ash residue by dissolution and precipitation or by direct smelting. 6 figs.

  16. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  17. Gold Rushes and mineral property rights allocation

    DEFF Research Database (Denmark)

    Sinding, Knud

    , is to handle the other projects that are generated by the "gold rush" informational externalities created by the initial discovery. At the core of the problems of dealing with a gold rush situation is both the informational externality and an institutional framework which is not designed to deal with large...... influxes of prospectors competing for a very limited area. This paper charts significant gold rush events in the mineral industry in recent decades and uses preliminary data on the areas impacted by these gold rushes to argue that many mineral tenure systems should be modified in order to be better able...

  18. Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates

    Science.gov (United States)

    Green, Nathaniel Scott

    The development of metal-enhanced fluorescence has prompted a great interest in augmenting the photophysical properties of fluorescent molecules with noble metal nanostructures. Our research efforts, outlined in this dissertation, focus on augmenting properties of fluorophores by conjugation with gold nanostructures. The project goals are split into two separate efforts; the enhancement in brightness of fluorophores and long distance non-radiative energy transfer between fluorophores. We believe that interacting dye-doped silica nanoparticles with gold nanoparticles can facilitate both of these phenomena. Our primary research interest is focused on optimizing brightness, as this goal should open a path to studying the second goal of non-radiative energy transfer. The two major challenges to this are constructing suitable nanomaterials and functionalizing them to promote plasmonically active complexes. The synthesis of dye-doped layered silica nanoparticles allows for control over the discrete location of the dye and a substrate that can be surface functionalized. Controlling the exact location of the dye is important to create a silica spacer, which promotes productive interactions with metal nanostructures. Furthermore, the synthesis of silica nanoparticles allows for various fluorophores to be studied in similar environments (removing solvent and other chemo-sensitive issues). Functionalizing the surface of silica nanoparticles allows control over the degree of silica and gold nanoparticle aggregation in solution. Heteroaggregation in solution is useful for producing well-aggregated clusters of many gold around a single silica nanoparticle. The dye-doped surface functionalized silica nanoparticles can than be mixed efficiently with gold nanomaterials. Aggregating multiple gold nanospheres around a single dye-doped silica nanoparticle can dramatically increase the fluorescent brightness of the sample via metal-enhanced fluorescence due to increase plasmonic

  19. Cluster analysis for applications

    CERN Document Server

    Anderberg, Michael R

    1973-01-01

    Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis.Comprised of 10 chapters, this book begins with an introduction to the subject o

  20. Nuclear excitation in muonic gold

    CERN Document Server

    Robert Tissot, B; Debrunner, P; Engfer, R; Link, R; Schellenberg, L; Schneuwly, H; Walter, H K

    1973-01-01

    Energies and intensities of muonic X-rays in gold were measured at the CERN muon channel with an experimental set-up as described by Backe et al. (1972). The 2p-1s and 3d-2p transitions could only be analysed taking into account beside the static quadrupole interaction a dynamical hyperfine interaction of the 2p states, which leads to an excitation of the first four nuclear levels. The dynamical hyperfine interaction was calculated using the core excitation model (de Shalit, (1961)). (0 refs).

  1. The Resonance Integral of Gold

    Energy Technology Data Exchange (ETDEWEB)

    Jirlow, K; Johansson, E

    1959-04-15

    The resonance activation integral of gold has been determined, by means of cadmium ratio measurements of thin foils in a neutron beam. Comparison was made with a 1/v detector, and the neutron spectra were measured with a chopper. The resonance integral, RI, is defined as {integral}{sub 0.5}{sup {infinity}}{sigma}{sub r}(E)dE/E, where {sigma}{sub r}(E) is the differenc between the total absorption cross section and the 1/v part. An experimental value of 1490 {+-} 40 barns has been obtained. RI has also been computed from resonance parameter data with the result 1529 {+-} 70 barns.

  2. SERS-barcoded colloidal gold NP assemblies as imaging agents for use in biodiagnostics

    Science.gov (United States)

    Dey, Priyanka; Olds, William; Blakey, Idriss; Thurecht, Kristofer J.; Izake, Emad L.; Fredericks, Peter M.

    2014-03-01

    There is a growing need for new biodiagnostics that combine high throughput with enhanced spatial resolution and sensitivity. Gold nanoparticle (NP) assemblies with sub-10 nm particle spacing have the benefits of improving detection sensitivity via Surface enhanced Raman scattering (SERS) and being of potential use in biomedicine due to their colloidal stability. A promising and versatile approach to form solution-stable NP assemblies involves the use of multi-branched molecular linkers which allows tailoring of the assembly size, hot-spot density and interparticle distance. We have shown that linkers with multiple anchoring end-groups can be successfully employed as a linker to assemble gold NPs into dimers, linear NP chains and clustered NP assemblies. These NP assemblies with diameters of 30-120 nm are stable in solution and perform better as SERS substrates compared with single gold NPs, due to an increased hot-spot density. Thus, tailored gold NP assemblies are potential candidates for use as biomedical imaging agents. We observed that the hot-spot density and in-turn the SERS enhancement is a function of the linker polymer concentration and polymer architecture. New deep Raman techniques like Spatially Offset Raman Spectroscopy (SORS) have emerged that allow detection from beneath diffusely scattering opaque materials, including biological media such as animal tissue. We have been able to demonstrate that the gold NP assemblies could be detected from within both proteinaceous and high lipid containing animal tissue by employing a SORS technique with a backscattered geometry.

  3. Surface-enhanced Raman scattering active gold nanostructure fabricated by photochemical reaction of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Akinobu, E-mail: yamaguti@lasti.u-hyogo.ac.jp [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Matsumoto, Takeshi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Okada, Ikuo; Sakurai, Ikuya [Synchrotoron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Utsumi, Yuichi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan)

    2015-06-15

    The deposition of gold nanoparticles in an electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The nanoparticles grew and aggregated into clusters with increasing radiation time. This behavior is explained by evaluating the effect of Derjaguin-Landau-Verweyand-Overbeek (DLVO) interactions combining repulsive electrostatic and attractive van der Waals forces on the particle deposition process. The surface-enhanced Raman scattering (SERS) of 4,4′ -bipyridine (4bpy) in aqueous solution was measured using gold nanoparticles immobilized on silicon substrates under systematically-varied X-ray exposure. The substrates provided an in situ SERS spectrum for 1 nM 4bpy. This demonstration creates new opportunities for chemical and environmental analyses through simple SERS measurements. - Highlights: • Gold nanoparticles were produced by photochemical reaction of synchrotron radiation. • The gold nanoparticles grew and aggregated into the higher-order nanostructure. • The behavior is qualitatively explained by analytical estimation. • The surface-enhanced Raman spectroscopy of 4,4′-bipyridine (4bpy) was demonstrated. • The substrate fabricated in a suitable condition provides in situ SERS for 1 nM 4bpy.

  4. Amorphous Carbon Gold Nanocomposite Thin Films: Structural and Spectro-ellipsometric Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montiel-Gonzalez, Z., E-mail: zeuzmontiel@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Mendoza-Galvan, A. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Unidad Queretaro, 76010 Queretaro, Queretaro (Mexico); Rodriguez-Fernandez, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510, Mexico D.F (Mexico)

    2011-07-01

    Spectroscopic Ellipsometry was used to determine the optical and structural properties of amorphous carbon:gold nanocomposite thin films deposited by dc magnetron co-sputtering at different deposition power. The incorporation of gold as small particles distributed in the amorphous carbon matrix was confirmed by X-ray Diffraction, Rutherford Backscattering measurements and High Resolution Transmission Electron Microscopy. Based on these results, an optical model for the films was developed using the Maxwell-Garnett effective medium with the Drude-Lorentz model representing the optical response of gold and the Tauc-Lorentz model for the amorphous carbon. The gold volume fraction and particle size obtained from the fitting processes were comparable to those from the physical characterization. The analysis of the ellipsometric spectra for all the samples showed strong changes in the optical properties of the carbon films as a consequence of the gold incorporation. These changes were correlated to the structural modification observed by Raman Spectroscopy, which indicated a clustering of the sp{sup 2} phase with a subsequent decrease in the optical gap. Finally, measurements of Reflection and Transmission Spectroscopy were carried out and Transmission Electron Microscopy images were obtained in order to support the ellipsometric model results.

  5. Glycolate adsorption at gold and platinum electrodes: A theoretical and in situ spectroelectrochemical study

    International Nuclear Information System (INIS)

    Delgado, Jose Manuel; Blanco, Raquel; Orts, Jose Manuel; Perez, Juan Manuel; Rodes, Antonio

    2010-01-01

    The adsorption of glycolate anions at sputtered gold thin-film electrodes was studied in perchloric acid solutions by cyclic voltammetry experiments combined with in situ Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Infrared Reflection Absorption Spectroscopy under attenuated total reflection conditions (ATR-SEIRAS). Theoretical harmonic vibrational frequencies and band intensities obtained from B3LYP/LANL2DZ,6-31+G(d) calculations for glycolate species adsorbed on Au clusters with (1 1 1) orientation were used to interpret the experimental spectra. Vibrational data confirm the bidentate bonding of glycolate anions through the oxygen atoms of the carboxylate group, in a bridge configuration with the OCO plane perpendicular to the metal surface. The DFT calculations show no significant effect of the total charge of the metal cluster-adsorbate adduct on the vibrational frequencies of adsorbed glycolate species. The infrared experimental study is extended to platinum films electrochemically deposited onto sputtered gold thin-film electrodes showing the potential-dependent formation of adsorbed CO upon dissociative adsorption of glycolate anions. As in the case of gold, the reversible adsorption of glycolate anions takes place in a bidentate configuration as predicted by DFT calculations for glycolate adsorbed on Pt(1 1 1) clusters. At low glycolic acid concentration, the in situ ATR-SEIRA spectra evidence the formation of adsorbed oxalate as reaction intermediate.

  6. Far- and near-field optical properties of gold nanoparticle ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, N N; Dikovska, A O; Dimitrov, I; Nikov, Ru; Atanasov, P A; Toshkova, R A; Gardeva, E G; Yossifova, L S; Alexandrov, M T

    2012-12-31

    The optical properties of gold nanoparticle clusters are presented from the point of view of their applications in biophotonics, where the absorption and scattering spectra are crucial. Generalised multiparticle Mie theory and finite difference time domain (FDTD) technique are used for theoretical description of the far- and nearfield optical properties of two dimensional nanoparticle ensembles. The system under consideration consists of spherical gold nanoparticles from 20 to 200 nm in diameter, forming 2D clusters in water. The properties of the far-field absorption and scattering spectra as a function of the cluster size, particle dimensions, and interparticle distance are investigated for ordered hexagonal structure of the particle arrays. It is found that the absorption efficiency can be shifted to the IR spectral range by increasing array size and decreasing interparticle distance. The increase in the array size also results in enhancement of the scattering efficiency while the absorption is reduced. The near-field intensity distribution is inhomogeneous over the array, as formation of zones with intensity enhancement of about two orders of magnitude is observed in specific areas. The optical properties of an ensemble whose configuration is reproduced from real experiments of gold nanoparticle deposition onto cancer cells are also presented. The results obtained can be used in designing of nanoparticle arrays with applications in biophotonics, bioimaging and photothermal therapy. (nanosystems)

  7. Far- and near-field optical properties of gold nanoparticle ensembles

    International Nuclear Information System (INIS)

    Nedyalkov, N N; Dikovska, A O; Dimitrov, I; Nikov, Ru; Atanasov, P A; Toshkova, R A; Gardeva, E G; Yossifova, L S; Alexandrov, M T

    2012-01-01

    The optical properties of gold nanoparticle clusters are presented from the point of view of their applications in biophotonics, where the absorption and scattering spectra are crucial. Generalised multiparticle Mie theory and finite difference time domain (FDTD) technique are used for theoretical description of the far- and nearfield optical properties of two dimensional nanoparticle ensembles. The system under consideration consists of spherical gold nanoparticles from 20 to 200 nm in diameter, forming 2D clusters in water. The properties of the far-field absorption and scattering spectra as a function of the cluster size, particle dimensions, and interparticle distance are investigated for ordered hexagonal structure of the particle arrays. It is found that the absorption efficiency can be shifted to the IR spectral range by increasing array size and decreasing interparticle distance. The increase in the array size also results in enhancement of the scattering efficiency while the absorption is reduced. The near-field intensity distribution is inhomogeneous over the array, as formation of zones with intensity enhancement of about two orders of magnitude is observed in specific areas. The optical properties of an ensemble whose configuration is reproduced from real experiments of gold nanoparticle deposition onto cancer cells are also presented. The results obtained can be used in designing of nanoparticle arrays with applications in biophotonics, bioimaging and photothermal therapy. (nanosystems)

  8. Clusters in nuclei

    CERN Document Server

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  9. Spatial cluster modelling

    CERN Document Server

    Lawson, Andrew B

    2002-01-01

    Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal ...

  10. Clusters and how to make it work : Cluster Strategy Toolkit

    NARCIS (Netherlands)

    Manickam, Anu; van Berkel, Karel

    2014-01-01

    Clusters are the magic answer to regional economic development. Firms in clusters are more innovative; cluster policy dominates EU policy; ‘top-sectors’ and excellence are the choice of national policy makers; clusters are ‘in’. But, clusters are complex, clusters are ‘messy’; there is no clear

  11. Geochemical methodology for gold prospect ion in Uruguay

    International Nuclear Information System (INIS)

    Spangenber, J.

    1987-01-01

    This work is about the history of gold prospection in Uruguay. In this study there are considered the geochemical aspects, the gold performance, the applicability to mining prospection and the gold prospection aluvionar

  12. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling mountains, central China

    Science.gov (United States)

    Mao, J.; Goldfarb, R.J.; Zhang, Z.; Xu, W.; Qiu, Yumin; Deng, J.

    2002-01-01

    The gold-rich Xiaoqinling-Xiong'ershan region in eastern Shaanxi and western Henan provinces, central China, lies about 30-50 km inland of the southern margin of the North China craton. More than 100 gold deposits and occurrences are concentrated in the Xiaoqinling (west), Xiaoshan (middle), and Xiong'ershan (east) areas. Late Archean gneiss of the Taihua Group, and Middle Proterozoic metavolcanic rocks of the Xiong'er Group are the main host rocks for the deposits. Mesozoic granitoids (ca. 178-104 Ma) are present in most gold districts, but deposits are typically hosted in the Precambrian basement rocks hundreds of meters to as far as 10 km from the intrusions and related hornfels zones. Deposits in the Xiaoqinling and Xiaoshan areas are best classified as orogenic gold deposits, with ores occurring in a number of distinct belts both in quartz veins and disseminated in altered metamorphic rocks. Alteration assemblages are dominated by quartz, sericite, pyrite, and carbonate minerals. The ore-forming fluids were low salinity, CO2-rich, and characterized by isotopically heavy ??18O. Four deposits (Dongchuang, Wenyu, Yangzhaiyu, and Dahu) in the Xiaoqinling area each contain resources of about 1 Moz Au. Some of the gold deposits in the Xiong'ershan area represent more shallowly emplaced tellurium-enriched orogenic systems, which include resources of approximately 1-1.5 Moz Au at Shanggong and Beiling (or Tantou). Others are epithermal deposits (e.g., Qiyugou and Dianfang) that are hosted in volcanic breccia pipes. Isotopic dates for all gold deposits, although often contradictory, generally cluster between 172-99 Ma and are coeval with emplacement of the post-kinematic granitoids. The gold deposits formed during a period of relaxation of far-field compressional stresses, clearly subsequent to the extensive Paleozoic-early Mesozoic accretion of are terranes and the Yangtze craton onto the southern margin of the North China craton. Hydrothermal and magmatic events

  13. Gold emissivities for hydrocode applications

    Science.gov (United States)

    Bowen, C.; Wagon, F.; Galmiche, D.; Loiseau, P.; Dattolo, E.; Babonneau, D.

    2004-10-01

    The Radiom model [M. Busquet, Phys Fluids B 5, 4191 (1993)] is designed to provide a radiative-hydrodynamic code with non-local thermodynamic equilibrium (non-LTE) data efficiently by using LTE tables. Comparison with benchmark data [M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transf. 58, 687 (1997)] has shown Radiom to be inaccurate far from LTE and for heavy ions. In particular, the emissivity was found to be strongly underestimated. A recent algorithm, Gondor [C. Bowen and P. Kaiser, J. Quant. Spectrosc. Radiat. Transf. 81, 85 (2003)], was introduced to improve the gold non-LTE ionization and corresponding opacity. It relies on fitting the collisional ionization rate to reproduce benchmark data given by the Averroès superconfiguration code [O. Peyrusse, J. Phys. B 33, 4303 (2000)]. Gondor is extended here to gold emissivity calculations, with two simple modifications of the two-level atom line source function used by Radiom: (a) a larger collisional excitation rate and (b) the addition of a Planckian source term, fitted to spectrally integrated Averroès emissivity data. This approach improves the agreement between experiments and hydrodynamic simulations.

  14. Gold emissivities for hydrocode applications

    International Nuclear Information System (INIS)

    Bowen, C.; Wagon, F.; Galmiche, D.; Loiseau, P.; Dattolo, E.; Babonneau, D.

    2004-01-01

    The Radiom model [M. Busquet, Phys Fluids B 5, 4191 (1993)] is designed to provide a radiative-hydrodynamic code with non-local thermodynamic equilibrium (non-LTE) data efficiently by using LTE tables. Comparison with benchmark data [M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transf. 58, 687 (1997)] has shown Radiom to be inaccurate far from LTE and for heavy ions. In particular, the emissivity was found to be strongly underestimated. A recent algorithm, Gondor [C. Bowen and P. Kaiser, J. Quant. Spectrosc. Radiat. Transf. 81, 85 (2003)], was introduced to improve the gold non-LTE ionization and corresponding opacity. It relies on fitting the collisional ionization rate to reproduce benchmark data given by the Averroes superconfiguration code [O. Peyrusse, J. Phys. B 33, 4303 (2000)]. Gondor is extended here to gold emissivity calculations, with two simple modifications of the two-level atom line source function used by Radiom: (a) a larger collisional excitation rate and (b) the addition of a Planckian source term, fitted to spectrally integrated Averroes emissivity data. This approach improves the agreement between experiments and hydrodynamic simulations

  15. Paper Money but a Gold Debt. Italy in the Gold Standard

    OpenAIRE

    Giuseppe Tattara; or consequences)

    2002-01-01

    During the 52 years between the Unification of the Kingdom of Italy and World War 1, the lira was legally convertible into metal for a limited period of time. Although not formally committed to gold, the lira exchange towards the gold standard countries proved remarkably stable, \\223shadowing\\224 gold. It is widely claimed that being one of the successful members of the gold standard circle entailed a number of advantages. If the lira was closely linked to gold, suggesting that there was only...

  16. Agricultural Clusters in the Netherlands

    NARCIS (Netherlands)

    Schouten, M.A.; Heijman, W.J.M.

    2012-01-01

    Michael Porter was the first to use the term cluster in an economic context. He introduced the term in The Competitive Advantage of Nations (1990). The term cluster is also known as business cluster, industry cluster, competitive cluster or Porterian cluster. This article aims at determining and

  17. Spherical aggregates composed of gold nanoparticles

    International Nuclear Information System (INIS)

    Chen, C-C; Kuo, P-L; Cheng, Y-C

    2009-01-01

    Alkylated triethylenetetramine (C12E3) was synthesized and used as both a reductant in the preparation of gold nanoparticles by the reduction of HAuCl 4 and a stabilizer in the subsequent self-assembly of the gold nanoparticles. In acidic aqueous solution, spherical aggregates (with a diameter of about 202 ± 22 nm) of gold nanoparticles (with the mean diameter of ∼18.7 nm) were formed. The anion-induced ammonium adsorption of the alkylated amines on the gold nanoparticles was considered to provide the electrostatic repulsion and steric hindrance between the gold nanoparticles, which constituted the barrier that prevented the individual particles from coagulating. However, as the amino groups became deprotonated with increasing pH, the ammonium adsorption was weakened, and the amino groups were desorbed from the gold surface, resulting in discrete gold particles. The results indicate that the morphology of the reduced gold nanoparticles is controllable through pH-'tunable' aggregation under the mediation of the amino groups of alkylated amine to create spherical microstructures.

  18. Gold deposits of the southern Piedmont

    Science.gov (United States)

    Pardee, J.T.; Park, C.F.

    1948-01-01

    This report deals chiefly with the gold mines in the Southern Appalachian gold belt whose workings were accessible at the time of examination, but it also · summarizes available information concerning many mines that were not accessible. Most of the mines lie within a belt, 10 to 100 miles wide, that extends

  19. Ionization model for nickel-like gold

    International Nuclear Information System (INIS)

    Busquet, M.; Bruneau, J.

    1986-04-01

    Before we build an extensive population model for gold ionized 49 to 52 times, we have studied with a more simple model the effect of accounting for cascades (or dielectronic recombination) and Δn = 0 transitions. These transitions allow some understanding of typical feature of experimental gold spectra

  20. The Stability of Supported Gold Catalysts

    NARCIS (Netherlands)

    Masoud, Nazila

    2018-01-01

    Gold has supreme cultural and financial value and, in form of nanoparticles smaller than 10 nm, is a unique catalyst for different industrially relevant reactions. Intriguing properties of the gold catalysts have spurred demand in the chemical industry for Au catalysts, the application of which

  1. Goudafzettingen in Suriname (Gold deposits in Surinam)

    NARCIS (Netherlands)

    Brinck, J.W.

    1956-01-01

    THE GOLD DEPOSITS IN SURINAM AND THE DISTRIBUTION OF CONCESSIONS THROUGH THE COUNTRY The fieldwork on the occurrence of primary and secondary gold deposits in Surinam on which this thesis is based was carried out by order of the Welfare Fund Surinam (Welvaarts Fonds Suriname) during the periods

  2. Gold - Old Drug with New Potentials.

    Science.gov (United States)

    Faa, Gavino; Gerosa, Clara; Fanni, Daniela; Lachowicz, Joanna I; Nurchi, Valeria M

    2018-01-01

    Research into gold-based drugs for a range of human diseases has seen a revival in recent years. This article reviews the most important applications of gold products in different fields of human pathology. Au(I) and Au(III) compounds have been re-introduced in clinical practice for targeting the cellular components involved in the onset and progression of viral and parasitic diseases, rheumatoid arthritis and cancer. After some brief historical notes, this article takes into account the applications of gold compounds against Mycobacterium tuberculosis, and also in tuberculosis and in rheumatoid arthritis treatment. The use of gold containing drugs in the cure of cancer are then considered, with special emphasis to the use of nanoparticles and to the photo-thermal cancer therapy. The use of colloidal gold in diagnostics, introduced in the last decade is widely discussed. As a last point a survey on the adverse effects and on the toxicity of the various gold derivatives in use in medicine is presented. In this review, we described the surprisingly broad spectrum of possible uses of gold in diagnostics and in therapeutic approaches to multiple human diseases, ranging from degenerative to infectious diseases, and to cancer. In particular, gold nanoparticles appear as attractive elements in modern clinical medicine, combining high therapeutic properties, high selectivity in targeting cancer cells and low toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Numerical simulations of nanostructured gold films

    DEFF Research Database (Denmark)

    Repän, Taavi; Frydendahl, Christian; Novikov, Sergey M.

    2017-01-01

    We present an approach to analyse near-field effects on nanostructured gold films by finite element simulations. The studied samples are formed by fabricating gold films near the percolation threshold and then applying laser damage. Resulting samples have complicated structures, which...

  4. Open source clustering software.

    Science.gov (United States)

    de Hoon, M J L; Imoto, S; Nolan, J; Miyano, S

    2004-06-12

    We have implemented k-means clustering, hierarchical clustering and self-organizing maps in a single multipurpose open-source library of C routines, callable from other C and C++ programs. Using this library, we have created an improved version of Michael Eisen's well-known Cluster program for Windows, Mac OS X and Linux/Unix. In addition, we generated a Python and a Perl interface to the C Clustering Library, thereby combining the flexibility of a scripting language with the speed of C. The C Clustering Library and the corresponding Python C extension module Pycluster were released under the Python License, while the Perl module Algorithm::Cluster was released under the Artistic License. The GUI code Cluster 3.0 for Windows, Macintosh and Linux/Unix, as well as the corresponding command-line program, were released under the same license as the original Cluster code. The complete source code is available at http://bonsai.ims.u-tokyo.ac.jp/mdehoon/software/cluster. Alternatively, Algorithm::Cluster can be downloaded from CPAN, while Pycluster is also available as part of the Biopython distribution.

  5. Gold 100: proceedings of the international conference on gold. V. 2

    International Nuclear Information System (INIS)

    Fivaz, C.E.; King, R.P.

    1986-01-01

    The proceedings of Gold 100 have been published in three separate volumes. The first deals with the mining of gold, the second with the extractive metallurgy of gold, and the third with industrial uses of gold. In this second volume, the papers on extractive metallurgy presented at the Conference reflect most of the problems that are currently of significant technical interest to the industry. This volume is divided in six main parts covering plant design, carbon-in-pulp technology, refractory gold, new technology, grinding and concentration, and leaching. The part on new technology includes papers on x-ray fluorescence analyzers, Moessbauer spectroscopy and leaching processes for uranium, while the part on grinding and concentration includes papers on nuclear and radiotracer techniques for the recovery of gold as well as various flotation parameters in the flotation behaviour of gold and uranium

  6. Gold analysis by the gamma absorption technique

    International Nuclear Information System (INIS)

    Kurtoglu, Arzu; Tugrul, A.B.

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement

  7. Synthesis of camptothecin-loaded gold nanomaterials

    International Nuclear Information System (INIS)

    Xing Zhimin; Liu Zhiguo; Zu Yuangang; Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan

    2010-01-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  8. Hydrofluorination of Alkynes Catalysed by Gold Bifluorides.

    Science.gov (United States)

    Nahra, Fady; Patrick, Scott R; Bello, Davide; Brill, Marcel; Obled, Alan; Cordes, David B; Slawin, Alexandra M Z; O'Hagan, David; Nolan, Steven P

    2015-01-01

    We report the synthesis of nine new N -heterocyclic carbene gold bifluoride complexes starting from the corresponding N -heterocyclic carbene gold hydroxides. A new methodology to access N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) fluoride starting from N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) hydroxide and readily available potassium bifluoride is also reported. These gold bifluorides were shown to be efficient catalysts in the hydrofluorination of symmetrical and unsymmetrical alkynes, thus affording fluorinated stilbene analogues and fluorovinyl thioethers in good to excellent yields with high stereo- and regioselectivity. The method is exploited further to access a fluorinated combretastatin analogue selectively in two steps starting from commercially available reagents.

  9. Synthesis of camptothecin-loaded gold nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Xing Zhimin [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Liu Zhiguo, E-mail: zguoliu@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Zu Yuangang, E-mail: nefunano@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China)

    2010-04-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  10. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis.

    Science.gov (United States)

    Weng, Bo; Lu, Kang-Qiang; Tang, Zichao; Chen, Hao Ming; Xu, Yi-Jun

    2018-04-18

    Recently, loading ligand-protected gold (Au) clusters as visible light photosensitizers onto various supports for photoredox catalysis has attracted considerable attention. However, the efficient control of long-term photostability of Au clusters on the metal-support interface remains challenging. Herein, we report a simple and efficient method for enhancing the photostability of glutathione-protected Au clusters (Au GSH clusters) loaded on the surface of SiO 2 sphere by utilizing multifunctional branched poly-ethylenimine (BPEI) as a surface charge modifying, reducing and stabilizing agent. The sequential coating of thickness controlled TiO 2 shells can further significantly improve the photocatalytic efficiency, while such structurally designed core-shell SiO 2 -Au GSH clusters-BPEI@TiO 2 composites maintain high photostability during longtime light illumination conditions. This joint strategy via interfacial modification and composition engineering provides a facile guideline for stabilizing ultrasmall Au clusters and rational design of Au clusters-based composites with improved activity toward targeting applications in photoredox catalysis.

  11. Electron: Cluster interactions

    International Nuclear Information System (INIS)

    Scheidemann, A.A.; Knight, W.D.

    1994-02-01

    Beam depletion spectroscopy has been used to measure absolute total inelastic electron-sodium cluster collision cross sections in the energy range from E ∼ 0.1 to E ∼ 6 eV. The investigation focused on the closed shell clusters Na 8 , Na 20 , Na 40 . The measured cross sections show an increase for the lowest collision energies where electron attachment is the primary scattering channel. The electron attachment cross section can be understood in terms of Langevin scattering, connecting this measurement with the polarizability of the cluster. For energies above the dissociation energy the measured electron-cluster cross section is energy independent, thus defining an electron-cluster interaction range. This interaction range increases with the cluster size

  12. Clustering high dimensional data

    DEFF Research Database (Denmark)

    Assent, Ira

    2012-01-01

    High-dimensional data, i.e., data described by a large number of attributes, pose specific challenges to clustering. The so-called ‘curse of dimensionality’, coined originally to describe the general increase in complexity of various computational problems as dimensionality increases, is known...... to render traditional clustering algorithms ineffective. The curse of dimensionality, among other effects, means that with increasing number of dimensions, a loss of meaningful differentiation between similar and dissimilar objects is observed. As high-dimensional objects appear almost alike, new approaches...... for clustering are required. Consequently, recent research has focused on developing techniques and clustering algorithms specifically for high-dimensional data. Still, open research issues remain. Clustering is a data mining task devoted to the automatic grouping of data based on mutual similarity. Each cluster...

  13. Modeling the photosensitizing properties of thiolate-protected gold nanoclusters.

    Science.gov (United States)

    Azarias, Cloé; Adamo, Carlo; Perrier, Aurélie

    2016-03-21

    An accurate computational strategy for studying the structural, redox and optical properties of thiolated gold nanoclusters (GNCs) using (Time-Dependent) Density Functional Theory is proposed. The influence of the pseudopotential/basis set, solvent description and the choice of the functional has been investigated to model the structural and electronic properties of the Au25(SR)18(-) system, with R being an organic ligand. This study aims to describe with a comparable precision both the GNC and the organic ligands and rationalize the effect of coating on different GNC properties. Two differently coated GNCs have been considered: the system with R = CH2CH2Ph and the GNC coated with 17 alkyl chains (C6H13) and functionalized by one fluorophore pyrene derivative (CH2CH2(NH)(CO)Py). The computational protocol we propose should then be used to design more efficient metal cluster-sensitized solar cells.

  14. Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods.

    Science.gov (United States)

    Chakraborty, Amrita; Fernandez, Ann Candice; Som, Anirban; Mondal, Biswajit; Natarajan, Ganapati; Paramasivam, Ganesan; Lahtinen, Tanja; Häkkinen, Hannu; Nonappa, Nonappa; Pradeep, Thalappil

    2018-04-01

    We present the self-assembled structures of atomically precise, ligand-protected noble metal nanoclusters leading to encapsulation of plasmonic gold nanorods (GNRs). Unlike highly sophisticated DNA nanotechnology, our approach demonstrates a strategically simple hydrogen bonding-directed self-assembly of nanoclusters leading to octahedral nanocrystals encapsulating GNRs. Specifically, we use the p-mercaptobenzoic acid (pMBA) protected atomically precise nanocluster, Na4[Ag44(pMBA)30] and pMBA functionalized GNRs. High resolution transmission and scanning transmission electron tomographic reconstructions suggest that the geometry of the GNR surface is responsible for directing the assembly of silver nanoclusters via H-bonding leading to octahedral symmetry. Further, use of water dispersible gold nanoclusters, Au~250(pMBA)n and Au102(pMBA)44 also formed layered shells encapsulating GNRs. Such cluster assemblies on colloidal particles present a new category of precision hybrids with diverse possibilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. In vitro toxicity studies of polymer-coated gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Rayavarapu, Raja G; Petersen, Wilma; Manohar, Srirang; Van Leeuwen, Ton G [Biomedical Photonic Imaging Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede (Netherlands); Hartsuiker, Liesbeth; Otto, Cees [Medical Cell Biophysics, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede (Netherlands); Chin, Patrick; Van Leeuwen, Fijs W B [Division of Diagnostic Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Janssen, Hans, E-mail: S.Manohar@utwente.nl [Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands)

    2010-04-09

    We evaluated cellular responses to polymer-treated gold nanorods, which were synthesized using the standard wet-chemistry method that utilizes hexadecyltrimethylammonium bromide (CTAB). The nanorod dispersions were coated with either polystyrene sulfonate (PSS) or polyethylene glycol (PEG). Two sizes of nanorods were tested, with optical responses peaking at 628 and 773 nm. The cells were from mammary adenocarcinoma (SKBR3), Chinese Hamster Ovary (CHO), mouse myoblast (C2C12) and Human Leukemia (HL60) cell lines. Their mitochondrial function following exposure to the nanorods were assessed using the MTS assay. We found PEGylated particles to have superior biocompatibility compared with PSS-coated nanorods, which showed substantial cytotoxicity. Electron microscopy showed no cellular uptake of PEGylated particles compared with their PSS counterparts. PEGylated gold nanorods also exhibited better dispersion stability in the presence of cell growth medium; PSS-coated rods tended to flocculate or cluster. In the case of the PSS particles, toxicity correlated with surface area across the two sizes of nanorods studied.

  16. Synthesis and characterization of human transferrin-stabilized gold nanoclusters

    International Nuclear Information System (INIS)

    Le Guevel, Xavier; Schneider, Marc; Daum, Nicole

    2011-01-01

    Human transferrin has been biolabelled with gold nanoclusters (Au NCs) using a simple, fast and non-toxic method. These nanocrystals ( em = 695 nm). Structural investigation and photophysical measurements show a high population of clusters formed of 22-33 gold atoms covalently bound to the transferrin. In solutions with pH ranging from 5 to 10 and in buffer solutions (PBS, HEPES), those biolabelled proteins exhibit a good stability. No significant quenching effect of the fluorescent transferrin has been detected after iron loading of iron-free transferrin (apoTf) and in the presence of a specific polyclonal antibody. Additionally, antibody-induced agglomeration demonstrates no alteration in the protein activity and the receptor target ability. MTT and Vialight Plus tests show no cytotoxicity of these labelled proteins in cells (1 μg ml -1 -1 mg ml -1 ). Cell line experiments (A549) indicate also an uptake of the iron loaded fluorescent proteins inside cells. These remarkable data highlight the potential of a new type of non-toxic fluorescent transferrin for imaging and targeting.

  17. Substructure in clusters of galaxies

    International Nuclear Information System (INIS)

    Fitchett, M.J.

    1988-01-01

    Optical observations suggesting the existence of substructure in clusters of galaxies are examined. Models of cluster formation and methods used to detect substructure in clusters are reviewed. Consideration is given to classification schemes based on a departure of bright cluster galaxies from a spherically symmetric distribution, evidence for statistically significant substructure, and various types of substructure, including velocity, spatial, and spatial-velocity substructure. The substructure observed in the galaxy distribution in clusters is discussed, focusing on observations from general cluster samples, the Virgo cluster, the Hydra cluster, Centaurus, the Coma cluster, and the Cancer cluster. 88 refs

  18. Carbonate hosted gold deposit in Tasmania, Australia

    International Nuclear Information System (INIS)

    Abadi, M.H.

    1999-01-01

    Full text: This study uses elemental and isotopic composition of carbonates associated with gold from Henty and Beaconsfield in Tasmania, Australia, to illustrate source of gold-bearing fluids, salinity, temperature and dissolution and reprecipitation of carbonate. The Beaconsfield and Henty gold mines are located in northern and western Tasmania respectively. Gold mineralisation in Beaconsfield occurs within the quartz-carbonate Tasmania Reef (Lower to Middle Palaeozoic sequence, Hills, 1998). The Henty gold mine is located at the base of the Cambrian Tyndall Group (volcano-sedimentary succession, White and McPhie, 1996) close to Henty Fault. Gold in carbonate samples from Henty ranges from 7.7 to 9360 ppm and in Beaconsfield ranges from 0.01 to 434 ppm. The amount of carbonate in samples from Henty and Beaconsfield gold mines varies from approximately 24 to 99.8%. Bivariate plot of Ca relative to total amounts of Mg, Fe and Mn illustrates that the major carbonate minerals at Beaconsfield and Henty gold mines are magnesian ankerite and calcite. The difference in carbonate mineralogy, at Henty and Beaconsfield gold mines, is attributed to the composition of fluids responsible for carbonate alteration. Gold and magnesium in Beaconsfield ankerite are derived from the leaching of Cambrian ultramafic rocks during the Devonian by the passage of meteoric fluids through tectonically affected Ordovician carbonates (Rao and Adabi, 1999). The total concentration of Fe and Mn are low (0.5 to 2%) in Henty and high (1 to 17.5%) in Beaconsfield ankerite, possibly due to oxidising conditions at Henty and reducing conditions at Beaconsfield gold mines during gold mineralisation. Variation of Sr values between Beaconsfield ankerite and Henty calcite is related to dissolution of limestone that increase Sr concentrations in gold mineralising fluids. Na values in both Beaconsfield (20 to 1100 ppm) and Henty carbonates (25 to 1650 ppm) suggest low salinity fluids responsible for gold

  19. Nuclear cluster states

    International Nuclear Information System (INIS)

    Rae, W.D.M.; Merchant, A.C.

    1993-01-01

    We review clustering in light nuclei including molecular resonances in heavy ion reactions. In particular we study the systematics, paying special attention to the relationships between cluster states and superdeformed configurations. We emphasise the selection rules which govern the formation and decay of cluster states. We review some recent experimental results from Daresbury and elsewhere. In particular we report on the evidence for a 7-α chain state in 28 Si in experiments recently performed at the NSF, Daresbury. Finally we begin to address theoretically the important question of the lifetimes of cluster states as deduced from the experimental energy widths of the resonances. (Author)

  20. 15th Cluster workshop

    CERN Document Server

    Laakso, Harri; Escoubet, C. Philippe; The Cluster Active Archive : Studying the Earth’s Space Plasma Environment

    2010-01-01

    Since the year 2000 the ESA Cluster mission has been investigating the small-scale structures and processes of the Earth's plasma environment, such as those involved in the interaction between the solar wind and the magnetospheric plasma, in global magnetotail dynamics, in cross-tail currents, and in the formation and dynamics of the neutral line and of plasmoids. This book contains presentations made at the 15th Cluster workshop held in March 2008. It also presents several articles about the Cluster Active Archive and its datasets, a few overview papers on the Cluster mission, and articles reporting on scientific findings on the solar wind, the magnetosheath, the magnetopause and the magnetotail.

  1. Clusters in simple fluids

    International Nuclear Information System (INIS)

    Sator, N.

    2003-01-01

    This article concerns the correspondence between thermodynamics and the morphology of simple fluids in terms of clusters. Definitions of clusters providing a geometric interpretation of the liquid-gas phase transition are reviewed with an eye to establishing their physical relevance. The author emphasizes their main features and basic hypotheses, and shows how these definitions lead to a recent approach based on self-bound clusters. Although theoretical, this tutorial review is also addressed to readers interested in experimental aspects of clustering in simple fluids

  2. Worth their weight in gold

    International Nuclear Information System (INIS)

    Van Ryssen, E.

    1986-01-01

    A radiotherapeutic method of treating tumours in, on and around the eye, developed and improved over more than a decade of research at the University of Cape Town's Medical School and at the city's Groote Schuur Hospital, has won worldwide recognition. A problem when irradiating eye tumours is that the rays can damage surrounding tissues. Professor Sealy's team overcome this problem by using tailor-made gold or stainless steel shields moulded indiridually to fit the curve of the eyeball of each patient. Depending on the location of the tumour, small radioactive seeds of iodine 125 are placed on the inner or outer curve of the shield in such a way that their rays are confined to the desired location. The number and position of the seeds is worked out to give the desired dose of radiation

  3. Gold nanoparticles: generation and characterization

    International Nuclear Information System (INIS)

    Dey, G.R.

    2013-07-01

    In this presentation we report the reduction of Au 3+ through chemical and free radical (e solv - ) reactions both in non-aqueous and aqueous media. In chemical reduction, the spectral nature in ascorbic acid (AA) and citric acid (CA) systems was different. The band intensity of gold nanoparticles was lower in AA system. While in free radical reaction, the yield of nanoparticles was pure i.e. free from excess reactants. Under the study 60-200 nm size nanoparticles were generated, which are inert to oxygen. Using pulse radiolysis technique, the initial rate for e solv - reaction with Au 3+ was determined to be 7.6 x 10 9 M -1 s -1 . (author)

  4. Extinction Coefficient of Gold Nanostars.

    Science.gov (United States)

    de Puig, Helena; Tam, Justina O; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-07-30

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 10 8 to 26.8 × 10 8 M -1 cm -1 . Measured values correlate with those obtained from theoretical models of the NStars using the discrete dipole approximation (DDA), which we use to simulate the extinction spectra of the nanostars. Finally, because NStars are typically used in biological applications, we conjugate DNA and antibodies to the NStars and calculate the footprint of the bound biomolecules.

  5. Intensification Behavior of Mercury Ions on Gold Cyanide Leaching

    Directory of Open Access Journals (Sweden)

    Qiang Zhong

    2018-01-01

    Full Text Available Cyanidation is the main method used to extract gold from gold raw materials; however, a serious problem with this method is the low leaching rate. In order to improve gold leaching, the intensification behavior of mercury ions on gold cyanide leaching, for two types of materials, sulphide gold concentrate and oxide gold ore, was investigated. The results showed that mercury ions, with only a 10−5 M dosage, could significantly intensify leaching and gold recovery. The dissolution behavior of gold plate was also intensified by 10−5 M mercury ions. Microstructure analysis showed that mercury ions intensified the cyanidation corrosion of the gold surface, resulting in a loose structure, where a large number of deep ravines and raised particles were evident across the whole gold surface. The loose structure added contact surface between the gold and cyanide, and accelerated gold dissolution. Moreover, mercury ions obstructed the formation of insoluble products, such as AuCN, Au(OHCN, and Au(OHx, that lead to a passivation membrane on the gold surface, reducing contact between the gold and cyanide. These effects, brought about by mercury ions, change the structure and product of the gold surface during gold cyanidation and promote gold leaching.

  6. The electric dipole moments in the ground states of gold oxide, AuO, and gold sulfide, AuS.

    Science.gov (United States)

    Zhang, Ruohan; Yu, Yuanqin; Steimle, Timothy C; Cheng, Lan

    2017-02-14

    The B 2 Σ - - X 2 Π 3/2 (0,0) bands of a cold molecular beam sample of gold monoxide, AuO, and gold monosulfide, AuS, have been recorded at high resolution both field free and in the presence of a static electric field. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments, μ→ el , of 2.94±0.06 D and 2.22±0.05 D for the X 2 Π 3/2 (v = 0) states of AuO and AuS, respectively. A molecular orbital correlation diagram is used to rationalize the trend in ground state μ→ el values for AuX (X = F, Cl, O, and S) molecules. The experimentally determined μ→ el are compared to those computed at the coupled-cluster singles and doubles (CCSD) level augmented with a perturbative inclusion of triple excitations (CCSD(T)) level of theory.

  7. Faraday rotation enhancement of gold coated Fe2O3 nanoparticles: comparison of experiment and theory.

    Science.gov (United States)

    Dani, Raj Kumar; Wang, Hongwang; Bossmann, Stefan H; Wysin, Gary; Chikan, Viktor

    2011-12-14

    Understanding plasmonic enhancement of nanoscale magnetic materials is important to evaluate their potential for application. In this study, the Faraday rotation (FR) enhancement of gold coated Fe(2)O(3) nanoparticles (NP) is investigated experimentally and theoretically. The experiment shows that the Faraday rotation of a Fe(2)O(3) NP solution changes from approximately 3 rad/Tm to 10 rad/Tm as 5 nm gold shell is coated on a 9.7 nm Fe(2)O(3) core at 632 nm. The results also show how the volume fraction normalized Faraday rotation varies with the gold shell thickness. From the comparison of experiment and calculated Faraday rotation based on the Maxwell-Garnett theory, it is concluded that the enhancement and shell dependence of Faraday rotation of Fe(2)O(3) NPs is a result of the shifting plasmon resonance of the composite NP. In addition, the clustering of the NPs induces a different phase lag on the Faraday signal, which suggests that the collective response of the magnetic NP aggregates needs to be considered even in solution. From the Faraday phase lag, the estimated time of the full alignment of the magnetic spins of bare (cluster size 160 nm) and gold coated NPs (cluster size 90 nm) are found to be 0.65 and 0.17 μs. The calculation includes a simple theoretical approach based on the Bruggeman theory to account for the aggregation and its effect on the Faraday rotation. The Bruggeman model provides a qualitatively better agreement with the experimentally observed Faraday rotation and points out the importance of making a connection between component properties and the average "effective" optical behavior of the Faraday medium containing magnetic nanoparticles. © 2011 American Institute of Physics

  8. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-04-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  9. Coal-gold agglomeration: an alternative separation process in gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Akcil, A.; Wu, X.Q.; Aksay, E.K. [Suleyman Demirel University, Isparta (Turkey). Dept. of Mining Engineering

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  10. Gold Leaching Characteristics and Intensification of a High S and As-Bearing Gold Concentrate

    Science.gov (United States)

    Yang, Yong-bin; Liu, Xiao-liang; Jiang, Tao; Li, Qian; Xu, Bin; Zhang, Yan

    Some high sulfur and arsenic-bearing gold concentrate has a gold leaching rate less than 80% by oxidation roasting-pickling-cyanidation process. The characteristics and intensification of gold leaching were studied systemically. By combining chemical composition and phase analysis, the low gold leaching rate was found to lie in the capsulation of gold by iron-containing phases including iron oxides, arsenopyrite and pyrite. 96.66% of gold in the industrial leaching residue was capsulated and 95.88% of the capsulated turned out to be in the iron-containing phases. The results of laboratory pickling-cyanidation experiments on the calcine and industrial leaching residue presented further demonstration for the fact that gold capsulated in the iron-containing phases was hard to be leached. However, the gold cyanide leaching rate of calcine could be raised over 95% by a reduction roasting-pickling pretreatment which played such a significant role in exposing the capsulated gold that gold leaching was intensified remarkably.

  11. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-06-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  12. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  13. A PIXE/PIGE study of gold mineralisation in lateritic terrain, Tanami Desert, Australia

    International Nuclear Information System (INIS)

    Van Moort, J.C.; Li, X.

    1997-01-01

    Proton induced X-ray and γ-ray emission (PIXE/PIGE) have been used to analyze major and trace elements in a suite of 140 core samples from around of the Jim's Find South gold anomaly in the Tanami desert, located in heavily weathered terrain. Simultaneous analyses were obtained for 30 elements, ranging in atomic number from 3 Li to 90 Th. The method was chosen because of its speed and the wide range of determination, its flexibility, precision and low detection limits. The regolith powder samples were treated by hot aqua regia before making them into pills. The PIXE/PIGE data of the acid insoluble residue give three factor analysis clusters. The first cluster comprises the elements F, Al, K, V, Mn, Fe, Ga, Rb, W and Au and is essentially related to sericitic wallrock alteration. The second cluster consists of Ti, As, Y, Zr, and Nb and is largely related to resistant minerals. The third cluster consists of Na, Ca and Sr and is interpreted to comprise elements in weatherable minerals such as feldspar and thus represents weathering intensity. While the Rb/K ratio and the product of As x Cu x Ni provide the best surface expression of the gold mineralisation, the Rb/AI ratio provides the best expression of the sericitic alteration around the ore body

  14. Gold nanoparticles produced in a microalga

    International Nuclear Information System (INIS)

    Luangpipat, Tiyaporn; Beattie, Isabel R.; Chisti, Yusuf; Haverkamp, Richard G.

    2011-01-01

    An efficient biological route to production of gold nanoparticles which allows the nanoparticles to be easily recovered remains elusive. Live cells of the green microalga Chlorella vulgaris were incubated with a solution of gold chloride and harvested by centrifugation. Nanoparticles inside intact cells were identified by transmission electron microscopy and confirmed to be metallic gold by synchrotron based X-ray powder diffraction and X-ray absorption spectroscopy. These intracellular gold nanoparticles were 40–60 nm in diameter. At a concentration of 1.4% Au in the alga, a better than 97% recovery of the gold from solution was achieved. A maximum of 4.2% Au in the alga was obtained. Exposure of C. vulgaris to solutions containing dissolved salts of palladium, ruthenium, and rhodium also resulted in the production of the corresponding nanoparticles within the cells. These were surmised to be also metallic, but were produced at a much lower intracellular concentration than achieved with gold. Iridium was apparently toxic to the alga. No nanoparticles were observed using platinum solutions. C. vulgaris provides a possible route to large scale production of gold nanoparticles.

  15. NUCLEATION STUDIES OF GOLD ON CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. SOBRI

    2008-04-01

    Full Text Available Interest has grown in developing non-toxic electrolytes for gold electrodeposition to replace the conventional cyanide-based bath for long term sustainability of gold electroplating. A solution containing thiosulphate and sulphite has been developed specially for microelectronics applications. However, at the end of the electrodeposition process, the spent electrolyte can contain a significant amount of gold in solution. This study has been initiated to investigate the feasibility of gold recovery from a spent thiosulphate-sulphite electrolyte. We have used flat-plate glassy carbon and graphite electrodes to study the mechanism of nucleation and crystal growth of gold deposition from the spent electrolyte. It was found that at the early stages of reduction process, the deposition of gold on glassy carbon exhibits an instantaneous nucleation of non-overlapping particles. At longer times, the particles begin to overlap and the deposition follows a classic progressive nucleation phenomenon. On the other hand, deposition of gold on graphite does not follow the classical nucleation phenomena.

  16. Nature vs. nurture: gold perpetuates "stemness".

    Science.gov (United States)

    Paul, Willi; Sharma, Chandra P; Deb, Kaushik Dilip

    2011-01-01

    Adult tissues contain quiescent reservoirs of multipotent somatic stem cells and pluripotent embryonic-like stem cells (ELSCs). Credited with regenerative properties gold is used across both -contemporary and -ancient medicines. Here, we show that gold exerted these effects by enhancing the pool of pluripotent ELSC while improving their stemness. We used hESCs as an in-vitro model to understand if gold could enhance self-renewal and pluripotency. Swarna-bhasma (SB), an ancient Indian gold microparticulate (41.1 nm), preparation, reduced spontaneous-differentiation, improved self-renewal, pluripotency and proliferation of hESCs. Colloidal gold-nanoparticles (GNP) (15.59 nm) were tested to confirm that the observations were attributable to nanoparticulate-gold. SB and GNP exposure: maintained -stemness, -karyotypic stability, enhanced pluripotency till day-12, increased average colony-sizes, and reduced the number of autonomously-derived differentiated FGFR1 positive fibroblast-niche-cells/colony. Particulate-gold induced upregulation of FGFR1 and IGF2 expression, and decrease in IGF1 secretion indicates IGF1/2 mediated support for enhanced pluripotency and self-renewal in hESCs.

  17. Urban artisanal gold shops and mercury emissions

    International Nuclear Information System (INIS)

    Cordy, P.; Veiga, M.; Carrasco, V.H.G.

    2008-01-01

    Artisanal miners in developing countries use mercury amalgamation processes to extract gold. The amalgams are then refined before being sold on to urban gold shops. The amalgams can often contain between 2 to 40 per cent mercury. Unburned amalgams are also often sold directly to gold shops. There are serious health risks for shop employees and nearby populations when the gold is melted and further purified. Studies have shown that mercury concentrations in the ambient air of gold shops often exceeds World Health Organization (WHO) limits by an order of magnitude or more. This study examined the practices and technologies used to refine gold in Latin America and Indonesia. The study compared and contrasted various refining methods and their resulting mercury emissions. Methods of reducing mercury emissions were also investigated, including a filtration system designed to capture 80 per cent of mercury emissions. Barriers to implementing mercury emissions reduction plans were also investigated. It was concluded that the design of urban gold shops must include condensers, fume hoods, and efficient mercury capture systems. 15 refs

  18. Synthesis of gold nanostructures with optical properties within the near-infrared window for biomedical applications

    Science.gov (United States)

    Garcia-Soto, Mariano de Jesus

    The work reported in this dissertation describes the design and synthesis of different gold nanoshells with strong absorption coefficients at the near-infrared region (NIR) of the spectrum, and includes preliminary studies of their use for the photo-induced heating of pancreatic cancer cells and ex vivo tissues. As the emphasis was on gold nanoshells with maximum extinctions located at 800 nm, the methods explored for their synthesis led us to the preparation of silica-core and hollow gold nanoshells of improved stability, with maximum extinctions at or beyond the targeted within the near-infrared window. The synthesis of silica-core gold nanoshells was investigated first given its relevance as one of the pioneering methods to produce gold nanostructures with strong absorption and scattering coefficients in the visible and the near-infrared regions of the spectrum. By using a classical method of synthesis, we explored the aging of the precursor materials and the effect of using higher concentrations than the customary for the reduction of gold during the shell growth. We found that the aging for one week of the as-prepared or purified precursors, namely, the gold cluster suspensions, and the seeded silica particles, along with higher concentrations of gold in the plating solution, produced fully coated nanoshells of 120 nm in size with smooth surfaces and maximum extinctions around 800 nm. Additional work carried out to reduce the time and steps in the synthesis of silica-core gold nanoshells, led us to improve the seeding step by increasing the ionic strength of the cluster suspension, and also to explore the growth of gold on tin-seeded silica nanoparticles. The synthesis of hollow gold nanoshells (HGS) of with maximum extinctions at the NIR via the galvanic replacement of silver nanoparticles for gold in solution was explored next. A first method explored led us to obtain HGS with maximum extinctions between 650 and 800 nm and sizes between 30 and 80 nm from

  19. Synthesis and Evaluation of Nanostructured Gold-Iron Oxide Catalysts for the Oxidative Dehydrogenation of Cyclohexane

    Science.gov (United States)

    Wu, Peng

    Shape-controlled iron oxide and gold-iron oxide catalysts with a cubic inverse spinel structure were studied in this thesis for the oxidative dehydrogenation of cyclohexane. The structure of iron oxide and gold-iron oxide catalysts has no major impact on their oxidative dehydrogenation activity. However, the product selectivity is influenced. Both cyclohexene and benzene are formed on bare iron oxide nanoshapes, while benzene is the only dehydrogenation product in the presence of gold. The selectivity of benzene over CO2 depends strongly on the stability of the iron oxide support and the gold-support interaction. The highest benzene yield has been observed on gold-iron oxide octahedra. {111}-bound nanooctahedra are highly stable in reaction conditions at 300 °C, while {100}-bound nanocubes start to sinter above 250 °C. The highest benzene yield has been observed on gold-iron oxide nanooctahedra, which are likely to have gold atoms, and few-atom gold clusters strongly-bound on their surface. Cationic gold appears to be the active site for benzene formation. An all-organic method to prepare Au-FeOx nano-catalysts is needed due to the inconvenience of the half-organic, half-inorganic synthesis process discussed above. Several methods from the literature to prepare gold-iron oxide nanocomposites completely in organic solvents were reviewed and followed. FeOx Au synthesis procedures in literatures are initially designed for a Au content of over 70%. This approach was tried here to prepare composites with a much lower Au content (2-5 atom. %). Heat treatment is required to bond Au and FeOx NPs in the organic-phase syntheses. Au-FeOx-4 was obtained as a selective catalyst for the ODH of cyclohexane. A Audelta+ peak is observed in the UV-Vis spectrum of sample Au-FeOx-4. This different Au delta+ form may be cationic Au nano-clusters interacting with the FeOx support. It has been demonstrated that cationic gold is responsible for dehydrogenation behavior. Furthermore, the

  20. Lifting to cluster-tilting objects in higher cluster categories

    OpenAIRE

    Liu, Pin

    2008-01-01

    In this note, we consider the $d$-cluster-tilted algebras, the endomorphism algebras of $d$-cluster-tilting objects in $d$-cluster categories. We show that a tilting module over such an algebra lifts to a $d$-cluster-tilting object in this $d$-cluster category.

  1. Phytomining for Artisanal Gold Mine Tailings Management

    Directory of Open Access Journals (Sweden)

    Baiq Dewi Krisnayanti

    2016-08-01

    Full Text Available Mine tailings are generally disposed of by artisanal and small scale gold miners in poorly constructed containment areas and this leads to environmental risk. Gold phytomining could be a possible option for tailings management at artisanal and small-scale gold mining (ASGM locations where plants accumulate residual gold in their above ground biomass. The value of metal recovered from plants could offset some of the costs of environmental management. Getting gold into plants has been repeatedly demonstrated by many research groups; however, a simple working technology to get gold out of plants is less well described. A field experiment to assess the relevance of the technology to artisanal miners was conducted in Central Lombok, Indonesia between April and June 2015. Tobacco was planted in cyanidation tailings (1 mg/kg gold and grown for 2.5 months before the entire plot area was irrigated with NaCN to induce metal uptake. Biomass was then harvested (100 kg, air dried, and ashed by miners in equipment currently used to ash activated carbon at the end of a cyanide leach circuit. Borax and silver as a collector metal were added to the tobacco ash and smelted at high temperature to extract metals from the ash. The mass of the final bullion (39 g was greater than the mass of silver used as a collector (31 g, indicating recovery of metals from the biomass through the smelt process. The gold yield of this trial was low (1.2 mg/kg dry weight biomass concentration, indicating that considerable work must still be done to optimise valuable metal recovery by plants at the field scale. However, the described method to process the biomass was technically feasible, and represents a valid technique that artisanal and small-scale gold miners are willing to adopt if the economic case is good.

  2. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  3. Synthesis of gold nanoparticles with graphene oxide.

    Science.gov (United States)

    Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng

    2014-05-01

    Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.

  4. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    International Nuclear Information System (INIS)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-01-01

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs

  5. The giant Kalgoorlie Gold Field revisited

    Directory of Open Access Journals (Sweden)

    Noreen Mary Vielreicher

    2016-05-01

    Direct timing constraints on gold mineralization indicate that Fimiston- and Mt Charlotte-style mineralization formed within a relative short period of time around 2.64 Ga, and, as such, support a model of progressive deformation of a rheologically heterogeneous rock package late in the structural history. Fluid characteristics, combined with the structural, metamorphic and absolute timing, support description of gold mineralization at the Golden Mile as orogenic and mesozonal, and this allows direct correlation with orogenic gold deposits worldwide, which classically formed during accretion along convergent margins throughout Earth history.

  6. Nondestructive analysis of the gold quarter liras

    International Nuclear Information System (INIS)

    Cakir, C.; Guerol, A.; Demir, L.; Sahin, Y.

    2009-01-01

    In this study, we have prepared seven Au-Cu standards in the concentration range of 18-24 (as carat) for nondestructive control of gold quarter liras. Some calibration curves for quantitative analysis of Au in the gold quarter liras that commercially present in Turkey have been plotted using these standard samples. The characteristic X-rays of Au and Cu emitted from these standard samples and the test sample with known composition are recorded by using a Ge(Li) detector. These calibration curves provide a nondestructive analysis of gold quarter liras with the uncertainties about 1.18%. (author)

  7. Refractory concentrate gold leaching: Cyanide vs. bromine

    Science.gov (United States)

    Dadgar, Ahmad

    1989-12-01

    Gold extraction, recovery and economics for two refractory concentrates were investigated using cyanide and bromine reagents. Gold extractions for cyanide leaching (24-48 hours) and bromine leaching (six hours) were the same and ranged from 94 to 96%. Gold recoveries from bromine pregnant solutions using carbon adsorption, ion exchange, solvent extraction, and zinc and aluminum precipitation methods were better than 99.9%. A preliminary economic analysis indicates that chemical costs for cyanidation and bromine process are 11.70 and 11.60 respectively, per tonne of calcine processed.

  8. Gold's monetary roll will be strengthened - Plumbridge

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Delivering his Presidential address at the Chamber's annual general meeting, Mr Plumbridge said the gold market would enter a new phase and listed seven reasons why gold's monetary role would be strengthened. There was a dramatic increase in the demand for gold jewellery. He also forecasted that South African uranium production would again attain its former peak annual production of about 6000t. There is an essential need for a sustained growth in nuclear power and the prospects for uranium mining industry remain encouraging

  9. Gold nanoparticles extraction from dielectric scattering background

    Science.gov (United States)

    Hong, Xin; Wang, Jingxin

    2014-11-01

    The unique advantages such as brightness, non-photobleaching, good bio-compatibility make gold nanoparticles desirable labels and play important roles in biotech and related research and applications. Distinguishing gold nanoparticles from other dielectric scattering particles is of more importance, especially in bio-tracing and imaging. The enhancement image results from the localized surface plasmon resonance associated with gold nanopartilces makes themselves distinguishable from other dielectric particles, based on which, we propose a dual-wavelength detection method by employing a high sensitive cross-polarization microscopy.

  10. Gold Photoluminescence: Wavelength and Polarization Engineering

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Pors, Anders Lambertus; Bozhevolnyi, Sergey I.

    2015-01-01

    We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes...... and dimensions of gold nanoparticles influences the GSPR wavelength and polarization characteristics, thereby allowing us to enhance and spectrally mold the plasmon-assisted PL while simultaneously controlling its polarization. In order to understand the underlying physics behind the plasmon-enhanced PL, we...

  11. Nuclear analyses of the Pietroasa gold hoard

    International Nuclear Information System (INIS)

    Cojocaru, V.; Besliu, C.

    1999-01-01

    By means of nuclear analyses the concentrations of Au, Ag, Cu, Ir, Os, Pt, Co and Hg were measured in the 12 artifacts of the gold hoard discovered in 1837 at Pietroasa, Buzau country in Romania. The concentrations of the first four elements were used to compare different stylistic groups assumed by historians. Comparisons with gold nuggets from the old Dacian territory and gold Roman imperial coins were also made. A good agreement was found with the oldest hypothesis which considers that the hoard is represented by three styles appropriated mainly by the Goths. (author)

  12. Neurostimulation in cluster headache

    DEFF Research Database (Denmark)

    Pedersen, Jeppe L; Barloese, Mads; Jensen, Rigmor H

    2013-01-01

    PURPOSE OF REVIEW: Neurostimulation has emerged as a viable treatment for intractable chronic cluster headache. Several therapeutic strategies are being investigated including stimulation of the hypothalamus, occipital nerves and sphenopalatine ganglion. The aim of this review is to provide...... effective strategy must be preferred as first-line therapy for intractable chronic cluster headache....

  13. Cauchy cluster process

    DEFF Research Database (Denmark)

    Ghorbani, Mohammad

    2013-01-01

    In this paper we introduce an instance of the well-know Neyman–Scott cluster process model with clusters having a long tail behaviour. In our model the offspring points are distributed around the parent points according to a circular Cauchy distribution. Using a modified Cramér-von Misses test...

  14. When Clusters become Networks

    NARCIS (Netherlands)

    S.M.W. Phlippen (Sandra); G.A. van der Knaap (Bert)

    2007-01-01

    textabstractPolicy makers spend large amounts of public resources on the foundation of science parks and other forms of geographically clustered business activities, in order to stimulate regional innovation. Underlying the relation between clusters and innovation is the assumption that co-located

  15. Mixed-Initiative Clustering

    Science.gov (United States)

    Huang, Yifen

    2010-01-01

    Mixed-initiative clustering is a task where a user and a machine work collaboratively to analyze a large set of documents. We hypothesize that a user and a machine can both learn better clustering models through enriched communication and interactive learning from each other. The first contribution or this thesis is providing a framework of…

  16. Coma cluster of galaxies

    Science.gov (United States)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  17. Cluster growth kinetics

    International Nuclear Information System (INIS)

    Dubovik, V.M.; Gal'perin, A.G.; Rikhvitskij, V.S.; Lushnikov, A.A.

    2000-01-01

    Processes of some traffic blocking coming into existence are considered as probabilistic ones. We study analytic solutions for models for the dynamics of both cluster growth and cluster growth with fragmentation in the systems of finite number of objects. Assuming rates constancy of both coalescence and fragmentation, the models under consideration are linear on the probability functions

  18. Alpha clustering in nuclei

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1990-01-01

    The effects of nucleon clustering in nuclei are described, with reference to both nuclear structure and nuclear reactions, and the advantages of using the cluster formalism to describe a range of phenomena are discussed. It is shown that bound and scattering alpha-particle states can be described in a unified way using an energy-dependent alpha-nucleus potential. (author)

  19. Granitoid-associated gold mineralization in Egypt: a case study from the Atalla mine

    Science.gov (United States)

    Zoheir, Basem; Deshesh, Fatma; Broman, Curt; Pitcairn, Iain; El-Metwally, Ahmed; Mashaal, Shabaan

    2018-06-01

    Gold-bearing sulfide-quartz veins cutting mainly through the Atalla monzogranite intrusion in the Eastern Desert of Egypt are controlled by subparallel NE-trending brittle shear zones. These veins are associated with pervasive sericite-altered, silicified, and ferruginated rocks. The hosting shear zones are presumed as high-order structures of the Najd-style faults in the Central Eastern Desert ( 615-585 Ma). Ore minerals include an early pyrite-arsenopyrite (±pyrrhotite) mineralization, partly replaced by a late pyrite-galena-sphalerite-chalcopyrite (±gold/electrum ± tetrahedrite ± hessite) assemblage. Gold occurs as small inclusions in pyrite and arsenopyrite, or more commonly as intergrowths with galena and sphalerite/tetrahedrite in microfractures. Arsenopyrite geothermometry suggests formation of the early Fe-As-sulfide mineralization at 380-340 °C, while conditions of deposition of the late base metal-gold assemblage are assumed to be below 300 °C. Rare hessite, electrum, and Bi-galena are associated with sphalerite and gold in the late assemblage. The early and late sulfide minerals show consistently a narrow range of δ34S ‰ (3.4-6.5) that overlaps with sulfur isotopic values in ophiolitic rocks. The Au-quartz veins are characterized by abundant CO2 and H2O ± CO2 ± NaCl inclusions, where three-dimensional clusters of inclusions show variable aqueous/carbonic proportions and broad range of total (bimodal) homogenization temperatures. Heterogeneous entrapment of immiscible fluids is interpreted to be caused by unmixing of an originally homogenous, low salinity ( 2 eq. mass % NaCl) aqueous-carbonic fluid, during transition from lithostatic to hydrostatic conditions. Gold deposition occurred generally under mesothermal conditions, i.e., 1.3 kbar and 280 °C, and continued during system cooling to chemistry of the ore fluids.

  20. Negotiating Cluster Boundaries

    DEFF Research Database (Denmark)

    Giacomin, Valeria

    2017-01-01

    Palm oil was introduced to Malay(si)a as an alternative to natural rubber, inheriting its cluster organizational structure. In the late 1960s, Malaysia became the world’s largest palm oil exporter. Based on archival material from British colonial institutions and agency houses, this paper focuses...... on the governance dynamics that drove institutional change within this cluster during decolonization. The analysis presents three main findings: (i) cluster boundaries are defined by continuous tug-of-war style negotiations between public and private actors; (ii) this interaction produces institutional change...... within the cluster, in the form of cumulative ‘institutional rounds’ – the correction or disruption of existing institutions or the creation of new ones; and (iii) this process leads to a broader inclusion of local actors in the original cluster configuration. The paper challenges the prevalent argument...

  1. Mathematical classification and clustering

    CERN Document Server

    Mirkin, Boris

    1996-01-01

    I am very happy to have this opportunity to present the work of Boris Mirkin, a distinguished Russian scholar in the areas of data analysis and decision making methodologies. The monograph is devoted entirely to clustering, a discipline dispersed through many theoretical and application areas, from mathematical statistics and combina­ torial optimization to biology, sociology and organizational structures. It compiles an immense amount of research done to date, including many original Russian de­ velopments never presented to the international community before (for instance, cluster-by-cluster versions of the K-Means method in Chapter 4 or uniform par­ titioning in Chapter 5). The author's approach, approximation clustering, allows him both to systematize a great part of the discipline and to develop many in­ novative methods in the framework of optimization problems. The optimization methods considered are proved to be meaningful in the contexts of data analysis and clustering. The material presented in ...

  2. Neutrosophic Hierarchical Clustering Algoritms

    Directory of Open Access Journals (Sweden)

    Rıdvan Şahin

    2014-03-01

    Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.

  3. Coal-oil gold agglomeration assisted flotation to recover gold from refractory ore

    Science.gov (United States)

    Otsuki, A.; Yue, C.

    2017-07-01

    This study aimed to investigate the applicability of coal-oil gold agglomeration (CGA) assisted flotation to recover gold from a refractory ore. The ore with the grade of 2-5 g/t was tested with the CGA-flotation process in six different size fractions from 38 to 300 urn using different collector types and dosages. In addition, the flotation without CGA was performed under the same condition for comparison. The results showed that the higher gold grade and recovery were achieved by applying the CGA-flotation, compared with the flotation without CGA. More than 20-60 times grade increase from the head grade was obtained with CGA-flotation. The elemental analysis of gold and sulphur explained their relationship with gold recovery. The results well indicated the applicability of CGA to upgrade the refractory gold ore.

  4. Gold deposit styles and placer gold characterisation in northern and east-central Madagascar

    Science.gov (United States)

    Pitfield, Peter E. J; Styles, Michael T.; Taylor, Cliff D.; Key, Roger M.; Bauer,; Ralison, A

    2009-01-01

    Microchemical characterisation of bedrock and placer gold grains from six gold districts within the Archaean domains and intervening Neoproterozoic Anaboriana-Manampotsy belt of northern and east-central Madagascar show few opaque inclusions (e.g pyrrhotite, Bi tellurides) but wide range of Ag contents (40wt%). Some districts exhibit multiple source populations of grains. The ‘greenstone belt’ terranes have an orogenic gold signature locally with an intrusion-related to epithermal overprint. Proterozoic metasediments with felsic to ultramafic bodies yield dominantly intrusion-related gold. A high proportion of secondary gold (<0.5wt% Ag) is related to recycling of paleoplacers and erosion of post-Gondwana planation surfaces and indicates that some mesothermal gold systems were already partially to wholly removed by erosion by the PermoTriassic.

  5. Effects of dissolucytotic gold ions on recovering brain lesions.

    Science.gov (United States)

    Danscher, Gorm; Larsen, Agnete

    2010-04-01

    Recent experimental research has shown that metallic gold releases charged gold atoms when placed intracerebrally and that the liberated gold ions affect inflammation in the brain. The observations suggest that metallic gold can be used as a safe suppressor of inflammation in the central nervous system.

  6. Electroplating of gold using a sulfite-based electrolyte

    NARCIS (Netherlands)

    Smalbrugge, E.; Jacobs, B.; Falcone, S.; Geluk, E.J.; Karouta, F.; Leijtens, X.J.M.; Besten, den J.H.

    2000-01-01

    Electroplating of gold is often used in optoelectronic and microelectronic devices for air-bridges, heat-sinks or gold-bumps for flip-chip techniques. The gold-cyanide electrolytes, which are commonly used in gold-electroplating, are toxic and attack resist patterns causing cracks during the plating

  7. A study on gold detection in Wenyu gold mine with XRF techniques

    International Nuclear Information System (INIS)

    Liu Liuchun

    1988-01-01

    A portable X ray fluorescence analyzer was used for detecting fluorcescent X rays from the elements associated with gold ores. Fe, As and Ni were chosen to be the indicator elements to analyse rock samples in Wenyu gold mine. Optimum indicators were determined, and it had proved to be successful to detect gold indirectly by measuring the yields of characteristic X rays of the elements. The method provided also valuable information on geology mapping and deposits forming environment

  8. Herd Clustering: A synergistic data clustering approach using collective intelligence

    KAUST Repository

    Wong, Kachun; Peng, Chengbin; Li, Yue; Chan, Takming

    2014-01-01

    , this principle is used to develop a new clustering algorithm. Inspired by herd behavior, the clustering method is a synergistic approach using collective intelligence called Herd Clustering (HC). The novel part is laid in its first stage where data instances

  9. Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles

    International Nuclear Information System (INIS)

    Karczmarczyk, Aleksandra; Celebanska, Anna; Nogala, Wojciech; Sashuk, Volodymyr; Chernyaeva, Olga; Opallo, Marcin

    2014-01-01

    Graphical abstract: - Highlights: • Gold nanoparticulate film electrodes were prepared by layer-by-layer method from oppositely charged nanoparticles. • Positively charged nanoparticles play dominant role in glucose oxidation in alkaline solution. • Gold and gold-carbon nanoparticulate film electrodes exhibit similar glucose oxidation current and onset potential. - Abstract: Electrocatalytic oxidation of glucose was studied at nanoparticulate gold and gold-carbon film electrodes. These electrodes were prepared by a layer-by-layer method without application of any linker molecules. Gold nanoparticles were stabilized by undecane thiols functionalized by trimethyl ammonium or carboxylate groups, whereas the carbon nanoparticles were covered by phenylsulfonate functionalities. The gold nanoparticulate electrodes were characterized by UV-vis and XPS spectroscopy, atomic force microscopy and voltammetry, before and after heat-treatment. Heat-treatment facilitates the aggregation of the nanoparticles and affects the structure of the film. The comparison of the results obtained with film electrodes prepared from gold nanoparticles with the same charge and with gold-carbon nanoparticulate electrodes, proved that positively charged nanoparticles are responsible for the high electrocatalytic activity, whereas negatively charged ones act rather as a linker of the film

  10. Formation of gold nanorods and gold nanorod films for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Trotsyuk, L.L.; Kulakovich, O.S.; Shabunya-Klyachkovskaya, E.V.; Gaponenko, S.V.; Vashchenko, S.V.

    2016-01-01

    The formation of gold nanorods as well as thin films prepared via electrostatic deposition of gold nanorods has been investigated. The obtained gold nanorods films have been used as substrates for the surface-enhanced Raman scattering analysis of sulfur-free organic molecules mitoxantrone and malachite green as well as inorganic malachite microcrystals for the first time. The additional modification of films with L-cysteine allows one to significantly extend the use of gold nanorods for the surface-enhanced Raman scattering analysis. (authors)

  11. EOP Gold Coral (Gerardia sp.) Growth Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gold coral (Gerardia sp.) trees that were inspected years earlier on Pisces submersible dives were revisited and their change in size measured. The fishery for...

  12. Poly-thiosemicarbazide membrane for gold recovery

    KAUST Repository

    Villalobos, Luis Francisco; Yapici, Tahir; Peinemann, Klaus-Viktor

    2014-01-01

    A novel polymeric membrane adsorber with a high density of adsorption sites that can selectively capture Au(III) ions, is proposed as an efficient alternative to recover gold from dilute solutions. Poly-thiosemicarbazide (PTSC), a polymer

  13. Lamellar multilayer hexadecylaniline-modified gold nanoparticle ...

    Indian Academy of Sciences (India)

    standard Wilhelmy plate was used for surface pressure sensing. Multilayer ... carried out on a JEOL model 1200EX instrument operated at an accelerating voltage of ... the gold nanoparticles within domains (and reorganization of the domains ...

  14. Deep gold mine fracture zone behaviour

    CSIR Research Space (South Africa)

    Napier, JAL

    1998-12-01

    Full Text Available The investigation of the behaviour of the fracture zone surrounding deep level gold mine stopes is detailed in three main sections of this report. Section 2 outlines the ongoing study of fundamental fracture process and their numerical...

  15. Optical properties of spherical gold mesoparticles

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.

    2012-01-01

    Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond...

  16. Adsorption-induced restructuring of gold nanochains

    DEFF Research Database (Denmark)

    Bahn, Sune Rastad; Lopez, Nuria; Nørskov, Jens Kehlet

    2002-01-01

    The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly with the st......The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly...... with the strain/stress conditions for the chain. Oxygen atoms are found to energetically prefer to get incorporated into a chain forming a new type of gold-oxygen nanochain with a conductance of one quantum unit. We suggest that the long bond lengths observed in electron microscopy investigations of gold chains...

  17. Synthesis method of asymmetric gold particles.

    Science.gov (United States)

    Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P

    2017-06-07

    Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.

  18. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    thods of reduction of metal ions using plants or microorganisms are often ... have several advantages over bacteria, they are often pre- ferred. ... in static condition for a period of 7 days. ... work was focused on the production of intracellular gold.

  19. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements

    Science.gov (United States)

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-01

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation.

  20. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements.

    Science.gov (United States)

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-15

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Insights on proximity effect and multiphoton induced luminescence from gold nanospheres in far field optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Borglin, Johan [Biomedical Photonics Group, Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg (Sweden); Department of Physics, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg (Sweden); Guldbrand, Stina [Department of Physics, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg (Sweden); Evenbratt, Hanne [Pharmaceutical Technology, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg (Sweden); Kirejev, Vladimir; Ericson, Marica B., E-mail: marica.ericson@chem.gu.se [Biomedical Photonics Group, Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg (Sweden); Grönbeck, Henrik [Department of Applied Physics, Chalmers University of Technology, Kemivägen 9, 412 96 Gothenburg (Sweden)

    2015-12-07

    Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.

  2. Insights on proximity effect and multiphoton induced luminescence from gold nanospheres in far field optical microscopy

    International Nuclear Information System (INIS)

    Borglin, Johan; Guldbrand, Stina; Evenbratt, Hanne; Kirejev, Vladimir; Ericson, Marica B.; Grönbeck, Henrik

    2015-01-01

    Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region

  3. Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture

    Science.gov (United States)

    Sanfilippo, Antonio [Richland, WA; Calapristi, Augustin J [West Richland, WA; Crow, Vernon L [Richland, WA; Hetzler, Elizabeth G [Kennewick, WA; Turner, Alan E [Kennewick, WA

    2009-12-22

    Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture are described. In one aspect, a document clustering method includes providing a document set comprising a plurality of documents, providing a cluster comprising a subset of the documents of the document set, using a plurality of terms of the documents, providing a cluster label indicative of subject matter content of the documents of the cluster, wherein the cluster label comprises a plurality of word senses, and selecting one of the word senses of the cluster label.

  4. Eligibility for isoniazid preventive therapy in South African gold mines.

    Directory of Open Access Journals (Sweden)

    James J Lewis

    Full Text Available The "Thibela TB" cluster randomised trial of community-wide isoniazid preventive therapy (IPT to reduce tuberculosis incidence in the South African gold mines.To determine the proportion of participants eligible for IPT and the reasons and risk factors for ineligibility, to inform the scale-up of IPT.Cross-sectional survey of participants in intervention clusters (mine shafts consenting to tuberculosis screening and assessment for eligibility to start IPT.Among 27,126 consenting participants, 94.7% were male, the median age was 41 years, 12.2% reported previous tuberculosis, 0.6% reported ever taking IPT and 2.5% reported currently taking antiretroviral therapy. There were 24,430 (90.1% assessed as eligible to start IPT, of whom 23,659 started IPT. The most common reasons for ineligibility were having suspected tuberculosis that was subsequently confirmed by a positive smear and/or culture (n=705, excessive alcohol consumption (n=427 and being on tuberculosis treatment at time of initial screen (n=241. Ineligibility was associated with factors including older age, female gender, prior history of tuberculosis and being in "HIV care". However, at least 78% were eligible for IPT in all of these sub-groups.The vast majority of participants in this community-wide intervention were eligible for IPT.

  5. Uranium extraction from gold-uranium ores

    Energy Technology Data Exchange (ETDEWEB)

    Laskorin, B.N.; Golynko, Z.Sh.

    1981-01-01

    The process of uranium extraction from gold-uranium ores in the South Africa is considered. Flowsheets of reprocessing gold-uranium conglomerates, pile processing and uranium extraction from the ores are presented. Continuous counter flow ion-exchange process of uranium extraction using strong-active or weak-active resins is noted to be the most perspective and economical one. The ion-exchange uranium separation with the succeeding extraction is also the perspective one.

  6. The Modern Monetary System and Gold

    Directory of Open Access Journals (Sweden)

    N N Rubtsov

    2013-12-01

    Full Text Available The article considers the nature of modern money, analyzes the mechanism of its creation, showing that it is basically generated by credit and the principle of partial bank reserve. The article draws comparative parallels between trade money based on gold and contemporary, credit money; the author quotes leading bankers and finance experts on the need for partial return to the principles of functioning of the gold standard as the most effective institute of regulating the monetary system in society.

  7. Optical Epitaxial Growth of Gold Nanoparticle Arrays.

    Science.gov (United States)

    Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L

    2015-09-09

    We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm.

  8. Cluster-cluster correlations and constraints on the correlation hierarchy

    Science.gov (United States)

    Hamilton, A. J. S.; Gott, J. R., III

    1988-01-01

    The hypothesis that galaxies cluster around clusters at least as strongly as they cluster around galaxies imposes constraints on the hierarchy of correlation amplitudes in hierachical clustering models. The distributions which saturate these constraints are the Rayleigh-Levy random walk fractals proposed by Mandelbrot; for these fractal distributions cluster-cluster correlations are all identically equal to galaxy-galaxy correlations. If correlation amplitudes exceed the constraints, as is observed, then cluster-cluster correlations must exceed galaxy-galaxy correlations, as is observed.

  9. Formation of stable products from cluster-cluster collisions

    International Nuclear Information System (INIS)

    Alamanova, Denitsa; Grigoryan, Valeri G; Springborg, Michael

    2007-01-01

    The formation of stable products from copper cluster-cluster collisions is investigated by using classical molecular-dynamics simulations in combination with an embedded-atom potential. The dependence of the product clusters on impact energy, relative orientation of the clusters, and size of the clusters is studied. The structures and total energies of the product clusters are analysed and compared with those of the colliding clusters before impact. These results, together with the internal temperature, are used in obtaining an increased understanding of cluster fusion processes

  10. Determining the composition of gold nanoparticles: a compilation of shapes, sizes, and calculations using geometric considerations

    International Nuclear Information System (INIS)

    Mori, Taizo; Hegmann, Torsten

    2016-01-01

    Size, shape, overall composition, and surface functionality largely determine the properties and applications of metal nanoparticles. Aside from well-defined metal clusters, their composition is often estimated assuming a quasi-spherical shape of the nanoparticle core. With decreasing diameter of the assumed circumscribed sphere, particularly in the range of only a few nanometers, the estimated nanoparticle composition increasingly deviates from the real composition, leading to significant discrepancies between anticipated and experimentally observed composition, properties, and characteristics. We here assembled a compendium of tables, models, and equations for thiol-protected gold nanoparticles that will allow experimental scientists to more accurately estimate the composition of their gold nanoparticles using TEM image analysis data. The estimates obtained from following the routines described here will then serve as a guide for further analytical characterization of as-synthesized gold nanoparticles by other bulk (thermal, structural, chemical, and compositional) and surface characterization techniques. While the tables, models, and equations are dedicated to gold nanoparticles, the composition of other metal nanoparticle cores with face-centered cubic lattices can easily be estimated simply by substituting the value for the radius of the metal atom of interest.Graphical abstract

  11. Determining the composition of gold nanoparticles: a compilation of shapes, sizes, and calculations using geometric considerations

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Taizo, E-mail: MORI.Taizo@nims.go.jp; Hegmann, Torsten, E-mail: thegmann@kent.edu [Kent State University, Chemical Physics Interdisciplinary Program, Liquid Crystal Institute (United States)

    2016-10-15

    Size, shape, overall composition, and surface functionality largely determine the properties and applications of metal nanoparticles. Aside from well-defined metal clusters, their composition is often estimated assuming a quasi-spherical shape of the nanoparticle core. With decreasing diameter of the assumed circumscribed sphere, particularly in the range of only a few nanometers, the estimated nanoparticle composition increasingly deviates from the real composition, leading to significant discrepancies between anticipated and experimentally observed composition, properties, and characteristics. We here assembled a compendium of tables, models, and equations for thiol-protected gold nanoparticles that will allow experimental scientists to more accurately estimate the composition of their gold nanoparticles using TEM image analysis data. The estimates obtained from following the routines described here will then serve as a guide for further analytical characterization of as-synthesized gold nanoparticles by other bulk (thermal, structural, chemical, and compositional) and surface characterization techniques. While the tables, models, and equations are dedicated to gold nanoparticles, the composition of other metal nanoparticle cores with face-centered cubic lattices can easily be estimated simply by substituting the value for the radius of the metal atom of interest.Graphical abstract.

  12. Films of covalently bonded gold nanoparticles synthesized by a sol–gel process

    International Nuclear Information System (INIS)

    Dell’Erba, Ignacio E.; Hoppe, Cristina E.; Williams, Roberto J. J.

    2012-01-01

    Gold nanoparticles (NPs) with a size close to 1.5 nm, coated with organic ligands bearing Si(OEt) 3 groups, were synthesized and used to obtain self-standing films by a sol–gel process catalyzed by formic acid. Using FESEM images, FTIR, and UV–visible spectra, it was observed that very small gold NPs self-assembled by Si–O–Si covalent bonds forming crosslinked clusters with sizes up to about 50 nm in which NPs preserve their individuality. The possibility of fixing very small gold NPs in a crosslinked film opens a variety of potential applications based on the specific properties of small-size particles. As an example, we illustrated the way in which one can take advantage of the low melting temperature of these NPs to generate tiny gold crystals partially embedded at the surface, a process that might be used for the development of catalysts or sensors. Besides, the shift and change in the intensity of the plasmon band produced by heating to 100 °C may be employed to develop an irreversible sensor of undesirable temperature excursions during the life-time of a specific product.

  13. Synthesis of radioactive gold nanoparticle in surfactant medium

    International Nuclear Information System (INIS)

    Swadesh Mandal

    2014-01-01

    The present study describes the synthesis of radioactive gold nanoparticle in surfactant medium. Proton irradiated stable 197 Au and radioactive 198 Au were simultaneously used for production of radioactive gold nanoparticle. Face centered cubic gold nanoparticles with size of 4-50 nm were found in proton irradiated gold foil. However, the size of nanoparticle varies with pH using both stable and radioactive gold. (author)

  14. Tune Your Brown Clustering, Please

    DEFF Research Database (Denmark)

    Derczynski, Leon; Chester, Sean; Bøgh, Kenneth Sejdenfaden

    2015-01-01

    Brown clustering, an unsupervised hierarchical clustering technique based on ngram mutual information, has proven useful in many NLP applications. However, most uses of Brown clustering employ the same default configuration; the appropriateness of this configuration has gone predominantly...

  15. Study on Sumbawa gold recovery using centrifuge

    Science.gov (United States)

    Ferdana, A. D.; Petrus, H. T. B. M.; Bendiyasa, I. M.; Prijambada, I. D.; Hamada, F.; Sachiko, T.

    2018-01-01

    The Artisanal Small Gold Mining in Sumbawa has been processing gold with mercury (Hg), which poses a serious threat to the mining and global environment. One method of gold processing that does not use mercury is by gravity method. Before processing the ore first performed an analysis of Mineragraphy and analysis of compound with XRD. Mineragraphy results show that gold is associated with chalcopyrite and covelite and is a single particle (native) on size 58.8 μm, 117 μm up to 294 μm. characterization with XRD shows that the Sumbawa Gold Ore is composed of quartz, pyrite, pyroxene, and sericite compounds. Sentrifugation is one of separation equipment of gravity method to increase concentrate based on difference of specific gravity. The optimum concentration result is influenced by several variables, such as water flow rate and particle size. In this present research, the range of flow rate is 5 lpm and 10 lpm, the particle size - 100 + 200 mesh and -200 +300 mesh. Gold concentration in concentrate is measured by EDX. The result shows that the optimum condition is obtained at a separation with flow rate 5 lpm and a particle size of -100 + 200 mesh.

  16. Analysis on the Impact of the Fluctuation of the International Gold Prices on the Chinese Gold Stocks

    Directory of Open Access Journals (Sweden)

    Jiankang Jin

    2014-01-01

    Full Text Available Five gold stocks in Chinese Shanghai and Shenzhen A-share and Comex gold futures are chosen to form the sample, for the purpose of analysing the impact of the fluctuation of the international gold prices on the gold stocks in Chinese Shanghai and Shenzhen A-share. Using the methods of unit root test, Granger causality test, VAR model, and impulse response function, this paper has analysed the relationship between the price change of the international gold futures and the price fluctuation of gold stocks in Chinese Shanghai and Shenzhen comprehensively. The results suggest the fluctuation of the international gold futures has a strong influence on the domestic futures.

  17. Gold Nanocages for Biomedical Applications**

    Science.gov (United States)

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2008-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy. PMID:18648528

  18. Gold Nanocages for Biomedical Applications.

    Science.gov (United States)

    Skrabalak, Sara E; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-10-17

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl(4). The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy.

  19. The Kolar Gold Field experiment

    International Nuclear Information System (INIS)

    Sreekantan, B.V.

    1982-01-01

    Meson theory was propounded to explain the nuclear force which holds neutrons and protons inside the nucleus. Subsequently, quark theory was put forward to bring some order into an enormously large number of fundamental particles discovered in the hadron family. These two theories are briefly explained. The gravitational force, the electromagnetic force, the weak nuclear force and the strong nuclear force are the basic forces which determine the behaviour of fundamental particles when they are in close proximity. If the last three of the above-mentioned four forces are one or just different aspects of a single force, quarks and leptons can be mingled in the same theoretical framework indicating the non-conservation of baryon number and the spontaneous decay of the proton into leptons. In order to test the last possibility i.e. proton decay, an experiment has been set up in the Kolar Gold Field at a depth of 2300 metres in India. 1650 gas proportional counters are sandwiched between iron plates. The total amount of iron in the form of iron plates and walls of the counters is 140 tons. In this experiment, nuclei of iron are serving as the source of protons and neutrons and the depth eliminates the background events which mimic proton decay. The amount of iron used in the experiment i.e. 140 tons is more than enough to obtain evidence of 10 proton decay events in a year, assuming that the lifetime of proton is 10 30 years or below. (M.G.B.)

  20. Curcumin: the Indian solid gold.

    Science.gov (United States)

    Aggarwal, Bharat B; Sundaram, Chitra; Malani, Nikita; Ichikawa, Haruyo

    2007-01-01

    Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".

  1. Cluster Management Institutionalization

    DEFF Research Database (Denmark)

    Normann, Leo; Agger Nielsen, Jeppe

    2015-01-01

    of how it was legitimized as a “ready-to-use” management model. Further, our account reveals how cluster management translated into considerably different local variants as it travelled into specific organizations. However, these processes have not occurred sequentially with cluster management first...... legitimized at the field level, then spread, and finally translated into action in the adopting organizations. Instead, we observed entangled field and organizational-level processes. Accordingly, we argue that cluster management institutionalization is most readily understood by simultaneously investigating...

  2. The concept of cluster

    DEFF Research Database (Denmark)

    Laursen, Lea Louise Holst; Møller, Jørgen

    2013-01-01

    villages in order to secure their future. This paper will address the concept of cluster-villages as a possible approach to strengthen the conditions of contemporary Danish villages. Cluster-villages is a concept that gather a number of villages in a network-structure where the villages both work together...... to forskellige positioner ser vi en ny mulighed for landsbyudvikling, som vi kalder Clustervillages. In order to investigate the potentials and possibilities of the cluster-village concept the paper will seek to unfold the concept strategically; looking into the benefits of such concept. Further, the paper seeks...

  3. Raspberry Pi super cluster

    CERN Document Server

    Dennis, Andrew K

    2013-01-01

    This book follows a step-by-step, tutorial-based approach which will teach you how to develop your own super cluster using Raspberry Pi computers quickly and efficiently.Raspberry Pi Super Cluster is an introductory guide for those interested in experimenting with parallel computing at home. Aimed at Raspberry Pi enthusiasts, this book is a primer for getting your first cluster up and running.Basic knowledge of C or Java would be helpful but no prior knowledge of parallel computing is necessary.

  4. Introduction to cluster dynamics

    CERN Document Server

    Reinhard, Paul-Gerhard

    2008-01-01

    Clusters as mesoscopic particles represent an intermediate state of matter between single atoms and solid material. The tendency to miniaturise technical objects requires knowledge about systems which contain a ""small"" number of atoms or molecules only. This is all the more true for dynamical aspects, particularly in relation to the qick development of laser technology and femtosecond spectroscopy. Here, for the first time is a highly qualitative introduction to cluster physics. With its emphasis on cluster dynamics, this will be vital to everyone involved in this interdisciplinary subje

  5. Contextualizing the Cluster

    DEFF Research Database (Denmark)

    Giacomin, Valeria

    This dissertation examines the case of the palm oil cluster in Malaysia and Indonesia, today one of the largest agricultural clusters in the world. My analysis focuses on the evolution of the cluster from the 1880s to the 1970s in order to understand how it helped these two countries to integrate...... into the global economy in both colonial and post-colonial times. The study is based on empirical material drawn from five UK archives and background research using secondary sources, interviews, and archive visits to Malaysia and Singapore. The dissertation comprises three articles, each discussing a major under...

  6. Atomic cluster collisions

    Science.gov (United States)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  7. Combining cluster number counts and galaxy clustering

    Energy Technology Data Exchange (ETDEWEB)

    Lacasa, Fabien; Rosenfeld, Rogerio, E-mail: fabien@ift.unesp.br, E-mail: rosenfel@ift.unesp.br [ICTP South American Institute for Fundamental Research, Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo (Brazil)

    2016-08-01

    The abundance of clusters and the clustering of galaxies are two of the important cosmological probes for current and future large scale surveys of galaxies, such as the Dark Energy Survey. In order to combine them one has to account for the fact that they are not independent quantities, since they probe the same density field. It is important to develop a good understanding of their correlation in order to extract parameter constraints. We present a detailed modelling of the joint covariance matrix between cluster number counts and the galaxy angular power spectrum. We employ the framework of the halo model complemented by a Halo Occupation Distribution model (HOD). We demonstrate the importance of accounting for non-Gaussianity to produce accurate covariance predictions. Indeed, we show that the non-Gaussian covariance becomes dominant at small scales, low redshifts or high cluster masses. We discuss in particular the case of the super-sample covariance (SSC), including the effects of galaxy shot-noise, halo second order bias and non-local bias. We demonstrate that the SSC obeys mathematical inequalities and positivity. Using the joint covariance matrix and a Fisher matrix methodology, we examine the prospects of combining these two probes to constrain cosmological and HOD parameters. We find that the combination indeed results in noticeably better constraints, with improvements of order 20% on cosmological parameters compared to the best single probe, and even greater improvement on HOD parameters, with reduction of error bars by a factor 1.4-4.8. This happens in particular because the cross-covariance introduces a synergy between the probes on small scales. We conclude that accounting for non-Gaussian effects is required for the joint analysis of these observables in galaxy surveys.

  8. Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens

    Energy Technology Data Exchange (ETDEWEB)

    Boamponsem, L.K. [Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, University Post Office, Kumasi (Ghana); Department of Laboratory Technology, School of Physical Sciences, University of Cape Coast, Cape Coast (Ghana); Adam, J.I. [Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, University Post Office, Kumasi (Ghana); Dampare, S.B., E-mail: dampare@cc.okayama-u.ac.j [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon-Accra (Ghana); Department of Earth Sciences, Okayama University, 1-1, Tsushima-Naka 3-Chome, Okayama 700-8530 (Japan); Nyarko, B.J.B. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon-Accra (Ghana); Essumang, D.K. [Department of Laboratory Technology, School of Physical Sciences, University of Cape Coast, Cape Coast (Ghana)

    2010-05-01

    In situ lichens (Parmelia sulcata) have been used to assess atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana. Total heavy metal concentrations obtained by instrumental neutron activation analysis (INAA) were processed by positive matrix factorization (PMF), principal component (PCA) and cluster (CA) analyses. The pollution index factor (PIF) and pollution load index (PLI) criteria revealed elevated levels of Sb, Mn, Cu, V, Al, Co, Hg, Cd and As in excess of the background values. The PCA and CA classified the examined elements into anthropogenic and natural sources, and PMF resolved three primary sources/factors: agricultural activities and other non-point anthropogenic origins, natural soil dust, and gold mining activities. Gold mining activities, which are characterized by dominant species of Sb, Th, As, Hg, Cd and Co, and significant contributions of Cu, Al, Mn and V, are the main contributors of heavy metals in the atmosphere of the study area.

  9. Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens

    International Nuclear Information System (INIS)

    Boamponsem, L.K.; Adam, J.I.; Dampare, S.B.; Nyarko, B.J.B.; Essumang, D.K.

    2010-01-01

    In situ lichens (Parmelia sulcata) have been used to assess atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana. Total heavy metal concentrations obtained by instrumental neutron activation analysis (INAA) were processed by positive matrix factorization (PMF), principal component (PCA) and cluster (CA) analyses. The pollution index factor (PIF) and pollution load index (PLI) criteria revealed elevated levels of Sb, Mn, Cu, V, Al, Co, Hg, Cd and As in excess of the background values. The PCA and CA classified the examined elements into anthropogenic and natural sources, and PMF resolved three primary sources/factors: agricultural activities and other non-point anthropogenic origins, natural soil dust, and gold mining activities. Gold mining activities, which are characterized by dominant species of Sb, Th, As, Hg, Cd and Co, and significant contributions of Cu, Al, Mn and V, are the main contributors of heavy metals in the atmosphere of the study area.

  10. Metal cluster compounds - chemistry and importance; clusters containing isolated main group element atoms, large metal cluster compounds, cluster fluxionality

    International Nuclear Information System (INIS)

    Walther, B.

    1988-01-01

    This part of the review on metal cluster compounds deals with clusters containing isolated main group element atoms, with high nuclearity clusters and metal cluster fluxionality. It will be obvious that main group element atoms strongly influence the geometry, stability and reactivity of the clusters. High nuclearity clusters are of interest in there own due to the diversity of the structures adopted, but their intermediate position between molecules and the metallic state makes them a fascinating research object too. These both sites of the metal cluster chemistry as well as the frequently observed ligand and core fluxionality are related to the cluster metal and surface analogy. (author)

  11. Disentangling Porterian Clusters

    DEFF Research Database (Denmark)

    Jagtfelt, Tue

    , contested theory become so widely disseminated and applied as a normative and prescriptive strategy for economic development? The dissertation traces the introduction of the cluster notion into the EU’s Lisbon Strategy and demonstrates how its inclusion originates from Porter’s colleagues: Professor Örjan...... to his membership on the Commission on Industrial Competitiveness, and that the cluster notion found in his influential book, Nations, represents a significant shift in his conception of cluster compared with his early conceptions. This shift, it is argued, is a deliberate attempt by Porter to create...... a paradigmatic textbook that follows Kuhn’s blueprint for scientific revolutions by instilling Nations with circular references and thus creating a local linguistic holism conceptualized through an encompassing notion of cluster. The dissertation concludes that the two research questions are philosophically...

  12. Remarks on stellar clusters

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    In the following, a few simple remarks on the evolution and properties of stellar clusters will be collected. In particular, globular clusters will be considered. Though details of such clusters are often not known, a few questions can be clarified with the help of primitive arguments. These are:- why are spherical clusters spherical, why do they have high densities, why do they consist of approximately a million stars, how may a black hole of great mass form within them, may they be the origin of gamma-ray bursts, may their invisible remnants account for the missing mass of our galaxy. The available data do not warrant a detailed evaluation. However, it is remarkable that exceedingly simple models can shed some light on the questions enumerated above. (author)

  13. From collisions to clusters

    DEFF Research Database (Denmark)

    Loukonen, Ville; Bork, Nicolai; Vehkamaki, Hanna

    2014-01-01

    -principles molecular dynamics collision simulations of (sulphuric acid)1(water)0, 1 + (dimethylamine) → (sulphuric acid)1(dimethylamine)1(water)0, 1 cluster formation processes. The simulations indicate that the sticking factor in the collisions is unity: the interaction between the molecules is strong enough...... control. As a consequence, the clusters show very dynamic ion pair structure, which differs from both the static structure optimisation calculations and the equilibrium first-principles molecular dynamics simulations. In some of the simulation runs, water mediates the proton transfer by acting as a proton...... to overcome the possible initial non-optimal collision orientations. No post-collisional cluster break up is observed. The reasons for the efficient clustering are (i) the proton transfer reaction which takes place in each of the collision simulations and (ii) the subsequent competition over the proton...

  14. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  15. How Clusters Work

    Science.gov (United States)

    Technology innovation clusters are geographic concentrations of interconnected companies, universities, and other organizations with a focus on environmental technology. They play a key role in addressing the nation’s pressing environmental problems.

  16. Evolution of clustered storage

    CERN Multimedia

    CERN. Geneva; Van de Vyvre, Pierre

    2007-01-01

    The session actually featured two presentations: * Evolution of clustered storage by Lance Hukill, Quantum Corporation * ALICE DAQ - Usage of a Cluster-File System: Quantum StorNext by Pierre Vande Vyvre, CERN-PH the second one prepared at short notice by Pierre (thanks!) to present how the Quantum technologies are being used in the ALICE experiment. The abstract to Mr Hukill's follows. Clustered Storage is a technology that is driven by business and mission applications. The evolution of Clustered Storage solutions starts first at the alignment between End-users needs and Industry trends: * Push-and-Pull between managing for today versus planning for tomorrow * Breaking down the real business problems to the core applications * Commoditization of clients, servers, and target devices * Interchangeability, Interoperability, Remote Access, Centralized control * Oh, and yes, there is a budget and the "real world" to deal with This presentation will talk through these needs and trends, and then ask the question, ...

  17. Galaxy clusters and cosmology

    CERN Document Server

    White, S

    1994-01-01

    Galaxy clusters are the largest coherent objects in Universe. It has been known since 1933 that their dynamical properties require either a modification of the theory of gravity, or the presence of a dominant component of unseen material of unknown nature. Clusters still provide the best laboratories for studying the amount and distribution of this dark matter relative to the material which can be observed directly -- the galaxies themselves and the hot,X-ray-emitting gas which lies between them.Imaging and spectroscopy of clusters by satellite-borne X -ray telescopes has greatly improved our knowledge of the structure and composition of this intergalactic medium. The results permit a number of new approaches to some fundamental cosmological questions,but current indications from the data are contradictory. The observed irregularity of real clusters seems to imply recent formation epochs which would require a universe with approximately the critical density. On the other hand, the large baryon fraction observ...

  18. Applications of Clustering

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Applications of Clustering. Biology – medical imaging, bioinformatics, ecology, phylogenies problems etc. Market research. Data Mining. Social Networks. Any problem measuring similarity/correlation. (dimensions represent different parameters)

  19. Clustering Game Behavior Data

    DEFF Research Database (Denmark)

    Bauckhage, C.; Drachen, Anders; Sifa, Rafet

    2015-01-01

    of the causes, the proliferation of behavioral data poses the problem of how to derive insights therefrom. Behavioral data sets can be large, time-dependent and high-dimensional. Clustering offers a way to explore such data and to discover patterns that can reduce the overall complexity of the data. Clustering...... and other techniques for player profiling and play style analysis have, therefore, become popular in the nascent field of game analytics. However, the proper use of clustering techniques requires expertise and an understanding of games is essential to evaluate results. With this paper, we address game data...... scientists and present a review and tutorial focusing on the application of clustering techniques to mine behavioral game data. Several algorithms are reviewed and examples of their application shown. Key topics such as feature normalization are discussed and open problems in the context of game analytics...

  20. Clustering on Membranes

    DEFF Research Database (Denmark)

    Johannes, Ludger; Pezeshkian, Weria; Ipsen, John H

    2018-01-01

    Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membrane's physical properties contribute to this clustering, in addition to direct...... protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance. In this review, we describe how line tension, lipid depletion, and membrane curvature contribute to membrane-mediated clustering. Additional attractive forces that arise...... from protein-induced perturbation of a membrane's fluctuations are also described. This review aims to provide a survey of the current understanding of membrane-mediated clustering and how this supports precise biological functions....