WorldWideScience

Sample records for monolayer protected nanoclusters

  1. Information processing schemes based on monolayer protected metallic nanoclusters.

    Science.gov (United States)

    Cervera, Javier; Mafé, Salvador

    2011-09-01

    Nanostructures are potentially useful as building blocks to complement future electronics because of their high versatility and packing densities. The fabrication and characterization of particular nanostructures and the use of new theoretical tools to describe their properties are receiving much attention. However, the integration of these individual systems into general schemes that could perform simple tasks is also necessary because modern electronics operation relies on the concerted action of many basic units. We review here new conceptual schemes that can allow information processing with ligand or monolayer protected metallic nanoclusters (MPCs) on the basis of the experimentally demonstrated and theoretically described electrical characteristics of these nanostructures. In particular, we make use of the tunnelling current through a metallic nanocluster attached to the electrodes by ligands. The nanostructure is described as a single electron transistor (SET) that can be gated by an external potential. This fact permits exploiting information processing schemes in approximately defined arrays of MPCs. These schemes include: (i) binary, multivalued, and reversible logic gates; (ii) an associative memory and a synchronization circuit; and (iii) two signal processing nanodevices based on parallel arrays of MPCs and nanoswitches. In each case, the practical operation of the nanodevice is based on the SET properties of MPCs reported experimentally. We examine also some of the practical problems that should be addressed in future experimental realizations: the stochastic nature of the electron tunnelling, the relatively low operation temperatures, and the limited reliability caused by the weak signals involved and the nanostructure variability. The perspectives to solve these problems are based on the potentially high degree of scalability of the nanostructures.

  2. Thermodynamic stability of ligand-protected metal nanoclusters

    Science.gov (United States)

    Taylor, Michael G.; Mpourmpakis, Giannis

    2017-01-01

    Despite the great advances in synthesis and structural determination of atomically precise, thiolate-protected metal nanoclusters, our understanding of the driving forces for their colloidal stabilization is very limited. Currently there is a lack of models able to describe the thermodynamic stability of these ‘magic-number’ colloidal nanoclusters as a function of their atomic-level structural characteristics. Herein, we introduce the thermodynamic stability theory, derived from first principles, which is able to address stability of thiolate-protected metal nanoclusters as a function of the number of metal core atoms and thiolates on the nanocluster shell. Surprisingly, we reveal a fine energy balance between the core cohesive energy and the shell-to-core binding energy that appears to drive nanocluster stabilization. Our theory applies to both charged and neutral systems and captures a large number of experimental observations. Importantly, it opens new avenues for accelerating the discovery of stable, atomically precise, colloidal metal nanoclusters. PMID:28685777

  3. Thermodynamic stability of ligand-protected metal nanoclusters

    Science.gov (United States)

    Taylor, Michael G.; Mpourmpakis, Giannis

    2017-07-01

    Despite the great advances in synthesis and structural determination of atomically precise, thiolate-protected metal nanoclusters, our understanding of the driving forces for their colloidal stabilization is very limited. Currently there is a lack of models able to describe the thermodynamic stability of these `magic-number' colloidal nanoclusters as a function of their atomic-level structural characteristics. Herein, we introduce the thermodynamic stability theory, derived from first principles, which is able to address stability of thiolate-protected metal nanoclusters as a function of the number of metal core atoms and thiolates on the nanocluster shell. Surprisingly, we reveal a fine energy balance between the core cohesive energy and the shell-to-core binding energy that appears to drive nanocluster stabilization. Our theory applies to both charged and neutral systems and captures a large number of experimental observations. Importantly, it opens new avenues for accelerating the discovery of stable, atomically precise, colloidal metal nanoclusters.

  4. Polarization properties of fluorescent BSA protected Au25 nanoclusters

    Science.gov (United States)

    Raut, Sangram; Chib, Rahul; Rich, Ryan; Shumilov, Dmytro; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2013-03-01

    BSA protected gold nanoclusters (Au25) are attracting a great deal of attention due to their unique spectroscopic properties and possible use in biophysical applications. Although there are reports on synthetic strategies, spectroscopy and applications, little is known about their polarization behavior. In this study, we synthesized the BSA protected Au25 nanoclusters and studied their steady state and time resolved fluorescence properties including polarization behavior in different solvents: glycerol, propylene glycol and water. We demonstrated that the nanocluster absorption spectrum can be separated from the extinction spectrum by subtraction of Rayleigh scattering. The nanocluster absorption spectrum is well approximated by three Gaussian components. By a comparison of the emissions from BSA Au25 clusters and rhodamine B in water, we estimated the quantum yield of nanoclusters to be higher than 0.06. The fluorescence lifetime of BSA Au25 clusters is long and heterogeneous with an average value of 1.84 μs. In glycerol at -20 °C the anisotropy is high, reaching a value of 0.35. However, the excitation anisotropy strongly depends on the excitation wavelengths indicating a significant overlap of the different transition moments. The anisotropy decay in water reveals a correlation time below 0.2 μs. In propylene glycol the measured correlation time is longer and the initial anisotropy depends on the excitation wavelength. BSA Au25 clusters, due to long lifetime and high polarization, can potentially be used in studying large macromolecules such as protein complexes with large molecular weight.BSA protected gold nanoclusters (Au25) are attracting a great deal of attention due to their unique spectroscopic properties and possible use in biophysical applications. Although there are reports on synthetic strategies, spectroscopy and applications, little is known about their polarization behavior. In this study, we synthesized the BSA protected Au25 nanoclusters and

  5. Mass spectrometric analysis of monolayer protected nanoparticles

    Science.gov (United States)

    Zhu, Zhengjiang

    Monolayer protected nanoparticles (NPs) include an inorganic core and a monolayer of organic ligands. The wide variety of core materials and the tunable surface monolayers make NPs promising materials for numerous applications. Concerns related to unforeseen human health and environmental impacts of NPs have also been raised. In this thesis, new analytical methods based on mass spectrometry are developed to understand the fate, transport, and biodistributions of NPs in the complex biological systems. A laser desorption/ionization mass spectrometry (LDI-MS) method has been developed to characterize the monolayers on NP surface. LDI-MS allows multiple NPs taken up by cells to be measured and quantified in a multiplexed fashion. The correlations between surface properties of NPs and cellular uptake have also been explored. LDI-MS is further coupled with inductively coupled plasma mass spectrometry (ICP-MS) to quantitatively measure monolayer stability of gold NPs (AuNPs) and quantum dots (QDs), respectively, in live cells. This label-free approach allows correlating monolayer structure and particle size with NP stability in various cellular environments. Finally, uptake, distribution, accumulation, and excretion of NPs in higher order organisms, such as fish and plants, have been investigated to understand the environmental impact of nanomaterials. The results indicate that surface chemistry is a primary determinant. NPs with hydrophilic surfaces are substantially less toxic and present a lower degree of bioaccumulation, making these nanomaterials attractive for sustainable nanotechnology.

  6. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.

    2012-02-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  7. Physiological hydrostatic pressure protects endothelial monolayer integrity.

    Science.gov (United States)

    Müller-Marschhausen, K; Waschke, J; Drenckhahn, D

    2008-01-01

    Endothelial monolayer integrity is required to maintain endothelial barrier functions and has found to be impaired in several disorders like inflammatory edema, allergic shock, or artherosclerosis. Under physiologic conditions in vivo, endothelial cells are exposed to mechanical forces such as hydrostatic pressure, shear stress, and cyclic stretch. However, insight into the effects of hydrostatic pressure on endothelial cell biology is very limited at present. Therefore, in this study, we tested the hypothesis that physiological hydrostatic pressure protects endothelial monolayer integrity in vitro. We investigated the protective efficacy of hydrostatic pressure in microvascular myocardial endothelial (MyEnd) cells and macrovascular pulmonary artery endothelial cells (PAECs) by the application of selected pharmacological agents known to alter monolayer integrity in the absence or presence of hydrostatic pressure. In both endothelial cell lines, extracellular Ca(2+) depletion by EGTA was followed by a loss of vascular-endothelial cadherin (VE-caherin) immunostaining at cell junctions. However, hydrostatic pressure (15 cmH(2)O) blocked this effect of EGTA. Similarly, cytochalasin D-induced actin depolymerization and intercellular gap formation and cell detachment in response to the Ca(2+)/calmodulin antagonist trifluperazine (TFP) as well as thrombin-induced cell dissociation were also reduced by hydrostatic pressure. Moreover, hydrostatic pressure significantly reduced the loss of VE-cadherin-mediated adhesion in response to EGTA, cytochalasin D, and TFP in MyEnd cells as determined by laser tweezer trapping using VE-cadherin-coated microbeads. In caveolin-1-deficient MyEnd cells, which lack caveolae, hydrostatic pressure did not protect monolayer integrity compromised by EGTA, indicating that caveolae-dependent mechanisms are involved in hydrostatic pressure sensing and signaling.

  8. Synthesis and Doping of Ligand-Protected Atomically-Precise Metal Nanoclusters

    KAUST Repository

    Aljuhani, Maha A.

    2016-05-01

    Rapidly expanding research in nanotechnology has led to exciting progress in a versatile array of applications from medical diagnostics to catalysis. This success resulted from the manipulation of the desired properties of nanomaterials by controlling their size, shape, and composition. Among the most thriving areas of research about nanoparticle is the synthesis and doping of the ligand-protected atomically-precise metal nanoclusters. In this thesis, we developed three different novel metal nanoclusters, such as doped Ag29 with five gold (Au) atoms leading to enhance its quantum yield with remarkable stability. We also developed half-doped (alloyed) cluster of Ni6 nanocluster with molybdenum (Mo). This enabled enhanced stability and better catalytic activity. The third metal nanocluster that we synthesized was Au28 nanocluster by using di-thiolate as the ligand stabilizer instead of mono-thiolate. The new metal clusters obtained have been characterized by spectroscopic, electrochemical and crystallographic methods.

  9. Surface effects of monolayer-protected gold nanoparticles on the redox reactions between ferricyanide and thiosulfate

    Institute of Scientific and Technical Information of China (English)

    LI Di; SUN Chunyan; HUANG Yunjie; LI Jinghong; CHEN Shaowei

    2005-01-01

    Electron transfer through the self-assembled monolayers (SAMs) on gold nanoparticles is investigated by using the monolayer protected gold nanoclusters (MPCs) as electron-transfer mediators. 3-Mercaptopropionic acid (MPA) and 11-meraptoundecanoic acid (MUA) MPCs were employed to catalyze the redox reaction between potassium ferricyanide and sodium thiosulfate. The catalytic mechanism was proposed that the MPCs act as diffusing electron-mediators and electron transfers to and from the MPCs surface. Therefore the electron transfer rate through the capping layers would be proportional to the MPCs catalyzed reaction rate, which was monitored by the UV absorbance of ferricyanide. The calculated apparent rate constant was orders of magnitude smaller than that of the maximum of tunneling current, which was attributed to the splited energy level of the nanoscale particles.

  10. Synthesis of selenolate-protected Au18(SeC6H5)14 nanoclusters.

    Science.gov (United States)

    Xu, Qian; Wang, Shuxin; Liu, Zhao; Xu, Guoyong; Meng, Xiangming; Zhu, Manzhou

    2013-02-07

    This work reports the first synthesis of selenophenolate-protected Au(18)(SePh)(14) nanoclusters. This cluster exhibits distinct differences from its thiolate analogue in terms of optical absorption properties. The Au(18)(SePh)(14) nanoclusters were obtained via a controlled reaction of Au(25)(SCH(2)CH(2)Ph)(18) with selenophenol. Electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) revealed the crude product to contain predominantly Au(18)(SePh)(14) nanoclusters, and side products include Au(15)(SePh)(13), Au(19)(SePh)(15) and Au(20)(SePh)(16). High-performance liquid chromatography (HPLC) was employed to isolate Au(18)(SePh)(14) nanoclusters. The results of thermogravimetric analysis (TGA), elemental analysis (EA), and (1)H/(13)C NMR spectroscopy confirmed the cluster composition. To the best of our knowledge, this is the first report of selenolate-protected Au(18) nanoclusters. Future theoretical and X-ray crystallographic work will reveal the geometric structure and the nature of selenolate-gold bonding in the nanocluster.

  11. From monomer to monolayer: a global optimisation study of (ZnO)n nanoclusters on the Ag surface.

    Science.gov (United States)

    Demiroglu, Ilker; Woodley, Scott M; Sokol, Alexey A; Bromley, Stefan T

    2014-12-21

    We employ global optimisation to investigate how oxide nanoclusters of increasing size can best adapt their structure to lower the system energy when interacting with a realistic extended metal support. Specifically, we focus on the (ZnO)@Ag(111) system where experiment has shown that the infinite Ag(111)-supported ZnO monolayer limit corresponds to an epitaxially 7 : 8 matched graphene-like (Zn(3)O(3))-based hexagonal sheet. Using a two-stage search method based on classical interatomic potentials and then on more accurate density functional theory, we report global minina candidate structures for Ag-supported (ZnO)n cluster with sizes ranging from n = 1-24. Comparison with the respective global minina structure of free space (ZnO)n clusters reveals that the surface interaction plays a decisive role in determining the lowest energy Ag-supported (ZnO)n cluster structures. Whereas free space (ZnO)n clusters tend to adopt cage-like bubble structures as they grow larger, Ag-supported (ZnO)n clusters of increasing size become progressively more like planar cuts from the infinite graphene-like ZnO single monolayer. This energetic favourability for planar hexagonal Ag-supported clusters over their 3D counterparts can be partly rationalised by the ZnO-Ag(111) epitaxial matching and the increased number of close interactions with the Ag surface. Detailed analysis shows that this tendency can also be attributed to the capacity of 2D clusters to distort to improve their interaction with the Ag surface relative to more rigid 3D bubble cluster isomers. For the larger sized clusters we find that the adsorption energies and most stable structural types appear to be rather converged confirming that our study makes a bridge between the Ag-supported ZnO monomer and the infinite Ag-supported ZnO monolayer.

  12. Crystal structure of selenolate-protected Au24(SeR)20 nanocluster.

    Science.gov (United States)

    Song, Yongbo; Wang, Shuxin; Zhang, Jun; Kang, Xi; Chen, Shuang; Li, Peng; Sheng, Hongting; Zhu, Manzhou

    2014-02-26

    We report the X-ray structure of a selenolate-capped Au24(SeR)20 nanocluster (R = C6H5). It exhibits a prolate Au8 kernel, which can be viewed as two tetrahedral Au4 units cross-joined together without sharing any Au atoms. The kernel is protected by two trimeric Au3(SeR)4 staple-like motifs as well as two pentameric Au5(SeR)6 staple motifs. Compared to the reported gold-thiolate nanocluster structures, the features of the Au8 kernel and pentameric Au5(SeR)6 staple motif are unprecedented and provide a structural basis for understanding the gold-selenolate nanoclusters.

  13. Crystal structure and electronic properties of a thiolate-protected Au24 nanocluster

    Science.gov (United States)

    Das, Anindita; Li, Tao; Li, Gao; Nobusada, Katsuyuki; Zeng, Chenjie; Rosi, Nathaniel L.; Jin, Rongchao

    2014-05-01

    Solving the total structures of gold nanoclusters is of critical importance for understanding their electronic, optical and catalytic properties. Herein, we report the X-ray structure of a charge-neutral Au24(SCH2Ph-tBu)20 nanocluster. This structure features a bi-tetrahedral Au8 kernel protected by four tetrameric staple-like motifs. Electronic structure analysis is further carried out and the optical absorption spectrum is interpreted. The Au24(SCH2Ph-tBu)20, Au23(S-c-C6H11)16 and Au25(SCH2CH2Ph)18 nanoclusters constitute the first crystallographically characterized ``trio''.Solving the total structures of gold nanoclusters is of critical importance for understanding their electronic, optical and catalytic properties. Herein, we report the X-ray structure of a charge-neutral Au24(SCH2Ph-tBu)20 nanocluster. This structure features a bi-tetrahedral Au8 kernel protected by four tetrameric staple-like motifs. Electronic structure analysis is further carried out and the optical absorption spectrum is interpreted. The Au24(SCH2Ph-tBu)20, Au23(S-c-C6H11)16 and Au25(SCH2CH2Ph)18 nanoclusters constitute the first crystallographically characterized ``trio''. Electronic supplementary information (ESI) available: Experimental and supporting Fig. S1-S3. CCDC NUMBER(1000102). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4nr01350f

  14. The Shell Structure Effect on the Vapor Selectivity of Monolayer-Protected Gold Nanoparticle Sensors

    Directory of Open Access Journals (Sweden)

    Rui-Xuan Huang

    2014-02-01

    Full Text Available Four types of monolayer-protected gold nanoclusters (MPCs were synthesized and characterized as active layers of vapor sensors. An interdigitated microelectrode (IDE and quartz crystal microbalance (QCM were used to measure the electrical resistance and mass loading changes of MPC films during vapor sorption. The vapor sensing selectivity was influenced by the ligand structure of the monolayer on the surface of gold nanoparticles. The responses of MPC-coated QCM were mainly determined according to the affinity between the vapors and surface ligands of MPCs. The responses to the resistance changes of the MPC films were due to the effectiveness of the swelling when vapor was absorbed. It was observed that resistive sensitivity to polar organics could be greatly enhanced when the MPC contained ligands that contain interior polar functional groups with exterior nonpolar groups. This finding reveals that reducing interparticle attraction by using non-polar exterior groups could increase effective swelling and therefore enhance the sensitivity of MPC-coated chemiresistors.

  15. Comparison of photoluminescence properties of HSA-protected and BSA-protected Au25 nanoclusters

    Science.gov (United States)

    Tsukamoto, Masato; Kawasaki, Hideya; Saitoh, Tadashi; Inada, Mitsuru; Kansai Univ. Collaboration

    Gold nanoclusters (NCs) have attracted great interest for a wide range of applications. In particular, red light-emitting Au25 NCs have been prepared with various biological ligands. It has been shown that Au25 NCs have Au13-core/6Au2(SR)3-semiring structure. The red luminescence thought to be originated from both core (670 nm) and semiring (625 nm). It is important to reveal a structure of Au25 NCs to facilitate the progress of applications. However, the precise structure of Au25 NCs has not been clarified. There is a possibility of obtaining structural information about Au25 NCs to compare optical properties of the NCs that protected by slightly different molecules. Bovine and human serum albumin (BSA, HSA) are suitable one for this purpose. It has been suggested that rich tyrosine and cysteine residues in these molecules are important to produce the thiolate-protected Au NCs. If Au25 NCs have core/shell structure, only the luminescence of the semiring will be affected by the difference of the albumin molecules. We carefully compared PL characteristics of BSA- and HSA- protected Au25 NCs. As a result, there was no difference in the PL at 670 nm (core), while differences were observed in the PL at 625 nm (semiring). The results support that Au25 NCs have core/semiring structure.

  16. Chiral ligand-protected gold nanoclusters: Considering the optical activity from a viewpoint of ligand dissymmetric field

    Directory of Open Access Journals (Sweden)

    Hiroshi Yao

    2016-10-01

    Full Text Available Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and characterizations of atomically precise gold nanoclusters protected by achiral thiolates, atomic level origins of their chirality have been unveiled. On the other hand, chirality or optical activity in metal nanoclusters can also be introduced via the surface chiral ligands, which should be universal for the nanosystems. This tutorial review presents some optically-active metal (gold nanoclusters protected by chiral thiolates or phosphines, and their chiroptical (or circular dichroism; CD properties are discussed mostly from a viewpoint of the ligand dissymmetric field scheme. The examples are the gold nanoclusters protected by (R-/(S-2-phenylpropane-1-thiol, (R-/(S-mercaptosuccinic acid, phenylboronate-D/L-fructose complexes, phosphine sulfonate-ephedrinium ion pairs, or glutathione. Some methodologies for versatile asymmetric transformation and chiroptical controls of the nanocluster compounds are also described. In the dissymmetric field model as the origin of optical activity, the chiroptical responses of the gold nanoclusters are strongly associated with coupled oscillator and/or CD stealing mechanisms based on the concept of induced CD (ICD derived from a perturbation theory, so on this basis, some characteristic features of the observed CD responses of chiral ligand-protected gold nanoclusters are presented in detail. We believe that various kinds of origins of chirality found in ligand-protected gold nanoclusters may provide models for understanding those of

  17. Chiral ligand-protected gold nanoclusters:Considering the optical activity from a viewpoint of ligand dissymmetric field

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Yao

    2016-01-01

    Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and characterizations of atomically precise gold nanoclusters protected by achiral thiolates, atomic level origins of their chirality have been unveiled. On the other hand, chirality or optical activity in metal nanoclusters can also be introduced via the surface chiral ligands, which should be universal for the nanosystems. This tutorial review presents some optically-active metal (gold) nanoclusters protected by chiral thiolates or phosphines, and their chiroptical (or circular dichroism; CD) properties are discussed mostly from a viewpoint of the ligand dissymmetric field scheme. The examples are the gold nanoclusters protected by (R)-/(S)-2-phenylpropane-1-thiol, (R)-/(S)-mercaptosuccinic acid, phenylboronate-D/L-fructose complexes, phosphine sulfonate-ephedrinium ion pairs, or glutathione. Some methodologies for versatile asymmetric transformation and chiroptical controls of the nanocluster compounds are also described. In the dissymmetric field model as the origin of optical activity, the chiroptical responses of the gold nanoclusters are strongly associated with coupled oscillator and/or CD stealing mechanisms based on the concept of induced CD (ICD) derived from a perturbation theory, so on this basis, some characteristic features of the observed CD responses of chiral ligand-protected gold nanoclusters are presented in detail. We believe that various kinds of origins of chirality found in ligand-protected gold nanoclusters may provide models for understanding those of many related

  18. Monolayers and mixed-layers on copper towards corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Sinapi, F. [Fonds pour la Formation a la Recherche dans l' Industrie et dans l' Agriculture, Rue d' Egmont 5, B-1000 Brussels (Belgium); Julien, S.; Auguste, D.; Hevesi, L.; Delhalle, J. [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur, FUNDP, Rue de Bruxelles, 61, B-5000 Namur (Belgium); Mekhalif, Z. [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur, FUNDP, Rue de Bruxelles, 61, B-5000 Namur (Belgium)], E-mail: zineb.mekhalif@fundp.ac.be

    2008-05-01

    In order to improve the protection abilities of (3-mercaptopropy)trimethoxysilane (MPTS) self-assembled monolayers on copper surfaces, mixed monolayers have been formed successfully by successive immersions in MPTS and in n-dodecanethiol (DT). A newly synthesised molecule, (11-mercaptoundecyl)trimethoxysilane (MUTS), has also been employed to form a thicker organic film on copper surfaces and, thereby, enhance the inhibitory action of the coating. The grafting has been confirmed by X-ray photoelectron spectroscopy (XPS), polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS) and water contact angle. The protective efficiency of each protective organic film has been evidenced by cyclic voltammetry (CV) and polarization curve measurements (CP). It was shown that the MUTS and unhydrolyzed MPTS/DT films exhibited significant corrosion protection properties.

  19. An ultrafast look at Au nanoclusters.

    Science.gov (United States)

    Yau, Sung Hei; Varnavski, Oleg; Goodson, Theodore

    2013-07-16

    In the past 20 years, researchers studying nanomaterials have uncovered many new and interesting properties not found in bulk materials. Extensive research has focused on metal nanoparticles (>3 nm) because of their potential applications, such as in molecular electronics, image markers, and catalysts. In particular, the discovery of metal nanoclusters (properties for nanomaterials are intriguing, because for metal nanosystems in this size regime both size and shape determine electronic properties. Remarkably, changes in the optical properties of nanomaterials have provided tremendous insight into the electronic structure of nanoclusters. The success of synthesizing monolayer protected clusters (MPCs) in the condensed phase has allowed scientists to probe the metal core directly. Au MPCs have become the "gold" standard in nanocluster science, thanks to the rigorous structural characterization already accomplished. The use of ultrafast laser spectroscopy on MPCs in solution provides the benefit of directly studying the chemical dynamics of metal nanoclusters (core), and their nonlinear optical properties. In this Account, we investigate the optical properties of MPCs in the visible region using ultrafast spectroscopy. Based on fluorescence up-conversion spectroscopy, we propose an emission mechanism for these nanoclusters. These clusters behave differently from nanoparticles in terms of emission lifetimes as well as two-photon cross sections. Through further investigation of the transient (excited state) absorption, we have found many unique phenomena of nanoclusters, such as quantum confinement effects and vibrational breathing modes. In summary, based on the differences in the optical properties, the distinction between nanoclusters and nanoparticles appears at a size near 2.2 nm. This is consistent with simulations from a free-electron model proposed for MPCs. The use of ultrafast techniques on these nanoclusters can answer many of the fundamental questions about

  20. A New Class of Atomically Precise, Hydride-Rich Silver Nanoclusters Co-Protected by Phosphines

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-10-10

    Thiols and phosphines are the most widely used organic ligands to attain atomically precise metal nanoclusters (NCs). Here, we used simple hydrides (e.g., H–) as ligands along with phosphines, such as triphenylphosphine (TPP), 1,2-bis(diphenylphosphino)ethane [DPPE], and tris(4-fluorophenyl)phosphine [TFPP] to design and synthesize a new class of hydride-rich silver NCs. This class includes [Ag18H16(TPP)10]2+, [Ag25H22(DPPE)8]3+, and [Ag26H22(TFPP)13]2+. Our work reveals a new family of atomically precise NCs protected by H– ligands and labile phosphines, with potentially more accessible active metal sites for functionalization and provides a new set of stable NC sizes with simpler ligand–metal bonding for researchers to explore both experimentally and computationally.

  1. Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance

    CERN Document Server

    Zhang, Xiao-Dong; Chen, Jie; Song, Shasha; Yuan, Xun; Shen, Xiu; Wang, Hao; Sun, Yuanming; Gao, Kai; Zhang, Lianfeng; Fan, Saijun; Leong, David Tai; Guo, Meili; Xie, Jianping

    2015-01-01

    Radiotherapy is often the most straightforward first line cancer treatment for solid tumors. While it is highly effective against tumors, there is also collateral damage to healthy proximal tissues especially with high doses. The use of radiosensitizers is an effective way to boost the killing efficacy of radiotherapy against the tumor while drastically limiting the received dose and reducing the possible damage to normal tissues. Here, we report the design and application of a good radiosensitizer by using ultrasmall gold nanoclusters with a naturally occurring peptide (e.g., glutathione or GSH) as the protecting shell. The GSH coated gold nanoclusters can escape the RES absorption, leading to a good tumor uptake (8.1% ID/g at 24 h post injection). As a result, the as-designed Au nanoclusters led to a strong enhancement for radiotherapy, as well as a negligible damage to normal tissues. After the treatment, the ultrasmall gold nanoclusters can be efficiently cleared by the kidney, thereby avoiding potential ...

  2. Resonance energy transfer between fluorescent BSA protected Au nanoclusters and organic fluorophores.

    Science.gov (United States)

    Raut, Sangram; Rich, Ryan; Fudala, Rafal; Butler, Susan; Kokate, Rutika; Gryczynski, Zygmunt; Luchowski, Rafal; Gryczynski, Ignacy

    2014-01-01

    Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to their unique fluorescence properties and lack of toxicity. These metal nanoclusters have utility in a variety of disciplines including catalysis, biosensing, photonics, imaging and molecular electronics. However, they suffer from several disadvantages such as low fluorescence quantum efficiency (typically near 6%) and broad emission spectrum (540 nm to 800 nm). We describe an approach to enhance the apparent brightness of BSA Au clusters by linking them with a high extinction donor organic dye pacific blue (PB). In this conjugate PB acts as a donor to BSA Au clusters and enhances its brightness by resonance energy transfer (RET). We found that the emission of BSA Au clusters can be enhanced by a magnitude of two-fold by resonance energy transfer (RET) from the high extinction donor PB, and BSA Au clusters can act as an acceptor to nanosecond lifetime organic dyes. By pumping the BSA Au clusters using a high extinction donor, one can increase the effective brightness of less bright fluorophores like BSA Au clusters. Moreover, we prepared another conjugate of BSA Au clusters with the near infrared (NIR) dye Dylight 750 (Dy750), where BSA Au clusters act as a donor to Dy750. We observed that BSA Au clusters can function as a donor, showing 46% transfer efficiency to the NIR dye Dy750 with a long lifetime component in the acceptor decay through RET. Such RET-based probes can be used to prevent the problems of a broad emission spectrum associated with the BSA Au clusters. Moreover, transferring energy from BSA Au clusters to Dy750 will result in a RET probe with a narrow emission spectrum and long lifetime component which can be utilized in imaging applications.

  3. Corrosion protection of copper by a self-assembled monolayer of alkanethiol

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y.; Teo, W.K.; Siow, K.S.; Gao, Z.; Tan, K.L.; Hsieh, A.K. [National Univ. of Singapore (Singapore)

    1997-01-01

    A self-assembled monolayer of 1-dodecanethiol (DT) was formed on a copper surface pretreated using different methods. The corrosion protection abilities of the monolayer were evaluated in an air-saturated 0.51 M NaCl solution using various techniques including electrochemical impedance spectroscopy, polarization, coulometry, weight loss, and X-ray photoelectron spectroscopy. It was found that the corrosion resistance of the monolayer was improved markedly by using a nitric acid etching method. A minimum concentration of 10{sup {minus}4} M DT was needed to form a protective monolayer. The DT-monolayer retarded the reduction of dissolved oxygen and inhibited the growth of copper oxide in the NaCl solution. In comparison with other inhibitors, such as benzotriazole (BTA) and mercapto-benzothiazole (MBT), the DT-monolayer showed much better corrosion resistance in aqueous solution.

  4. Synthesis and Optical Properties of a Dithiolate/Phosphine-Protected Au28 Nanocluster

    KAUST Repository

    Aljuhani, Maha A.

    2016-12-17

    While monothiols and simple phosphines are commonly exploited for size-controlled synthesis of atomically precise gold nanoclusters (NCs), dithiols or dithiol-phosphine combinations are seldom applied. Herein, we used a dithiol (benzene-1,3-dithiol, BDT) and a phosphine (triphenylphosphine, TPP) together as ligands and synthesized an atomically precise gold NC with the formula [Au28(BDT)4(TPP)9]2+. This NC exhibited multiple absorption features and a charge of +2, which are distinctly different from the reported all-thiolated [Au28(SR)20]0 NC (SR: monothiolate). The composition of [Au28(BDT)4(TPP)9]2+ NC was deduced from high-resolution electrospray ionization mass spectrometry (ESI MS) and it was further corroborated by thermogravimetric analysis (TGA). Differential pulse voltammetry (DPV) revealed a HOMO–LUMO gap of 1.27 eV, which is in good agreement with the energy gap of 1.3 eV obtained from its UV–vis spectrum. The successful synthesis of atomically precise, dithiol-protected Au28 NC would stimulate theoretical and experimental research into bidentate ligands as a new path for expanding the library of different metal NCs, which have so far been dominated by monodentate thiols.

  5. Opto-electronic Properties of Monolayer-Protected Clusters of Au functionalized with a New Fluorescent Ligand

    Science.gov (United States)

    Kountz, Thomas; Thanthirige, Viraj; Reber, Keith; Devadas, Mary Sajini

    Metal nanoclusters are the focus of intense study due to their interesting optical, electronic, and catalytic properties; specifically gold clusters. The applications of gold monolayer-protected clusters (MPCs) are being researched by a series of optical spectroscopic and voltammetric analyses to determine core size, atom-level composition, charge states, and optical/electrical properties. Understanding these fundamental properties is critical for both expansion of applications and creation of new MPCs. The purpose of this study is to expand the applications of gold MPCs, with the attachment of a new coumarin surface ligand - synthesized specifically for this experiment. Our focus in this research is on quantum clusters - specifically Au25(C6S)18. This MPC is researched particularly because of its inherent stability being a magic number cluster. It is created by means of a modified Burst-Schiffrin method. The applications that are influenced include but are not limited to: catalytic activity, solar energy conversion, size-tunable florescence, sensors, and optical electronics.

  6. Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography.

    Science.gov (United States)

    Zeng, Chenjie; Li, Tao; Das, Anindita; Rosi, Nathaniel L; Jin, Rongchao

    2013-07-10

    We report the crystal structure of a new nanocluster formulated as Au28(TBBT)20, where TBBT = 4-tert-butylbenzenethiolate. It exhibits a rod-like Au20 kernel consisting of two interpenetrating cuboctahedra. The kernel is protected by four dimeric "staples" (-SR-Au-SR-Au-SR-) and eight bridging thiolates (-SR-). The unit cell of Au28(TBBT)20 single crystals contains a pair of enantiomers. The origin of chirality is primarily rooted in the rotating arrangement of the four dimeric staples as well as the arrangement of the bridging thiolates (quasi-D2 symmetry). The enantiomers were separated by chiral HPLC and characterized by circular dichroism spectroscopy.

  7. Removal of phase transfer agent leads to restricted dynamics of alkyl chains in monolayer protected clusters

    Indian Academy of Sciences (India)

    V R Rajeev Kumar; R Mukhopadhyay; T Pradeep

    2008-11-01

    The effect of phase transfer agent in the dynamics of monolayer protected gold nanoparticles has been investigated by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies. The experiments were performed with octadecane thiol and dodecane thiol protected gold nanoparticles. The materials prepared were characterized by UV-Visible spectroscopy, transmission electron microscopy and IR spectroscopy. Repeated purification of the monolayer protected gold clusters made the alkyl chains defect-free. Such effects are reflected in the infrared spectra. Interdigitation of the monolayers that followed the purification leads to alkyl chains with limited mobility. This was reflected in 13C and 1H NMR linewidths. The NMR measurements indicate that the removal of phase transfer agent affects the dynamics of isolated clusters and those with interdigitated monolayers in different ways.

  8. Electron transfer catalysis with monolayer protected Au25 clusters

    Science.gov (United States)

    Antonello, Sabrina; Hesari, Mahdi; Polo, Federico; Maran, Flavio

    2012-08-01

    Au25L18 (L = S(CH2)2Ph) clusters were prepared and characterized. The resulting monodisperse clusters were reacted with bis(pentafluorobenzoyl) peroxide in dichloromethane to form Au25L18+ quantitatively. The kinetics and thermodynamics of the corresponding electron transfer (ET) reactions were characterized via electrochemistry and thermochemical calculations. Au25L18+ was used in homogeneous redox catalysis experiments with a series of sym-substituted benzoyl peroxides, including the above peroxide, bis(para-cyanobenzoyl) peroxide, dibenzoyl peroxide, and bis(para-methoxybenzoyl) peroxide. Peroxide dissociative ET was catalyzed using both the Au25L18/Au25L18- and the Au25L18+/Au25L18 redox couples as redox mediators. Simulation of the CV curves led to determination of the ET rate constant (kET) values for concerted dissociative ET to the peroxides. The ET free energy ΔG° could be estimated for all donor-acceptor combinations, leading to observation of a nice activation-driving force (log kETvs. ΔG°) relationship. Comparison with the kET obtained using a ferrocene-type donor with a formal potential similar to that of Au25L18/Au25L18- showed that the presence of the capping monolayer affects the ET rate rather significantly, which is attributed to the intrinsic nonadiabaticity of peroxide acceptors.Au25L18 (L = S(CH2)2Ph) clusters were prepared and characterized. The resulting monodisperse clusters were reacted with bis(pentafluorobenzoyl) peroxide in dichloromethane to form Au25L18+ quantitatively. The kinetics and thermodynamics of the corresponding electron transfer (ET) reactions were characterized via electrochemistry and thermochemical calculations. Au25L18+ was used in homogeneous redox catalysis experiments with a series of sym-substituted benzoyl peroxides, including the above peroxide, bis(para-cyanobenzoyl) peroxide, dibenzoyl peroxide, and bis(para-methoxybenzoyl) peroxide. Peroxide dissociative ET was catalyzed using both the Au25L18/Au25L18- and

  9. Monolayers of MoS{sub 2} as an oxidation protective nanocoating material

    Energy Technology Data Exchange (ETDEWEB)

    Sen, H. Sener [UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Sahin, H.; Peeters, F. M. [Department of Physics, University of Antwerp, 2610 Antwerp (Belgium); Durgun, E., E-mail: durgun@unam.bilkent.edu.tr [UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey)

    2014-08-28

    First-principle calculations are employed to investigate the interaction of oxygen with ideal and defective MoS{sub 2} monolayers. Our calculations show that while oxygen atoms are strongly bound on top of sulfur atoms, the oxygen molecule only weakly interacts with the surface. The penetration of oxygen atoms and molecules through a defect-free MoS{sub 2} monolayer is prevented by a very high diffusion barrier indicating that MoS{sub 2} can serve as a protective layer for oxidation. The analysis is extended to WS{sub 2} and similar coating characteristics are obtained. Our calculations indicate that ideal and continuous MoS{sub 2} and WS{sub 2} monolayers can improve the oxidation and corrosion-resistance of the covered surface and can be considered as an efficient nanocoating material.

  10. Synthesis and characterization of mixed monolayer protected gold nanorods and their Raman activities

    Energy Technology Data Exchange (ETDEWEB)

    Mlambo, Mbuso [Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050 (South Africa); Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125 (South Africa); Mdluli, Phumlani S.; Shumbula, Poslet; Mpelane, Siyasanga [Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125 (South Africa); Moloto, Nosipho, E-mail: Nosipho.Moloto@wits.ac.za [Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050 (South Africa); Skepu, Amanda; Tshikhudo, Robert [Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125 (South Africa)

    2013-10-15

    Graphical abstract: Gold nanorods surface functionalization. - Highlights: • Mixed monolayer protected gold nanorods. • Surface enhanced Raman spectroscopy. • HS-(CH{sub 2}){sub 11}-NHCO-coumarin as a Raman active compound. - Abstract: The cetyltrimethylammonium bromide (CTAB) gold nanorods (AuNRs) were prepared by seed-mediated route followed by the addition of a Raman active compound (HS-(CH{sub 2}){sub 11}-NHCO-coumarin) on the gold nanorods surfaces. Different stoichiometric mixtures of HS-(CH{sub 2}){sub 11}-NHCO-coumarin and HS-PEG-(CH{sub 2}){sub 11}COOH were evaluated for their Raman activities. The lowest stoichiometric ratio HS-(CH{sub 2}){sub 11}-NHCO-coumarin adsorbed on gold nanorods surface was detected and enhanced by Raman spectroscopy. The produced mixed monolayer protected gold nanorods were characterized by UV-vis spectrometer for optical properties, transmission electron microscope (TEM) for structural properties (shape and aspect ratio) and their zeta potentials (charges) were obtained from ZetaSizer to determine the stability of the produced mixed monolayer protected gold nanorods. The Raman results showed a surface enhanced Raman scattering (SERS) enhancement at the lowest stoichiometric ratio of 1% HS-(CH{sub 2}){sub 11}-NHCO-coumarin compared to high ratio of 50% HS-(CH{sub 2}){sub 11}-NHCO-coumarin on the surface of gold nanorods.

  11. A dual-responsive fluorescence method for the detection of clenbuterol based on BSA-protected gold nanoclusters.

    Science.gov (United States)

    Cao, Xueling; Li, Hongwei; Lian, Lili; Xu, Na; Lou, Dawei; Wu, Yuqing

    2015-04-29

    The illegal feeding of clenbuterol (CLB) to domestic animals and the potential harm of it to human health lead an urgent requirement for the efficient detection of CLB, especially in the edible meat. In this paper we reported a new fluorescence method for the detection of trace amount of CLB by using the BSA-protected gold nanoclusters (AuNCs@BSA). Under the excitation of either 280 or 500 nm the emission of AuNCs@BSA was quenched obviously by diazotized CLB, supplying a dual-responsive fluorescence method to detect CLB in aqueous solution. In addition, the linear response of the fluorescence intensity of AuNCs@BSA to diazotized CLB allowed the quantitative detection of CLB in a range of 4.0 nM-300 μM upon excitation at two wavelength, and the limit of detection for CLB was 3.0 nM upon 280 nm excitation and 1.6 nM upon 500 nm excitation, respectively. In addition, the dual-responsive mechanism of AuNCs@BSA to CLB was investigated in detail by using several CLB analogues and reference compounds. Particularly, the proposed method was successfully applied to detect CLB in pork mince and the results were validated well by HPLC, illustrating it could be used as a reliable, rapid, and cost-effective technique for the determination of CLB residues in real samples.

  12. Mechanism of lipid bilayer penetration by mixed monolayer-protected gold nanoparticles

    Science.gov (United States)

    van Lehn, Reid; Atukorale, Prabhani; Carney, Randy; Stellacci, Francesco; Irvine, Darrell; Alexander-Katz, Alfredo

    2013-03-01

    Recently, gold nanoparticles (AuNPs) protected by a binary mixture of hydrophobic and hydrophilic alkanethiol ligands were observed to spontaneously penetrate cellular membranes via a non-specific mechanism. Penetration was observed even at low temperatures and in the presence of endocytotic inhibitors, implying that AuNPs crossed the membrane by a non-endocytotic process. Furthermore, penetration was shown to depend on the amphiphilicity and nanoscale morphology of the protecting monolayer. In this work, we use a variety of simulation techniques to elucidate the mechanism of lipid bilayer penetration and compare our results to experiments with lipid vesicles. We show that these AuNPs can stably embed within lipid bilayers by ``snorkeling'' charges out of the bilayer core; the stability of such a state is a function of particle size, the composition of the protecting monolayer, and other environmental conditions. We use detailed simulations to analyze structural changes in the surrounding lipids and show that the energy barrier for embedding is considerably reduced in the presence of bilayer defects. We expect that these results will enable the design of novel drug delivery carriers and biosensors.

  13. Steroid Probes Conjugated with Protein-Protected Gold Nanocluster: Specific and Rapid Fluorescence Imaging of Steroid Receptors in Target Cells.

    Science.gov (United States)

    Tsai, Chi-Yan; Li, Chun-Wei; Li, Jie-Ren; Jang, Bo-Han; Chen, Shu-Hui

    2016-07-01

    Steroid ligands can easily diffuse through the cell membrane and this property makes it feasible to be used for in-situ staining of the nuclear receptors. However, nonspecific binding of the internalized ligand probe with the cellular components has caused serious interferences for the detection of receptor-expressing cells. We report a novel gold nanocluster (AuNC)-conjugated estrogen probe that can eliminate nonspecific internalization and accelerate nuclear localization to achieve selective and rapid detection of estrogen receptors (ERs) in live cells. The AuNC, protected by bovine serum albumin (BSA), BSA-AuNCs, was prepared by the synthesis and confirmed to be 1.9 nm in core size and 18 nm in diameter. Ethinyl estradiol was used as the precursor of 17β-estradial (E2) to conjugate with BSA-protected AuNCs via polyethylene glycol linker (E2-PEG/BSA-AuNCs) or to conjugate with Cy3 dyes (E2-Cy3). The conjugated probe was determined to contain five E2 molecules per BSA-AuNC by mass spectrometry and exhibit an emission maximum of around 640 nm, which was not altered by E2 conjugation indicating that the structural integrity of BSA-AuNCs was conserved. E2-PEG/BSA-AuNCs probes were quickly internalized by MCF-7 (ER+) cells and localized to the nuclei in 2 h. Such internalization was sensitive to competition by free E2 and was rarely detected in the controls using either non-conjugated BSA-AuNCs in MCF-7 (ER+) cells or E2-PEG/BSA-AuNCs in MDA-MB-231 (ER-) cells. In contrast to the high specificity of E2-PEG/BSA-AuNCs probe, the uptake of E2-Cy3 probe could not differentiate between MCF-7(ER+) and MDA-MB-231(ER-) cells during the early phases of the treatment. Moreover, nuclear targeting by E2-Cy3 was three times slower than that by the E2-PEG/BSA-AuNC probe. Such accelerated nuclei targeting was consistent with the enhanced cell viability by conjugating E2 with BSA-AuNC. In conclusion, the E2-PEG/BSA-AuNC probes are promising candidates that can be used for the

  14. Dynamics of alkyl chains in monolayer protected metal clusters and their superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, R [Solid State Physics Division, BARC, Mumbai 400085 (India); Mitra, S [Solid State Physics Division, BARC, Mumbai 400085 (India); Johnson, M [Institute Lau-Langevin, BP156, F-38042, Grenoble, Cedex 9 (France); Pradeep, T [Department of Chemistry and SAIF, IITm, Chennai 600 036 (India)

    2007-12-15

    Alkyl chains dynamics in monolayer protected metal cluster (MPC) systems of gold and silver have been studied by the quasielastic neutron scattering (QENS) technique. Isolated MPCs investigated are 6, 12 and 18 carbon n-alkyl chain thiolate protected 4 nm diameter gold clusters while the superlattices are their silver analogues. Evolution of dynamics with temperature is found to be very different in the isolated clusters and their superlattices. While continuous evolution of the dynamics of the monolayer was observed in isolated MPCs, it is abrupt in superlattice systems and occurs at a temperature consistent with the superlattice melting detected in calorimetry measurements. A model where the chain undergoes uniaxial rotational diffusion with additional body axis fluctuation was found to describe the data consistently. For the superlattice systems, the chains are found to be held by strong inter-chain interactions below the superlattice melting. The data from the planar silver thiolate systems show similar behavior like the superlattice systems, consistent with the calorimetric data.

  15. Synthesis of nanoparticle-cored dendrimers by convergent dendritic functionalization of monolayer-protected nanoparticles.

    Science.gov (United States)

    Shon, Young-Seok; Choi, Daeock; Dare, Jonathan; Dinh, Tuong

    2008-06-01

    This article presents a synthesis method for nanoparticle-cored dendrimers (NCDs), which have dendritic architectures around a monolayer-protected gold nanoparticle. The synthesis method is based on a strategy in which the synthesis of monolayer-protected nanoparticles is followed by adding dendrons on functionalized nanoparticles by a single coupling reaction. NMR spectroscopy, IR spectroscopy, and thermogravimetric analysis (TGA) characterizations confirmed the successful coupling reaction between dendrons with different generations ([G1], [G2], and [G3]) and COOH-functionalized nanoparticles ( approximately Au201L71). The dendrimer wedge density also could be controlled by reacting nanoparticles having different loading of COOH groups ( approximately 60 and approximately 10% COOH of the 71 ligands per gold nanoparticle) with functionalized dendrons. Transmission electron microscope results showed that this synthesis strategy maintains the average size of the nanoparticle core during dendron coupling reactions. This control over the composition and core size makes the systematic study of NCDs with different generations possible. The chemical stability of NCDs was found to be affected by dendron generation around the nanoparticle core. The current-potential response of NCD films on microelectrode arrays exhibited better electrical conductivity for NCDs with lower dendron generation.

  16. Magnetic Ordering in Gold Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Agrachev, Mikhail; Antonello, Sabrina; Dainese, Tiziano; Ruzzi, Marco; Zoleo, Alfonso; Aprà, Edoardo; Govind, Niranjan; Fortunelli, Alessandro; Sementa, Luca; Maran, Flavio

    2017-06-12

    Several research groups have observed magnetism in monolayer-protected gold-cluster samples, but the results were often contradictory and thus a clear understanding of this phenomenon is still missing. We used Au25(SCH2CH2Ph)180, which is a paramagnetic cluster that can be prepared with atomic precision and whose structure is known precisely. Previous magnetometry studies only detected paramagnetism. We used samples representing a range of crystallographic orders and studied their magnetic behaviors by electron paramagnetic resonance (EPR). As a film, Au25(SCH2CH2Ph)180 displays paramagnetic behavior but, at low temperature, ferromagnetic interactions are detectable. One or few single crystals undergo physical reorientation with the applied field and display ferromagnetism, as detected through hysteresis experiments. A large collection of microcrystals is magnetic even at room temperature and shows distinct paramagnetic, superparamagnetic, and ferromagnetic behaviors. Simulation of the EPR spectra shows that both spin-orbit coupling and crystal distortion are important to determine the observed magnetic behaviors. DFT calculations carried out on single cluster and periodic models predict values of spin6orbit coupling and crystal6splitting effects in agreement with the EPR derived quantities. Magnetism in gold nanoclusters is thus demonstrated to be the outcome of a very delicate balance of factors. To obtain reproducible results, the samples must be (i) controlled for composition and thus be monodispersed with atomic precision, (ii) of known charge state, and (iii) well defined also in terms of crystallinity and experimental conditions. This study highlights the efficacy of EPR spectroscopy to provide a molecular understanding of these phenomena

  17. Synthesis of bovine serum albumin-protected high fluorescence Pt16-nanoclusters and their application to detect sulfide ions in solutions

    Science.gov (United States)

    Xu, Na; Li, Hong-Wei; Yue, Yuan; Wu, Yuqing

    2016-10-01

    Highly fluorescent (quantum yield, QY = 17%) Pt16-nanoclusters (Pt16-NCs@BSA) have been prepared via a one-step ultrasonic-assistance method by using cheap and easily available ascorbic acid as reductant and bovine serum albumin (BSA) as a stabilizing agent in aqueous solution. The fluorescence properties of the Pt-NCs@BSA can be easily controlled by optimizing conditions, and the products are extremely stable and could be used for the detection of sulfide ions (S2-) in solutions as a specific luminescence sensor. The present synthesis method is performed in one step, being cost-effective with a particularly short reaction time, which could be extended to the synthesis of other kinds of protein-protected Pt-NCs.

  18. Corrosion protection ability of self-assembled monolayer of 3-amino-5-mercapto-1,2,4-triazole on copper electrode

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, Ganesan; Sethuraman, Mathur Gopalakrishnan, E-mail: mgsethu@rediffmail.com

    2014-07-01

    The self-assembled monolayer (SAM) of 3-amino-5-mercapto-1,2,4-triazole (AMTa) was formed on a copper surface and characterized using cyclic voltammetry, Fourier Transform Infra-red spectroscopy and scanning electron microscopy. Quantum chemical calculations suggested the stronger interaction between AMTa and copper. The protection ability of SAM has been evaluated using electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The formed monolayer showed significant protection ability in 1% NaCl medium. The enhanced corrosion protection ability could be due to the compact film structure which blocks the electron transfer from the solution to AMTa monolayer modified copper substrate. - Highlights: • Self-assembled monolayer (SAM) of AMTa has been achieved on copper surface. • Monolayer formed has been duly characterized. • SAM of AMTa has been shown to offer significant protection to copper in NaCl medium.

  19. Surface mediated assembly of small, metastable gold nanoclusters

    Science.gov (United States)

    Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.

    2013-06-01

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The

  20. Applications of self-assembled monolayers in materials chemistry

    Indian Academy of Sciences (India)

    Nirmalya K Chaki; M Aslam; Jadab Sharma; K Vijayamohanan

    2001-10-01

    Self-assembly provides a simple route to organise suitable organic molecules on noble metal and selected nanocluster surfaces by using monolayers of long chain organic molecules with various functionalities like -SH, -COOH, -NH2, silanes etc. These surfaces can be effectively used to build-up interesting nano level architectures. Flexibility with respect to the terminal functionalities of the organic molecules allows the control of the hydrophobicity or hydrophilicity of metal surface, while the selection of length scale can be used to tune the distant-dependent electron transfer behaviour. Organo-inorganic materials tailored in this fashion are extremely important in nanotechnology to construct nanoelctronic devices, sensor arrays, supercapacitors, catalysts, rechargeable power sources etc. by virtue of their size and shape-dependent electrical, optical or magnetic properties. The interesting applications of monolayers and monolayer-protected clusters in materials chemistry are discussed using recent examples of size and shape control of the properties of several metallic and semiconducting nanoparticles. The potential benefits of using these nanostructured systems for molecular electronic components are illustrated using Au and Ag nanoclusters with suitable bifunctional SAMs.

  1. Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer

    Science.gov (United States)

    Man, Michael K. L.; Deckoff-Jones, Skylar; Winchester, Andrew; Shi, Guangsha; Gupta, Gautam; Mohite, Aditya D.; Kar, Swastik; Kioupakis, Emmanouil; Talapatra, Saikat; Dani, Keshav M.

    2016-02-01

    Semiconducting 2D materials, like transition metal dichalcogenides (TMDs), have gained much attention for their potential in opto-electronic devices, valleytronic schemes, and semi-conducting to metallic phase engineering. However, like graphene and other atomically thin materials, they lose key properties when placed on a substrate like silicon, including quenching of photoluminescence, distorted crystalline structure, and rough surface morphology. The ability to protect these properties of monolayer TMDs, such as molybdenum disulfide (MoS2), on standard Si-based substrates, will enable their use in opto-electronic devices and scientific investigations. Here we show that an atomically thin buffer layer of hexagonal-boron nitride (hBN) protects the range of key opto-electronic, structural, and morphological properties of monolayer MoS2 on Si-based substrates. The hBN buffer restores sharp diffraction patterns, improves monolayer flatness by nearly two-orders of magnitude, and causes over an order of magnitude enhancement in photoluminescence, compared to bare Si and SiO2 substrates. Our demonstration provides a way of integrating MoS2 and other 2D monolayers onto standard Si-substrates, thus furthering their technological applications and scientific investigations.

  2. Optical absorption of (Ag-Au133(SCH352 bimetallic monolayer-protected clusters

    Directory of Open Access Journals (Sweden)

    Alessandro Fortunelli

    2016-10-01

    Full Text Available The evolution of the optical absorption spectrum of bimetallic Ag-Au monolayer-protected clusters (MPC obtained by progressively doping Ag into the experimentally known structure of Au133(SR52 was predicted via rigorous time-dependent density-functional theory (TDDFT calculations. In addition to monometallic Au133(SR52 and Ag133(SR52 species, 5 different (Ag-Au133(SR52 homotops were considered with varying Ag content and site positioning, and their electronic structure and optical response were analyzed in terms of Projected Density Of States (PDOS, the induced or transition electron density, and Transition Component Maps (TCM at selected excitation energies. It was found that Ag doping led to the effects rather different from those encountered in bare metal clusters. And it was also observed that Ag doping could produce structured spectral features, especially in the 3–4 eV range but also in the optical region if Ag atoms were located in the sub-staple region, as rationalized by the accompanying electronic analysis. Additionally, Au doping into the staples of Ag-rich MPC also gave rise to a more homogeneous induced electron density. These findings show the great sensitivity of the electronic response of MPC nanoalloy systems to the exact location of the alloying sites.

  3. Melamine dependent fluorescence of glutathione protected gold nanoclusters and ratiometric quantification of melamine in commercial cow milk and infant formula

    Science.gov (United States)

    Kalaiyarasan, Gopi; K, Anusuya; Joseph, James

    2017-10-01

    Companies processing the milk for the further production of powdered infant formulation normally check the protein level through a test measuring nitrogen content. The addition of melamine which is a nitrogen-rich organic chemical in milk increases the nitrogen content and therefore enhances its apparent protein content. However, the melamine causes kidney failure and death owing to the formation of kidney stone. Thus the determination of melamine in humans and milk products have gained great significance in recent years. The gold nanoclusters (AuNCs) have attracting features due to its unique electronic and optical properties like fluorescence nature. Therefore one can use AuNCs in the field of biosensor, bio-imaging, nanobiotechnology, drug delivery, diagnosis etc. We report, a new ratiometric nanosensor established for the selective and sensitive detection of melamine based optical sensing using glutathione stabilized AuNCs. The AuNCs were characterized by high-resolution transmission electron microscopy (HR-TEM), UV-visible and Photoluminescence (PL) spectroscopic techniques. In the presence of melamine, the PL intensity at 430 nm increases owing to the (turn-on) enhancement in fluorescence, whereas PL intensity at 610 nm decreases due to the melamine-induced aggregation and subsequent aggregation-enhanced emission quenching. The observed changes were ascribed to the hydrogen bonding interaction between melamine and AuNCs, which led to the aggregation of the nanoclusters. This was confirmed by dynamic light scattering and HR-TEM measurements. The present probe showed an extreme selectivity towards the determination of 28.2 μM melamine in the presence of 100-fold excess of common interfering molecules such as Alanine, Glycine, Glucose, Cystine etc. The proposed method was successfully applied to determine melamine in cow milk.

  4. In Vivo Renal Clearance, Biodistribution, Toxicity of Gold nanoclusters

    CERN Document Server

    Zhang, Xiao-Dong; Shen, Xiu; Liu, Pei-Xun; Fan, Fei-Yue; Fan, Sai-Jun; 10.1016/j.biomaterials.2012.03.020

    2012-01-01

    Gold nanoparticles have shown great prospective in cancer diagnosis and therapy, but they can not be metabolized and prefer to accumulate in liver and spleen due to their large size. The gold nanoclusters with small size can penetrate kidney tissue and have promise to decrease in vivo toxicity by renal clearance. In this work, we explore the in vivo renal clearance, biodistribution, and toxicity responses of the BSA- and GSH-protected gold nanoclusters for 24 hours and 28 days. The BSA-protected gold nanoclusters have low-efficient renal clearance and only 1% of gold can be cleared, but the GSH-protected gold nanoclusters have high-efficient renal clearance and 36 % of gold can be cleared after 24 hours. The biodistribution further reveals that 94% of gold can be metabolized for the GSH-protected nanoclusters, but only less than 5% of gold can be metabolized for the BSA-protected nanoclusters after 28 days. Both of the GSH- and BSA-protected gold nanoclusters cause acute infection, inflammation, and kidney fu...

  5. Atomically Precise Metal Nanoclusters for Catalytic Application

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Rongchao [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily high selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au25(SR)18, Au28(SR)20, Au38(SR)24, Au99(SR)42, Au144(SR)60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our

  6. Fenton reaction-mediated fluorescence quenching of N-acetyl-L-cysteine-protected gold nanoclusters: analytical applications of hydrogen peroxide, glucose, and catalase detection.

    Science.gov (United States)

    Deng, Hao-Hua; Wu, Gang-Wei; He, Dong; Peng, Hua-Ping; Liu, Ai-Lin; Xia, Xing-Hua; Chen, Wei

    2015-11-21

    Given the importance of hydrogen peroxide (H2O2) in many biological processes and its wide application in various industries, the demand for sensitive, accurate, and economical H2O2 sensors is high. In this study, we used Fenton reaction-stimulated fluorescence quenching of N-acetyl-L-cysteine-protected gold nanoclusters (NAC-AuNCs) as a reporter system for the determination of H2O2. After the experimental conditions were optimized, the sensing platform enabled the analysis of H2O2 with a limit of detection (LOD) as low as 0.027 μM. As the glucose oxidase cascade leads to the generation of H2O2 and catalase catalyzes the decomposition of H2O2, these two biocatalytic procedures can be probed by the Fenton reaction-mediated quenching of NAC-AuNCs. The LOD for glucose was found to be 0.18 μM, and the linear range was 0.39-27.22 μM. The LOD for catalase was 0.002 U mL(-1), and the linear range was 0.01-0.3 U mL(-1). Moreover, the proposed sensing methods were successfully applied for human serum glucose detection and the non-invasive determination of catalase activity in human saliva, demonstrating their great potential for practical applications.

  7. The pristine atomic structure of MoS{sub 2} monolayer protected from electron radiation damage by graphene

    Energy Technology Data Exchange (ETDEWEB)

    Algara-Siller, Gerardo; Kurasch, Simon; Sedighi, Mona; Lehtinen, Ossi; Kaiser, Ute [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University (Germany)

    2013-11-11

    Materials can, in principle, be imaged at the level of individual atoms with aberration-corrected transmission electron microscopy. However, such resolution can be attained only with very high electron doses. Consequently, radiation damage is often the limiting factor when characterizing sensitive materials. Here, we demonstrate a simple and an effective method to increase the electron radiation tolerance of materials by using graphene as protective coating. This leads to an improvement of three orders of magnitude in the radiation tolerance of monolayer MoS{sub 2}. Further on, we construct samples in different heterostructure configurations to separate the contributions of different radiation damage mechanisms.

  8. The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene

    Science.gov (United States)

    Algara-Siller, Gerardo; Kurasch, Simon; Sedighi, Mona; Lehtinen, Ossi; Kaiser, Ute

    2013-11-01

    Materials can, in principle, be imaged at the level of individual atoms with aberration-corrected transmission electron microscopy. However, such resolution can be attained only with very high electron doses. Consequently, radiation damage is often the limiting factor when characterizing sensitive materials. Here, we demonstrate a simple and an effective method to increase the electron radiation tolerance of materials by using graphene as protective coating. This leads to an improvement of three orders of magnitude in the radiation tolerance of monolayer MoS2. Further on, we construct samples in different heterostructure configurations to separate the contributions of different radiation damage mechanisms.

  9. Self-assembly of organic monolayers as protective and conductive bridges for nanometric surface-mount applications.

    Science.gov (United States)

    Platzman, Ilia; Haick, Hossam; Tannenbaum, Rina

    2010-09-01

    In this work, we present a novel surface-mount placement process that could potentially overcome the inadequacies of the currently used stencil-printing technology, when applied to devices in which either their lateral and/or their horizontal dimensions approach the nanometric scale. Our novel process is based on the "bottom-up" design of an adhesive layer, operative in the molecular/nanoscale level, through the use of self-assembled monolayers (SAMs) that could form protective and conductive bridges between pads and components. On the basis of previous results, 1,4-phenylene diisocyanide (PDI) and terephthalic acid (TPA) were chosen to serve as the best candidates for the achievement of this goal. The quality and stability of these SAMs on annealed Cu surfaces (Rrms=0.15-1.1 nm) were examined in detail. Measurements showed that the SAMs of TPA and PDI molecules formed on top of Cu substrates created thermally stable organic monolayers with high surface coverage (∼90%), in which the molecules were closely packed and well-ordered. Moreover, the molecules assumed a standing-up phase conformation, in which the molecules bonded to the Cu substrate through one terminal functional group, with the other terminal group residing away from the substrate. To examine the ability of these monolayers to serve as "molecular wires," i.e., the capability to provide electrical conductivity, we developed a novel fabrication method of a parallel plate junction (PPJ) in order to create symmetric Cu-SAM-Cu electrical junctions. The current-bias measurements of these junctions indicated high tunneling efficiency. These achievements imply that the SAMs used in this study can serve as conductive molecular bridges that can potentially bind circuital pads/components.

  10. Atmospheric corrosion of Cu, Zn, and Cu-Zn alloys protected by self-assembled monolayers of alkanethiols

    Science.gov (United States)

    Hosseinpour, Saman; Forslund, Mattias; Johnson, C. Magnus; Pan, Jinshan; Leygraf, Christofer

    2016-06-01

    In this article results from earlier studies have been compiled in order to compare the protection efficiency of self-assembled monolayers (SAM) of alkanethiols for copper, zinc, and copper-zinc alloys exposed to accelerated indoor atmospheric corrosion conditions. The results are based on a combination of surface spectroscopy and microscopy techniques. The protection efficiency of investigated SAMs increases with chain length which is attributed to transport hindrance of the corrosion stimulators in the atmospheric environment, water, oxygen and formic acid, towards the copper surface. The transport hindrance is selective and results in different corrosion products on bare and on protected copper. Initially the molecular structure of SAMs on copper is well ordered, but the ordering is reduced with exposure time. Octadecanethiol (ODT), the longest alkanethiol investigated, protects copper significantly better than zinc, which may be attributed to the higher bond strength of Cu-S than of Zn-S. Despite these differences, the corrosion protection efficiency of ODT for the single phase Cu20Zn brass alloy is equally efficient as for copper, but significantly less for the heterogeneous double phase Cu40Zn brass alloy.

  11. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(i) ions

    Science.gov (United States)

    Yue, Yuan; Liu, Tian-Ying; Li, Hong-Wei; Liu, Zhongying; Wu, Yuqing

    2012-03-01

    A one-step microwave-assisted method is used for the synthesis of small gold nanoclusters, Au16NCs@BSA, which are used as a fluorescence enhanced sensor for detection of silver(i) ions with high selectivity and sensitivity.A one-step microwave-assisted method is used for the synthesis of small gold nanoclusters, Au16NCs@BSA, which are used as a fluorescence enhanced sensor for detection of silver(i) ions with high selectivity and sensitivity. Electronic supplementary information (ESI) available: Experimental details of the synthesis of AuNCs@BSA and fluorescent detection, and Fig. S1-S10. See DOI: 10.1039/c2nr12056a

  12. Entanglement in Anderson Nanoclusters

    CERN Document Server

    Samuelsson, Peter

    2007-01-01

    We investigate the two-particle spin entanglement in magnetic nanoclusters described by the periodic Anderson model. An entanglement phase diagram is obtained, providing a novel perspective on a central property of magnetic nanoclusters, namely the temperature dependent competition between local Kondo screening and nonlocal Ruderman-Kittel-Kasuya-Yoshida spin ordering. We find that multiparticle entangled states are present for finite magnetic field as well as in the mixed valence regime and away from half filling. Our results emphasize the role of charge fluctuations.

  13. Facile Attachment of TAT Peptide on Gold Monolayer Protected Clusters: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Ndabenhle M. Sosibo

    2015-07-01

    Full Text Available High affinity thiolate-based polymeric capping ligands are known to impart stability onto nanosized gold nanoparticles. Due to the stable gold-sulfur bond, the ligand forms a protective layer around the gold core and subsequently controls the physicochemical properties of the resultant nanogold mononuclear protected clusters (AuMPCs. The choice of ligands to use as surfactants for AuMPCs largely depends on the desired degree of hydrophilicity and biocompatibility of the MPCs, normally dictated by the intended application. Subsequent surface modification of AuMPCs allows further conjugation of additional biomolecules yielding bilayer or multilayered clusters suitable for bioanalytical applications ranging from targeted drug delivery to diagnostics. In this study, we discuss our recent laboratory findings on a simple route for the introduction of Trans-Activator of Transcription (TAT peptide onto the surface of biotin-derivatised gold MPCs via the biotin-strepavidin interaction. By changing the surface loading of biotin, controlled amounts of TAT could be attached. This bioconjugate system is very attractive as a carrier in intercellular delivery of various delivery cargoes such as antibodies, proteins and oligonucleotides.

  14. Surface modification of adamantane-terminated gold nanoclusters using cyclodextrins.

    Science.gov (United States)

    Yan, Chunyang; Liu, Chao; Abroshan, Hadi; Li, Zhimin; Qiu, Renhua; Li, Gao

    2016-08-17

    The surface functionality of Au38S2(SAdm)20 nanoclusters (-SAdm = adamantanethiolate) in the presence of α-, β-, and γ-cyclodextrins (CDs) is studied. The supramolecular chemistry and host-guest interactions of CDs and the protecting ligands of nanoclusters are investigated using UV-vis and NMR spectroscopies, MALDI mass spectrometry, and molecular dynamics simulations. In contrast to α- and γ-CDs, the results show that β-CDs are capable of efficiently chemisorbing onto the Au38S2(SAdm)20 nanoclusters to yield Au38S2(SAdm)20-(β-CD)2 conjugates. MD simulations revealed that two -SAdm ligands of the nanoparticle with the least steric hindrance are capable to selectively be accommodated into hydrophobic cavity of β-CDs, as furthermore confirmed by NMR spectroscopy. The conjugates largely improve the stability of the nanoclusters in the presence of strong oxidants (e.g., TBHP). Further, the electrochemical properties of Au38S2(SAdm)20 nanoclusters and Au38S2(SAdm)20-(β-CD)2 conjugates are compared. The charge transfer to the redox probe molecules (e.g., K3Fe(CN)6) in solution was monitored by cyclic voltammetry. It is found that β-CDs act as an umbrella to cover the fragile metal cores of the nanoclusters, thereby blocking direct interaction with destabilizing agents and hence quenching the charge transfer process.

  15. Isolation and Tandem Mass Spectrometric Identification of a Stable Monolayer Protected Silver-Palladium Alloy Cluster.

    Science.gov (United States)

    Sarkar, Sreya; Chakraborty, Indranath; Panwar, Manoj Kumar; Pradeep, T

    2014-11-06

    A selenolate-protected Ag-Pd alloy cluster was synthesized using a one-pot solution-phase route. The crude product upon chromatographic analyses under optimized conditions gave three distinct clusters with unique optical features. One of these exhibits a molecular peak centered at m/z 2839, in its negative ion mass spectrum assigned to Ag5Pd4(SePh)12(-), having an exact match with the corresponding calculated spectrum. Tandem mass spectrometry of the molecular ion peak up to MS(9) was performed. Complex isotope distributions in each of the mass peaks confirmed the alloy composition. We find the Ag3Pd3(-) core to be highly stable. The composition was further supported by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy.

  16. Dynamics and Thermodynamics of Nanoclusters

    Directory of Open Access Journals (Sweden)

    Karo Michaelian

    2015-10-01

    Full Text Available The dynamic and thermodynamic properties of nanoclusters are studied in two different environments: the canonical and microcanonical ensembles. A comparison is made to thermodynamic properties of the bulk. It is shown that consistent and reproducible results on nanoclusters can only be obtained in the canonical ensemble. Nanoclusters in the microcanonical ensemble are trapped systems, and inconsistencies will be found if thermodynamic formalism is applied. An analytical model is given for the energy dependence of the phase space volume of nanoclusters, which allows the prediction of both dynamical and thermodynamical properties.

  17. Ligand-Induced Stability of Gold Nanoclusters: Thiolate versus Selenolate.

    Science.gov (United States)

    Kurashige, Wataru; Yamaguchi, Masaki; Nobusada, Katsuyuki; Negishi, Yuichi

    2012-09-20

    Thiolate-protected gold nanoclusters have attracted considerable attention as building blocks for new functional materials and have been extensively researched. Some studies have reported that changing the ligand of these gold nanoclusters from thiolate to selenolate increases cluster stability. To confirm this, in this study, we compare the stabilities of precisely synthesized [Au25(SC8H17)18](-) and [Au25(SeC8H17)18](-) against degradation in solution, thermal dissolution, and laser fragmentation. The results demonstrate that changing the ligand from thiolate to selenolate increases cluster stability in reactions involving dissociation of the gold-ligand bond but reduces cluster stability in reactions involving intramolecular dissociation of the ligand. These results reveal that using selenolate ligands makes it possible to produce gold clusters that are more stable against degradation in solution than thiolate-protected gold nanoclusters.

  18. How Can We Understand Au8 Cores and Entangled Ligands of Selenolate- and Thiolate-Protected Gold Nanoclusters Au24(ER)20 and Au20(ER)16 (E = Se, S; R = Ph, Me)? A Theoretical Study.

    Science.gov (United States)

    Takagi, Nozomi; Ishimura, Kazuya; Matsui, Masafuyu; Fukuda, Ryoichi; Matsui, Toru; Nakajima, Takahito; Ehara, Masahiro; Sakaki, Shigeyoshi

    2015-07-08

    The geometries and electronic structures of selenolate-protected Au nanoclusters, Au24(SeR)20 and Au20(SeR)16, and their thiolate analogues are theoretically investigated with DFT and SCS-MP2 methods, to elucidate the electronic structure of their unusual Au8 core and the reason why they have the unusual entangled "staple-like" chain ligands. The Au8 core is understood to be an [Au4](2+) dimer in which the [Au4](2+) species has a tetrahedral geometry with a closed-shell singlet ground state. The SCS-MP2 method successfully reproduced the distance between two [Au4](2+) moieties, but the DFT with various functionals failed it, suggesting that the dispersion interaction is crucial between these two [Au4](2+) moieties. The SCS-MP2-calculated formation energies of these nanocluster compounds indicate that the thiolate staple-like chain ligands are more stable than the selenolate ones, but the Au8 core more strongly coordinates with the selenolate staple-like chain ligands than with the thiolate ones. Though Au20(SeR)16 has not been reported yet, its formation energy is calculated to be large, suggesting that this compound can be synthesized as a stable species if the concentration of Au(SeR) is well adjusted. The aurophilic interactions between the staple-like chain ligands and between the Au8 core and the staple-like chain ligand play an important role for the stability of these compounds. Because of the presence of this autophilic interaction, Au24(SeR)20 is more stable than Au20(SeR)16 and the unusual entangled ligands are involved in these compounds.

  19. Size Dependence of Atomically Precise Gold Nanoclusters in Chemoselective Hydrogenation and Active Site Structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gao [Carnegie Mellon University (CMU); Jiang, Deen [ORNL; Kumar, Santosh [Carnegie Mellon University (CMU); Chen, Yuxiang [Carnegie Mellon University (CMU); Jin, Rongchao [Carnegie Mellon University (CMU)

    2014-01-01

    We here investigate the catalytic properties of water-soluble Aun(SG)m nanocluster catalysts (H-SG = glutathione) of different sizes, including Au15(SG)13, Au18(SG)14, Au25(SG)18, Au38(SG)24, and captopril-capped Au25(Capt)18 nanoclusters. These Aun(SR)m nanoclusters (-SR represents thiolate generally) are used as homogeneous catalysts (i.e., without supports) in the chemoselective hydrogenation of 4-nitrobenzaldehyde (4-NO2PhCHO) to 4-nitrobenzyl alcohol (4-NO2PhCH2OH) in water with H2 gas (20 bar) as the hydrogen source. These nanocluster catalysts, except Au18(SG)14, remain intact after the catalytic reaction, evidenced by UV-vis spectra which are characteristic of each sized nanoclusters and thus serve as spectroscopic fingerprints . We observe a drastic size-dependence and steric effect of protecting ligands on the gold nanocluster catalysts in the hydrogenation reaction. Density functional theory (DFT) modeling of the 4-nitrobenzaldehyde adsorption shows that both the CHO and NO2 groups are in close interact with the S-Au-S staples on the gold nanocluster surface; the adsorption of the 4-nitrobenzaldehyde molecule on the four different sized Aun(SR)m nanoclusters are moderately strong and similar in strength. The DFT results suggest that the catalytic activity of the Aun(SR)m nanoclusters is primarily determined by the surface area of the Au nanocluster, consistent with the observed trend of the conversion of 4-nitrobenzaldehyde versus the cluster size. Overall, this work offers the molecular insight into the hydrogenation of 4-nitrobenzaldehyde and the catalytically active site structure on gold nanocluster catalysts.

  20. Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals.

    Science.gov (United States)

    Jin, Rongchao; Zhu, Yan; Qian, Huifeng

    2011-06-06

    This Concept article provides an elementary discussion of a special class of large-sized gold compounds, so-called Au nanoclusters, which lies in between traditional organogold compounds (e.g., few-atom complexes, 2 nm). The discussion is focused on the relationship between them, including the evolution from the Au⋅⋅⋅Au aurophilic interaction in Au(I) complexes to the direct Au-Au bond in clusters, and the structural transformation from the fcc structure in nanocrystals to non-fcc structures in nanoclusters. Thiolate-protected Au(n)(SR)(m) nanoclusters are used as a paradigm system. Research on such nanoclusters has achieved considerable advances in recent years and is expected to flourish in the near future, which will bring about exciting progress in both fundamental scientific research and technological applications of nanoclusters of gold and other metals.

  1. Synthesis and characterization of colloidal fluorescent silver nanoclusters.

    Science.gov (United States)

    Huang, Sherry; Pfeiffer, Christian; Hollmann, Jana; Friede, Sebastian; Chen, Justin Jin-Ching; Beyer, Andreas; Haas, Benedikt; Volz, Kerstin; Heimbrodt, Wolfram; Montenegro Martos, Jose Maria; Chang, Walter; Parak, Wolfgang J

    2012-06-19

    Ultrasmall water-soluble silver nanoclusters are synthesized, and their properties are investigated. The silver nanoclusters have high colloidal stability and show fluorescence in the red. This demonstrates that like gold nanoclusters also silver nanoclusters can be fluorescent.

  2. Fabrication of metal nanoclusters on graphene grown on Ru(0001)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; FU Qiang; CUI Yi; TAN DaLi; BAO XinHe

    2009-01-01

    Monolayer graphene was epitaxially grown on Ru(0001) through exposure of the Ru(0001) to ethylene at room temperature followed by annealing in ultrahigh vacuum at elevated temperatures. The resulting graphene structures were studied by scanning tunneling microscopy (STM), X-ray photoelectron spec-troscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). The graphene/Ru(0001) surface was used as a periodic template for growth of metal nanoclusters. Highly dispersed Pt clusters with well controlled size and spatial distribution were fabricated on the surface.

  3. Electrochemically induced nanocluster migration

    Energy Technology Data Exchange (ETDEWEB)

    Hartl, Katrin [Lehrstuhl Physikalische Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85748 Garching (Germany); Department of Chemistry, CS06, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark); Nesselberger, Markus [Department of Chemistry, CS06, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark); Mayrhofer, Karl J.J. [MPI fuer Eisenforschung, Abt. Grenzflaechenchemie und Oberflaechentechnik, Max-Planck-Strasse 1, D-40237 Duesseldorf (Germany); Kunz, Sebastian; Schweinberger, Florian F.; Kwon, GiHan [Lehrstuhl Physikalische Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85748 Garching (Germany); Hanzlik, Marianne [Institut fuer Elektronenmikroskopie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85748 Garching (Germany); Heiz, Ueli [Lehrstuhl Physikalische Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85748 Garching (Germany); Arenz, Matthias, E-mail: m.arenz@kemi.ku.d [Department of Chemistry, CS06, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark)

    2010-12-30

    In the presented study the influence of electrochemical treatments on size-selected Pt nanoclusters (NCs) supported on amorphous carbon is investigated by means of transmission electron microscopy (TEM). Well-defined Pt NCs are prepared by an ultra-high vacuum (UHV) laser vaporization source and deposited with low kinetic energy ({<=}10 eV/cluster) onto TEM gold grids covered by a thin (2 nm) carbon film. After transfer out of UHV Pt NCs are verified to be uniform in size and randomly distributed on the support. Subsequently, the TEM grids are employed as working electrodes in a standard electrochemical three electrode setup and the Pt nanoclusters are subjected to different electrochemical treatments. It is found that the NC arrangement is not influenced by potential hold conditions (at 0.40 V vs. RHE) or by potential cycling in a limited potential window (V{sub max} = 0.55 V vs. RHE). Upon potential cycling to 1.05 V vs. RHE, however, the NCs migrate on the carbon support. Interestingly, migration in oxygen or argon saturated electrolyte leads to NC coalescence, a mechanism discussed for being responsible for performance degradation of low temperature fuel cells, whereas in carbon monoxide saturated electrolyte the Pt NC agglomerate, but remain separated from each other and thus form distinctive structures.

  4. Study of the ability of self-assembled N-vinylcarbazole monolayers to protect copper against corrosion

    Directory of Open Access Journals (Sweden)

    NAI-XING WANG

    2002-10-01

    Full Text Available N-Vinylcarbazole (NVC monolayers were self-assembled on copper surfaces. The electrochemical properties of the copper surfaces modified by NVC self-assembled monolayers (SAMs were investigated using polarization and electrochemical impedance spectroscopic (EIS methods. The polarization measurements indicated that the NVC SAMs could reduce the rates of the anodic and cathodic reaction on the surface of copper electrodes in 0.5 mol dm-3 NaCl solution. The EIS results showed the NVC formed a closely packed film that was able to inhibit copper corrosion. X-Ray photoelectron spectroscopy (XPS analysis of the copper samples and atomic adsorption analysis of the solution showed that the copper surfaces were covered by NVC SAMs, and the adsorption of NVC on the copper surfaces was accompanied with dissolution of Cu into the solution.

  5. On the Evolution from Non-Plasmonic Metal Nanoclusters to Plasmonic Nanocrystals

    Science.gov (United States)

    2014-09-24

    OF PAGES 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area code ) Standard...structures as well as for thiol binding on extended gold surfaces in self-assembled-monolayer (SAM) systems. Figure 1. Total structure of Au36( SPh ...thiolate ligands (Fig. 2). Remarkably, the Au133(SR)52 nanocluster (where, R = SPh -p-But) exhibits aesthetic orderings in structure from the gold kernel

  6. Self-Assembled Superparamagnetic Iron Oxide Nanoclusters for Universal Cell Labeling and MRI

    Science.gov (United States)

    Chen, Shuzhen; Zhang, Jun; Jiang, Shengwei; Lin, Gan; Luo, Bing; Yao, Huan; Lin, Yuchun; He, Chengyong; Liu, Gang; Lin, Zhongning

    2016-05-01

    Superparamagnetic iron oxide (SPIO) nanoparticles have been widely used in a variety of biomedical applications, especially as contrast agents for magnetic resonance imaging (MRI) and cell labeling. In this study, SPIO nanoparticles were stabilized with amphiphilic low molecular weight polyethylenimine (PEI) in an aqueous phase to form monodispersed nanocomposites with a controlled clustering structure. The iron-based nanoclusters with a size of 115.3 ± 40.23 nm showed excellent performance on cellular uptake and cell labeling in different types of cells, moreover, which could be tracked by MRI with high sensitivity. The SPIO nanoclusters presented negligible cytotoxicity in various types of cells as detected using MTS, LDH, and flow cytometry assays. Significantly, we found that ferritin protein played an essential role in protecting stress from SPIO nanoclusters. Taken together, the self-assembly of SPIO nanoclusters with good magnetic properties provides a safe and efficient method for universal cell labeling with noninvasive MRI monitoring capability.

  7. One-pot one-cluster synthesis of fluorescent and bio-compatible Ag14 nanoclusters for cancer cell imaging

    Science.gov (United States)

    Yang, Jie; Xia, Nan; Wang, Xinan; Liu, Xianhu; Xu, An; Wu, Zhikun; Luo, Zhixun

    2015-11-01

    Small-molecule-protected silver nanoclusters have smaller hydrodynamic diameter, and thus may hold greater potential in biomedicine application compared with the same core-sized, macromolecule (i.e. DNA)-protected silver nanoclusters. However, the live cell imaging labeled by small-molecule-protected silver nanoclusters has not been reported until now, and the synthesis and atom-precise characterization of silver nanoclusters have been challenging for a long time. We develop a one-pot one-cluster synthesis method to prepare silver nanoclusters capped with GSH which is bio-compatible. The as-prepared silver nanoclusters are identified to be Ag14(SG)11 (abbreviated as Ag14, SG: glutathione) by isotope-resolvable ESI-MS. The structure is probed by 1D NMR spectroscopy together with 2D COSY and HSQC. This cluster species is fluorescent and the fluorescence quantum yield is solvent-dependent. Very importantly, Ag14 was successfully applied to label lung cancer cells (A549) for imaging, and this work represents the first attempt to image live cells with small-molecule-protected silver nanoclusters. Furthermore, it is revealed that the Ag14 nanoclusters exhibit lower cytotoxicity compared with some other silver species (including silver salt, silver complex and large silver nanoparticles), and the explanation is also provided. The comparison of silver nanoclusters to state-of-the-art labeling materials in terms of cytotoxicity and photobleaching lifetime is also conducted.Small-molecule-protected silver nanoclusters have smaller hydrodynamic diameter, and thus may hold greater potential in biomedicine application compared with the same core-sized, macromolecule (i.e. DNA)-protected silver nanoclusters. However, the live cell imaging labeled by small-molecule-protected silver nanoclusters has not been reported until now, and the synthesis and atom-precise characterization of silver nanoclusters have been challenging for a long time. We develop a one-pot one

  8. Nanocluster technologies for electronics design

    CERN Document Server

    Parker, A J

    2001-01-01

    based electronic systems. The work presented in this thesis covers an investigation into the use of metal nanoclusters in nanoelectronics design. Initial studies explored the interactions of the dodecanethiol passivated gold nanocluster, held in solution with toluene, and the native oxide covered silicon surface. Deposition of the clusters is achieved by pippetting mu-litre quantities of the solution onto the surface, and allowing the solvent to evaporate leaving the clusters as residue. Patterning of the surface with micron scale photoresist structures prior to cluster exposure, led to the selective aggregation of cluster deposits along the resist boundaries. An extension of this technique, examined the flow of the cluster solution along photoresist structures which extended beyond the solution droplet. Investigation into the electronic properties of nanocluster arrays generated non-linear current-voltage curves, which are explained in terms of two very simple models. These results cast doubt over the suitab...

  9. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters

    Science.gov (United States)

    Lin, X.; Lu, J. C.; Shao, Y.; Zhang, Y. Y.; Wu, X.; Pan, J. B.; Gao, L.; Zhu, S. Y.; Qian, K.; Zhang, Y. F.; Bao, D. L.; Li, L. F.; Wang, Y. Q.; Liu, Z. L.; Sun, J. T.; Lei, T.; Liu, C.; Wang, J. O.; Ibrahim, K.; Leonard, D. N.; Zhou, W.; Guo, H. M.; Wang, Y. L.; Du, S. X.; Pantelides, S. T.; Gao, H.-J.

    2017-07-01

    Two-dimensional (2D) materials have been studied extensively as monolayers, vertical or lateral heterostructures. To achieve functionalization, monolayers are often patterned using soft lithography and selectively decorated with molecules. Here we demonstrate the growth of a family of 2D materials that are intrinsically patterned. We demonstrate that a monolayer of PtSe2 can be grown on a Pt substrate in the form of a triangular pattern of alternating 1T and 1H phases. Moreover, we show that, in a monolayer of CuSe grown on a Cu substrate, strain relaxation leads to periodic patterns of triangular nanopores with uniform size. Adsorption of different species at preferred pattern sites is also achieved, demonstrating that these materials can serve as templates for selective self-assembly of molecules or nanoclusters, as well as for the functionalization of the same substrate with two different species.

  10. XAFS study on thiol etching of diphosphine-stabilized gold nanoclusters

    Science.gov (United States)

    Bao, Jie; Yang, Lina; Huang, Ting; Sun, Zhihu; Yao, Tao; Jiang, Yong; Wei, Shiqiang

    2017-08-01

    Thiol-etching triphenylphosphine (PPh3)-protected Au nanoclusters has been widely used to synthesize thiolated Au nanoclusters, while few studies have been reported on the thiol-etching reaction starting from diphosphine-protected Au clusters. Here the thiol-etching reaction in chloroform (CHCl3) for 1,5-Bis(diphenylphosphino) pentane (L5) protected Au11 nanoclusters is presented, and synchrotron radiation X-ray absorption fine structure, UV-vis absorption and mass spectra are combined to identify the reaction products. It is revealed that a gold(I)-thiolate complex Au2L5(RS) is produced, contrary to the case of thiol-etching PPh3-protected Au clusters where formation of thermodynamically stable Au25 or Au11 clusters is achieved.

  11. In-vitro Synthesis of Gold Nanoclusters in Neurons

    Science.gov (United States)

    2016-04-01

    Pradeep T. Protein-protected luminescent noble metal quantum clusters : an emerging trend in atomic cluster nanoscience. Nano Rev. 2012;3:14767−14783. 2...5 Approved for public release; distribution is unlimited. 1 1. Introduction Noble metal nanoclusters (NCs) composed of...toxic to the cells based on the results from the 100-mM solutions discussed previously. Potentially, other cell lines might yield brighter clusters

  12. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    Science.gov (United States)

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  13. Ligand-exchange synthesis of selenophenolate-capped Au25 nanoclusters.

    Science.gov (United States)

    Meng, Xiangming; Xu, Qian; Wang, Shuxin; Zhu, Manzhou

    2012-07-21

    We report the synthesis and characterization of selenophenolate-capped 25-gold-atom nanoclusters via a ligand-exchange approach. In this method, phenylethanethiolate (PhCH(2)CH(2)S) capped Au(25) nanoclusters are utilized as the starting material, which is subject to ligand-exchange with selenophenol (PhSeH). The as-obtained cluster product is confirmed to be selenophenolate-protected Au(25) nanoclusters through characterization by electrospray ionization (ESI) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), thermogravimetric analysis (TGA), elemental analysis (EA), UV-Vis and (1)H/(13)C NMR spectroscopies. The ligand-exchange synthesis of [Au(25)(SePh)(18)](-)[(C(8)H(17))(4)N](+) nanoclusters demonstrates that the core size of gold nanoclusters is retained in the thiolate-to-selenolate exchange process and that the 18 surface thiolate ligands can be completely exchanged by selenophenolate, rather than giving rise to a mixed ligand shell on the cluster. The two types of Au(25)L(18) (L = thiolate or selenolate) nanoclusters also show some differences in stability and optical properties.

  14. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    Science.gov (United States)

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-01-01

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)-capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters. PMID:28208642

  15. Structural Order in Ultrathin Films of the Monolayer Protected Clusters Based Upon 4-nm Gold Nanocrystals: An Experimental and Theoretical Study

    Science.gov (United States)

    Bhattarai, Nabraj; Khanal, Subarna; Bahena, Daniel; Olmos-Asar, Jimena A.; Ponce, Arturo; Whetten, Robert L.; Mariscal, Marcelo M.; Jose-Yacaman, Miguel

    2014-01-01

    The structural order in ultrathin films of monolayer protected clusters (MPCs) is important in a number of application areas but can be difficult to demonstrate by conventional methods, particularly when the metallic core dimension, d, is in the intermediate size-range, 1.5 < d < 5.0 nm. Here, improved techniques for the synthesis of monodisperse thiolate-protected gold nanoparticles have made possible the production of dodecane-thiolate saturated ~ 4 ± 0.5 nm Au clusters with single-crystal core structure and morphology. An ultrathin ordered film or superlattice of these nanocrystal-core MPCs is prepared and investigated using aberration corrected scanning/transmission electron microscopy (STEM) which allowed imaging of long-range hexagonally ordered superlattices of the nanocrystals, separated by the thiolate groups. The lattice constants determined by direct imaging are in good agreement with those determined by small-angle electron diffraction. The STEM image revealed the characteristic grain boundary (GB) with sigma (Σ) 13 in the interface between two crystals. The formation and structures found are interpreted on the basis of theoretical calculations employing molecular dynamics (MD) simulations and coarse-grained (CG) approach. PMID:24875295

  16. Phosphorescent Nanocluster Light-Emitting Diodes.

    Science.gov (United States)

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R

    2016-01-13

    Devices utilizing an entirely new class of earth abundant, inexpensive phosphorescent emitters based on metal-halide nanoclusters are reported. Light-emitting diodes with tunable performance are demonstrated by varying cation substitution to these nanoclusters. Theoretical calculations provide insight about the nature of the phosphorescent emitting states, which involves a strong pseudo-Jahn-Teller distortion.

  17. Observation of Body-Centered Cubic Gold Nanocluster.

    Science.gov (United States)

    Liu, Chao; Li, Tao; Li, Gao; Nobusada, Katsuyuki; Zeng, Chenjie; Pang, Guangsheng; Rosi, Nathaniel L; Jin, Rongchao

    2015-08-17

    The structure of nanoparticles plays a critical role in dictating their material properties. Gold is well known to adopt face-centered cubic (fcc) structure. Herein we report the first observation of a body-centered cubic (bcc) gold nanocluster composed of 38 gold atoms protected by 20 adamantanethiolate ligands and two sulfido atoms ([Au38S2(SR)20], where R=C10H15) as revealed by single-crystal X-ray crystallography. This bcc structure is in striking contrast with the fcc structure of bulk gold and conventional Au nanoparticles, as well as the bi-icosahedral structure of [Au38(SCH2CH2Ph)24]. The bcc nanocluster has a distinct HOMO-LUMO gap of ca. 1.5 eV, much larger than the gap (0.9 eV) of the bi-icosahedral [Au38(SCH2CH2Ph)24]. The unique structure of the bcc gold nanocluster may be promising in catalytic applications.

  18. A scalable synthesis of highly stable and water dispersible Ag 44(SR)30 nanoclusters

    KAUST Repository

    AbdulHalim, Lina G.

    2013-01-01

    We report the synthesis of atomically monodisperse thiol-protected silver nanoclusters [Ag44(SR)30] m, (SR = 5-mercapto-2-nitrobenzoic acid) in which the product nanocluster is highly stable in contrast to previous preparation methods. The method is one-pot, scalable, and produces nanoclusters that are stable in aqueous solution for at least 9 months at room temperature under ambient conditions, with very little degradation to their unique UV-Vis optical absorption spectrum. The composition, size, and monodispersity were determined by electrospray ionization mass spectrometry and analytical ultracentrifugation. The produced nanoclusters are likely to be in a superatom charge-state of m = 4-, due to the fact that their optical absorption spectrum shares most of the unique features of the intense and broadly absorbing nanoparticles identified as [Ag44(SR) 30]4- by Harkness et al. (Nanoscale, 2012, 4, 4269). A protocol to transfer the nanoclusters to organic solvents is also described. Using the disperse nanoclusters in organic media, we fabricated solid-state films of [Ag44(SR)30]m that retained all the distinct features of the optical absorption spectrum of the nanoclusters in solution. The films were studied by X-ray diffraction and photoelectron spectroscopy in order to investigate their crystallinity, atomic composition and valence band structure. The stability, scalability, and the film fabrication method demonstrated in this work pave the way towards the crystallization of [Ag44(SR)30]m and its full structural determination by single crystal X-ray diffraction. Moreover, due to their unique and attractive optical properties with multiple optical transitions, we anticipate these clusters to find practical applications in light-harvesting, such as photovoltaics and photocatalysis, which have been hindered so far by the instability of previous generations of the cluster. © 2013 The Royal Society of Chemistry.

  19. Synthesis and Optical Properties of Au-Ag Alloy Nanoclusters with Controlled Composition

    Directory of Open Access Journals (Sweden)

    J. F. Sánchez-Ramírez

    2008-01-01

    Full Text Available Colloidal solid-solution-like Au-Ag alloy nanoclusters of different compositions were synthesized through citrate reduction of mixed metal ions of low concentrations, without using any other protective or capping agents. Optical absorption of the alloy nanoclusters was studied both theoretically and experimentally. The position of the surface plasmon resonance (SPR absorption band of the nanoclusters could be tuned from 419 nm to 521 nm through the variation of their composition. Considering effective dielectric constant of the alloy, optical absorption spectra for the nanoclusters were calculated using Mie theory, and compared with the experimentally obtained spectra. Theoretically obtained optical spectra well resembled the experimental spectra when the true size distribution of the nanoparticles was considered. High-resolution transmission electron microscopy (HREM, high-angle annular dark field (HAADF imaging, and energy dispersive spectroscopy (EDS revealed the true alloy nature of the nanoparticles with nominal composition being preserved. The synthesis technique can be extended to other bimetallic alloy nanoclusters containing Ag.

  20. Nanoclusters a bridge across disciplines

    CERN Document Server

    Jena, Purusottam

    2010-01-01

    This comprehensive book on Nanoclusters comprises sixteen authoritative chapters written by leading researchers in the field. It provides insight into topics that are currently at the cutting edge of cluster science, with the main focus on metal and metal compound systems that are of particular interest in materials science, and also on aspects related to biology and medicine. While there are numerous books on clusters, the focus on clusters as a bridge across disciplines sets this book apart from others. Delivers cutting edge coverage of cluster science Covers a broad range of topics in

  1. Dynamic study on the transformation process of gold nanoclusters.

    Science.gov (United States)

    Ma, Xiaoqian; Wen, Xiaoming; Toh, Yon-Rui; Huang, Kuo-Yen; Tang, Jau; Yu, Pyng

    2014-11-01

    In this paper, the transformation process from Au8 to Au25 nanoclusters (NCs) is investigated with steady state fluorescence spectroscopy and time-resolved fluorescence spectroscopy at various reaction temperatures and solvent diffusivities. Results demonstrate that Au8 NCs, protected by bovine serum albumin, transform into Au25 NCs under controlled pH values through an endothermic reaction with the activation energy of 74 kJ mol(-1). Meanwhile, the characteristic s-shaped curves describing the formation of Au25 NCs suggest this process involves a diffusion controlled growth mechanism.

  2. Electron correlations and silicon nanocluster energetics

    OpenAIRE

    2016-01-01

    The first-principle prediction of nanocluster stable structure is often hampered by the existence of many isomer configurations with energies close to the ground state. This fact attaches additional importance to many-electron effects going beyond density functional theory (DFT), because their contributions may change a subtle energy order of competitive structures. To analyze this problem, we consider, as an example, the energetics of silicon nanoclusters passivated by hydrogen Si$_{10}$H$_{...

  3. Enantioselective silver nanoclusters: Preparation, characterization and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Farrag, Mostafa, E-mail: mostafafarrag@aun.edu.eg

    2016-09-01

    Herein, we report a new wet-synthesis method to separate some water-soluble chiral silver nanoclusters with high yield. The cluster material was obtained by the reduction of silver nitrate with NaBH{sub 4} in the presence of three ligands L-penicillamine (L-pen), D-penicillamine (D-pen) and racemic mixture of penicillamine (rac-pen), functioning as capping ligand. For characterizing all silver cluster samples, the particle size was assessed by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) and their average chemical formula was determined from thermogravimetric analysis (TGA) and elemental analysis (EA). The particles sizes of all three clusters are 2.1 ± 0.2 nm. The optical properties of the samples were studied by four different methods: UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), photoluminescence spectroscopy (PL) and circular dichroism (CD) spectroscopy. The spectra are dominated by the typical and intense plasmon peak at 486 nm accompanied by a small shoulder at 540 nm. Infrared spectroscopy was measured for the free ligand and protected silver nanoclusters, where the disappearance of the S-H vibrational band (2535–2570 cm{sup −1}) in the silver nanoclusters confirmed anchoring of ligand to the cluster surface through the sulfur atom. PL studies yielded the fluorescent properties of the samples. The main focus of this work, however, lies in the chirality of the particles. For all silver clusters CD spectra were recorded. While for clusters capped with one of the two enantiomers (D- or L-form) typical CD spectra were observed, no significant signals were detected for a racemic ligand mixture. Furthermore, silver clusters show quite large asymmetry factors (up to 3 × 10{sup −4}) in comparison to most other ligand protected clusters. These large factors and bands in the visible range of the spectrum suggest a strong chiral induction from the ligand to the metal core. Textural features of the

  4. A nanocluster beacon based on the template transformation of DNA-templated silver nanoclusters.

    Science.gov (United States)

    Teng, Ye; Jia, Xiaofang; Zhang, Shan; Zhu, Jinbo; Wang, Erkang

    2016-01-28

    In this work, we developed a novel light-up nanocluster beacon (NCB) based on shuttling dark silver nanoclusters (NCs) to a bright scaffold through hybridization. The fluorescence enhancement was as high as 70-fold when the two templates were on the opposite sides of the duplexes, enabling sensitive and selective detection of DNA.

  5. Electrochemical Deposition Of Thiolate Monolayers On Metals

    Science.gov (United States)

    Porter, Marc D.; Weissharr, Duane E.

    1995-01-01

    Electrochemical method devised for coating metal (usually, gold) surfaces with adherent thiolate monolayers. Affords greater control over location and amount of material deposited and makes it easier to control chemical composition of deposits. One important potential use for this method lies in fabrication of chemically selective thin-film resonators for microwave oscillators used to detect pollutants: monolayer formulated to bind selectively pollutant chemical species of interest, causing increase in mass of monolayer and corresponding decrease in frequency of resonance. Another important potential use lies in selective chemical derivatization for purposes of improving adhesion, lubrication, protection against corrosion, electrocatalysis, and electroanalysis.

  6. Surface-Induced Melting of Metal Nanoclusters

    Institute of Scientific and Technical Information of China (English)

    YANG Quan-Wen; ZHU Ru-Zeng; WEI Jiu-An; WEN Yu-Hua

    2004-01-01

    @@ We investigate the size effect on melting of metal nanoclusters by molecular dynamics simulation and thermodynamic theory based on Kofman's melt model. By the minimization of the free energy of metal nanoclusters with respect to the thickness of the surface liquid layer, it has been found that the nanoclusters of the same metal have the same premelting temperature Tpre = T0 - T0(γsv -γlv -γst)/(ρLξ) (T0 is the melting point of bulk metal, γsv the solid-vapour interfacial free energy, γlv the liquid-vapour interfacial free energy, γsl the solid-liquid interfacial free energy, ρ the density of metal, L the latent heat of bulk metal, and ξ the characteristic length of surface-interface interaction) to be independent of the size of nanoclusters, so that the characteristic length ξ ofa metal can be obtained easily by Tpre, which can be obtained by experiments or molecular dynamics (MD) simulations. The premelting temperature Tpre of Cu is obtained by MD simulations, then ξ is obtained.The melting point Tcm is further predicted by free energy analysis and is in good agreement with the result of our MD simulations. We also predict the maximum premelting-liquid width of Cu nanoclusters with various sizes and the critical size, below which there is no premelting.

  7. Mechanistic insights from atomically precise gold nanocluster-catalyzed reduction of 4-nitrophenol

    Directory of Open Access Journals (Sweden)

    Shuo Zhao

    2016-10-01

    Full Text Available A trio of thiolate-protected atomically precise gold nanoclusters, [Au23(S-c-C6H1116]–, Au24(SCH2pHtBu20 and [Au25(SCH2CH2pH18]–, are utilized as catalysts for 4-nitrophenol (4-NP reduction to 4-aminophenol (4-AP. Despite nearly identical sizes (~1 nm, the three nanoclusters possess distinctly different atomic packing structures and surface ligand binding modes, which contribute to different catalytic performance. The [Au23(S-c-C6H1116]– nanocluster shows the highest activity with a kinetic rate constant of 0.0370 s−1, which is higher than those of Au24(SCH2pHtBu20 (0.0090 s−1 and [Au25(SCH2CH2pH18]– (0.0242 s−1. Such a trio of gold nanoclusters indicate that the atomic packing mode and electronic structure play a crucial role in determining their catalytic performance.

  8. Plasmon tsunamis on metallic nanoclusters.

    Science.gov (United States)

    Lucas, A A; Sunjic, M

    2012-03-14

    A model is constructed to describe inelastic scattering events accompanying electron capture by a highly charged ion flying by a metallic nanosphere. The electronic energy liberated by an electron leaving the Fermi level of the metal and dropping into a deep Rydberg state of the ion is used to increase the ion kinetic energy and, simultaneously, to excite multiple surface plasmons around the positively charged hole left behind on the metal sphere. This tsunami-like phenomenon manifests itself as periodic oscillations in the kinetic energy gain spectrum of the ion. The theory developed here extends our previous treatment (Lucas et al 2011 New J. Phys. 13 013034) of the Ar(q+)/C(60) charge exchange system. We provide an analysis of how the individual multipolar surface plasmons of the metallic sphere contribute to the formation of the oscillatory gain spectrum. Gain spectra showing characteristic, tsunami-like oscillations are simulated for Ar(15+) ions capturing one electron in distant collisions with Al and Na nanoclusters.

  9. Fluorescent DNA Stabilized Silver Nanoclusters as Biosensors

    Directory of Open Access Journals (Sweden)

    Alfonso Latorre

    2013-01-01

    Full Text Available DNA stabilized fluorescent silver nanoclusters are promising materials, of which fluorescent properties can be exploited to develop sensors. Particularly, the presence of a DNA strand in the structure has promoted the development of gene sensors where one part of the sensor is able to recognize the target gene sequence. Moreover, since oligonucleotides can be designed to have binding properties (aptamers a variety of sensors for proteins and cells have been developed using silver nanoclusters. In this review the applications of this material as sensors of different biomolecules are summarized.

  10. Chirality in Bare and Passivated Gold Nanoclusters

    CERN Document Server

    Garzon, I L; Rodrigues-Hernandez, J I; Sigal, I; Beltran, M R; Michaelian, K

    2002-01-01

    Chiral structures have been found as the lowest-energy isomers of bare (Au$_{28}$ and Au$_{55}) and thiol-passivated (Au$_{28}(SCH$_{3})$_{16}$ and Au$_{38}$(SCH$_{3}$)$_{24}) gold nanoclusters. The degree of chirality existing in the chiral clusters was calculated using the Hausdorff chirality measure. We found that the index of chirality is higher in the passivated clusters and decreases with the cluster size. These results are consistent with the observed chiroptical activity recently reported for glutahione-passivated gold nanoclusters, and provide theoretical support for the existence of chirality in these novel compounds.

  11. Silver nanoclusters emitting weak NIR fluorescence biomineralized by BSA

    Science.gov (United States)

    Li, Baoshun; Li, Jianjun; Zhao, Junwu

    2015-01-01

    Noble metal (e.g., gold and silver) nanomaterials possess unique physical and chemical properties. In present work, silver nanoclusters (also known as silver quantum clusters or silver quantum dots) were synthesized by bovine serum albumin (BSA) biomineralization. The synthesized silver nanoclusters were characterized by UV-VIS absorption spectroscopy, fluorescence spectroscopy, upconversion emission spectroscopy, TEM, HRTEM and FTIR spectroscopy. TEM results showed that the average size of the silver nanoclusters was 2.23 nm. Fluorescence results showed that these silver nanoclusters could emit weak near-infrared (NIR) fluorescence (the central emission wavelength being about 765 nm). And the central excitation wavelength was about 395 nm, in the UV spectral region. These silver nanoclusters showed an extraordinarily large gap (about 370 nm) between the central excitation wavelength and central emission wavelength. In addition, it was found that these silver nanoclusters possess upconversion emission property. Upconversion emission results showed that the upconversion emission spectrum of the silver nanoclusters agreed well with their normal fluorescence emission spectrum. The synthesized silver nanoclusters showed high stability in aqueous solution and it was considered that they might be confined in BSA molecules. It was found that silver nanoclusters might enhance and broaden the absorption of proteins, and the protein absorption peak showed an obvious red shift (being 7 nm) after the formation of silver nanoclusters.

  12. Room temperature observation by X-ray magnetic circular dichroism of the orbital momentum enhancement of Co nanoclusters grown on Au(110)

    Energy Technology Data Exchange (ETDEWEB)

    Roa, Daniel Bretas; Reis, Diogo Duarte; Coelho Neto, Paula Mariel; Simoes, Wendell; Siervo, Abner de; Magalhaes-Paniago, Rogerio [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2012-07-01

    Full text: Increase in magnetic storage capabilities inevitably requires miniaturization of magnetic bits. Two solutions for this problem have been proposed: the assembly of magnetic vortexes, where the competition between exchange and dipolar interactions stabilizes a specific magnetic configuration and the modification of magnetic properties of nanoclusters due to change in structural properties, leading to an enhancement of their orbital momentum, especially in 3D transition metals. Since nanoclusters inevitable exhibit superparamagnetism, the determination of the orbital momentum of nanoclusters suffers from the need of high magnetic fields and extremely low temperatures. Therefore, even the search for enhanced magnetic materials is jeopardized by this limitation. In the present work, we have grown cobalt nanoclusters on Au(110) by electron beam deposition under ultra-high vacuum conditions. Scanning tunneling microscopy and low energy electron diffraction confirmed the preparation of a clean Au surface as well as the formation of pure Co nanoclusters in the range of the equivalent of 1-4 monolayers. The magnetization of Cobalt clusters was confirmed by X-ray Magnetic Circular Dichroism (XMCD) measured at the new PGM beamline at the Brazilian Synchrotron Radiation Laboratory (LNLS). A reasonably low magnetic field (1.1 Tesla) was used and the measurements were done at room temperature. By fixing the spin momentum and determining the average angle between the incident X-ray photon and the total magnetic moment, we clearly observe the enhancement of Co orbital momentum as coverage decreases down to approximately 1.5 monolayers. The procedure of determination of the orbital momentum a low magnetic fields will be discussed in detail. (author)

  13. The Nanocluster Trap endstation at BESSY II

    Directory of Open Access Journals (Sweden)

    Tobias Lau

    2017-05-01

    Full Text Available The Nanocluster Trap endstation at BESSY II combines a cryogenic linear radio-frequency ion trap with an applied magnetic field for x-ray magnetic circular dichroism studies of cold and size-selected trapped ions. Applications include atomic, molecular, and cluster ions as well as ionic complexes.

  14. Fire protection design of monolayer furniture store of large space steel structure%大空间钢结构单层家具商场的消防设计

    Institute of Scientific and Technical Information of China (English)

    王伟

    2012-01-01

    在分析大空间钢结构单层家具商场火灾危险性的基础上,从耐火等级、防火分区、安全疏散、自动喷水灭火系统和防排烟等方面探讨大空间钢结构单层家具商场的消防设计.%Based on the analysis of fire risk of the monolayer furniture store with large space steel structure, the fire protection design of the system was discussed on fireproof rank, fire partition, safe evacuation, automatic sprinkler system and smoke control.

  15. Quenched Assembly of NIR-Active Gold Nanoclusters Capped with Strongly Bound Ligands by Tuning Particle Charge via pH and Salinity.

    Science.gov (United States)

    Stover, Robert J; Murthy, Avinash K; Nie, Golay D; Gourisankar, Sai; Dear, Barton J; Truskett, Thomas M; Sokolov, Konstantin V; Johnston, Keith P

    2014-07-03

    Gold nanospheres coated with a binary monolayer of bound citrate and cysteine ligands were assembled into nanoclusters, in which the size and near-infrared (NIR) extinction were tuned by varying the pH and concentration of added NaCl. During full evaporation of an aqueous dispersion of 4.5 ± 1.8 nm Au primary particles, the nanoclusters were formed and quenched by the triblock copolymer polylactic acid (PLA)(1K)-b-poly(ethylene glycol) (PEG)(10K)-b-PLA(1K), which also provided steric stabilization. The short-ranged depletion and van der Waals attractive forces were balanced against longer ranged electrostatic repulsion to tune the nanocluster diameter and NIR extinction. Upon lowering the pH from 7 to 5 at a given salinity, the magnitude of the charge on the primary particles decreased, such that the weaker electrostatic repulsion increased the hydrodynamic diameter and, consequently, NIR extinction of the clusters. At a given pH, as the concentration of NaCl was increased, the NIR extinction decreased monotonically. Furthermore, the greater screening of the charges on the nanoclusters weakened the interactions with PLA(1K)-b-PEG(10K)-b-PLA(1K) and thus lowered the amount of adsorbed polymer on the nanocluster surface. The generalization of the concept of self-assembly of small NIR-active nanoclusters to include a strongly bound thiol and the manipulation of the morphologies and NIR extinction by variation of pH and salinity not only is of fundamental interest but also is important for optical biomedical imaging and therapy.

  16. Metal/Metal-Oxide Nanoclusters for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Ahmad I. Ayesh

    2016-01-01

    Full Text Available The development of gas sensors that are based on metal/metal-oxide nanoclusters has attracted intensive research interest in the last years. Nanoclusters are suitable candidates for gas sensor applications because of their large surface-to-volume ratio that can be utilized for selective and rapid detection of various gaseous species with low-power consuming electronics. Herein, nanoclusters are used as building blocks for the construction of gas sensor where the electrical conductivity of the nanoclusters changes dramatically upon exposure to the target gas. In this review, recent progress in the fabrication of size-selected metallic nanoclusters and their utilization for gas sensor applications is presented. Special focus will be given to the enhancement of the sensing performance through the rational functionalization and utilization of different nanocluster materials.

  17. Metal/Metal-Oxide Nanoclusters for Gas Sensor Applications

    OpenAIRE

    Ayesh, Ahmad I.

    2016-01-01

    The development of gas sensors that are based on metal/metal-oxide nanoclusters has attracted intensive research interest in the last years. Nanoclusters are suitable candidates for gas sensor applications because of their large surface-to-volume ratio that can be utilized for selective and rapid detection of various gaseous species with low-power consuming electronics. Herein, nanoclusters are used as building blocks for the construction of gas sensor where the electrical conductivity of the...

  18. Preparation and characterization of Ni/Co bimetallic nano-clusters

    Institute of Scientific and Technical Information of China (English)

    Jinzhang Gao; Fei Guan; Yongjun Ma; Jingwan Kang

    2003-01-01

    Ni/Co bimetallic nano-cluters have been prepared from the aqueous solution by reducing their corresponding metal salts under suitable conditions. The experimental conditions including the type and concentration of protective agent, feeding order and the pH of the solution that influence the average particle size have been studied in detail. Transmission electron microscopy (TEM)indicates that the shape of those bimetallic nano-cluster particles is spheroid. The alloy structure has been shown by X-ray powder diffraction (XRD). The X-ray photoelectron spectroscopic (XPS) data have confirmed that the nickel and cobalt in the bimetallic nano-clusters are in the zero-valence state.

  19. Improving the Stability of Fluorescent Silver Nanoclusters

    Science.gov (United States)

    Swanson, Nicholas; Stanko, Danielle; Campbell, Ian; Wittmershaus, Bruce

    The quantum mechanical nature of noble metal nanoparticles results in them having optical properties much different from the bulk metal. Silver nanoclusters (AgNC), groups of 4 to 20 atoms, are characterized by strong optical transitions in the visible part of the spectrum giving them an appearance like fluorescent organic dyes. These nanoclusters can also have fluorescence quantum yields over 90%. Following the analysis of published results of DNA templated nanoclusters, we created a procedure for synthesizing AgNC. The AgNC have a high fluorescence quantum yield but degrade with a lifetime of only a few days when in solution at room temperature. Our goal in this study was to increase the stability of the AgNC towards improving their value as a fluorescent material in various applications, such as luminescent solar concentrators. To increase their stability, we've chosen to modify our procedure by removing oxygen from the solution after the sample has reacted. Oxygen removal caused a significant increase in the stability of the clusters over a given period of time. This material is based upon work supported by the National Science Foundation under Grant Number NSF-ECCS-1306157.

  20. Formation of solid Kr nanoclusters in MgO

    NARCIS (Netherlands)

    van Huis, MA; van Veen, A; Schut, H; Kooi, BJ; De Hosson, JTM

    2003-01-01

    The phenomenon of positron confinement enables us to investigate the electronic structure of nanoclusters embedded in host matrices. Solid Kr nanoclusters are a very interesting subject of investigation because of the very low predicted value of the positron affinity of bulk Kr. In this work,

  1. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.

    2016-06-22

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  2. Molecular interactions in particular Van der Waals nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Jungclas, Hartmut; Schmidt, Lothar [Marburg Univ. (Germany). Chemistry Dept.; Komarov, Viacheslav V.; Popova, Anna M. [Marburg Univ. (Germany). Chemistry Dept.; Lomonosov Moscow State Univ. (Russian Federation). Skobeltzin Inst. of Nuclear Physics

    2017-04-01

    A method is presented to analyse the interaction energies in a nanocluster, which is consisting of three neutral molecules bound by non-covalent long range Van der Waals forces. One of the molecules (M{sub 0}) in the nanocluster has a permanent dipole moment, whereas the two other molecules (M{sub 1} and M{sub 2}) are non-polar. Analytical expressions are obtained for the numerical calculation of the dispersion and induction energies of the molecules in the considered nanocluster. The repulsive forces at short intermolecular distances are taken into account by introduction of damping functions. Dispersion and induction energies are calculated for a nanocluster with a definite geometry, in which the polar molecule M{sub 0} is a linear hydrocarbon molecule C{sub 5}H{sub 10} and M{sub 1} and M{sub 2} are pyrene molecules. The calculations are done for fixed distances between the two pyrene molecules. The results show that the induction energies in the considered three-molecular nanocluster are comparable with the dispersion energies. Furthermore, the sum of induction energies in the substructure (M{sub 0}, M{sub 1}) of the considered nanocluster is much higher than the sum of induction energies in a two-molecular nanocluster with similar molecules (M{sub 0}, M{sub 1}) because of the absence of an electrostatic field in the latter case. This effect can be explained by the essential intermolecular induction in the three-molecular nanocluster.

  3. Passivation of cobalt nanocluster assembled thin films with hydrogen

    DEFF Research Database (Denmark)

    Romero, C.P.; Volodin, A.; Di Vece, M.

    2012-01-01

    The effect of hydrogen passivation on bare and Pd capped cobalt nanocluster assembled thin films was studied with Rutherford backscattering spectrometry (RBS) and magnetic force microscopy (MFM) after exposure to ambient conditions. The nanoclusters are produced in a laser vaporization cluster...

  4. The fourth crystallographic closest packing unveiled in the gold nanocluster crystal

    Science.gov (United States)

    Gan, Zibao; Chen, Jishi; Wang, Juan; Wang, Chengming; Li, Man-Bo; Yao, Chuanhao; Zhuang, Shengli; Xu, An; Li, Lingling; Wu, Zhikun

    2017-03-01

    Metal nanoclusters have recently attracted extensive interest not only for fundamental scientific research, but also for practical applications. For fundamental scientific research, it is of major importance to explore the internal structure and crystallographic arrangement. Herein, we synthesize a gold nanocluster whose composition is determined to be Au60S6(SCH2Ph)36 by using electrospray ionization mass spectrometry and single crystal X-ray crystallography (SCXC). SCXC also reveals that Au60S6(SCH2Ph)36 consists of a fcc-like Au20 kernel protected by a pair of giant Au20S3(SCH2Ph)18 staple motifs, which contain 6 tetrahedral-coordinate μ4-S atoms not previously reported in the Au-S interface. Importantly, the fourth crystallographic closest-packed pattern, termed 6H left-handed helical (6HLH) arrangement, which results in the distinct loss of solid photoluminescence of amorphous Au60S6(SCH2Ph)36, is found in the crystals of Au60S6(SCH2Ph)36. The solvent-polarity-dependent solution photoluminescence is also demonstrated. Overall, this work provides important insights about the structure, Au-S bonding and solid photoluminescence of gold nanoclusters.

  5. Au₂₅(SEt)₁₈, a nearly naked thiolate-protected Au₂₅ cluster: structural analysis by single crystal X-ray crystallography and electron nuclear double resonance.

    Science.gov (United States)

    Dainese, Tiziano; Antonello, Sabrina; Gascón, José A; Pan, Fangfang; Perera, Neranjan V; Ruzzi, Marco; Venzo, Alfonso; Zoleo, Alfonso; Rissanen, Kari; Maran, Flavio

    2014-04-22

    X-ray crystallography has been fundamental in discovering fine structural features of ultrasmall gold clusters capped by thiolated ligands. For still unknown structures, however, new tools capable of providing relevant structural information are sought. We prepared a 25-gold atom nanocluster protected by the smallest ligand ever used, ethanethiol. This cluster displays the electrochemistry, mass spectrometry, and UV-vis absorption spectroscopy features of similar Au25 clusters protected by 18 thiolated ligands. The anionic and the neutral form of Au25(SEt)18 were fully characterized by (1)H and (13)C NMR spectroscopy, which confirmed the monolayer's properties and the paramagnetism of neutral Au25(SEt)18(0). X-ray crystallography analysis of the latter provided the first known structure of a gold cluster protected by a simple, linear alkanethiolate. Here, we also report the direct observation by electron nuclear double resonance (ENDOR) of hyperfine interactions between a surface-delocalized unpaired electron and the gold atoms of a nanocluster. The advantages of knowing the exact molecular structure and having used such a small ligand allowed us to compare the experimental values of hyperfine couplings with DFT calculations unaffected by structure's approximations or omissions.

  6. Kinetic evaluation of highly active supported gold catalysts prepared from monolayer-protected clusters: an experimental Michaelis-Menten approach for determining the oxygen binding constant during CO oxidation catalysis.

    Science.gov (United States)

    Long, Cormac G; Gilbertson, John D; Vijayaraghavan, Ganesh; Stevenson, Keith J; Pursell, Christopher J; Chandler, Bert D

    2008-08-06

    Thiol monolayer-protected Au clusters (MPCs) were prepared using dendrimer templates, deposited onto a high-surface-area titania, and then the thiol stabilizers were removed under H2/N2. The resulting Au catalysts were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy of adsorbed CO. The Au catalysts prepared via this route displayed minimal particle agglomeration during the deposition and activation steps. Structural data obtained from the physical characterization of the Au catalysts were comparable to features exhibited from a traditionally prepared standard Au catalyst obtained from the World Gold Council (WGC). A differential kinetic study of CO oxidation catalysis by the MPC-prepared Au and the standard WGC catalyst showed that these two catalyst systems have essentially the same reaction order and Arrhenius apparent activation energies (28 kJ/mol). However, the MPC-prepared Au catalyst shows 50% greater activity for CO oxidation. Using a Michaelis-Menten approach, the oxygen binding constants for the two catalyst systems were determined and found to be essentially the same within experimental error. To our knowledge, this kinetic evaluation is the first experimental determination of oxygen binding by supported Au nanoparticle catalysts under working conditions. The values for the oxygen binding equilibrium constant obtained from the Michaelis-Menten treatment (ca. 29-39) are consistent with ultra-high-vacuum measurements on model catalyst systems and support density functional theory calculations for oxygen binding at corner or edge atoms on Au nanoparticles and clusters.

  7. Nanoclusters and Microparticles in Gases and Vapors

    CERN Document Server

    Smirnov, Boris M

    2012-01-01

    Research of processes involving Nanoclusters and Microparticleshas been developing fastin many fields of rescent research, in particular in materials science. To stay at the cutting edge of this development, a sound understanding of the processes is needed. In this work, several processes involving small particles are described, such as transport processes in gases, charging of small particles in gases, chemical processes, atom attachment and quenching of excited atomic particles on surfaces, nucleation, coagulation, coalescence and growth processes for particles and aggregates. This work pres

  8. Peptide-stabilized, fluorescent silver nanoclusters

    DEFF Research Database (Denmark)

    Gregersen, Simon; Vosch, Tom André Jos; Jensen, Knud Jørgen

    2016-01-01

    . Herein, we demonstrate how solid-phase methods can increase throughput dramatically in peptide ligand screening and in initial evaluation of fluorescence intensity and chemical stability of peptide-stabilized AgNCs (P-AgNCs). 9-Fluorenylmethyloxycarbonyl (Fmoc) solid-phase peptide synthesis......Few-atom silver nanoclusters (AgNCs) can exhibit strong fluorescence; however, they require ligands to prevent aggregation into larger nanoparticles. Fluorescent AgNCs in biopolymer scaffolds have so far mainly been synthesized in solution, and peptides have only found limited use compared to DNA...

  9. pH-Sensitive gold nanoclusters: preparation and analytical applications for urea, urease, and urease inhibitor detection.

    Science.gov (United States)

    Deng, Hao-Hua; Wu, Gang-Wei; Zou, Zhi-Qiang; Peng, Hua-Ping; Liu, Ai-Lin; Lin, Xin-Hua; Xia, Xing-Hua; Chen, Wei

    2015-05-07

    Herein, we reported for the first time a facile synthetic process of gold nanoclusters (AuNCs) by using N-acetyl-L-cysteine both as a reducing agent and as a protection ligand. Based on the pH stimuli-responsive properties of the as-prepared AuNCs, we constructed a pH-sensing platform for the detection of urea, urease, and urease inhibitors.

  10. On the fluctuation mechanism of melting of supported gold nanoclusters.

    Science.gov (United States)

    Pushkin, M A; Troyan, V I; Borisyuk, P V; Borman, V D; Tronin, V N

    2012-11-01

    The size dependence of the melting temperature of Au nanoclusters deposited on SiO2 and HOPG substrates, measured by the elastic-peak electron spectroscopy (EPES) is discussed. The observed behavior of the melting temperature with decrease in clusters' size is qualitatively explained in the framework of the fluctuation mechanism for surface melting. The interaction of nanoclusters with substrate is taken into account by means of the effective surface tension for spherical-segment shaped particles, corresponding to the contact angle of supported nanocluster.

  11. Nonlinear analysis of nano-cluster doped fiber

    Institute of Scientific and Technical Information of China (English)

    LIU Gang; ZHANG Ru

    2007-01-01

    There are prominent nonlinear characteristics that we hope for the semiconductor nano-clusters doped fiber. Refractive index of fiber core can be effectively changed by adulteration. This technology can provide a new method for developing photons components. Because the semiconductor nano-cluster has quantum characteristics,Based on first-order perturbation theory and classical theory of fiber,we deduced refractive index expressions of fiber core,which was semiconductor nano-cluster doped fiber. Finally,third-order nonlinear coefficient equation was gained. Using this equation,we calculated SMF-28 fiber nonlinear coefficient. The equation shows that new third-order coefficient was greater.

  12. Efficiency of genomic DNA extraction dependent on the size of magnetic nanoclusters

    Science.gov (United States)

    Cho, Hyun Ah; Hyun Min, Ji; Hua Wu, Jun; Woo Jang, Jin; Lim, Chae-Seung; Keun Kim, Young

    2014-05-01

    We report the efficiency of genomic DNA extraction as a function of particle size and quantity. For DNA extraction, we synthesized magnetic nanoclusters of various sizes and coated the surface of these magnetic nanoclusters with meso-2,3-dimercaptosuccinic acid. We showed that the nanoclusters had a tight particle size distribution and high crystallinity. Furthermore, we observed that the three types of magnetic nanoclusters studied exhibited ferrimagnetic behavior and that larger nanoclusters showed larger saturation magnetization values. The resultant efficiency of DNA extraction is inversely proportional to particle size in the range of nanoclusters tested, due to the fact that the surface-to-volume ratio decreases as particle size increases.

  13. A thermochromic silver nanocluster exhibiting dual emission character

    Science.gov (United States)

    Xu, Qing-Qing; Dong, Xi-Yan; Huang, Ren-Wu; Li, Bo; Zang, Shuang-Quan; Mak, Thomas C. W.

    2015-01-01

    A Ag12(SCH2C10H7)6(CF3CO2)6(CH3CN)6 (1) nanocluster modified using naphthalen-2-yl-methanethiol was synthesized and structurally characterized by single crystal X-ray analysis. The targeted luminescent nanocluster displays dual emission with the property of reversible thermochromism spanning from red to bright yellow.A Ag12(SCH2C10H7)6(CF3CO2)6(CH3CN)6 (1) nanocluster modified using naphthalen-2-yl-methanethiol was synthesized and structurally characterized by single crystal X-ray analysis. The targeted luminescent nanocluster displays dual emission with the property of reversible thermochromism spanning from red to bright yellow. Electronic supplementary information (ESI) available: Experimental section and supporting Fig. S1-S6. CCDC 1004246. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4nr05122j

  14. "light-on" sensing of antioxidants using gold nanoclusters

    KAUST Repository

    Hu, Lianzhe

    2014-05-20

    Depletion of intracellular antioxidants is linked to major cytotoxic events and cellular disorders, such as oxidative stress and multiple sclerosis. In addition to medical diagnosis, determining the concentration of antioxidants in foodstuffs, food preservatives, and cosmetics has proved to be very vital. Gold nanoclusters (Au-NCs) have a core size below 2 nm and contain several metal atoms. They have interesting photophysical properties, are readily functionalized, and are safe to use in various biomedical applications. Herein, a simple and quantitative spectroscopic method based on Au-NCs is developed to detect and image antioxidants such as ascorbic acid. The sensing mechanism is based on the fact that antioxidants can protect the fluorescence of Au-NCs against quenching by highly reactive oxygen species. Our method shows great accuracy when employed to detect the total antioxidant capacity in commercial fruit juice. Moreover, confocal fluorescence microscopy images of HeLa cells show that this approach can be successfully used to image antioxidant levels in living cells. Finally, the potential application of this "light-on" detection method in multiple logic gate fabrication was discussed using the fluorescence intensity of Au-NCs as output. © 2014 American Chemical Society.

  15. Controlled nanoclustering of magnetic nanoparticles using telechelic polysiloxane and disiloxane

    Energy Technology Data Exchange (ETDEWEB)

    Thong-On, Bandit; Rutnakornpituk, Boonjira; Wichai, Uthai; Rutnakornpituk, Metha, E-mail: methar@nu.ac.th [Naresuan University, Department of Chemistry, Faculty of Science (Thailand)

    2015-06-15

    Diacrylate-terminated polydimethylsiloxane (PDMS) and disiloxane were synthesized and used for controlling degree of nanoclustering of magnetite nanoparticles (MNPs). PDMS was synthesized via a ring-opening polymerization of octamethylcyclotetrasiloxane (D{sub 4}), followed by end functionalization with diacrylate groups. Diacrylate-terminated disiloxane was separately synthesized in a similar fashion without the use of D{sub 4} in the reaction. They were then reacted with amino-coated MNPs to obtain MNP-embedded siloxane nanoclusters. Transmission electron microscopy showed the formation of MNP-siloxane nanoclusters with the size of 70–200 nm. Degree of MNP nanoclustering can be adjusted by varying the MNP-to-siloxane ratio to obtain hydrodynamic size ranging from 200 to 2400 nm. Using the same ratio of MNPs to the siloxanes, PDMS resulted in the nanoclusters with smaller D{sub h} and more stable in toluene than those coated with disiloxane. These novel nanoclusters with controllable size might be ideal candidates for biomedical and other advanced applications after suitable surface modification.

  16. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Vega, A. Estrada de la; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2016-01-15

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  17. Study on tunable resonator using a cantilevered carbon nanotube encapsulating a copper nanocluster

    Science.gov (United States)

    Kang, Jeong Won; Kim, Ki-Sub; Park, Jungchul; Hwang, Ho Jung

    2011-02-01

    We investigated an ultrahigh frequency carbon nanotube resonator encapsulating a nanocluster, as another tunable resonator, via classical molecular dynamics simulations and continuum models. The fundamental frequency of cantilevered carbon nanotube resonator encapsulating a copper nanocluster could be adjusted by controlling the position of the encapsulated copper nanocluster. Data obtained from the molecular dynamics simulations were analyzed with continuum theory, and we found that statistically the change in the effective mass factor was greatly correlated with the position change of the encapsulated nanocluster.

  18. Size dependence of thermoelectric power of Au, Pd, Pt nanoclusters deposited onto HOPG surface

    OpenAIRE

    Borisyuk, P. V.; V. I. Troyan; Lebedinskii, Yu Yu; Vasilyev, O S

    2016-01-01

    The paper presents the study of tunnel current-voltage characteristics of Au, Pd and Pt nanoclusters deposited onto the highly oriented pyrolytic graphite (HOPG) surface by pulsed laser deposition. The analysis of tunnel current-voltage characteristics obtained by scanning tunneling spectroscopy (STS) allowed to recover the thermoelectric power value of nanoclusters. It was found that the value of thermoelectric power of pulsed laser deposited nanoclusters depends on nanocluster material and ...

  19. Modelling nano-clusters and nucleation.

    Science.gov (United States)

    Catlow, C Richard A; Bromley, Stefan T; Hamad, Said; Mora-Fonz, Miguel; Sokol, Alexey A; Woodley, Scott M

    2010-01-28

    We review the growing role of computational techniques in modelling the structures and properties of nano-particulate oxides and sulphides. We describe the main methods employed, including those based on both electronic structure and interatomic potential approaches. Particular attention is paid to the techniques used in searching for global minima in the energy landscape defined by the nano-particle cluster. We summarise applications to the widely studied ZnO and ZnS systems, to silica nanochemistry and to group IV oxides including TiO(2). We also consider the special case of silica cluster chemistry in solution and its importance in understanding the hydrothermal synthesis of microporous materials. The work summarised, together with related experimental studies, demonstrates a rich and varied nano-cluster chemistry for these materials.

  20. Silver Nanocluster Reparative Effect in Hernioplasty

    Directory of Open Access Journals (Sweden)

    Nikolay M. Anichkov

    2014-06-01

    Full Text Available Background: The acceleration of re-epithelialization and fibroblast differentiation were noted during the experiments with silver nanoclusters (SNs by interrupting the negative development of inflammation at the level of cytokines and promoting a positive course of reparative processes. The aim of this work was to elaborate the experimental model of prosthesis hernioplasty in subcutaneous and intraperitoneal locations of hernioprostheses with SNs, which allowed us to study the course of reparative reactions in all layers of the anterior abdominal wall. Material and Methods: We used a modified hernioprosthesis made from polyester fibers coated with a metal-polymer composition, including the stabilized SN in a concentration of 6.8 and 11.3 mg per 1 g of the hernioprosthesis mesh. During this research we used guinea pigs to study the in vivo tissue reactions. The clinical part of the study included the group of 212 patients who underwent removal of an inguinal hernia. We have identified various factors associated with infectious and toxic effects on the body by determining the level of the serum glutamate-pyruvate-transaminase (SGPT. Results: In implantation of the hernioprostheses, including the high concentration of SN in the laparotomy wound, the exudative component of the inflammation was weakly expressed. It was mostly the proliferative changes that took place. We did not find either CD8-positive type T lymphocytes or PAX5-positive type B activated cells in the exudate. Conclusion: Our research has shown that the use of hernioprostheses that include silver nanoclusters leads to the reduction of inflammation in the exudative phase and to a more favorable course of reparative processes.

  1. Synthesis of crystalline Ge nanoclusters in PE-CVD-deposited SiO2 films

    DEFF Research Database (Denmark)

    Leervad Pedersen, T.P.; Skov Jensen, J.; Chevallier, J.

    2005-01-01

    The synthesis of evenly distributed Ge nanoclusters in plasma-enhanced chemical-vapour-deposited (PE-CVD) SiO2 thin films containing 8 at. % Ge is reported. This is of importance for the application of nanoclusters in semiconductor technology. The average diameter of the Ge nanoclusters can...

  2. Construction of multilayers of bare and Pd modified gold nanoclusters and their electrocatalytic properties for oxygen reduction

    Directory of Open Access Journals (Sweden)

    Motoko Harada, Hidenori Noguchi, Nikolas Zanetakis, Satoru Takakusagi, Wenbo Song and Kohei Uosaki

    2011-01-01

    Full Text Available Multilayers of gold nanoclusters (GNCs coated with a thin Pd layer were constructed using GNCs modified with self-assembled monolayers (SAMs of mercaptoundecanoic acid and a polyallylamine hydrochloride (PAH multilayer assembly, which has been reported to act as a three-dimensional electrode. SAMs were removed from GNCs by electrochemical anodic decomposition and then a small amount of Pd was electrochemically deposited on the GNCs. The kinetics of the oxygen reduction reaction (ORR on the Pd modified GNC/PAH multilayer assembly was studied using a rotating disk electrode, and a significant increase in the ORR rate was observed after Pd deposition. Electrocatalytic activities in alkaline and acidic solutions were compared both for the GNC multilayer electrode and Pd modified GNC electrode.

  3. Electrochemical Properties of Organosilane Self Assembled Monolayers on Aluminum 2024

    Science.gov (United States)

    Hintze, Paul E.; Calle, Luz Marina

    2004-01-01

    Self assembled monolayers are commonly used to modify surfaces. Within the last 15 years, self assembled monolayers have been investigated as a way to protect from corrosion[1,2] or biofouling.[3] In this study, self assembled monolayers of decitriethoxysilane (C10H21Si(OC2H5)3) and octadecyltriethoxysilane (C18H37Si(OC2H5)3) were formed on aluminum 2024-T3. The modified surfaces and bare Al 2024 were characterized by dynamic water contact angle measurements, x-ray photoelectron spectroscopy (XIPS) and infrared spectroscopy. Electrochemical impedance spectroscopy (EIS) in 0.5 M NaCl was used to characterize the monolayers and evaluate their corrosion protection properties. The advancing water contact angle and infrared measurements show that the mono layers form a surface where the hydrocarbon chains are packed and oriented away from the surface, consistent with what is found in similar systems. The contact angle hysteresis measured in these systems is relatively large, perhaps indicating that the hydrocarbon chains are not as well packed as monolayers formed on other substrates. The results of the EIS measurements were modeled using a Randle's circuit modified by changing the capacitor to a constant phase element. The constant phase element values were found to characterize the monolayer. The capacitance of the monolayer modified surface starts lower than the bare Al 2024, but approaches values similar to the bare Al 2024 within 24 hours as the monolayer is degraded. The n values found for bare Al 2024 quickly approach the value of a true capacitor and are greater than 0.9 within hours after the start of exposure. For the monolayer modified structure, n can stay lower than 0.9 for a longer period of time. In fact, n for the monolayer modified surfaces is different from the bare surface even after the capacitance values have converged. This indicates that the deviation from ideal capacitance is the most sensitive indicator of the presence of the monolayer.

  4. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    Science.gov (United States)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  5. Relaxation path of metastable nanoclusters in oxide dispersion strengthened materials

    Science.gov (United States)

    Ribis, J.; Thual, M. A.; Guilbert, T.; de Carlan, Y.; Legris, A.

    2017-02-01

    ODS steels are a promising class of structural materials for sodium cooled fast reactor application. The ultra-high density of the strengthening nanoclusters dispersed within the ferritic matrix is responsible of the excellent creep properties of the alloy. Fine characterization of the nanoclusters has been conducted on a Fe-14Cr-0.3Ti-0.3Y2O3 ODS material using High Resolution and Energy Filtered Transmission Electron Microscopy. The nanoclusters exhibit a cubic symmetry possibly identified as f.c.c and display a non-equilibrium YTiCrO chemical composition thought to be stabilized by a vacancy supersaturation. These nanoclusters undergo relaxation towards the Y2Ti2O7-like state as they grow. A Cr shell is observed around the relaxed nano-oxides, this size-dependent shell may form after the release of Cr by the particles. The relaxation energy barrier appears to be higher for the smaller particles probably owing to a volume/surface ratio effect in reason to the full coherency of the nanoclusters.

  6. Polyelectrolyte-assisted preparation of gold nanocluster-doped silica particles with high incorporation efficiency and improved stability

    Science.gov (United States)

    Wang, Haonan; Huang, Zhenzhen; Guo, Zilong; Yang, Wensheng

    2017-07-01

    In this paper, we reported an approach for efficient incorporation of glutathione-capped gold nanoclusters (GSH-Au NCs) into silica particles with the assistance of a polyelectrolyte, poly-diallyldimethyl-ammoniumchloride (PDDA). In this approach, the negatively charged GSH-Au NCs were firstly mixed with the positively charged PDDA to form PDDA-Au NC complexes. Then, the complexes were added into a pre-hydrolyzed Stöber system to get the Au NCs-doped silica particles. With increased ratio of PDDA in the complexes, the negative charges on surface of the Au NCs were neutralized gradually and finally reversed to positive in presence of excess PDDA, which facilitated the incorporation of the Au NCs into the negatively charged silica matrix. Under the optimal amount of PDDA in the complexes, the incorporation efficiency of Au NCs could be as high as 88%. After being incorporated into the silica matrix, the Au NCs become much robust against pH and heavy metal ions attributed to the protection effect of silica and PDDA. This approach was also extendable to highly efficient incorporation of other negatively charged metal nanoclusters, such as bovine serum albumin-capped Cu nanoclusters, into silica matrix.

  7. Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

    Directory of Open Access Journals (Sweden)

    Silvia Varela-Aramburu

    2016-09-01

    Full Text Available Gold nanoclusters are small (1–3 nm nanoparticles with a high surface area that are useful for biomedical studies and drug delivery. The synthesis of small, surface-functionalized gold nanoclusters is greatly dependent on the reaction conditions. Here, we describe a straightforward, efficient and robust room temperature one-pot synthesis of 2 nm gold nanoclusters using thioglucose as a reducing and stabilizing agent, which was discovered by serendipity. The resultant monodisperse gold nanoclusters are more stable than those generated using some other common methods. The carboxylic acid contained in the stabilizing agent on the cluster surface serves as anchor for nanocluster functionalization. Alternatively, the addition of thiols serves to functionalize the nanoclusters. The resulting non-cytotoxic nanoclusters are taken up by cells and constitute a tuneable platform for biomedical applications including drug delivery.

  8. Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

    Science.gov (United States)

    Varela-Aramburu, Silvia; Wirth, Richard; Lai, Chian-Hui; Orts-Gil, Guillermo

    2016-01-01

    Summary Gold nanoclusters are small (1–3 nm) nanoparticles with a high surface area that are useful for biomedical studies and drug delivery. The synthesis of small, surface-functionalized gold nanoclusters is greatly dependent on the reaction conditions. Here, we describe a straightforward, efficient and robust room temperature one-pot synthesis of 2 nm gold nanoclusters using thioglucose as a reducing and stabilizing agent, which was discovered by serendipity. The resultant monodisperse gold nanoclusters are more stable than those generated using some other common methods. The carboxylic acid contained in the stabilizing agent on the cluster surface serves as anchor for nanocluster functionalization. Alternatively, the addition of thiols serves to functionalize the nanoclusters. The resulting non-cytotoxic nanoclusters are taken up by cells and constitute a tuneable platform for biomedical applications including drug delivery. PMID:27826501

  9. Superconducting state of metallic nanoclusters and Josephson tunneling networks

    Energy Technology Data Exchange (ETDEWEB)

    Kresin, Vladimir, E-mail: vzkresin@lbl.gov [Lawrence Berkeley Laboratory, University of California at Berkeley, CA 94720 (United States); Ovchinnikov, Yurii [L. Landau Institute for Theoretical Physics, RAN, Moscow 117334 (Russian Federation)

    2014-11-15

    Highlights: • Specific nanoclusters form a new family of high T{sub c} superconductors. • For an isolated cluster the pairing affects its energy spectrum. • Nano-based Josephson tunneling network can transfer a macroscopic superconducting current at high temperatures. • A.c. tunneling network can be synchronized and radiates as a single junction. - Abstract: Metallic nanoclusters form a new family of high temperature superconductors. In principle, the value of T{sub c} can be raised up to room temperature. In addition, one can observe the Josephson tunneling between two clusters. One can build the nanocluster-based tunneling network capable to transfer a macroscopic supercurrent at high temperatures. Such a network can be synchronized and radiate as single junction.

  10. Monolayer patterning using ketone dipoles.

    Science.gov (United States)

    Kim, Min Kyoung; Xue, Yi; Pašková, Tereza; Zimmt, Matthew B

    2013-08-14

    The self-assembly of multi-component monolayers with designed patterns requires molecular recognition among components. Dipolar interactions have been found to influence morphologies of self-assembled monolayers and can affect molecular recognition functions. Ketone groups have large dipole moments (2.6 D) and are easily incorporated into molecules. The potential of ketone groups for dipolar patterning has been evaluated through synthesis of two 1,5-disubstituted anthracenes bearing mono-ketone side chains, STM characterization of monolayers self-assembled from their single and two component solutions and molecular mechanics simulations to determine their self-assembly energetics. The results reveal that (i) anthracenes bearing self-repulsive mono-ketone side chains assemble in an atypical monolayer morphology that establishes dipolar attraction, instead of repulsion, between ketones in adjacent side chains; (ii) pairs of anthracene molecules whose self-repulsive ketone side chains are dipolar complementary spontaneously assemble compositionally patterned monolayers, in which the two components segregate into neighboring, single component columns, driven by side chain dipolar interactions; (iii) compositionally patterned monolayers also assemble from dipolar complementary anthracene pairs that employ different dipolar groups (ketones or CF2 groups) in their side chains; (iv) the ketone group, with its larger dipole moment and size, provides comparable driving force for patterned monolayer formation to that of the smaller dipole, and smaller size, CF2 group.

  11. Magnetic properties of colloidal cobalt nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Torchio, R; Meneghini, C; Mobilio, S; Capellini, G [Dipartimento di Fisica ' E. Amaldi' , Universita di Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Prieto, A Garcia; Alonso, J; Fdez-Gubieda, M L [Departamento de Electricidad y Electronica y Fisica Aplicada I, Universidad del PaIs Vasco (Spain); Liveri, V Turco; Ruggirello, A M [Dipartimento di Chimica Fisica ' F. Accascina' , Universita di Palermo, Viale delle Scienze, Parco d' Orleans II, Edificio 17, 90128 Palermo (Italy); Longo, A [ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, 90146 Palermo (Italy); Neisius, T, E-mail: torchio@fis.uniroma3.i [Universite Paul CEZANNE, Faculte des Sciences et Techniques, Marseille (France)

    2010-01-01

    Co nanoclusters were synthesized by an inverse-micelle chemical route. The magnetic and microstructural properties of the nanoparticles have been analyzed as a function of the surfactant (AOT and DEHP) and the drying method. Microstructural analysis has been performed by TEM and XANES; magnetic properties have been studied by hysteresis loops and zero-field cooling - field cooling (ZFC-FC) curves. TEM images show 2 to 4 nm sized particles spherical in shape. XANES measurements point out a significant presence of Co{sub 3}O{sub 4}with metallic Co and some Co{sup 2+} bound to the surfactant. The presence of antiferromagnetic Co{sub 3}O{sub 4} explains the magnetic transition observed at low T in both ZFC-FC measurements and hysteresis loops. Finally, the presence of magnetic interactions explains the bigger effective cluster size obtained from hysteresis loops fits (6-10 nm) compared to the sizes observed by TEM (2-4 nm).

  12. Quantum confinement in GaP nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Laurich, B.K.; Smith, D.C.; Healy, M.D.

    1994-06-01

    We have prepared GaP and GaAs nanoclusters from organometallic condensation reactions of E[Si(ChH{sub 3})3]3 (E = P, As) and GaCl{sub 3}. The size of the as synthesized clusters is 10 {Angstrom} to 15 {Angstrom}. Larger clusters of 20 {Angstrom} to 30 {Angstrom} size were obtained by thermal annealing of the as grown material. X-ray diffraction and transmission electron microscopy confirm the high crystalline quality. A lattice contraction of 6.7% could be seen for 10 {Angstrom} sized GaAs clusters. The clusters are nearly spherical in shape. Optical absorption spectra show a distinct line which can be assigned to the fundamental transition of the quantum confined electronic state. The measured blue shift, with respect to the GaP bulk absorption edge is 0.53 eV. As the cluster is smaller than the exciton radius, we can calculate the cluster size from this blue shift and obtain 20.2 {Angstrom}, consistent with the results from X-ray diffraction of 19.5 {Angstrom} for the same sample.

  13. Fractal Electronic Circuits Assembled From Nanoclusters

    Science.gov (United States)

    Fairbanks, M. S.; McCarthy, D.; Taylor, R. P.; Brown, S. A.

    2009-07-01

    Many patterns in nature can be described using fractal geometry. The effect of this fractal character is an array of properties that can include high internal connectivity, high dispersivity, and enhanced surface area to volume ratios. These properties are often desirable in applications and, consequently, fractal geometry is increasingly employed in technologies ranging from antenna to storm barriers. In this paper, we explore the application of fractal geometry to electrical circuits, inspired by the pervasive fractal structure of neurons in the brain. We show that, under appropriate growth conditions, nanoclusters of Sb form into islands on atomically flat substrates via a process close to diffusion-limited aggregation (DLA), establishing fractal islands that will form the basis of our fractal circuits. We perform fractal analysis of the islands to determine the spatial scaling properties (characterized by the fractal dimension, D) of the proposed circuits and demonstrate how varying growth conditions can affect D. We discuss fabrication approaches for establishing electrical contact to the fractal islands. Finally, we present fractal circuit simulations, which show that the fractal character of the circuit translates into novel, non-linear conduction properties determined by the circuit's D value.

  14. Catalytic photooxidation of pentachlorophenol using semiconductor nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    WILCOXON,JESS P.

    2000-04-17

    Pentachlorophenol (PCP) is a toxic chlorinated aromatic molecule widely used as fungicide, a bactericide and a wood preservation, and thus ubiquitous in the environment. The authors report photo-oxidation of PCP using a variety of nanosize semiconductor metal oxides and sulfides in both aqueous and polar organic solvents and compare the photo-oxidation kinetics of these nanoclusters to widely studied bulk powders like Degussa P-25 TiO{sub 2} and CdS. They study both the light intensity dependence of PCP photooxidation for nanosize SnO{sub 2} and the size dependence of PCP photooxidation for both nanosize SnO{sub 2} and MoS{sub 2}. They find an extremely strong size dependence for the latter which they attribute to its size-dependent band gap and the associated change in redox potentials due to quantum confinement of the hole-electron pair. The authors show that nanosize MoS{sub 2} with a diameter of d=3.0 nm and an absorbance edge of {approximately}450 nm is a very effective photooxidation catalyst for complete PCP mineralization, even when using only visible light irradiation.

  15. Correlation effects in Auger spectra of Ni and Cu nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Troyan, V.I.; Borisyuk, P.V.; Kashurnikov, V.A. [National Research Nuclear University (MEPhI), 31 Kashirskoye shosse, 115409, Moscow (Russian Federation); Krasavin, A.V., E-mail: avkrasavin@gmail.com [National Research Nuclear University (MEPhI), 31 Kashirskoye shosse, 115409, Moscow (Russian Federation); Borman, V.D.; Tronin, V.I. [National Research Nuclear University (MEPhI), 31 Kashirskoye shosse, 115409, Moscow (Russian Federation)

    2013-01-17

    Results of experimental research of exciton-like two-hole states in nanoclusters of narrow-band metals (Ni, Cu) on surface of high-oriented pyrolitic graphite by X-ray photoelectron and Auger electron spectroscopy are presented. It was found that the evolution of the electronic structure in Ni nanoclusters with the decreasing of their sizes can lead to appearance of long-living two-hole states in the valence band. One-particle and two-particle density of states are analyzed, and the Auger-electron spectra confirming the presence of the bound and localized states are obtained.

  16. Magnetic and optoelectronic properties of gold nanocluster-thiophene assembly.

    Science.gov (United States)

    Qin, Wei; Lohrman, Jessica; Ren, Shenqiang

    2014-07-07

    Nanohybrids consisting of Au nanocluster and polythiophene nanowire assemblies exhibit unique thermal-responsive optical behaviors and charge-transfer controlled magnetic and optoelectronic properties. The ultrasmall Au nanocluster enhanced photoabsorption and conductivity effectively improves the photocurrent of nanohybrid based photovoltaics, leading to an increase of power conversion efficiency by 14 % under AM 1.5 illumination. In addition, nanohybrids exhibit electric field controlled spin resonance and magnetic field sensing behaviors, which open up the potential of charge-transfer complex system where the magnetism and optoelectronics interact.

  17. Ablation behavior of monolayer and multilayer Ir coatings under carburizing and oxidizing oxyacetylene flames

    Science.gov (United States)

    Wu, Wangping; Jiang, Jinjin; Chen, Zhaofeng

    2016-06-01

    Iridium is one of the most promising candidates for protective barrier of refractory materials to endure high service temperature. The multilayer iridium coating was produced by a double glow plasma process on the polished tungsten carbide substrates, compared with monolayer. The ablation behaviors of the monolayer on the unpolished and polished substrates were investigated under carburizing and oxidizing oxyacetylene flames, respectively, at the same time the multilayer coating ablated under oxidizing flames. Multilayer coating was a polycrystalline phase with the preferential (220) orientation. Monolayer on the unpolished substrate had fine coarse grains and some small microcracks were present. Multilayer consisted of columnar grains with some voids between the grains boundaries. The formation of a WIr phase in the as-deposited multilayer was attributed to high deposition temperature. The monolayer could endure high temperature up to 1800 °C in carburizing flame. The substrates could be protected more effectively by multilayer than monolayer at 2000- 2200 °C in oxidizing flame.

  18. Phenomenological Modeling for Langmuir Monolayers

    Science.gov (United States)

    Baptiste, Dimitri; Kelly, David; Safford, Twymun; Prayaga, Chandra; Varney, Christopher N.; Wade, Aaron

    Experimentally, Langmuir monolayers have applications in molecular optical, electronic, and sensor devices. Traditionally, Langmuir monolayers are described by a rigid rod model where the rods interact via a Leonard-Jones potential. Here, we propose effective phenomenological models and utilize Monte Carlo simulations to analyze the phase behavior and compare with experimental isotherms. Research reported in this abstract was supported by UWF NIH MARC U-STAR 1T34GM110517-01.

  19. On the formation of copper nanoparticles in nanocluster aggregation source

    NARCIS (Netherlands)

    Dutka, Mikhail V.; Turkin, Anatoliy A.; Vainchtein, David I.; De Hosson, Jeff Th. M.

    2015-01-01

    The influence of pressure and type of inert gas (Ar and Kr) on the morphology and size distribution of nanoparticles produced in a nanocluster source is studied experimentally. The experimental data are used to validate the model of cluster formation from a supersaturated atomic vapor in an inert bu

  20. On the formation of copper nanoparticles in nanocluster aggregation source

    NARCIS (Netherlands)

    Dutka, Mikhail V.; Turkin, Anatoliy A.; Vainchtein, David I.; De Hosson, Jeff Th. M.

    The influence of pressure and type of inert gas (Ar and Kr) on the morphology and size distribution of nanoparticles produced in a nanocluster source is studied experimentally. The experimental data are used to validate the model of cluster formation from a supersaturated atomic vapor in an inert

  1. Surface Segregation in Supported Pd-Pt Nanoclusters and Alloys

    NARCIS (Netherlands)

    van den Oetelaar, L.C.A.; Nooij, O.W.; Oerlemans, S.; Denier van der Gon, A.W.; Brongersma, H.H.; Lefferts, Leonardus; Roosenbrand, A.G.; van Veen, J.A.R.

    1998-01-01

    Surface segregation processes in Pd-Pt alloys and bimetallic Pd-Pt nanoclusters on alumina and carbon supports (technical catalysts) have been investigated by determining the metal surface composition of these systems by low-energy ion scattering (LEIS). Both Pd-rich (Pd80Pt20) and Pt-rich

  2. Enhanced fluorescence of silver nanoclusters stabilized with branched oligonucleotides.

    Science.gov (United States)

    Latorre, Alfonso; Lorca, Romina; Zamora, Félix; Somoza, Álvaro

    2013-05-28

    DNA stabilized silver nanoclusters (AgNCs) are promising optical materials, whose fluorescence properties can be tuned by the selection of the DNA sequence employed. In this work we have used modified oligonucleotides in the preparation of AgNCs. The fluorescent intensity obtained was 60 times higher than that achieved with standard oligonucleotides.

  3. Nanoclustering as a dominant feature of plasma membrane organization

    NARCIS (Netherlands)

    Garcia-Parajo, M.F.; Cambi, A.; Torreno-Pina, J.A.; Thompson, N.; Jacobson, K.

    2014-01-01

    Early studies have revealed that some mammalian plasma membrane proteins exist in small nanoclusters. The advent of super-resolution microscopy has corroborated and extended this picture, and led to the suggestion that many, if not most, membrane proteins are clustered at the plasma membrane at

  4. Ultrafast coherence transfer in DNA-templated silver nanoclusters

    DEFF Research Database (Denmark)

    Thyrhaug, Erling; Bogh, Sidsel Ammitzbøll; Carro, Miguel

    2017-01-01

    DNA-templated silver nanoclusters of a few tens of atoms or less have come into prominence over the last several years due to very strong absorption and efficient emission. Applications in microscopy and sensing have already been realized, however little is known about the excited-state structure...

  5. On the formation of copper nanoparticles in nanocluster aggregation source

    NARCIS (Netherlands)

    Dutka, Mikhail V.; Turkin, Anatoliy A.; Vainchtein, David I.; De Hosson, Jeff Th. M.

    2015-01-01

    The influence of pressure and type of inert gas (Ar and Kr) on the morphology and size distribution of nanoparticles produced in a nanocluster source is studied experimentally. The experimental data are used to validate the model of cluster formation from a supersaturated atomic vapor in an inert bu

  6. PHOTOOXIDATION OF ORGANIC WASTES USING SEMICONDUCTOR NANOCLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Wilcoxon, Jess P.

    2000-12-31

    It would be a major boon to have a visible light absorbing semiconductor catalytic material available, which is also photostable and non-toxic. Such a photocatalyst would make it possible to exploit sunlight as the sole energy source required for detoxification. To this end we have employed our expertise in nanocluster synthesis and processing to make and purify nanoparticles of MoS2. The band-gap and absorbance edges of these nanoparticles can be adjusted by particle size based upon the quantum confinement of the electron-hole pair. In a recent paper we demonstrated the use of these new photocatalysts to destroy phenol, and demonstrated a strong effect of size or band-gap on the rate of photo-oxidation.5 In this research we investigate the photooxidation kinetics and products formed for a standard material, Degussa P-25 TiO2, as compared to nanosize TiO2, SnO2, and MoS2. We examined the light intensity dependence for nanosize SnO2 compared to TiO2 (Degussa), and the effect o f size on photooxidation kinetics for both SnO2 and MoS2. We studied photooxidation in aqueous systems and, for the first time, a system consisting almost entirely of a polar organic, acetonitrile. Our primary objective was to develop an entirely new class of material: nanosize semiconductors with visible bandgaps and to engineer these material's properties to allow us to photooxidize toxic organic compounds in water on a reasonable time scale ({approx}8 hrs). A second objective was to study how certain material properties such as size, surface treatment, and material type affect the efficiency of the photocatalytic process as well as optimizing these features.

  7. Facile Synthesis and Characterization of Au Nanoclusters-Silica Fluorescent Composite Nanospheres

    Directory of Open Access Journals (Sweden)

    Huiping Wang

    2013-01-01

    Full Text Available We developed a novel method for the synthesis of Au nanoclusters (NCs silica fluorescent composite nanospheres by mixing the as-prepared bovine serum albumin (BSA protected Au NCs with amino-modified silica spheres in acetate buffer solution. The products were characterized by high-resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, fluorescent microscope imaging (FLMI, and dynamic light scattering (DLS measurements. The proposed method was simple, efficient, and inexpensive. In addition, the composite nanospheres exhibited favorable water-dispersible, stable, and fluorescent properties, potentially leading to further applications in chemical and biological sensors. A reasonable mechanism was also proposed for the formation of composite nanospheres.

  8. Ion-tuned DNA/Ag fluorescent nanoclusters as versatile logic device.

    Science.gov (United States)

    Li, Tao; Zhang, Libing; Ai, Jun; Dong, Shaojun; Wang, Erkang

    2011-08-23

    A novel kind of versatile logic device has been constructed utilizing ion-tuned DNA/Ag fluorescent nanoclusters, with K(+) and H(+) as two inputs. A well-chosen hairpin DNA with a poly-C loop serves as the template for synthesizing two species of Ag nanoclusters. Several G-tracts and C-tracts on its two terminals enable the hairpin DNA to convert into the G-quadruplex and/or i-motif structures upon input of K(+) and H(+). Such a structural change remarkably influences the spectral behaviors of Ag nanoclusters. In particular, different species of Ag nanoclusters have distinct fluorescence responses to the input of K(+) and H(+). These unique features of DNA/Ag nanoclusters enable multiple logic operations via multichannel fluorescence output, indicating the versatility as a molecular logic device. By altering the specific sequence of the hairpin DNA, more logic gates can be constructed utilizing Ag nanoclusters. © 2011 American Chemical Society

  9. Hydrophilic magnetic nanoclusters with thermo-responsive properties and their drug controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Meerod, Siraprapa [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Rutnakornpituk, Boonjira; Wichai, Uthai [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000 Thailand (Thailand); Rutnakornpituk, Metha, E-mail: methar@nu.ac.th [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000 Thailand (Thailand)

    2015-10-15

    Synthesis and drug controlled release properties of thermo-responsive magnetic nanoclusters grafted with poly(N-isopropylacrylamide) (poly(NIPAAm)) and poly(NIPAAm-co-poly(ethylene glycol) methyl ether methacrylate) (PEGMA) copolymers were described. These magnetic nanoclusters were synthesized via an in situ radical polymerization in the presence of acrylamide-grafted magnetic nanoparticles (MNPs). Poly(NIPAAm) provided thermo-responsive properties, while PEGMA played a role in good water dispersibility to the nanoclusters. The ratios of PEGMA to NIPAAm in the (co)polymerization in the presence of the MNPs were fine-tuned such that the nanoclusters with good water dispersibility, good magnetic sensitivity and thermo responsiveness were obtained. The size of the nanoclusters was in the range of 50–100 nm in diameter with about 100–200 particles/cluster. The nanoclusters were well dispersible in water at room temperature and can be suddenly agglomerated when temperature was increased beyond the lower critical solution temperature (LCST) (32 °C). The release behavior of an indomethacin model drug from the nanoclusters was also investigated. These novel magnetic nanoclusters with good dispersibility in water and reversible thermo-responsive properties might be good candidates for the targeting drug controlled release applications. - Highlights: • Nanoclusters with good water dispersibility and magnetic response were prepared. • They were grafted with thermo-responsive poly(NIPAAm) and/or poly(PEGMA). • Poly(NIPAAm) provided thermo-responsive properties to the nanoclusters. • Poly(PEGMA) provided good water dispersibilityto the nanoclusters. • Accelerated and controllable releases of a drug from the nanoclusters were shown.

  10. Signal integration by lipid-mediated spatial cross talk between Ras nanoclusters.

    Science.gov (United States)

    Zhou, Yong; Liang, Hong; Rodkey, Travis; Ariotti, Nicholas; Parton, Robert G; Hancock, John F

    2014-03-01

    Lipid-anchored Ras GTPases form transient, spatially segregated nanoclusters on the plasma membrane that are essential for high-fidelity signal transmission. The lipid composition of Ras nanoclusters, however, has not previously been investigated. High-resolution spatial mapping shows that different Ras nanoclusters have distinct lipid compositions, indicating that Ras proteins engage in isoform-selective lipid sorting and accounting for different signal outputs from different Ras isoforms. Phosphatidylserine is a common constituent of all Ras nanoclusters but is only an obligate structural component of K-Ras nanoclusters. Segregation of K-Ras and H-Ras into spatially and compositionally distinct lipid assemblies is exquisitely sensitive to plasma membrane phosphatidylserine levels. Phosphatidylserine spatial organization is also modified by Ras nanocluster formation. In consequence, Ras nanoclusters engage in remote lipid-mediated communication, whereby activated H-Ras disrupts the assembly and operation of spatially segregated K-Ras nanoclusters. Computational modeling and experimentation reveal that complex effects of caveolin and cortical actin on Ras nanoclustering are similarly mediated through regulation of phosphatidylserine spatiotemporal dynamics. We conclude that phosphatidylserine maintains the lateral segregation of diverse lipid-based assemblies on the plasma membrane and that lateral connectivity between spatially remote lipid assemblies offers important previously unexplored opportunities for signal integration and signal processing.

  11. Ge nanoclusters in PECVD-deposited glass after heat treating and electron irradiation

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rørdam, Troels Peter; Rottwitt, Karsten

    2007-01-01

    This paper reports the formation of Ge nanoclusters in silica glass thin films deposited by plasma-enhanced chemical vapor deposition (PECVD). We studied the samples by transmission electron microscopy (TEM) and Raman spectroscopy after annealing. TEM investigation shows that the Ge nanoclusters...... at two areaswere formed by different mechanisms. The Ge nanoclusters formed in a single row along the interface of a silicon substrate and the silica glass film by annealing during high-temperature heat treatment. Ge nanoclusters did not initially form in the bulk of the film but could be subsequently...

  12. Nano-clustered Pd catalysts formed on GaN surface for green chemistry

    Science.gov (United States)

    Hirayama, Motoi; Ueta, Yukiko; Konishi, Tomoya; Tsukamoto, Shiro

    2011-05-01

    We have succeeded in observing Pd nano-clusters, catalytic prime elements, on a GaN(0 0 0 1) surface by a scanning tunneling microscope for the first time. After the sample was reused, we found that nano-clusters (width: 11 nm, height: 2.2 nm) existed on the surface which still kept the catalytic activity, resulting that the neutral Pd atoms formed the nano-cluster. Moreover, the S-termination contributed to the formation of the dense and flat structure consisting of the Pd nano-clusters.

  13. On the possibility of controlling the hydrophilic/hydrophobic characteristics of toroid Mo138 nanocluster polyoxometalates

    Science.gov (United States)

    Grzhegorzhevskii, K. V.; Adamova, L. V.; Eremina, E. V.; Ostroushko, A. A.

    2017-03-01

    The possibility of changing the hydrophilic (polar) surfaces of toroid nanocluster polyoxomolibdates to hydrophobic (nonpolar) surfaces via the modification of Mo138 nanoclusters by surfactant molecules (dodecylpyridinium chloride) as a result of the interaction between these compounds in solutions is demonstrated. Benzene and methanol are used as molecular probes (indicators of the condition of nanocluster surfaces). Comparative characteristics of the equilibrium sorption of benzene and methanol vapors on the initial and modified surfaces of the solid polyoxometalate, and data on the sorption of organic molecules on the surfaces of Rhodamine B-modified nanoclusters of the toroid (Mo138) and keplerate (Mo132) types are obtained.

  14. Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets

    Science.gov (United States)

    Wang, Qiannan; Wang, Likai; Tang, Zhenghua; Wang, Fucai; Yan, Wei; Yang, Hongyu; Zhou, Weijia; Li, Ligui; Kang, Xiongwu; Chen, Shaowei

    2016-03-01

    Nanocomposites based on p-mercaptobenzoic acid-functionalized gold nanoclusters, Au102(p-MBA)44, and porous carbon nanosheets have been fabricated and employed as highly efficient electrocatalysts for oxygen reduction reaction (ORR). Au102(p-MBA)44 clusters were synthesized via a wet chemical approach, and loaded onto carbon nanosheets. Pyrolysis at elevated temperatures led to effective removal of the thiolate ligands and the formation of uniform nanoparticles supported on the carbon scaffolds. The nanocomposite structures were characterized by using a wide range of experimental techniques such as transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, UV-visible absorption spectroscopy, thermogravimetric analysis and BET nitrogen adsorption/desorption. Electrochemical studies showed that the composites demonstrated apparent ORR activity in alkaline media, and the sample with a 30% Au mass loading was identified as the best catalyst among the series, with a performance comparable to that of commercial Pt/C, but superior to those of Au102 nanoclusters and carbon nanosheets alone, within the context of onset potential, kinetic current density, and durability. The results suggest an effective approach to the preparation of high-performance ORR catalysts based on gold nanoclusters supported on carbon nanosheets.Nanocomposites based on p-mercaptobenzoic acid-functionalized gold nanoclusters, Au102(p-MBA)44, and porous carbon nanosheets have been fabricated and employed as highly efficient electrocatalysts for oxygen reduction reaction (ORR). Au102(p-MBA)44 clusters were synthesized via a wet chemical approach, and loaded onto carbon nanosheets. Pyrolysis at elevated temperatures led to effective removal of the thiolate ligands and the formation of uniform nanoparticles supported on the carbon scaffolds. The nanocomposite structures were characterized by using a wide range of experimental techniques such as

  15. Positional order in Langmuir monolayers

    DEFF Research Database (Denmark)

    Kaganer, V.M.; Brezesinski, G.; Möhwald, H.;

    1998-01-01

    We find that a structural solid-solid phase transition in a two-dimensional Langmuir film is accompanied by strong positional disorder. Specifically, we find by a grazing-incidence x-ray diffraction experiment that in monolayers of octadecanol both the hexagonal phase LS and the centered rectangu......We find that a structural solid-solid phase transition in a two-dimensional Langmuir film is accompanied by strong positional disorder. Specifically, we find by a grazing-incidence x-ray diffraction experiment that in monolayers of octadecanol both the hexagonal phase LS and the centered...

  16. Electromelting of Confined Monolayer Ice

    CERN Document Server

    Qiu, Hu

    2013-01-01

    In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to field-induced disruption of the water-wall interaction induced well-ordered network of hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.

  17. Protective

    Directory of Open Access Journals (Sweden)

    Wessam M. Abdel-Wahab

    2013-10-01

    Full Text Available Many active ingredients extracted from herbal and medicinal plants are extensively studied for their beneficial effects. Antioxidant activity and free radical scavenging properties of thymoquinone (TQ have been reported. The present study evaluated the possible protective effects of TQ against the toxicity and oxidative stress of sodium fluoride (NaF in the liver of rats. Rats were divided into four groups, the first group served as the control group and was administered distilled water whereas the NaF group received NaF orally at a dose of 10 mg/kg for 4 weeks, TQ group was administered TQ orally at a dose of 10 mg/kg for 5 weeks, and the NaF-TQ group was first given TQ for 1 week and was secondly administered 10 mg/kg/day NaF in association with 10 mg/kg TQ for 4 weeks. Rats intoxicated with NaF showed a significant increase in lipid peroxidation whereas the level of reduced glutathione (GSH and the activity of superoxide dismutase (SOD, catalase (CAT, glutathione S-transferase (GST and glutathione peroxidase (GPx were reduced in hepatic tissues. The proper functioning of the liver was also disrupted as indicated by alterations in the measured liver function indices and biochemical parameters. TQ supplementation counteracted the NaF-induced hepatotoxicity probably due to its strong antioxidant activity. In conclusion, the results obtained clearly indicated the role of oxidative stress in the induction of NaF toxicity and suggested hepatoprotective effects of TQ against the toxicity of fluoride compounds.

  18. Chemical, mechanical and antibacterial properties of silver nanocluster/silica composite coated textiles for safety systems and aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, S., E-mail: sara.ferraris@polito.it [Politecnico di Torino, Torino, C.so Duca degli Abruzzi 24, 10129 (Italy); Perero, S.; Miola, M.; Vernè, E. [Politecnico di Torino, Torino, C.so Duca degli Abruzzi 24, 10129 (Italy); Rosiello, A.; Ferrazzo, V.; Valletta, G. [Aero Sekur S.p.A., Aprilia, via delle Valli 46, 04011 (Italy); Sanchez, J.; Ohrlander, M. [Bactiguard AB, Biblioteksgatan 25, Box 5070, SE-10242, Stockholm (Sweden); Tjörnhammar, S.; Fokine, M.; Laurell, F. [KTH Royal Institute of Technology, Department of Applied Physics, Roslagstullsbacken 21, SE-106 91 Laserphysics, Stockholm (Sweden); Blomberg, E. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Drottning Kristinas väg 51, SE-100 44, Stockholm (Sweden); SP Technical Research Institute of Sweden, Chemistry, Materials and Surfaces, Box 5607, SE-114 86, Stockholm (Sweden); Skoglund, S.; Odnevall Wallinder, I. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Drottning Kristinas väg 51, SE-100 44, Stockholm (Sweden); Ferraris, M. [Politecnico di Torino, Torino, C.so Duca degli Abruzzi 24, 10129 (Italy)

    2014-10-30

    Highlights: • Silver nanoclusters-silica composite coatings were deposited on textiles. • Textiles for NBC protection suites and for aerospace applications were considered. • The coating process conferred all textiles a good antibacterial activity. • The coating does not alter the properties of bare textiles. - Abstract: This work describes the chemical, mechanical and antibacterial properties of a novel silver nanocluster/silica composite coating, obtained by sputtering, on textiles for use in nuclear bacteriological and chemical (NBC) protection suites and for aerospace applications. The properties of the coated textiles were analyzed in terms of surface morphology, silver concentration and silver release in artificial sweat and synthetic tap water, respectively. No release of silver nanoparticles was observed at given conditions. The water repellency, permeability, flammability and mechanical resistance of the textiles before and after sputtering demonstrated that the textile properties were not negatively affected by the coating. The antibacterial effect was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus and compared with the behavior of uncoated textiles. The coating process conferred all textiles a good antibacterial activity. Optimal deposition conditions were elaborated to obtain sufficient antibacterial action without altering the aesthetical appearance of the textiles. The antibacterial coating retained its antibacterial activity after one cycle in a washing machine only for the Nylon based textile.

  19. A study of many-body phenomena in metal nanoclusters (Au, Cu) close to their transition to the nonmetallic state

    NARCIS (Netherlands)

    Borman, VD; Borisyuk, PV; Lebid'ko, VV; Pushkin, AA; Tronin, VN; Troyan, [No Value; Antonov, DA; Filatov, DO

    2006-01-01

    The results of a study of many-body phenomena in gold and copper nanoclusters are presented. The measured conductivity as a function of nanocluster height h was found to have a minimum at h approximate to 0.6 nm. Conductivity was local in character at nanocluster sizes l infinity) to nonmetallic (ep

  20. Template free synthesis of natural carbohydrates functionalised fluorescent silver nanoclusters.

    Science.gov (United States)

    Ebrahiminezhad, Alireza; Berenjian, Aydin; Ghasemi, Younes

    2016-06-01

    Template-assisted synthesis is one of the most recognised techniques for fabrication of silver nanoclusters (AgNCs). However, this process is time consuming, toxic and expensive. In this study, the authors report a completely novel approach for the green and facile synthesis of AgNCs using Matricaria chamomilla, without any additional template. Fluorescent and colloidally stable AgNCs with average particle size of 2.4 nm were successfully produced. They found that carbohydrates from Matricaria chamomilla act as an ideal template to generate fluorescent AgNCs. Moreover, oxygen-bearing functional groups were validated to be the active groups for anchoring and reducing of Ag(+) ions. The novel carbohydrate coating method makes the prepared nanoclusters completely hydrophilic and stable in aqueous matrices.

  1. The expanding universe of thiolated gold nanoclusters and beyond.

    Science.gov (United States)

    Jiang, De-en

    2013-08-21

    Thiolated gold nanoclusters form a universe of their own. Researchers in this field are constantly pushing the boundary of this universe by identifying new compositions and in a few "lucky" cases, solving their structures. Such solved structures, even if there are only few, provide important hints for predicting the many identified compositions that are yet to be crystallized or structure determined. Structure prediction is the most pressing issue for a computational chemist in this field. The success of the density functional theory method in gauging the energetic ordering of isomers for thiolated gold clusters has been truly remarkable, but to predict the most stable structure for a given composition remains a great challenge. In this feature article from a computational chemist's point of view, the author shows how one understands and predicts structures for thiolated gold nanoclusters based on his old and new results. To further entertain the reader, the author also offers several "imaginative" structures, claims, and challenges for this field.

  2. Shape and scale dependent diffusivity of colloidal nanoclusters and aggregates

    Science.gov (United States)

    Alcanzare, M. M. T.; Ollila, S. T. T.; Thakore, V.; Laganapan, A. M.; Videcoq, A.; Cerbelaud, M.; Ferrando, R.; Ala-Nissila, T.

    2016-07-01

    The diffusion of colloidal nanoparticles and nanomolecular aggregates, which plays an important role in various biophysical and physicochemical phenomena, is currently under intense study. Here, we examine the shape and size dependent diffusion of colloidal nano- particles, fused nanoclusters and nanoaggregates using a hybrid fluctuating lattice Boltzmann-Molecular Dynamics method. We use physically realistic parameters characteristic of an aqueous solution, with explicitly implemented microscopic no-slip and full-slip boundary conditions. Results from nanocolloids below 10 nm in radii demonstrate how the volume fraction of the hydrodynamic boundary layer influences diffusivities. Full-slip colloids are found to diffuse faster than no-slip particles. We also characterize the shape dependent anisotropy of the diffusion coefficients of nanoclusters through the Green-Kubo relation. Finally, we study the size dependence of the diffusion of nanoaggregates comprising N ≤ 108 monomers and demonstrate that the diffusion coefficient approaches the continuum scaling limit of N-1/3.

  3. Optical properties of Si nanoclusters with passivated surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L.N. [Univ. of California, Davis, CA (United States). Dept. of Applied Science]|[Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.; Chase, L.L.; Balooch, M.; Siekhaus, W.J. [Lawrence Livermore National Lab., CA (United States). Chemistry and Material Science Dept.; Wooten, F. [Univ. of California, Davis, CA (United States). Dept. of Applied Science

    1996-12-31

    Si nanoclusters with average size of a few nanometers have been synthesized by thermal vaporization of Si in an Ar buffer gas, and passivated with oxygen or atomic hydrogen. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) revealed that these nanoclusters were crystalline. All samples showed strong infrared and/or visible photoluminescence (PL) with varying decay times form nanoseconds to microseconds depending on synthesis conditions. Absorption mainly in the Si cores was observed by photoluminescence excitation (PLE) spectroscopy. The visible components of PL spectra were noted to blue shift and broaden as the size of the Si nanocrystals (nc-Si) was reduced, and there were differences in PL spectra for hydrogen and oxygen passivated nc-Si. This data can be explained best by a model involving absorption between quantum confined states in the Si cores and emission by surface/interface states.

  4. Catalytically highly active top gold atom on palladium nanocluster.

    Science.gov (United States)

    Zhang, Haijun; Watanabe, Tatsuya; Okumura, Mitsutaka; Haruta, Masatake; Toshima, Naoki

    2011-10-23

    Catalysis using gold is emerging as an important field of research in connection with 'green' chemistry. Several hypotheses have been presented to explain the markedly high activities of Au catalysts. So far, the origin of the catalytic activities of supported Au catalysts can be assigned to the perimeter interfaces between Au nanoclusters and the support. However, the genesis of the catalytic activities of colloidal Au-based bimetallic nanoclusters is unclear. Moreover, it is still a challenge to synthesize Au-based colloidal catalysts with high activity. Here we now present the 'crown-jewel' concept (Supplementary Fig. S1) for preparation of catalytically highly Au-based colloidal catalysts. Au-Pd colloidal catalysts containing an abundance of top (vertex or corner) Au atoms were synthesized according to the strategy on a large scale. Our results indicate that the genesis of the high activity of the catalysts could be ascribed to the presence of negatively charged top Au atoms.

  5. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaodong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Long, Yunfei, E-mail: l_yunfei927@163.com [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Wang, Jianxiu, E-mail: jxiuwang@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ{sub em} {sub max} = 650 nm, λ{sub ex} {sub max} = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O{sub 2} to produce H{sub 2}O{sub 2}, which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10{sup −6}–140 × 10{sup −6} M and a detection limit of 0.7 × 10{sup −6} M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells.

  6. Novel synthesis of gold nanoclusters templated with L-tyrosine for selective analyzing tyrosinase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoming, E-mail: ming4444@swu.edu.cn; Luo, Yawen; Zhuo, Yan; Feng, Yuanjiao; Zhu, Shanshan

    2014-08-20

    Graphical abstract: One-pot and novel synthesized fluorescent gold nanoclusters templated with L-tyrosine (AuNCs@Tyr) were employed for investigating tyrosinase activity on the basis of aggregations of AuNCs@Tyr on its active sites during the catalysis reactions, thus leading to the fluorescence quenching of AuNCs@Tyr. - Highlights: • A novel, one-pot strategy for synthesizing fluorescent AuNCs@Tyr was proposed. • A selective and cost-effective assay for TR activity has been well established. • This AuNCs@Tyr here may broaden avenues for detecting TR in clinical applications. - Abstract: L-Tyrosine (Tyr), playing roles as both a reducing reagent and a protecting ligand, has been first employed for synthesizing fluorescent gold nanoclusters (AuNCs@Tyr) via a novel one-pot strategy. The as-prepared AuNCs@Tyr exhibited a fluorescence emission at 470 nm with a quantum yield of approximately 2.5%. Subsequently, the AuNCs@Tyr described here was applied for detections of tyrosinase (TR) activity, which was based on the mechanism of aggregations of AuNCs@Tyr occurring on the active sites of TR since TR was introduced, thus leading to the fluorescence quenching of AuNCs@Tyr. Accordingly, TR was analyzed in a linear range of 0.5–200 u mL{sup −1} with a detection limit of 0.08 u mL{sup −1} at a signal-to-noise ratio of 3. Significantly, TR has been considered as a critical marker for melanoma owing to its specifically expressing in melanoma cells. Therefore, this analytical method towards investigating TR activity may broaden avenues for meaningfully clinical applications.

  7. Optimal control of electromagnetic field using metallic nanoclusters

    Science.gov (United States)

    Grigorenko, Ilya; Haas, Stephan; Balatsky, Alexander; Levi, A. F. J.

    2008-04-01

    The dielectric properties of metallic nanoclusters in the presence of an applied electromagnetic field are investigated using the non-local linear response theory. In the quantum limit we find a nontrivial dependence of the induced field and charge distributions on the spatial separation between the clusters and on the frequency of the driving field. Using a genetic algorithm, these quantum functionalities are exploited to custom-design sub-wavelength lenses with a frequency-controlled switching capability.

  8. Mossbauer Characterization of Iron Oxide Nanoclusters Grown within Aluminosilicate Matrices

    Science.gov (United States)

    2003-01-01

    2Facultad de Ciencias Fisicas , Universidad Mayor de San Marcos, Lima, Peru. 3Centro Brasileiro de Pesquisas Fisicas , Rio de Janeiro, Brasil. ABSTRACT...nanoclusters. Zeolitic and sol-gel derived molecular sieves and a variety of cross-linked and block co-polymers have been used to this purpose [1-41. The...Brasileiro de Pesquisas Fisicas and the NSF: DMR 0074537 for support. Figures 1 and 2 ame reprinted with permission from reference [I]. Copyright 2001

  9. Preparation of nanocomposites containing nanoclusters of transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Milne, S.B.; Lukehart, C.M., Wittig, J.E. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1996-10-01

    New nanocomposites containing nanoclusters of transition metals have been prepared and characterized by TEM, XRD, and energy dispersive spectroscopy. Organometallic or other coordination compounds functionalized with trialkoxysilyl groups have been synthesized and covalently incorporated into silica xerogels using standard sol-gel techniques. Thermal oxidative treatment of these xerogels in air followed by reduction in hydrogen yielded the desired nanocomposite phases. Using these methods, Mo, Re, Fe, Ru, Os, Pd, Pt, Cu. and Ag nanocomposites have been prepared.

  10. DNase 1 Retains Endodeoxyribonuclease Activity Following Gold Nanocluster Synthesis

    Science.gov (United States)

    2014-07-04

    Gatan). Microscopy samples were prepared for analysis through the following steps: (i) bulk material was ground up using a mortar and pestle , (ii...employed as efficient and fast sensors to augment the current time-consuming DNA contamination analysis techniques. Noble metal nanoclusters (NCs...to metal nanoparticles (NPs), which do not exhibit fluorescence but show plasmonic transitions involving surface electrons. By definition , NCs are

  11. Theory of Nanocluster Size Distributions from Ion Beam Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C.W.; Yi, D.O.; Sharp, I.D.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-06-13

    Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady state shape for the cluster size distribution that depends only on a characteristic length determined by the ratio of the effective diffusion coefficient to the ion flux. The average cluster size in the steady state regime is determined by the implanted species/matrix interface energy.

  12. Live Cell Surface Labeling with Fluorescent Ag Nanocluster Conjugates†

    OpenAIRE

    Yu, Junhua; Choi, Sungmoon; Richards, Chris I.; Antoku, Yasuko; Dickson, Robert M

    2008-01-01

    DNA-encapsulated silver clusters are readily conjugated to proteins and serve as alternatives to organic dyes and semiconductor quantum dots. Stable and bright on the bulk and single molecule levels, Ag nanocluster fluorescence is readily observed when staining live cell surfaces. Being significantly brighter and more photostable than organics and much smaller than quantum dots with a single point of attachment, these nanomaterials offer promising new approaches for bulk and single molecule b...

  13. Hyperspherical and related views of the dynamics of nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, A; Palazzetti, F; Grossi, G; Aquilanti, V [Dipartimento di Chimica, Universita di Perugia, Via Elce di Sotto 8, 06123 Perugia (Italy); Castro Palacio, J C [Departamento de FI sica, Universidad de Pinar del Rio, MartI 270, Esq. 27 de Noviembre, Pinar del Rio (Cuba); Rubayo Soneira, J [Departamento de Fisica General y Matema ticas, Instituto Superior de Ciencias y Tecnologia Nucleares, Quinta de los Molinos, Avenne Carlos III y Luaces, Plaza C. Habana (Cuba)], E-mail: abulafia@dyn.unipg.it

    2009-10-15

    In this paper, we give an account of recent progress in understanding properties of nanoaggregates, following their dynamical behavior by classical mechanics simulations and utilizing tools based on extensions of hyperspherical and related techniques, originally developed for the quantum mechanical treatment of few-body atomic and molecular systems. After an outline of the underlying theory, recent applications exemplifying statistical and thermodynamic aspects of nanoclusters are discussed.

  14. UV luminescence of dendrimer-encapsulated gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyeong Seop; Kim, Jun Myung; Sohn, So Hyeong; Han, Noh Soo; Park, Seung Min [Dept. of Chemistry, Kyung Hee University, Seoul (Korea, Republic of)

    2016-10-15

    Size-dependent luminescence color is one of the interesting properties of metal nanocrystals, whose sizes are in the dimension of the Fermi wavelength of an electron. Despite the short Fermi wavelength of electrons in gold (-0.7 nm), luminescence of gold nanoclusters has been reported to range from the near-infrared to near-ultraviolet, depending on the number of atoms in the nanoclusters. The photoluminescence of G4-OH (Au) obtained by the excitation of 266 nm showed UV emission in addition to the well-known blue emission. The higher intensity and red-shifted emission of the gold nanoclusters was distinguished from the emission of dendrimers. The UV emission at 352 nm matched the emission energy of Au{sub 4} in the spherical jellium model, rather than the planar Au{sub 8}, which supported the emission of Au{sub 4} formed in G4-OH. Despite the change of [HAuCl{sub 4} ]/[G4-OH], the relative population between Au{sub 4} and Au{sub 8} was similar in G4-OH(Au), which indicated that the closed electronic and geometric structures stabilized the magic number of Au{sub 4}.

  15. Ab Initio Calculations for the Surface Energy of Silver Nanoclusters

    Science.gov (United States)

    Medasani, Bharat; Vasiliev, Igor; Park, Young Ho

    2007-03-01

    We apply first principles computational methods to study the surface energy and the surface stress of silver nanoparticles. The structures, energies and lattice contractions of spherical Ag nanoclusters are calculated in the framework of density functional theory combined with the generalized gradient approximation. Our calculations predict the surface energies of Ag nanoclusters to be in the range of 1-2 J/m^2. These values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m^2 derived from the Kelvin equation for free Ag nanoparticles. From the lattice contraction and the nearest neighbor interatomic distance, we estimate the surface stress of the silver nanoclusters to be in the the range of 1-1.45 N/m. This result suggests that a liquid droplet model can be employed to evaluate the surface energy and the surface stress of Ag nanoparticles. K. K. Nanda et al., Phys. Rev. Lett. 91, 106102 (2003).

  16. Polyethyleneimine Capped Silver Nanoclusters as Efficient Antibacterial Agents.

    Science.gov (United States)

    Xu, Dong; Wang, Qingyun; Yang, Tao; Cao, Jianzhong; Lin, Qinlu; Yuan, Zhiqin; Li, Le

    2016-03-18

    Development of efficient antibacterial agents is critical for human health. In the present study, we investigated the antibacterial activity of polyethyleneimine (PEI)-capped silver nanoclusters (PEI-AgNCs), based on the fact that nanoclusters normally have higher surface-to-volume ratios than traditional nanomaterials and PEI itself has a strong antimicrobial capacity. We synthesized stable silver nanoclusters by altering PEI molecular weight from 0.6 kDa to 25 kDa and characterized them by UV-Vis absorption and fluorescence spectroscopy and high resolution transmission electron microscopy. The sizes of AgNCs were around 2 nm in diameter and were little influenced by the molecular weight of PEIs. The antibacterial abilities of the four PEI-AgNCs were explored on agar plate and in liquid systems. Our results revealed that the antibacterial activity of PEI-AgNCs is excellent and the reduction of PEI molecular weight could result in the increased antibacterial capacity of PEI-AgNCs. Such proposed new materials might be useful as efficient antibacterial agents in practical clinical applications.

  17. Magnetic endohedral transition-metal-doped semiconducting-nanoclusters.

    Science.gov (United States)

    Matxain, Jon M; Formoso, Elena; Mercero, Jose M; Piris, Mario; Lopez, Xabier; Ugalde, Jesus M

    2008-01-01

    Endohedral first-row transition-metal-doped TM@Zn(i)S(i) nanoclusters, in which TM stands for the first-row transition-metals from Sc to Zn, and i=12, 16, have been characterized. In these structures the dopant metals are trapped inside spheroidal hollow semiconducting nanoclusters. It is observed that some of the transition metals are trapped in the center of mass of the cluster, whereas others are found to be displaced from that center, leading to structures in which the transition metals display a complex dynamical behavior upon encapsulation. This fact was confirmed by quantum molecular dynamics calculations, which further confirmed the thermal stability of endohedral compounds. In the endohedrally-doped nanoclusters in which the transition-metal atom sits on the center of mass, the host hollow cluster structure remains undistorted after dopant encapsulation. Conversely, if the encapsulated transition-metal atom is displaced from the center of mass, the host hollow cluster structure suffers a very tiny distortion. Additionally, it is found that there is negligible charge transfer between the dopant transition-metal atom and its hollow cluster host and, after encapsulation, the spin densities remain localized on the transition-metal atom. This allows for the atomic-like behavior of the trapped transition-metal atom, which gives rise to their atomic-like magnetic properties. The encapsulation free energies are negative, suggesting that these compounds are thermodynamically stable.

  18. Synthesis of bimetallic gold-silver alloy nanoclusters by simple mortar grinding.

    Science.gov (United States)

    Murugadoss, Arumugam; Kai, Noriko; Sakurai, Hidehiro

    2012-02-21

    A macroscale quantity of bimetallic Au-Ag alloy nanoclusters was achieved through sequential reduction by simple mortar grinding. The chitosan biopolymer was used as both a stabilizing and reducing agent. These nanoclusters exhibit excellent catalytic activity toward the reduction of 4-nitrophenol.

  19. Organic Inorganic Hybrid Solar Cell Efficiency Improvement By Employing Au Nanocluster

    Science.gov (United States)

    2015-06-14

    Specialists Conference Conference Date: June 14, 2015 Organic - Inorganic Hybrid Solar Cell Efficiency Improvement by Employing Au Nanocluster Manisha...tunable conductivity, organic polymer, heterojunction, nanocluster I. INTRODUCTION Recently, organic / inorganic hybrid heterojunction solar cells have...conventional Si p−n junction. These heterojunction devices are intended to exploit the advantageous properties of both organic and inorganic materials

  20. Controlling embedment and surface chemistry of nanoclusters in metal-organic frameworks.

    Science.gov (United States)

    Coupry, D E; Butson, J; Petkov, P S; Saunders, M; O'Donnell, K; Kim, H; Buckley, C; Addicoat, M; Heine, T; Szilágyi, P Á

    2016-04-14

    A combined theoretical and experimental approach demonstrates that nanocluster embedment into the pores of metal-organic frameworks (MOF) may be influenced by the chemical functionalisation of the MOF. Furthermore, this results in the surface functionalisation of the embedded nanoclusters, highlighting the potential of MOF scaffolds for the design and synthesis of novel functional materials.

  1. Beauty is Skin Deep: A Surface Monolayer Perspective on Nanoparticle Interactions with Cells and Biomacromolecules**

    OpenAIRE

    Saha, Krishnendu; Bajaj, Avinash; Duncan, Bradley; Rotello, Vincent M.

    2011-01-01

    Surface recognition of biosystems is a critical component in the development of novel biosensors, delivery vehicles and for the therapeutic regulation of biological processes. Monolayer-protected nanoparticles present a highly versatile scaffold for selective interaction with biomacromolecules and cells. Through engineering of the monolayer surface, nanoparticles can be tailored for surface recognition of biomolecules and cells. This review highlights recent progress in nanoparticle-biomacrom...

  2. Clustomesogens: Liquid Crystalline Hybrid Nanomaterials Containing Functional Metal Nanoclusters.

    Science.gov (United States)

    Molard, Yann

    2016-08-16

    Inorganic phosphorescent octahedral metal nanoclusters fill the gap between metal complexes and nanoparticles. They are finite groups of metal atoms linked by metal-metal bonds, with an exact composition and structure at the nanometer scale. As their phosphorescence internal quantum efficiency can approach 100%, they represent a very attractive class of molecular building blocks to design hybrid nanomaterials dedicated to light energy conversion, optoelectronic, display, lighting, or theragnostic applications. They are obtained as AnM6X(i)8X(a)6 ternary salt powders (A = alkali cation, M = Mo, Re, W, X(i): halogen inner ligand, X(a) = halogen apical ligand) by high temperature solid state synthesis (750-1200 °C). However, their ceramic-like behavior has largely restricted their use as functional components in the past. Since these last two decades, several groups, including ours, started to tackle the challenge of integrating them in easy-to-process materials. Within this context, we have extensively explored the nanocluster ternary salt specificities to develop a new class of self-organized hybrid organic-inorganic nanomaterials known as clustomesogens. These materials, combine the specific properties of nanoclusters (magnetic, electronic, luminescence) with the anisotropy-related properties of liquid crystals (LCs). This Account covers the research and development of clustomesogens starting from the design concepts and synthesis to their introduction in functional devices. We developed three strategies to build such hybrid super- or supramolecules. In the covalent approach, we capitalized on the apical ligand-metal bond iono-covalent character to graft tailor-made organic LC promoters on the {M6X(i)8}(n+) nanocluster cores. The supramolecular approach relies on the host-guest complexation of the ternary cluster salt alkali cations with functional crown ether macrocycles. We showed that the hybrid LC behavior depends on the macrocycles structural features

  3. One-step facile synthesis of Pd nanoclusters supported on carbon and their electrochemical property

    Directory of Open Access Journals (Sweden)

    Junjun Shi

    2014-12-01

    Full Text Available Well-crystallized Pd nanoclusters supported on Ketjen Black (KB were successfully fabricated when Pd wires were served as an electrode pair by a solution plasma technique at atmospheric pressure. The synthesis of Pd nanoclusters was almost simultaneous with their dispersion on KB. Pd nanoclusters with the average diameter of about 2 nm were equably distributed on KB, and showed good electrochemical property corresponding to their obvious characteristic peaks. Multi-scan cyclic voltammetry and chronoamperometry clarified that as-prepared Pd nanoclusters have better electrochemical stability in alkaline solution than that of in acidic solution. Thus as-obtained Pd nanoclusters would become a promising electrocatalyst for fuel cells or Li-air batteries.

  4. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications.

    Science.gov (United States)

    Luo, Zhentao; Zheng, Kaiyuan; Xie, Jianping

    2014-05-25

    Gold and silver nanoclusters or Au/Ag NCs with core sizes smaller than 2 nm have been an attractive frontier of nanoparticle research because of their unique physicochemical properties such as well-defined molecular structure, discrete electronic transitions, quantized charging, and strong luminescence. As a result of these unique properties, ultrasmall size, and good biocompatibility, Au/Ag NCs have great potential for a variety of biomedical applications, such as bioimaging, biosensing, antimicrobial agents, and cancer therapy. In this feature article, we will first discuss some critical biological considerations, such as biocompatibility and renal clearance, of Au/Ag NCs that are applied for biomedical applications, leading to some design criteria for functional Au/Ag NCs in the biological settings. According to these biological considerations, we will then survey some efficient synthetic strategies for the preparation of protein- and peptide-protected Au/Ag NCs with an emphasis on our recent contributions in this fast-growing field. In the last part, we will highlight some potential biomedical applications of these protein- and peptide-protected Au/Ag NCs. It is believed that with continued efforts to understand the interactions of biomolecule-protected Au/Ag NCs with the biological systems, scientists can largely realize the great potential of Au/Ag NCs for biomedical applications, which could finally pave their way towards clinical use.

  5. Modulation of energy/electron transfer in gold nanoclusters by single walled carbon nanotubes and further consequences

    Science.gov (United States)

    Das, Tarasankar; Maity, Arnab; Mondal, Somen; Purkayastha, Pradipta

    2015-04-01

    Semiconductor or metallic character in single-walled carbon nanotubes (SWCNTs) is developed because of their chirality and diameter. Depending upon the extent of these characters in a particular sample of SWCNT, various electronic and mechanical applications are formulated. In this work we used protein protected red emitting gold nanoclusters (AuNCs) to enhance the metallic character in SWCNTs through electron transfer induced by photonic excitation. The AuNCs have been synthesized following a known protocol that generates Au+ protected Au0 clusters. Normal and carboxylic acid functionalized SWCNTs were obtained commercially for usage in the experiments. The non-functionalized SWCNTs facilitate intersystem electron transfer while the functionalized ones defer the phenomenon, which, in turn, affects the metallic character in the nanotubes. Steady state and time resolved fluorescence spectroscopy prove the dynamics and electrochemistry supports the intersystem electron transfer process.

  6. Modulation of energy/electron transfer in gold nanoclusters by single walled carbon nanotubes and further consequences.

    Science.gov (United States)

    Das, Tarasankar; Maity, Arnab; Mondal, Somen; Purkayastha, Pradipta

    2015-04-15

    Semiconductor or metallic character in single-walled carbon nanotubes (SWCNTs) is developed because of their chirality and diameter. Depending upon the extent of these characters in a particular sample of SWCNT, various electronic and mechanical applications are formulated. In this work we used protein protected red emitting gold nanoclusters (AuNCs) to enhance the metallic character in SWCNTs through electron transfer induced by photonic excitation. The AuNCs have been synthesized following a known protocol that generates Au(+) protected Au(0) clusters. Normal and carboxylic acid functionalized SWCNTs were obtained commercially for usage in the experiments. The non-functionalized SWCNTs facilitate intersystem electron transfer while the functionalized ones defer the phenomenon, which, in turn, affects the metallic character in the nanotubes. Steady state and time resolved fluorescence spectroscopy prove the dynamics and electrochemistry supports the intersystem electron transfer process. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, L.; Mandal, A.R. [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India); Mandal, S.K., E-mail: sk_mandal@hotmail.co [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India)

    2010-04-15

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni{sup 2+} clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni{sup 2+} clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  8. Importance of configurational contributions to the free energy of nanoclusters

    Directory of Open Access Journals (Sweden)

    M. Posselt

    2013-07-01

    Full Text Available An effective simulation method based on the Wang-Landau Monte Carlo algorithm is used in order to demonstrate the significance of the configurational contributions to the free energy of embedded nanoclusters. Starting from the most stable cluster configuration the simulation provides all geometrically different, but simply connected and sufficiently compact configurations of a nanocluster of a given size and the respective formation energies. The knowledge of these data allows the calculation of the free formation and free binding energy of the cluster at T ≠ 0. The method is applied to coherent Cu clusters in bcc-Fe. It is shown that even at moderate temperatures the configurational contributions to the free formation and binding energy must not be neglected. The dependence of the monomer free binding energy on clusters size is found to change significantly with increasing temperature which has a considerable effect on the pathway of cluster evolution. Therefore, present investigations provide an essential contribution to the improvement of the input parameters for object kinetic Monte Carlo simulations and rate theory used in multi-scale simulations of the nanostructure evolution. The calculation scheme developed in this work is rather general and applicable to many types of embedded nanoclusters. Compared to the method of overlapping distributions hitherto used in some cases to determine the configurational part of the free energy the new method has major advantages. Various tests are performed in order verify the presented approach and to compare with the results of the other calculation procedure. A roadmap is proposed to include the vibrational contributions to the free energy of the clusters within the framework of the method employed in this work.

  9. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.

    2001-01-01

    DPPE monolayer and does not distort the hexagonal in-plane unit cell or out-of-plane two-dimensional (2-D) packing compared with a pure DPPE monolayer. The oligosaccharide headgroups were found to extend normally from the monolayer surface, and the incorporation of these glycolipids into DPPE...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...... polymer groups. Indeed, the lack of packing disruptions by the oligosaccharide groups indicates that protein-GM, interactions, including binding, insertion, chain fluidization, and domain formation (lipid rafts), can be studied in 2-D monolayers using scattering techniques....

  10. Modeling Stimuli-Responsive Nanoparticle Monolayer

    Science.gov (United States)

    Yong, Xin

    2015-03-01

    Using dissipative particle dynamics (DPD), we model a monolayer formed at the water-oil interface, which comprises stimuli-responsive nanoparticles. The solid core of the nanoparticle encompasses beads arranged in an fcc lattice structure and its surface is uniformly grafted with stimuli-responsive polymer chains. The surface-active nanoparticles adsorb to the interface from the suspension to minimize total energy of the system and create a monolayer covering the interface. We investigate the monolayer formation by characterizing the detailed adsorption kinetics. We explore the microstructure of the monolayer at different surface coverage, including the particle crowding and ordering, and elucidate the response of monolayer to external stimuli. The collective behavior of the particles within the monolayer is demonstrated quantitatively by vector-vector autocorrelation functions. This study provides a fundamental understanding of the interfacial behavior of stimuli-responsive nanoparticles.

  11. Organization of copper nanoclusters in Langmuir–Blodgett films

    Indian Academy of Sciences (India)

    G Hemakanthi; Aruna Dhathathreyan; T Ramasami

    2002-02-01

    Stable nanoclusters of Cu were synthesized using Langmuir–Blodgett films of octadecylsuccinic acid (ODSA) as template. The Langmuir–Blodgett films of ODSA formed from subphase containing copper ions were first subjected to sulphidation (S) using sodium sulphide and then hydrogenated (H) using hydrogen gas. Diffuse reflectance UV-visible spectroscopy (DIR-UV-vis), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) used to characterize these films indicated the formation of Cu(0) metallic clusters ranging in size from 3 ∼ 10 nm.

  12. Synthesis and characterization of human transferrin-stabilized gold nanoclusters

    Science.gov (United States)

    Le Guével, Xavier; Daum, Nicole; Schneider, Marc

    2011-07-01

    Human transferrin has been biolabelled with gold nanoclusters (Au NCs) using a simple, fast and non-toxic method. These nanocrystals (polyclonal antibody. Additionally, antibody-induced agglomeration demonstrates no alteration in the protein activity and the receptor target ability. MTT and Vialight® Plus tests show no cytotoxicity of these labelled proteins in cells (1 µg ml - 1-1 mg ml - 1). Cell line experiments (A549) indicate also an uptake of the iron loaded fluorescent proteins inside cells. These remarkable data highlight the potential of a new type of non-toxic fluorescent transferrin for imaging and targeting.

  13. Galacto-oligosaccharides Protect the Intestinal Barrier by Maintaining the Tight Junction Network and Modulating the Inflammatory Responses after a Challenge with the Mycotoxin Deoxynivalenol in Human Caco-2 Cell Monolayers and B6C3F1 Mice

    NARCIS (Netherlands)

    Akbari, Peyman; Braber, Saskia; Alizadeh, Arash; Verheijden, Kim; Schoterman, Margriet Hc; Kraneveld, Aletta D; Garssen, Johan; Fink-Gremmels, Johanna

    2015-01-01

    BACKGROUND: The integrity of the epithelial layer in the gastrointestinal tract protects organisms from exposure to luminal antigens, which are considered the primary cause of chronic intestinal inflammation and allergic responses. The common wheat-associated fungal toxin deoxynivalenol acts as a sp

  14. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides

    Science.gov (United States)

    Tao, Yu; Zhang, Yan; Ju, Enguo; Ren, Hui; Ren, Jinsong

    2015-07-01

    We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments.We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments. Electronic supplementary information (ESI

  15. Reversible modulation of gold nanoclusters photoluminescence based on electrochromic poly(methylene blue).

    Science.gov (United States)

    Zhang, Hui; Zhai, Yanling; Dong, Shaojun

    2014-11-01

    Reversible photoluminescence (PL) switches based on a complex of gold nanoclusters and electrochromic poly(methylene blue) (PMB) were realized. The gold nanoclusters PL of hybrid device can be modulated reversibly under electrochemical stimulation. Such an electrochromic device presents several advantages, such as large fluorescence contrast under reduction and oxidation potentials, good reversibility and excellent long-time stability. This simple protocol is anticipated to offer important hints for other nanoclusters and electrochromic materials in the field of photoelectric devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Protein mediated synthesis of fluorescent Au-nanoclusters for metal sensory coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Manja; Raff, Johannes [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Fluorescent Au-nanocluster were successfully synthesized and used for the selective detection of Cu{sup 2} {sup +}. The synthesized Au-BSA-nanoclusters remain functional also after immobilization and show high thermal stability. Additionally, the transfer of the protein mediated Au-nanocluster synthesis route to S-layer proteins was achieved. (The presented work is part of the project BIONEWS dealing with long-term stable cells for the set-up and regeneration of sensor and actor materials for strategic relevant metals, in particular rare earth elements).

  17. Size-dependent mobility of gold nano-clusters during growth on chemically modified graphene

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Gavin R., E-mail: gavin.bell@warwick.ac.uk; Dawson, Peter M.; Pandey, Priyanka A.; Wilson, Neil R. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Mulheran, Paul A. [Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose St., Glasgow G1 1XJ (United Kingdom)

    2014-01-01

    Gold nano-clusters were grown on chemically modified graphene by direct sputter deposition. Transmission electron microscopy of the nano-clusters on these electron-transparent substrates reveals an unusual bimodal island size distribution (ISD). A kinetic Monte Carlo model of growth incorporating a size-dependent cluster mobility rule uniquely reproduces the bimodal ISD, providing strong evidence for the mobility of large clusters during surface growth. The cluster mobility exponent of −5/3 is consistent with cluster motion via one-dimensional diffusion of gold atoms around the edges of the nano-clusters.

  18. Size-dependent mobility of gold nano-clusters during growth on chemically modified graphene

    Directory of Open Access Journals (Sweden)

    Gavin R. Bell

    2014-01-01

    Full Text Available Gold nano-clusters were grown on chemically modified graphene by direct sputter deposition. Transmission electron microscopy of the nano-clusters on these electron-transparent substrates reveals an unusual bimodal island size distribution (ISD. A kinetic Monte Carlo model of growth incorporating a size-dependent cluster mobility rule uniquely reproduces the bimodal ISD, providing strong evidence for the mobility of large clusters during surface growth. The cluster mobility exponent of −5/3 is consistent with cluster motion via one-dimensional diffusion of gold atoms around the edges of the nano-clusters.

  19. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application

    Science.gov (United States)

    Chen, Yongdong; Wang, Jin; Liu, Chao; Li, Zhimin; Li, Gao

    2016-05-01

    We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S(&z.dbd;O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process.We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent

  20. Fluorescence enhancement of DNA-silver nanoclusters from guanine proximity

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsin-chih [Los Alamos National Laboratory; Sharma, Jaswinder [Los Alamos National Laboratory; Yoo, Hyojong [Los Alamos National Laboratory; Martinez, Jennifer S [Los Alamos National Laboratory

    2010-01-01

    Oligonucleotide-templated, silver nanoclusters (DNA/Ag NCs) are a versatile set of fluorophores and have already been used for live cell imaging, detection of specific metal ions, and single-nucleotide variation identification. Compared to commonly used organic dyes, these fluorescent nanoclusters have much better photostability and are often a few times brighter. Owing to their small size, simple preparation, and biocompatibility (i.e. made of nontoxic metals), DNA/Ag NCs should find more applications in biological imaging and chemical detection in the years to come. While clearly promising as new fluorophores, DNA/Ag NCs possess a unique and poorly understood dynamic process not shared by organic dyes or photoluminescent nanocrystals - the conversion among different NC species due to silver oxidation/reduction or NC regrouping. While this environmental sensitivity can be viewed as a drawback, in the appropriate context, it can be used as a sensor or reporter. Often reversible, conversions among different NC species have been found to depend upon a number of factors, including time, temperature, oxygen and salt content. In this communication, we report significant fluorescence enhancement of DNA/Ag NCs via interactions with guanine-rich DNA sequences. Moreover, we demonstrated this property can be used for sensitive detection of specific target DNA from a human oncogene (i.e. Braf gene).

  1. PE-CVD fabrication of germanium nanoclusters for memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Duerkop, T. [Institut fuer Materialien und Bauelemente der Elektronik, Leibniz Universitaet Hannover, Appelstrasse 11a, 30167 Hannover (Germany)], E-mail: duerkop@mbe.uni-hannover.de; Bugiel, E. [Institut fuer Materialien und Bauelemente der Elektronik, Leibniz Universitaet Hannover, Appelstrasse 11a, 30167 Hannover (Germany); Costina, I. [IHP GmbH, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Ott, A.; Peibst, R.; Hofmann, K.R. [Institut fuer Materialien und Bauelemente der Elektronik, Leibniz Universitaet Hannover, Appelstrasse 11a, 30167 Hannover (Germany)

    2008-02-15

    We have investigated Ge nanoclusters (Ge-NC) embedded in silicon dioxide, whose fundamental properties promise improved characteristics in NC flash memory devices as compared to Si nanoclusters. We present a simple new method, based on plasma-enhanced CVD (PE-CVD) deposition of amorphous Ge (a-Ge) onto SiO{sub 2}, to create gate stacks with embedded Ge-NC at vertically well-controlled positions suitable for use in flash memory devices. This process minimizes the exposure of Ge to environmental influences by depositing a-Ge as well as a SiO{sub 2} cap layer in situ within the same deposition chamber. Subsequent high-temperature anneals compatible with the temperature budget of CMOS processing are used for the actual cluster formation. Variation of annealing temperature and duration of this step as well as the thickness of the initial Ge layer controls the average cluster radius and density, as determined by transmission electron microscopy (TEM). Measurements of electrical properties show the capability of samples with NC to store charge.

  2. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy

    Science.gov (United States)

    Wang, Jun-Ying; Chen, Jie; Yang, Jiang; Wang, Hao; Shen, Xiu; Sun, Yuan-Ming; Guo, Meili; Zhang, Xiao-Dong

    2016-01-01

    Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system. PMID:27555769

  3. Preparation and surface enhanced Raman scattering behavior of Ag-coated C{sub 60} nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Shi-Zhao; Yin, Die-er; Li, Xiangqing; Mu, Jin, E-mail: mujin@sit.edu.cn

    2013-12-01

    Ag-coated C{sub 60} nanoclusters were prepared and characterized with X-ray diffraction, transmission electron microscopy and nitrogen adsorption–desorption isotherm measurement. The Ag-coated C{sub 60} nanoclusters were assembled on the glass substrate to form a thin film using the layer-by-layer technique. Meanwhile, the surface enhanced Raman scattering (SERS) of musk xylene adsorbed on the film of Ag-coated C{sub 60} nanoclusters was explored. The results indicated that the film of Ag-coated C{sub 60} nanoclusters was a unique SERS-active substrate with a detection limit of 10{sup −9} mol L{sup −1} for musk xylene. Furthermore, the surface enhanced mechanisms were discussed preliminarily.

  4. Melting Properties of Medium-Sized Silicon Nanoclusters: A Molecular Dynamics Study

    Science.gov (United States)

    Li, Haipeng; Xu, Runfeng; Bi, Zetong; Shen, Xiaopeng; Han, Kui

    2017-07-01

    The structures and melting properties of the medium-sized silicon nanoclusters have been comparatively studied using the molecular dynamics method. Structural and thermodynamic parameters are used to characterize the melting properties of the clusters. The size dependence of the melting temperature of silicon nanoclusters is determined using the computation results. Different from the homogeneous melting of bulk silicon, melting of silicon nanoparticles proceeds over a finite temperature range due to surface effects, which shows the heterogeneous melting of nanoclusters. We found that the melting starts at the cluster surface and progressively shifts into the core region. This study provides a fundamental perspective on the melting behaviors of semiconductor silicon nanoclusters at the atomistic level.

  5. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2014-01-01

    . In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density...... functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free energy profile for electrochemical protonation of O and N2 species on cuboctahedral Mo13 nanoclusters. The calculations show that the molybdenum nanocluster will preferentially bind...... are -0.72 V or lower for all oxygen coverages studied, and it is thus possible to (re)activate (partially) oxidized nanoclusters for electrochemical ammonia production, e.g., using a dry proton conductor or an aqueous electrolyte. At lower oxygen coverages, nitrogen molecules can adsorb to the surface...

  6. Nanocluster metal films as thermoelectric material for radioisotope mini battery unit

    Science.gov (United States)

    Borisyuk, P. V.; Krasavin, A. V.; Tkalya, E. V.; Lebedinskii, Yu. Yu.; Vasiliev, O. S.; Yakovlev, V. P.; Kozlova, T. I.; Fetisov, V. V.

    2016-10-01

    The paper is devoted to studying the thermoelectric and structural properties of films based on metal nanoclusters (Au, Pd, Pt). The experimental results of the study of single nanoclusters' tunneling conductance obtained with scanning tunneling spectroscopy are presented. The obtained data allowed us to evaluate the thermoelectric power of thin film consisting of densely packed individual nanoclusters. It is shown that such thin films can operate as highly efficient thermoelectric materials. A scheme of miniature thermoelectric radioisotope power source based on the thorium-228 isotope is proposed. The efficiency of the radioisotope battery using thermoelectric converters based on nanocluster metal films is shown to reach values up to 1.3%. The estimated characteristics of the device are comparable with the parameters of up-to-date radioisotope batteries based on nickel-63.

  7. A colloidal assembly approach to synthesize magnetic porous composite nanoclusters for efficient protein adsorption

    Science.gov (United States)

    Yang, Qi; Lan, Fang; Yi, Qiangying; Wu, Yao; Gu, Zhongwei

    2015-10-01

    A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation.A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c5nr05800g

  8. The Influence of Ultrasound on Formation of Self-organized Uniform Nanoclusters

    Directory of Open Access Journals (Sweden)

    R.M. Peleshchak

    2016-06-01

    Full Text Available The non-linear diffusion-deformation theory of self-organization of nanoclusters of dot defects in semiconductor exposed to ultrasound treatment that considers the interaction of defects among themselves and with atoms of a matrix via the elastic field created by dot defects and an acoustic wave is developed. Within this theory the influence of ultrasound on the conditions of formation of spherical nanoclusters and their radius is investigated. The nanocluster size depending on average concentration of defects and amplitude of an acoustic wave is determined. It is established that ultrasonic treatment of the semiconductor in the process of formation of an ensemble of nanoclusters leads to reduction of dispersion of their sizes.

  9. Automated electrodeposition of bimetallic noble-metal nanoclusters via redox-replacement reactions for electrocatalysis

    CSIR Research Space (South Africa)

    Mkwizu, TS

    2009-01-01

    Full Text Available Nanoclusters of bimetallic composition involving platinum with gold or ruthenium were sequentially deposited via redoxreplacement of electrodeposited sacrificial Cu adlayers for controlling the deposition of the noble metals. These steps were...

  10. Probing the Absorption and Emission Transition Dipole Moment of DNA Stabilized Silver Nanoclusters

    DEFF Research Database (Denmark)

    Hooley, Emma Nicole; Carro Temboury, Miguel R.; Vosch, Tom André Jos

    2017-01-01

    Using single molecule polarization measurements, we investigate the excitation and emission polarization characteristics of DNA stabilized silver nanoclusters (C24-AgNCs). Although small changes in the polarization generally accompany changes to the emission spectrum, the emission and excitation ...

  11. Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser

    National Research Council Canada - National Science Library

    Kunwar, Puskal; Hassinen, Jukka; Bautista, Godofredo; Ras, Robin H A; Toivonen, Juha

    2016-01-01

    .... A cost-effective fabrication of photostable micron-sized fluorescent silver nanocluster barcode is demonstrated in silver-impregnated polymer films using a low-power continuous-wave laser diode...

  12. Lateral pressure profiles in lipid monolayers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2010-01-01

    We have used molecular dynamics simulations with coarse-grained and atomistic models to study the lateral pressure profiles in lipid monolayers. We first consider simple oil/air and oil/water interfaces, and then proceed to lipid monolayers at air/water and oil/water interfaces. The results are qual

  13. Developing a Millifluidic Platform for the Synthesis of Ultrasmall Nanoclusters: Ultrasmall Copper Nanoclusters as a Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Sanchita; Miller, Jeffrey T; Li, Yuehao; Nandakumar, Krishnaswamy; Kumar, Challa S.S.R.

    2012-02-02

    The future of lab-on-a-chip devices for the synthesis of nanomaterials hinges on the successful development of high-throughput methods with better control over their size. While significant effort in this direction mainly focuses on developing “difficult to fabricate” complex microfluidic reactors, scant attention has been paid to the “easy to fabricate” and simple millifluidic systems that could provide the required control as well as high throughput. By utilizing numerical simulation of fluids within the millifluidic space at different flow rates, the results presented here show velocity profiles and residence time distributions similar to the case of microfluidics. By significantly reducing the residence time and residence time distribution, a continuous flow synthesis of ultrasmall copper nanoclusters (UCNCs) with exceptional colloidal stability is achieved. In-situ synchrotron-radiation-based X-ray absorption spectroscopy (XAS) reveal that the as-prepared clusters are about 1 nm, which is further supported by transmission electron microscopy and UV–vis spectroscopy studies. The clusters reported here are the smallest ever produced using a lab-on-a-chip platform. When supported on silica, they are found to efficiently catalyze C–H oxidation reactions, hitherto unknown to be catalyzed by Cu. This work suggests that a millifluidic platform can be an inexpensive, versatile, easy-to-use, and powerful tool for nanoparticle synthesis in general, and more specifically for ultrasmall nanoclusters (UNCs).

  14. Near infrared Ag/Au alloy nanoclusters: tunable photoluminescence and cellular imaging.

    Science.gov (United States)

    Wang, Chuanxi; Xu, Lin; Xu, Xiaowei; Cheng, Hao; Sun, Hongchen; Lin, Quan; Zhang, Chi

    2014-02-15

    The fluorescent nanomaterials play an important role in cellular imaging. Although the synthesis of fluorescent metal nanoclusters (NCs) have been developing rapidly, there are many technical issues in preparing metal alloy NCs. Herein, we used a facile galvanic replacement reaction to prepare Ag/Au alloy NCs. The characterizations of UV, PL, HRTEM, EDX and XPS confirm one fact the Ag/Au alloy NCs are carried out. As-prepared Ag/Au alloy NCs display near-infrared (NIR) fluorescence centered at 716 nm and show tunable luminescence from visible red (614 nm) to NIR (716 nm) by controlling the experimental Ag/Au ratios. Moreover, as-prepared Ag/Au alloy NCs are protected by glutathione (GSH) whose some functional groups including thiol, carboxyl and amino groups make the as-prepared alloy NCs exhibit good dispersion in aqueous solution, high physiological stability and favorable biocompatibility. Together with NIR fluorescence, these advantages make alloy NCs be promising candidate in biological labeling.

  15. Storage of Gold Nanoclusters in Muscle Leads to their Biphasic in Vivo Clearance

    CERN Document Server

    Zhang, Xiao-Dong; Chen, Jie; Wang, Hao; Song, Sha Sha; Shen, Xiu; Long, Wei; Sun, Yuan-Ming; Fan, Saijun; Zheng, Kaiyuan; Leong, David Tai; Xie, Jianping

    2014-01-01

    Ultrasmall gold nanoclusters show great potential in biomedical applications. Long term biodistribution, retention, toxicity, and pharmacokinetics profiles are prerequisites in their potential clinical applications. Here we systematically investigated the biodistribution, clearance, and toxicity of one widely used Au NC species glutathione protected Au NCs or GSH Au NCs, over a relatively long period of 90 days in mice. We observed that most of the Au NCs were cleared at 30 days post injection with a major accumulation in liver and kidney. However, it is surprising that an abnormal increase of Au amount in the heart, liver, spleen, lung, and testis was observed at 60 and 90 days, indicating that the injected Au NCs formed a V shaped time dependent distribution profile in various organs. Further investigations revealed that Au NCs were steadily accumulating in the muscle in the first 30 days p.i., and the as stored Au NCs gradually released into blood in 30 to 90 days, which induced a redistribution and reaccu...

  16. Laser-assisted atom probe tomography investigation of magnetic FePt nanoclusters: First experiments

    Energy Technology Data Exchange (ETDEWEB)

    Folcke, E.; Larde, R. [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Le Breton, J.M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Gruber, M.; Vurpillot, F. [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Shield, J.E.; Rui, X. [Department of Mechanical and Materials Engineering, Nebraska Center for Materials and Nanoscience, University of Nebraska, N104 WSEC, Lincoln, NE 68588 (United States); Patterson, M.M. [Department of Physics, University of Wisconsin-Stout, Menomonie, WI 54751 (United States)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FePt nanoclusters dispersed in a Cr matrix were studied by atom probe tomography. Black-Right-Pointing-Pointer Simulated experiments were conducted to study the artefacts of the analysis. Black-Right-Pointing-Pointer In FePt nanoclusters, Fe and Pt are present in equiatomic proportions. Black-Right-Pointing-Pointer FePt nanoclusters are homogeneous, no core-shell structure is observed. - Abstract: FePt nanoclusters dispersed in a Cr matrix have been investigated by laser-assisted atom probe tomography. The results were analysed according to simulated evaporation experiments. Three-dimensional (3D) reconstructions reveal the presence of nanoclusters roughly spherical in shape, with a size in good agreement with previous transmission electron microscopy observations. Some clusters appear to be broken up after the evaporation process due to the fact that the Cr matrix has a lower evaporation field than Fe and Pt. It is thus shown that the observed FePt nanoclusters are chemically homogeneous. They contain Fe and Pt in equiatomic proportions, with no core-shell structure observed.

  17. Enhancement of the Hydrogen Evolution Reaction from Ni-MoS2 Hybrid Nanoclusters

    Science.gov (United States)

    2016-01-01

    This report focuses on a novel strategy for the preparation of transition metal–MoS2 hybrid nanoclusters based on a one-step, dual-target magnetron sputtering, and gas condensation process demonstrated for Ni-MoS2. Aberration-corrected STEM images coupled with EDX analysis confirms the presence of Ni and MoS2 in the hybrid nanoclusters (average diameter = 5.0 nm, Mo:S ratio = 1:1.8 ± 0.1). The Ni-MoS2 nanoclusters display a 100 mV shift in the hydrogen evolution reaction (HER) onset potential and an almost 3-fold increase in exchange current density compared with the undoped MoS2 nanoclusters, the latter effect in agreement with reported DFT calculations. This activity is only reached after air exposure of the Ni-MoS2 hybrid nanoclusters, suggested by XPS measurements to originate from a Ni dopant atoms oxidation state conversion from metallic to 2+ characteristic of the NiO species active to the HER. Anodic stripping voltammetry (ASV) experiments on the Ni-MoS2 hybrid nanoclusters confirm the presence of Ni-doped edge sites and reveal distinctive electrochemical features associated with both doped Mo-edge and doped S-edge sites which correlate with both their thermodynamic stability and relative abundance.

  18. Design of an ultrasmall Au nanocluster-CeO2 mesoporous nanocomposite catalyst for nitrobenzene reduction.

    Science.gov (United States)

    Chong, Hanbao; Li, Peng; Xiang, Ji; Fu, Fangyu; Zhang, Dandan; Ran, Xiaorong; Zhu, Manzhou

    2013-08-21

    In this work we are inspired to explore gold nanoclusters supported on mesoporous CeO2 nanospheres as nanocatalysts for the reduction of nitrobenzene. Ultrasmall Au nanoclusters (NCs) and mesoporous CeO2 nanospheres were readily synthesized and well characterized. Due to their ultrasmall size, the as-prepared Au clusters can be easily absorbed into the mesopores of the mesoporous CeO2 nanospheres. Owing to the unique mesoporous structure of the CeO2 support, Au nanoclusters in the Au@CeO2 may effectively prevent the aggregation which usually results in a rapid decay of the catalytic activity. It is notable that the ultrasmall gold nanoclusters possess uniform size distribution and good dispersibility on the mesoporous CeO2 supports. Compared to other catalyst systems with different oxide supports, the as-prepared Au nanocluster-CeO2 nanocomposite nanocatalysts showed efficient catalytic performance in transforming nitrobenzene into azoxybenzene. In addition, a plausible mechanism was deeply investigated to explain the transforming process. Au@CeO2 exhibited efficient catalytic activity for reduction of nitrobenzene. This strategy may be easily extended to fabricate many other heterogeneous catalysts including ultrasmall metal nanoclusters and mesoporous oxides.

  19. Coulomb excitations of monolayer germanene

    Science.gov (United States)

    Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa

    2017-01-01

    The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes. PMID:28091555

  20. Interaction of size-selected gold nanoclusters with dopamine

    Science.gov (United States)

    Montone, Georgia R.; Hermann, Eric; Kandalam, Anil K.

    2016-12-01

    We present density functional theory based results on the interaction of size-selected gold nanoclusters, Au10 and Au20, with dopamine molecule. The gold clusters interact strongly with the nitrogen site of dopamine, thereby forming stable gold-dopamine complexes. Our calculations further show that there is no site specificity on the planar Au10 cluster with all the edge gold atoms equally preferred. On the other hand, in the pyramidal Au20 cluster, the vertex metal atom is the most active site. As the size increased from Au10 to Au20, the interaction strength has shown a declining trend. The effect of aqueous environment on the interaction strengths were also studied by solvation model. It is found that the presence of solvent water stabilizes the interaction between the metal cluster and dopamine molecule, even though for Au10 cluster the energy ordering of the isomers changed from that of the gas-phase.

  1. Simultaneous expression and transportation of insulin by supramolecular polysaccharide nanocluster

    Science.gov (United States)

    Zhang, Yu-Hui; Zhang, Ying-Ming; Zhao, Qi-Hui; Liu, Yu

    2016-01-01

    Drug/gene transportation systems with stimuli-responsive release behaviors are becoming research hotspots in biochemical and biomedical fields. In this work, a glucose-responsive supramolecular nanocluster was successfully constructed by the intermolecular complexation of phenylboronic acid modified β-cyclodextrin with adamantane modified polyethylenimine, which could be used as a biocompatible carrier for insulin and pCMV3-C-GFPSpark-Ins DNA which could express insulin co-delivery. Benefiting from the response capability of phenylboronic acid moiety toward glucose, the encapsulated insulin could be specifically released and the corresponding targeted DNA could efficiently express insulin in HepG2 cell, accompanied by the high-level insulin release in vitro. Our results demonstrate that the simultaneous insulin drug delivery and insulin gene transfection in a controlled mode may have great potential in the clinical diabetes treatments. PMID:26948978

  2. Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters

    Science.gov (United States)

    Zhao, Jing-Ya; Cui, Ran; Zhang, Zhi-Ling; Zhang, Mingxi; Xie, Zhi-Xiong; Pang, Dai-Wen

    2014-10-01

    Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell morphology, cell apoptosis/necrosis, reactive oxygen species (ROS) level and mitochondrial membrane potential examinations were performed on different cell lines exposed to the nucleus-targeting Au25NCs. We found that the nucleus-targeting Au25NCs caused cell apoptosis in a dose-dependent manner. A possible mechanism for the cytotoxicity of the nucleus-targeting Au25NCs was proposed as follows: the nucleus-targeting Au25NCs induce the production of ROS, resulting in the oxidative degradation of mitochondrial components, in turn leading to apoptosis via a mitochondrial damage pathway. This work facilitates a better understanding of the toxicity of AuNCs, especially nucleus-targeting AuNCs.Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell

  3. Thumb Imprint Based Detection of Hyperbilirubinemia Using Luminescent Gold Nanoclusters

    Science.gov (United States)

    Basu, Srestha; Sahoo, Amaresh Kumar; Paul, Anumita; Chattopadhyay, Arun

    2016-12-01

    Early and easy detection of diseases, using point-of-care and inexpensive devices, not only provides option for early treatment but also reduces the risk of propagation. Herein we report the fabrication of a robust film based luminescence indicator of bilirubin, which can indicate hyperbilirubinemia through the thumb imprint of the patient. The UV-light induced luminescence intensity of the film, made out of chitosan stabilised gold (Au) nanoclusters, which was effectively quenched in the presence of Cu2+ ions, recovered in the presence of bilirubin from skin or blood serum. Moreover, the sensitivity of detection of bilirubin was tuneable with the amount of Cu2+ added, thereby facilitating the detection of the desired concentration range of bilirubin.

  4. Simultaneous expression and transportation of insulin by supramolecular polysaccharide nanocluster

    Science.gov (United States)

    Zhang, Yu-Hui; Zhang, Ying-Ming; Zhao, Qi-Hui; Liu, Yu

    2016-03-01

    Drug/gene transportation systems with stimuli-responsive release behaviors are becoming research hotspots in biochemical and biomedical fields. In this work, a glucose-responsive supramolecular nanocluster was successfully constructed by the intermolecular complexation of phenylboronic acid modified β-cyclodextrin with adamantane modified polyethylenimine, which could be used as a biocompatible carrier for insulin and pCMV3-C-GFPSpark-Ins DNA which could express insulin co-delivery. Benefiting from the response capability of phenylboronic acid moiety toward glucose, the encapsulated insulin could be specifically released and the corresponding targeted DNA could efficiently express insulin in HepG2 cell, accompanied by the high-level insulin release in vitro. Our results demonstrate that the simultaneous insulin drug delivery and insulin gene transfection in a controlled mode may have great potential in the clinical diabetes treatments.

  5. A comparison of interatomic potentials for modeling tungsten nanocluster structures

    Science.gov (United States)

    Hao, Jiannan; Shu, Xiaolin; Jin, Shuo; Zhang, Xuesong; Zhang, Ying; Lu, Guang-Hong

    2017-02-01

    Molecular dynamic simulation is utilized to study the nanocluster and the fuzz structure on the PFM surface of tungsten. The polyhedral and linear cluster structures based on the icosahedron, cuboctahedron and rhombic dodecahedron are built up. Three interatomic potentials are used in calculating the relationship between the cluster energy and the number of atoms. The results are compared with first-principles calculation to show each potential's best application scale. Furthermore, the transition between the icosahedral and the cuboctahedral clusters is observed in molecular dynamic simulation at different temperatures, which follows a critical curve for different numbers of atoms. The linear structures are proved to be stable at experimental temperatures by thermodynamics. The work presents a selection of interatomic potentials in simulating tungsten cluster systems and helps researchers understand the growth and evolution laws of clusters and the fuzz-like structure formation process in fusion devices.

  6. Efficient Radioisotope Energy Transfer by Gold Nanoclusters for Molecular Imaging.

    Science.gov (United States)

    Volotskova, Olga; Sun, Conroy; Stafford, Jason H; Koh, Ai Leen; Ma, Xiaowei; Cheng, Zhen; Cui, Bianxiao; Pratx, Guillem; Xing, Lei

    2015-08-26

    Beta-emitting isotopes Fluorine-18 and Yttrium-90 are tested for their potential to stimulate gold nanoclusters conjugated with blood serum proteins (AuNCs). AuNCs excited by either medical radioisotope are found to be highly effective ionizing radiation energy transfer mediators, suitable for in vivo optical imaging. AuNCs synthesized with protein templates convert beta-decaying radioisotope energy into tissue-penetrating optical signals between 620 and 800 nm. Optical signals are not detected from AuNCs incubated with Technetium-99m, a pure gamma emitter that is used as a control. Optical emission from AuNCs is not proportional to Cerenkov radiation, indicating that the energy transfer between the radionuclide and AuNC is only partially mediated by Cerenkov photons. A direct Coulombic interaction is proposed as a novel and significant mechanism of energy transfer between decaying radionuclides and AuNCs.

  7. Jump electroconductivity in the laser deposited nanoclustered structures

    Science.gov (United States)

    Antipov, A.; Shagurina, A.; Osipov, A.; Istratov, A.; Skryabin, I.; Arakelian, S.

    2017-01-01

    The quantum states verification in cluster semiconductor/metallic structures by jump/tunneling electroconductivity and possible mechanisms for their implementation are considered in experiment and theory. By our laser ablation technique we have nanostructurized the films for which the ability to control the change in their electrical properties does exist by variation of the topology for the system. The granular conductivity specificity has been under study. The current-voltage characteristics behavior has been measured for a nanocluster bimetallic film (Au+Ag), and the experiments for multilayer bimetal thin films of the different composition have been carried out. Two associated mechanisms for electroconductivity occur in the case, i.e. tunnel transition for electrons and electron activation in the frames of the shell model for a cluster system, in dependence on the nanostructure topology.

  8. Drug induced `softening' in phospholipid monolayers

    Science.gov (United States)

    Basak, Uttam Kumar; Datta, Alokmay; Bhattacharya, Dhananjay

    2015-06-01

    Compressibility measurements on Langmuir monolayers of the phospholipid Dimystoryl Phospatidylcholine (DMPC) in pristine form and in the presence of the Non-steroidal Anti-inflammatory Drug (NSAID) Piroxicam at 0.025 drug/lipid (D/L) molecular ratio at different temperatures, show that the monolayer exhibits large increase (and subsequent decrease) in compressibility due to the drug in the vicinity of the Liquid Expanded - Liquid Condensed (LE-LC) phase transition. Molecular dynamics simulations of the lipid monolayer in presence of drug molecules show a disordering of the tail tilt, which is consistent with the above result.

  9. Nanocluster model of intermetallic compounds with giant unit cells: beta, beta'-Mg(2)Al(3) polymorphs.

    Science.gov (United States)

    Blatov, Vladislav A; Ilyushin, Gregory D; Proserpio, Davide M

    2010-02-15

    A novel method for the computational description of intermetallics as an assembly of nanoclusters was improved and applied to extremely complicated crystal structures of beta, beta'-Mg(2)Al(3) polymorphs. Using the TOPOS program package that implements the method, we separated two types of two-shell primary nanoclusters A, A1, A2, and B consisting of 57-63 atoms that completely compose the structures of the polymorphs. The nanocluster model interprets structural disordering in beta-Mg(2)Al(3): the disordered atoms form the inner shell of the nanocluster A, while the outer shells of all nanoclusters are preserved. The self-assembly of the beta, beta'-Mg(2)Al(3) crystal structures was considered within the hierarchical scheme: 0D primary polyhedral clusters (coordination polyhedra) --> 0D two-shell primary nanoclusters A, A1, A2, or B --> 0D supracluster-precursor AB(2) --> 1D primary chain --> 2D microlayer --> 3D microframework. The self-assembly scheme proves the similarity of beta, beta'-Mg(2)Al(3) to other extremely complicated Samson's phases, NaCd(2) and ZrZn(22); the spatial arrangement of the centers of nanoclusters in these structures as well as the topology of the corresponding network conform to the Laves phase MgCu(2). Using the TOPOS procedure of searching for finite fragments in infinite nets we found that nanocluster B is a typical fragment of intermetallic compounds: it exists in intermetallics belonging to 42 Pearson classes. The nanocluster A was found only in two Pearson classes: cF464 and hP238, while the nanoclusters A1 and A2 occur in beta'-Mg(2)Al(3) only. Thus, the nanoclusters A, A1, and A2 can be considered as "determinants" of the corresponding structures.

  10. Electrical transport properties in Fe-Cr nanocluster-assembled granular films

    Science.gov (United States)

    Wang, Xiong-Zhi; Wang, Lai-Sen; Zhang, Qin-Fu; Liu, Xiang; Xie, Jia; Su, A.-Mei; Zheng, Hong-Fei; Peng, Dong-Liang

    2017-09-01

    The Fe100-xCrx nanocluster-assembled granular films with Cr atomic fraction (x) ranging from 0 to 100 were fabricated by using a plasma-gas-condensation cluster deposition system. The TEM characterization revealed that the uniform Fe clusters were coated with a Cr layer to form a Fe-Cr core-shell structure. Then, the as-prepared Fe100-xCrx nanoclusters were randomly assembled into a granular film in vacuum environments with increasing the deposition time. Because of the competition between interfacial resistance and shunting effect of Cr layer, the room temperature resistivity of the Fe100-xCrx nanocluster-assembled granular films first increased and then decreased with increasing the Cr atomic fraction (x), and revealed a maximum of 2 × 104 μΩ cm at x = 26 at.%. The temperature-dependent longitudinal resistivity (ρxx), magnetoresistance (MR) effect and anomalous Hall effect (AHE) of these Fe100-xCrx nanocluster-assembled granular films were also studied systematically. As the x increased from 0 to 100, the ρxx of all samples firstly decreased and then increased with increasing the measuring temperature. The dependence of ρxx on temperature could be well addressed by a mechanism incorporated for the fluctuation-induced-tunneling (FIT) conduction process and temperature-dependent scattering effect. It was found that the anomalous Hall effect (AHE) had no legible scaling relation in Fe100-xCrx nanocluster-assembled granular films. However, after deducting the contribution of tunneling effect, the scaling relation was unambiguous. Additionally, the Fe100-xCrx nanocluster-assembled granular films revealed a small negative magnetoresistance (MR), which decreased with the increase of x. The detailed physical mechanism of the electrical transport properties in these Fe100-xCrx nanocluster-assembled granular films was also studied.

  11. Analytical Separation of Ultrasmall Water-Soluble Gold Nanoclusters by HPLC and CE

    Institute of Scientific and Technical Information of China (English)

    Martin M.F.Choi; Man Chin Paau; Chung Keung Lo; Yan Zhang; Shaomin Shuang; Dan Xiao; Xiupei Yang

    2009-01-01

    @@ Gold nanoparticles (AuNPs),protected from metal-metal aggregation by self-assembled monolayers,constitute a rapidly emerging field of chemical research.Distinctive features of the current trend in the area of nanoresearch focus mainly on the synthesis of NPs of controlled size,shape,and surface chemistry.Unfortunately,most samples of AuNPs are a complex mixture of components made up of various Au cores and different numbers of protected ligands.A polydisperse NP sample only represents the summation or average properties of all individual NP.The complexity of synthetic AuNP samples can be so great that efficient analytical separation approaches have to be employed.

  12. Method to synthesize metal chalcogenide monolayer nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  13. Fracture Characteristics of Monolayer CVD-Graphene

    OpenAIRE

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-01-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. ...

  14. Green synthesis of peptide-templated gold nanoclusters as novel fluorescence probes for detecting protein kinase activity.

    Science.gov (United States)

    Song, Wei; Liang, Ru-Ping; Wang, Ying; Zhang, Li; Qiu, Jian-Ding

    2015-06-21

    A green method was employed for synthesizing peptide-templated nanoclusters without requiring strong reducing agents. Using synthetic peptide-gold nanoclusters as fluorescence probes, a novel assay for detecting protein kinase is developed based on phosphorylation against carboxypeptidase Y digestion.

  15. Synthesis of biocompatible AuAgS/Ag{sub 2}S nanoclusters and their applications in photocatalysis and mercury detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qian; Chen, Shenna; Zhang, Lingyang; Huang, Haowen, E-mail: hhwn09@163.com; Liu, Fengping [Hunan University of Science and Technology, Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial University Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering (China); Liu, Xuanyong, E-mail: xyliu@mail.sic.ac.cn [Chinese Academy of Sciences, State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics (China)

    2014-12-15

    In this paper, a facile approach for preparation of AuAgS/Ag{sub 2}S nanoclusters was developed. The unique AuAgS/Ag{sub 2}S nanoclusters capped with biomolecules exhibit interesting excellent optical and catalytic properties. The fluorescent AuAgS/Ag{sub 2}S nanoclusters show tunable luminescence depending on the nanocluster size. The apoptosis assay demonstrated that the AuAgS/Ag{sub 2}S nanoclusters showed low cytotoxicity and good biocompatibility. Therefore, the nanoclusters can be used not only as a probe for labeling cells but also for their photocatalytic activity for photodegradation of organic dye. Moreover, a highly selective and sensitive assay for detection of mercury including Hg{sup 2+} and undissociated mercury complexes was developed based on the quenching fluorescent AuAgS/Ag{sub 2}S nanoclusters, which provides a promising approach for determining various forms of Hg in the mercury-based compounds in environment. These unique nanoclusters may have potential applications in biological labeling, sensing mercury, and photodegradation of various organic pollutants in waste water.Graphical Abstract.

  16. Synthesis of biocompatible AuAgS/Ag2S nanoclusters and their applications in photocatalysis and mercury detection

    Science.gov (United States)

    Zhao, Qian; Chen, Shenna; Zhang, Lingyang; Huang, Haowen; Liu, Fengping; Liu, Xuanyong

    2014-12-01

    In this paper, a facile approach for preparation of AuAgS/Ag2S nanoclusters was developed. The unique AuAgS/Ag2S nanoclusters capped with biomolecules exhibit interesting excellent optical and catalytic properties. The fluorescent AuAgS/Ag2S nanoclusters show tunable luminescence depending on the nanocluster size. The apoptosis assay demonstrated that the AuAgS/Ag2S nanoclusters showed low cytotoxicity and good biocompatibility. Therefore, the nanoclusters can be used not only as a probe for labeling cells but also for their photocatalytic activity for photodegradation of organic dye. Moreover, a highly selective and sensitive assay for detection of mercury including Hg2+ and undissociated mercury complexes was developed based on the quenching fluorescent AuAgS/Ag2S nanoclusters, which provides a promising approach for determining various forms of Hg in the mercury-based compounds in environment. These unique nanoclusters may have potential applications in biological labeling, sensing mercury, and photodegradation of various organic pollutants in waste water.

  17. Three-dimensional macroporous carbon/hierarchical Co3O4 nanoclusters for nonenzymatic electrochemical glucose sensor

    Science.gov (United States)

    Wang, Li; Zhang, Yayun; Xie, Yingzhen; Yu, Jie; Yang, Han; Miao, Longfei; Song, Yonghai

    2017-04-01

    A novel supporting material named as three-dimensional kenaf stem-derived carbon (3D-KSCs) was used to load hierarchical Co3O4 nanoclusters for electrochemical sensing glucose. The 3D-KSCs/hierarchical Co3O4 nanoclusters were constructed by two steps. Los of acicular precursor nanoclusters firstly grew on the channels of 3D-KSCs densely by hydrothermal method and then the as-prepared 3D-KSCs/hierarchical Co3O4 nanoclusters was obtained by thermal pyrolysis of the 3D-KSCs/precursors nanocomposites at 400 °C. The 3D macroporous configuration of 3D-KSCs resulted in lots of hierarchical Co3O4 nanoclusters arrayed on the surface of 3D-KSCs owing to its large enough specific surface area, which effectively avoided their aggregations and improved the stability of nanocomposites. The obtained 3D-KSCs/hierarchical Co3O4 nanoclusters showed a large number of needle-shaped and layered Co3O4 nanoclusters uniformly grew on the macropore's walls of 3D-KSC. Due to its unique nanostructures, the 3D-KSCs/hierarchical Co3O4 nanoclusters integrated electrode showed superior performance for nonenzymatic electrochemical glucose sensing, showing wide linear range (0.088-7.0 mM) and low detection limit of 26 μM. It might be a new strategy to prepare nanostructures on 3D-KSC for future applications.

  18. Au Nanocluster assisted PCE improvement in PEDOT: PSS - Si Hybrid Devices

    Science.gov (United States)

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ayon, Arturo A.

    2015-03-01

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), a P-type organic polymer is frequently employed in the fabrication of heterojunction p-n solar cell devices due to its proper HOMO-LUMO band gap as well as its tunable conductivity. In this report we describe the incorporation of gold (Au) nanoclusters in the PEDOT:PSS blend and its influence on the power-conversion-efficiency (PCE) on planar silicon (Si) hybrid heterojunction solar cell devices. Specifically, the reference samples without the aforementioned nanoclusters, were measured to exhibit a 6.10% PCE, value that increased to 7.55% upon the addition of the Au nanoclusters. The observed increase in the PCE is attributed to the enhanced electrical conductivity of the PEDOT:PSS films due to the incorporation of the nanoclusters, which is directly reflected in their improved fill factor. It is further theorized that the presence of Au nanoclusters in the insulating PSS layer in the PEDOT:PSS blend have a positive influence in the charge collection effectiveness of the devices produced. Considering that the Au nanoparticles involved in this research exercise had an average size of only 4 nm, it is considered that plasmonic effects did not play a relevant role in the observed PCE improvement.

  19. Highly fluorescent gold nanoclusters based sensor for the detection of quercetin

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhanguang, E-mail: kqlu@stu.edu.cn; Qian Sihua [Shantou University, Department of Chemistry (China); Chen Junhui, E-mail: chenjupush@126.com [Peking University Shenzhen Hospital, Interventional Oncology and Minimally Invasive Therapies Department (China); Chen Xi [Guangdong Pharmaceutical University (China)

    2012-12-15

    In this contribution, novel luminescent gold nanoclusters were synthesized by utilizing bovine serum albumin as templates with a simple, rapid, and one-pot procedure. The as-prepared gold nanoclusters were highly dispersed in aqueous solution and emitted an intense red fluorescence under UV light (365 nm). They exhibited strong fluorescence and the maximum excitation and emission wavelengths were 480 and 613.5 nm. In addition, the bovine serum albumin-stabilized gold nanoclusters were successfully utilized as novel fluorescent probes for the detection of quercetin for the first time. It was found that the addition of quercetin induced the strong fluorescence intensity of the gold nanoclusters to decrease. The decrease in fluorescence intensity of the gold nanoclusters caused by quercetin allowed the sensitive detection of quercetin in the range of 8.9 Multiplication-Sign 10{sup -8}-1.8 Multiplication-Sign 10{sup -4} mol L{sup -1}. The detection limit for quercetin is 1.8 Multiplication-Sign 10{sup -8} mol L{sup -1} at a signal-to-noise ratio of 3. The present sensor for quercetin detection possessed a low detection limit and wide linear range. In addition, the real samples were analyzed with satisfactory results.

  20. Highly fluorescent gold nanoclusters based sensor for the detection of quercetin

    Science.gov (United States)

    Chen, Zhanguang; Qian, Sihua; Chen, Junhui; Chen, Xi

    2012-12-01

    In this contribution, novel luminescent gold nanoclusters were synthesized by utilizing bovine serum albumin as templates with a simple, rapid, and one-pot procedure. The as-prepared gold nanoclusters were highly dispersed in aqueous solution and emitted an intense red fluorescence under UV light (365 nm). They exhibited strong fluorescence and the maximum excitation and emission wavelengths were 480 and 613.5 nm. In addition, the bovine serum albumin-stabilized gold nanoclusters were successfully utilized as novel fluorescent probes for the detection of quercetin for the first time. It was found that the addition of quercetin induced the strong fluorescence intensity of the gold nanoclusters to decrease. The decrease in fluorescence intensity of the gold nanoclusters caused by quercetin allowed the sensitive detection of quercetin in the range of 8.9 × 10-8-1.8 × 10-4 mol L-1. The detection limit for quercetin is 1.8 × 10-8 mol L-1 at a signal-to-noise ratio of 3. The present sensor for quercetin detection possessed a low detection limit and wide linear range. In addition, the real samples were analyzed with satisfactory results.

  1. Pattern formation in fatty acid-nanoparticle and lipid-nanoparticle mixed monolayers at water surface

    Science.gov (United States)

    Choudhuri, M.; Datta, A.; Iyengar, A. N. Sekar; Janaki, M. S.

    2015-06-01

    Dodecanethiol-capped gold nanoparticles (AuNPs) are self-organized in two different amphiphilic monolayers one of which is a single-tailed fatty acid Stearic acid (StA) and the other a double-tailed lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). In the StA-AuNP film the AuNPs self-organize to form an interconnected network of nanoclusters on compression while in the DMPC-AuNP film the AuNPs aggregate to form random, isolated clusters in the film. The long time evolution of the films at constant surface pressure reveals ring structures in the former and diffusion limited aggregates in the latter that with time evolve into an irregular porous maze of AuNPs in the DMPC film. The difference in structure of the AuNP patterns in the two films can be attributed to a difference in the lipophilic interactions between the NPs and the amphiphilic molecules. The mean square intensity fluctuations f(ln) calculated along a typical line for the 2D structures in both the films at initial and final stages of long time evolution reflect the structural changes in the films over time.

  2. Nanocrystals and Nanoclusters as Cocatalysts for Photocatalytic Water Splitting

    KAUST Repository

    Sinatra, Lutfan

    2016-12-04

    studied for the photocatalytic H2 production in order to explore the synergistic effect of the plasmonic resonance from the Au nanoparticles and pn-junction between Cu2O and TiO2. Additionally, the plasmonic effect of the Au films was also studied and utilized in order to improve the PWS. Secondly, the nanoscaling of cocatalysts was studied in order to improve the efficiency thereof and to reduce the cost of the cocatalyst materials. Moreover, it is sought to explore the quantum size effect on the properties of the cocatalyst and their effect on the photocatalytic reaction. Atomically precise Au and Ni nanoclusters were employed in these studies. Au nanoclusters were studied in relation to the cocatalysts in the photocatalytic water splitting, and Ni nanoclusters were studied in relation to the cocatalysts in the electrocatalytic water oxidation. The results of these studies will provide new insights in relation to the strategy used in order to develop efficient cocatalysts for the purpose of photocatalytic water splitting.

  3. Formation of functionalized nanoclusters by solvent evaporation and their effect on the physicochemical properties of dental composite resins.

    Science.gov (United States)

    Rodríguez, Henry A; Giraldo, Luis F; Casanova, Herley

    2015-07-01

    The aim of this work was to study the effect of silica nanoclusters (SiNC), obtained by a solvent evaporation method and functionalized by 3-methacryloxypropyltrimethoxysilane (MPS) and MPS+octyltrimethoxysilane (OTMS) (50/50wt/wt), on the rheological, mechanical and sorption properties of urethane dimethylacrylate (UDMA)/triethylenglycol dimethacrylate (TEGDMA) (80/20wt/wt) resins blend. Silica nanoparticles (SiNP) were silanized with MPS or MPS+OTMS (50/50wt/wt) and incorporated in an UDMA-isopropanol mix to produce functionalized silica nanoclusters after evaporating the isopropanol. The effect of functionalized SiNC on resins rheological properties was determined by large and small deformation tests. Mechanical, thermal, sorption and solubility properties were evaluated for composite materials. The UDMA/TEGDMA (80/20wt/wt) resins blend with added SiNC (ca. 350nm) and functionalized with MPS showed a Newtonian flow behavior associated to their spheroidal shape, whereas the resins blend with nanoclusters silanized with MPS+OTMS (50/50wt/wt) (ca. 400nm) showed a shear-thinning behavior due to nanoclusters irregular shape. Composite materials prepared with bare silica nanoclusters showed lower compressive strength than functionalized silica nanoclusters. MPS functionalized nanoclusters showed better mechanical properties but higher water sorption than functionalized nanoclusters with both silane coupling agents, MPS and OTMS. The solvent evaporation method applied to functionalized nanoparticles showed to be an alternative way to the sinterization method for producing nanoclusters, which improved some dental composite mechanical properties and reduced water sorption. The shape of functionalized silica nanoclusters showed to have influence on the rheological properties of SiNC resin suspensions and the mechanical and sorption properties of light cured composites. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Charge Carrier Dynamics at Silver Nanocluster-Molecular Acceptor Interfaces

    KAUST Repository

    Almansaf, Abdulkhaleq

    2017-07-01

    A fundamental understanding of interfacial charge transfer at donor-acceptor interfaces is very crucial as it is considered among the most important dynamical processes for optimizing performance in many light harvesting systems, including photovoltaics and photo-catalysis. In general, the photo-generated singlet excitons in photoactive materials exhibit very short lifetimes because of their dipole-allowed spin radiative decay and short diffusion lengths. In contrast, the radiative decay of triplet excitons is dipole forbidden; therefore, their lifetimes are considerably longer. The discussion in this thesis primarily focuses on the relevant parameters that are involved in charge separation (CS), charge transfer (CT), intersystem crossing (ISC) rate, triplet state lifetime, and carrier recombination (CR) at silver nanocluster (NCs) molecular-acceptors interfaces. A combination of steady-state and femto- and nanosecond broadband transient absorption spectroscopies were used to investigate the charge carrier dynamics in various donor-acceptor systems. Additionally, this thesis was prolonged to investigate some important factors that influence the charge carrier dynamics in Ag29 silver NCs donor-acceptor systems, such as the metal doping and chemical structure of the nanocluster and molecular acceptors. Interestingly, clear correlations between the steady-state measurements and timeresolved spectroscopy results are found. In the first study, we have investigated the interfacial charge transfer dynamics in positively charged meso units of 5, 10, 15, 20-tetra (1- methyl-4-pyridino)-porphyrin tetra (p-toluene sulfonate) (TMPyP) and neutral charged 5, 10, 15, 20-tetra (4-pyridyl)-porphyrin (TPyP), with negatively charged undoped and gold (Au)- doped silver Ag29 NCs. Moreover, this study showed the impact of Au doping on the charge carrier dynamics of the system. In the second study, we have investigated the interfacial charge transfer dynamics in [Pt2 Ag23 Cl7 (PPh3

  5. Assembly of organic monolayers on polydicyclopentadiene.

    Science.gov (United States)

    Perring, Mathew; Bowden, Ned B

    2008-09-16

    The first well-defined organic monolayers assembled on polydicyclopentadiene is reported. Commercial grade dicyclopentadiene was polymerized with the Grubbs' second-generation catalyst in a fume hood under ambient conditions at very low monomer to catalyst loadings of 20 000 to 1. This simple method resulted in a polymer that was a hard solid and appeared slightly yellow. Brief exposures of a few seconds of this polymer to Br 2 lead to a surface with approximately half of the olefins brominated as shown by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection-infrared (ATR-IR) spectroscopy. The ATR-IR spectroscopy was carried out with the polymer in contact with a Ge hemisphere housed in a GATR accessory from Harrick. This brominated polydicyclopentadiene was immersed in DMF with 4-(trifluoromethyl)benzylamine to assemble a monolayer. The amines displaced Br on the surface to form a monolayer that exposed a CF 3 group on the surface. The surface was extensively studied by XPS using the method described by Tougaard to find the distribution of F within the surface layer. The ratio for the peak area, Ap, to the background height, B, measured 30 eV below the peak maximum was 109.8 eV. This value clearly indicated that F was found only at the surface and was not found within the polymer. A surface coverage of 1.37 amines per nm (2) was estimated and indicated that the monolayer was 28% as dense as a similar monolayer assembled from thiols on gold. Finally, a simple method to pattern these monolayers using soft lithography is described. This work is critically important because it reports the first monolayers on a relatively new and emerging polymer that has many desirable physical characteristics such as high hardness, chemical stability, and ease of forming different shapes.

  6. Mo polyoxometalate nanoclusters capable of inhibiting the aggregation of Aβ-peptide associated with Alzheimer's disease

    Science.gov (United States)

    Chen, Qingchang; Yang, Licong; Zheng, Chuping; Zheng, Wenjing; Zhang, Jingnan; Zhou, Yunshan; Liu, Jie

    2014-05-01

    A neuropathological hallmark of Alzheimer's disease (AD) is aggregation of a forty-residue peptide known as amyloid beta forty (Aβ40). While past work has indicated that blocking Aβ40 aggregation could be an effective strategy for the treatment of AD, developing therapies with this goal has been met with limited success. Polyoxometalates (POMs) have been previously investigated for their anti-viral and anti-tumoral properties and we report here that three representative POM nanoclusters have been synthesized for use against Aβ40 aggregation. Through the use of thioflavin T fluorescence, turbidity, circular dichroism spectroscopy, and transmission electron microscopy (TEM), we found that all three POM complexes can significantly inhibit both natural Aβ40 self-aggregation and metal-ion induced Aβ40 aggregation. We also evaluated the protective effect of POM complexes on Aβ40-induced neurotoxicity in cultured PC12 cells and found that treatment with POM complexes can elevate cell viability, decrease levels of intracellular reactive oxygen species, and stabilize mitochondrial membrane potential. These findings indicate that all three representative POM complexes are capable of inhibiting Aβ40 aggregation and subsequent neurotoxicity. While a complete mechanistic understanding remains to be elucidated, the synthesized POM complexes may work through a synergistic interaction with metal ions and Aβ40. These data indicate that POM complexes have high therapeutic potential for use against one of the primary neuropathological features of AD.A neuropathological hallmark of Alzheimer's disease (AD) is aggregation of a forty-residue peptide known as amyloid beta forty (Aβ40). While past work has indicated that blocking Aβ40 aggregation could be an effective strategy for the treatment of AD, developing therapies with this goal has been met with limited success. Polyoxometalates (POMs) have been previously investigated for their anti-viral and anti-tumoral properties

  7. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry.

    Science.gov (United States)

    Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide

    2016-05-24

    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems.

  8. XAFS studies of monodisperse Au nanoclusters formation in the etching process

    Science.gov (United States)

    Yang, Lina; Huang, Ting; Liu, Wei; Bao, Jie; Huang, Yuanyuan; Cao, Yuanjie; Yao, Tao; Sun, Zhihu; Wei, Shiqiang

    2016-05-01

    Understanding the formation mechanism of gold nanoclusters is essential to the development of their synthetic chemistry. Here, by using x-ray absorption fine-structure (XAFS) spectroscopy, UV-Vis and MS spectra, the formation process of monodisperse Au13 nanoclusters is investigated. We find that a critical step involving the formation of smaller Au8-Au11 metastable intermediate clusters induced by the HCl + HSR etching of the polydisperse Aun precursor clusters occurs firstly. Then these intermediate species undergo a size-growth to Au13 cores, followed by a slow structure rearrangement to reach the final stable structure. This work enriches the understanding of cluster formation chemistry and may guide the way towards the design and the controllable synthesis of nanoclusters.

  9. Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing

    Science.gov (United States)

    Zhang, Yu; Wen, Fangfang; Zhen, Yu-Rong; Nordlander, Peter; Halas, Naomi J.

    2013-01-01

    Plasmonic nanoclusters, an ordered assembly of coupled metallic nanoparticles, support unique spectral features known as Fano resonances due to the coupling between their subradiant and superradiant plasmon modes. Within the Fano resonance, absorption is significantly enhanced, giving rise to highly localized, intense near fields with the potential to enhance nonlinear optical processes. Here, we report a structure supporting the coherent oscillation of two distinct Fano resonances within an individual plasmonic nanocluster. We show how this coherence enhances the optical four-wave mixing process in comparison with other double-resonant plasmonic clusters that lack this property. A model that explains the observed four-wave mixing features is proposed, which is generally applicable to any third-order process in plasmonic nanostructures. With a larger effective susceptibility χ(3) relative to existing nonlinear optical materials, this coherent double-resonant nanocluster offers a strategy for designing high-performance third-order nonlinear optical media. PMID:23690571

  10. Analysis of the applicability of Ni, Cu, Au, Pt, and Pd nanoclusters for data recording

    Science.gov (United States)

    Redel', L. V.; Gafner, S. L.; Gafner, Yu. Ya.; Zamulin, I. S.; Goloven'ko, Zh. V.

    2017-02-01

    The applicability of individual Ni, Cu, Au, Pt, and Pd nanoclusters as data bits in next generation memory devices constructed on the phase-change carrier principle is studied. To this end, based on the modified tight-binding potential (TB-SMA), structure formation from the melt of nanoparticles of these metals to 10 nm in diameter was simulated by the molecular dynamics method. The effect of various crystallization conditions on the formation of the internal structures of Ni, Cu, Au, Pt, and Pd nanoclusters is studied. The stability boundaries of various crystalline isomers are analyzed. The obtained systematic features are compared for nanoparticles of copper, nickel, gold, platinum, and palladium of identical sizes. It is concluded that platinum nanoclusters of diameter D > 8 nm are the best materials among studied metals for producing memory elements based on phase transitions.

  11. CeO2-supported Au38(SR)24 nanocluster catalysts for CO oxidation: a comparison of ligand-on and -off catalysts

    Science.gov (United States)

    Nie, Xiaotao; Zeng, Chenjie; Ma, Xiangang; Qian, Huifeng; Ge, Qingjie; Xu, Hengyong; Jin, Rongchao

    2013-06-01

    The catalytic properties of atomically precise, thiolate-protected Au38(SR)24 (R = CH2CH2Ph) nanoclusters supported on CeO2 were investigated for CO oxidation in a fixed bed quartz reactor. Oxygen (O2) thermal pretreatment of Au38(SR)24/CeO2 at a temperature between 100 and 175 °C largely enhanced the catalytic activity, while pretreatment at higher temperatures (>200 °C) for removing thiolate instead gave rise to a somewhat lower activity than that for 175 °C pretreatment, and the ligand-off clusters were also found to be less stable. The CO conversion in the case of wet feed-gas (i.e. the presence of H2O vapor) was appreciably higher than the case of dry feed-gas when the reaction temperature was kept relatively low (between 60 and 80 °C), and interestingly the ligand-on and ligand-off catalysts exhibited opposite response to water vapor. Finally, we discussed some insights into the catalytic reaction involving the well-defined gold nanocluster catalyst.

  12. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation.

    Science.gov (United States)

    Xu, Jiaona; Wei, Chunying

    2017-01-15

    Two general and reliable fluorescence sensors were proposed in this work utilizing aptamer DNA-templated silver nanoclusters (Ag NCs). Both DNA-AgNCs could be used for label-free detecting of ATP with the limits of detection of 0.44 and 0.65mM. One of them was further applied to monitor the activity of adenosine deaminase (ADA). In our effort to elucidate the light-up mechanism, we studied a total of six Ag NCs prepared by different DNA sequences, and found that they showed different sensitivity to ATP. Both BT3T3- and BT3T3(R)-templated Ag NCs were chose to make particular studies by UV-vis, TEM, fluorescence, and TCSPC methods. The results showed that when DNA-Ag NCs was kept for 1.5h and presented a strong fluorescence, the addition of ATP failed to cause a large change of fluorescence intensity; on the contrary, after Ag NCs was kept for 24h and emitted a weak fluorescence, adding ATP was able to result in the large fluorescence enhanced of 43 and 33 times for BT3T3- and BT3T3(R)-templated Ag NCs, respectively. The possible mechanism was also suggested that ATP binding to aptamer segment of template induced the change of the DNA secondary structure, which made the aggregated Ag nanoparticles disperse into Ag NCs with an average diameter of about 2nm that were responsible for the large fluorescence increase. Moreover, ATP could protect the fluorescence intensity of BT3T3(R)-templated Ag NCs from quenching for at least 9h.

  13. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    Science.gov (United States)

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  14. Magnetism of FePt Nanoclusters in Polyimide

    Directory of Open Access Journals (Sweden)

    Mircea Chipara

    2015-01-01

    Full Text Available FePt nanoclusters have been implanted onto polyimide films and subjected to thermal annealing in order to obtain a special magnetic phase (L10 dispersed within the polymer. SQUID measurements quantified the magnetic features of the as-prepared and annealed hybrid films. As-implanted FePt nanoparticles in polyimide films exhibited a blocking temperature of 70 ± 5 K. Thermal annealing in zero and 10 kOe applied magnetic field increased the magnetic anisotropy and coercivity of the samples. Wide Angle X-Ray Scattering confirmed the presence of FePt and L10 phase. All samples (as deposited and annealed exhibited electron spin resonance spectra consisting of two overlapping lines. The broad line was a ferromagnetic resonance originating from FePt nanoparticles. Its angular dependence indicated the magnetic anisotropy of FePt nanoparticles. SEM micrographs suggest a negligible coalescence of FePt nanoparticles, supporting that the enhancement of the magnetic properties is a consequence of the improvement of the L10 structure. The narrow ESR line was assigned to nonmagnetic (paramagnetic impurities within the samples consistent with graphite-like structures generated by the local degradation of the polymer during implantation and annealing. Raman spectroscopy confirmed the formation of graphitic structures in annealed KHN and in KHN-FePt.

  15. Photoluminescent gold nanoclusters as sensing probes for uropathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Po-Han Chan

    Full Text Available Glycan-bound nanoprobes have been demonstrated as suitable sensing probes for bacteria containing glycan binding sites. In this study, we demonstrated a facile approach for generating glycan-bound gold nanoclusters (AuNCs. The generated AuNCs were used as sensing probes for corresponding target bacteria. Mannose-capped AuNCs (AuNCs@Mann were generated and used as the model sensors for target bacteria. A one-step synthesis approach was employed to generate AuNCs@Mann. In this approach, an aqueous solution of tetrachloroauric acid and mannoside that functionized with a thiol group (Mann-SH was stirred at room temperature for 48 h. The mannoside functions as reducing and capping agent. The size of the generated AuNCs@Mann is 1.95±0.27 nm, whereas the AuNCs with red photoluminescence have a maximum emission wavelength of ~630 nm (λexcitation = 375 nm. The synthesis of the AuNCs@Mann was accelerated by microwave heating, which enabled the synthesis of the AuNCs@Mann to complete within 1 h. The generated AuNCs@Mann are capable of selectively binding to the urinary tract infection isolate Escherichia coli J96 containing the mannose binding protein FimH expressed on the type 1 pili. On the basis of the naked eye observation, the limit of detection of the sensing approach is as low as ~2×10(6 cells/mL.

  16. Photoluminescent gold nanoclusters as sensing probes for uropathogenic Escherichia coli.

    Science.gov (United States)

    Chan, Po-Han; Ghosh, Bhaswati; Lai, Hong-Zheng; Peng, Hwei-Ling; Mong, Kwok Kong Tony; Chen, Yu-Chie

    2013-01-01

    Glycan-bound nanoprobes have been demonstrated as suitable sensing probes for bacteria containing glycan binding sites. In this study, we demonstrated a facile approach for generating glycan-bound gold nanoclusters (AuNCs). The generated AuNCs were used as sensing probes for corresponding target bacteria. Mannose-capped AuNCs (AuNCs@Mann) were generated and used as the model sensors for target bacteria. A one-step synthesis approach was employed to generate AuNCs@Mann. In this approach, an aqueous solution of tetrachloroauric acid and mannoside that functionized with a thiol group (Mann-SH) was stirred at room temperature for 48 h. The mannoside functions as reducing and capping agent. The size of the generated AuNCs@Mann is 1.95±0.27 nm, whereas the AuNCs with red photoluminescence have a maximum emission wavelength of ~630 nm (λexcitation = 375 nm). The synthesis of the AuNCs@Mann was accelerated by microwave heating, which enabled the synthesis of the AuNCs@Mann to complete within 1 h. The generated AuNCs@Mann are capable of selectively binding to the urinary tract infection isolate Escherichia coli J96 containing the mannose binding protein FimH expressed on the type 1 pili. On the basis of the naked eye observation, the limit of detection of the sensing approach is as low as ~2×10(6) cells/mL.

  17. Silver Nanoclusters: From Design Principles to Practical Applications

    KAUST Repository

    Abdulhalim, Lina G.

    2015-12-08

    A strategy based on reticulating metal ions and organic ligands into atomically precise gold and silver nanoclusters (NCs) with high monodispersity has been advanced to a point that allows the design of NCs with strict stoichiometries, functionalities and valence. Of the Ag NCs discovered, Ag44 is the most studied, not only due to its high absorption that transcends the visible spectrum suitable for photovoltaics but also because of its long excited state lifetime, as revealed by nanosecond transient absorption spectroscopy. A major principle discovered in this dissertation is the ability to produce Ag44 in scalable amounts and with high stability in addition to modulation of the functional groups of the organic ligands via a fast and complete ligand exchange process. This new discovery has led to the development of synthetic designs in which new sizes were obtained by varying the reaction parameters (e.g., ligands functionality, reaction temperature and time), namely, Ag29 using dithiols and phosphines. The synthesized NCs possess tetravalent functionalities that facilitate their crystallization and characterization. Furthermore, Ag29 glows red and is therefore a possible candidate for sensing and imaging applications.

  18. Rigid rod spaced fullerene as building block for nanoclusters

    Indian Academy of Sciences (India)

    Pallikara K Sudeep; James P Varkey; K George Thomas; Manappurathu V George; Prashant V Kamat

    2003-10-01

    By using phenylacetylene based rigid-rod linkers (PhA), we have successfully synthesized two fullerene derivatives, C60-PhA and C60-PhA-C60. The absorption spectral features of C60, as well as that of the phenylacetylene moiety are retained in the monomeric forms of these fullerene derivatives, ruling out the possibility of any strong interaction between the two chromophores in the ground state. Both the fullerene derivatives form optically transparent clusters, absorbing in the UV-Vis region; this clustering leads to a significant increase in their molar extinction coefficients. TEM characterization of the C60-PhA showed large spherical clusters, with sizes ranging from 150-350 nm, while an elongated wire-type structure was observed for the bisfullerene derivative (C60-PhA-C60). AFM section analysis studies of isolated nanoclusters of C60-PhA-C60, deposited on mica, indicate that smaller clusters associate to form larger nanostructures.

  19. Growth and characterization of barium oxide nanoclusters on YSZ(111)

    Energy Technology Data Exchange (ETDEWEB)

    Nachimuthu, Ponnusamy; Kim, Yong Joo; Kuchibhatla, Satyanarayana V N T; Yu, Zhongqing; Jiang, Weilin; Engelhard, Mark H.; Shutthanandan, V.; Szanyi, Janos; Thevuthasan, Suntharampillai

    2009-08-13

    Barium oxide (BaO) was grown on YSZ(111) substrate by oxygen-plasma-assisted molecular beam epitaxy (OPA-MBE). In-situ reflection high-energy electron diffraction, ex-situ x-ray diffraction, atomic force microscopy and x-ray photoelectron spectroscopy have confirmed that the BaO grows as clusters on YSZ(111). During and following the growth under UHV conditions, BaO remains in single phase. When exposed to ambient conditions, the clusters transformed to BaCO3 and/or Ba(OH)2 H2O. However, in a few attempts of BaO growth, XRD results show a fairly single phase cubic BaO with a lattice constant of 0.5418(1) nm. XPS results show that exposing BaO clusters to ambient conditions results in the formation BaCO3 on the surface and partly Ba(OH)2 throughout in the bulk. Based on the observations, it is concluded that the BaO nanoclusters grown on YSZ(111) are highly reactive in ambient conditions. The variation in the reactivity of BaO between different attempts of the growth is attributed to the cluster size.

  20. Ag29(BDT)12(TPP)4: A Tetravalent Nanocluster

    KAUST Repository

    AbdulHalim, Lina G.

    2015-06-24

    The bottom-up assembly of nanoparticles into diverse ordered solids is a challenge because it requires nanoparticles, which are often quasi-spherical, to have interaction anisotropy akin to atoms and molecules. Typically, anisotropy has been introduced by changing the shape of the inorganic nanoparticle core. Here, we present the design, self-assembly, optical properties and total structural determination of Ag29(BDT)12(TPP)4, an atomically precise tetravalent nanocluster (NC) (BDT: 1,3-benzenedithiols; TPP: triphenylphosphine). It features four unique tetrahedrally symmetrical binding surface sites facilitated by the supramolecular assembly of 12 BDT—wide footprint bidentate thiols—in the ligand shell. When each of these sites was selectively functionalized by a single phosphine ligand, particle stability, synthetic yield and the propensity to self-assemble into macroscopic crystals increased. The solid crystallized NCs have a substantially narrowed optical bandgap compared to that of the solution state, suggesting strong inter-particle electronic coupling occurs in the solid state.

  1. Formation of fivefold axes in the FCC-metal nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Myasnichenko, Vladimir S., E-mail: virtson@gmail.com [Altai State Technical University, 46 Lenina av., Barnaul 656038 (Russian Federation); Starostenkov, Mikhail D. [Altai State Technical University, 46 Lenina av., Barnaul 656038 (Russian Federation)

    2012-11-01

    Highlights: Black-Right-Pointing-Pointer Formation of fcc-metal nanoclusters having the fivefold symmetry. Black-Right-Pointing-Pointer Formation of the cores of icosahedral symmetry in the gold, silver and copper nanoparticles. Black-Right-Pointing-Pointer Construction of bimetallic clusters with icosahedral symmetry and increased fractal dimensionality. - Abstract: Formation of atomistic structures of metallic Cu, Au, Ag clusters and bimetallic Cu-Au clusters was studied with the help of molecular dynamics using the many-body tight-binding interatomic potential. The simulation of the crystallization process of clusters with the number of atoms ranging from 300 to 1092 was carried out. The most stable configurations of atoms in the system, corresponding to the minimum of potential energy, was found during super-fast cooling from 1000 K. Atoms corresponding to fcc, hcp, and Ih phases were identified by the method of common neighbor analysis. Incomplete icosahedral core can be discovered at the intersection of one of the Ih axes with the surface of monometallic cluster. The decahedron-shaped structure of bimetallic Cu-Au cluster with seven completed icosahedral cores was obtained. The principles of the construction of small bimetallic clusters with icosahedral symmetry and increased fractal dimensionality were offered.

  2. Collective electric and magnetic plasmonic resonances in spherical nanoclusters.

    Science.gov (United States)

    Vallecchi, Andrea; Albani, Matteo; Capolino, Filippo

    2011-01-31

    We report an investigation on the optical properties of three-dimensional nanoclusters (NCs) made by spherical constellations of metallic nanospheres arranged around a central dielectric sphere, which can be realized and assembled by current state-of-the-art nanochemistry techniques. This type of NCs supports collective plasmon modes among which the most relevant are those associated with the induced electric and magnetic resonances. Combining a single dipole approximation for each nanoparticle and the multipole spherical-wave expansion of the scattered field, we achieve an effective characterization of the optical response of individual NCs in terms of their scattering, absorption, and extinction efficiencies. By this approximate model we analyze a few sample NCs identifying the electric and magnetic resonance frequencies and their dependence on the size and number of the constituent nanoparticles. Furthermore, we discuss the effective electric and magnetic polarizabilities of the NCs, and their isotropic properties. A homogenization method based on an extension of the Maxwell Garnett model to account for interaction effects due to higher order multipoles in dense packed arrays is applied to a distribution of NCs showing the possibility of obtaining metamaterials with very large, small, and negative values of permittivity and permeability, and even negative index.

  3. First-Principles Investigation of Ag-Doped Gold Nanoclusters

    Directory of Open Access Journals (Sweden)

    Fei-Yue Fan

    2011-05-01

    Full Text Available Gold nanoclusters have the tunable optical absorption property, and are promising for cancer cell imaging, photothermal therapy and radiotherapy. First-principle is a very powerful tool for design of novel materials. In the present work, structural properties, band gap engineering and tunable optical properties of Ag-doped gold clusters have been calculated using density functional theory. The electronic structure of a stable Au20 cluster can be modulated by incorporating Ag, and the HOMO–LUMO gap of Au20−nAgn clusters is modulated due to the incorporation of Ag electronic states in the HOMO and LUMO. Furthermore, the results of the imaginary part of the dielectric function indicate that the optical transition of gold clusters is concentration-dependent and the optical transition between HOMO and LUMO shifts to the low energy range as the Ag atom increases. These calculated results are helpful for the design of gold cluster-based biomaterials, and will be of interest in the fields of radiation medicine, biophysics and nanoscience.

  4. Nanocluster formation in Co/Fe implanted ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Bharuth-Ram, K., E-mail: kbr@tlabs.ac.za [Durban University of Technology, Physics Department (South Africa); Masenda, H. [University of the Witwatersrand, School of Physics (South Africa); Doyle, T. B. [iThemba LABS (South Africa); Geburt, S.; Ronning, C. [University of Jena, Institute of Solid State Physics (Germany)

    2015-04-15

    Conversion electron Mössbauer Spectroscopy (CEMS) measurements were made on a ZnO single crystal sample implanted at room temperature (RT) with of 145 and 345 keV {sup 59}Co ions with respective fluences of 1.15×10{sup 16} ions/cm {sup 2} and 4.17×10{sup 16} ions/cm {sup 2}, followed by implantation of 60 keV {sup 57}Fe to a fluence of 0.50×10{sup 16}/cm {sup 2} to yield a ‘box-shaped’ implantation profile with a Co + Fe concentration of about 3.2 at. %. CEM spectra were collected after annealing the sample up to 973 K. The spectra after annealing up to 973 K are similar to spectra observed in other CEMS studies on Fe implanted ZnO, but show a dramatic change after the 973 K annealing step; it is dominated by a doublet component with fit parameters typical of Fe {sup 3+}. Magnetization curves of the sample after the 973 K anneal show hysteresis, with a small residual magnetization at RT that increases at 4 K. The saturation magnetization at 4 K was approximately 0.33 μ{sub B}/CoFe ion, in good agreement with observations for 5–8 nm sized Co nanoclusters in ZnO.

  5. Absorption spectra of alkali-C₆₀ nanoclusters.

    Science.gov (United States)

    Rabilloud, Franck

    2014-10-28

    We investigate the absorption spectra of alkali-doped C60 nanoclusters, namely C60Nan, C60Kn, and C60Lin, with n = 1, 2, 6, 12, in the framework of the time-dependent density-functional theory (TDDFT). We study the dependence of the absorption spectra on the nature of the alkali. We show that in few cases the absorption spectra depend on the arrangement of the alkali atoms over the fullerene, though sometimes the absorption spectra do not allow us to distinguish between different configurations. When only one or two alkali atoms are adsorbed on the fullerene, the optical response of alkali-doped C60 is similar to that of the anion C60(-) with a strong response in the UV domain. In contrast, for higher concentration of alkali, a strong optical response is predicted in the visible range, particularly when metal-metal bonds are formed. The weak optical response of the I(h)-symmetry C60Li12 is proposed to be used as a signature of its structure.

  6. A strategy to find minimal energy nanocluster structures.

    Science.gov (United States)

    Rogan, José; Varas, Alejandro; Valdivia, Juan Alejandro; Kiwi, Miguel

    2013-11-05

    An unbiased strategy to search for the global and local minimal energy structures of free standing nanoclusters is presented. Our objectives are twofold: to find a diverse set of low lying local minima, as well as the global minimum. To do so, we use massively the fast inertial relaxation engine algorithm as an efficient local minimizer. This procedure turns out to be quite efficient to reach the global minimum, and also most of the local minima. We test the method with the Lennard-Jones (LJ) potential, for which an abundant literature does exist, and obtain novel results, which include a new local minimum for LJ13 , 10 new local minima for LJ14 , and thousands of new local minima for 15≤N≤65. Insights on how to choose the initial configurations, analyzing the effectiveness of the method in reaching low-energy structures, including the global minimum, are developed as a function of the number of atoms of the cluster. Also, a novel characterization of the potential energy surface, analyzing properties of the local minima basins, is provided. The procedure constitutes a promising tool to generate a diverse set of cluster conformations, both two- and three-dimensional, that can be used as an input for refinement by means of ab initio methods. Copyright © 2013 Wiley Periodicals, Inc.

  7. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-05-09

    The structure and chemical ordering of PtAu nanoclusters of 79, 135, and 201 atoms are studied via a combination of a basin hopping atom-exchange technique (to locate the lowest energy homotops at fixed composition), a symmetry orbit technique (to find the high symmetry isomers), and density functional theory local reoptimization (for determining the most stable homotop). The interatomic interactions between Pt and Au are derived from the empirical Gupta potential. The lowest energy structures show a marked tendency toward PtcoreAushell chemical ordering by enrichment of the more cohesive Pt in the core region and of Au in the shell region. We observe a preferential segregation of Pt atoms to (111) facets and Au atoms to (100) facets of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active sites. © 2013 American Chemical Society.

  8. Synthesis and characterization of human transferrin-stabilized gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Le Guevel, Xavier; Schneider, Marc [Pharmaceutical Nanotechnology, Saarland University, Saarbruecken (Germany); Daum, Nicole, E-mail: Marc.Schneider@mx.uni-saarland.de [Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbruecken (Germany)

    2011-07-08

    Human transferrin has been biolabelled with gold nanoclusters (Au NCs) using a simple, fast and non-toxic method. These nanocrystals (<2 nm) are stabilized in the protein via sulfur groups and have a high fluorescence emission in the near infrared region (QY = 4.3%; {lambda}{sub em} = 695 nm). Structural investigation and photophysical measurements show a high population of clusters formed of 22-33 gold atoms covalently bound to the transferrin. In solutions with pH ranging from 5 to 10 and in buffer solutions (PBS, HEPES), those biolabelled proteins exhibit a good stability. No significant quenching effect of the fluorescent transferrin has been detected after iron loading of iron-free transferrin (apoTf) and in the presence of a specific polyclonal antibody. Additionally, antibody-induced agglomeration demonstrates no alteration in the protein activity and the receptor target ability. MTT and Vialight Plus tests show no cytotoxicity of these labelled proteins in cells (1 {mu}g ml{sup -1}-1 mg ml{sup -1}). Cell line experiments (A549) indicate also an uptake of the iron loaded fluorescent proteins inside cells. These remarkable data highlight the potential of a new type of non-toxic fluorescent transferrin for imaging and targeting.

  9. Atomic-scale structure of single-layer MoS2 nanoclusters

    DEFF Research Database (Denmark)

    Helveg, S.; Lauritsen, J. V.; Lægsgaard, E.

    2000-01-01

    We have studied using scanning tunneling microscopy (STM) the atomic-scale realm of molybdenum disulfide (MoS2) nanoclusters, which are of interest as a model system in hydrodesulfurization catalysis. The STM gives the first real space images of the shape and edge structure of single-layer MoS2 n...... nanoparticles synthesized on Au(lll), and establishes a new picture of the active edge sires of the nanoclusters. The results demonstrate a way to get detailed atomic-scale information on catalysts in general....

  10. Fabrication, Study of Optical Properties and Structure of Most Stable (CdP2)n Nanoclusters

    OpenAIRE

    Yeshchenko, O. A.; Dmitruk, I. M.; Koryakov, S. V.; Galak, M. P.

    2005-01-01

    CdP2 nanoclusters were fabricated by incorporation into pores of zeolite Na-X and by laser ablation. Absorption and photoluminescence (PL) spectra of CdP2 nanoclusters in zeolite were measured at the temperatures of 4.2, 77 and 293 K. Both absorption and PL spectra consist of two bands blue shifted with respect to bulk crystal. We performed the calculations aimed to find the most stable clusters in the size region up to size of the zeolite Na-X supercage. The most stable clusters are (CdP2)6 ...

  11. Self-organized arrays of Cd nanocluster on Si (111)-7×7 surface

    Science.gov (United States)

    Hao, Shao-Jie; Xiao, Hua-Fang; Ye, Juan; Sun, Kai; Tao, Min-Long; Tu, Yu-Bing; Wang, Ya-Li; Xie, Zheng-Bo; Wang, Jun-Zhong

    2017-02-01

    We studied the self-organization of Cd clusters on Si(111)-7×7 surface with an ultrahigh vacuum scanning tunneling microcopy (STM). Highly-ordered arrays of Cd nanoclusters have been fabricated by elevating the substrate temperature. The Cd clusters occupy equally the faulted and unfaulted half-unit cells of Si(111)-7×7 without obvious preference to either of them, forming Cd cluster pairs or hexamers. Furthermore, high-resolution STM images demonstrate that the charge transfer between Cd and Si atoms is responsible for cluster-cluster attractions, which in turn drive the self-organization of Cd nanoclusters into highly ordered arrays.

  12. Tetrahedral 1B4Sb nanoclusters in GaP:(B, Sb)

    Energy Technology Data Exchange (ETDEWEB)

    Elyukhin, V A, E-mail: elyukhin@cinvestav.m [Departamento de Ingenieria Electrica-SEES, CINVESTAV-IPN, Avenida IPN 2508, Col. San Pedro Zacatenco, C. P. 07360, Mexico, D. F. (Mexico)

    2009-05-01

    Self-assembling conditions of 1B4Sb tetrahedral nanoclusters in GaP doped with boron and Sb isoelectronic impurities are represented in the ultradilute and dilute limits of the boron and Sb contents, respectively. The fulfilled estimates demonstrated the preferential complete or almost complete allocation of boron atoms in 1B4Sb nanoclusters at temperatures of 500 {sup 0}C and 900 {sup 0}C, respectively. The significant decrease of the sum of the free energies of the constituent compounds is the main origin of self-assembling. The reduction of the strain energy is the additional cause of this phenomenon.

  13. Thermal ripples in model molybdenum disulfide monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Remsing, Richard C.; Klein, Michael L. [Institute for Computational Molecular Science, Center for the Computational, Design of Functional Layered Materials, and Department of Chemistry, Temple University, 1925 N. 12th St., 19122, Philadelphia, PA (United States); Waghmare, Umesh V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560 064, Jakkur, Bangalore (India)

    2017-01-15

    Molybdenum disulfide (MoS{sub 2}) monolayers have the potential to revolutionize nanotechnology. To reach this potential, it will be necessary to understand the behavior of this two-dimensional (2D) material on large length scales and under thermal conditions. Herein, we use molecular dynamics (MD) simulations to investigate the nature of the rippling induced by thermal fluctuations in monolayers of the 2H and 1T phases of MoS{sub 2}. The 1T phase is found to be more rigid than the 2H phase. Both monolayer phases are predicted to follow long wavelength scaling behavior typical of systems with anharmonic coupling between vibrational modes as predicted by classic theories of membrane-like systems. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Thermal transport in monolayer InSe

    Science.gov (United States)

    Nissimagoudar, Arun S.; Ma, Jinlong; Chen, Yani; Li, Wu

    2017-08-01

    Two-dimensional InSe, a recently synthesized semiconductor having a moderate band gap, has gained attention due to its ultra high mobility and high photo-responsivity. In this work, we calculate the lattice thermal conductivity (κ) of monolayer InSe by solving the phonon Boltzmann transport equation (BTE) with first-principles calculated inter atomic force constants. κ of monolayer InSe is isotropic and found to be around 27.6 W m K-1 at room temperature along the in-plane direction. The size dependence of κ shows the size effect can persist up to 20 μm. Further, κ can be reduced to half by tuning the sample size to 300 nm. This low value suggests that κ might be a limiting factor for emerging nanoelectronic applications of monolayer InSe.

  15. Elastic bending modulus of monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lu Qiang; Huang Rui [Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, TX 78712 (United States); Arroyo, Marino [Department of Applied Mathematics 3, LaCaN, Universitat Politecnica de Catalunya (UPC), Barcelona 08034 (Spain)

    2009-05-21

    An analytic formula is derived for the elastic bending modulus of monolayer graphene based on an empirical potential for solid-state carbon atoms. Two physical origins are identified for the non-vanishing bending stiffness of the atomically thin graphene sheet, one due to the bond-angle effect and the other resulting from the bond-order term associated with the dihedral angles. The analytical prediction compares closely with ab initio energy calculations. Pure bending of graphene monolayers into cylindrical tubes is simulated by a molecular mechanics approach, showing slight nonlinearity and anisotropy in the tangent bending modulus as the bending curvature increases. An intrinsic coupling between bending and in-plane strain is noted for graphene monolayers rolled into carbon nanotubes. (fast track communication)

  16. Fullerene monolayer formation by spray coating.

    Science.gov (United States)

    Cervenka, J; Flipse, C F J

    2010-02-10

    Many large molecular complexes are limited in thin film applications by their insufficient thermal stability, which excludes deposition via commonly used vapour phase deposition methods. Here we demonstrate an alternative way of monolayer formation of large molecules by a simple spray coating method under ambient conditions. This technique has been successfully applied on C(60) dissolved in toluene and carbon disulfide. Monolayer thick C(60) films have been formed on graphite and gold surfaces at particular deposition parameters, as confirmed by atomic force and scanning tunnelling microscopies. Structural and electronic properties of spray coated C(60) films on Au(111) have been found comparable to thermally evaporated C(60). We attribute the monolayer formation in spray coating to a crystallization process mediated by an ultrathin solution film on a sample surface.

  17. Magneto photoluminescence measurements of tungsten disulphide monolayers

    Science.gov (United States)

    Kuhnert, Jan; Rahimi-Iman, Arash; Heimbrodt, Wolfram

    2017-03-01

    Layered transition-metal dichalcogenides have attracted great interest in the last few years. Thinned down to the monolayer limit they change from an indirect band structure to a direct band gap in the visible region. Due to the monolayer thickness the inversion symmetry of the crystal is broken and spin and valley are coupled to each other. The degeneracy between the two equivalent valleys, K and K‧, respectively, can be lifted by applying an external magnetic field. Here, we present photoluminescence measurements of CVD-grown tungsten disulphide (WS2) monolayers at temperatures of 2 K. By applying magnetic fields up to 7 T in Faraday geometry, a splitting of the photoluminescence peaks can be observed. The magnetic field dependence of the A-exciton, the trion and three bound exciton states is discussed and the corresponding g-factors are determined.

  18. Atomistic study on mixed-mode fracture mechanisms of ferrite iron interacting with coherent copper and nickel nanoclusters

    Science.gov (United States)

    Al-Motasem, Ahmed Tamer; Mai, Nghia Trong; Choi, Seung Tae; Posselt, Matthias

    2016-04-01

    The effect of copper and/or nickel nanoclusters, generally formed by neutron irradiation, on fracture mechanisms of ferrite iron was investigated by using molecular statics simulation. The equilibrium configuration of nanoclusters was obtained by using a combination of an on-lattice annealing based on Metropolis Monte Carlo method and an off-lattice relaxation by molecular dynamics simulation. Residual stress distributions near the nanoclusters were also calculated, since compressive or tensile residual stresses may retard or accelerate, respectively, the propagation of a crack running into a nanocluster. One of the nanoclusters was located in front of a straight crack in ferrite iron with a body-centered cubic crystal structure. Two crystallographic directions, of which the crack plane and crack front direction are (010)[001] and (111) [ 1 bar 10 ] , were considered, representing cleavage and non-cleavage orientations in ferrite iron, respectively. Displacements corresponding to pure opening-mode and mixed-mode loadings were imposed on the boundary region and the energy minimization was performed. It was observed that the fracture mechanisms of ferrite iron under the pure opening-mode loading are strongly influenced by the presence of nanoclusters, while under the mixed-mode loading the nanoclusters have no significant effect on the crack propagation behavior of ferrite iron.

  19. Energy of the Isolated Metastable Iron-Nickel FCC Nanocluster with a Carbon Atom in the Tetragonal Interstice.

    Science.gov (United States)

    Bondarenko, Natalya V; Nedolya, Anatoliy V

    2017-12-01

    The energy of the isolated iron-nickel nanocluster was calculated by molecular mechanics method using Lennard-Jones potential. The cluster included a carbon atom that drifted from an inside octahedral interstice to a tetrahedral interstice in [Formula: see text] direction and after that in direction to the surface. In addition, one of 14 iron atoms was replaced by a nickel atom, the position of which was changing during simulation.The energy of the nanocluster was estimated at the different interatomic distances. As a result of simulation, the optimal interatomic distances of Fe-Ni-C nanocluster was chosen for the simulation, in which height of the potential barrier was maximal and face-centered cubic (FCC) nanocluster was the most stable.It is shown that there were three main positions of a nickel atom that significantly affected nanocluster's energy.The calculation results indicated that position of the carbon atom in the octahedral interstice was more energetically favorable than tetrahedral interstice in the case of FCC nanocluster. On the other side, the potential barrier was smaller in the direction [Formula: see text] than in the direction .This indicates that there are two ways for carbon atom to drift to the surface of the nanocluster.

  20. Stiffness of lipid monolayers with phase coexistence.

    Science.gov (United States)

    Caruso, Benjamín; Mangiarotti, Agustín; Wilke, Natalia

    2013-08-27

    The surface dilational modulus--or compressibility modulus--has been previously studied for monolayers composed of pure materials, where a jump in this modulus was related with the onset of percolation as a result of the establishment of a connected structure at the molecular level. In this work, we focused on monolayers composed of two components of low lateral miscibility. Our aim was to investigate the compressibility of mixed monolayers at pressures and compositions in the two-phase region of the phase diagram, in order to analyze the effect of the mechanical properties of each phase on the stiffness of the composite. In nine different systems with distinct molecular dipoles and charges, the stiffness of each phase and the texture at the plane of the monolayer were studied. In this way, we were able to analyze the general compressibility of two-phase lipid monolayers, regardless of the properties of their constituent parts. The results are discussed in the light of the following two hypotheses: first, the stiffness of the composite could be dominated by the stiffness of each phase as a weighted sum according to the percentage of each phase area, regardless of the distribution of the phases in the plane of the monolayer. Alternatively, the stiffness of the composite could be dominated by the mechanical properties of the continuous phase. Our results were better explained by this latter proposal, as in all the analyzed mixtures it was found that the mechanical properties of the percolating phase were the determining factors. The value of the compression modulus was closer to the value of the connected phase than to that of the dispersed phase, indicating that the bidimensional composites displayed mechanical properties that were related to the properties of each phases in a rather complex manner.

  1. Low temperature photoresponse of monolayer tungsten disulphide

    Directory of Open Access Journals (Sweden)

    Bingchen Cao

    2014-11-01

    Full Text Available High photoresponse can be achieved in monolayers of transition metal dichalcogenides. However, the response times are inconveniently limited by defects. Here, we report low temperature photoresponse of monolayer tungsten disulphide prepared by exfoliation and chemical vapour deposition (CVD method. The exfoliated device exhibits n-type behaviour; while the CVD device exhibits intrinsic behaviour. In off state, the CVD device has four times larger ratio of photoresponse for laser on/off and photoresponse decay–rise times are 0.1 s (limited by our setup, while the exfoliated device has few seconds. These findings are discussed in terms of charge trapping and localization.

  2. Sub-THz Characterisation of Monolayer Graphene

    Directory of Open Access Journals (Sweden)

    Ehsan Dadrasnia

    2014-01-01

    Full Text Available We explore the optical and electrical characteristics of monolayer graphene by using pulsed optoelectronic terahertz time-domain spectroscopy in the frequency range of 325–500 GHz based on fast direct measurements of phase and amplitude. We also show that these parameters can, however, be measured with higher resolution using a free space continuous wave measurement technique associated with a vector network analyzer that offers a good dynamic range. All the scattering parameters (both magnitude and phase are measured simultaneously. The Nicholson-Ross-Weir method is implemented to extract the monolayer graphene parameters at the aforementioned frequency range.

  3. Nonlinear optical studies of organic monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.R.

    1988-02-01

    Second-order nonlinear optical effects are forbidden in a medium with inversion symmetry, but are necessarily allowed at a surface where the inversion summary is broken. They are often sufficiently strong so that a submonolayer perturbation of the surface can be readily detected. They can therefore be used as effective tools to study monolayers adsorbed at various interfaces. We discuss here a number of recent experiments in which optical second harmonic generation (SHG) and sum-frequency generation (SFG) are employed to probe and characterize organic monolayers. 15 refs., 5 figs.

  4. High-Quality Alkyl Monolayers on Silicon Surfaces

    NARCIS (Netherlands)

    Sieval, A.B.; Linke, R.; Zuilhof, H.; Sudh"lter, E.J.R.

    2000-01-01

    Covalent attachment of functionalized monolayers onto silicon surfaces (see Figure for examples) is presented here as a strategy for surface modification. The preparation and structure of both unfunctionalized and functionalized alkyl-based monolayers are described, as are potential applications,

  5. Pressurized polyol synthesis of Al-doped ZnO nanoclusters with high electrical conductivity and low near-infrared transmittance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho-Nyun; Shin, Chi-Ho [Surface Technology R& BD Group, Korea Institute of Industrial Technology (KITECH), Incheon 406-840 (Korea, Republic of); Hwang, Duck Kun [Department of Corporate Diagnosis, Small and Medium Business Corporation, Seoul 150-718 (Korea, Republic of); Kim, Haekyoung [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Oh, Kyeongseok [Department of Chemical and Environmental Technology, Inha Technical College, Incheon 402-752 (Korea, Republic of); Kim, Hyun-Jong, E-mail: hjkim23@kitech.re.kr [Surface Technology R& BD Group, Korea Institute of Industrial Technology (KITECH), Incheon 406-840 (Korea, Republic of)

    2015-09-25

    Highlights: • Low-temperature pressurized polyol method synthesized Al-doped ZnO nanoclusters. • Reaction time affected the doping efficiency, resistivity, and NIR transmittance. • The near-IR blocking efficiency of Al-doped ZnO (AZO) nanoclusters reached 85%. • AZO nanocluster coatings could be used for heat reflectors or artificial glasses. - Abstract: In this study, a novel pressurized polyol method is proposed to synthesize aluminum-doped ZnO (AZO) nanoclusters without utilizing additional thermal treatment to avoid the merging of nanoclusters. The size of the AZO nanoclusters range from 100 to 150 nm with a resistivity of 204 Ω cm. The AZO nanoclusters primarily consist of approximately 10-nm nanocrystals that form a spherically clustered morphology. A two-stage growth model has been proposed based on the results of scanning electron microscopy and transmission electron microscopy images, nanocluster sizes, and X-ray diffraction patterns. The primary AZO nanocrystals first nucleate under pressurized conditions and then spontaneously aggregate into larger nanoclusters. Optically, the AZO nanoclusters exhibit a significant decrease in the near-infrared (NIR) transmittance compared to pure ZnO nanoparticles. The NIR blocking efficiency of AZO nanoclusters reached 85%. Moreover, the doping efficiency, resistivity, and NIR transmittance of AZO nanoclusters are influenced by the reaction time in the pressurized polyol solution. On the other hand, the reaction time has no effect on the particle size and crystallinity. An optically transparent coating for the AZO nanoclusters, which consisted of iso-propanol solvent and ultraviolet-curable acrylic binder, was also demonstrated.

  6. Langmuir monolayers of gold nanoparticles: from ohmic to rectifying charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shaowei

    2003-10-31

    The lateral electrical/electronic conductivity of alkanethiolate-protected gold nanoparticles was evaluated at the air/water interface by using the Langmuir method. For particles with short protecting monolayers (C4Au and C5Au), the current-voltage profiles exhibited ohmic behaviors with conductivity several orders of magnitude smaller than that of bulk gold. The conductivity is found to decrease exponentially with increasing interparticle spacing. This is interpreted on the basis of electron tunneling/hopping between neighboring particles where the tunneling coefficient ({beta}) is found around 0.5 Angst{sup -1}. With longer alkyl protecting layers (C6 and above), the nanoparticle monolayers demonstrated rectifying charge-transfer characters. This transition from ohmic to diode-like responses can be attributable to the nanocomposite structure of the particle molecules, where the chemical nature of the core and the protecting monolayers, along with the interparticle environment and ordering, are found to play an important role in regulating the electrical/electronic properties of the nanoassemblies.

  7. Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures

    Science.gov (United States)

    Yang, Huayan; Wang, Yu; Zheng, Nanfeng

    2013-03-01

    The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions.The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions. Electronic supplementary information (ESI) available: Experimental details, more pictures of the structure and XPS spectra of the clusters. CCDC 916463 and 916464. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr34328f

  8. Stabilizing Protein Effects on the Pressure Sensitivity of Fluorescent Gold Nanoclusters

    Science.gov (United States)

    2016-01-13

    and β-sheet structure present in the stabilizing protein. These data support the hypothesis that the pressure -induced fluorescence enhancement...ARL-TR-7572 ● JAN 2016 US Army Research Laboratory Stabilizing Protein Effects on the Pressure Sensitivity of Fluorescent Gold...JAN 2016 US Army Research Laboratory Stabilizing Protein Effects on the Pressure Sensitivity of Fluorescent Gold Nanoclusters by Abby

  9. Modular construction and hierarchical gelation of organooxotin nanoclusters derived from simple building blocks.

    Science.gov (United States)

    Hahn, Uwe; Hirst, Andrew R; Delgado, Juan Luis; Kaeser, Adrien; Delavaux-Nicot, Béatrice; Nierengarten, Jean-Francois; Smith, David K

    2007-12-14

    Mixtures of an appropriate carboxylic acid and n-butylstannoic acid constitute modular gelation systems, in which the formation of a well-defined 'tin-drum' nanocluster subsequently underpins the hierarchical assembly of nanostructured fibres, which form self-supporting gel-phase networks in organic solvents.

  10. {Fe6O2}-Based Assembly of a Tetradecanuclear Iron Nanocluster

    Directory of Open Access Journals (Sweden)

    Svetlana G. Baca

    2011-01-01

    Full Text Available The tetradecanuclear FeIII pivalate nanocluster [Fe14O10(OH4(Piv18], comprising a new type of metal oxide framework, has been solvothermally synthesized from a hexanuclear iron pivalate precursor in dichlormethane/acetonitrile solution. Magnetic measurements indicate the presence of very strong antiferromagnetic interactions in the cluster core.

  11. High Selective Hydrogenation of Acetophenone Catalyzed by Alumina Supported Platinum Nanoclusters

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new preparation and reduction method of γ-Al2O3 supported and PVP stabilized platinum nanoclusters was studied.The catalyst exhibited very high activity and selectivity for acetophenone hydrogenation in isopropanol-KOH solution at 25~60°C and P H2=1~5 MPa.

  12. Wavelength-switchable photocurrent in a hybrid TiO2-Ag nanocluster photoelectrode.

    Science.gov (United States)

    Chen, Hongjun; Wang, Qiong; Lyu, Miaoqiang; Zhang, Zhi; Wang, Lianzhou

    2015-08-04

    A hybrid TiO2-Ag nanocluster (NC) photoelectrode demonstrates unique wavelength-switchable photocurrent. By simply tuning the light wavelength from ultraviolet (UV) to visible light, the photocurrent generated on a single electrode can be switched from anodic to cathodic current, in which the Ag NCs behave like a new type of visible light active photocatalyst.

  13. Ge nanoclusters in PECVD-deposited glass caused only by heat treatment

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rørdam, Troels Peter; Rottwitt, Karsten

    2008-01-01

    This paper reports the formation of Ge nanoclusters in a multi-layer structure consisting of alternating thin films of Ge-doped silica glass and SiGe, deposited by plasma-enhanced chemical vapor deposition (PECVD) and post annealed at 1100 °C in N2 atmosphere. We studied the annealed samples by t...

  14. Logic gates scheme based on Coulomb blockade in metallic nanoclusters with organic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Cervera, Javier [Facultat de Fisica, Universitat de Valencia, E-46100 Burjassot (Spain); Ramirez, Patricio [Depto. de Fisica Aplicada, Universidad Politecnica de Valencia, E-46022 Valencia (Spain); Mafe, Salvador, E-mail: smafe@uv.e [Facultat de Fisica, Universitat de Valencia, E-46100 Burjassot (Spain)

    2010-01-11

    We propose a logic gates scheme based on the electron transfer through metallic nanoclusters linked to organic ligands and discuss theoretically the characteristics needed for practical implementation. As a proof-of-the-concept, we demonstrate the OR, AND and NOT gates and study the performance in terms of temperature, applied voltage, and noise.

  15. Self consistent tight binding molecular dynamics study of Ti02 nanoclusters in water.

    Energy Technology Data Exchange (ETDEWEB)

    Erdin, S.; Lin, Y.; Halley, J. W.; Zapol, P.; Redfern, P.; Curtiss, L.; Northern Illinois Univ.; Univ. of Minnesota

    2007-09-01

    Self-consistent tight binding molecular dynamics studies of TiO{sub 2}2 anatase and rutile nanoclusters in dissociable water are reported. It is found that the structure of the particle expands as a result of interaction between the particle's surface and water. Water molecules dissociate at the nanoparticle surface during simulation.

  16. The variable polarization undulator beamline UE52 PGM nanocluster trap at BESSY II

    Directory of Open Access Journals (Sweden)

    Ruslan Ovsyannikov

    2017-02-01

    Full Text Available UE52 PGM nanocluster trap is a soft x-ray beamline at BESSY II that delivers an unfocussed low-divergence beam of variable polarization. Its characteristics are ideally suited for ion trap studies of magnetic properties.

  17. Photophysical characterization of fluorescent metal nanoclusters sythesized using oligonucleotides, proteins and small reagent moleucles

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsin-chih [Los Alamos National Laboratory; Jaswinder, Sharma K [Los Alamos National Laboratory; Martinez, Jennifer S [Los Alamos National Laboratory; Werner, James H [Los Alamos National Laboratory; Yoo, Hyojong [Los Alamos National Laboratory

    2009-01-01

    The size transition from bulk metals to insulating nanoparticles and eventually to single atoms passes through the relatively unexplored few-atom nanocluster region. With climensions close to the Fermi wavelength, these nanoclusters demonstrate molecule-like properties distinct from bulk metals or atoms, such as discrete and size-tunable electronic transitions which lead to photoluminescence. Current research aims to elucidate the fundamental photophysical properties of the existing metal nanoclusters made by different means and based on different encapsulation agents. Here, we report the study of the photophysical properties, including quantum yields, lifetimes, extinction coefficients, blinking dynamics and sizes, of silver and gold nanoclusters synthesized using oligonucleotides, a protein (bovine serum albumin) and a Good's buffer molecule (MES, 2-(N-morpholino)ethanesulfonic acid) as encapsulation agents. We also investigate the change of photoluminescence under varying conditions (time, temperature and salt). Furthermore, it is demonstrated here that fluorescent metal clusters can be used as a donor in forming resonance energy transfer pairs with a commercial organic quenching dye.

  18. Biophysical mechanism for ras-nanocluster formation and signaling in plasma membrane.

    Directory of Open Access Journals (Sweden)

    Thomas Gurry

    Full Text Available Ras GTPases are lipid-anchored G proteins, which play a fundamental role in cell signaling processes. Electron micrographs of immunogold-labeled Ras have shown that membrane-bound Ras molecules segregate into nanocluster domains. Several models have been developed in attempts to obtain quantitative descriptions of nanocluster formation, but all have relied on assumptions such as a constant, expression-level independent ratio of Ras in clusters to Ras monomers (cluster/monomer ratio. However, this assumption is inconsistent with the law of mass action. Here, we present a biophysical model of Ras clustering based on short-range attraction and long-range repulsion between Ras molecules in the membrane. To test this model, we performed Monte Carlo simulations and compared statistical clustering properties with experimental data. We find that we can recover the experimentally-observed clustering across a range of Ras expression levels, without assuming a constant cluster/monomer ratio or the existence of lipid rafts. In addition, our model makes predictions about the signaling properties of Ras nanoclusters in support of the idea that Ras nanoclusters act as an analog-digital-analog converter for high fidelity signaling.

  19. Probing DNA-stabilized fluorescent silver nanocluster spectral heterogeneity by time-correlated single photon counting

    DEFF Research Database (Denmark)

    Carro, Miguel; Paolucci, Valentina; Hooley, Emma Nicole

    2016-01-01

    DNA-stabilized silver nanoclusters (DNA-AgNCs) are promising fluorophores whose photophysical properties and synthesis procedures have received increased attention in the literature. However, depending on the preparation conditions and the DNA sequence, the DNA-AgNC samples can host a range of di...

  20. Concentrated dispersions of equilibrium protein nanoclusters that reversibly dissociate into active monomers

    Science.gov (United States)

    Truskett, Thomas M.; Johnston, Keith; Maynard, Jennifer; Borwankar, Ameya; Miller, Maria; Wilson, Brian; Dinin, Aileen; Khan, Tarik; Kaczorowski, Kevin

    2012-02-01

    Stabilizing concentrated protein solutions is of wide interest in drug delivery. However, a major challenge is how to reliably formulate concentrated, low viscosity (i.e., syringeable) solutions of biologically active proteins. Unfortunately, proteins typically undergo irreversible aggregation at intermediate concentrations of 100-200 mg/ml. In this talk, I describe how they can effectively avoid these intermediate concentrations by reversibly assembling into nanoclusters. Nanocluster assembly is achieved by balancing short-ranged, cosolute-induced attractions with weak, longer-ranger electrostatic repulsions near the isoelectric point. Theory predicts that native proteins are stabilized by a self-crowding mechanism within the concentrated environment of the nanoclusters, while weak cluster-cluster interactions can result in colloidally-stable dispersions with moderate viscosities. I present experimental results where this strategy is used to create concentrated antibody dispersions (up to 260 mg/ml) comprising nanoclusters of proteins [monoclonal antibody 1B7, polyclonal sheep Immunoglobin G and bovine serum albumin], which upon dilution in vitro or administration in vivo, are conformationally stable and retain activity.

  1. Amine Reactivity with Nanoclusters of Sulfuric Acid and Ammonia

    Science.gov (United States)

    Johnston, M. V.; Bzdek, B. R.; DePalma, J.

    2011-12-01

    Alkyl amines have emerged as key species in new particle formation and growth. This interest is reinforced by ambient measurements of amines (e.g. Smith et al., 2010) and enhanced levels of nitrogen (e.g. Bzdek et al., 2011) during growth of newly formed particles. An important mechanism of amine uptake is aminium salt formation, either by substituting for ammonium ions that already exist in the particle or by opening new channels for salt formation that are not favorable with ammonia. This presentation will focus on recent experimental and computational work in our group to study amine uptake into charged nanoclusters of sulfuric acid and ammonia. In the experimental work, clusters are produced by electrospray of an ammonium sulfate solution and then drawn into a Fourier transform ion cyclotron resonance mass spectrometer where a specific cluster is isolated and exposed to amine vapor. We find that amine reactivity is dependent on the size, composition and charge of the isolated cluster. For small clusters of either polarity, all ammonium ions reside on the surface and amine substitution occurs with near unit reaction probability. As the cluster size increases, an ammonium ion can be encapsulated in the center of the cluster, which provides a steric hindrance to amine substitution. Negatively charged clusters are more likely to be acidic than positively charged clusters. For acidic clusters, incoming amine molecules first substitute for preexisting ammonium ions and then add to the cluster until a "neutralized" aminium bisulfate composition is reached. Computational studies of these clusters provide fundamental insight into the thermodynamics and kinetics of amine uptake.

  2. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2015-05-21

    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.

  3. Distinct metal-exchange pathways of doped Ag25 nanoclusters

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-09-09

    Atomically precise metal nanoclusters (NCs) containing more than one type of metal atom (i.e., doped or alloyed), due to synergistic effects, open new avenues for engineering the catalytic and optical properties of NCs in a manner that homometal NCs cannot. Unfortunately, it is still a major challenge to controllably introduce multimetallic dopants in NCs, understanding the dopants\\' positions, mechanism, and synergistic effects. To overcome these challenges, we designed a metal-exchange approach involving NCs as molecular templates and metal ions as the source of the incoming dopant. In particular, two structurally similar monodoped silver-rich NCs, [MAg24(SR)(18)](2-) (M = Pd/Pt and SR: thiolate), were synthesized as templates to study their mechanistic transformation in response to the introduction of gold atoms. The controllable incorporation of Au atoms into the MAg24 framework facilitated the elucidation of distinct doping pathways through high-resolution mass spectrometry, optical spectroscopy and elemental analysis. Interestingly, gold replaced the central Pd atom of [PdAg24(SR)(18)](2-) clusters to produce predominantly bimetallic [AuAg24(SR)(18)](-) clusters along with a minor product of an [Au2Ag23(SR)(18)](-) cluster. In contrast, the central Pt atom remained intact in [PtAg24(SR)(18)](2-) clusters, and gold replaced the noncentral Ag atoms to form trimetallic [AuxPtAg24-x(SR)(18)](2-) NCs, where x = 1-2, with a portion of the starting [PtAg24(SR)(18)](2-) NCs remaining. This study reveals some of the unusual metal-exchange pathways of doped NCs and the important role played by the initial metal dopant in directing the position of a second dopant in the final product.

  4. A complementary palette of NanoCluster Beacons.

    Science.gov (United States)

    Obliosca, Judy M; Babin, Mark C; Liu, Cong; Liu, Yen-Liang; Chen, Yu-An; Batson, Robert A; Ganguly, Mainak; Petty, Jeffrey T; Yeh, Hsin-Chih

    2014-10-28

    NanoCluster Beacons (NCBs), which use few-atom DNA-templated silver clusters as reporters, are a type of activatable molecular probes that are low-cost and easy to prepare. While NCBs provide a high fluorescence enhancement ratio upon activation, their activation colors are currently limited. Here we report a simple method to design NCBs with complementary emission colors, creating a set of multicolor probes for homogeneous, separation-free detection. By systematically altering the position and the number of cytosines in the cluster-nucleation sequence, we have tuned the activation colors of NCBs to green (C8-8, 460 nm/555 nm); yellow (C5-5, 525 nm/585 nm); red (C3-4, 580 nm/635 nm); and near-infrared (C3-3, 645 nm/695 nm). At the same NCB concentration, the activated yellow NCB (C5-5) was found to be 1.3 times brighter than the traditional red NCB (C3-4). Three of the four colors (green, yellow, and red) were relatively spectrally pure. We also found that subtle changes in the linker sequence (down to the single-nucleotide level) could significantly alter the emission spectrum pattern of an NCB. When the length of linker sequences was increased, the emission peaks were found to migrate in a periodic fashion, suggesting short-range interactions between silver clusters and nucleobases. Size exclusion chromatography results indicated that the activated NCBs are more compact than their native duplex forms. Our findings demonstrate the unique photophysical properties and environmental sensitivities of few-atom DNA-templated silver clusters, which are not seen before in common organic dyes or luminescent crystals.

  5. Switching a Nanocluster Core from Hollow to Non-hollow

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-03-24

    Modulating the structure-property relationship in atomically precise nanoclusters (NCs) is vital for developing novel NC materials and advancing their applications. While promising biphasic ligand-exchange (LE) strategies have been developed primarily to attain novel NCs, understanding the mechanistic aspects involved in tuning the core and the ligand-shell of NCs in such biphasic processes is challenging. Here, we design a single phase LE process that enabled us to elucidate the mechanism of how a hollow NC (e.g., [Ag44(SR)30]4-, -SR: thiolate) converts into a non-hollow NC (e.g., [Ag25(SR)18]-), and vice versa. Our study reveals that the complete LE of the hollow [Ag44(SPhF)30]4- NCs (–SPhF: 4-fluorobenzenethiolate) with incoming 2,4-dimethylbenzenethiol (HSPhMe2) induced distortions in the Ag44 structure forming the non-hollow [Ag25(SPhMe2)18]- by a disproportionation mechanism. While the reverse reaction of [Ag25(SPhMe2)18]- with HSPhF prompted an unusual dimerization of Ag25, followed by a rearrangement step that reproduces the original [Ag44(SPhF)30]4-. Remarkably, both the forward and the backward reactions proceed through similar size intermediates that seem to be governed by the boundary conditions set by the thermodynamic and electronic stability of the hollow and non-hollow metal cores. Furthermore, the resizing of NCs highlights the surprisingly long-range effect of the ligands which are felt by atoms far deep in the metal core, thus opening a new path for controlling the structural evolution of nanoparticles.

  6. Glitter in a 2D monolayer.

    Science.gov (United States)

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  7. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñoz, Enrique

    2016-07-08

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube diameter and axial strain. The nanotubes are found to be semiconductors with a sensitive indirect band gap that allows flexible tuning.

  8. Non-rotator phases in phospholipid monolayers?

    DEFF Research Database (Denmark)

    Kenn, R.M.; Kjær, K.; Möhwald, H.

    1996-01-01

    Monolayers of diacylphosphatidylethanolamines at the air/water interface are studied by grazing incidence X-ray diffraction. The results prove the existence of phases which show analogies with the rotator phases of single-chain surfactants: hexagonal tail lattice with no tilt; rectangular lattice...

  9. Statistical mechanics of a lipid monolayer

    NARCIS (Netherlands)

    Kox, A.J.; Wiegel, F.W.

    1978-01-01

    We calculate from first principles the equation of state of a simple type of membrane: a monolayer consisting of lipid chain molecules with short-range repulsive and long-range attractive forces. An approximate solution to the packing problem of the hydrocarbon chains is obtained by using a mathemat

  10. Semiconductor monolayer assemblies with oriented crystal faces

    KAUST Repository

    Ma, Guijun

    2012-01-01

    Fabrication of two-dimensional monolayers of crystalline oxide and oxynitride particles was attempted on glass plate substrates. X-Ray diffraction patterns of the assemblies show only specific crystal facets, indicative of the uniform orientation of the particles on the substrate. The selectivity afforded by this immobilization technique enables the organization of randomly distributed polycrystalline powders in a controlled manner.

  11. Structure of cholesterol/ceramide monolayer mixtures

    DEFF Research Database (Denmark)

    Scheffer, L.; Solomonov, I.; Weygand, M.J.

    2005-01-01

    The structure of monolayers of cholesterol/ ceramide mixtures was investigated using grazing incidence x-ray diffraction, immunofluorescence, and atomic force microscopy techniques. Grazing incidence x-ray diffraction measurements showed the existence of a crystalline mixed phase of the two...

  12. Edge conduction in monolayer WTe2

    Science.gov (United States)

    Fei, Zaiyao; Palomaki, Tauno; Wu, Sanfeng; Zhao, Wenjin; Cai, Xinghan; Sun, Bosong; Nguyen, Paul; Finney, Joseph; Xu, Xiaodong; Cobden, David H.

    2017-07-01

    A two-dimensional topological insulator (2DTI) is guaranteed to have a helical one-dimensional edge mode in which spin is locked to momentum, producing the quantum spin Hall effect and prohibiting elastic backscattering at zero magnetic field. No monolayer material has yet been shown to be a 2DTI, but recently the Weyl semimetal WTe2 was predicted to become a 2DTI in monolayer form if a bulk gap opens. Here, we report that, at temperatures below about 100 K, monolayer WTe2 does become insulating in its interior, while the edges still conduct. The edge conduction is strongly suppressed by an in-plane magnetic field and is independent of gate voltage, save for mesoscopic fluctuations that grow on cooling due to a zero-bias anomaly, which reduces the linear-response conductance. Bilayer WTe2 also becomes insulating at low temperatures but does not show edge conduction. Many of these observations are consistent with monolayer WTe2 being a 2DTI. However, the low-temperature edge conductance, for contacts spacings down to 150 nm, never reaches values higher than ~20 μS, about half the predicted value of e2/h, suggesting significant elastic scattering in the edge.

  13. Adsorption of Ions at Uncharged Insoluble Monolayers

    Science.gov (United States)

    Peshkova, T. V.; Minkov, I. L.; Tsekov, R.; Slavchov, R. I.

    2016-08-01

    A method is proposed for the experimental determination of the adsorption of inorganic electrolytes at a surface covered with insoluble surfactant monolayer. This task is complicated by the fact that the change of the salt concentration alters both chemical potentials of the electrolyte and the surfactant. Our method resolves the question by combining data for the surface pressure versus area of the monolayer at several salt concentrations with data for the equilibrium spreading pressure of crystals of the surfactant (used to fix a standard state). We applied the method to alcohols spread at the surface of concentrated halide solutions. The measured salt adsorption is positive and has nonmonotonic dependence on the area per surfactant molecule. For the liquid expanded film, depending on the concentration, there is one couple of ions adsorbed per each 3–30 surfactant molecules. We analyzed which ion, the positive or the negative, stands closer to the surface, by measuring the effect of NaCl on the Volta potential of the monolayer. The potentiometric data suggest that Na+ is specifically adsorbed, while Cl– remains in the diffuse layer, i.e., the surface is positively charged. The observed reverse Hofmeister series of the adsorptions of NaF, NaCl, and NaBr suggests the same conclusion holds for all these salts. The force that causes the adsorption of Na+ seems to be the interaction of the ion with the dipole moment of the monolayer.

  14. Penetration of lipid monolayers by psychoactive drugs

    NARCIS (Netherlands)

    Demel, R.A.; Deenen, L.L.M. van

    1966-01-01

    The ability of a number of psychoactive drugs to penetrate lipid monolayers of varying composition was examined, and the following observation were made: (1) The increase in surface pressure of a monomolecular film appeared to depend on the chemical nature of the lipid as well as on the initial film

  15. Molecular diffusion in monolayer and submonolayer nitrogen

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    2001-01-01

    The orientational and translational motions in a monolayer fluid of physisorbed molecular nitrogen are treated using molecular dynamics simulations. Dynamical response functions and several approximations to the coefficient of translational diffusion are determined for adsorption on the basal pla...... where the ballistic approximation to the translational molecular self-correlation function is accurate....

  16. Optical properties of II-VI semiconductor nanoclusters for use as phosphors

    Science.gov (United States)

    Wilcoxon, Jess P.; Newcomer, Paula

    2002-11-01

    The optical properties of both II-VI (direct gap) and type IV (indirect gap) nanosize semiconductors are significantly affected not only by their size, but by the nature of the chemical interface of the cluster with the embedding medium. This affects the light conversion efficiency and can alter the shape and position (i.e. the color) of the photoluminescence (PL). As the goal of our work is to embed nanoclusters into either organic or inorganic matrices for use as near UV, LED-excited phosphor thin films, understanding and controlling this interface is very important for preserving the high Q.E. of nanoclusters known for dilute solution conditions. We describe a room temperature synthesis of semiconductor nanoclusters which employs inexpensive, less toxic ionic precursors (metal salts), and simple coordinating solvents (e.g. tetrahydrofuran). This allows us to add passivating agents, ions, metal or semiconductor coatings to identical, highly dispersed bare clusters, post-synthesis. We can also increase the cluster size by heterogeneous growth on the seed nanoclusters. One of the most interesting observations for our II-VI nanomaterials is that both the absorbance excitonic features and the photoluminescence (PL) energy and intensity depend on the nature of the surface as well as the average size. In CdS, for example, the presence of electron traps (i.e Cd(II) sites) decreases the exciton absorbance peak amplitude but increases the PL nearly two-fold. Hole traps (i.e. S(II)) have the opposite effect. In the coordinating solvents used for the synthesis, the PL yield for d~2 nm, blue emitting CdSe clusters increases dramatically with sample age as the multiple absorbance features sharpen. Liquid chromatographic (LC) separation of the nanoclusters from other chemicals and different sized clusters is used to investigate the intrinsic optical properties of the purified clusters and identify which clusters are contributing most strongly to the PL. Both LC and dynamic

  17. Visualization of BRI1 and SERK3/BAK1 Nanoclusters in Arabidopsis Roots

    Science.gov (United States)

    van Esse, Wilma; Nolles, Antsje; Bücherl, Christoph A.; de Vries, Sacco C.; Hohlbein, Johannes; Borst, Jan Willem

    2017-01-01

    Brassinosteroids (BRs) are plant hormones that are perceived at the plasma membrane (PM) by the ligand binding receptor BRASSINOSTEROID-INSENSITIVE1 (BRI1) and the co-receptor SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASE 3/BRI1 ASSOCIATED KINASE 1 (SERK3/BAK1). To visualize BRI1-GFP and SERK3/BAK1-mCherry in the plane of the PM, variable-angle epifluorescence microscopy (VAEM) was employed, which allows selective illumination of a thin surface layer. VAEM revealed an inhomogeneous distribution of BRI1-GFP and SERK3/BAK1-mCherry at the PM, which we attribute to the presence of distinct nanoclusters. Neither the BRI1 nor the SERK3/BAK1 nanocluster density is affected by depletion of endogenous ligands or application of exogenous ligands. To reveal interacting populations of receptor complexes, we utilized selective-surface observation—fluorescence lifetime imaging microscopy (SSO-FLIM) for the detection of Förster resonance energy transfer (FRET). Using this approach, we observed hetero-oligomerisation of BRI1 and SERK3 in the nanoclusters, which did not change upon depletion of endogenous ligand or signal activation. Upon ligand application, however, the number of BRI1-SERK3 /BAK1 hetero-oligomers was reduced, possibly due to endocytosis of active signalling units of BRI1-SERK3/BAK1 residing in the PM. We propose that formation of nanoclusters in the plant PM is subjected to biophysical restraints, while the stoichiometry of receptors inside these nanoclusters is variable and important for signal transduction. PMID:28114413

  18. Homogeneously embedded Pt nanoclusters on amorphous titania matrix as highly efficient visible light active photocatalyst material

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vipul; Kumar, Suneel; Krishnan, Venkata, E-mail: vkn@iitmandi.ac.in

    2016-08-15

    A novel and facile technique, based on colloidal synthesis route, has been utilized for the preparation of homogeneously embedded Pt nanoclusters on amorphous titania matrix. The material has been thoroughly characterized using high resolution transmission electron microscopy, energy dispersive x-ray analysis, powder x-ray diffraction, optical and Raman spectroscopic techniques to understand the morphology, structure and other physical characteristics. The photocatalytic activity of the material under visible light irradiation was demonstrated by investigations on the degradation of two organic dyes (methylene blue and rhodamine B). In comparison to other Pt−TiO{sub 2} based nanomaterials (core-shell, doped nanostructures, modified nanotubes, decorated nanospheres and binary nanocomposites), the embedded Pt nanoclusters on titania was found to be highly efficient for visible light active photocatalytic applications. The enhanced catalytic performance could be attributed to the efficient charge separation and decreased recombination of the photo generated electrons and holes at the Pt-titania interface and the availability of multiple metal-metal oxide interfaces due to homogeneous embedment of Pt nanoclusters on amorphous titania. In essence, this work illustrates that homogeneous embedment of noble metal nanoparticles/nanoclusters on semiconductor metal oxide matrices can lead to tuning of the photophysical properties of the final material and eventually enhance its photocatalytic activity. - Highlights: • Homogeneously embedded Pt nanoclusters on amorphous titania matrix has been prepared. • Facile low temperature colloidal synthesis technique has been used. • Enhanced catalytic performance could be observed. • Work can pave way for tuning photocatalytic activity of composite materials.

  19. Heterostructure of Au nanocluster tipping on a ZnS quantum rod: controlled synthesis and novel luminescence

    Science.gov (United States)

    Tian, Yang; Wang, Ligang; Yu, Shanshan; Zhou, Weiwei

    2015-08-01

    Heterostructures of metal nanoparticles and semiconductors are widely studied for their unique properties. However, few reports are available on the heterostructure of metal nanoclusters and semiconductors. In the present study, a heterostructure, in which gold nanoclusters selectively locate at ZnS quantum rod (QR) tips, was fabricated using a two-step solvothermal route. The composition, intrinsic crystallography, and junction of the prepared heterostructure were thoroughly investigated, and it was observed to exhibit novel luminescent behaviours. By comparison with the individual components of ZnS QRs and gold clusters, the resultant heterostructure shows an enhanced exciton emission and complete depression of defect emission for the ZnS component, and a pronounced red emission for the gold nanocluster component. The mechanism of these properties and the charge transfer between gold nanoclusters and ZnS QRs were also explored. The size and location of gold in the heterostructure were also controlled during synthesis to study their effects on the luminescence.

  20. IMS-MS and IMS-IMS investigation of the structure and stability of dimethylamine-sulfuric acid nanoclusters.

    Science.gov (United States)

    Ouyang, Hui; He, Siqin; Larriba-Andaluz, Carlos; Hogan, Christopher J

    2015-03-12

    Recent studies of new particle formation events in the atmosphere suggest that nanoclusters (i.e, the species formed during the early stages of particle growth which are composed of 10(1)-10(3) molecules) may consist of amines and sulfuric acid. The physicochemical properties of sub-10 nm amine-sulfuric acid clusters are hence of interest. In this work, we measure the density, thermostability, and extent of water uptake of dimethylamine-sulfuric (DMAS) nanoclusters in the gas phase, produced via positive electrospray ionization. Specifically, we employ three systems to investigate DMAS properties: ion mobility spectrometry (IMS, with a parallel-plate differential mobility analyzer) is coupled with mass spectrometry to measure masses and collision cross sections for dimethylamine to sulfuric acid originally present in the electrospray solution. IMS-IMS thermostability studies reveal that partial pressures of DMAS nanoclusters are dependent upon the electrospray solution concentration ratio, R = [H2SO4]/[(CH3)2NH]. Extrapolating measurements, we estimate that dry DMAS nanoclusters have surface vapor pressures of order 10(-4) Pa near 300 K, with the surface vapor pressure increasing with increasing values of R through most of the probed concentration range. This suggests that nanocluster surface vapor pressures are substantially enhanced by capillarity effects (the Kelvin effect). Meanwhile, IMS-IMS water uptake measurements show clearly that DMAS nanoclusters uptake water at relative humidities beyond 10% near 300 K, and that larger clusters uptake water to a larger extent. In total, our results suggest that dry DMAS nanoclusters (in the 5-8.5 nm size range in diameter) would not be stable under ambient conditions; however, DMAS nanoclusters would likely be hydrated in the ambient (in some cases above 20% water by mass), which could serve to reduce surface vapor pressures and stabilize them from dissociation.

  1. Self-assembled monolayers of terminal acetylenes as replacements for thiols in bottom-up tunneling junctions

    NARCIS (Netherlands)

    Fracasso, Davide; Kumar, Sumit; Rudolf, Petra; Chiechi, Ryan C.

    2014-01-01

    Why use thiols in Molecular Electronics? They stink, oxidize readily, poison catalysts, and often require nontrivial protection/deprotection chemistry. In this communication we demonstrate the fabrication of tunneling junctions formed by contact of self-assembled monolayers (SAMs) of terminal alkyne

  2. Inter-cluster distance dependence of electrical conduction in nanocluster assembled films of silver: a new paradigm for design of nanostructures

    OpenAIRE

    Bansal, Chandrahas; Praveen, S. G.; Kumaran, J. T. T.; Chatterjee, Ashok

    2015-01-01

    The transport properties of films assembled from metal nanoclusters can be significantly different from the metals in their bulk or thin film forms due to quantum confinement effects and several competing energy and length scales. For a film composed of metal nanoclusters as its building blocks, the cluster size and the inter-cluster separation are parameters that can be varied experimentally. Here we show that the electrical conductivity of a film composed of silver nanoclusters can be chang...

  3. High quality and large-scale manually operated monolayer graphene pasters

    Science.gov (United States)

    Wei, Yuke; Zhang, Yan; Liu, Zhenghao; Wang, Yue; Ke, Fen; Meng, Jie; Guo, Yanjun; Ma, Ping; Feng, Qingrong; Gan, Zizhao

    2014-07-01

    Graphene is a well-known material with various potential applications. Here we report the manufacture of high-quality and large-scale monolayer graphene pasters via polyvinyl butyral (PVB). These pasters have good self-supporting properties and overcome the drawback of weak mechanical strength of PMMA. Manual manipulations to monolayer graphene become realizable via graphene pasters. Graphene pasters can be quickly diverted onto any substrate with sufficient contact and greatly minimize the challenges in graphene transfer, measurements, and other applications. The improved transfer process via graphene pasters protects the integrity of monolayer graphene and introduces few cracks or tears into graphene. Large-scale monolayer graphene films diverted onto SiO2/Si by using graphene pasters maintain low resistivity and low Dirac point, while also exhibiting a higher magnetoresistance than traditional results. High magnetoresistance up to 600% and signs of saturation at high magnetic fields can be seen. Obvious negative magnetoresistance at low magnetic fields due to weak localization also can be observed. Graphene pasters can be used in many different domains and will promote future studies and applications of graphene.

  4. Improving Performance of InGaN/GaN Light-Emitting Diodes and GaAs Solar Cells Using Luminescent Gold Nanoclusters

    Directory of Open Access Journals (Sweden)

    M. D. Yang

    2009-01-01

    Full Text Available We studied the optoelectronic properties of the InGaN/GaN multiple-quantum-well light emitting diodes (LEDs and single-junction GaAs solar cells by introducing the luminescent Au nanoclusters. The electroluminescence intensity for InGaN/GaN LEDs increases after incorporation of the luminescent Au nanoclusters. An increase of 15.4% in energy conversion efficiency is obtained for the GaAs solar cells in which the luminescent Au nanoclusters have been incorporated. We suggest that the increased light coupling due to radiative scattering from nanoclusters is responsible for improving the performance of the LEDs and solar cells.

  5. Antibacterial silver nanocluster/silica composite coatings on stainless steel

    Science.gov (United States)

    Ferraris, M.; Perero, S.; Ferraris, S.; Miola, M.; Vernè, E.; Skoglund, S.; Blomberg, E.; Odnevall Wallinder, I.

    2017-02-01

    A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel surface compared with a control surface. The antibacterial coating retained its antibacterial activity after thermal treatment up to 450 °C and after soaking in common cleaning products for stainless steel surfaces used for e.g. food applications. The antibacterial capacity of the coating remained at high levels for 1-5 days, and showed a good capacity to reduce the adhesion of bacteria up to 30 days. Only a few

  6. Epitaxial growth by monolayer restricted galvanic displacement

    Directory of Open Access Journals (Sweden)

    Vasilić Rastko

    2012-01-01

    Full Text Available The development of a new method for epitaxial growth of metals in solution by galvanic displacement of layers pre-deposited by underpotential deposition (UPD was discussed and experimentally illustrated throughout the lecture. Cyclic voltammetry (CV and scanning tunneling microscopy (STM are employed to carry out and monitor a “quasi-perfect”, two-dimensional growth of Ag on Au(111, Cu on Ag(111, and Cu on Au(111 by repetitive galvanic displacement of underpotentially deposited monolayers. A comparative study emphasizes the displacement stoichiometry as an efficient tool for thickness control during the deposition process and as a key parameter that affects the deposit morphology. The excellent quality of layers deposited by monolayer-restricted galvanic displacement is manifested by a steady UPD voltammetry and ascertained by a flat and uniform surface morphology maintained during the entire growth process.

  7. Transport measurement of Li doped monolayer graphene

    Science.gov (United States)

    Khademi, Ali; Sajadi, Ebrahim; Dosanjh, Pinder; Folk, Joshua; Stöhr, Alexander; Forti, Stiven; Starke, Ulrich

    Lithium adatoms on monolayer graphene have been predicted to induce superconductivity with a critical temperature near 8 K, and recent experimental evidence by ARPES indicates a critical temperature nearly that high. Encouraged by these results, we investigated the effects of lithium deposited at cryogenic temperatures on the electronic transport properties of epitaxial and CVD monolayer graphene down to 3 K. The change of charge carrier density due to Li deposition was monitored both by the gate voltage shift of the Dirac point and by Hall measurements, in low and high doping regimes. In the high doping regime, a saturation density of 2×1013 cm-2 was observed independent of sample type, initial carrier density and deposition conditions. No signatures of superconductivity were observed down to 3 K.

  8. Fracture Characteristics of Monolayer CVD-Graphene

    Science.gov (United States)

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-03-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized.

  9. Atomic structure of a peptide coated gold nanocluster identified using theoretical and experimental studies.

    Science.gov (United States)

    Wang, Hui; Li, Xu; Gao, Liang; Zhai, Jiao; Liu, Ru; Gao, Xueyun; Wang, Dongqi; Zhao, Lina

    2016-06-02

    Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio

  10. Monolayer solid of N-2/Ag(111)

    DEFF Research Database (Denmark)

    Bruch, L.W.; Hansen, Flemming Yssing

    1998-01-01

    An incommensurate monolayer solid of N-2/Ag(111) is modeled using extensive molecular-dynamics simulations. The conditions treated range from the low-temperature orientationally ordered solid to the melting of the solid. The properties are evaluated as a function of spreading pressure. Comparison...... is made to recent experimental data for N-2/Ag(111) and to results for N-2 adsorbed on graphite. Cu(110), and MgO(001). [S0163-1829(98)02715-5]....

  11. Elasticity of a quantum monolayer solid

    DEFF Research Database (Denmark)

    Bruch, Ludwig Walter

    1992-01-01

    A perturbation-theory formulation of the zero-temperature elastic constants is used to verify symmetry relations for a (monolayer) triangluar lattice. A generalization of the Cauchy relation between the two elastic constants of the triangular lattice with central-pair-potential interactions is gi...... is given for the quantum solid. The first-order quantum corrections are rederived in this formalism, and previous calculations are reanalyzed....

  12. Strain mapping in a graphene monolayer nanocomposite.

    Science.gov (United States)

    Young, Robert J; Gong, Lei; Kinloch, Ian A; Riaz, Ibtsam; Jalil, Rashed; Novoselov, Kostya S

    2011-04-26

    Model composite specimens have been prepared consisting of a graphene monolayer sandwiched between two thin layers of polymer on the surface of a poly(methyl methacrylate) beam. It has been found that well-defined Raman spectra can be obtained from the single graphene atomic layer and that stress-induced Raman band shifts enable the strain distribution in the monolayer to be mapped with a high degree of precision. It has been demonstrated that the distribution of strain across the graphene monolayer is relatively uniform at levels of applied strain up to 0.6% but that it becomes highly nonuniform above this strain. The change in the strain distributions has been shown to be due to a fragmentation process due to the development of cracks, most likely in the polymer coating layers, with the graphene remaining intact. The strain distributions in the graphene between the cracks are approximately triangular in shape, and the interfacial shear stress in the fragments is only about 0.25 MPa, which is an order of magnitude lower than the interfacial shear stress before fragmentation. This relatively poor level of adhesion between the graphene and polymer layers has important implications for the use of graphene in nanocomposites, and methods of strengthening the graphene-polymer interface are discussed.

  13. Grafted silane monolayers: reconsideration of growth mechanisms

    Science.gov (United States)

    Ivanov, D. A.; Nysten, B.; Jonas, A. M.; Legras, R.

    1998-03-01

    Chemical force microscopy is a new technique devised to image chemical heterogeneities on surfaces. It requires the chemical modification of Atomic Force Microscopy (AFM) tips in order to create chemical probes. In this respect, self-assembled monolayers (SAM) of alkylchlorosilanes are particularly interesting as modifying agents for AFM tips. We report here our results on the kinetics of silanization and on the structure of such SAM's grafted on model surfaces (hydroxylated Si(100) wafers). AFM, contact angle measurements, X-ray reflectivity and X-ray photoelectron spectroscopy were used to characterize SAM's of octadecyltrichlorosilane (OTS) and octadecyldimethylchlorosilane (ODMS) grown from hexadecane and toluene solutions. The mechanism of grafting of OTS follows two stages. The first rapid stage corresponds to the nucleation and growth of island-like monolayer domains. The second slower stage is related to the densification of the monolayer. SAM's of ODMS were found to form thinner layers as compared to OTS, due to their lower grafting density probably resulting in a more disordered state of grafted alkyl chains. We also address the problems concerning the relationships between the quality of final SAM structures and the water content as well as the nature of the solvent used for silanization.

  14. Janus monolayers of transition metal dichalcogenides

    KAUST Repository

    Lu, Ang-Yu

    2017-05-15

    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

  15. Investigation on gallium ions impacting monolayer graphene

    Directory of Open Access Journals (Sweden)

    Xin Wu

    2015-06-01

    Full Text Available In this paper, the physical phenomena of gallium (Ga+ ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC and molecular dynamics (MD simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga+ ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga+ ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm2. Afterwards, the focused ion beam over 21.6 ion/nm2 is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.

  16. Investigation on gallium ions impacting monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xin; Zhao, Haiyan, E-mail: hyzhao@tsinghua.edu.cn; Yan, Dong; Pei, Jiayun [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. Chinaand Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-06-15

    In this paper, the physical phenomena of gallium (Ga{sup +}) ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC) and molecular dynamics (MD) simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga{sup +} ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga{sup +} ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm{sup 2}. Afterwards, the focused ion beam over 21.6 ion/nm{sup 2} is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.

  17. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  18. Emergence of complex chemistry on an organic monolayer.

    Science.gov (United States)

    Prins, Leonard J

    2015-07-21

    In many origin-of-life scenarios, inorganic materials, such as FeS or mineral clays, play an important role owing to their ability to concentrate and select small organic molecules on their surface and facilitate their chemical transformations into new molecules. However, considering that life is made up of organic matter, at a certain stage during the evolution the role of the inorganic material must have been taken over by organic molecules. How this exactly happened is unclear, and, indeed, a big gap separates the rudimentary level of organization involving inorganic materials and the complex organization of cells, which are the building blocks of life. Over the past years, we have extensively studied the interaction of small molecules with monolayer-protected gold nanoparticles (Au NPs) for the purpose of developing innovative sensing and catalytic systems. During the course of these studies, we realized that the functional role of this system is very similar to that typically attributed to inorganic surfaces in the early stages of life, with the important being difference that the functional properties (molecular recognition, catalysis, signaling, adaptation) originate entirely from the organic monolayer rather than the inorganic support. This led us to the proposition that this system may serve as a model that illustrates how the important role of inorganic surfaces in dictating chemical processes in the early stages of life may have been taken over by organic matter. Here, we reframe our previously obtained results in the context of the origin-of-life question. The following functional roles of Au NPs will be discussed: the ability to concentrate small molecules and create different local populations, the ability to catalyze the chemical transformation of bound molecules, and, finally, the ability to install rudimentary signaling pathways and display primitive adaptive behavior. In particular, we will show that many of the functional properties of the system

  19. Atomic structure of a peptide coated gold nanocluster identified using theoretical and experimental studies

    Science.gov (United States)

    Wang, Hui; Li, Xu; Gao, Liang; Zhai, Jiao; Liu, Ru; Gao, Xueyun; Wang, Dongqi; Zhao, Lina

    2016-06-01

    Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio

  20. Functional monolayers for direct electrical biosensing

    Science.gov (United States)

    Clare, Tami Lasseter

    Frequency-dependent electrochemical impedance spectroscopy has been used to characterize changes in electrical response that accompany specific binding of a protein to its substrate, using the biotin-avidin system as a model. This thesis work shows that avidin, at concentrations in the nanomolar range, can be detected electrically in a completely label-free manner under conditions of zero average current flow and without the use of any auxiliary redox agents. Electrical circuit modeling of the interface was used to relate the frequency-dependent electrical response to the physical picture of the interface before and after avidin binding. The interaction of proteins with semiconductors such as silicon and diamond is of great interest for applications such as electronic biosensing. Investigations into the use of covalently bound oligo(ethylene glycol), EG, monolayers on diamond and silicon to minimize nonspecific protein adsorption were conducted. Protein adsorption was monitored by fluorescence scanning as a function the length of the ethylene glycol chain (EG3 through EG6) and the terminal functional group (methyl- versus hydroxyl-terminated EG3 monolayer). More quantitative measurements were made by eluting adsorbed avidin from the surface and measuring the intensity of fluorescence in the solution. This thesis work shows that high quality EG monolayers are formed on silicon and diamond and that these EG3 monolayers are as effective as EG3 self-assembled monolayers on gold at resisting nonspecific avidin adsorption. These results show promise for use of silicon and diamond materials in many potential applications such as biosensing and medical implants. Substrate roughness is shown to play a role in nonspecific protein adsorption, where carbon-based surfaces having features less than approximately 5 nm, are highly resistant to protein adsorption. Functionalization of the surfaces with hexaethylene glycol confers additional resistance to protein adsorption. These

  1. Monolayer film behavior of lipopolysaccharide from Pseudomonas aeruginosa at the air-water interface.

    Science.gov (United States)

    Abraham, Thomas; Schooling, Sarah R; Beveridge, Terry J; Katsaras, John

    2008-10-01

    Lipopolysaccharide (LPS) is an essential biomacromolecule making up approximately 50% of the outer membrane of gram-negative bacteria. LPS chemistry facilitates cellular barrier and permeability functions and mediates interactions between the cell and its environment. To better understand the local interactions within LPS membranes, the monolayer film behavior of LPS extracted from Pseudomonas aeruginosa, an opportunistic pathogen of medical importance, was investigated by Langmuir film balance. LPS formed stable monolayers at the air-water interface and the measured lateral stresses and modulus (rigidity) of the LPS film in the compressed monolayer region were found to be appreciable. Scaling theories for two-dimensional (2D) polymer chain conformations were used to describe the pi-A profile, in particular, the high lateral stress region suggested that the polysaccharide segments reside at the 2D air-water interface. Although the addition of monovalent and divalent salts caused LPS molecules to adopt a compact conformation at the air-water interface, they did not appear to have any influence on the modulus (rigidity) of the LPS monolayer film under biologically relevant stressed conditions. With increasing divalent salt (CaCl2) content in the subphase, however, there is a progressive reduction of the LPS monolayer's collapse pressure, signifying that, at high concentrations, divalent salts weaken the ability of the membrane to withstand elevated stress. Finally, based on the measured viscoelastic response of the LPS films, we hypothesize that this property of LPS-rich outer membranes of bacteria permits the deformation of the membrane and may consequently protect bacteria from catastrophic structural failure when under mechanical-stress.

  2. Modulation of magnetic anisotropy through self-assembled surface nanoclusters: Evolution of morphology and magnetism in Co-Pd alloy films

    Science.gov (United States)

    Hsu, Chuan-Che; Chiu, Hsiang-Chih; Mudinepalli, Venkata Ramana; Chen, Yu-Chuan; Chang, Po-Chun; Wu, Chun-Te; Yen, Hung-Wei; Lin, Wen-Chin

    2017-09-01

    In this study, the self-assembly of surface nanoclusters on 10-20-nm-thick Co50Pd50 (Co-Pd) alloy thin films deposited on the Al2O3(0001) substrate was systematically investigated. The time-dependent evolution of the nanocluster size and magnetic properties was monitored using an atomic force microscope (AFM) and the magneto-optical Kerr effect. When the Co-Pd alloy films were stored in an ambient environment, small nanodots gradually gathered to form large nanoclusters. Approximately 30 days after growth, a nanocluster array formed with an average lateral size of 100 ± 20 nm and average height of 10 ± 3 nm. After 100 days, the average lateral size and average height had increased to 140 ± 20 and 25 ± 5 nm, respectively. The AFM phase image exhibited a structured contrast on the nanocluster surface, indicating the nonuniform stiffness distribution of the nanoclusters. A microscopic Auger spectroscopy measurement suggested that in contrast to the Pd-rich signal in the flat area, the nanoclusters were cobalt- and oxygen-rich areas. Cross-sectional investigation through transmission electron microscopy coupled with energy dispersive spectroscopy showed that the nanoclusters were mostly composed of Co oxide. A uniform Pd-rich underlayer had been maintained underneath the self-assembled Co-oxide nanoclusters. With the formation of a Co-oxide nanocluster array and Pd-rich underlayer, the magnetic easy axis of the Co-Pd film gradually altered its direction from the pristine perpendicular to in-plane direction. Because of the change in the magnetic easy axis, the hydrogenation-induced spin-reorientation transition was suppressed with the evolution of the surface Co-oxide nanoclusters.

  3. Argon Nanoclusters with Fivefold Symmetry in Supersonic Gas Jets and Superfluid Helium

    Science.gov (United States)

    Danylchenko, O. G.; Boltnev, R. E.; Khmelenko, V. V.; Kiryukhin, V.; Konotop, O. P.; Lee, D. M.; Krainyukova, N. V.

    2017-04-01

    In this study argon nanoclusters (800 to ˜ 6500 atoms) formed in supersonic gas jets are compared to the nanoclusters stabilized in superfluid helium. High-energy electron and X-ray diffraction methods are utilized. Both techniques allow investigation of isolated clusters. It is shown that the theoretical prediction of the so-called multiply twinned particles with fivefold symmetry, such as icosahedra (ico) and decahedra (dec) is valid in the investigated cluster size interval. Around the point of the expected ico-to-dec size-dependent transformation at a cluster size of ˜ 2000 atoms, hexagonal ico and the statistical distribution of structures with a tendency for dec to replace ico are observed. Kinetic reasons, as well as temperature-related effects, could be responsible for the latter observations.

  4. Purine-stabilized green fluorescent gold nanoclusters for cell nuclei imaging applications.

    Science.gov (United States)

    Venkatesh, V; Shukla, Akansha; Sivakumar, Sri; Verma, Sandeep

    2014-02-12

    We report facile one-pot synthesis of water-soluble green fluorescent gold nanoclusters (AuNCs), capped with 8-mercapto-9-propyladenine. The synthesized AuNCs were characterized by Fourier transform infrared (FTIR), powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), (1)H NMR, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. These nanoclusters show high photostability and biocompatibility. We observed that AuNCs stain cell nuclei with high specificity, where the mechanism of AuNC uptake was established through pathway-specific uptake inhibitors. These studies revealed that cell internalization of AuNCs occurs via a macropinocytosis pathway.

  5. Mechanism of the formation of metal nanoclusters during pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pushkin, M.A. [Moscow Engineering Physics Institute, 31 Kashirskoe chausse, 115409 Moscow (Russian Federation); Lebid' ko, V.V. [Moscow Engineering Physics Institute, 31 Kashirskoe chausse, 115409 Moscow (Russian Federation); Borman, V.D. [Moscow Engineering Physics Institute, 31 Kashirskoe chausse, 115409 Moscow (Russian Federation); Tronin, V.N. [Moscow Engineering Physics Institute, 31 Kashirskoe chausse, 115409 Moscow (Russian Federation); Troyan, V.I. [Moscow Engineering Physics Institute, 31 Kashirskoe chausse, 115409 Moscow (Russian Federation); Smurov, I. [Ecole Nationale d' Ingenieurs de Saint Etienne, 58 rue Jean Parot, 42023 St-Etienne (France)]. E-mail: smurov@enise.fr

    2006-04-30

    The geometrical structure of Au, Ni, Co and Cr nanoclusters self-assembled on NaCl and HOPG surfaces under pulsed laser deposition (PLD) has been experimentally investigated. The PLD technique is characterized by an extremely high instantaneous deposition rate. Unlike for the thermal evaporation (TE) process, formation of fractal nanoclusters under PLD conditions has been observed with scanning tunneling microscopy (STM). The driving mechanism for this phenomenon occurring at high deposition rate is thought to be the evolution of the initial interacting-adatom states in a system far from thermodynamic equilibrium. The obtained results can be explained by proposing a new mechanism of condensed phase formation under the conditions of strong deviation from thermodynamic equilibrium.

  6. Magnetic properties of transition-metal nanoclusters on a biological substrate

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsdoeerfer, T. [Institut Hochfeld-Magnetlabor Dresden (HLD), Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany)]. E-mail: T.Herrmannsdoerfer@fz-rossendorf.de; Bianchi, A.D. [Institut Hochfeld-Magnetlabor Dresden (HLD), Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Papageorgiou, T.P. [Institut Hochfeld-Magnetlabor Dresden (HLD), Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Pobell, F. [Institut Hochfeld-Magnetlabor Dresden (HLD), Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Wosnitza, J. [Institut Hochfeld-Magnetlabor Dresden (HLD), Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Pollmann, K. [Institut fuer Radiochemie, Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Merroun, M. [Institut fuer Radiochemie, Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Raff, J. [Institut fuer Radiochemie, Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Selenska-Pobell, S. [Institut fuer Radiochemie, Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany)

    2007-03-15

    We have investigated the magnetic properties of transition-metal clusters with a single grain size of about 1 nm. These metallic nanoclusters have been deposed on a biological substrate. This substrate is a purified self-assembling paracrystalline surface layer (S-layer) of the Bacillus sphaericus strain JG-A12, which exhibits square symmetry and is composed of identical protein monomers. First data of the magnetic susceptibility, taken in a SQUID magnetometer at 0nanoclusters is dramatically reduced compared to the one of the corresponding bulk transition metals. The weakened magnetism of the 5d electrons is considered to play a crucial role for the occurrence of superconductivity in microgranular Pt by adjusting the balance between electron-phonon interactions and competing magnetic interactions.

  7. Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles.

    Science.gov (United States)

    Wen, Fangfang; Ye, Jian; Liu, Na; Van Dorpe, Pol; Nordlander, Peter; Halas, Naomi J

    2012-09-12

    Planar clusters of coupled plasmonic nanoparticles support nanoscale electromagnetic "hot spots" and coherent effects, such as Fano resonances, with unique near and far field signatures, currently of prime interest for sensing applications. Here we show that plasmonic cluster properties can be substantially modified by the addition of individual, discrete dielectric nanoparticles at specific locations on the cluster, introducing new plasmon modes, or transmuting existing plasmon modes to new ones, in the resulting metallodielectric nanocomplex. Depositing a single carbon nanoparticle in the junction between a pair of adjacent nanodisks induces a metal-dielectric-metal quadrupolar plasmon mode. In a ten-membered cluster, placement of several carbon nanoparticles in junctions between multiple adjacent nanoparticles introduces a collective magnetic plasmon mode into the Fano dip, giving rise to an additional subradiant mode in the metallodielectric nanocluster response. These examples illustrate that adding dielectric nanoparticles to metallic nanoclusters expands the number and types of plasmon modes supported by these new mixed-media nanoscale assemblies.

  8. Silver nanocluster/silica composite coatings obtained by sputtering for antibacterial applications

    Science.gov (United States)

    Ferraris, M.; Balagna, C.; Perero, S.; Miola, M.; Ferraris, S.; Baino, F.; Battiato, A.; Manfredotti, C.; Vittone, E.; Vernè, E.

    2012-09-01

    Silver nanocluster silica composite coatings were deposited by radio frequency co-sputtering technique on several substrates. This versatile method allows tailoring of silver content and antibacterial behaviour of coatings deposited on glasses, ceramics, metals and polymers for several applications. Coating morphology and composition as well as nanocluster size were analyzed by means of UV-Visible absorption, X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), electron dispersive spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM). The antibacterial effect was verified through the inhibition halo test against standard bacterial strain, Staphylococcus aureus, before and after sterilization process. Tape test demonstrated a good adhesion of the coatings to the substrates.

  9. Observation of gold sub-nanocluster nucleation within a crystalline protein cage

    Science.gov (United States)

    Maity, Basudev; Abe, Satoshi; Ueno, Takafumi

    2017-03-01

    Protein scaffolds provide unique metal coordination environments that promote biomineralization processes. It is expected that protein scaffolds can be developed to prepare inorganic nanomaterials with important biomedical and material applications. Despite many promising applications, it remains challenging to elucidate the detailed mechanisms of formation of metal nanoparticles in protein environments. In the present work, we describe a crystalline protein cage constructed by crosslinking treatment of a single crystal of apo-ferritin for structural characterization of the formation of sub-nanocluster with reduction reaction. The crystal structure analysis shows the gradual movement of the Au ions towards the centre of the three-fold symmetric channels of the protein cage to form a sub-nanocluster with accompanying significant conformational changes of the amino-acid residues bound to Au ions during the process. These results contribute to our understanding of metal core formation as well as interactions of the metal core with the protein environment.

  10. Formation of aligned CrN nanoclusters in Cr-delta-doped GaN

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y K; Kimura, S; Emura, S; Hasegawa, S; Asahi, H [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)], E-mail: zhou21@sanken.osaka-u.ac.jp

    2009-02-11

    Cr-delta-doped GaN layers were grown by radio-frequency plasma-assisted molecular-beam epitaxy on GaN template substrates. Cr flux was supplied without nitrogen flow during Cr-delta-doping. Cr incorporation into a narrow thin layer region was confirmed with the depth profile measured by secondary ion mass spectrometry. Structural properties and Cr atom alignments were studied with transmission electron microscopy. It was found that Cr-delta-doped GaN layers were coherently grown with Cr or CrGa nanoclusters in the delta-doped region for low temperature growth (350, 500 deg. C). It was also found that aligned CrN nanoclusters (approximately 5 nm vertical thickness) with NaCl-type structure were formed in the delta-doped region for the growth at 700 deg. C.

  11. Absorption Spectra of CuGaSe 2 and CuInSe 2 Semiconducting Nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2015-10-01

    The structural and optical properties of the chalcopyrite CunGanSe2n and CunInnSe2n nanoclusters (n = 2, 4, 6, and 8) are investigated as a function of the size using a combination of basin-hopping global optimization and time-dependent density functional theory. Although the lowest energy structures are found to show almost random geometries, the band gaps and absorption spectra still are subject to systematic blue shifts for decreasing cluster size in the case of CunGanSe2n, indicating strong electron confinement. The applicability of the nanoclusters in photovoltaics is discussed. © 2015 American Chemical Society.

  12. Surface induced magnetization reversal of MnP nanoclusters embedded in GaP

    Science.gov (United States)

    Lacroix, Christian; Lambert-Milot, Samuel; Desjardins, Patrick; Masut, Remo A.; Ménard, David

    2016-03-01

    We investigate the quasi-static magnetic behavior of ensembles of ferromagnetic nanoparticles consisting of MnP nanoclusters embedded in GaP(001) epilayers grown at 600, 650, and 700 °C. We use a phenomenological model, in which surface effects are included, to reproduce the experimental hysteresis curves measured as a function of temperature (120-260 K) and direction of the applied field. The slope of the hysteresis curve during magnetization reversal is determined by the MnP nanoclusters size distribution, which is a function of the growth temperature. Our results show that the coercive field is very sensitive to the strength of the surface anisotropy, which reduces the energy barrier between the two states of opposite magnetization. Notably, this reduction in the energy barrier increases by a factor of 3 as the sample temperature is lowered from 260 to 120 K.

  13. Observation of gold sub-nanocluster nucleation within a crystalline protein cage

    Science.gov (United States)

    Maity, Basudev; Abe, Satoshi; Ueno, Takafumi

    2017-01-01

    Protein scaffolds provide unique metal coordination environments that promote biomineralization processes. It is expected that protein scaffolds can be developed to prepare inorganic nanomaterials with important biomedical and material applications. Despite many promising applications, it remains challenging to elucidate the detailed mechanisms of formation of metal nanoparticles in protein environments. In the present work, we describe a crystalline protein cage constructed by crosslinking treatment of a single crystal of apo-ferritin for structural characterization of the formation of sub-nanocluster with reduction reaction. The crystal structure analysis shows the gradual movement of the Au ions towards the centre of the three-fold symmetric channels of the protein cage to form a sub-nanocluster with accompanying significant conformational changes of the amino-acid residues bound to Au ions during the process. These results contribute to our understanding of metal core formation as well as interactions of the metal core with the protein environment. PMID:28300064

  14. Poly thymine stabilized copper nanoclusters as a fluorescence probe for melamine sensing.

    Science.gov (United States)

    Zhu, Hong-Wei; Dai, Wen-Xia; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2015-11-01

    In this work, poly-thymine stabilized copper nanoclusters have been used as a fluorescence probe for melamine sensing for the first time. Melamine can bind to thymine through hydrogen bond, which could dramatically enhance the fluorescence intensity of poly-thymine stabilized copper nanoclusters. The enhancement factors (I-I0)/I0 increase linearly with the lgCmelamine over the melamine concentration range of 0.1 µM to 6 µM. The detection limit of melamine is 95 nM, which is 200 times lower than the US Food and Drug Administration estimate melamine safety limit 20 µM. Melamine in milk was detected with good recovery, which suggested that this novel fluorescence probe has great potential in practical application.

  15. Papain-directed synthesis of luminescent gold nanoclusters and the sensitive detection of Cu2+.

    Science.gov (United States)

    Chen, Yang; Wang, Yan; Wang, Chuanxi; Li, Wenying; Zhou, Huipeng; Jiao, Huping; Lin, Quan; Yu, Cong

    2013-04-15

    Highly fluorescent papain stabilized gold nanoclusters (NCs) have been synthesized through a simple wet chemical route. Papain was used for the first time as an effective capping and reducing agent for these clusters. The optimal conditions for the synthesis of the gold nanoclusters, including the concentrations of papain and NaOH, reaction time and temperature, were investigated. The as-prepared Au clusters show intense red emission at ∼660nm (QY ∼4.3%) and are uniform in size. The clusters are quite stable and the intense red emission remained unchanged at a buffer pH range of 6-12. The fluorescent Au NCs were then used as a label-free probe for the sensitive detection of Cu(2+). A limit of detection of 3nM was obtained. The sensing strategy is also highly selective against the various potential interference ions.

  16. Synthesis, characterization, and growth simulations of Cu–Pt bimetallic nanoclusters

    Directory of Open Access Journals (Sweden)

    Subarna Khanal

    2014-08-01

    Full Text Available Highly monodispersed Cu–Pt bimetallic nanoclusters were synthesized by a facile synthesis approach. Analysis of transmission electron microscopy (TEM and spherical aberration (Cs-corrected scanning transmission electron microscopy (STEM images shows that the average diameter of the Cu–Pt nanoclusters is 3.0 ± 1.0 nm. The high angle annular dark field (HAADF-STEM images, intensity profiles, and energy dispersive X-ray spectroscopy (EDX line scans, allowed us to study the distribution of Cu and Pt with atomistic resolution, finding that Pt is embedded randomly in the Cu lattice. A novel simulation method is applied to study the growth mechanism, which shows the formation of alloy structures in good agreement with the experimental evidence. The findings give insight into the formation mechanism of the nanosized Cu–Pt bimetallic catalysts.

  17. Electrochemical metallization of self-assembled porphyrin monolayers.

    Science.gov (United States)

    Nann, Thomas; Kielmann, Udo; Dietrich, Christoph

    2002-04-01

    Multifunctional sensor systems are becoming increasingly important in electroanalytical chemistry. Together with ongoing miniaturization there is a need for micro- and nanopatterning tools for thin electroactive layers (e.g. self-assembling monolayers). This paper documents a method for production of a micro-array of different metal-porphyrin monolayers with different sensor properties. A new method has been developed for the selective and local metallization of bare porphyrin monolayers by cathodic pulsing and sweeping. The metal-porphyrin monolayers obtained were characterized by cyclic voltammetry. It was shown that porphyrin monolayers can be metallized with manganese, iron, cobalt, and nickel by use of the new method. It is expected that all types of metal-porphyrin monolayers can be produced in the same manner.

  18. Controlled crystallization of hydroxyapatite under hexadecylamine self-assembled monolayer

    Institute of Scientific and Technical Information of China (English)

    黄苏萍; 周科朝; 刘咏; 黄伯云

    2003-01-01

    The role of self-assembled monolayer in inducing the crystal growth was investigated by X-ray diffractions (XRD), and scanning electron microscopy (SEM). Results show that crystallization in the absence of monolayer results in a mixture of poorly crystallized calcium phosphates, including hydroxyapatite (HAP) and octacalcium phosphate (OCP), while the presence of self-assembled monolayer gives rise to oriented and well crystallized HAP crystals. Moreover, the HAP crystal grows very quickly under the self-assembled monolayer, whereas very little calcium phosphate crystals grow without the monolayer. It is rationalized that the hexadecylamine monolayer with high polarity and charged density leads to increase supersaturation and lower the interfacial energy, which attributes to the HAP crystals nucleation. On the other hand, the positive headgroups construct the ordered "recognized site" with distinct size and topology, which results in the oriented HAP crystals deposit.

  19. ELASTICITY OF MONOLAYER OF LINOLEIC ACID AND ITS POLYMER

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The dynamic elasticity of linoleic acid monolayer on a subphase of 10-4mol/L TbCla at various surface pressure has been measured by means of dynamic oscillation method in measuring the change of surface pressure caused by periodic compressionexpansion cycles of the barrier. The elasticity of monolayer increases with increasing of surface pressure linegrly. The linoleic acid polymer monolayer has been obtained under UV-irradiation in situ when keeping a constant surface pressure. But the elasticity of the resulting polymerized monolayer is even smaller than that of its corresponding monomer monolayer. The elasticity of the polymerized linoleic acid monolayer decreases with increasing polymerization time. The explanation based on entropy has been presented.

  20. Light-Emitting Diodes: Phosphorescent Nanocluster Light-Emitting Diodes (Adv. Mater. 2/2016).

    Science.gov (United States)

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R

    2016-01-13

    On page 320, R. R. Lunt and co-workers demonstrate electroluminescence from earth-abundant phosphorescent metal halide nanoclusters. These inorganic emitters, which exhibit rich photophysics combined with a high phosphorescence quantum yield, are employed in red and near-infrared light-emitting diodes, providing a new platform of phosphorescent emitters for low-cost and high-performance light-emission applications.

  1. Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters

    Science.gov (United States)

    Sankaranarayanan, Subramanian K. R. S.; Bhethanabotla, Venkat R.; Joseph, Babu

    2005-05-01

    Bimetallic nanoclusters are of interest because of their utility in catalysis and sensors. The thermal characteristics of bimetallic Pt-Pd nanoclusters of different sizes and compositions were investigated through molecular dynamics simulations using quantum Sutton-Chen (QSC) many-body potentials. Monte Carlo simulations employing the bond order simulation model were used to generate minimum energy configurations, which were utilized as the starting point for molecular dynamics simulations. The calculated initial configurations of the Pt-Pd system consisted of surface segregated Pd atoms and a Pt-rich core. Melting characteristics were studied by following the changes in potential energy and heat capacity as functions of temperature. Structural changes accompanying the thermal evolution were studied by the bond order parameter method. The Pt-Pd clusters exhibited a two-stage melting: surface melting of the external Pd atoms followed by homogeneous melting of the Pt core. These transitions were found to depend on the composition and size of the nanocluster. Melting temperatures of the nanoclusters were found to be much lower than those of bulk Pt and Pd. Bulk melting temperatures of Pd and Pt simulated using periodic boundary conditions compare well with experimental values, thus providing justification for the use of QSC potentials in these simulations. Deformation parameters were calculated to characterize the structural evolution resulting from diffusion of Pd and Pt atoms. The results indicate that in Pd-Pt clusters, Pd atoms prefer to remain at the surface even after melting. In addition, Pt also tends to diffuse to the surface after melting due to reduction of its surface energy with temperature. This mixing pattern is different from those reported in some of the earlier studies on melting of bimetallics.

  2. Physical characteristics and optical properties of PbS nanoclusters: DFT simulation and experimental study

    Science.gov (United States)

    Dong, Yanhua; Wen, Jianxiang; Sun, Xiaolan; Shang, Yana; Wang, Tingyun

    2015-08-01

    The physical characteristics and optical properties of PbS nanoclusters are investigated by using density functional theory (DFT) of first-principles. Microstructure models of (PbS)n (n=1-9) nanoclusters and bulk materials are built on Materials Studio platform, and its energy band structures, highest occupied molecular orbital-lowest unoccupied molecular orbital gap (HOMO-LUMO gap), density of state (DOS), and optical properties are calculated, respectively. Compared to PbS bulk materials, PbS nanoclusters show a discrete energy gap as well as the DOS, because of the quantum confinement effect. It is interesting that the HOMO-LUMO gap of (PbS)n (n=1-9) shows oscillates with the increasing of the n number. However, when its size is large enough, the HOMO-LUMO gap is gradually decrease with the increasing of size (>27 atoms). And, the HOMO-LUMO gap of PbS nanoclusters of different sizes is range from 2.575 to 0.58 eV, which covers the low loss communication band of optical communication. In addition, PbS nanomaterials (NMs) with small size are synthesized by using oleylamine as ligands. Sizes of PbS NMs can be accurately controlled through control of the reaction time as well as the growth temperature. The photoluminescence (PL) spectra show strong size dependence, which is large red shift with increasing size of the NMs. This trend is basically in agreement with the theoretical calculation above. Moreover, transmission electron microscopy (TEM) further reveals the morphology of PbS NMs. PbS NMs can be used in optical fiber amplifiers and fiber lasers because of its unique optical properties in optical communication bands.

  3. Simulation of Structure and Energies of NinAlm Nanoclusters (n + m = 13) by Molecular Dynamics

    OpenAIRE

    Rojas T., Justo; Departamento de Física, Instituto Peruano de Energía Nuclear. Lima, Perú Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos. Lima, Perú; Rojas A., Chachi; Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos. Lima, Perú; Arroyo C., Juan; Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú

    2014-01-01

    By simulation with the Molecular Dynamics method and the thermal temper technique, the more stablegeometric structures and their respective energy were determined in the Nin Alm (n + m = 13)nanoclusters. The atomic interaction in the cluster was modelized with the Embeded Atom Method (EAM)(the Voter & Chen version). The most stable geometric structures of the cluster and their minimal energywere obtained from 200 generating spatial coordinates along the high energy path. The initial inter...

  4. Green synthesis of peptide-templated fluorescent copper nanoclusters for temperature sensing and cellular imaging.

    Science.gov (United States)

    Huang, Hong; Li, Hua; Wang, Ai-Jun; Zhong, Shu-Xian; Fang, Ke-Ming; Feng, Jiu-Ju

    2014-12-21

    A simple and green approach was developed for the preparation of fluorescent Cu nanoclusters (NCs) using the artificial peptide CLEDNN as a template. The as-synthesized Cu NCs exhibited a high fluorescence quantum yield (7.3%) and good stability, along with excitation and temperature dependent fluorescent properties, which could be employed for temperature sensing. Further investigations demonstrated low toxicity of Cu NCs for cellular imaging.

  5. Regulation of EGFR nanocluster formation by ionic protein-lipid interaction

    OpenAIRE

    2014-01-01

    The abnormal activation of epidermal growth factor receptor (EGFR) is strongly associated with a variety of human cancers but the underlying molecular mechanism is not fully understood. By using direct stochastic optical reconstruction microscopy (dSTORM), we find that EGFR proteins form nanoclusters in the cell membrane of both normal lung epithelial cells and lung cancer cells, but the number and size of clusters significantly increase in lung cancer cells. The formation of EGFR clusters is...

  6. Structural Evolution of Core-Shell Gold Nanoclusters: Aun(-) (n = 42-50).

    Science.gov (United States)

    Pande, Seema; Huang, Wei; Shao, Nan; Wang, Lei-Ming; Khetrapal, Navneet; Mei, Wai-Ning; Jian, Tian; Wang, Lai-Sheng; Zeng, Xiao Cheng

    2016-11-22

    Gold nanoclusters have attracted great attention in the past decade due to their remarkable size-dependent electronic, optical, and catalytic properties. However, the structures of large gold clusters are still not well-known because of the challenges in global structural searches. Here we report a joint photoelectron spectroscopy (PES) and theoretical study of the structural evolution of negatively charged core-shell gold nanoclusters (Aun(-)) for n = 42-50. Photoelectron spectra of size-selected Aun(-) clusters are well resolved with distinct spectral features, suggesting a dominating structural type. The combined PES data and density functional calculations allow us to systematically identify the global minimum or candidates of the global minima of these relatively large gold nanoclusters, which are found to possess low-symmetry structures with gradually increasing core sizes. Remarkably, the four-atom tetrahedral core, observed first in Au33(-), continues to be highly robust and is even present in clusters as large as Au42(-). Starting from Au43(-), a five-atom trigonal bipyramidal core appears and persists until Au47(-). Au48(-) possesses a six-atom core, while Au49(-) and Au50(-) feature seven- and eight-atom cores, respectively. Notably, both Au46(-) and Au47(-) contain a pyramidal Au20 motif, which is stacked with another truncated pyramid by sharing a common 10-atom triangular face. The present study sheds light on our understanding of the structural evolution of the medium-sized gold nanoclusters, the shells and core as well as how the core-shell structures may start to embrace the golden pyramid (bulk-like) fragment.

  7. A new strategy for specific imaging of neural cells based on peptide-conjugated gold nanoclusters

    Directory of Open Access Journals (Sweden)

    Zhang E

    2015-03-01

    Full Text Available Enqi Zhang, Ailing Fu School of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China Abstract: Despite the significant progress in molecular imaging technologies that has been made in recent years, the specific detection of neural cells still remains challenging. Here, we suggest the use of gold nanoclusters (AuNCs modified with a brain-targeting peptide as a potential imaging candidate for detecting neural cells in vitro and in mice. AuNCs of less than 10 nm (dynamic light scattering analysis were first prepared using the “green” synthetic approach, and then a targeting peptide, rabies virus glycoprotein derived peptide (RDP, was conjugated to the AuNCs for improving the efficiency and specificity of neural cell penetration. The conjugate’s mechanism of cellular attachment and entry into neural cells was suggested to be receptor-mediated endocytosis through clathrin-coated pits. Also, noninvasive imaging analysis and animal studies indicated that the RDP-modified nanoclusters could concentrate in the brain and locate in neural cells. This study suggests the feasibility of using targeting peptide-modified nanoclusters for noninvasive imaging brain cells in vivo. Keywords: RDP, targeted delivery, bioimaging, brain 

  8. Spontaneous assembly of perfectly ordered identical-size nanocluster arrays: The theory

    Science.gov (United States)

    Zhang, S. B.; Xue, Qi-Kun

    2002-03-01

    Ordered nanocluster array is a new form of condensed matter that provides unprecedented opportunities for exploring the law of physics that nature rarely provides. It has important immediate applications such as in microelectronics, ultra-high-density recording, and nanocatalysis. Despite many years of intensive studies, however, epitaxial growth of uniform size perfectly ordered nanocluster arrays is prohibited difficult. Recently, Li et al. [1] reported a discovery where Si (111)-7x7 surface can be used to induce size selection and two-dimension ordering. This opens up a new road towards high-quality nanocluster crystals. Interestingly, indium clusters appear to be loosely packed, occupy only half of the 7x7 cell, and the STM images have unusually strong bias voltage dependence. First-principles calculations elucidate the cluster structure, the ordering and size selectivity mechanism, and provide solid foundation for the experiment. This work was supported by the U. S. DOE-SC-BES under contract No. DE-AC36-99GO10337. [1] Li, et al. Phys. Rev. Lett. (in press).

  9. LOW TEMPERATURE OPTICAL PROPERTIES OF AMORPHOUS OXIDE NANOCLUSTERS IN POLYMETHYL METHACRYLATE MATRIX

    Institute of Scientific and Technical Information of China (English)

    V. V. VOLKOV; WANG ZHONG-LIN; Zou BING-SUO; XIE SI-SHEN

    2000-01-01

    We studied the temperature-dependent steady-state and time-resolved fluorescence properties of very small (1-2 nm) ZnO, CdO, and PbO amorphous nanoclusters prepared in AOT reverse micelles and imbedded in polymethyl methacrylate(PMMA) films. X-ray diffraction and electron diffraction and imaging indicate that these structures are amorphous. These amorphous oxide nanoclusters demonstrate similar structural, electronic, and optical properties. Properties of steady-state fluorescence spectra indicate the unique localization of electronic states due to the amorphous structure. ZnO and CdO show double-band fluorescence structure, which is due to the spin-orbital splitting, similar to Cu2O. Time-resolved fluorescence studies of the nanoclusters in the polymer reveal two lifetime components, as found in solution. The slow component reflects relaxation processes from band-tail states while the fast component may be related to high-lying extended states. The temperature dependence of fast fluorescence component reveals the presence of exciton hopping between anharmonic wells at temperatures higher than 200K. We correlate the barrier height between two wells formed around local atoms with the inter-atomic distance and bond ionicity.

  10. Size-selective synthesis of immobilized copper oxide nanoclusters on silica

    Energy Technology Data Exchange (ETDEWEB)

    Lomnicki, Slawo M., E-mail: slomni1@lsu.edu [Louisiana State University, Department of Chemistry, 232 Choppin Hall, Baton Rouge, LA 70803-1804 (United States); Wu, Hongyi; Osborne, Scott N.; Pruett, Jeff M.; McCarley, Robin L.; Poliakoff, Erwin; Dellinger, Barry [Louisiana State University, Department of Chemistry, 232 Choppin Hall, Baton Rouge, LA 70803-1804 (United States)

    2010-11-25

    We report a straightforward route for preparing bulk quantities of size-controlled and low size dispersity copper oxide nanoclusters on amorphous silica. Adsorption of the copper-dendrimer complex on the silica surface minimizes aggregation, which results in previously unachieved low size dispersity of the nanoclusters. Copper oxide nanoclusters with mean diameters of 1-5 nm with size dispersities of only 8-15% were prepared by calcination of silica impregnated with Cu(II)-poly(propylene imine) dendrimer complexes of varying stoichiometry. The size and size distribution of the copper oxide nanoparticles are tunably controlled by the ratio of the Cu(II) to the terminal primary amines in the copper-dendrimer complex, DAB-Am{sub n}-Cu(II){sub x}, the surface coverage of the DAB-Am{sub n}-Cu(II){sub x}, and the impregnation procedure. This method is anticipated to be useful in the preparation of other metal oxide nanoparticles, e.g., Ni and Fe, and with other oxide substrates.

  11. Size-selective synthesis of immobilized copper oxide nanoclusters on silica.

    Science.gov (United States)

    Lomnicki, Slawo M; Wu, Hongyi; Osborne, Scott N; Pruett, Jeff M; McCarley, Robin L; Poliakoff, Erwin; Dellinger, Barry

    2010-11-25

    We report a straightforward route for preparing bulk quantities of size-controlled and low size dispersity copper oxide nanoclusters on amorphous silica. Adsorption of the copper-dendrimer complex on the silica surface minimizes aggregation, which results in previously unachieved low size dispersity of the nanoclusters. Copper oxide nanoclusters with mean diameters of 1-5 nm with size dispersities of only 8-15% were prepared by calcination of silica impregnated with Cu(II)-poly(propylene imine) dendrimer complexes of varying stoichiometry. The size and size distribution of the copper oxide nanoparticles are tunably controlled by the ratio of the Cu(II) to the terminal primary amines in the copper-dendrimer complex, DAB-Am n -Cu(II) x , the surface coverage of the DAB-Am n -Cu(II) x , and the impregnation procedure. This method is anticipated to be useful in the preparation of other metal oxide nanoparticles, e.g., Ni and Fe, and with other oxide substrates.

  12. In-situ Study of Nanostructure and Electrical Resistance of Nanocluster Films Irradiated with Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Sundararajan, Jennifer A.; Varga, Tamas; Bowden, Mark E.; Qiang, You; McCloy, John S.; Henager, Charles H.; Montgomery, Robert O.

    2014-08-11

    An in-situ study is reported on the structural evolution in nanocluster films under He+ ion irradiation using an advanced helium ion microscope. The films consist of loosely interconnected nanoclusters of magnetite or iron-magnetite (Fe-Fe3O4) core-shells. The nanostructure is observed to undergo dramatic changes under ion-beam irradiation, featuring grain growth, phase transition, particle aggregation, and formation of nanowire-like network and nano-pores. Studies based on ion irradiation, thermal annealing and election irradiation have indicated that the major structural evolution is activated by elastic nuclear collisions, while both electronic and thermal processes can play a significant role once the evolution starts. The electrical resistance of the Fe-Fe3O4 films measured in situ exhibits a super-exponential decay with dose. The behavior suggests that the nanocluster films possess an intrinsic merit for development of an advanced online monitor for neutron radiation with both high detection sensitivity and long-term applicability, which can enhance safety measures in many nuclear operations.

  13. Size and property bimodality in magnetic nanoparticle dispersions: single domain particles vs. strongly coupled nanoclusters.

    Science.gov (United States)

    Wetterskog, E; Castro, A; Zeng, L; Petronis, S; Heinke, D; Olsson, E; Nilsson, L; Gehrke, N; Svedlindh, P

    2017-03-23

    The widespread use of magnetic nanoparticles in the biotechnical sector puts new demands on fast and quantitative characterization techniques for nanoparticle dispersions. In this work, we report the use of asymmetric flow field-flow fractionation (AF4) and ferromagnetic resonance (FMR) to study the properties of a commercial magnetic nanoparticle dispersion. We demonstrate the effectiveness of both techniques when subjected to a dispersion with a bimodal size/magnetic property distribution: i.e., a small superparamagnetic fraction, and a larger blocked fraction of strongly coupled colloidal nanoclusters. We show that the oriented attachment of primary nanocrystals into colloidal nanoclusters drastically alters their static, dynamic, and magnetic resonance properties. Finally, we show how the FMR spectra are influenced by dynamical effects; agglomeration of the superparamagnetic fraction leads to reversible line-broadening; rotational alignment of the suspended nanoclusters results in shape-dependent resonance shifts. The AF4 and FMR measurements described herein are fast and simple, and therefore suitable for quality control procedures in commercial production of magnetic nanoparticles.

  14. Trends in the adsorption and reactivity of hydrogen on magnesium silicate nanoclusters.

    Science.gov (United States)

    Oueslati, Ichraf; Kerkeni, Boutheïna; Bromley, Stefan T

    2015-04-14

    We study nanoclusters of Mg-rich olivine and pyroxene (having (MgO)6(SiO2)3 and (MgO)4(SiO2)4 compositions) with respect to their reactivity towards hydrogen atoms, using density functional calculations. Ultrasmall silicate particles are fundamental intermediates in cosmic dust grain formation and processing, and are thought to make up a significant mass fraction of the grain population. Due to their nanoscale dimensions and high surface area to bulk ratios, they are likely to also have a disproportionately large influence on surface chemistry in the interstellar medium. This work investigates the potential role of silicate nanoclusters in vital interstellar hydrogen-based chemistry by studying atomic H adsorption and H2 formation. Our extensive set of calculations confirm the generality of a Brønsted-Evans-Polanyi (BEP) relation between the H2 reaction barrier and the 2Hchem binding energy, suggesting it to be independent of silicate dust grain shape, size, crystallinity and composition. Our results also suggest that amorphous/porous grains with forsteritic composition would tend to dissociate H2, but relatively Mg-poor silicate grains (e.g. enstatite composition) and/or more crystalline/compact silicate grains would tend to catalyse H2 formation. The high structural thermostability of silicate nanoclusters with respect to the heat released during exothermic H2 formation reactions is also verified.

  15. First-principles calculated decomposition pathways for LiBH4 nanoclusters

    Science.gov (United States)

    Huang, Zhi-Quan; Chen, Wei-Chih; Chuang, Feng-Chuan; Majzoub, Eric H.; Ozoliņš, Vidvuds

    2016-05-01

    We analyze thermodynamic stability and decomposition pathways of LiBH4 nanoclusters using grand-canonical free-energy minimization based on total energies and vibrational frequencies obtained from density-functional theory (DFT) calculations. We consider (LiBH4)n nanoclusters with n = 2 to 12 as reactants, while the possible products include (Li)n, (B)n, (LiB)n, (LiH)n, and Li2BnHn; off-stoichiometric LinBnHm (m ≤ 4n) clusters were considered for n = 2, 3, and 6. Cluster ground-state configurations have been predicted using prototype electrostatic ground-state (PEGS) and genetic algorithm (GA) based structural optimizations. Free-energy calculations show hydrogen release pathways markedly differ from those in bulk LiBH4. While experiments have found that the bulk material decomposes into LiH and B, with Li2B12H12 as a kinetically inhibited intermediate phase, (LiBH4)n nanoclusters with n ≤ 12 are predicted to decompose into mixed LinBn clusters via a series of intermediate clusters of LinBnHm (m ≤ 4n). The calculated pressure-composition isotherms and temperature-pressure isobars exhibit sloping plateaus due to finite size effects on reaction thermodynamics. Generally, decomposition temperatures of free-standing clusters are found to increase with decreasing cluster size due to thermodynamic destabilization of reaction products.

  16. Kinetic growth mechanisms of sputter-deposited Au films on mica: from nanoclusters to nanostructured microclusters

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F.; Grimaldi, M.G. [Universita di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); CNR-IMM MATIS, Catania (Italy); Torrisi, V.; Marletta, G. [University of Catania and CSGI, Laboratory for Molecular Surface and Nanotechnology (LAMSUN), Department of Chemical Sciences, Catania (Italy)

    2010-07-15

    Au nanostructured film was deposited on mica by room temperature RF sputtering. The growth mechanism of the film was studied analyzing the evolution of the film morphology as a function of its thickness by the atomic force microscopy. In the early stages of a growth the film evolution proceeds by the nucleation and growth of nanoclusters. After a critical thickness the growth of microclusters formed by the joining of nanoclusters in preferential nucleation sites, onto a quasicontinuous film, is observed. We quantified the evolution of the mean nanoclusters height and surface density and of the film roughness. This data were analyzed by the dynamic scaling theory of growing interfaces obtaining the scaling and roughness exponents z and {beta} whose values suggest a conservative growth process. We also quantified the growth of the microclusters showing that it is consistent with a coalescence/impingement dynamic. About the formation of the microclusters, furthermore, we speculate that their origin is strongly correlated to the features of the sputtering technique in connection with the deposition on a high-diffusivity substrate. (orig.)

  17. Enhanced electronic injection in organic light-emitting diodes by incorporating silver nanoclusters and cesium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Chung; Gao, Chia-Yuan [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Sze, Po-Wen [Department of Electro-Optical Science and Engineering, Kao Yuan University, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-10-01

    Highlights: • The localized electric field around SNCs is enhanced. • When the cesium carbonate/silver nanoclusters/cesium carbonate electron-injection structure replaces the cesium carbonate electron-injection structure, higher electron-injection ability is obtained. • The structure for efficient electron injection is critical to characteristics of the device. - Abstract: The influence of the cesium carbonate/silver nanoclusters/cesium carbonate electron-injection structure (CSC-EIS) on the performance of organic light-emitting diodes is investigated in this study. The silver nanoclusters (SNCs) are introduced between the electron-injection layers by means of thermal evaporation. When the CSC-EIS replaces the cesium carbonate electron-injection structure, higher electron-injection ability is obtained because the electron-injection barrier between the cathode and the electron-transport layer is remarkably reduced from 1.2 to 0 eV. In addition, surface plasmon resonance effect will cause the enhanced localized electric field around the SNCs, resulting that electron-injection ability is further enhanced from the cathode to the emitting layer.

  18. Structural and optical properties of the naked and passivated Al5Au5 bimetallic nanoclusters

    Science.gov (United States)

    Grande-Aztatzi, Rafael; Formoso, Elena; Mercero, Jose M.; Matxain, Jon M.; Grabowski, Slawomir J.; Ugalde, Jesus M.

    2016-03-01

    The structural and optical properties of both the naked and passivated bimetallic Al5Au5 nanoclusters have been analyzed based on data obtained from ab initio density functional theory and quantum molecular dynamics simulations. It has been found that the Al5Au5 nanocluster possesses a hollow shaped minimum energy structure with segregated Al and Au layered domains, the former representing the electrophilic domain and the latter the nucleophilic domain. In particular, it has been shown that alkali metal cations attach in the nucleophilic domain and hop from one Au site to the next one in the picoseconds time scale, while anions are bound tightly to the Al atoms of the electrophilic domain. Simulating annealing studies are very suggestive of the proneness of the nanocluster towards coalescence into large cluster units, when the cluster is left unprotected by appropriate ligands. Further passivation studies with NaF salt suggest, nonetheless, the possibility of the isolation of the Al5Au5 cluster in molten salts or ionic liquids.

  19. Nanoclusters as a new family of high temperature superconductors (Conference Presentation)

    Science.gov (United States)

    Halder, Avik; Kresin, Vitaly V.

    2017-03-01

    Electrons in metal clusters organize into quantum shells, akin to atomic shells in the periodic table. Such nanoparticles are referred to as "superatoms". The electronic shell levels are highly degenerate giving rise to sharp peaks in the density of states, which can enable exceptionally strong electron pairing in certain clusters containing tens to hundreds of atoms. A spectroscopic investigation of size - resolved aluminum nanoclusters has revealed a sharp rise in the density of states near the Fermi level as the temperature decreases towards 100 K. The effect is especially prominent in the closed-shell "magic" cluster Al66 [1, 2]. The characteristics of this behavior are fully consistent with a pairing transition, implying a high temperature superconducting state with Tc metal nanocluster particles are promising building blocks for high-Tc materials, devices, and networks. ---------- 1. Halder, A., Liang, A., Kresin, V. V. A novel feature in aluminum cluster photoionization spectra and possibility of electron pairing at T 100K. Nano Lett 15, 1410 - 1413 (2015) 2. Halder, A., Kresin, V. V. A transition in the density of states of metal "superatom" nanoclusters and evidence for superconducting pairing at T 100K. Phys. Rev. B 92, 214506 (2015).

  20. Effects of Graphene Monolayer Coating on the Optical Performance of Remote Phosphors

    Science.gov (United States)

    Yazdan Mehr, M.; Volgbert, S.; van Driel, W. D.; Zhang, G. Q.

    2017-10-01

    A graphene monolayer has been successfully coated on one side of a bisphenol-A-polycarbonate (BPA-PC) plate, used as a substrate for remote phosphor applications in light-emitting diode (LED)-based products. Using a photoresist transferring method, graphene sheet has been coated on BPA-PC plates. The results show that this graphene monolayer significantly improves the lifetime and performance of LEDs mainly by protecting them against external degradation factors such as moisture and oxygen. Also, LED-based products composed of graphene-coated BPA-PC plates exhibit longer stability with comparatively less loss of luminous efficiency. This method has great potential to significantly improve the reliability of not only LED-based products but also many other microelectronics packaging and components, in which moisture and oxygen are the key causes of failures.

  1. Zitterbewegung in monolayer silicene in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Romera, E. [Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Roldán, J.B. [Departamento de Electrónica y Tecnología de Computadores and CITIC, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Santos, F. de los [Departamento de Electromagnetismo y Física de la Materia, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2014-07-04

    We study the Zitterbewegung in monolayer silicene under a perpendicular magnetic field. Using an effective Hamiltonian, we have investigated the autocorrelation function and the density currents in this material. Moreover, we have analyzed other types of periodicities of the system (classical and revival times). Finally, the above results are compared with their counterparts in two other monolayer materials subject to a magnetic field: graphene and MoS{sub 2}. - Highlights: • We study Zitterbewegung in monolayer silicene in a magnetic field. • We have analyzed other types of periodicities in silicene. • The above results are compared with other monolayer materials (graphene and MoS{sub 2})

  2. Carbon phosphide monolayers with superior carrier mobility

    Science.gov (United States)

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P.

    2016-04-01

    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics.Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great

  3. The efficacy of Raf kinase recruitment to the GTPase H-ras depends on H-ras membrane conformer-specific nanoclustering.

    Science.gov (United States)

    Guzmán, Camilo; Šolman, Maja; Ligabue, Alessio; Blaževitš, Olga; Andrade, Débora M; Reymond, Luc; Eggeling, Christian; Abankwa, Daniel

    2014-04-01

    Solution structures and biochemical data have provided a wealth of mechanistic insight into Ras GTPases. However, information on how much the membrane organization of these lipid-modified proteins impacts on their signaling is still scarce. Ras proteins are organized into membrane nanoclusters, which are necessary for Ras-MAPK signaling. Using quantitative conventional and super-resolution fluorescence methods, as well as mathematical modeling, we investigated nanoclustering of H-ras helix α4 and hypervariable region mutants that have different bona fide conformations on the membrane. By following the emergence of conformer-specific nanoclusters in the plasma membrane of mammalian cells, we found that conformers impart distinct nanoclustering responses depending on the cytoplasmic levels of the nanocluster scaffold galectin-1. Computational modeling revealed that complexes containing H-ras conformers and galectin-1 affect both the number and lifetime of nanoclusters and thus determine the specific Raf effector recruitment. Our results show that mutations in Ras can affect its nanoclustering response and thus allosterically effector recruitment and downstream signaling. We postulate that cancer- and developmental disease-linked mutations that are associated with the Ras membrane conformation may exhibit so far unrecognized Ras nanoclustering and therefore signaling alterations.

  4. Diacetylene mixed Langmuir monolayers for interfacial polymerization.

    Science.gov (United States)

    Ariza-Carmona, Luisa; Rubia-Payá, Carlos; García-Espejo, G; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2015-05-19

    Polydiacetylene (PDA) and its derivatives are promising materials for applications in a vast number of fields, from organic electronics to biosensing. PDA is obtained through polymerization of diacetylene (DA) monomers, typically using UV irradiation. DA polymerization is a 1-4 addition reaction with both initiation and growth steps with topochemical control, leading to the "blue" polymer form as primary reaction product in bulk and at interfaces. Herein, the diacetylene monomer 10,12-pentacosadiynoic acid (DA) and the amphiphilic cationic N,N'-dioctadecylthiapentacarbocyanine (OTCC) have been used to build a mixed Langmuir monolayer. The presence of OTCC imposes a monolayer supramolecular structure instead of the typical trilayer of pure DA. Surface pressure, Brewster angle microscopy, and UV-vis reflection spectroscopy measurements, as well as computer simulations, have been used to assess in detail the supramolecular structure of the DA:OTCC Langmuir monolayer. Our experimental results indicate that the DA and OTCC molecules are sequentially arranged, with the two OTCC alkyl chains acting as spacing diacetylene units. Despite this configuration is expected to prevent photopolymerization of DA, the polymerization takes place without phase segregation, thus exclusively leading to the red polydiacetylene form. We propose a simple model for the initial formation of the "blue" or "red" PDA forms as a function of the relative orientation of the DA units. The structural insights and the proposed model concerning the supramolecular structure of the "blue" and "red" forms of the PDA are aimed at the understanding of the relation between the molecular and macroscopical features of PDAs.

  5. Fluidization of a horizontally driven granular monolayer.

    Science.gov (United States)

    Heckel, Michael; Sack, Achim; Kollmer, Jonathan E; Pöschel, Thorsten

    2015-06-01

    We consider the transition of a horizontally vibrated monodisperse granular monolayer between its condensed state and its three-dimensional gaseous state as a function of the vibration parameters, amplitude, and frequency as well as particle number density. The transition is characterized by an abrupt change of the dynamical state which leaves its fingerprints in several measurable quantities including dissipation rate, sound emission, and a gap size which characterizes the sloshing motion of the material. The transition and its pronounced hysteresis is explained through the energy due to the collective motion of the particles relative to the container.

  6. Processing of monolayer materials via interfacial reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2014-05-20

    A method of forming and processing of graphene is disclosed based on exposure and selective intercalation of the partially graphene-covered metal substrate with atomic or molecular intercalation species such as oxygen (O.sub.2) and nitrogen oxide (NO.sub.2). The process of intercalation lifts the strong metal-carbon coupling and restores the characteristic Dirac behavior of isolated monolayer graphene. The interface of graphene with metals or metal-decorated substrates also provides for controlled chemical reactions based on novel functionality of the confined space between a metal surface and a graphene sheet.

  7. Template-Directed Self-Assembly of Alkanethiol Monolayers: Selective Growth on Preexisting Monolayer Edges

    NARCIS (Netherlands)

    Sharpe, Ruben B.A.; Burdinski, Dirk; Huskens, Jurriaan; Zandvliet, Harold J.W.; Reinhoudt, David N.; Poelsema, Bene

    2007-01-01

    Self-assembled monolayers were investigated for their suitability as two-dimensional scaffolds for the selective growth of alkanethiol edge structures. Heterostructures with chemical contrast could be grown, whose dimensions were governed by both the initial pattern sizes and the process time. n-Oct

  8. Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization

    Energy Technology Data Exchange (ETDEWEB)

    Toudert, J; Babonneau, D; Simonot, L; Camelio, S; Girardeau, T [PHYMAT, UMR CNRS 6630, Batiment SP2MI, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil (France)], E-mail: johann.toudert@gmail.com

    2008-03-26

    The effects of size, shape and organization on the surface plasmon resonances of Ag nanoclusters sandwiched between Si{sub 3}N{sub 4} layers are studied by transmission electron microscopy and anisotropic spectroscopic ellipsometry. We present an easy-to-handle model that quantitatively links the nanostructure and optical response of the films, which are considered as dielectric/metal:dielectric/dielectric trilayers, with the central nanocomposite layer being an effective medium whose optical properties are described by an anisotropic dielectric tensor. The components of this tensor are calculated using a generalization of the Yamaguchi theory taking into account the real organization, size and shape distributions of ellipsoidal nanoclusters, whose electronic properties are assumed to reflect shape-dependent finite size effects. Using this model, it is shown that the optical response of the films in the visible range is dominated by the excitation of the surface plasmon resonance of the clusters along their in-plane long axis, while no surface plasmon resonance resulting from an excitation along their in-plane short axis can be observed due to damping effects. Moreover, the spectral position of this resonance appears to be mainly affected by the average shape of the clusters, and weakly by their size, their shape distribution and the electromagnetic interaction between them.

  9. Platinum and Other Transition Metal Nanoclusters (Pd, Rh) Stabilized by PAMAM Dendrimer as Excellent Heterogeneous Catalysts: Application to the Methylcyclopentane (MCP) Hydrogenative Isomerization.

    Science.gov (United States)

    Deraedt, Christophe; Melaet, Gérôme; Ralston, Walter T; Ye, Rong; Somorjai, Gabor A

    2017-03-08

    Pt, Rh, and Pd nanoclusters stabilized by PAMAM dendrimer are used for the first time in a gas flow reactor at high temperature (150-250 °C). Pt nanoclusters show a very high activity for the hydrogenation of the methylcyclopentane (MCP) at 200-225 °C with turnover freqency (TOF) up to 334 h(-1) and selectivity up to 99.6% for the ring opening isomerization at very high conversion (94%). Rh nanoclusters show different selectivity for the reaction, that is, ring opening isomerization at 175 °C and cracking at higher temperature whereas Pd nanoclusters perform ring enlargement plus dehydrogenation, while maintaining a high activity. The difference in these results as compared to unsupported/uncapped nanoparticles, demonstrates the crucial role of dendrimer. The tunability of the selectivity of the reaction as well as the very high activity of the metal nanoclusters stabilized by dendrimer under heterogeneous conditions open a new application for dendrimer catalysts.

  10. Trion valley coherence in monolayer semiconductors

    Science.gov (United States)

    Hao, Kai; Xu, Lixiang; Wu, Fengcheng; Nagler, Philipp; Tran, Kha; Ma, Xin; Schüller, Christian; Korn, Tobias; MacDonald, Allan H.; Moody, Galan; Li, Xiaoqin

    2017-06-01

    The emerging field of valleytronics aims to exploit the valley pseudospin of electrons residing near Bloch band extrema as an information carrier. Recent experiments demonstrating optical generation and manipulation of exciton valley coherence (the superposition of electron-hole pairs at opposite valleys) in monolayer transition metal dichalcogenides (TMDs) provide a critical step towards control of this quantum degree of freedom. The charged exciton (trion) in TMDs is an intriguing alternative to the neutral exciton for control of valley pseudospin because of its long spontaneous recombination lifetime, its robust valley polarization, and its coupling to residual electronic spin. Trion valley coherence has however been unexplored due to experimental challenges in accessing it spectroscopically. In this work, we employ ultrafast 2D coherent spectroscopy to resonantly generate and detect trion valley coherence in monolayer MoSe2 demonstrating that it persists for a few-hundred femtoseconds. We conclude that the underlying mechanisms limiting trion valley coherence are fundamentally different from those applicable to exciton valley coherence.

  11. Mediated Electron Transfer at Redox Active Monolayers

    Directory of Open Access Journals (Sweden)

    Michael E.G. Lyons

    2001-12-01

    Full Text Available A theoretical model describing the transport and kinetic processes involved in heterogeneous redox catalysis of solution phase reactants at electrode surfaces coated with redox active monolayers is presented. Although the analysis presented has quite general applicability, a specific focus of the paper is concerned with the idea that redox active monolayers can be used to model an ensemble of individual molecular nanoelectrodes. Three possible rate determining steps are considered: heterogeneous electron transfer between immobilized mediator and support electrode ; bimolecular chemical reaction between redox mediator and reactant species in the solution phase, and diffusional mass transport of reactant in solution. A general expression for the steady state reaction flux is derived which is valid for any degree of reversibility of both the heterogeneous electron transfer reaction involving immobilized mediator species and of the bimolecular cross exchange reaction between immobilized mediator and solution phase reactant. The influence of reactant transport in solution is also specifically considered. Simplified analytical expressions for the net reaction flux are derived for experimentally reasonable situations and a kinetic case diagram is constructed outlining the relationships between the various approximate solutions. The theory enables simple diagnostic plots to be constructed which can be used to analyse experimental data.

  12. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  13. Industrial Ziegler-type hydrogenation catalysts made from Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 and AlEt3: evidence for nanoclusters and sub-nanocluster or larger Ziegler-nanocluster based catalysis.

    Science.gov (United States)

    Alley, William M; Hamdemir, Isil K; Wang, Qi; Frenkel, Anatoly I; Li, Long; Yang, Judith C; Menard, Laurent D; Nuzzo, Ralph G; Özkar, Saim; Yih, Kuang-Hway; Johnson, Kimberly A; Finke, Richard G

    2011-05-17

    Ziegler-type hydrogenation catalysts are important for industrial processes, namely, the large-scale selective hydrogenation of styrenic block copolymers. Ziegler-type hydrogenation catalysts are composed of a group 8-10 transition metal precatalyst plus an alkylaluminum cocatalyst (and they are not the same as Ziegler-Natta polymerization catalysts). However, for ∼50 years two unsettled issues central to Ziegler-type hydrogenation catalysis are the nature of the metal species present after catalyst synthesis, and whether the species primarily responsible for catalytic hydrogenation activity are homogeneous (e.g., monometallic complexes) or heterogeneous (e.g., Ziegler nanoclusters defined as metal nanoclusters made from combination of Ziegler-type hydrogenation catalyst precursors). A critical review of the existing literature (Alley et al. J. Mol. Catal. A: Chem. 2010, 315, 1-27) and a recently published study using an Ir model system (Alley et al. Inorg. Chem. 2010, 49, 8131-8147) help to guide the present investigation of Ziegler-type hydrogenation catalysts made from the industrially favored precursors Co(neodecanoate)(2) or Ni(2-ethylhexanoate)(2), plus AlEt(3). The approach and methods used herein parallel those used in the study of the Ir model system. Specifically, a combination of Z-contrast scanning transmission electron microscopy (STEM), matrix assisted laser desorption ionization mass spectrometry (MALDI MS), and X-ray absorption fine structure (XAFS) spectroscopy are used to characterize the transition metal species both before and after hydrogenation. Kinetic studies including Hg(0) poisoning experiments are utilized to test which species are the most active catalysts. The main findings are that, both before and after catalytic cyclohexene hydrogenation, the species present comprise a broad distribution of metal cluster sizes from subnanometer to nanometer scale particles, with estimated mean cluster diameters of about 1 nm for both Co and Ni. The

  14. Melting mechanism in monolayers of flexible rod-shaped molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1992-01-01

    mechanism for melting in monolayers of flexible rod-shaped molecules. Melting requires the formation of vacancies in the monolayer by molecular motion perpendicular to the surface. This ‘‘footprint reduction’’ mechanism implies that strictly two-dimensional theories of melting are inapplicable...

  15. Modelling Organic Surfaces with Self-Assembled Monolayers

    Science.gov (United States)

    1989-05-01

    reactive organic liquids. Fluorinated thiols form monolayers that are more water and oil-repellent than Teflon. The hydrophobicity and oleophobicity of...and are both hydrophobic and oleophobic . The surface of a monolayer containing an approximately equal mixture of the two components 13 resembles a

  16. A MOLECULAR-DYNAMICS STUDY OF LECITHIN MONOLAYERS

    NARCIS (Netherlands)

    AHLSTROM, P; BERENDSEN, HJC

    1993-01-01

    Two monolayers of didecanoyllecithin at the air-water interface have been studied using molecular dynamics simulations. The model system consisted of two monolayers of 42 lecithin molecules each separated by a roughly 4 nm thick slab of SPC water. The area per lecithin molecule was 0.78 nm(2)

  17. The Magic Au60 Nanocluster: A New Cluster-Assembled Material with Five Au13 Building Blocks.

    Science.gov (United States)

    Song, Yongbo; Fu, Fangyu; Zhang, Jun; Chai, Jinsong; Kang, Xi; Li, Peng; Li, Shengli; Zhou, Hongping; Zhu, Manzhou

    2015-07-13

    Herein, we report the synthesis and atomic structure of the cluster-assembled [Au60Se2(Ph3P)10(SeR)15](+) material. Five icosahedral Au13 building blocks from a closed gold ring with Au-Se-Au linkages. Interestingly, two Se atoms (without the phenyl tail) locate in the center of the cluster, stabilized by the Se-(Au)5 interactions. The ring-like nanocluster is unprecedented in previous experimental and theoretical studies of gold nanocluster structures. In addition, our optical and electrochemical studies show that the electronic properties of the icosahedral Au13 units still remain unchanged in the penta-twinned Au60 nanocluster, and this new material might be a promising in optical limiting material. This work offers a basis for deep understanding on controlling the cluster-assembled materials for tailoring their functionalities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy

    Directory of Open Access Journals (Sweden)

    Wang JY

    2016-07-01

    Full Text Available Jun-Ying Wang,1 Jie Chen,1 Jiang Yang,2 Hao Wang,1 Xiu Shen,1 Yuan-Ming Sun,1 Meili Guo,3 Xiao-Dong Zhang4 1Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 2Environment, Energy and Natural Resources Center, Department of Environmental Science and Engineering, Fudan University, Shanghai, 3Department of Physics, School of Science, Tianjin Chengjian University, 4Department of Physics, School of Science, Tianjin University, Tianjin, People’s Republic of China Abstract: Gold nanoclusters (Au NCs have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system. Keywords: gold clusters, in vivo toxicity, long-term, cancer therapy

  19. Monolayer-by-monolayer stacked pyramid-like MoS2 nanodots on monolayered MoS2 flakes with enhanced photoluminescence.

    Science.gov (United States)

    Yuan, Cailei; Cao, Yingjie; Luo, Xingfang; Yu, Ting; Huang, Zhenping; Xu, Bo; Yang, Yong; Li, Qinliang; Gu, Gang; Lei, Wen

    2015-11-07

    The precise control of the morphology and crystal shape of MoS2 nanostructures is of particular importance for their application in nanoelectronic and optoelectronic devices. Here, we describe a single step route for the synthesis of monolayer-by-monolayer stacked pyramid-like MoS2 nanodots on monolayered MoS2 flakes using a chemical vapor deposition method. First-principles calculations demonstrated that the bandgap of the pyramid-like MoS2 nanodot is a direct bandgap. Enhanced local photoluminescence emission was observed in the pyramid-like MoS2 nanodot, in comparison with monolayered MoS2 flakes. The findings presented here provide new opportunities to tailor the physical properties of MoS2via morphology-controlled synthesis.

  20. Effects of doping in 25-atom bimetallic nanocluster catalysts for carbon–carbon coupling reaction of iodoanisole and phenylacetylene

    Directory of Open Access Journals (Sweden)

    Zhimin Li

    2016-10-01

    Full Text Available We here report the catalytic effects of foreign atoms (Cu, Ag, and Pt doped into well-defined 25-gold-atom nanoclusters. Using the carbon-carbon coupling reaction of p-iodoanisole and phenylacetylene as a model reaction, the gold-based bimetallic MxAu25−x(SR18 (–SR=–SCH2CH2Ph nanoclusters (supported on titania were found to exhibit distinct effects on the conversion of p-iodoanisole as well as the selectivity for the Sonogashira cross-coupling product, 1-methoxy-4-(2-phenylethynylbenzene. Compared to Au25(SR18, the centrally doped Pt1Au24(SR18 causes a drop in catalytic activity but with the selectivity retained, while the AgxAu25−x(SR18 nanoclusters gave an overall performance comparable to Au25(SR18. Interestingly, CuxAu25−x(SR18 nanoclusters prefer the Ullmann homo-coupling pathway and give rise to product 4,4′-dimethoxy-1,1′-biphenyl, which is in opposite to the other three nanocluster catalysts. Our overall conclusion is that the conversion of p-iodoanisole is largely affected by the electronic effect in the bimetallic nanoclusters’ 13-atom core (i.e., Pt1Au12, CuxAu13−x, and Au13, with the exception of Ag doping, and that the selectivity is primarily determined by the type of atoms on the MxAu12−x shell (M=Ag, Cu, and Au in the nanocluster catalysts.

  1. Cluster-support interactions and morphology of MoS2 nanoclusters in a graphite-supported hydrotreating model catalyst.

    Science.gov (United States)

    Kibsgaard, Jakob; Lauritsen, Jeppe V; Laegsgaard, Erik; Clausen, Bjerne S; Topsøe, Henrik; Besenbacher, Flemming

    2006-10-25

    Supported MoS(2) nanoparticles constitute the active component of the important hydrotreating catalysts used for industrial upgrading and purification of the oil feedstock for the production of fossil fuels with a low environmental load. We have synthesized and studied a model system of the hydrotreating catalyst consisting of MoS(2) nanoclusters supported on a graphite surface in order to resolve a number of very fundamental questions related to the atomic-scale structure and morphology of the active clusters and in particular the effect of a substrate used in some types of hydrotreating catalysts. Scanning tunneling microscopy (STM) is used to image the atomic-scale structure of graphite-supported MoS(2) nanoclusters in real space. It is found that the pristine graphite (0001) surface does not support a high dispersion of MoS(2), but by introducing a small density of defects in the surface, highly dispersed MoS(2) nanoclusters could be synthesized on the graphite. From high-resolution STM images it is found that MoS(2) nanoclusters synthesized at low temperature in a sulfiding atmosphere preferentially grow as single-layer clusters, whereas clusters synthesized at 1200 K grow as multilayer slabs oriented with the MoS(2)(0001) basal plane parallel to the graphite surface. The morphology of both single-layer and multilayer MoS(2) nanoclusters is found to be preferentially hexagonal, and atom-resolved images of the top facet of the clusters provide new atomic-scale information on the MoS(2)-HOPG bonding. The structure of the two types of catalytically interesting edges terminating the hexagonal MoS(2) nanoclusters is also resolved in atomic detail in STM images, and from these images it is possible to reveal the atomic structure of both edges and the location and coverage of sulfur and hydrogen adsorbates.

  2. Fabrication and in vitro characterization of gadolinium-based nanoclusters for simultaneous drug delivery and radiation enhancement

    Science.gov (United States)

    Yoo, Shannon S.; Guo, Linghong; Sun, Xuejun; Shaw, Andrew R.; Yuan, Zhipeng; Löbenberg, Raimar; Roa, Wilson H.

    2016-09-01

    We report the synthesis of a gadolinium hydroxide (Gd(OH)3) nanorod based doxorubicin (Dox) delivery system that can enhance both magnetic resonance imaging contrast and radiation sensitivity. A simple and cost effective wet-chemical method was utilized in the presence of manganese (Mn) ions and Dox to produce the Gd(OH)3:Mn·Dox nanocluster structure. The Gd(OH)3:Mn·Dox nanocluster was composed of Mn-doped Gd(OH)3 nanorods arranged in parallel with Dox as a linker molecule between the adjacent nanorods. No other studies have utilized Dox as both the linker and therapeutic molecule in a nanostructure to date. The Gd(OH)3 nanorod is reported to have no significant cellular or in vivo toxicity, which makes it an ideal base material for this biomedical application. The Gd(OH)3:Mn·Dox nanocluster exhibited paramagnetic behavior and was stable in a colloidal solution. The nanocluster also enabled high Dox loading capacity and specifically released Dox in a sustained and pH-dependent manner. The positively charged Gd(OH)3:Mn·Dox nanoclusters were readily internalized into MDA-MB-231 breast cancer cells via endocytosis, which resulted in intracellular release of Dox. The released Dox in cells was effective in conferring cytotoxicity and inhibiting proliferation of cancer cells. Furthermore, a synergistic anticancer effect could be observed with radiation treatment. Overall, the Gd(OH)3:Mn·Dox nanocluster drug delivery system described herein may have potential utility in clinics as a multifunctional theranostic nanoparticle with combined benefits in both diagnosis and therapy in the management of cancer.

  3. A pentacene monolayer trapped between graphene and a substrate

    Science.gov (United States)

    Zhang, Qicheng; Peng, Boyu; Chan, Paddy Kwok Leung; Luo, Zhengtang

    2015-08-01

    A self-assembled pentacene monolayer can be fabricated between the solid-solid interface of few-layered graphene (FLG) and the mica substrate, through a diffusion-spreading method. By utilizing a transfer method that allows us to sandwich pentacene between graphene and mica, followed by controlled annealing, we enabled the diffused pentacene to be trapped in the interfaces and led to the formation of a stable monolayer. We found that the formation of a monolayer is kinetically favored by using a 2D Ising lattice gas model for pentacene trapped between the graphene-substrate interfaces. This kinetic Monte Carlo simulation results indicate that, due to the graphene substrate enclosure, the spreading of the first layer proceeds faster than the second layer, as the kinetics favors the filling of voids by molecules from the second layer. This graphene assisted monolayer assembly method provides a new avenue for the fabrication of two-dimensional monolayer structures.A self-assembled pentacene monolayer can be fabricated between the solid-solid interface of few-layered graphene (FLG) and the mica substrate, through a diffusion-spreading method. By utilizing a transfer method that allows us to sandwich pentacene between graphene and mica, followed by controlled annealing, we enabled the diffused pentacene to be trapped in the interfaces and led to the formation of a stable monolayer. We found that the formation of a monolayer is kinetically favored by using a 2D Ising lattice gas model for pentacene trapped between the graphene-substrate interfaces. This kinetic Monte Carlo simulation results indicate that, due to the graphene substrate enclosure, the spreading of the first layer proceeds faster than the second layer, as the kinetics favors the filling of voids by molecules from the second layer. This graphene assisted monolayer assembly method provides a new avenue for the fabrication of two-dimensional monolayer structures. Electronic supplementary information (ESI

  4. Stability of silanols and grafted alkylsilane monolayers on plasma-activated mica surfaces.

    Science.gov (United States)

    Liberelle, Benoît; Banquy, Xavier; Giasson, Suzanne

    2008-04-01

    We investigated the effect of physical and chemical modifications of mica surfaces induced by water vapor-based plasma treatments on the stability of silanols and grafted alkylsilane monolayers. The plasma-activated substrates were characterized using XPS, TOF-SIMS, and contact angle measurements. They revealed a large surface coverage of silanol groups (Si-OH) and a loss of aluminum atoms compared to freshly cleaved mica surfaces. The stability of plasma-induced silanol groups was investigated by contact angle measurements using ethylene glycol as a probe liquid. The Si-OH surface coverage decreased rapidly under vacuum or thermal treatment to give rise to hydrophobic dehydrated surfaces. The stability of end-grafted monofunctionalized n-alkylsilanes was investigated in different solvents and at different pH using water contact angle measurements. The degrafting of alkylsilanes from the activated mica was promoted in acidic aqueous solutions. This detachment was associated with the hydrolysis of covalent bonds between the alkylsilanes and the mica surface. The monolayer stability was enhanced by increasing the length of the alkyl chains that probably act as a hydrophobic protective layer against hydrolysis reactions. Stable alkylsilane monolayers in water with pH greater than 5.5 were obtained on mica surfaces activated at low plasma pressure. We attributed this stability to the loss of surface Al atoms induced by the plasma treatment.

  5. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E., E-mail: gerdoar@emmanuel.edu [Emmanuel College (United States)

    2013-09-15

    Biomineralization of hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 Multiplication-Sign 10{sup -3} to 3.1 Multiplication-Sign 10{sup -3} OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  6. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    Science.gov (United States)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E.

    2013-09-01

    Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10-3 to 3.1 × 10-3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  7. Hexadecadienyl Monolayers on Hydrogen-Terminated Si(III): Faster Monolayer Formation and Improved Surface Coverage Using the Enyne Moiety

    NARCIS (Netherlands)

    Rijksen, B.M.G.; Pujari, S.P.; Scheres, L.M.W.; Rijn, van C.J.M.; Baio, J.E.; Weidner, T.; Zuilhof, H.

    2012-01-01

    To further improve the coverage of organic monolayers on hydrogen-terminated silicon (H–Si) surfaces with respect to the hitherto best agents (1-alkynes), it was hypothesized that enynes (H–C=C–HC-CH–R) would be even better reagents for dense monolayer formation. To investigate whether the increased

  8. One-dimensional nanoclustering of the Cu(100) surface under CO gas in the mbar pressure range

    Science.gov (United States)

    Eren, Baran; Zherebetskyy, Danylo; Hao, Yibo; Patera, Laerte L.; Wang, Lin-Wang; Somorjai, Gabor A.; Salmeron, Miquel

    2016-09-01

    The bulk terminated Cu(100) surface becomes unstable in the presence of CO at room temperature when the pressure reaches the mbar range. Scanning tunneling microscopy images show that above 0.25 mbar the surface forms nanoclusters with CO attached to peripheral Cu atoms. At 20 mbar and above 3-atom wide one-dimensional nanoclusters parallel to directions cover the surface, with CO on every Cu atom, increasing in density up to 115 mbar. Density functional theory explains the findings as a result of the detachment of Cu atoms from step edges caused by the stronger binding of CO relative to that on flat terraces.

  9. DNA为模板的铂纳米团簇沉积%DNA-templated Platinum Nanocluster Deposition

    Institute of Scientific and Technical Information of China (English)

    晁洁; 刘霞; 刘洪波; 肖守军

    2007-01-01

    Platinum nanoclusters were deposited along the supercoiled DNA strands after incubation of cis-(trans-1R,2R-diaminocyclohexane)(dl-camphorato)platinum(Ⅱ) (Cdp), an analogue of the anti-tumor drug-carboplatin, with DNA and K2PtCl4 for 600 min and then through reduction of dimethylaminoborane (DMAB). The decrease of absorption of DNA at 260 nm indicates the coordination of Cdp and DNA. TEM and AFM were employed to characterize the morphologies and structures of platinum nanoclusters.

  10. DNA-Templated Silver Nanoclusters Formation at Gold Electrode Surface and Its Application to Hydrogen Peroxide Detection

    Institute of Scientific and Technical Information of China (English)

    许媛媛; 陈阳阳; 杨娜娜; 孙丽洲; 李根喜

    2012-01-01

    In this work, we have prepared Ag nanoclusters (Ag NCs) at gold electrode surface by using thiol-modified oligodeoxynucleotide consisting of eighteen cytosine deoxyribonucleotides (polyC18) as template and NaBH4 as reducing agent. Experimental results show that Ag nanoclusters (Ag NCs) can be formed around the template polyC18, while the formation can be characterized with electrochemical method. Further studies reveal that the fab- ricated Ag NCs may display high catalytic activity for the reduction of hydrogen peroxide (H2O2), which can be further used for the detection of H20〉

  11. Thermodynamics at the nanoscale: phase diagrams of nickel-carbon nanoclusters and equilibrium constants for phase transitions.

    Science.gov (United States)

    Engelmann, Yannick; Bogaerts, Annemie; Neyts, Erik C

    2014-10-21

    Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.

  12. Defect-Tolerant Monolayer Transition Metal Dichalcogenides

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Rasmussen, Filip Anselm; Kuhar, Korina;

    2016-01-01

    -principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy, while the TMDs based on group IV metals form only...... shallow defect levels and are thus predicted to be defect-tolerant. Interestingly, all the defect sensitive TMDs have valence and conduction bands with a very similar orbital composition. This indicates a bonding/antibonding nature of the gap, which in turn suggests that dangling bonds will fall inside...... the gap. These ideas are made quantitative by introducing a descriptor that measures the degree of similarity of the conduction and valence band manifolds. Finally, the study is generalized to nonpolar nanoribbons of the TMDs where we find that only the defect sensitive materials form edge states within...

  13. Vector assembly of colloids on monolayer substrates

    Science.gov (United States)

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve

    2017-06-01

    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.

  14. Monolayer semiconductor nanocavity lasers with ultralow thresholds

    Science.gov (United States)

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.; Feng, Liefeng; Yan, Jiaqiang; Mandrus, David G.; Hatami, Fariba; Yao, Wang; Vučković, Jelena; Majumdar, Arka; Xu, Xiaodong

    2015-04-01

    Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor--that is, a tungsten diselenide monolayer--is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.

  15. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  16. Toward the Control of the Creation of Mixed Monolayers on Glassy Carbon Surfaces by Amine Oxidation.

    Science.gov (United States)

    Groppi, Jessica; Bartlett, Philip N; Kilburn, Jeremy D

    2016-01-18

    A versatile and simple methodology for the creation of mixed monolayers on glassy carbon (GC) surfaces was developed, using an osmium-bipyridyl complex and anthraquinone as model redox probes. The work consisted in the electrochemical grafting on GC of a mixture of mono-protected diamine linkers in varying ratios which, after attachment to the surface, allowed orthogonal deprotection. After optimisation of the deprotection conditions, it was possible to remove one of the protecting groups selectively, couple a suitable osmium complex and cap the residual free amines. The removal of the second protecting group allowed the coupling of anthraquinone. The characterisation of the resulting surfaces by cyclic voltammetry showed the variation of the surface coverage of the two redox centres in relation to the initial ratio of the linking amine in solution.

  17. Tunable surface plasmon resonance of silver nanoclusters in ion exchanged soda lime glass

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, Satyabrata, E-mail: smiuac@gmail.com

    2014-06-15

    Highlights: • Ag-glass nanocomposites were synthesized by silver ion exchange and annealing. • SPR of Ag-glass nanocomposites was tuned from 420 to 596 nm by annealing in air. • Subsequent annealing of nanocomposites in Ar + H{sub 2} reversed back SPR to 398 nm. • Formation/dissolution of Ag{sub 2}O nanoshells around Ag nanoclusters lead to tunable SPR. - Abstract: Silver (Ag) nanoclusters embedded in soda lime glass were synthesized by Ag ion exchange followed by thermal annealing. The effects of annealing temperature, time and atmosphere on the plasmonic response, structural and optical properties of silver-glass nanocomposites have been investigated using UV–visible absorption spectroscopy and X-ray photoelectron spectroscopy (XPS). As exchanged sample exhibits surface plasmon resonance (SPR) band around 420 nm which showed regular red shift with increase in annealing temperature. A significant red shift of 176 nm (from 420 to 596 nm) and broadening of the SPR peak was observed for annealing in air at 450 °C. XPS studies on air annealed samples confirmed the presence of Ag{sub 2}O in addition to Ag. Subsequent annealing at 250 °C in reducing atmosphere resulted in increase in intensity, narrowing and blue shift of the SPR peak to 398 nm. Our observations suggest that SPR tunability is mainly due to the formation and dissolution of Ag{sub 2}O nanoshells around Ag nanoclusters in the near-surface region of glass during annealing in oxidizing and reducing atmosphere, respectively.

  18. Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment

    Science.gov (United States)

    Tadic, Marin; Kralj, Slavko; Jagodic, Marko; Hanzel, Darko; Makovec, Darko

    2014-12-01

    The aim of this work is to present the magnetic properties of novel superparamagnetic iNANOvative™|silica nanoparticle clusters. A TEM analysis showed that these nanoparticle clusters, approximately 80 nm in size, contained an assembly of maghemite nanoparticles in the core and an amorphous silica shell. The maghemite nanoparticles in the core were approximately 10 nm in size, whereas the uniform silica shell was approximately 15-nm thick. The number of magnetic nanoparticles that were densely packed in the core of the single nanocluster was estimated to be approximately 67, resulting in a high magnetic moment for the single nanocluster of mnc ∼ 1.2 × 106μB. This magnetic property of the nanoparticle cluster is advantageous for its easy manipulation using an external magnetic field, for example, in biomedical applications, such as drug delivery, or for magnetic separation in biotechnology. The magnetic properties of the iNANOvative™|silica nanoparticle clusters were systematically studied, with a special focus on the influence of the magnetic interactions between the nanoparticles in the core. For comparison, the nanoparticle clusters were annealed for 3 h at 300 °C in air. The annealing had no influence on the nanoparticles' size and phase; however, it had a unique effect on the magnetic properties, i.e., a decrease of the blocking temperature and a weakening of the inter-particle interactions. We believe that this surprising observation is related to the thermal decomposition of the organic surfactant on the surfaces of the nanoparticles' at the high annealing temperatures, which resulted in the formation of amorphous carbon inside the nanocluster.

  19. Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications.

    Science.gov (United States)

    Wang, Hong-Yin; Hua, Xian-Wu; Wu, Fu-Gen; Li, Bolin; Liu, Peidang; Gu, Ning; Wang, Zhifei; Chen, Zhan

    2015-04-01

    Copper-based nanomaterials have broad applications in electronics, catalysts, solar energy conversion, antibiotics, tissue imaging, and photothermal cancer therapy. However, it is challenging to prepare ultrasmall and ultrastable CuS nanoclusters (NCs) at room temperature. In this article, a simple method to synthesize water-soluble, monodispersed CuS NCs is reported based on the strategy of trapping the reaction intermediate using thiol-terminated, alkyl-containing short-chain poly(ethylene glycol)s (HS-(CH2)11-(OCH2CH2)6-OH, abbreviated as MUH). The MUH-coated CuS NCs have superior stability in solutions with varied pH values and are stable in pure water for at least 10 months. The as-prepared CuS NCs were highly toxic to A549 cancer cells at a concentration of higher than 100 μM (9.6 μg/mL), making them be potentially applicable as anticancer drugs via intravenous administration by liposomal encapsulation or by direct intratumoral injection. Besides, for the first time, CuS NCs were used for antibacterial application, and 800 μM (76.8 μg/mL) CuS NCs could completely kill the E. coli cells through damaging the cell walls. Moreover, the NCs synthesized here have strong near-infrared (NIR) absorption and can be used as a candidate reagent for photothermal therapy and photoacoustic imaging. The method of trapping the reaction intermediate for simple and controlled synthesis of nanoclusters is generally applicable and can be widely used to synthesize many metal-based (such as Pt, Pd, Au, and Ag) nanoclusters and nanocrystals.

  20. Metal-nanocluster composites made by ion implantation: A novel third-order nonlinear material

    Energy Technology Data Exchange (ETDEWEB)

    Haglund, R.F. Jr.; Yang, L.; Magruder, R.H. III; Becker, K.; Wittig, J.E. [Vanderbilt Univ., Nashville, TN (United States); White, C.W.; Zhur, R.A. [Oak Ridge National Lab., TN (United States); Yang, L.; Dorsinville, R.; Alfano, R.R. [City Univ. of New York, NY (United States)

    1993-03-01

    We describe our recent studies of metal-insulator nanocluster composites made by ion implantation in such substrates as glass and sapphire. The metal clusters have diameters ranging from 3 to 30 nm. The composites exhibit an electronic nonlinear optical response which is fast on the picosecond time scale. In addition to possibilities for technological application, these materials also offer a way of studying unusual properties of composite materials, such as the quantum confinement of conduction-band electrons and the transverse relaxation time T{sub 2} as a function of cluster size.

  1. Metal-nanocluster composites made by ion implantation: A novel third-order nonlinear material

    Energy Technology Data Exchange (ETDEWEB)

    Haglund, R.F. Jr.; Yang, L.; Magruder, R.H. III; Becker, K.; Wittig, J.E. (Vanderbilt Univ., Nashville, TN (United States)); White, C.W.; Zhur, R.A. (Oak Ridge National Lab., TN (United States)); Yang, L.; Dorsinville, R.; Alfano, R.R. (City Univ. of New York, NY (United States))

    1993-03-01

    We describe our recent studies of metal-insulator nanocluster composites made by ion implantation in such substrates as glass and sapphire. The metal clusters have diameters ranging from 3 to 30 nm. The composites exhibit an electronic nonlinear optical response which is fast on the picosecond time scale. In addition to possibilities for technological application, these materials also offer a way of studying unusual properties of composite materials, such as the quantum confinement of conduction-band electrons and the transverse relaxation time T[sub 2] as a function of cluster size.

  2. Oxidative addition of the C-I bond on aluminum nanoclusters

    Science.gov (United States)

    Sengupta, Turbasu; Das, Susanta; Pal, Sourav

    2015-07-01

    Energetics and the in-depth reaction mechanism of the oxidative addition step of the cross-coupling reaction are studied in the framework of density functional theory (DFT) on aluminum nanoclusters. Aluminum metal in its bulk state is totally inactive towards carbon-halogen bond dissociation but selected Al nanoclusters (size ranging from 3 to 20 atoms) have shown a significantly lower activation barrier towards the oxidative addition reaction. The calculated energy barriers are lower than the gold clusters and within a comparable range with the conventional and most versatile Pd catalyst. Further investigations reveal that the activation energies and other reaction parameters are highly sensitive to the geometrical shapes and electronic structures of the clusters rather than their size, imposing the fact that comprehensive studies on aluminum clusters can be beneficial for nanoscience and nanotechnology. To understand the possible reaction mechanism in detail, the reaction pathway is investigated with the ab initio Born Oppenheimer Molecular Dynamics (BOMD) simulation and the Natural Bond Orbital (NBO) analysis. In short, our theoretical study highlights the thermodynamic and kinetic details of C-I bond dissociation on aluminum clusters for future endeavors in cluster chemistry.Energetics and the in-depth reaction mechanism of the oxidative addition step of the cross-coupling reaction are studied in the framework of density functional theory (DFT) on aluminum nanoclusters. Aluminum metal in its bulk state is totally inactive towards carbon-halogen bond dissociation but selected Al nanoclusters (size ranging from 3 to 20 atoms) have shown a significantly lower activation barrier towards the oxidative addition reaction. The calculated energy barriers are lower than the gold clusters and within a comparable range with the conventional and most versatile Pd catalyst. Further investigations reveal that the activation energies and other reaction parameters are highly

  3. Enhanced Tumor Accumulation of Sub-2 nm Gold Nanoclusters for Cancer Radiation Therapy

    CERN Document Server

    Zhang, Xiao-Dong; Luo, Zhentao; Wu, Di; Shen, Xiu; Song, Sha-Sha; Sun, Yuan-Ming; Liu, Pei-Xun; Zhao, Jing; Huo, Shuaidong; Fan, Saijun; Fan, Feiyue; Liang, Xing-Jie; Xie, Jianping

    2013-01-01

    A new type of metabolizable and efficient radiosensitizer for cancer radiotherapy is presented in this study by combining ultrasmall Au nanoclusters (NCs, <2 nm) with biocompatible coating ligands (glutathione, GSH). The new nano-construct (GSH-coated Au25 NCs) inherits attractive features of both the Au core (strong radiosensitizing effect) and GSH shell (good biocompatibility). It can preferentially accumulate in tumor via the improved EPR effect, which leads to strong enhancement for cancer radiotherapy. After the treatment, the small-sized GSH-Au25 NCs can be efficiently cleared by the kidney, minimizing any potential side effects due to the accumulation of Au25 NCs in the body.

  4. A Thomson parabola ion imaging spectrometer designed to probe relativistic intensity ionization dynamics of nanoclusters.

    Science.gov (United States)

    Rajeev, R; Rishad, K P M; Trivikram, T Madhu; Narayanan, V; Krishnamurthy, M

    2011-08-01

    Conventional techniques of probing ionization dynamics at relativistic intensities for extended target systems such as clusters are difficult both due to problems of achieving good charge resolution and signal integration over the focal volume. Simultaneous measurement of arrival time, necessary for these systems, has normally involved complicated methods. We designed and developed a Thomson parabola imaging spectrometer that overcomes these problems. Intensity sampling method evolved in this report is proved to be mandatory for probing ionization dynamics of clusters at relativistic intensities. We use this method to measure charge resolved kinetic energy spectra of argon nanoclusters at intensities of 4 × 10(18) W cm(-2).

  5. Ultrafast static and diffusion-controlled electron transfer at Ag 29 nanocluster/molecular acceptor interfaces

    KAUST Repository

    Aly, Shawkat Mohammede

    2015-10-29

    Efficient absorption of visible light and a long-lived excited state lifetime of silver nanoclusters (Ag29 NCs) are integral properties for these new clusters to serve as light-harvesting materials. Upon optical excitation, electron injection at Ag29 NC/methyl viologen (MV2+) interfaces is very efficient and ultrafast. Interestingly, our femto- and nanosecond time-resolved results demonstrate clearly that both dynamic and static electron transfer mechanisms are involved in photoluminescence quenching of Ag29 NCs. © 2016 The Royal Society of Chemistry.

  6. Atomistic understanding of hydrogen loading phenomenon into palladium cathode: A simple nanocluster approach and electrochemical evidence

    Indian Academy of Sciences (India)

    Mohsen Lashgari; Davood Matloubi

    2015-03-01

    The inherent potency of palladium to sorb hydrogen atoms was examined empirically and theoretically through various electrochemical methods and high-level quantum chemical calculations (HSE06) based on cluster model (CM) and density functional theory (DFT). The CM-DFT approach using QZVP/cc-PV6Z basis sets revealed a strong attraction between Pd nanoclusters and H atoms that generates some charged entities. This atomistically justifies why the electrochemical impedance of the system becomes less by the loading phenomenon. It is concluded that hydrogen atoms enter the palladium subsurface through hollow and bridge sites by diffusing as proton-like species and get loaded predominantly in the octahedral voids.

  7. Radiation Stability of Nanoclusters in Nano-structured Oxide Dispersion Strengthened (ODS) Steels

    Energy Technology Data Exchange (ETDEWEB)

    Certain, Alicia G.; Kuchibhatla, Satyanarayana V N T; Shutthanandan, V.; Hoelzer, D. T.; Allen, T. R.

    2013-03-01

    Nanostructured oxide dispersion strengthened (ODS) steels are considered candidates for nuclear fission and fusion applications at high temperature and dose. The complex oxide nanoclusters in these alloys provide high-temperature strength and are expected to afford better radiation resistance. Proton, heavy ion, and neutron irradiations have been performed to evaluate cluster stability in 14YWT and 9CrODS steel under a range of irradiation conditions. Energy-filtered transmission electron microscopy and atom probe tomography were used in this work to analyze the evolution of the oxide population.

  8. Observation of the fcc-to-hcp transition in ensembles of argon nanoclusters.

    Science.gov (United States)

    Krainyukova, N V; Boltnev, R E; Bernard, E P; Khmelenko, V V; Lee, D M; Kiryukhin, V

    2012-12-14

    Macroscopic ensembles of weakly interacting argon nanoclusters are studied using x-ray diffraction in low vacuum. As the clusters grow by fusion with increasing temperature, their structure transforms from essentially face-centered cubic (fcc) to hexagonal close packed as the cluster size approaches ~10(5) atoms. The transformation involves intermediate orthorhombic phases. These data confirm extant theoretical predictions. They also indicate that growth kinetics and spatial constraints might play an important role in the formation of the fcc structure of bulk rare-gas solids, which still remains puzzling.

  9. Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy.

    Science.gov (United States)

    Zharov, Vladimir P; Kim, Jin-Woo; Curiel, David T; Everts, Maaike

    2005-12-01

    Nanotechnologies represent an unprecedented recent advance that may revolutionize many areas of medicine and biology, including cancer diagnostics and treatment. Nanoparticle-based technologies have demonstrated especially high potential for medical purposes, ranging from diagnosing diseases to providing novel therapies. However, to be clinically relevant, the existing nanoparticle-based technologies must overcome several challenges, including selective nanoparticle delivery, potential cytotoxicity, imaging of nanoparticles, and real-time assessment of their therapeutic efficacy. This review addresses these issues by summarizing the recent advances in medical diagnostics and therapy with a focus on the self-assembly of gold nanoparticles into nanoclusters in live cells, in combination with their detection using photothermal (PT) techniques.

  10. Restructuring of hex-Pt(100) under CO gas environments: formation of 2-D nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Feng; Dag, Sefa; Wang, Lin-Wang; Liu, Zhi; Butcher, Derek; Salmeron, Miquel; Somorjai, Gabor A.

    2009-04-24

    The atomic-scale restructuring of hex-Pt(100) induced by carbon monoxide with a wide pressure range was studied with a newly designed chamber-in-chamber high-pressure STM and theoretical calculations. Both experimental and DFT calculation results show that CO molecules are bound to Pt nanoclusters through a tilted on-top configuration with a separation of {approx}3.7-4.1 {angstrom}. The phenomenon of restructuring of metal catalyst surfaces induced by adsorption, and in particular the formation of small metallic clusters suggests the importance of studying structures of catalyst surfaces under high pressure conditions for understanding catalytic mechanisms.

  11. Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tadic, Marin, E-mail: marint@vinca.rs [Condensed Matter Physics Laboratory, Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade (Serbia); Kralj, Slavko [Department for Materials Synthesis, Jožef Stefan Institute, Ljubljana SI-1000 (Slovenia); Nanos Scientificae d.o.o. (Nanos Sci.), Teslova 30, Ljubljana (Slovenia); Jagodic, Marko [Institute of Mathematics, Physics and Mechanics, 1000 Ljubljana (Slovenia); Hanzel, Darko [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, Ljubljana SI-1000 (Slovenia)

    2014-12-15

    Graphical abstract: - Highlights: • Magnetic properties of γ-Fe{sub 2}O{sub 3} nanoclusters and their thermal decomposition. • SPION clusters show superparamagnetism and high magnetic moments m{sub nc} ∼ 1.2 × 10{sup 6}μ{sub B.} • The TEM shows maghemite nanoparticles in a core and an amorphous silica shell. • The annealing treatment produces weakening the inter-particle interactions. - Abstract: The aim of this work is to present the magnetic properties of novel superparamagnetic iNANOvative™|silica nanoparticle clusters. A TEM analysis showed that these nanoparticle clusters, approximately 80 nm in size, contained an assembly of maghemite nanoparticles in the core and an amorphous silica shell. The maghemite nanoparticles in the core were approximately 10 nm in size, whereas the uniform silica shell was approximately 15-nm thick. The number of magnetic nanoparticles that were densely packed in the core of the single nanocluster was estimated to be approximately 67, resulting in a high magnetic moment for the single nanocluster of m{sub nc} ∼ 1.2 × 10{sup 6}μ{sub B}. This magnetic property of the nanoparticle cluster is advantageous for its easy manipulation using an external magnetic field, for example, in biomedical applications, such as drug delivery, or for magnetic separation in biotechnology. The magnetic properties of the iNANOvative™|silica nanoparticle clusters were systematically studied, with a special focus on the influence of the magnetic interactions between the nanoparticles in the core. For comparison, the nanoparticle clusters were annealed for 3 h at 300 °C in air. The annealing had no influence on the nanoparticles’ size and phase; however, it had a unique effect on the magnetic properties, i.e., a decrease of the blocking temperature and a weakening of the inter-particle interactions. We believe that this surprising observation is related to the thermal decomposition of the organic surfactant on the surfaces of the

  12. A Thomson parabola ion imaging spectrometer designed to probe relativistic intensity ionization dynamics of nanoclusters

    Science.gov (United States)

    Rajeev, R.; Rishad, K. P. M.; Trivikram, T. Madhu; Narayanan, V.; Krishnamurthy, M.

    2011-08-01

    Conventional techniques of probing ionization dynamics at relativistic intensities for extended target systems such as clusters are difficult both due to problems of achieving good charge resolution and signal integration over the focal volume. Simultaneous measurement of arrival time, necessary for these systems, has normally involved complicated methods. We designed and developed a Thomson parabola imaging spectrometer that overcomes these problems. Intensity sampling method evolved in this report is proved to be mandatory for probing ionization dynamics of clusters at relativistic intensities. We use this method to measure charge resolved kinetic energy spectra of argon nanoclusters at intensities of 4 × 1018 W cm-2.

  13. Adhesive and conformational behaviour of mycolic acid monolayers.

    Science.gov (United States)

    Zhang, Zhenyu; Pen, Yu; Edyvean, Robert G; Banwart, Steven A; Dalgliesh, Robert M; Geoghegan, Mark

    2010-09-01

    We have studied the pH-dependent interaction between mycolic acid (MA) monolayers and hydrophobic and hydrophilic surfaces using molecular (colloidal probe) force spectroscopy. In both cases, hydrophobic and hydrophilic monolayers (prepared by Langmuir-Blodgett and Langmuir-Schaefer deposition on silicon or hydrophobized silicon substrates, respectively) were studied. The force spectroscopy data, fitted with classical DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory to examine the contribution of electrostatic and van der Waals forces, revealed that electrostatic forces are the dominant contribution to the repulsive force between the approaching colloidal probe and MA monolayers. The good agreement between data and the DLVO model suggest that beyond a few nm away from the surface, hydrophobic, hydration, and specific chemical bonding are unlikely to contribute to any significant extent to the interaction energy between the probe and the surface. The pH-dependent conformation of MA molecules in the monolayer at the solid-liquid interface was studied by ellipsometry, neutron reflectometry, and with a quartz crystal microbalance. Monolayers prepared by the Langmuir-Blodgett method demonstrated a distinct pH-responsive behaviour, while monolayers prepared by the Langmuir-Schaefer method were less sensitive to pH variation. It was found that the attachment of water molecules plays a vital role in determining the conformation of the MA monolayers.

  14. The Modeling of Pulmonary Particulate Matter Transport Using Langmuir Monolayers

    Science.gov (United States)

    Eaton, Jeremy M.

    The effects of a barrier in proximity to the air-water interface on the dynamics of a Langmuir monolayer system are observed. A monolayer of Survanta, bovine lung surfactant, is deposited onto the interface of an aqueous buffer solution. Polystyrene particles one micron in diameter and tagged with fluorescent carboxylate groups are distributed evenly throughout the monolayer surface. The bead-monolayer system is compressed and expanded to induce folding. A polydimethylsiloxane (PDMS) substrate is placed below the monolayer in the buffer solution to study interactions between the folding monolayer and a barrier. The presence of the substrate is shown to shift surface pressure-area isotherms toward regions of lower area by an average of 8.9 mN/m. The surface of the PDMS substrate can be imaged using fluorescence microscopy to detect the presence of particles or surfactant that may have been transported there from the air-water interface during folding. Images show the transferral of particles and monolayer together suggesting the pinch-off of a fold or the direct interaction of a fold with the barrier.

  15. A New Method For The Simulation Of Lipid Monolayer Dynamics

    CERN Document Server

    Griesbauer, J; Seeger, H M; Schneider, M F

    2010-01-01

    In this paper we present a predictive numerical model to describe dynamic properties of lipid monolayers. Its thermodynamic basis simply assumes a hexagonal lattice which can be occupied by lipids which may be ordered or disordered. Since the lattice sites are translational lose and interconnected by Newtonian springs, dynamic movements of the lipids are included. All necessary parameters directly follow from experiments. This approach allows the calculation of isotherms of lipid monolayers, which can be directly compared to experimentally determined ones, both quantitatively and qualitatively. Apart from that the monolayers heat capacity profile can be calculated, which otherwise cannot be easily extracted.

  16. Defect Structure of Localized Excitons in a WSe2 Monolayer

    KAUST Repository

    Zhang, Shuai

    2017-07-26

    The atomic and electronic structure of intrinsic defects in a WSe2 monolayer grown on graphite was revealed by low temperature scanning tunneling microscopy and spectroscopy. Instead of chalcogen vacancies that prevail in other transition metal dichalcogenide materials, intrinsic defects in WSe2 arise surprisingly from single tungsten vacancies, leading to the hole (p-type) doping. Furthermore, we found these defects to dominate the excitonic emission of the WSe2 monolayer at low temperature. Our work provided the first atomic-scale understanding of defect excitons and paved the way toward deciphering the defect structure of single quantum emitters previously discovered in the WSe2 monolayer.

  17. Ordered Porous Pd Octahedra Covered with Monolayer Ru Atoms.

    Science.gov (United States)

    Ge, Jingjie; He, Dongsheng; Bai, Lei; You, Rui; Lu, Haiyuan; Lin, Yue; Tan, Chaoliang; Kang, Yan-Biao; Xiao, Bin; Wu, Yuen; Deng, Zhaoxiang; Huang, Weixin; Zhang, Hua; Hong, Xun; Li, Yadong

    2015-11-25

    Monolayer Ru atoms covered highly ordered porous Pd octahedra have been synthesized via the underpotential deposition and thermodynamic control. Shape evolution from concave nanocube to octahedron with six hollow cavities was observed. Using aberration-corrected high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy, we provide quantitative evidence to prove that only a monolayer of Ru atoms was deposited on the surface of porous Pd octahedra. The as-prepared monolayer Ru atoms covered Pd nanostructures exhibited excellent catalytic property in terms of semihydrogenation of alkynes.

  18. Network-Forming Nanoclusters in Binary As-S/Se Glasses: From Ab Initio Quantum Chemical Modeling to Experimental Evidences

    Science.gov (United States)

    Hyla, M.

    2017-01-01

    Network-forming As2(S/Se)m nanoclusters are employed to recognize expected variations in a vicinity of some remarkable compositions in binary As-Se/S glassy systems accepted as signatures of optimally constrained intermediate topological phases in earlier temperature-modulated differential scanning calorimetry experiments. The ab initio quantum chemical calculations performed using the cation-interlinking network cluster approach show similar oscillating character in tendency to local chemical decomposition but obvious step-like behavior in preference to global phase separation on boundary chemical compounds (pure chalcogen and stoichiometric arsenic chalcogenides). The onsets of stability are defined for chalcogen-rich glasses, these being connected with As2Se5 ( Z = 2.29) and As2S6 ( Z = 2.25) nanoclusters for As-Se and As-S glasses, respectively. The physical aging effects result preferentially from global phase separation in As-S glass system due to high localization of covalent bonding and local demixing on neighboring As2Sem+1 and As2Sem-1 nanoclusters in As-Se system. These nanoclusters well explain the lower limits of reversibility windows in temperature-modulated differential scanning calorimetry, but they cannot be accepted as signatures of topological phase transitions in respect to the rigidity theory.

  19. Microwave-Assisted Synthesis of Red-Light Emitting Au Nanoclusters with the Use of Egg White

    Science.gov (United States)

    Tian, Jinghan; Yan, Lei; Sang, Aohua; Yuan, Hongyan; Zheng, Baozhan; Xiao, Dan

    2014-01-01

    We developed a simple, cost-effective, and eco-friendly method to synthesize gold nanoclusters (AuNCs) with red fluorescence. The experiment was performed using HAuCl[subscript 4], egg white, Na[subscript 2]CO[subscript 3] (known as soda ash or washing soda), and a microwave oven. In our experiment, fluorescent AuNCs were prepared within a…

  20. Atomically Precise Gold Nanoclusters Accelerate Hydrogen Evolution over MoS2 Nanosheets: The Dual Interfacial Effect.

    Science.gov (United States)

    Zhao, Shuo; Jin, Renxi; Song, Yongbo; Zhang, Hui; House, Stephen D; Yang, Judith C; Jin, Rongchao

    2017-07-24

    Hydrogen generation via electrocatalytic water splitting holds great promise for future energy revolution. It is desirable to design abundant and efficient catalysts and achieve mechanistic understanding of hydrogen evolution reaction (HER). Here, this paper reports a strategy for improving HER performance of molybdenum disulfide (MoS2 ) via introducing gold nanoclusters as a cocatalyst. Compared to plain MoS2 nanosheets, the Au25 (SR)18 /MoS2 nanocomposite exhibits enhanced HER activity with a small onset potential of -0.20 V (vs reversible hydrogen electrode) and a higher current density of 59.3 mA cm(-2) at the potential of -0.4 V. In addition to the interfacial interaction between nanoclusters and MoS2 , the interface between the Au25 core and the surface ligands (thiolate vs selenolate) is also discovered to distinctly affect the catalytic performance. This work highlights the promise of metal nanoclusters in boosting the HER performance via tailoring the interfacial electronic interactions between gold nanoclusters and MoS2 nanosheets, as well as the interface between metal core and surface ligands. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001.

    Directory of Open Access Journals (Sweden)

    Puran Pandey

    Full Text Available Au nano-clusters and nanoparticles (NPs have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001 by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots.

  2. Investigation of helium at a Y2Ti2O7 nanocluster embedded in a BCC Fe matrix.

    Science.gov (United States)

    Danielson, Thomas; Tea, Eric; Hin, Celine

    2016-11-02

    Nanostructured ferritic alloys (NFAs) are prime candidates for structural and first wall components of fission and fusion reactors. The main reason for this is their ability to effectively withstand high concentrations of the transmutation product helium. A high number density of oxide nanoclusters dispersed throughout a BCC Fe matrix act as trapping sites for helium and prevent its eventual delivery to high risk nucleation sites. The current study uses density functional theory to investigate the helium trapping mechanisms at the boundary between BCC iron and Y2Ti2O7, a common stoichiometry of the oxide nanoclusters in NFAs. The investigation is carried out on a structure matched oxide nanocluster that is embedded within a BCC Fe supercell. Investigation of the electronic structure and a mapping of the potential energy landscape reveals that the localized iono-covalent bonds present within the oxides create a potential energy-well within the metallically bonded BCC Fe matrix, so that trapping of helium at the oxide nanocluster is thermodynamically and kinetically favorable.

  3. Microwave-Assisted Synthesis of Red-Light Emitting Au Nanoclusters with the Use of Egg White

    Science.gov (United States)

    Tian, Jinghan; Yan, Lei; Sang, Aohua; Yuan, Hongyan; Zheng, Baozhan; Xiao, Dan

    2014-01-01

    We developed a simple, cost-effective, and eco-friendly method to synthesize gold nanoclusters (AuNCs) with red fluorescence. The experiment was performed using HAuCl[subscript 4], egg white, Na[subscript 2]CO[subscript 3] (known as soda ash or washing soda), and a microwave oven. In our experiment, fluorescent AuNCs were prepared within a…

  4. Dehydrogenation characteristics of MgnH2n (n = 1-32) nanoclusters: A first-principles DFT study

    Science.gov (United States)

    Banerjee, P.; Chandrakumar, K. R. S.; Das, G. P.

    2015-06-01

    Ground state structures and dehydrogenation characteristics of MgnH2n (n = 1-32) nanoclusters have been investigated using first principles DFT approach. Dehydrogenation temperature gets reduced compared to the bulk rutile phase of MgH2, indicating its favorable usage for hydrogen storage.

  5. Detecting element specific electrons from a single cobalt nanocluster with synchrotron x-ray scanning tunneling microscopy

    Science.gov (United States)

    Kersell, Heath; Shirato, Nozomi; Cummings, Marvin; Chang, Hao; Miller, Dean; Rosenmann, Daniel; Hla, Saw-Wai; Rose, Volker

    2017-09-01

    We use a nanofabricated scanning tunneling microscope tip as a detector to investigate local X-ray induced tunneling and electron emission from a single cobalt nanocluster on a Au(111) surface. The tip-detector is positioned a few angstroms above the nanocluster, and ramping the incident X-ray energy across the Co photoabsorption K-edge enables the detection of element specific electrons. Atomic-scale spatial dependent changes in the X-ray absorption cross section are directly measured by taking the X-ray induced current as a function of X-ray energy. From the measured sample and tip currents, element specific X-ray induced current components can be separated and thereby the corresponding yields for the X-ray induced processes of the single cobalt nanocluster can be determined. The detection of element specific synchrotron X-ray induced electrons of a single nanocluster opens an avenue for materials characterization on a one particle at-a-time basis.

  6. Correlation between the energy shell structure and geometry in metallic nanoclusters: quasi-resonance states, isotope effect

    CERN Document Server

    Kresin, Vladimir

    2008-01-01

    Metallic nanoclusters displaying electronic shell structure exhibit the special feature of a correlation between their geometry and the number of delocalized electrons . Their shape evolution can be described as a quantum oscillation between quasi-resonant states (prolate and oblate configurations) whose amplitudes depend upon the degree of shell filling. The picture explains the evolution of absorption spectra and predicts a peculiar isotope effect .

  7. Photopatterning of stable, low-density, self-assembled monolayers on gold.

    Science.gov (United States)

    Safazadeh, Leila; Berron, Brad J

    2015-03-10

    Photoinitiated thiol-yne chemistry is utilized as a click reaction for grafting of acid-terminated alkynes to thiol-terminated monolayers on a gold substrate to create stable, low-density monolayers. The resulting monolayers are compared with a well-packed 11-mercaptoundecanoic acid monolayer and the analogous low-density monolayers prepared through a solution phase synthetic approach. The overall structuring of the monolayer prepared by solid-phase grafting is characterized by contact angle goniometry and Fourier transform infrared spectroscopy. The results show that the product monolayer has an intermediate surface energy and a more disordered chemical structuring compared to a traditional well-packed self-assembled monolayer, showing a low-packing density of the chains at the monolayer surface. The monolayer's structure and electrochemical stability were studied by reductive desorption of the thiolates. The prepared low-density monolayers have a higher electrochemical stability than traditional well-packed monolayers, which results from the crystalline structure at the gold interface. This technique allows for simple, fast preparation of low-density monolayers of higher stability than well-packed monolayers. The use of a photomask to restrict light access to the substrate yielded these low-density monolayers in patterned regions defined by light exposure. This general thiol-yne approach is adaptable to a variety of analogous low-density monolayers with diverse chemical functionalities.

  8. Assembly of large purely inorganic Ce-stabilized/bridged selenotungstates: from nanoclusters to layers.

    Science.gov (United States)

    Chen, Wei-Chao; Qin, Chao; Li, Yang-Guang; Zang, Hong-Ying; Shao, Kui-Zhan; Su, Zhong-Min; Wang, En-Bo

    2015-05-01

    A versatile one-pot strategy was used to synthesize two large, purely inorganic selenotungstates, nanocluster K(6)Na(16) [Ce(6)Se(6)W(67)O(230) (OH)(6) (H(2)O)(17)]⋅47 H(2)O (1) and layer K(9)Na(5) Ce(H(2)O)(4) [Ce(6)Se(10)W(51)O(187) (OH)(7) (H(2)O)(18)]⋅45H(2)O(2), by combining cerium centers and SeO(3) (2-) heteroanion templates. Compound 1 displays a Ce-stabilized hexameric nanocluster with one rhombus-like {W(4)O(15) (OH)(3)} unit in the center, whereas compound 2 is the first example of a Ce-bridged layer selenotungstate network based on linkage of the unusual {Ce(6)Se(10)W(51)O(187) (OH)(7) (H(2)O)(18)} clusters and additional Ce(H(2)O)(4) fragments via Ce-O-Se bridges. The compounds were characterized by elemental analyses, IR spectroscopy, thermogravimetric analyses, powder and single-crystal X-ray diffraction, and electrospray ionization mass spectrometry. Moreover, the electrochemical property of compound 1 was also investigated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Facile synthesis of fluorescent Au/Ce nanoclusters for high-sensitive bioimaging.

    Science.gov (United States)

    Ge, Wei; Zhang, Yuanyuan; Ye, Jing; Chen, Donghua; Rehman, Fawad Ur; Li, Qiwei; Chen, Yun; Jiang, Hui; Wang, Xuemei

    2015-02-03

    Tumor-target fluorescence bioimaging is an important means of early diagnosis, metal nanoclusters have been used as an excellent fluorescent probe for marking tumor cells due to their targeted absorption. We have developed a new strategy for facile synthesis of Au/Ce nanoclusters (NCs) by doping trivalent cerium ion into seed crystal growth process of gold. Au/Ce NCs have bright fluorescence which could be used as fluorescent probe for bioimaging. In this study, we synthesized fluorescent Au/Ce NCs through two-step hydrothermal reaction. The concentration range of 25-350 μM, Au/Ce NCs have no obvious cell cytotoxicity effect on HeLa, HepG2 and L02 cells. Furthermore, normal cells (L02) have no obvious absorption of Au/Ce NCs. Characterization of synthesized Au/Ce NCs was done by using TEM, EDS and XPS. Then these prepared Au/Ce NCs were applied for in vitro/in vivo tumor-target bioimaging due to its prolonged fluorescence lifetime and bright luminescence properties. The glutathione stabilized Au/Ce NCs synthesized through hydrothermal reaction possess stable and bright fluorescence that can be readily utilized for high sensitive fluorescence probe. Our results suggest that Au/Ce NCs are useful candidate for in vitro/in vivo tumor bioimaging in potential clinical application.

  10. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C., E-mail: crstorres@yahoo.com.mx [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF 07738 (Mexico); Garcia-Cruz, M.L. [Centro de Investigacion en Dispositivos Semiconductores, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Castaneda, L., E-mail: luisca@sirio.ifuap.buap.mx [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Rangel Rojo, R. [CICESE/Depto. de Optica, A. P. 360, Ensenada, BC 22860 (Mexico); Tamayo-Rivera, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, DF 01000 (Mexico); Maldonado, A. [Depto. de Ing. Electrica, CINVESTAV IPN-SEES, A. P. 14740, Mexico DF 07000 (Mexico); Avendano-Alejo, M., E-mail: imax_aa@yahoo.com.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, A. P. 70-186, 04510, DF (Mexico); and others

    2012-04-15

    Chromium doped zinc oxide thin solid films were deposited on soda-lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol-gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: Black-Right-Pointing-Pointer Enhancement in photoluminescence for chromium doped zinc oxide films is presented. Black-Right-Pointing-Pointer A strong and ultrafast optical Kerr effect seems to result from quantum confinement. Black-Right-Pointing-Pointer Photoconductive properties for optical and optoelectronic functions were observed.

  11. Formation of silver nanoclusters in transparent polyimides by Ag-K ion-exchange process

    Science.gov (United States)

    Carturan, S.; Quaranta, A.; Bonafini, M.; Vomiero, A.; Maggioni, G.; Mattei, G.; de Julián Fernández, C.; Bersani, M.; Mazzoldi, P.; Della Mea, G.

    2007-05-01

    Silver nanoclusters embedded in two transparent fluorinated polyimides, 4,4'-hexafluoroisopropylidene diphthalic anhydride 2,3,5,6-tetramethyl paraphenylene diamine (6FDA-DAD) and 3,3',4,4' biphenyltetracarboxylic acid dianhydride 1,1-bis(4-aminophenyl)-1-phenyl-2,2,2-trifluoroethane (BPDA-3F), have been produced by surface modification with KOH aqueous solution followed by K-assisted Ag doping and thermal reduction in hydrogen atmosphere. The reaction rate of the nucleophilic hydrolysis in KOH, studied by Fourier transform infrared spectroscopy (FT-IR) and Rutherford backscattering spectrometry (RBS), depends on the polyimide chemical structure. After ion-exchange in AgNO{3} solution and subsequent annealing, the polyimide structure recovery was monitored by FT-IR whereas the characteristic surface plasmon absorption band of silver nanoparticles was evidenced by optical absorption measurements. The structure of silver nanoclusters as related to size and size distribution in the different polyimide matrices was thoroughly investigated by Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The collected data evidenced a uniform distribution of Ag clusters of nanometric size after thermal treatment at 300 circC in both polyimides. For the same ion-exchange treatment parameters and annealing temperature, XRD analyses evidenced the presence of crystallites with similar sizes.

  12. Unique Bonding Properties of the Au36(SR)24 Nanocluster with FCC-Like Core.

    Science.gov (United States)

    Chevrier, Daniel M; Chatt, Amares; Zhang, Peng; Zeng, Chenjie; Jin, Rongchao

    2013-10-03

    The recent discovery on the total structure of Au36(SR)24, which was converted from biicosahedral Au38(SR)24, represents a surprising finding of a face-centered cubic (FCC)-like core structure in small gold-thiolate nanoclusters. Prior to this finding, the FCC feature was only expected for larger (nano)crystalline gold. Herein, we report results on the unique bonding properties of Au36(SR)24 that are associated with its FCC-like core structure. Temperature-dependent X-ray absorption spectroscopy (XAS) measurements at the Au L3-edge, in association with ab initio calculations, show that the local structure and electronic behavior of Au36(SR)24 are of more molecule-like nature, whereas its icosahedral counterparts such as Au38(SR)24 and Au25(SR)18 are more metal-like. Moreover, site-specific S K-edge XAS studies indicate that the bridging motif for Au36(SR)24 has different bonding behavior from the staple motif from Au38(SR)24. Our findings highlight the important role of "pseudo"-Au4 units within the FCC-like Au28 core in interpreting the bonding properties of Au36(SR)24 and suggest that FCC-like structure in gold thiolate nanoclusters should be treated differently from its bulk counterpart.

  13. High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ruquan; Liu, Yuanyue; Peng, Zhiwei; Wang, Tuo; Jalilov, Almaz S.; Yakobson, Boris I.; Wei, Su-Huai; Tour, James M.

    2017-01-18

    The development of catalytic materials for the hydrogen oxidation, hydrogen evolution, oxygen reduction or oxygen evolution reactions with high reaction rates and low overpotentials are key goals for the development of renewable energy. We report here Ru(0) nanoclusters supported on nitrogen-doped graphene as high-performance multifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), showing activities similar to that of commercial Pt/C in alkaline solution. For HER performance in alkaline media, sample Ru/NG-750 reaches 10 mA cm-2 at an overpotential of 8 mV with a Tafel slope of 30 mV dec-1. The high HER performance in alkaline solution is advantageous because most catalysts for ORR and oxygen evolution reaction (OER) also prefer alkaline solution environment whereas degrade in acidic electrolytes. For ORR performance, Ru/NG effectively catalyzes the conversion of O2 into OH- via a 4e process at a current density comparable to that of Pt/C. The unusual catalytic activities of Ru(0) nanoclusters reported here are important discoveries for the advancement of renewable energy conversion reactions.

  14. First-principles structure search for the stable isomers of stoichiometric WS2 nano-clusters

    CERN Document Server

    Hafizi, Roohollah; Alaei, Mojtaba; Jangrouei, MohammadReza; Akbarzadeh, Hadi

    2016-01-01

    In this paper, we employ evolutionary algorithm along with the full-potential density functional theory (DFT) computations to perform a comprehensive search for the stable structures of stoichiometric (WS2)n nano-clusters (n=1-9), within three different exchange-correlation functionals. Our results suggest that n=3, 5, 8 are possible candidates for the low temperature magic sizes of WS2 nano-clusters while at temperatures above 600 Kelvin, n=5 and 7 exhibit higher relative stability among the studied systems. The electronic properties and energy gap of the lowest energy isomers were computed within several schemes, including semilocal PBE and BLYP functionals, hybrid B3LYP functional, many body based DFT+GW approach, and time dependent DFT calculations. Vibrational spectra of the lowest lying isomers, computed by the force constant method, are used to address IR spectra and thermal free energy of the clusters. Time dependent density functional calculation in real time domain is applied to determine the full a...

  15. DNA/RNA Detection Using DNA-Templated Few-Atom Silver Nanoclusters

    Directory of Open Access Journals (Sweden)

    Hsin-Chih Yeh

    2013-04-01

    Full Text Available DNA-templated few-atom silver nanoclusters (DNA/Ag NCs are a new class of organic/inorganic composite nanomaterials whose fluorescence emission can be tuned throughout the visible and near-IR range by simply programming the template sequences. Compared to organic dyes, DNA/Ag NCs can be brighter and more photostable. Compared to quantum dots, DNA/Ag NCs are smaller, less prone to blinking on long timescales, and do not have a toxic core. The preparation of DNA/Ag NCs is simple and there is no need to remove excess precursors as these precursors are non-fluorescent. Our recent discovery of the fluorogenic and color switching properties of DNA/Ag NCs have led to the invention of new molecular probes, termed NanoCluster Beacons (NCBs, for DNA detection, with the capability to differentiate single-nucleotide polymorphisms by emission colors. NCBs are inexpensive, easy to prepare, and compatible with commercial DNA synthesizers. Many other groups have also explored and taken advantage of the environment sensitivities of DNA/Ag NCs in creating new tools for DNA/RNA detection and single-nucleotide polymorphism identification. In this review, we summarize the recent trends in the use of DNA/Ag NCs for developing DNA/RNA sensors.

  16. Spin relaxation in Si nanoclusters embedded in free-standing SiGe nanocolumns

    Science.gov (United States)

    Stepina, N. P.; Zinovieva, A. F.; Dvurechenskii, A. V.; Noda, Shuichi; Molla, Md. Zaman; Samukawa, Seiji

    2017-05-01

    Separated nanocolumns (NCs) with embedded Si nanoclusters were prepared using the top-down technique that combines a bio-template and the defect-free neutral beam etching of Si0.75Ge0.25/Si/Si0.75Ge0.25 double-quantum-well layers. The electron spin resonance (ESR) was studied in the dark and under illumination for the structures with different lateral sizes of NCs. For the structure with a NC diameter in the range of 20-25 nm, the ESR signal is characterized by the isotropic line width. The spatial separation of nanoclusters results in the suppression of the Dyakonov-Perel mechanism of spin relaxation. A decrease in the NC diameter down to 13-14 nm leads to electron localization under the bottom of NCs, making the orientation dependence of the ESR line width anisotropic. Illumination results in the increase in spin lifetimes in both the types of NC structures, relocating the electrons to the center of NCs in the narrow NC structure, and making electron localization stronger in the thick NCs.

  17. Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection

    Science.gov (United States)

    Antunes, Paula; Watterson, Daniel; Parmvi, Mattias; Burger, Robert; Boisen, Anja; Young, Paul; Cooper, Matthew A.; Hansen, Mikkel F.; Ranzoni, Andrea; Donolato, Marco

    2015-11-01

    Dengue is a tropical vector-borne disease without cure or vaccine that progressively spreads into regions with temperate climates. Diagnostic tools amenable to resource-limited settings would be highly valuable for epidemiologic control and containment during outbreaks. Here, we present a novel low-cost automated biosensing platform for detection of dengue fever biomarker NS1 and demonstrate it on NS1 spiked in human serum. Magnetic nanoparticles (MNPs) are coated with high-affinity monoclonal antibodies against NS1 via bio-orthogonal Cu-free ‘click’ chemistry on an anti-fouling surface molecular architecture. The presence of the target antigen NS1 triggers MNP agglutination and the formation of nanoclusters with rapid kinetics enhanced by external magnetic actuation. The amount and size of the nanoclusters correlate with the target concentration and can be quantified using an optomagnetic readout method. The resulting automated dengue fever assay takes just 8 minutes, requires 6 μL of serum sample and shows a limit of detection of 25 ng/mL with an upper detection range of 20000 ng/mL. The technology holds a great potential to be applied to NS1 detection in patient samples. As the assay is implemented on a low-cost microfluidic disc the platform is suited for further expansion to multiplexed detection of a wide panel of biomarkers.

  18. One-pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging.

    Science.gov (United States)

    Li, Jingjing; Zhong, Xiaoqin; Cheng, Fangfang; Zhang, Jian-Rong; Jiang, Li-Ping; Zhu, Jun-Jie

    2012-05-01

    As an emerging category of fluorescent metal nanoclusters, oligonucleotide-templated silver nanoclusters (Ag NCs) have attracted a lot of interest and have shown wide application in biorelated disciplines. However, the weak fluorescence emission and poor permeability to cell membranes tethered further intracellular applications of Ag NCs. AS1411 is an antiproliferative G-rich phosphodiester oligonucleotide and currently an anticancer agent under phase II clinical trials. Herein, we present a strategy to synthesize AS1411-functionalized Ag NCs with excellent fluorescence through a facile one-pot process. Confocal laser scanning microscopy and Z-axis scanning confirmed that the AS1411-functionalized Ag NCs could be internalized into MCF-7 human breast cancer cells and were able to specifically stain nuclei with red color. To our surprise, 3-[4,5-dimethylthiazol-z-yl]-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated the Ag NCs were cytocompatible and showed better inhibition effects than pure AS1411 on MCF-7 human breast cancer cells. In addition, a universal design of the oligonucleotide scaffold for synthesis of Ag NCs was extended to other aptamers, such as Sgc8c and mucin 1 aptamer. Due to the facile synthesis procedure and capability of specific target recognition, this fluorescent platform will potentially broaden the applications of Ag NCs in biosensing and biological imaging.

  19. Hybrid Nanomaterials Based on Graphene and Gold Nanoclusters for Efficient Electrocatalytic Reduction of Oxygen

    Science.gov (United States)

    Wang, Changhong; Li, Na; Wang, Qiannan; Tang, Zhenghua

    2016-07-01

    Nanocomposites based on gold nanoclusters (AuNCs) with polyvinyl pyrrolidone as ligand and reduced graphene oxide (RGO) have been prepared and employed as efficient electrocatalysts for oxygen reduction reaction (ORR). AuNCs were synthesized through a wet chemical approach and then loaded onto the RGO. The as-prepared hybrid materials were pyrolyzed to remove the organic ligands. The composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) as well as other techniques. Electrochemical tests demonstrated that the hybrid materials exhibited effective ORR activity in alkaline media. Among a series of samples tested, the pyrolyzed sample with 50 % AuNCs mass loading exhibited the best activity, superior than AuNCs alone, RGO alone, and the others, in terms of onset potential and kinetic current density as well as durability. The method here may provide a generic approach to prepare supported noble metal nanoclusters with excellent reactivity and robust stability for ORR.

  20. Luminescent golden silk and fabric through in situ chemically coating pristine-silk with gold nanoclusters.

    Science.gov (United States)

    Zhang, Pu; Lan, Jing; Wang, Yi; Xiong, Zu Hong; Huang, Cheng Zhi

    2015-01-01

    Silk is an excellent natural material and has been used for a variety of applications. Modification of the pristine silk is usually needed depending on the intended purpose. The technical treatments involved in the modification not only should be easy, rapid, environmentally friendly, and cheap but should also retain the features of the pristine silk. Herein, we demonstrate that luminescent silk and fabric can be produced through nanotechnology. The surface of the natural silk fiber is chemically coated with luminescent gold nanoclusters (AuNCs) composed of tens to hundreds of Au atoms through a redox reaction between the protein-based silk and an Au salt precursor. The luminescent silk coated with AuNCs (called golden silk) possesses good optical properties, including a relatively long wavelength emission, high quantum yields, a long fluorescent lifetime, and photostability. Moreover, golden silk prepared this way has better mechanical properties than pristine silk, is better able to inhibit UV, and has lower toxicity in vitro. This work not only provides an effective strategy for in situ preparation of luminescent metal nanoclusters on a solid substrate but also paves the way for large-scale and industrialized production of novel silk-based materials or fabrics through nanotechnology.

  1. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands.

    Science.gov (United States)

    Wang, Yu; Su, Haifeng; Xu, Chaofa; Li, Gang; Gell, Lars; Lin, Shuichao; Tang, Zichao; Häkkinen, Hannu; Zheng, Nanfeng

    2015-04-01

    An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.e., phenylalkynyl, 2-pyridylthiolate, and chloride) was revealed on the surface of metal nanoclusters. Similar to thiolates, alkynyls bind linearly to surface Au atoms using their σ-bonds, leading to the formation of two types of surface staple units (PhC≡C-Au-L, L = PhC≡C(-) or 2-pyridylthiolate) on the cluster. The co-presence of three different surface ligands allows the site-specific surface and functional modification of the cluster. The lability of PhC≡C(-) ligands on the cluster was demonstrated, making it possible to keep the metal core intact while removing partial surface capping. Moreover, it was found that ligand exchange on the cluster occurs easily to offer various derivatives with the same metal core but different surface functionality and thus different solubility.

  2. Plasmon Resonance in A-С : Н Films Modified with Platinum Nanoclusters

    Directory of Open Access Journals (Sweden)

    O. Prikhodko

    2014-07-01

    Full Text Available Optical density spectra of amorphous diamond-like films of hydrogenated carbon modified with platinum impurity (a-C : HPt have been investigated. a-C : HPt films were prepared by the method of ion plasma magnetron co-sputtering of graphite and platinum in argon-hydrogen atmosphere. Platinum content in the films was varied from 0 to 9 at. %. In the optical spectra of a-C : HPt films with different Pt content the peaks of resonance absorption in the range from 496 to 501 nm were found, whilst in the spectrum of a-C : H films the absorption peak is absent. The appearance of these absorption peaks in a-C : HPt films is explained by resonance plasmon vibrations of free electrons in platinum nanoclusters. The average diameter of the Pt nanoclusters was estimated using electromagnetic theory of Mie, and it is ~ 5 nm.

  3. Effect of helium nanoclusters on the spectroscopic properties of embedded SF6: Ionization, excitation and vibration

    Science.gov (United States)

    Dehdashti-Jahromi, M.; Farrokhpour, H.

    2017-02-01

    Ionization and excitation energies, IR and Raman spectra of sulfur hexafluoride (SF6), located inside helium (He) nanoclusters with different sizes (SF6@Hen; n = 20, 40, 60), were calculated. The effect of the cluster size on the spectroscopic properties of the SF6 was investigated and found that the Hen-SF6 interaction in the He clusters with large number of atoms is small so that the ionization and absorption energies of SF6 are not affected while for small He nanoclusters the Hen-SF6 interaction is more important. The effect of Hen-SF6 interaction and deformation of the fragments on the photoelectron and absorption spectra of SF6@Hen were separated theoretically and discussed in details. It was deduced that the effect of the cluster size on the IR and Raman vibrational frequencies of the SF6 is negligible for the cluster size range considered in this work. Density functional theory (DFT) employing M06-2X functional and 6-31 + G(df) basis set were used for optimizing the structures of SF6@Hen. Symmetry adapted cluster-configuration interaction (SAC-CI) methodology, with the same basis set, were used to calculate the ionization and excitation energies of the SF6@Hen structures. Using the calculated ionization and absorption energies and their intensities, the photoelectron and absorption spectra of the considered SF6@Hen structures were simulated and compared with the experiment.

  4. Structure of solid monolayers and multilayers of -hexane on graphite

    Indian Academy of Sciences (India)

    M Krishnan; S Balasubramanian; S Clarke

    2003-10-01

    We present all-atom molecular dynamics simulations of -hexane on the basal plane of graphite at monolayer and multilayer coverages. In keeping with experimental data, we find the presence of ordered adsorbed layers both at single monolayer coverage and when the adsorbed layer coexists with excess liquid adsorbate. Using a simulation method that does not impose any particular periodicity on the adsorbed layer, we quantitatively compare our results to the results of neutron diffraction experiments and find a structural transition from a uniaxially incommensurate lattice to a fully commensurate structure on increasing the coverage from a monolayer to a multilayer. The zig-zag backbone planes of all the alkane molecules lie parallel to the graphite surface at the multilayer coverage, while a few molecules are observed to attain the perpendicular orientation at monolayer coverage.

  5. Monolayer MoS2 heterojunction solar cells

    KAUST Repository

    Tsai, Menglin

    2014-08-26

    We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS 2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photogenerated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.23%, which is the highest efficiency among all monolayer transition-metal dichalcogenide-based solar cells. The demonstrated results of monolayer MoS 2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices. © 2014 American Chemical Society.

  6. Unsupported single-atom-thick copper oxide monolayers

    Science.gov (United States)

    Yin, Kuibo; Zhang, Yu-Yang; Zhou, Yilong; Sun, Litao; Chisholm, Matthew F.; Pantelides, Sokrates T.; Zhou, Wu

    2017-03-01

    Oxide monolayers may present unique opportunities because of the great diversity of properties of these materials in bulk form. However, reports on oxide monolayers are still limited. Here we report the formation of single-atom-thick copper oxide layers with a square lattice both in graphene pores and on graphene substrates using aberration-corrected scanning transmission electron microscopy. First-principles calculations find that CuO is energetically stable and its calculated lattice spacing matches well with the measured value. Furthermore, free-standing copper oxide monolayers are predicted to be semiconductors with band gaps ∼3 eV. The new wide-bandgap single-atom-thick copper oxide monolayers usher a new frontier to study the highly diverse family of two-dimensional oxides and explore their properties and their potential for new applications.

  7. Membrane Insertion by Trichosanthin Using the Monolayer Method

    Institute of Scientific and Technical Information of China (English)

    薛毅; 夏晓峰; 隋森芳

    2003-01-01

    A monolayer technique was used to investigate the interaction between the ribosome inactivating protein trichosanthin (TCS) and phospholipid membrane.The adsorption experiments show that the negatively charged 1,2-dipalmitoyl-sn-glycerol-3-phosphoglycerol (DPPG) causes obvious enrichment of TCS beneath the monolayer, indicating electrostatic attraction between TCS and the negatively charged phospholipid.When TCS was incorporated into the DPPG monolayer at low pH, it could not be completely squeezed out until the monolayer collapsed.The results suggest that the electrostatic attraction and the hydrophobic force are involved in the interaction between TCS and phospholipids at different stages.These findings may be correlated with the membrane translocation mechanism of TCS.

  8. Experimental study of thermal rectification in suspended monolayer graphene

    Science.gov (United States)

    Wang, Haidong; Hu, Shiqian; Takahashi, Koji; Zhang, Xing; Takamatsu, Hiroshi; Chen, Jie

    2017-06-01

    Thermal rectification is a fundamental phenomenon for active heat flow control. Significant thermal rectification is expected to exist in the asymmetric nanostructures, such as nanowires and thin films. As a one-atom-thick membrane, graphene has attracted much attention for realizing thermal rectification as shown by many molecular dynamics simulations. Here, we experimentally demonstrate thermal rectification in various asymmetric monolayer graphene nanostructures. A large thermal rectification factor of 26% is achieved in a defect-engineered monolayer graphene with nanopores on one side. A thermal rectification factor of 10% is achieved in a pristine monolayer graphene with nanoparticles deposited on one side or with a tapered width. The results indicate that the monolayer graphene has great potential to be used for designing high-performance thermal rectifiers for heat flow control and energy harvesting.

  9. Tribological properties of OTS self-assembled monolayers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs)were prepared on the substrates of silicon and glass. The tribological properties were tested with a self-made point-contact pure sliding micro tribometer. The effect of humidity on the tribological properties of both OTS SAMs and the naked substrates were studied. When the substrate is covered by OTS monolayer, the friction coefficient is reduced from 0.5 to 0.1 and the stick-slip phenomenon is weakened. OTS monolayer can keep its friction coefficient steady in a wide range of humidity, because it is highly hydrophobic and thus not sensitive to humidity. In addition, the OTS monolayer has a considerable anti-wear ability.

  10. Coexistence of multiple conformations in cysteamine monolayers on Au(111)

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Bilic, A; Reimers, JR

    2005-01-01

    The structural organization, catalytic function, and electronic properties of cysteamine monolayers on Au(111) have been addressed comprehensively by voltammetry, in situ scanning tunneling microscopy (STM) in anaerobic environment, and a priori molecular dynamics (MD) simulation and STM image si...

  11. Adhesive and conformational behaviour of mycolic acid monolayers

    OpenAIRE

    2010-01-01

    We have studied the pH-dependent interaction between mycolic acid (MA) monolayers and hydrophobic and hydrophilic surfaces using molecular (colloidal probe) force spectroscopy. In both cases, hydrophobic and hydrophilic monolayers (prepared by Langmuir-Blodgett and Langmuir-Schaefer deposition on silicon or hydrophobized silicon substrates, respectively) were studied. The force spectroscopy data, fitted with classical DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory to examine the contri...

  12. Specific Ion Effects in Cholesterol Monolayers

    Directory of Open Access Journals (Sweden)

    Teresa Del Castillo-Santaella

    2016-05-01

    Full Text Available The interaction of ions with interfaces and, in particular, the high specificity of these interactions to the particular ions considered, are central questions in the field of surface forces. Here we study the effect of different salts (NaI, NaCl, CaCl2 and MgCl2 on monolayers made of cholesterol molecules, both experimentally (surface area vs. lateral pressure isotherms measured by a Langmuir Film Balance and theoretically (molecular dynamics (MD all-atomic simulations. We found that surface isotherms depend, both quantitatively and qualitatively, on the nature of the ions by altering the shape and features of the isotherm. In line with the experiments, MD simulations show clear evidences of specific ionic effects and also provide molecular level details on ion specific interactions with cholesterol. More importantly, MD simulations show that the interaction of a particular ion with the surface depends strongly on its counterion, a feature ignored so far in most theories of specific ionic effects in surface forces.

  13. Surface dilatational viscosity of Langmuir monolayers

    Science.gov (United States)

    Lopez, Juan; Vogel, Michael; Hirsa, Amir

    2003-11-01

    With increased interest in microfluidic systems, interfacial phenomena is receiving more attention. As the length scales of fluid problems decrease, the surface to volume ratio increases and the coupling between interfacial flow and bulk flow becomes increasingly dominated by effects due to intrinsic surface viscosities (shear and dilatational), in comparison to elastic effects (due to surface tension gradients). The surface shear viscosity is well-characterized, as cm-scale laboratory experiments are able to isolate its effects from other interfacial processes (e.g., in the deep-channel viscometer). The same is not true for the dilatational viscosity, because it acts in the direction of surface tension gradients. Their relative strength scale with the capillary number, and for cm-scale laboratory flows, surface tension effects tend to dominate. In microfluidic scale flows, the scaling favors viscosity. We have devised an experimental apparatus which is capable of isolating and enhancing the effects of dilatational viscosity at the cm scales by driving the interface harmonically in time, while keeping the interface flat. In this talk, we shall present both the theory for how this works as well as experimental measurements of surface velocity from which we deduce the dilatational viscosity of several monolayers on the air-water interface over a substantial range of surface concentrations. Anomalous behavior over some range of concentration, which superficially indicates negative viscosity, maybe explained in terms of compositional effects due to large spatial and temporal variations in concentration and corresponding viscosity.

  14. Induction of homochirality in achiral enantiomorphous monolayers.

    Science.gov (United States)

    Parschau, Manfred; Romer, Sara; Ernst, Karl-Heinz

    2004-12-01

    We report the induction of homochirality in enantiomorphous layers of achiral succinic acid on a Cu(110) surface after doping with tartaric acid (TA) enantiomers. Succinic acid becomes chiral upon adsorption due to symmetry-breaking interactions with the Cu(110) surface. The doubly deprotonated bisuccinate forms mirror domains on the surface, which leads to a superposition of (11,-90) and (90,-11) patterns observed by low-energy electron diffraction (LEED). On average, however, the surface layer is racemic. An amount of 2 mol % of (R,R)- or (S,S)-tartaric acid in the monolayer, corresponding to an absolute coverage of 0.001 tartaric acid molecule per surface copper atom, is sufficient to make the LEED spots of one enantiomorphous lattice disappear. After thermally induced desorption of TA, the succinic acid lattice turns racemic again. In analogy to the "sergeants-and-soldiers" principle described for helical polymers, this effect is explained by a lateral cooperative interaction within the two-dimensional lattice.

  15. Structural phase transitions in monolayer molybdenum dichalcogenides

    Science.gov (United States)

    Choe, Duk-Hyun; Sung, Ha June; Chang, Kee Joo

    2015-03-01

    The recent discovery of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) has provided opportunities to develop ultimate thin channel devices. In contrast to graphene, the existence of moderate band gap and strong spin-orbit coupling gives rise to exotic electronic properties which vary with layer thickness, lattice structure, and symmetry. TMDs commonly appear in two structures with distinct symmetries, trigonal prismatic 2H and octahedral 1T phases which are semiconducting and metallic, respectively. In this work, we investigate the structural and electronic properties of monolayer molybdenum dichalcogenides (MoX2, where X = S, Se, Te) through first-principles density functional calculations. We find a tendency that the semiconducting 2H phase is more stable than the metallic 1T phase. We show that a spontaneous symmetry breaking of 1T phase leads to various distorted octahedral (1T') phases, thus inducing a metal-to-semiconductor transition. We discuss the effects of carrier doping on the structural stability and the modification of the electronic structure. This work was supported by the National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.

  16. Thermoelectric properties of SnSe2 monolayer

    Science.gov (United States)

    Li, Guanpeng; Ding, Guangqian; Gao, Guoying

    2017-01-01

    The 2H (MoS2-type) phase of 2D transition metal dichalcogenides (TMDCs) has been extensively studied and exhibits excellent electronic and optoelectronic properties, but the high phonon thermal conductivity is detrimental to the thermoelectric performances. Here, we use first-principles methods combined with Boltzmann transport theory to calculate the electronic and phononic transport properties of 1T (CdI2-type) SnSe2 monolayer, a recently realized 2D metal dichalcogenide semiconductor. The calculated band gap is 0.85 eV, which is a little larger than the bulk value. Lower phonon thermal conductivity and higher power factor are obtained in 1T-SnSe2 monolayer compared to 2H-TMDCs monolayers. The low phonon thermal conductivity (3.27 W mK-1 at room temperature) is mainly due to the low phonon frequency of acoustic modes and the coupling of acoustic modes with optical modes. We also find that the p-type has better thermoelectric performance than the n-type, and the figure of merit within p-type can reach 0.94 at 600 K for 1T-SnSe2 monolayer, which is higher than those of most 2H-TMDCs monolayers, making 1T-SnSe2 monolayer a promising candidate for thermoelectric applications.

  17. Treponema pallidum Invades Intercellular Junctions of Endothelial Cell Monolayers

    Science.gov (United States)

    Thomas, D. Denee; Navab, Mahamad; Haake, David A.; Fogelman, Alan M.; Miller, James N.; Lovett, Michael A.

    1988-05-01

    The pathogenesis of syphilis reflects invasive properties of Treponema pallidum, but the actual mode of tissue invasion is unknown. We have found two in vitro parallels of treponemal invasiveness. We tested whether motile T. pallidum could invade host cells by determining the fate of radiolabeled motile organisms added to a HeLa cell monolayer; 26% of treponemes associated with the monolayer in a trypsin-resistant niche, presumably between the monolayer and the surface to which it adhered, but did not attain intracellularity. Attachment of T. pallidum to cultured human and rabbit aortic and human umbilical vein endothelial cells was 2-fold greater than to HeLa cells. We added T. pallidum to aortic endothelial cells grown on membrane filters under conditions in which tight intercellular junctions had formed. T. pallidum was able to pass through the endothelial cell monolayers without altering tight junctions, as measured by electrical resistance. In contrast, heat-killed T. pallidum and the nonpathogen Treponema phagedenis biotype Reiter failed to penetrate the monolayer. Transmission electron micrographs of sections of the monolayer showed T. pallidum in intercellular junctions. Our in vitro observations suggest that these highly motile spirochetes may leave the circulation by invading the junctions between endothelial cells.

  18. Optoelectronics of Transition Metal Dichalcogenide Monolayers and Heterostructures

    Science.gov (United States)

    Schaibley, John

    2015-03-01

    Monolayer transition metal dichalcogenides (TMDs) contain 2D valley excitons which reside in two degenerate momentum space valleys at the edges of the Brillouin zone. It is crucially important to understand fundamental 2D exciton properties in TMD monolayers and van der Waals heterostructures. By performing coherent nonlinear optical spectroscopy with high spectral resolution, we observe nanosecond decay dynamics in single monolayers of MoSe2, implying the presence of a previously unreported long-lived state that appears to trap the exciton population. In MoSe2-WSe2 vertical heterostructures, we observe intralayer excitons, where the electron and hole are confined to different monolayers, and show evidence of strong exciton-exciton interaction effects and long lifetimes. Based on TMD monolayer excitons, we have also investigated a variety of fundamental quantum devices, including a nano-cavity laser and a second-harmonic generation transistor. Finally, we report a new type of single quantum emitter, based on single localized excitons spatially confined to defects in monolayers of WSe2. The photoluminescence from these localized excitons is spectrally narrow and shows strong anti-bunching, demonstrating the single photon nature of the emission.

  19. Manipulation of electronic structure in WSe2 monolayer by strain

    Science.gov (United States)

    Yang, Cong-xia; Zhao, Xu; Wei, Shu-yi

    2016-11-01

    In this paper, we study the electronic properties of WSe2 monolayer with biaxial tensile strain and compressive strain by using first principles based on the density function theory. Under the biaxial tensile strain, WSe2 monolayer retains direct band gap with increasing strain and the band gap of WSe2 continuously decreases with increasing strain, eventually turn to metal when strain is equal to or more than 13%. Under the biaxial compressive strain, WSe2 monolayer turns to indirect gap and the band gap continuously decreases with increasing strain, finally turn to metal when strain is up to -7%. The strain can reduce the band gap of the WSe2 monolayer regardless of the strain direction. By comparison, we can see that the tensile strain appears to be more effective in reducing the band gap of pristine WSe2 monolayer than the compressive strain from -5% to 5%. But the band gap turns to zero quickly from -6% to -7% under compressive strain, however for tensile strain from 5% to 13%, the band gap decreases slowly. Based on the further analysis of the projected charge density for WSe2 monolayer, the fundamental reason of the change of band structure under biaxial tensile strain is revealed.

  20. Nonlinear optical characteristics of monolayer MoSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)

    2016-08-15

    In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Structural and electronic properties of arsenic nitrogen monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei; Nie, Yao-zhuang, E-mail: yznie@csu.edu.cn; Xia, Qing-lin; Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn

    2017-03-26

    We present our first-principles calculations of a new two-dimensional material, arsenic nitrogen monolayer. The structural, electronic, and mechanical properties are investigated in detail by means of density functional theory computations. The calculated binding energy and the phonon spectra demonstrate that the AsN can form stable monolayer in puckered honeycomb structure. It is a semiconductor with indirect band gap of 0.73 eV, and displays highly anisotropic mechanical properties. Strain has obvious influence on the electronic properties of AsN monolayer. It is found that in the armchair direction, a moderate compression strain (−12%) can trigger an indirect to direct band gap transition and a tensile strain of 18% can make the AsN becoming a stable metal. In the zigzag direction, a rather smaller strain than armchair direction (12% for compression and 8% for stretch) can induce the indirect band gap to metal transition. - Highlights: • A new two-dimensional material, arsenic nitrogen monolayer is predicated by first-principles calculations. • Arsenic nitrogen monolayer displays highly anisotropic mechanical properties. • Electronic structures of arsenic nitrogen monolayer can be effectively manipulated by applied strains.

  2. A model for the ethylene and acetylene adsorption on the surface of Cun(n = 10-15) nanoclusters: A theoretical study

    Science.gov (United States)

    Farmanzadeh, Davood; Abdollahi, Tahereh

    2016-11-01

    In this work, we report the results of density functional theory calculations of ethylene and acetylene adsorption on the most stable Cun (n = 10-15) nanoclusters, in two π and di- σ adsorption modes. Both the hydrocarbons molecularly adsorbed on the surface. Our results show that the quality of interaction of ethylene and acetylene with odd copper nanoclusters (n = 11, 13, 15) is different from what is found on even copper nanoclusters (n = 10, 12, 14). One of the interesting features of this adsorption is that acetylene never orient toward di-σ mode for Cusbnd Cu bond in odd copper nanoclusters. Also, for di- σ-CunC2H4, no stable structure is identified. The highest interaction and deformation energies are seen for the adsorption of acetylene and ethylene on Cu11 in π-mode.

  3. Localized dealloying corrosion mediated by self-assembled monolayers used as an inhibitor system.

    Science.gov (United States)

    Shrestha, B R; Bashir, A; Ankah, G N; Valtiner, M; Renner, F U

    2015-01-01

    The structure and chemistry of thiol or selenol self-assembled organic monolayers have been frequently addressed due to the unique opportunities in functionalization of materials. Such organic films can also act as effective inhibition layers to mitigate oxidation or corrosion. Cu-Au alloy substrates covered by self-assembled monolayers show a different dealloying mechanism compared to bare surfaces. The organic surface layer inhibits dealloying of noble metal alloys by a suppression of surface diffusion at lower potentials but at higher applied potentials dealloying proceeds in localized regions due to passivity breakdown. We present an in situ atomic force microscopy study of a patterned thiol layer applied on Cu-Au alloy surfaces and further explore approaches to change the local composition of the surface layers by exchange of molecules. The pattern for the in situ experiment has been applied by micro-contact printing. This allows the study of corrosion protection with its dependence on different molecule densities at different sites. Low-density thiol areas surrounding the high-density patterns are completely protected and initiation of dealloying proceeds only along the areas with the lowest inhibitor concentration. Dealloying patterns are highly influenced and controlled by molecular thiol to selenol exchange and are also affected by introducing structural defects such as scratches or polishing defects.

  4. Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides

    KAUST Repository

    Zheng, Yu Jie

    2016-01-21

    © 2016 American Chemical Society. The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials.

  5. Photopatterning of self-assembled alkanethiolate monolayers on gold. A simple monolayer photoresist utilizing aqueous chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.; Hemminger, J.C. (Univ. of California, Irvine, CA (United States)); Dahlgren, D.A. (Photometrics, Huntington Beach, CA (United States))

    1994-03-01

    In this paper we demonstrate that self-assembled monolayers (SAMs) of alkanethiols on gold can be used as effective photoresists. UV photolysis of an alkanethiol SAM generates the corresponding sulfonate in the monolayer film. The sulfonate is easily rinsed off of the surface with water, exposing a clean gold substrate, which can then be modified with subsequent chemistry. We describe here experiments in which an alkanethiol SAM on a gold film on silicon is irradiated through a mask, followed by immersion of the sample in an aqueous acid etching solution (HCI:HNO[sub 3]:H[sub 2]O = 3:1:4). The gold is etched away from the areas which have been exposed to UV radiation leaving a pattern which reproduces the original mask. The spatial resolution in the present experiments is limited by the mask which is a 6-[mu]m wire grid. Scanning electron microscopy images of patterned samples show sharp edges to the features suggesting that spatial patterning on the 1-[mu]m scale should be attainable with this simple chemistry. 11 refs., 4 figs.

  6. Integrated logic gate for fluorescence turn-on detection of histidine and cysteine based on Ag/Au bimetallic nanoclusters-Cu²⁺ ensemble.

    Science.gov (United States)

    Sun, Jian; Yang, Fan; Zhao, Dan; Chen, Chuanxia; Yang, Xiurong

    2015-04-01

    By means of employing 11-mercaptoundecanoic acid (11-MUA) as a reducing agent and protecting ligand, we present straightforward one-pot preparation of fluorescent Ag/Au bimetallic nanoclusters (namely AgAuNCs@11-MUA) from AgNO3 and HAuCl4 in alkaline aqueous solution at room temperature. It is found that the fluorescence of AgAuNCs@11-MUA has been selectively quenched by Cu(2+) ions, and the nonfluorescence off-state of the as-prepared AgAuNCs@11-MUA-Cu(2+) ensemble can be effectively switched on upon the addition of histidine and cysteine. By incorporating Ni(2+) ions and N-ethylmaleimide, this phenomenon is further exploited as an integrated logic gate and a specific fluorescence turn-on assay for selectively and sensitively sensing histidine and cysteine has been designed and established based on the original noncovalent AgAuNCs@11-MUA-Cu(2+) ensemble. Under the optimal conditions, histidine and cysteine can be detected in the concentration ranges of 0.25-9 and 0.25-7 μM; besides, the detection limits are found to be 87 and 111 nM (S/N = 3), respectively. Furthermore, we demonstrate that the proposed AgAuNCs@11-MUA-based fluorescent assay can be successfully utilized for biological fluids sample analysis.

  7. A selective and label-free strategy for rapid screening of telomere-binding Ligands via fluorescence regulation of DNA/silver nanocluster

    Science.gov (United States)

    Cheng, Rui; Xu, Jing; Zhang, Xiafei; Shi, Zhilu; Zhang, Qi; Jin, Yan

    2017-03-01

    Herein, the conformational switch of G-rich oligonucleotide (GDNA) demonstrated the obvious functional switch of GDNA which was found to significantly affect the fluorescence of the in-situ synthesized DNA/silver nanocluster (DNA-AgNC) in homogeneous solution. We envisioned that the allosteric interaction between GDNA and DNA-AgNC would be possible to be used for screening telomere-binding ligands. A unimolecular probe (12C5TG) is ingeniously designed consisting of three contiguous DNA elements: G-rich telomeric DNA (GDNA) as molecular recognition sequence, T-rich DNA as linker and C-rich DNA as template of DNA-AgNC. The quantum yield and stability of 12C5TG-AgNC is greatly improved because the nearby deoxyguanosines tended to protect DNA/AgNC against oxidation. However, in the presence of ligands, the formation of G-quadruplex obviously quenched the fluorescence of DNA-AgNC. By taking full advantage of intramolecular allosteric effect, telomere-binding ligands were selectively and label-free screened by using deoxyguanines and G-quadruplex as natural fluorescence enhancer and quencher of DNA-AgNC respectively. Therefore, the functional switching of G-rich structure offers a cost-effective, facile and reliable way to screen drugs, which holds a great potential in bioanalysis as well.

  8. A selective and label-free strategy for rapid screening of telomere-binding Ligands via fluorescence regulation of DNA/silver nanocluster

    Science.gov (United States)

    Cheng, Rui; Xu, Jing; Zhang, Xiafei; Shi, Zhilu; Zhang, Qi; Jin, Yan

    2017-01-01

    Herein, the conformational switch of G-rich oligonucleotide (GDNA) demonstrated the obvious functional switch of GDNA which was found to significantly affect the fluorescence of the in-situ synthesized DNA/silver nanocluster (DNA-AgNC) in homogeneous solution. We envisioned that the allosteric interaction between GDNA and DNA-AgNC would be possible to be used for screening telomere-binding ligands. A unimolecular probe (12C5TG) is ingeniously designed consisting of three contiguous DNA elements: G-rich telomeric DNA (GDNA) as molecular recognition sequence, T-rich DNA as linker and C-rich DNA as template of DNA-AgNC. The quantum yield and stability of 12C5TG-AgNC is greatly improved because the nearby deoxyguanosines tended to protect DNA/AgNC against oxidation. However, in the presence of ligands, the formation of G-quadruplex obviously quenched the fluorescence of DNA-AgNC. By taking full advantage of intramolecular allosteric effect, telomere-binding ligands were selectively and label-free screened by using deoxyguanines and G-quadruplex as natural fluorescence enhancer and quencher of DNA-AgNC respectively. Therefore, the functional switching of G-rich structure offers a cost-effective, facile and reliable way to screen drugs, which holds a great potential in bioanalysis as well. PMID:28262705

  9. A model for the ethylene and acetylene adsorption on the surface of Cu{sub n}(n = 10–15) nanoclusters: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Farmanzadeh, Davood, E-mail: d.farmanzad@umz.ac.ir; Abdollahi, Tahereh

    2016-11-01

    Highlights: • The most stable structures of Cu{sub n} (n = 10–15) were structures with C{sub S} symmetry. • It is expected that even clusters are better electron donors than the odd clusters. • Acetylene and ethylene adsorb molecularly on the Cu nanoclusters surface. • Acetylene never orient toward di-σ mode for Cu−Cu bond in odd copper nanoclusters. • For di- σ-Cu{sub n}C{sub 2}H{sub 4}, no stable structure is identified. - Abstract: In this work, we report the results of density functional theory calculations of ethylene and acetylene adsorption on the most stable Cu{sub n} (n = 10–15) nanoclusters, in two π and di- σ adsorption modes. Both the hydrocarbons molecularly adsorbed on the surface. Our results show that the quality of interaction of ethylene and acetylene with odd copper nanoclusters (n = 11, 13, 15) is different from what is found on even copper nanoclusters (n = 10, 12, 14). One of the interesting features of this adsorption is that acetylene never orient toward di-σ mode for Cu−Cu bond in odd copper nanoclusters. Also, for di- σ-Cu{sub n}C{sub 2}H{sub 4}, no stable structure is identified. The highest interaction and deformation energies are seen for the adsorption of acetylene and ethylene on Cu{sub 11} in π-mode.

  10. Monte Carlo studies of model Langmuir monolayers.

    Science.gov (United States)

    Opps, S B; Yang, B; Gray, C G; Sullivan, D E

    2001-04-01

    This paper examines some of the basic properties of a model Langmuir monolayer, consisting of surfactant molecules deposited onto a water subphase. The surfactants are modeled as rigid rods composed of a head and tail segment of diameters sigma(hh) and sigma(tt), respectively. The tails consist of n(t) approximately 4-7 effective monomers representing methylene groups. These rigid rods interact via site-site Lennard-Jones potentials with different interaction parameters for the tail-tail, head-tail, and head-head interactions. In a previous paper, we studied the ground-state properties of this system using a Landau approach. In the present paper, Monte Carlo simulations were performed in the canonical ensemble to elucidate the finite-temperature behavior of this system. Simulation techniques, incorporating a system of dynamic filters, allow us to decrease CPU time with negligible statistical error. This paper focuses on several of the key parameters, such as density, head-tail diameter mismatch, and chain length, responsible for driving transitions from uniformly tilted to untilted phases and between different tilt-ordered phases. Upon varying the density of the system, with sigma(hh)=sigma(tt), we observe a transition from a tilted (NNN)-condensed phase to an untilted-liquid phase and, upon comparison with recent experiments with fatty acid-alcohol and fatty acid-ester mixtures [M. C. Shih, M. K. Durbin, A. Malik, P. Zschack, and P. Dutta, J. Chem. Phys. 101, 9132 (1994); E. Teer, C. M. Knobler, C. Lautz, S. Wurlitzer, J. Kildae, and T. M. Fischer, J. Chem. Phys. 106, 1913 (1997)], we identify this as the L'(2)/Ov-L1 phase boundary. By varying the head-tail diameter ratio, we observe a decrease in T(c) with increasing mismatch. However, as the chain length was increased we observed that the transition temperatures increased and differences in T(c) due to head-tail diameter mismatch were diminished. In most of the present research, the water was treated as a hard

  11. Platinum monolayer electrocatalysts for oxygen reduction in fuel cells

    Science.gov (United States)

    Zhang, Junliang

    Fuel cells are expected to be one of the major clean energy sources in the near future. However, the slow kinetics of electrocatalytic oxygen reduction reaction (ORR) and the high loading of Pt for the cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this study, a new approach was developed for designing electrocatalysts for the ORR in fuel cells. These electrocatalysts consist of only one Pt monolayer, or mixed transition metal-Pt monolayer, on suitable carbon-supported metal, or alloy nanoparticles. The synthesis involved depositing a monolayer of Cu on a suitable transition metal or metal alloy surface at underpotentials, followed by galvanic displacement of the Cu monolayer with Pt or mixed metal-Pt. It was found that the electronic properties of Pt monolayer could be fine-tuned by the electronic and geometric effects introduced by the substrate metal (or alloy) and the lateral effects of the neighboring metal atoms. The role of substrates was found reflected in a "volcano" plot of the monolayer activity for the ORR as a function of their calculated d-band centers. The Pt mass-specific activity of the new Pt monolayer electrocatalysts was up to twenty times higher than the state-of-the-art commercial Pt/C catalysts. The enhancement of the activity is caused mainly by decreased formation of PtOH (the blocking species for ORR), and to a lesser degree by the electronic effects. Fuel cell tests showed a very good long term stability of the new electrocatalysts. Our results demonstrated a viable way to designing the electrocatalysts which could successfully alleviate two issues facing the commercialization of fuel cells---the costs of electrocatalysts and their efficiency.

  12. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    Science.gov (United States)

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface.

  13. Development of ultrafine multichannel microfluidic mixer for synthesis of bimetallic nanoclusters: catalytic application of highly monodisperse AuPd nanoclusters stabilized by poly(N-vinylpyrrolidone).

    Science.gov (United States)

    Hayashi, Naoto; Sakai, Yuka; Tsunoyama, Hironori; Nakajima, Atsushi

    2014-09-02

    On account of their novel properties, bimetallic nanoparticles and nanoclusters (NCs) are strong potential candidates for optical, magnetic, and catalytic functional materials. These properties depend on the chemical composition and size (number of constituent atoms) of the NCs. Control of size, structure, and composition is particularly important for fabricating highly functional materials based on bimetallic NCs. Size- and structure-controlled synthesis of two-element alloys can reveal their intrinsic electronic synergistic effects. However, because synergistic enhancement of activity is strongly affected by composition as well as by size and structure, controlled synthesis is a challenging task, particularly in catalytic applications. To investigate catalytic synergistic effects, we have synthesized highly monodisperse, sub-2 nm, solid-solution AuPd NCs stabilized with poly(N-vinylpyrrolidone) (AuPd:PVP) using a newly developed ultrafine microfluidic mixing device with 15 μm wide multiple lamination channels. The synergistic enhancement for catalytic aerobic oxidation of benzyl alcohol exhibited a volcano-shaped trend, with a maximum at 20-65 at. % Pd. From X-ray photoelectron spectroscopic measurements, we confirmed that the enhanced activity originates from the enhanced electron density at the Au sites, donated by Pd sites.

  14. Structure and Function Evolution of Thiolate Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Grant Alvin [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The use of n-alkanethiolate self-assembled monolayers on gold has blossomed in the past few years. These systems have functioned as models for common interfaces. Thiolate monolayers are ideal because they are easily modified before or after deposition. The works contained within this dissertation include interfacial characterization (inbred reflection absorption spectroscopy, ellipsometry, contact angle, scanning probe microscopy, and heterogeneous electron-transfer kinetics) and various modeling scenarios. The results of these characterizations present ground-breaking insights into the structure, function, and reproducible preparation of these monolayers. Surprisingly, three interfacial properties (electron-transfer, contact angle, and ellipsometry) were discovered to depend directly on the odd-even character of the monolayer components. Molecular modeling was utilized to investigate adlayer orientation, and suggests that these effects are adlayer structure specific. Finally, the electric force microscopy and theoretical modeling investigations of monolayer samples are presented, which show that the film dielectric constant, thickness, and dipole moment directly affect image contrast. In addition, the prospects for utilization of this emerging technique are outlined.

  15. Structure and function evolution of thiolate monolayers on gold

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Grant Alvin [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The use of n-alkanethiolate self-assembled monolayers on gold has blossomed in the past few years. These systems have functioned as models for common interfaces. Thiolate monolayers are ideal because they are easily modified before or after deposition. The works contained within this dissertation include interfacial characterization (infrared reflection absorption spectroscopy, ellipsometry, contact angle, scanning probe microscopy, and heterogeneous electron-transfer kinetics) and various modeling scenarios. The results of these characterizations present ground-breaking insights into the structure, function, and reproducible preparation of these monolayers. Surprisingly, three interfacial properties (electron-transfer, contact angle, and ellipsometry) were discovered to depend directly on the odd-even character of the monolayer components. Molecular modeling was utilized to investigate adlayer orientation, and suggests that these effects are adlayer structure specific. Finally, the electric force microscopy and theoretical modeling investigations of monolayer samples are presented, which show that the film dielectric constant, thickness, and dipole moment directly affect image contrast. In addition, the prospects for utilization of this emerging technique are outlined.

  16. The crystalline structures of carboxylic acid monolayers adsorbed on graphite.

    Science.gov (United States)

    Bickerstaffe, A K; Cheah, N P; Clarke, S M; Parker, J E; Perdigon, A; Messe, L; Inaba, A

    2006-03-23

    X-ray and neutron diffraction have been used to investigate the formation of solid crystalline monolayers of all of the linear carboxylic acids from C(6) to C(14) at submonolayer coverage and from C(8) to C(14) at multilayer coverages, and to characterize their structures. X-rays and neutrons highlight different aspects of the monolayer structures, and their combination is therefore important in structural determination. For all of the acids with an odd number of carbon atoms, the unit cell is rectangular of plane group pgg containing four molecules. The members of the homologous series with an even number of carbon atoms have an oblique unit cell with two molecules per unit cell and plane group p2. This odd-even variation in crystal structure provides an explanation for the odd-even variation observed in monolayer melting points and mixing behavior. In all cases, the molecules are arranged in strongly hydrogen-bonded dimers with their extended axes parallel to the surface and the plane of the carbon skeleton essentially parallel to the graphite surface. The monolayer crystal structures have unit cell dimensions similar to certain close-packed planes of the bulk crystals, but the molecular arrangements are different. There is a 1-3% compression on increasing the coverage over a monolayer.

  17. Molecular Dynamic Studies on Langmuir Monolayers of Stearic Acid

    Institute of Scientific and Technical Information of China (English)

    KONG Chui-peng; ZHANG Hong-xing; ZHAO Zeng-xia; ZHENG Qing-chuan

    2013-01-01

    Compression isotherm for stearic acid was obtained by means of molecular dynamic simulation and compared to experimentally measured values for the Langmuir monolayers.Compared to the previous simulation,the present simulation has provided a method to reproduce the compression of the monolayer.The result is consistent with other experimental results.By analyzing the alkyl tails,the configuration of stearic acid molecules during the compression process was studied and a uniform monolayer was obtained after compression.Stearic acid molecules were observed to form fine organized monolayer from completely random structure.Hexatic order of the arrangement has been identified for the distribution of stearic acid molecules in the monolayer.At the end of the compression,the stearic acid molecules were tightly packed in the gap of two other molecules.At last,the hydrogen bonds in the system were analyzed.The main hydrogen bonds were from stearic acid-water interaction and their intensities constantly decreased with the decreased of surface area per molecule.The weak hydrogen bond interaction between stearic acid molecules may be the reason of easy collapse.

  18. Investigating the adsorption of H2O on ZnO nanoclusters by first principle calculations

    KAUST Repository

    Al-Sunaidi, Abdullah A.

    2011-04-01

    The interaction of a single H2O molecule on selected ZnO nanoclusters is investigated by carrying out calculations based on the density-functional theory at the hybrid-GGA (B97-2) level. These clusters have ring, drum, tube and bubble shapes and their physical properties like the binding energy and the band gap energy depend strongly on the shape and size of the cluster. Depending on the stability of the cluster, H2O show both chemisorption and dissociation on the surfaces of the clusters. We analyzed the effect of H2O adsorption on the properties of clusters of size n = 12 via the density of state, HOMO-LUMO orbitals and the changes in the IR frequencies. © 2011 Elsevier B.V. All rights reserved.

  19. Structural, electronic, and magnetic properties of single MnAs nanoclusters in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Smakman, E. P., E-mail: e.p.smakman@tue.nl; Mauger, S.; Koenraad, P. M. [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven (Netherlands); Rench, D. W.; Samarth, N. [Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-12-08

    MnAs nanoclusters in GaAs were investigated with cross-sectional scanning tunneling microscopy. The topographic images reveal that the small clusters have the same zinc-blende crystal structure as the host material, while the larger clusters grow in a hexagonal crystal phase. The initial Mn concentration during molecular beam epitaxy growth has a strong influence on the size of the clusters that form during the annealing step. The local band structure of a single MnAs cluster is probed with scanning tunneling spectroscopy, revealing a Coulomb blockade effect that correlates with the size of the cluster. With a spin-sensitive tip, for the smaller clusters, superparamagnetic switching between two distinct states is observed at T = 77 K. The larger clusters do not change their magnetic state at this temperature, i.e., they are superferromagnetic, confirming that they are responsible for the ferromagnetic behavior of this material at room-temperature.

  20. Gold Doping of Silver Nanoclusters: A 26-Fold Enhancement in the Luminescence Quantum Yield

    KAUST Repository

    Soldan, Giada

    2016-04-10

    A high quantum yield (QY) of photoluminescence (PL) in nanomaterials is necessary for a wide range of applications. Unfortunately, the weak PL and moderate stability of atomically precise silver nanoclusters (NCs) suppress their utility. Herein, we accomplished a ≥26-fold PL QY enhancement of the Ag29(BDT)12(TPP)4 cluster (BDT: 1,3-benzenedithiol; TPP: triphenylphosphine) by doping with a discrete number of Au atoms, producing Ag29-xAux(BDT)12(TPP)4, x=1-5. The Au-doped clusters exhibit an enhanced stability and an intense red emission around 660nm. Single-crystal XRD, mass spectrometry, optical, and NMR spectroscopy shed light on the PL enhancement mechanism and the probable locations of the Au dopants within the cluster.