WorldWideScience

Sample records for monolayer graphene sheets

  1. Plasmonic Bloch oscillations in monolayer graphene sheet arrays.

    Science.gov (United States)

    Fan, Yang; Wang, Bing; Huang, He; Wang, Kai; Long, Hua; Lu, Peixiang

    2014-12-15

    We investigate the spatial plasmonic Bloch oscillations (BOs) in the monolayer graphene sheet arrays (MGSAs) as the surface plasmon polaritons (SPPs) between graphene in the arrays experience weak coupling. In order to realize BOs, linear gradient of the potential is introduced by changing the chemical potentials of individual graphene sheets or the interlayer space between graphene. Numerical simulations show that the complete plasmonic BOs can be observed in the former MGSAs. However, only harmonic oscillations occur in the latter of varying interlayer space. Theoretical analysis based on the coupled-mode theory agrees well with the numerical simulations.

  2. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets.

    Science.gov (United States)

    Jin, Zhong; Yao, Jun; Kittrell, Carter; Tour, James M

    2011-05-24

    In-plane heteroatom substitution of graphene is a promising strategy to modify its properties. Doping with electron-donor nitrogen heteroatoms can modulate the electronic properties of graphene to produce an n-type semiconductor. Here we demonstrate the growth of monolayer nitrogen-doped graphene in centimeter-scale sheets using a chemical vapor deposition process with pyridine as the sole source of both carbon and nitrogen. High-resolution transmission microscopy and Raman mapping characterizations indicate that the nitrogen-doped graphene sheets are uniformly monolayered. The existence of nitrogen-atom substitution in the graphene planes was confirmed by X-ray photoelectron spectroscopy. Electrical measurements show that the nitrogen-doped graphene exhibits an n-type behavior, different from pristine graphene. The preparation of large-area nitrogen-doped graphene provides a viable route to modify the properties of monolayer graphene and promote its applications in electronic devices.

  3. Local charge transport properties of hydrazine reduced monolayer graphene oxide sheets prepared under pressure condition

    DEFF Research Database (Denmark)

    Ryuzaki, Sou; Meyer, Jakob Abild Stengaard; Petersen, Søren Vermehren

    2014-01-01

    Charge transport properties of chemically reduced graphene oxide (RGO) sheets prepared by treatment with hydrazine were examined using conductive atomic force microscopy. The current-voltage (I-V) characteristics of monolayer RGO sheets prepared under atmospheric pressure followed an exponentially...... increase due to 2D variable-range hopping conduction through small graphene domains in an RGO sheet containing defect regions of residual sp3carbon clusters bonded to oxygen groups, whereas RGO sheets prepared in a closed container under moderate pressure showed linear I-V characteristics...... with a conductivity of 267.2-537.5S/m. It was found that the chemical reduction under pressure results in larger graphene domains (sp2networks) in the RGO sheets when compared to that prepared under atmospheric pressure, indicating that the present reduction of GO sheets under the pressure is one of the effective...

  4. Ripple-Free Graphene Sheets on Alkanethiol Self-Assembled Monolayers Provided from Unzipped Multi-Walled Carbon Nanotubes.

    Science.gov (United States)

    Koo, Hyunmo; Lee, Nam-Suk; Shin, Hoon-Kyu; Noh, Jaegeun; Majima, Yutaka; Cho, Gyoujin

    2015-02-01

    Octanethiol (C8S, CH3(CH2)7SH) self-assembled monolayers/Au(111) were utilized as an inert surface to provide ripple-free graphene oxide layers provided from chemically unzipped multi-walled carbon nanotubes (MWCNTs). The resulting graphene oxide monolayers were characterized with atomic resolution by UHV-STM. The honeycomb structure for the graphene monolayer and "three-for-six" triangular pattern for the multi-layer graphene sheets on C8S SAMs were clearly observed without ripples by the high-resolution UHV-STM. These results provide new insight into the preparation of ripple-free graphene monolayers.

  5. Simulated Nanoscale Peeling Process of Monolayer Graphene Sheet: Effect of Edge Structure and Lifting Position

    Directory of Open Access Journals (Sweden)

    Naruo Sasaki

    2010-01-01

    Full Text Available The nanoscale peeling of the graphene sheet on the graphite surface is numerically studied by molecular mechanics simulation. For center-lifting case, the successive partial peelings of the graphene around the lifting center appear as discrete jumps in the force curve, which induce the arched deformation of the graphene sheet. For edge-lifting case, marked atomic-scale friction of the graphene sheet during the nanoscale peeling process is found. During the surface contact, the graphene sheet takes the atomic-scale sliding motion. The period of the peeling force curve during the surface contact decreases to the lattice period of the graphite. During the line contact, the graphene sheet also takes the stick-slip sliding motion. These findings indicate the possibility of not only the direct observation of the atomic-scale friction of the graphene sheet at the tip/surface interface but also the identification of the lattice orientation and the edge structure of the graphene sheet.

  6. A green chemistry of graphene: photochemical reduction towards monolayer graphene sheets and the role of water adlayers.

    Science.gov (United States)

    Li, Xin-Hao; Chen, Jie-Sheng; Wang, Xinchen; Schuster, Manfred E; Schlögl, Robert; Antonietti, Markus

    2012-04-01

    Clean sheets: Stable aqueous dispersions of graphene sheets (GSs) are obtained by exposing graphene oxide to irradiation with light at room temperature, without using any chemical additives. The photochemical reduction method is sustainable and scalable, repairs a majority of defects in the graphene layers, and can be used to fine-tune surface functional groups. Interestingly, the aqueous GS dispersions are stable without any added surfactant. The existence of a water layer that is strongly bound to GS is evidenced.

  7. Elastic bending modulus of monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lu Qiang; Huang Rui [Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, TX 78712 (United States); Arroyo, Marino [Department of Applied Mathematics 3, LaCaN, Universitat Politecnica de Catalunya (UPC), Barcelona 08034 (Spain)

    2009-05-21

    An analytic formula is derived for the elastic bending modulus of monolayer graphene based on an empirical potential for solid-state carbon atoms. Two physical origins are identified for the non-vanishing bending stiffness of the atomically thin graphene sheet, one due to the bond-angle effect and the other resulting from the bond-order term associated with the dihedral angles. The analytical prediction compares closely with ab initio energy calculations. Pure bending of graphene monolayers into cylindrical tubes is simulated by a molecular mechanics approach, showing slight nonlinearity and anisotropy in the tangent bending modulus as the bending curvature increases. An intrinsic coupling between bending and in-plane strain is noted for graphene monolayers rolled into carbon nanotubes. (fast track communication)

  8. Probing Bio-Nano Interactions between Blood Proteins and Monolayer-Stabilized Graphene Sheets

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhong, Lijie; Han, Dongxue

    2015-01-01

    to significant improvement in their resistance to electrolyte salts and long-term stability, but retain their core structural characteristics. Five types of model human blood proteins including human fibrinogen, γ-globulin, bovine serum albumin (BSA), insulin, and histone are tested. The main drving forces...... stability in biological environments is limited. Systematic probing on the binding of proteins to CCG is currently lacking. Herein, we report a comprehensive study on the interactions between blood proteins and stabilized CCG (sCCG). CCG nanosheets are functionalized by monolayers of perylene leading...

  9. Binding Graphene Sheets Together Using Silicon: Graphene/Silicon Superlattice

    Directory of Open Access Journals (Sweden)

    Zhang Yong

    2010-01-01

    Full Text Available Abstract We propose a superlattice consisting of graphene and monolayer thick Si sheets and investigate it using a first-principles density functional theory. The Si layer is found to not only strengthen the interlayer binding between the graphene sheets compared to that in graphite, but also inject electrons into graphene, yet without altering the most unique property of graphene: the Dirac fermion-like electronic structure. The superlattice approach represents a new direction for exploring basic science and applications of graphene-based materials.

  10. Buckling Behavior of Substrate Supported Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Kuijian Yang

    2016-01-01

    Full Text Available The buckling of graphene sheets on substrates can significantly degrade their performance in materials and devices. Therefore, a systematic investigation on the buckling behavior of monolayer graphene sheet/substrate systems is carried out in this paper by both molecular mechanics simulations and theoretical analysis. From 70 simulation cases of simple-supported graphene sheets with different sizes under uniaxial compression, two different buckling modes are investigated and revealed to be dominated by the graphene size. Especially, for graphene sheets with length larger than 3 nm and width larger than 1.1 nm, the buckling mode depends only on the length/width ratio. Besides, it is revealed that the existence of graphene substrate can increase the critical buckling stress and strain to 4.39 N/m and 1.58%, respectively, which are about 10 times those for free-standing graphene sheets. Moreover, for graphene sheets with common size (longer than 20 nm, both theoretical and simulation results show that the critical buckling stress and strain are dominated only by the adhesive interactions with substrate and independent of the graphene size. Results in this work provide valuable insight and guidelines for the design and application of graphene-derived materials and nano-electromechanical systems.

  11. Seeing graphene-based sheets

    Directory of Open Access Journals (Sweden)

    Jaemyung Kim

    2010-03-01

    Full Text Available Graphene-based sheets such as graphene, graphene oxide and reduced graphene oxide have stimulated great interest due to their promising electronic, mechanical and thermal properties. Microscopy imaging is indispensable for characterizing these single atomic layers, and oftentimes is the first measure of sample quality. This review provides an overview of current imaging techniques for graphene-based sheets and highlights a recently developed fluorescence quenching microscopy technique that allows high-throughput, high-contrast imaging of graphene-based sheets on arbitrary substrate and even in solution.

  12. Fracture Characteristics of Monolayer CVD-Graphene

    OpenAIRE

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-01-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. ...

  13. Nanocomposite Materials of Alternately Stacked C60 Monolayer and Graphene

    Directory of Open Access Journals (Sweden)

    Makoto Ishikawa

    2010-01-01

    Full Text Available We synthesized the novel nanocomposite consisting alternately of a stacked single graphene sheet and a C60 monolayer by using the graphite intercalation technique in which alkylamine molecules help intercalate large C60 molecules into the graphite. Moreover, it is found that the intercalated C60 molecules can rotate in between single graphene sheets by using C13 NMR measurements. This preparation method provides a general way for intercalating huge fullerene molecules into graphite, which will lead to promising materials with novel mechanical, physical, and electrical properties.

  14. Fracture Characteristics of Monolayer CVD-Graphene

    Science.gov (United States)

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-03-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized.

  15. Graphene: powder, flakes, ribbons, and sheets.

    Science.gov (United States)

    James, Dustin K; Tour, James M

    2013-10-15

    fibers and in the fabrication of large area transparent electrodes. Using solid carbon sources such as polymers, food, insects, and waste, we can grow monolayer and bilayer graphene directly on metal catalysts, and carbon-sources containing nitrogen can produce nitrogen-doped graphene. The resulting graphene can be transferred to other surfaces, such as metal grids, for potential use in transparent touch screens for applications in personal electronics and large area photovoltaic devices. Because the transfer of graphene from one surface to another can lead to defects, low yields, and higher costs, we have developed methods for growing graphene directly on the substrates of interest. We can also produce patterned graphene to make GNRs or graphane/graphene superlattices within a single sheet. These superlattices could have multiple functions for use in sensors and other devices. This Account only touches upon this burgeoning area of materials chemistry, and the field will continue to expand as researchers imagine new forms and applications of graphene.

  16. Strain mapping in a graphene monolayer nanocomposite.

    Science.gov (United States)

    Young, Robert J; Gong, Lei; Kinloch, Ian A; Riaz, Ibtsam; Jalil, Rashed; Novoselov, Kostya S

    2011-04-26

    Model composite specimens have been prepared consisting of a graphene monolayer sandwiched between two thin layers of polymer on the surface of a poly(methyl methacrylate) beam. It has been found that well-defined Raman spectra can be obtained from the single graphene atomic layer and that stress-induced Raman band shifts enable the strain distribution in the monolayer to be mapped with a high degree of precision. It has been demonstrated that the distribution of strain across the graphene monolayer is relatively uniform at levels of applied strain up to 0.6% but that it becomes highly nonuniform above this strain. The change in the strain distributions has been shown to be due to a fragmentation process due to the development of cracks, most likely in the polymer coating layers, with the graphene remaining intact. The strain distributions in the graphene between the cracks are approximately triangular in shape, and the interfacial shear stress in the fragments is only about 0.25 MPa, which is an order of magnitude lower than the interfacial shear stress before fragmentation. This relatively poor level of adhesion between the graphene and polymer layers has important implications for the use of graphene in nanocomposites, and methods of strengthening the graphene-polymer interface are discussed.

  17. Investigation on gallium ions impacting monolayer graphene

    Directory of Open Access Journals (Sweden)

    Xin Wu

    2015-06-01

    Full Text Available In this paper, the physical phenomena of gallium (Ga+ ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC and molecular dynamics (MD simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga+ ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga+ ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm2. Afterwards, the focused ion beam over 21.6 ion/nm2 is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.

  18. Investigation on gallium ions impacting monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xin; Zhao, Haiyan, E-mail: hyzhao@tsinghua.edu.cn; Yan, Dong; Pei, Jiayun [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. Chinaand Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-06-15

    In this paper, the physical phenomena of gallium (Ga{sup +}) ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC) and molecular dynamics (MD) simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga{sup +} ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga{sup +} ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm{sup 2}. Afterwards, the focused ion beam over 21.6 ion/nm{sup 2} is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.

  19. Sub-THz Characterisation of Monolayer Graphene

    Directory of Open Access Journals (Sweden)

    Ehsan Dadrasnia

    2014-01-01

    Full Text Available We explore the optical and electrical characteristics of monolayer graphene by using pulsed optoelectronic terahertz time-domain spectroscopy in the frequency range of 325–500 GHz based on fast direct measurements of phase and amplitude. We also show that these parameters can, however, be measured with higher resolution using a free space continuous wave measurement technique associated with a vector network analyzer that offers a good dynamic range. All the scattering parameters (both magnitude and phase are measured simultaneously. The Nicholson-Ross-Weir method is implemented to extract the monolayer graphene parameters at the aforementioned frequency range.

  20. Impermeable atomic membranes from graphene sheets.

    Science.gov (United States)

    Bunch, J Scott; Verbridge, Scott S; Alden, Jonathan S; van der Zande, Arend M; Parpia, Jeevak M; Craighead, Harold G; McEuen, Paul L

    2008-08-01

    We demonstrate that a monolayer graphene membrane is impermeable to standard gases including helium. By applying a pressure difference across the membrane, we measure both the elastic constants and the mass of a single layer of graphene. This pressurized graphene membrane is the world's thinnest balloon and provides a unique separation barrier between 2 distinct regions that is only one atom thick.

  1. Singular Sheet Etching of Graphene with Oxygen Plasma

    Institute of Scientific and Technical Information of China (English)

    Haider Al-Mumen; Fubo Rao; Wen Li; Lixin Dong

    2014-01-01

    This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching (SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition, etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900-1000◦C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.

  2. Fluorene-Perylene Diimide Arrays onto Graphene Sheets for Photocatalysis.

    Science.gov (United States)

    Stergiou, Anastasios; Tagmatarchis, Nikos

    2016-08-24

    A facile approach for introducing photoactive poly(fluorene-perylene diimide) arrays (PFPDI) onto graphene sheets was accomplished. Noncovalent PFPDI/graphene ensembles formed via π-π stacking interactions between the two components and covalent PFPDI-graphene hybrids realized upon a Stille polycondensation reaction between an iodobenzyl-functionalized graphene, a 9,9-dialkyl substituted fluorene diboronic acid, and a 1,7-dibromo-PDI derivative were prepared. The morphology of PFPDI/graphene and PFPDI-graphene was evaluated by high-resolution transmission electron microscopy (HR-TEM), revealing the presence of even monolayered graphene sheets. Moreover, their photophysical and redox properties as assessed by electronic absorption spectroscopy and steady-state as well as time-resolved photoluminescence assays and electrochemistry, respectively, disclosed charge-transfer characteristics owing to the high photoluminescence quenching of PFPDI in the presence of graphene and the fast component attributed to the decay of the emission intensity of the singlet excited state of PFPDI in both PFPDI/graphene and PFPDI-graphene. Next, testing their ability to operate in energy conversion schemes, the PFPDI-graphene was successfully employed as catalyst for the reduction of 4-nitrophenol to 4-aminophenol. Notably, the kinetics for the reduction were enhanced by visible light photoirradiation as compared to dark conditions as well as the presence of PFPDI-graphene, contrasting the case where only PFPDI, in the absence of graphene, was employed. Finally, recycling of the catalyst PFPDI-graphene was achieved and reutilization in successive reduction reactions of 4-nitrophenol was found to proceed with the same efficiency.

  3. Transport measurement of Li doped monolayer graphene

    Science.gov (United States)

    Khademi, Ali; Sajadi, Ebrahim; Dosanjh, Pinder; Folk, Joshua; Stöhr, Alexander; Forti, Stiven; Starke, Ulrich

    Lithium adatoms on monolayer graphene have been predicted to induce superconductivity with a critical temperature near 8 K, and recent experimental evidence by ARPES indicates a critical temperature nearly that high. Encouraged by these results, we investigated the effects of lithium deposited at cryogenic temperatures on the electronic transport properties of epitaxial and CVD monolayer graphene down to 3 K. The change of charge carrier density due to Li deposition was monitored both by the gate voltage shift of the Dirac point and by Hall measurements, in low and high doping regimes. In the high doping regime, a saturation density of 2×1013 cm-2 was observed independent of sample type, initial carrier density and deposition conditions. No signatures of superconductivity were observed down to 3 K.

  4. Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene.

    Science.gov (United States)

    O'Hern, Sean C; Jang, Doojoon; Bose, Suman; Idrobo, Juan-Carlos; Song, Yi; Laoui, Tahar; Kong, Jing; Karnik, Rohit

    2015-05-13

    Monolayer nanoporous graphene represents an ideal membrane for molecular separations, but its practical realization is impeded by leakage through defects in the ultrathin graphene. Here, we report a multiscale leakage-sealing process that exploits the nonpolar nature and impermeability of pristine graphene to selectively block defects, resulting in a centimeter-scale membrane that can separate two fluid reservoirs by an atomically thin layer of graphene. After introducing subnanometer pores in graphene, the membrane exhibited rejection of multivalent ions and small molecules and water flux consistent with prior molecular dynamics simulations. The results indicate the feasibility of constructing defect-tolerant monolayer graphene membranes for nanofiltration, desalination, and other separation processes.

  5. A pentacene monolayer trapped between graphene and a substrate

    Science.gov (United States)

    Zhang, Qicheng; Peng, Boyu; Chan, Paddy Kwok Leung; Luo, Zhengtang

    2015-08-01

    A self-assembled pentacene monolayer can be fabricated between the solid-solid interface of few-layered graphene (FLG) and the mica substrate, through a diffusion-spreading method. By utilizing a transfer method that allows us to sandwich pentacene between graphene and mica, followed by controlled annealing, we enabled the diffused pentacene to be trapped in the interfaces and led to the formation of a stable monolayer. We found that the formation of a monolayer is kinetically favored by using a 2D Ising lattice gas model for pentacene trapped between the graphene-substrate interfaces. This kinetic Monte Carlo simulation results indicate that, due to the graphene substrate enclosure, the spreading of the first layer proceeds faster than the second layer, as the kinetics favors the filling of voids by molecules from the second layer. This graphene assisted monolayer assembly method provides a new avenue for the fabrication of two-dimensional monolayer structures.A self-assembled pentacene monolayer can be fabricated between the solid-solid interface of few-layered graphene (FLG) and the mica substrate, through a diffusion-spreading method. By utilizing a transfer method that allows us to sandwich pentacene between graphene and mica, followed by controlled annealing, we enabled the diffused pentacene to be trapped in the interfaces and led to the formation of a stable monolayer. We found that the formation of a monolayer is kinetically favored by using a 2D Ising lattice gas model for pentacene trapped between the graphene-substrate interfaces. This kinetic Monte Carlo simulation results indicate that, due to the graphene substrate enclosure, the spreading of the first layer proceeds faster than the second layer, as the kinetics favors the filling of voids by molecules from the second layer. This graphene assisted monolayer assembly method provides a new avenue for the fabrication of two-dimensional monolayer structures. Electronic supplementary information (ESI

  6. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates

    Institute of Scientific and Technical Information of China (English)

    Ze-Zhao He; Ke-Wu Yang; Cui Yu; Qing-Bin Liu; Jing-Jing Wang; Xu-Bo Song; Ting-Ting Han

    2016-01-01

    Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features.We report on monolayer and bilayer epitaxial graphene field-effect transistors (GFETs) fabricated on SiC substrates.Compared with monolayer GFETs,the bilayer GFETs exhibit a significant improvement in dc characteristics,including increasing current density IDS,improved transconductance gm,reduced sheet resistance Ron,and current saturation.The improved electrical properties and tunable bandgap in the bilayer graphene lead to the excellent dc performance of the bilayer GFETs.Furthermore,the improved dc characteristics enhance a better rf performance for bilayer graphene devices,demonstrating that the quasifree-standing bilayer graphene on SiC substrates has a great application potential for the future graphene-based electronics.

  7. Experimental study of thermal rectification in suspended monolayer graphene

    Science.gov (United States)

    Wang, Haidong; Hu, Shiqian; Takahashi, Koji; Zhang, Xing; Takamatsu, Hiroshi; Chen, Jie

    2017-06-01

    Thermal rectification is a fundamental phenomenon for active heat flow control. Significant thermal rectification is expected to exist in the asymmetric nanostructures, such as nanowires and thin films. As a one-atom-thick membrane, graphene has attracted much attention for realizing thermal rectification as shown by many molecular dynamics simulations. Here, we experimentally demonstrate thermal rectification in various asymmetric monolayer graphene nanostructures. A large thermal rectification factor of 26% is achieved in a defect-engineered monolayer graphene with nanopores on one side. A thermal rectification factor of 10% is achieved in a pristine monolayer graphene with nanoparticles deposited on one side or with a tapered width. The results indicate that the monolayer graphene has great potential to be used for designing high-performance thermal rectifiers for heat flow control and energy harvesting.

  8. Effects of Graphene Monolayer Coating on the Optical Performance of Remote Phosphors

    Science.gov (United States)

    Yazdan Mehr, M.; Volgbert, S.; van Driel, W. D.; Zhang, G. Q.

    2017-10-01

    A graphene monolayer has been successfully coated on one side of a bisphenol-A-polycarbonate (BPA-PC) plate, used as a substrate for remote phosphor applications in light-emitting diode (LED)-based products. Using a photoresist transferring method, graphene sheet has been coated on BPA-PC plates. The results show that this graphene monolayer significantly improves the lifetime and performance of LEDs mainly by protecting them against external degradation factors such as moisture and oxygen. Also, LED-based products composed of graphene-coated BPA-PC plates exhibit longer stability with comparatively less loss of luminous efficiency. This method has great potential to significantly improve the reliability of not only LED-based products but also many other microelectronics packaging and components, in which moisture and oxygen are the key causes of failures.

  9. Casimir interactions between graphene sheets and metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Drosdoff, D.; Woods, Lilia M. [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2011-12-15

    The Casimir force between graphene sheets and metamaterials is studied. Theoretical results based on the Lifshitz theory for layered, planar, two-dimensional systems in media are presented. We consider graphene-graphene, graphene-metamaterial, and metal-graphene-metamaterial configurations. We find that quantum effects of the temperature-dependent force are not apparent until the submicron range. In contrast to results with bulk dielectric and bulk metallic materials, no Casimir repulsion is found when graphene is placed on top of a magnetically active metamaterial substrate, regardless of the strength of the low-frequency magnetic response. In the case of the metal-graphene-metamaterial setting, repulsion between the metamaterial and the metal-graphene system is possible only when the dielectric response from the metal contributes significantly.

  10. Directional energy focusing on monolayer graphene coupling system

    Science.gov (United States)

    Wei, Buzheng; Yang, Yuguang; Yao, Shuzhi; Xiao, Han; Jian, Shuisheng

    2017-03-01

    A directional energy focusing system based on parallel-monolayer graphene sheets is proposed and is analytically and numerically investigated in this paper. By properly designing the chemical potential distributions, we obtain a ˜0.8-nm-size focusing point at desired positions with energy enhancement factor of over 2410. The flexible tunability of the transmission properties enables us to shut one parallel pair propagation down and guide the waves to the other branch. The light signal at the focal point is efficiently slowed down to over 10,000 times the speed in vacuum as well. The proposed structure may find potential applications in integrated circuits, on-chip systems or energy storage.

  11. Transfer matrix theory of monolayer graphene/bilayer graphene heterostructure superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu, E-mail: ywang@semi.ac.cn [Department of Physics, Faculty of Science, Kunming University of Science and Technology, Kunming 650500 (China)

    2014-10-28

    We have formulated a transfer matrix method to investigate electronic properties of graphene heterostructure consisting of monolayer graphene and bilayer counterpart. By evaluating transmission, conductance, and band dispersion, we show that, irrespective of the different carrier chiralities in monolayer graphene and bilayer graphene, superlattice consisting of biased bilayer graphene barrier and monolayer graphene well can mimic the electronic properties of conventional semiconductor superlattice, displaying the extended subbands in the quantum tunneling regime and producing anisotropic minigaps for the classically allowed transport. Due to the lateral confinement, the lowest mode has shifted away from the charge neutral point of monolayer graphene component, opening a sizeable gap in concerned structure. Following the gate-field and geometry modulation, all electronic states and gaps between them can be externally engineered in an electric-controllable strategy.

  12. Transfer matrix theory of monolayer graphene/bilayer graphene heterostructure superlattice

    Science.gov (United States)

    Wang, Yu

    2014-10-01

    We have formulated a transfer matrix method to investigate electronic properties of graphene heterostructure consisting of monolayer graphene and bilayer counterpart. By evaluating transmission, conductance, and band dispersion, we show that, irrespective of the different carrier chiralities in monolayer graphene and bilayer graphene, superlattice consisting of biased bilayer graphene barrier and monolayer graphene well can mimic the electronic properties of conventional semiconductor superlattice, displaying the extended subbands in the quantum tunneling regime and producing anisotropic minigaps for the classically allowed transport. Due to the lateral confinement, the lowest mode has shifted away from the charge neutral point of monolayer graphene component, opening a sizeable gap in concerned structure. Following the gate-field and geometry modulation, all electronic states and gaps between them can be externally engineered in an electric-controllable strategy.

  13. Electronic transport in nanoparticle monolayers sandwiched between graphene electrodes.

    Science.gov (United States)

    Lu, Chenguang; Zhang, Datong; van der Zande, Arend; Kim, Philip; Herman, Irving P

    2014-11-06

    Graphene/CdSe nanoparticle monolayer/graphene sandwich structures were fabricated to explore the interactions between these layered materials. Electrical transport across these heterostructures suggests that transport is limited by tunneling through the nanoparticle (NP) ligands but not the NP core itself. Photoconductivity suggests ligands may affect the exciton separation efficiency.

  14. Controlled Synthesis of Monolayer Graphene Toward Transparent Flexible Conductive Film Application

    Directory of Open Access Journals (Sweden)

    Yu Han-Young

    2010-01-01

    Full Text Available Abstract We demonstrate the synthesis of monolayer graphene using thermal chemical vapor deposition and successive transfer onto arbitrary substrates toward transparent flexible conductive film application. We used electron-beam-deposited Ni thin film as a synthetic catalyst and introduced a gas mixture consisting of methane and hydrogen. To optimize the synthesis condition, we investigated the effects of synthetic temperature and cooling rate in the ranges of 850–1,000°C and 2–8°C/min, respectively. It was found that a cooling rate of 4°C/min after 1,000°C synthesis is the most effective condition for monolayer graphene production. We also successfully transferred as-synthesized graphene films to arbitrary substrates such as silicon-dioxide-coated wafers, glass, and polyethylene terephthalate sheets to develop transparent, flexible, and conductive film application.

  15. Substrate-free gas-phase synthesis of graphene sheets.

    Science.gov (United States)

    Dato, Albert; Radmilovic, Velimir; Lee, Zonghoon; Phillips, Jonathan; Frenklach, Michael

    2008-07-01

    We present a novel method for synthesizing graphene sheets in the gas phase using a substrate-free, atmospheric-pressure microwave plasma reactor. Graphene sheets were synthesized by passing liquid ethanol droplets into an argon plasma. The graphene sheets were characterized by transmission electron microscopy, electron energy loss spectroscopy, Raman spectroscopy, and electron diffraction. We prove that graphene can be created without three-dimensional materials or substrates and demonstrate a possible avenue to the large-scale synthesis of graphene.

  16. Band-gap manipulations of monolayer graphene by phenyl radical adsorptions: a density functional theory study.

    Science.gov (United States)

    Huang, Lin; Sk, Mahasin Alam; Chen, Peng; Lim, Kok Hwa

    2014-08-25

    Phenyl radical (Ph˙) adsorption on monolayer graphene sheets is used to investigate the band-gap manipulation of graphene through density functional theory. Adsorption of a single Ph˙ on graphene breaks the aromatic π-bond and generates an unpaired electron, which is delocalized to the ortho or para position. Adsorption of a second radical at the ortho or para position saturates the radical by electron pairing and results in semiconducting graphene. Adsorption of a second radical at the ortho position (ortho-ortho pairing) is found to be more favorable than adsorption at the para position (ortho-para pairing), and the ortho-ortho pairing has stronger effects on band-gap opening compared with ortho-para pairing. Adsorption of even numbers of Ph˙ on graphene by ortho-ortho and ortho-para pairings, in general, increases the band gap. Our study shows promise of band-gap manipulation in monolayer graphene by Ph˙ adsorption, leading to potential wider applications of graphene. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mechanical Properties of Water-Assembled Graphene Oxide Langmuir Monolayers: Guiding Controlled Transfer.

    Science.gov (United States)

    Harrison, Katharine L; Biedermann, Laura B; Zavadil, Kevin R

    2015-09-15

    Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir-Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10-25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of such behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. We hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.

  18. Conductance fluctuations in high mobility monolayer graphene: Nonergodicity, lack of determinism and chaotic behavior

    Science.gov (United States)

    da Cunha, C. R.; Mineharu, M.; Matsunaga, M.; Matsumoto, N.; Chuang, C.; Ochiai, Y.; Kim, G.-H.; Watanabe, K.; Taniguchi, T.; Ferry, D. K.; Aoki, N.

    2016-09-01

    We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene.

  19. Superstrong encapsulated monolayer graphene by the modified anodic bonding.

    Science.gov (United States)

    Jung, Wonsuk; Yoon, Taeshik; Choi, Jongho; Kim, Soohyun; Kim, Yong Hyup; Kim, Taek-Soo; Han, Chang-Soo

    2014-01-07

    We report a superstrong adhesive of monolayer graphene by modified anodic bonding. In this bonding, graphene plays the role of a superstrong and ultra-thin adhesive between SiO2 and glass substrates. As a result, monolayer graphene presented a strong adhesion energy of 1.4 J m(-2) about 310% that of van der Waals bonding (0.45 J m(-2)) to SiO2 and glass substrates. This flexible solid state graphene adhesive can tremendously decrease the adhesive thickness from about several tens of μm to 0.34 nm for epoxy or glue at the desired bonding area. As plausible causes of this superstrong adhesion, we suggest conformal contact with the rough surface of substrates and generation of C-O chemical bonding between graphene and the substrate due to the bonding process, and characterized these properties using optical microscopy, atomic force microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy.

  20. Buckling of a single-layered graphene sheet on an initially strained InGaAs thin plate

    Energy Technology Data Exchange (ETDEWEB)

    Taziev, R M; Ya Prinz, V, E-mail: taziev@thermo.isp.nsc.ru [Institute of Semiconductor Physics, 630090, Novosibirsk (Russian Federation)

    2011-07-29

    The elastic buckling behavior of a defect-free single-layered graphene sheet deposited on a strained InGaAs substrate is investigated. Such a buckled sandwich structure can be formed by local etching of an initially strained InGaAs substrate. We numerically investigated the necessary buckling conditions for a single-layered graphene sheet of circular geometry on an initially strained InGaAs thin plate. A criterion for buckling for various axisymmetric buckling shapes was obtained. It is shown that for a thin circular InGaAs plate with a monolayer graphene sheet of radius 80 nm and thickness 4 nm three axisymmetric buckling shapes can be obtained. For an initial value of the elastic deformation of the plate of 3%, the in-plane strain in graphene can reach a value of 1%. This deformation is shown to be distributed inhomogeneously along the radius of the graphene monolayer.

  1. Surface polaritons of one-dimensional photonic crystals containing graphene monolayers

    Science.gov (United States)

    Madani, Amir; Roshan Entezar, Samad

    2014-11-01

    We investigated theoretically the existence of surface polaritons (SPs) at the interface of a one-dimensional photonic crystal containing graphene monolayers. It is shown that the structure has a new type of the photonic band gap in the THz region which is strictly omnidirectional for the TM-polarization and can support the SPs for both TM-polarization and TE-polarization. The results show that the characteristics of the SPs depends on the optical properties of the graphene sheets which can be controlled by a gate voltage. We plotted the electromagnetic field profiles of the SPs at the frequency range of the graphene induced band gap and a conventional Bragg gap of the structure. It is found that the SPs at the graphene induced band gap are more localized than the SPs at the Bragg gaps.

  2. Dual doped monolayer and bilayer graphene: The case of 4p and 2p elements

    Science.gov (United States)

    Denis, Pablo A.; Iribarne, Federico

    2016-08-01

    4p/2p dual-doped monolayer and bilayer graphene were studied via first principle calculations. Generally, dopants prefer to be agglomerated. A second dopant significantly reduces formation energies. Thus, partially reduced graphene oxide would favor substitutional doping by facilitating the introduction of the 4p dopants. Dual-doping can tune the band gap from 0.1 to 0.8 eV. For bilayer graphene, large atomic radii elements (Gallium and Germanium) form interlayer bonds with the undoped sheet. For some dual-doped graphenes, interlayer GaC and GeC bonds were formed, increasing the chemical reactivity of the undoped layer and affecting its electronic structure, with metallic or semiconducting characters observed.

  3. Electronic Transport in Monolayer Graphene with Extreme Physical Deformation: ab Initio Density Functional Calculation

    CERN Document Server

    Gao, Haiyuan; Li, Meijiao; Guo, Zhendong; Chen, Hongshen; Jin, Zhonghe; Yu, Bin

    2011-01-01

    Electronic transport properties of monolayer graphene with extreme physical bending up to 90o angle are studied using ab Initio first-principle calculations. The importance of key structural parameters including step height, curvature radius and bending angle are discussed how they modify the transport properties of the deformed graphene sheet comparing to the corresponding flat ones. The local density of state reveals that energy state modification caused by the physical bending is highly localized. It is observed that the transport properties of bent graphene with a wide range of geometrical configurations are insensitive to the structural deformation in the low-energy transmission spectra, even in the extreme case of bending. The results support that graphene, with its superb electromechanical robustness, could serve as a viable material platform in a spectrum of applications such as photovoltaics, flexible electronics, OLED, and 3D electronic chips.

  4. Tunable enhanced Goos-Hänchen shift in one-dimensional photonic crystals containing graphene monolayers

    Science.gov (United States)

    Madani, Amir; Entezar, Samad Roshan

    2015-10-01

    Theoretically, the Goos-Hänchen effect at the interface of a one-dimensional photonic crystal containing graphene monolayers has been investigated. It was shown that the lateral shift of the reflected beam can be remarkably enhanced when the phase matching conditions are satisfied for the excitation of the surface polaritons at the interface of the structure in the graphene induced photonic band gap. The effect of the optical properties of the graphene sheets on the enhancement of the Goos-Hänchen shift was investigated and it was shown that the beam displacement can be controlled by the tuning of the chemical potential of graphene. This may have potential applications in the optical communication systems.

  5. Functionalizing Arrays of Transferred Monolayer Graphene on Insulating Surfaces by Bipolar Electrochemistry

    DEFF Research Database (Denmark)

    Koefoed, Line; Pedersen, Emil Bjerglund; Thyssen, Lena

    2016-01-01

    graphene sheets supported on SiO2. Using this technique, transferred graphene can be electrochemically functionalized without the need of a metal support or the deposition of physical contacts. X-ray photoelectron spectroscopy and Raman spectroscopy are used to map the chemical changes and modifications....... Furthermore, it is shown that it is possible to simultaneously modify an array of many small graphene electrodes (1 × 1 mm2) on SiO2.......Development of versatile methods for graphene functionalization is necessary before use in applications such as composites or as catalyst support. In this study, bipolar electrochemistry is used as a wireless functionalization method to graft 4-bromobenzenediazonium on large (10 × 10 mm2) monolayer...

  6. Density functional theory calculations on alkali and the alkaline Ca atoms adsorbed on graphene monolayers

    Science.gov (United States)

    Dimakis, Nicholas; Valdez, Danielle; Flor, Fernando Antonio; Salgado, Andres; Adjibi, Kolade; Vargas, Sarah; Saenz, Justin

    2017-08-01

    The adsorption of the alkali Li, K, and Na and the alkaline Ca on graphene is studied using periodic density functional theory (DFT) under various adatom coverages. The charge transfers between the adatom and the graphene sheet and the almost unchanged densities-of-states spectra in the energy region near and below the Fermi level support an ionic bond pattern between the adatom and the graphene atoms. However, the presence of small orbital overlap between the metal and the nearest graphene atom is indicative of small covalent bonding. Van der Waals interactions are examined through a semiempirical correction in the DFT functional and by comparing adatom-graphene calculations between 3% and 1.4% adatom coverages. Optimized adatom-graphene geometries identify the preferred adatom sites, whereas the adatom-graphene strength is correlated with the adsorption energy and the adatom distance from the graphene plane. Calculated electronic properties and structural parameters are obtained using hybrid functionals and a generalized gradient approximation functional paired with basis sets of various sizes. We found that due to long range electrostatic forces between the alkali/alkaline adatoms and the graphene monolayer, the adatom-graphene structural and electronic properties could be well-described by specific DFT functionals paired with high-quality adatom basis sets. For Li, K, and Na adsorbed on graphene, increased adatom surface coverage weakens the adatom-graphene interaction. However, this statement does not apply for Ca adsorbed on graphene. In this case, the Ca adsorption strength, which is stronger at higher coverages, is opposite to increases in the Ca-4s orbital population.

  7. Method for forming monolayer graphene-boron nitride heterostructures

    Science.gov (United States)

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2016-08-09

    A method for fabricating monolayer graphene-boron nitride heterostructures in a single atomically thin membrane that limits intermixing at boundaries between graphene and h-BN, so as to achieve atomically sharp interfaces between these materials. In one embodiment, the method comprises exposing a ruthenium substrate to ethylene, exposing the ruthenium substrate to oxygen after exposure to ethylene and exposing the ruthenium substrate to borazine after exposure to oxygen.

  8. Tunneling electron induced luminescence from porphyrin molecules on monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Feng; Kuang, Yanmin; Yu, Yunjie; Liao, Yuan; Zhang, Yao; Zhang, Yang; Dong, Zhenchao, E-mail: zcdong@ustc.edu.cn

    2015-01-15

    Using epitaxially grown graphene on Ru(0001) as a decoupling layer, we investigate the evolution of tunneling electron induced luminescence from different number of layers of porphyrin molecules. Light emission spectra and photon maps, acquired via a combined optical setup with scanning tunneling microscopy (STM), indicate that the electronic decoupling effect of a monolayer (ML) graphene alone is still insufficient for generating molecule-specific emission from both the 1st- and 2nd-layer porphyrin molecules. Nevertheless, interestingly, the plasmonic emission is enhanced for the 1st-layer but suppressed for the 2nd-layer in comparison with the plasmonic emission on the monolayer graphene. Intrinsic intramolecular molecular fluorescence occurs at the 3rd-layer porphyrin. Such molecular thickness is about two MLs thinner than previous reports where molecules were adsorbed directly on metals. These observations suggest that the monolayer graphene does weaken the interaction between molecule and metal substrate and contribute to the reduction of nonradiative decay rates. - Highlights: • Showing molecularly resolved photon maps of graphene and porphyrins on it. • Revealing the influence of spacer thickness on molecular electroluminescence. • Graphene does weaken the interaction between molecules and metal substrate.

  9. Rolling up a Graphene Sheet

    NARCIS (Netherlands)

    Calvaresi, Matteo; Quintana, Mildred; Rudolf, Petra; Zerbetto, Francesco; Prato, Maurizio

    2013-01-01

    Carbon Nanotubes, CNTs, have been described as rolled-up graphene layers. Matching this concept to experiments has been a great experimental challenge for it requires a method to exfoliate graphite, generate ordered and stable dangling carbon bonds, and roll up the layer without affecting the

  10. Rolling Up a Monolayer MoS2 Sheet.

    Science.gov (United States)

    Meng, Jianling; Wang, Guole; Li, Xiaomin; Lu, Xiaobo; Zhang, Jing; Yu, Hua; Chen, Wei; Du, Luojun; Liao, Mengzhou; Zhao, Jing; Chen, Peng; Zhu, Jianqi; Bai, Xuedong; Shi, Dongxia; Zhang, Guangyu

    2016-07-01

    MoS2 nanoscrolls are formed by argon plasma treatment on monolayer MoS2 sheet. The nanoscale scroll formation is attributed to the partial removal of top sulfur layer in MoS2 during the argon plasma treatment process. This convenient, solvent-free, and high-yielding nanoscroll formation technique is also feasible for other 2D transition metal dichalcogenides.

  11. A planar hyperlens based on a modulated graphene monolayer

    CERN Document Server

    Forati, Ebrahim; Yakovlev, Alexander B; Alu, Andrea

    2013-01-01

    The canalization of terahertz surface plasmon polaritons using a modulated graphene monolayer is investigated for subwavelength imaging. An anisotropic surface conductivity formed by a set of parallel nanoribbons with alternating positive and negative imaginary conductivities is used to realize the canalization regime required for hyperlensing. The ribbons are narrow compared to the wavelength, and are created electronically by gating a graphene layer over a corrugated ground plane. Good quality canalization of surface plasmon polaritons is shown in the terahertz even in the presence of realistic loss in graphene, with relevant implications for subwavelength imaging applications.

  12. Enhanced photoresponse in monolayer hydrogenated graphene photodetector.

    Science.gov (United States)

    Gowda, Prarthana; Mohapatra, Dipti R; Misra, Abha

    2014-10-01

    We report the photoresponse of a hydrogenated graphene (H-graphene)-based infrared (IR) photodetector that is 4 times higher than that of pristine graphene. An enhanced photoresponse in H-graphene is attributed to the longer photoinduced carrier lifetime and hence a higher internal quantum efficiency of the device. Moreover, a variation in the angle of incidence of IR radiation demonstrated a nonlinear photoresponse of the detector, which can be attributed to the photon drag effect. However, a linear dependence of the photoresponse is revealed with different incident powers for a given angle of IR incidence. This study presents H-graphene as a tunable photodetector for advanced photoelectronic devices with higher responsivity. In addition, in situ tunability of the graphene bandgap enables achieving a cost-effective technique for developing photodetectors without involving any external treatments.

  13. Thermomechanics of monolayer graphene: Rippling, thermal expansion and elasticity

    Science.gov (United States)

    Gao, Wei; Huang, Rui

    2014-05-01

    Thermomechanical properties of monolayer graphene with thermal fluctuation are studied by both statistical mechanics analysis and molecular dynamics (MD) simulations. While the statistical mechanics analysis in the present study is limited by a harmonic approximation, significant anharmonic effects are revealed by MD simulations. The amplitude of out-of-plane thermal fluctuation is calculated for graphene membranes under both zero stress and zero strain conditions. It is found that the fluctuation amplitude follows a power-law scaling with respect to the linear dimension of the membrane, but the roughness exponents are different for the two conditions due to anharmonic interactions between bending and stretching modes. Such thermal fluctuation or rippling is found to be responsible for the effectively negative in-plane thermal expansion of graphene at relatively low temperatures, while a transition to positive thermal expansion is predicted as the anharmonic interactions suppress the rippling effect at high temperatures. Subject to equi-biaxial tension, the amplitude of thermal rippling decreases nonlinearly, and the in-plane stress-strain relation of graphene becomes nonlinear even at infinitesimal strain, in contrast with classical theory of linear elasticity. It is found that the tangent biaxial modulus of graphene depends on strain non-monotonically, decreases with increasing temperature, and depends on membrane size. Both statistical mechanics and MD simulations suggest considerable entropic contribution to the thermomechanical properties of graphene, and as a result thermal rippling is intricately coupled with thermal expansion and thermoelasticity for monolayer graphene membranes.

  14. Temperature dependence of atomic vibrations in mono-layer graphene

    NARCIS (Netherlands)

    Allen, C.S.; Liberti, E.; Kim, J.S.; Xu, Q.; Fan, Y.; He, K.; Robertson, A.W.; Zandbergen, H.W.; Warner, J.H.; Kirkland, A.I.

    2015-01-01

    We have measured the mean square amplitude of both in- and out-of-plane lattice vibrations for mono-layer graphene at temperatures ranging from ∼100 K to 1300 K. The amplitude of lattice vibrations was calculated from data extracted from selected area electron diffraction patterns recorded across a

  15. Manipulating interface states in monolayer-bilayer graphene planar junctions

    Science.gov (United States)

    Zhao, Fang; Xu, Lei; Zhang, Jun

    2016-05-01

    We report on transport properties of monolayer-bilayer graphene planar junctions in a magnetic field. Due to its unique geometry, the edge and interface states can be independently manipulated by either interlayer potential or Zeeman field, and the conductance exhibits interesting quantized behaviors. In the hybrid graphene junction, the quantum Hall (QH) conductance is no longer antisymmetric with respect to the charge neutrality point. When the Zeeman field is considered, a quantum spin Hall (QSH) phase is found in the monolayer region while the weak-QSH phase stays in the bilayer region. In the presence of both interlayer potential and Zeeman field, the bilayer region hosts a QSH phase, whereas the monolayer region is still in a QH phase, leading to a spin-polarized current in the interface. In particular, the QSH phase remains robust against the disorder.

  16. Neutron Reflectivity Measurement for Polymer Dynamics near Graphene Oxide Monolayers

    Science.gov (United States)

    Koo, Jaseung

    We investigated the diffusion dynamics of polymer chains confined between graphene oxide layers using neutron reflectivity (NR). The bilayers of polymethylmetacrylate (PMMA)/ deuterated PMMA (d-PMMA) films and polystyrene (PS)/d-PS films with various film thickness sandwiched between Langmuir-Blodgett (LB) monolayers of graphene oxide (GO) were prepared. From the NR results, we found that PMMA diffusion dynamics was reduced near the GO surface while the PS diffusion was not significantly changed. This is due to the different strength of GO-polymer interaction. In this talk, these diffusion results will be compared with dewetting dynamics of polymer thin films on the GO monolayers. This has given us the basis for development of graphene-based nanoelectronics with high efficiency, such as heterojunction devices for polymer photovoltaic (OPV) applications.

  17. Conversion of self-assembled monolayers into nanocrystalline graphene: structure and electric transport.

    Science.gov (United States)

    Turchanin, Andrey; Weber, Dirk; Büenfeld, Matthias; Kisielowski, Christian; Fistul, Mikhail V; Efetov, Konstantin B; Weimann, Thomas; Stosch, Rainer; Mayer, Joachim; Gölzhäuser, Armin

    2011-05-24

    Graphene-based materials have been suggested for applications ranging from nanoelectronics to nanobiotechnology. However, the realization of graphene-based technologies will require large quantities of free-standing two-dimensional (2D) carbon materials with tunable physical and chemical properties. Bottom-up approaches via molecular self-assembly have great potential to fulfill this demand. Here, we report on the fabrication and characterization of graphene made by electron-radiation induced cross-linking of aromatic self-assembled monolayers (SAMs) and their subsequent annealing. In this process, the SAM is converted into a nanocrystalline graphene sheet with well-defined thickness and arbitrary dimensions. Electric transport data demonstrate that this transformation is accompanied by an insulator to metal transition that can be utilized to control electrical properties such as conductivity, electron mobility, and ambipolar electric field effect of the fabricated graphene sheets. The suggested route opens broad prospects toward the engineering of free-standing 2D carbon materials with tunable properties on various solid substrates and on holey substrates as suspended membranes.

  18. Superstrong encapsulated monolayer graphene by the modified anodic bonding

    Science.gov (United States)

    Jung, Wonsuk; Yoon, Taeshik; Choi, Jongho; Kim, Soohyun; Kim, Yong Hyup; Kim, Taek-Soo; Han, Chang-Soo

    2013-12-01

    We report a superstrong adhesive of monolayer graphene by modified anodic bonding. In this bonding, graphene plays the role of a superstrong and ultra-thin adhesive between SiO2 and glass substrates. As a result, monolayer graphene presented a strong adhesion energy of 1.4 J m-2 about 310% that of van der Waals bonding (0.45 J m-2) to SiO2 and glass substrates. This flexible solid state graphene adhesive can tremendously decrease the adhesive thickness from about several tens of μm to 0.34 nm for epoxy or glue at the desired bonding area. As plausible causes of this superstrong adhesion, we suggest conformal contact with the rough surface of substrates and generation of C-O chemical bonding between graphene and the substrate due to the bonding process, and characterized these properties using optical microscopy, atomic force microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy.We report a superstrong adhesive of monolayer graphene by modified anodic bonding. In this bonding, graphene plays the role of a superstrong and ultra-thin adhesive between SiO2 and glass substrates. As a result, monolayer graphene presented a strong adhesion energy of 1.4 J m-2 about 310% that of van der Waals bonding (0.45 J m-2) to SiO2 and glass substrates. This flexible solid state graphene adhesive can tremendously decrease the adhesive thickness from about several tens of μm to 0.34 nm for epoxy or glue at the desired bonding area. As plausible causes of this superstrong adhesion, we suggest conformal contact with the rough surface of substrates and generation of C-O chemical bonding between graphene and the substrate due to the bonding process, and characterized these properties using optical microscopy, atomic force microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03822j

  19. Graphene Biosensor Programming with Genetically Engineered Fusion Protein Monolayers.

    Science.gov (United States)

    Soikkeli, Miika; Kurppa, Katri; Kainlauri, Markku; Arpiainen, Sanna; Paananen, Arja; Gunnarsson, David; Joensuu, Jussi J; Laaksonen, Päivi; Prunnila, Mika; Linder, Markus B; Ahopelto, Jouni

    2016-03-01

    We demonstrate a label-free biosensor concept based on specific receptor modules, which provide immobilization and selectivity to the desired analyte molecules, and on charge sensing with a graphene field effect transistor. The receptor modules are fusion proteins in which small hydrophobin proteins act as the anchor to immobilize the receptor moiety. The functionalization of the graphene sensor is a single-step process based on directed self-assembly of the receptor modules on a hydrophobic surface. The modules are produced separately in fungi or plants and purified before use. The modules form a dense and well-oriented monolayer on the graphene transistor channel and the receptor module monolayer can be removed, and a new module monolayer with a different selectivity can be assembled in situ. The receptor module monolayers survive drying, showing that the functionalized devices can be stored and have a reasonable shelf life. The sensor is tested with small charged peptides and large immunoglobulin molecules. The measured sensitivities are in the femtomolar range, and the response is relatively fast, of the order of one second.

  20. Noncovalent Self-Assembled Monolayers on Graphene as a Highly Stable Platform for Molecular Tunnel Junctions.

    Science.gov (United States)

    Song, Peng; Sangeeth, C S Suchand; Thompson, Damien; Du, Wei; Loh, Kian Ping; Nijhuis, Christian A

    2016-01-27

    Monolayer graphene is used as the bottom electrode to fabricate stable and high-quality self-assembled monolayer (SAM)-based tunnel junctions. The SAMs are formed on graphene via noncovalent bonds without altering the structure of the graphene. This work paves the way to new types of molecular electronic junctions based on 2D materials.

  1. A primary battery-on-a-chip using monolayer graphene

    Science.gov (United States)

    Iost, Rodrigo M.; Crespilho, Frank N.; Kern, Klaus; Balasubramanian, Kannan

    2016-07-01

    We present here a bottom-up approach for realizing on-chip on-demand batteries starting out with chemical vapor deposition-grown graphene. Single graphene monolayers contacted by electrode lines on a silicon chip serve as electrodes. The anode and cathode are realized by electrodeposition of zinc and copper respectively onto graphene, leading to the realization of a miniature graphene-based Daniell cell on a chip. The electrolyte is housed partly in a gel and partly in liquid form in an on-chip enclosure molded using a 3d printer or made out of poly(dimethylsiloxane). The realized batteries provide a stable voltage (∼1.1 V) for many hours and exhibit capacities as high as 15 μAh, providing enough power to operate a pocket calculator. The realized batteries show promise for deployment as on-chip power sources for autonomous systems in lab-on-a-chip or biomedical applications.

  2. Evidence for superconductivity in Li-decorated monolayer graphene.

    Science.gov (United States)

    Ludbrook, B M; Levy, G; Nigge, P; Zonno, M; Schneider, M; Dvorak, D J; Veenstra, C N; Zhdanovich, S; Wong, D; Dosanjh, P; Straßer, C; Stöhr, A; Forti, S; Ast, C R; Starke, U; Damascelli, A

    2015-09-22

    Monolayer graphene exhibits many spectacular electronic properties, with superconductivity being arguably the most notable exception. It was theoretically proposed that superconductivity might be induced by enhancing the electron-phonon coupling through the decoration of graphene with an alkali adatom superlattice [Profeta G, Calandra M, Mauri F (2012) Nat Phys 8(2):131-134]. Although experiments have shown an adatom-induced enhancement of the electron-phonon coupling, superconductivity has never been observed. Using angle-resolved photoemission spectroscopy (ARPES), we show that lithium deposited on graphene at low temperature strongly modifies the phonon density of states, leading to an enhancement of the electron-phonon coupling of up to λ ≃ 0.58. On part of the graphene-derived π*-band Fermi surface, we then observe the opening of a Δ ≃ 0.9-meV temperature-dependent pairing gap. This result suggests for the first time, to our knowledge, that Li-decorated monolayer graphene is indeed superconducting, with Tc ≃ 5.9 K.

  3. Monolayer graphene as dissipative membrane in an optical resonator

    CERN Document Server

    Meyer, Hendrik M; Köhl, Michael

    2016-01-01

    We experimentally demonstrate coupling of an atomically thin, free-standing graphene membrane to an optical cavity. By changing the position of the membrane along the standing-wave field of the cavity we tailor the dissipative coupling between the membrane and the cavity, and we show that the dissipative coupling can outweigh the dispersive coupling. Such a system, for which controlled dissipation prevails dispersion, will prove useful for novel laser-cooling schemes in optomechanics. In addition, we have determined the continuous-wave optical damage threshold of free-standing monolayer graphene of 1.8(4)~MW/cm$^2$ at 780nm.

  4. Monolayer graphene as dissipative membrane in an optical resonator

    Science.gov (United States)

    Meyer, Hendrik M.; Breyer, Moritz; Köhl, Michael

    2016-12-01

    We experimentally demonstrate coupling of an atomically thin, free-standing graphene membrane to an optical cavity. By changing the position of the membrane along the standing-wave field of the cavity, we tailor the dissipative coupling between the membrane and the cavity, and we show that the dissipative coupling can outweigh the dispersive coupling. Such a system, for which controlled dissipation prevails dispersion, will prove useful for novel laser-cooling schemes in optomechanics. In addition, we have determined the continuous-wave optical damage threshold of free-standing monolayer graphene of 1.8(4) MW/cm^2 at 780 nm.

  5. Atomically localized plasmon enhancement in monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wu [Vanderbilt University; Lee, Jaekwang [Vanderbilt University; Nanda, Jagjit [ORNL; Pantelides, Sokrates T. [Vanderbilt University; Pennycook, Stephen J [ORNL; Idrobo Tapia, Juan C [ORNL

    2012-01-01

    Plasmons in graphene can be tuned by using electrostatic gating or chemical doping, and the ability to confine plasmons in very small regions could have applications in optoelectronics, plasmonics and transformation optics. However, little is known about how atomic-scale defects influence the plasmonic properties of graphene. Moreover, the smallest localized plasmon resonance observed in any material to date has been limited to around 10 nm. Here, we show that surface plasmon resonances in graphene can be enhanced locally at the atomic scale. Using electron energy-loss spectrum imaging in an aberration-corrected scanning transmission electron microscope, we find that a single point defect can act as an atomic antenna in the petahertz (10{sup 15} Hz) frequency range, leading to surface plasmon resonances at the subnanometer scale.

  6. Carbon dioxide adsorption in graphene sheets

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Mishra

    2011-09-01

    Full Text Available Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 ºC.

  7. Thermally Induced Asymmetric Buckling of Circular Monolayer Graphene

    Directory of Open Access Journals (Sweden)

    Haw-Long Lee

    2013-01-01

    Full Text Available The asymmetric buckling behaviors of circular monolayer graphene with clamped boundary condition subjected to temperature change are analytically studied based on the nonlocal elasticity theory, including the small length effect. The axisymmetrical and asymmetric critical buckling temperatures and mode shape of different order modes are obtained. According to the analysis, the asymmetric critical buckling temperature of monolayer graphene is larger than the axisymmetric one. The axisymmetrical and asymmetric critical buckling temperatures decrease with increasing nonlocal parameter. In addition, nodal diametrical lines and nodal circles can be found from the modal shapes. In order to avoid destruction of the sensors due to buckling of the structure, they can be placed at the nodal diametrical lines or nodal circles.

  8. Graphene-like Boron-Carbon-Nitrogen Monolayers.

    Science.gov (United States)

    Beniwal, Sumit; Hooper, James; Miller, Daniel P; Costa, Paulo S; Chen, Gang; Liu, Shih-Yuan; Dowben, Peter A; Sykes, E Charles H; Zurek, Eva; Enders, Axel

    2017-03-28

    A strategy to synthesize a 2D graphenic but ternary monolayer containing atoms of carbon, nitrogen, and boron, h-BCN, is presented. The synthesis utilizes bis-BN cyclohexane, B2N2C2H12, as a precursor molecule and relies on thermally induced dehydrogenation of the precursor molecules and the formation of an epitaxial monolayer on Ir(111) through covalent bond formation. The lattice mismatch between the film and substrate causes a strain-driven periodic buckling of the film. The structure of the film and its corrugated morphology is discussed based on comprehensive data from molecular-resolved scanning tunneling microscopy imaging, X-ray photoelectron spectroscopy, low-energy electron diffraction, and density functional theory. First-principles calculations further predict a direct electronic band gap that is intermediate between gapless graphene and insulating h-BN.

  9. Interfacial Assembly of Graphene Oxide Sheets

    Science.gov (United States)

    Cote, Laura J.

    Scientific interest in graphene oxide (GO) sheets, the product of chemical oxidation and exfoliation of graphite powder, has resurged in recent years because GO is considered a promising precursor for the bulk production of graphene-based sheets for a variety of applications. In addition, GO can be viewed as an unconventional type of soft material as it is characterized by two abruptly different length scales. Its thickness is of typical molecular dimensions, measured to be about 1 nm by atomic force microscopy, but its lateral dimensions are that of common colloidal particles, ranging from nanometers to tens of microns. This high anisotropy leads to interesting fundamental colloidal interactions between the soft sheets which have practical implications in the solution processing and assembly of the material. This research therefore aims to use a variety of techniques to control these inter-sheet interactions to gain an understanding of the processing-structure relationships which ultimately determine the overall properties of the bulk GO assembly. GO is identified as a two-dimensional amphiphile with a unique edge-to-center arrangement of hydrophilic and hydrophobic groups, which has led to the demonstration of its pH- and size-dependent surface activity. The water surface is then utilized, as in the Langmuir-Blodgett technique, as an ideal substrate to tile up the GO sheets and study the interactions between them. Sheet-sheet interaction morphologies were successfully altered between wrinkled and overlapped states by pH tuning of sheet charge density, and the resulting structure-property relationships are explored. In addition, a novel flash-reduction and assembly process is described in which a simple photographic camera flash can rapidly and cleanly turn an insulating, well-stacked GO paper to a more open and fluffy conducting film. Lastly, the use of these research results as educational outreach platforms is highlighted. A variety of outlets, such as You

  10. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets.

    Science.gov (United States)

    Mortazavi, Bohayra; Pötschke, Markus; Cuniberti, Gianaurelio

    2014-03-21

    We developed a multiscale approach to explore the effective thermal conductivity of polycrystalline graphene sheets. By performing equilibrium molecular dynamics (EMD) simulations, the grain size effect on the thermal conductivity of ultra-fine grained polycrystalline graphene sheets is investigated. Our results reveal that the ultra-fine grained graphene structures have thermal conductivity one order of magnitude smaller than that of pristine graphene. Based on the information provided by the EMD simulations, we constructed finite element models of polycrystalline graphene sheets to probe the thermal conductivity of samples with larger grain sizes. Using the developed multiscale approach, we also investigated the effects of grain size distribution and thermal conductivity of grains on the effective thermal conductivity of polycrystalline graphene. The proposed multiscale approach on the basis of molecular dynamics and finite element methods could be used to evaluate the effective thermal conductivity of polycrystalline graphene and other 2D structures.

  11. Benchmarking the penetration-resistance efficiency of multilayer graphene sheets due to spacing the graphene layers

    Science.gov (United States)

    Sadeghzadeh, S.

    2016-07-01

    In this paper, the penetration-resistance efficiency of single-layer and multilayer graphene sheets has been investigated by means of the multiscale approach. The employed multiscale approach has been implemented by establishing a direct correlation between the finite element method and the molecular dynamics approach and validated by comparing its results with those of the existing experimental works. Since by using numerous techniques, a new class of graphene sheets can be fabricated in which the graphene layers are spaced farther apart (more than the usual distance between layers), this paper has concentrated on the optimal spacing between graphene layers with the goal of improving the impact properties of graphene sheets as important candidates for novel impact-resistant panels. For this purpose, the relative protection (protection with respect to weight) values of graphene sheets were obtained, and it was observed that the relative protection of a single-layer graphene sheet is about 3.64 times that of a 20-layer graphene sheet. This study also showed that a spaced multilayer graphene sheet, with its inter-layer distance being 20 times the usual spacing between ordinary graphene layers, has an impact resistance which is about 20 % higher than that of an ordinary 20-layer graphene sheet. The findings of this paper can be appropriately used in the design and fabrication of future-generation impact-resistant protective panels.

  12. Anisotropic quantum transport in a network of vertically aligned graphene sheets.

    Science.gov (United States)

    Huang, J; Guo, L-W; Li, Z-L; Chen, L-L; Lin, J-J; Jia, Y-P; Lu, W; Guo, Y; Chen, X-L

    2014-08-27

    Novel anisotropic quantum transport was observed in a network of vertically aligned graphene sheets (VAGSs), which can be regarded as composed of plenty of quasi-parallel, nearly intrinsic, freestanding monolayers of graphene. When a magnetic field was perpendicular to most graphene sheets, magnetoresistance (MR) curves showed a weak localization (WL) effect at low field and a maximum value at a critical field ascribed to diffusive boundary scattering. While the magnetic field was parallel to the graphene sheets, the MR maximum disappeared and exhibited a transition from WL to weak antilocalization (WAL) with increasing temperature and magnetic field. Edges as atomically sharp defects are the main elastic and inelastic intervalley scattering sources, and inelastic scattering is ascribed to electron-electron intervalley scattering in the ballistic regime. This is the first time simultaneously observing WL, WAL and diffusive boundary scattering in such a macroscopic three-dimensional graphene system. These indicate the VAGS network is a robust platform for the study of the intrinsic physical properties of graphene.

  13. Doping monolayer graphene with single atom substitutions

    KAUST Repository

    Wang, Hongtao

    2012-01-11

    Functionalized graphene has been extensively studied with the aim of tailoring properties for gas sensors, superconductors, supercapacitors, nanoelectronics, and spintronics. A bottleneck is the capability to control the carrier type and density by doping. We demonstrate that a two-step process is an efficient way to dope graphene: create vacancies by high-energy atom/ion bombardment and fill these vacancies with desired dopants. Different elements (Pt, Co, and In) have been successfully doped in the single-atom form. The high binding energy of the metal-vacancy complex ensures its stability and is consistent with in situ observation by an aberration-corrected and monochromated transmission electron microscope. © 2011 American Chemical Society.

  14. Photoactive hybrid material based on pyrene functionalized PbS nanocrystals decorating CVD monolayer graphene.

    Science.gov (United States)

    Ingrosso, Chiara; Bianco, Giuseppe V; Corricelli, Michela; Comparelli, Roberto; Altamura, Davide; Agostiano, Angela; Striccoli, Marinella; Losurdo, Maria; Curri, M Lucia; Bruno, Giovanni

    2015-02-25

    A simple and facile solution-based procedure is implemented for decorating a large area, monolayer graphene film, grown by chemical vapor deposition, with size-tunable light absorbing colloidal PbS nanocrystals (NCs). The hybrid is obtained by exposing a large area graphene film to a solution of 1-pyrene butyric acid surface coated PbS NCs, obtained by a capping exchange procedure onto presynthesized organic-capped NCs. The results demonstrate that at the interface, multiple and cooperative π-π stacking interactions promoted by the pyrene ligand coordinating the NC surface lead to a successful anchoring of the nano-objects on the graphene platform which concomitantly preserves its aromatic structure. Interligand interactions provide organization of the nano-objects in highly interconnected nanostructured multilayer coatings, where the NCs retain geometry and composition. The resulting hybrid exhibits a sheet resistance lower than that of bare graphene, which is explained in terms of electronic communication in the hybrid, due to the interconnection of the NC film and to a hole transfer from photoexcited PbS NCs to graphene, channelled at the interface by pyrene. Such a direct electron coupling makes the manufactured hybrid material an interesting component for optoelectronics, sensors and for optical communication and information technology.

  15. Charge Trapping in Monolayer and Multilayer Epitaxial Graphene

    Directory of Open Access Journals (Sweden)

    Chieh-I Liu

    2016-01-01

    Full Text Available We have studied the carrier densities n of multilayer and monolayer epitaxial graphene devices over a wide range of temperatures T. It is found that, in the high temperature regime (typically T ≥ 200 K, ln⁡(n shows a linear dependence of 1/T, showing activated behavior. Such results yield activation energies ΔE for charge trapping in epitaxial graphene ranging from 196 meV to 34 meV. We find that ΔE decreases with increasing mobility. Vacuum annealing experiments suggest that both adsorbates on EG and the SiC/graphene interface play a role in charge trapping in EG devices.

  16. Vibration analysis of defective graphene sheets using nonlocal elasticity theory

    Science.gov (United States)

    Namin, S. F. Asbaghian; Pilafkan, R.

    2017-09-01

    Many papers have studied the free vibration of graphene sheets. However, all this papers assumed their atomic structure free of any defects. Nonetheless, they actually contain some defects including single vacancy, double vacancy and Stone-Wales defects. This paper, therefore, investigates the free vibration of defective graphene sheets, rather than pristine graphene sheets, via nonlocal elasticity theory. Governing equations are derived using nonlocal elasticity and the first-order shear deformation theory (FSDT). The influence of structural defects on the vibration of graphene sheets is considered by applying the mechanical properties of defective graphene sheets. Afterwards, these equations solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in the governing equations of motion by nonlocal parameter. The effects of different defect types are inspected for graphene sheets with clamped or simply-supported boundary conditions on all sides. It is shown that the natural frequencies of graphene sheets decrease by introducing defects to the atomic structure. Furthermore, it is found that the number of missing atoms, shapes and distributions of structural defects play a significant role in the vibrational behavior of graphene. The effect of vacancy defect reconstruction is also discussed in this paper.

  17. Simulation of Au particle interaction on graphene sheets

    Science.gov (United States)

    Mcleod, A.; Vernon, K. C.; Rider, A. E.; Ostrikov, K.

    2013-09-01

    The interaction of Au particles with few layer graphene is of interest for the formation of the next generation of sensing devices 1. In this paper we investigate the coupling of single gold nanoparticles to a graphene sheet, and multiple gold nanoparticles with a graphene sheet using COMSOL Multiphysics. By using these simulations we are able to determine the electric field strength and associated hot-spots for various gold nanoparticle-graphene systems. The Au nanoparticles were modelled as 8 nm diameter spheres on 1.5 nm thick (5 layers) graphene, with properties of graphene obtained from the refractive index data of Weber 2 and the Au refractive index data from Palik 3. The field was incident along the plane of the sheet with polarisation tested for both s and p. The study showed strong localised interaction between the Au and graphene with limited spread; however the double particle case where the graphene sheet separated two Au nanoparticles showed distinct interaction between the particles and graphene. An offset was introduced (up to 4 nm) resulting in much reduced coupling between the opposed particles as the distance apart increased. Findings currently suggest that the graphene layer has limited interaction with incident fields with a single particle present whilst reducing the coupling region to a very fine area when opposing particles are involved. It is hoped that the results of this research will provide insight into graphene-plasmon interactions and spur the development of the next generation of sensing devices.

  18. On the isothermal geometry of corrugated graphene sheets

    OpenAIRE

    Trzesowski, Andrzej

    2013-01-01

    Variational geometries describing corrugated graphene sheets are proposed. The isothermal thermomechanical properties of these sheets are described by a 2-dimensional Weyl space. The equation that couples the Weyl geometry with isothermal distributions of the temperature of graphene sheets, is formulated. This material space is observed in a 3-dimensional orthogonal configurational point space as regular surfaces which are endowed with a thermal state vector field fulfilling the isothermal th...

  19. Transport properties of monolayer and bilayer graphene supported by hexagonal boron nitride

    Science.gov (United States)

    Li, Jing; Zou, Ke; Seiwell, Donald; Zhu, Jun

    2013-03-01

    We present transport studies on hexagonal boron nitride (h-BN) supported monolayer and bilayer graphene. Following the method introduced by Dean et al, we first exfoliate thin sheets of h-BN (15-20 nm) to SiO2/Si substrate then align and transfer exfoliated graphene flakes onto the h-BN sheets. E-beam lithography is used to process the samples into Hall bar devices. We find that current annealing at low temperature can increase the mobility of as-fabricated devices but often introduces large density inhomogeneity at the same time. AFM images of annealed devices reveal the limitations of this technique. In comparison, thermal annealing is much more reliable in improving the sample quality. Bilayer devices annealed in a flow of Ar/H2 at 450C for 5 hours show high mobility of 30,000 cm2/Vs at low temperature. We observe high-quality Shubnikov-de Hass (SdH) oscillations and degeneracy-lifted Landau levels in these samples. We extend existing measurements of the electron and hole effective mass in bilayer graphene to lower carrier density regimes and discuss the implications of the results. Department of Applied Physics, Yale University

  20. Oscillations of spherical fullerenes interacting with graphene sheet

    Science.gov (United States)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad

    2017-01-01

    In the present study, the oscillations of spherical fullerenes in the vicinity of a fully constrained graphene sheet are investigated. Using the continuous approximation and Lennard-Jones potential, the van der Waals (vdW) potential energy and interaction forces are obtained. The equation of motion is derived and directly solved based on the actual force distribution between the fullerene molecules and the graphene sheet. Numerical results are obtained and shown that the oscillation is sensitive to the size of the fullerene as well as the distance between the center of the fullerene and the graphene sheet.

  1. Differential Permeability of Proton Isotopes through Graphene and Graphene Analogue Monolayer.

    Science.gov (United States)

    Zhang, Qiuju; Ju, Minggang; Chen, Liang; Zeng, Xiao Cheng

    2016-09-01

    Two-dimensional (2D) monolayer nanomaterials can be exploited as the thinnest membrane with distinct differential sieving properties for proton isotopes. Motivated from the experimental evidence of differential sieving proton isotopes through graphene and hexagonal boron nitrate (h-BN) monolayer, we compute the kinetic barrier of isotope H(+) and D(+) permeation through model graphene and h-BN fragments at the MP2/6-31++G(d,p) level of theory. On the basis of the ratio of tunneling reaction rate constant, the isotope separation ratio of H(+)/D(+) and H(+)/T(+) is predicted to be ∼12 and 37, respectively. The tunneling reaction rate constant can be estimated from the zero-point-energy computed at the transition state for the proton isotope permeation though the 2D model systems. We show that the presence of Stone-Wales (55-77) defect in the model graphene fragment can significantly lower the proton permeation barrier by 0.55 eV. With the defect, the ratio of tunneling reaction rate constant of H(+)/D(+) is increased to ∼25. In addition to model graphene and h-BN, we have examined proton permeation capability of α-boron monolayer. We compute the tunneling reaction pathway for H(+) through α-boron monolayer using both the climbing nudged elastic band (c-NEB) method and the scanning-path method. Both methods suggest that α-boron monolayer entails a relatively low barrier of ∼0.20 eV for H(+) permeation, much lower than that of the model graphene and h-BN fragments. Our studies provide molecular-level insights into the differential permeation of proton isotopes through 2D materials. The methods can be extended to examine isotope separation capability of other 2D materials as well.

  2. Characterization of Platinum Nanoparticles Deposited on Functionalized Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Yu-Chun Chiang

    2015-09-01

    Full Text Available Due to its special electronic and ballistic transport properties, graphene has attracted much interest from researchers. In this study, platinum (Pt nanoparticles were deposited on oxidized graphene sheets (cG. The graphene sheets were applied to overcome the corrosion problems of carbon black at operating conditions of proton exchange membrane fuel cells. To enhance the interfacial interactions between the graphene sheets and the Pt nanoparticles, the oxygen-containing functional groups were introduced onto the surface of graphene sheets. The results showed the Pt nanoparticles were uniformly dispersed on the surface of graphene sheets with a mean Pt particle size of 2.08 nm. The Pt nanoparticles deposited on graphene sheets exhibited better crystallinity and higher oxygen resistance. The metal Pt was the predominant Pt chemical state on Pt/cG (60.4%. The results from the cyclic voltammetry analysis showed the value of the electrochemical surface area (ECSA was 88 m2/g (Pt/cG, much higher than that of Pt/C (46 m2/g. The long-term test illustrated the degradation in ECSA exhibited the order of Pt/C (33% > Pt/cG (7%. The values of the utilization efficiency were calculated to be 64% for Pt/cG and 32% for Pt/C.

  3. Nonlinear transmission of an intense terahertz field through monolayer graphene

    Directory of Open Access Journals (Sweden)

    H. A. Hafez

    2014-11-01

    Full Text Available We report nonlinear terahertz (THz effects in monolayer graphene, giving rise to transmission enhancement of a single-cycle THz pulse when the incident THz peak electric field is increased. This transmission enhancement is attributed to reduced photoconductivity, due to saturation effects in the field-induced current and increased intraband scattering rates arising from transient heating of electrons. We have developed a tight-binding model of the response using the length gauge interaction Hamiltonian that provides good qualitative agreement. The model fully accounts for the nonlinear response arising from the linear dispersion energy spectrum in graphene. The results reveal a strong dependence of the scattering time on the THz field, which is at the heart of the observed nonlinear response.

  4. Failure processes in embedded monolayer graphene under axial compression.

    Science.gov (United States)

    Androulidakis, Charalampos; Koukaras, Emmanuel N; Frank, Otakar; Tsoukleri, Georgia; Sfyris, Dimitris; Parthenios, John; Pugno, Nicola; Papagelis, Konstantinos; Novoselov, Kostya S; Galiotis, Costas

    2014-06-12

    Exfoliated monolayer graphene flakes were embedded in a polymer matrix and loaded under axial compression. By monitoring the shifts of the 2D Raman phonons of rectangular flakes of various sizes under load, the critical strain to failure was determined. Prior to loading care was taken for the examined area of the flake to be free of residual stresses. The critical strain values for first failure were found to be independent of flake size at a mean value of -0.60% corresponding to a yield stress up to -6 GPa. By combining Euler mechanics with a Winkler approach, we show that unlike buckling in air, the presence of the polymer constraint results in graphene buckling at a fixed value of strain with an estimated wrinkle wavelength of the order of 1-2 nm. These results were compared with DFT computations performed on analogue coronene/PMMA oligomers and a reasonable agreement was obtained.

  5. High quality and large-scale manually operated monolayer graphene pasters

    Science.gov (United States)

    Wei, Yuke; Zhang, Yan; Liu, Zhenghao; Wang, Yue; Ke, Fen; Meng, Jie; Guo, Yanjun; Ma, Ping; Feng, Qingrong; Gan, Zizhao

    2014-07-01

    Graphene is a well-known material with various potential applications. Here we report the manufacture of high-quality and large-scale monolayer graphene pasters via polyvinyl butyral (PVB). These pasters have good self-supporting properties and overcome the drawback of weak mechanical strength of PMMA. Manual manipulations to monolayer graphene become realizable via graphene pasters. Graphene pasters can be quickly diverted onto any substrate with sufficient contact and greatly minimize the challenges in graphene transfer, measurements, and other applications. The improved transfer process via graphene pasters protects the integrity of monolayer graphene and introduces few cracks or tears into graphene. Large-scale monolayer graphene films diverted onto SiO2/Si by using graphene pasters maintain low resistivity and low Dirac point, while also exhibiting a higher magnetoresistance than traditional results. High magnetoresistance up to 600% and signs of saturation at high magnetic fields can be seen. Obvious negative magnetoresistance at low magnetic fields due to weak localization also can be observed. Graphene pasters can be used in many different domains and will promote future studies and applications of graphene.

  6. Anisotropic mechanical properties and Stone-Wales defects in graphene monolayer: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Fan, B.B. [School of Materials Science and Engineering, Zhengzhou University, Henan 450001 (China); Yang, X.B. [Department of Physics, South China University of Technology, Guangzhou 510640 (China); Zhang, R., E-mail: zhangray@zzu.edu.c [School of Materials Science and Engineering, Zhengzhou University, Henan 450001 (China); Zhengzhou Institute of Aeronautical Industry Management, Henan 450046 (China)

    2010-06-14

    We investigate the mechanical properties of graphene monolayer via the density functional theoretical (DFT) method. We find that the strain energies are anisotropic for the graphene under large strain. We attribute the anisotropic feature to the anisotropic sp{sup 2} hybridization in the hexagonal lattice. We further identify that the formation energies of Stone-Wales (SW) defects in the graphene monolayer are determined by the defect concentration and also the direction of applied tensile strain, correlating with the anisotropic feature.

  7. Q-factors of CVD monolayer graphene and graphite inductors

    Science.gov (United States)

    Wang, Zidong; Zhang, Qingping; Peng, Pei; Tian, Zhongzheng; Ren, Liming; Zhang, Xing; Huang, Ru; Wen, Jincai; Fu, Yunyi

    2017-08-01

    A carbon-based inductor may serve as an important passive component in a carbon-based radio-frequency (RF) integrated circuit (IC). In this work, chemical vapor deposition (CVD) synthesized monolayer graphene and graphite inductors are fabricated and their Q-factors are investigated. We find that the large series resistance of signal path (including coil resistance and contact resistance) in monolayer graphene inductors causes negative Q-factors at the whole frequency range in measurement. Comparatively, some of the graphite inductors have all of their Q-factors above zero, due to their small signal path resistance. We also note that some other graphite inductors have negative Q-factor values at low frequency regions, but positive Q-factor values at high frequency regions. With an equivalent circuit model, we confirm that the negative Q-factors of some graphite inductors at low frequency regions are related to their relatively large contact resistances, and we are able to eliminate these negative Q-factors by improving the graphite-metal contact. Furthermore, the peak Q-factor (Q p) can be enhanced by lowering down the resistance of graphite coil. For an optimized 3/4-turn graphite inductor, the measured maximum Q-factor (Q m) can reach 2.36 and the peak Q-factor is theoretically predicted by the equivalent circuit to be as high as 6.46 at a high resonant frequency, which is beyond the testing frequency range. This research indicates that CVD synthesized graphite thin film is more suitable than graphene for fabricating inductors in carbon-based RF IC in the future.

  8. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching

    Science.gov (United States)

    Wang, Guole; Wu, Shuang; Zhang, Tingting; Chen, Peng; Lu, Xiaobo; Wang, Shuopei; Wang, Duoming; Watanabe, Kenji; Taniguchi, Takashi; Shi, Dongxia; Yang, Rong; Zhang, Guangyu

    2016-08-01

    Graphene nanostructures are potential building blocks for nanoelectronic and spintronic devices. However, the production of monolayer graphene nanostructures with well-defined zigzag edges remains a challenge. In this paper, we report the patterning of monolayer graphene nanostructures with zigzag edges on hexagonal boron nitride (h-BN) substrates by an anisotropic etching technique. We found that hydrogen plasma etching of monolayer graphene on h-BN is highly anisotropic due to the inert and ultra-flat nature of the h-BN surface, resulting in zigzag edge formation. The as-fabricated zigzag-edged monolayer graphene nanoribbons (Z-GNRs) with widths below 30 nm show high carrier mobility and width-dependent energy gaps at liquid helium temperature. These high quality Z-GNRs are thus ideal structures for exploring their valleytronic or spintronic properties.

  9. A simple method to tune graphene growth between monolayer and bilayer

    Directory of Open Access Journals (Sweden)

    Xiaozhi Xu

    2016-02-01

    Full Text Available Selective growth of either monolayer or bilayer graphene is of great importance. We developed a method to readily tune large area graphene growth from complete monolayer to complete bilayer. In an ambient pressure chemical vapor deposition process, we used the sample temperature at which to start the H2 flow as the control parameter and realized the change from monolayer to bilayer growth of graphene on Cu foil. When the H2 starting temperature was above 700°C, continuous monolayer graphene films were obtained. When the H2 starting temperature was below 350°C, continuous bilayer films were obtained. Detailed characterization of the samples treated under various conditions revealed that heating without the H2 flow caused Cu oxidation. The more the Cu substrate oxidized, the less graphene bilayer could form.

  10. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guole; Wu, Shuang; Zhang, Tingting; Chen, Peng; Lu, Xiaobo; Wang, Shuopei; Wang, Duoming; Shi, Dongxia; Yang, Rong, E-mail: ryang@iphy.ac.cn, E-mail: gyzhang@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zhang, Guangyu, E-mail: ryang@iphy.ac.cn, E-mail: gyzhang@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China); Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190 (China)

    2016-08-01

    Graphene nanostructures are potential building blocks for nanoelectronic and spintronic devices. However, the production of monolayer graphene nanostructures with well-defined zigzag edges remains a challenge. In this paper, we report the patterning of monolayer graphene nanostructures with zigzag edges on hexagonal boron nitride (h-BN) substrates by an anisotropic etching technique. We found that hydrogen plasma etching of monolayer graphene on h-BN is highly anisotropic due to the inert and ultra-flat nature of the h-BN surface, resulting in zigzag edge formation. The as-fabricated zigzag-edged monolayer graphene nanoribbons (Z-GNRs) with widths below 30 nm show high carrier mobility and width-dependent energy gaps at liquid helium temperature. These high quality Z-GNRs are thus ideal structures for exploring their valleytronic or spintronic properties.

  11. Effect of Intrinsic Ripples on Elasticity of the Graphene Monolayer.

    Science.gov (United States)

    Lee, Seungjun

    2015-12-01

    The effect of intrinsic ripples on the mechanical response of the graphene monolayer is investigated under uniaxial loading using molecular dynamics (MD) simulations with a focus on nonlinear behavior at a small strain. The calculated stress-strain response shows a nonlinear relation through the entire range without constant slopes as a result of the competition between ripple softening and bond stretching hardening. For a small strain, entropic contribution is dominant due to intrinsic ripples, leading to elasticity softening. As the ripples flatten at increasing strain, the energetic term due to C-C bonds stretching competes with the entropic contribution, followed by energetic dominant deformation. Elasticity softening is enhanced at increased temperature as the ripple amplitude increases. The study shows that the intrinsic ripple of graphene affects elasticity. This result suggests that a change of ripple amplitudes due to various environmental conditions such as temperature, and substrate interactions can lead to a change of the mechanical properties of graphene. The understanding of the rippling effect on the mechanical behavior of 2D materials is useful for strain-based ripple manipulation for their engineering applications.

  12. Uniform Decoration of Reduced Graphene Oxide Sheets with Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Huanping Yang

    2012-01-01

    Full Text Available A simple method employing ionic liquid functionalization is developed to achieve the uniform decoration of reduced graphene oxide sheets with gold nanoparticles. The synthesis of ionic liquid modified graphene oxide is accomplished by covalently binding 1-(3-Aminopropyl imidazole with GO sheets. The formation mechanism of Au nanoparticles on RGO sheets is proposed to load AuCl4- onto the surface of GO sheets through anion exchange; then reduce AuCl4- to Au NPs and at the same time reduce GO sheets to RGO sheets via a one-step process. The presence of Au NPs is well identified by SEM, TEM, and XPS. As a concept, the RGO-supported Au NPs is applied to surface-enhanced Raman spectroscopy.

  13. Large-area, high-quality monolayer graphene from polystyrene at atmospheric pressure

    Science.gov (United States)

    Xu, Junqi; Fu, Can; Sun, Haibin; Meng, Lanxiang; Xia, Yanjie; Zhang, Chongwu; Yi, Xiaolei; Yang, Wenchao; Guo, Pengfei; Wang, Chunlei; Liu, Jiangfeng

    2017-04-01

    Graphene films have been attracting great interest owing to their unique physical properties. In this paper, we develop an efficient method to prepare large-area monolayer graphene (97.5% coverage) by atmospheric pressure chemical vapor deposition on Cu foils using polystyrene in a short time (3 min). Raman spectroscopy, transmission electron microscopy and scanning electron microscopy are employed to confirm the thickness and uniformity of the graphene films. Graphene films on glass substrates show high optical transmittance and electrical conductivity. Magnetic transport studies demonstrate that the as-grown monolayer graphene exhibits a high carrier mobility of 3395 cm2 V‑1 s‑1 at 25 K. On the basis of the analysis, it is concluded that our method is a simple, safe and versatile approach for the synthesis of monolayer graphene.

  14. Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yonghao; Chadha, Arvinder; Zhao, Deyin; Shuai, Yichen; Menon, Laxmy; Yang, Hongjun; Zhou, Weidong, E-mail: wzhou@uta.edu [Nanophotonics Lab, Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States); Piper, Jessica R.; Fan, Shanhui [Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Jia, Yichen; Xia, Fengnian [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520 (United States); Ma, Zhenqiang [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-11-03

    We demonstrate experimentally close to total absorption in monolayer graphene based on critical coupling with guided resonances in transfer printed photonic crystal Fano resonance filters at near infrared. Measured peak absorptions of 35% and 85% were obtained from cavity coupled monolayer graphene for the structures without and with back reflectors, respectively. These measured values agree very well with the theoretical values predicted with the coupled mode theory based critical coupling design. Such strong light-matter interactions can lead to extremely compact and high performance photonic devices based on large area monolayer graphene and other two–dimensional materials.

  15. Hexagonal-shaped monolayer-bilayer quantum disks in graphene: A tight-binding approach

    Science.gov (United States)

    da Costa, D. R.; Zarenia, M.; Chaves, Andrey; Pereira, J. M.; Farias, G. A.; Peeters, F. M.

    2016-07-01

    Using the tight-binding approach, we investigate confined states in two different hybrid monolayer-bilayer systems: (i) a hexagonal monolayer area surrounded by bilayer graphene in the presence of a perpendicularly applied electric field and (ii) a hexagonal bilayer graphene dot surrounded by monolayer graphene. The dependence of the energy levels on dot size and external magnetic field is calculated. We find that the energy spectrum for quantum dots with zigzag edges consists of states inside the gap which range from dot-localized states, edge states, to mixed states coexisting together, whereas for dots with armchair edges, only dot-localized states are observed.

  16. Observation of multilayer graphene sheets using terahertz phase contrast microscopy

    Indian Academy of Sciences (India)

    ZHIKUN LIU; YANAN XIE; LI GENG; DENGKE PAN; PAN SONG

    2017-01-01

    Although it is important for the study of graphene, identifying and characterizing the number of graphene layers is challenging. In this paper, we calculate graphene’s transmission.The result shows that the phase change is more sensitive than the intensity change when light passes through graphene in some THz frequencies. Based on this fact, a simple route is presented for identifying the single or few layers of graphene sheets by using terahertz phase contrast microscopy (TPCM). The route is fast, and easy to be carried out.

  17. Electronic Structure of Single-Crystal Monolayer Graphene on Hydrogen-Terminated Germanium Surface

    Science.gov (United States)

    Ahn, Sung Joon; Lee, Jae-Hyun; Ahn, Joung Real; Whang, Dongmok

    2015-03-01

    Graphene, atomically flat 2-Dimensional layered nano material, has a lot of interesting characteristics from its unusual electronic structure. Almost properties of graphene are influenced by its crystallinity, therefore the uniform growth of single crystal graphene and layer control over the wafer scale areas remains a challenge in the fields of electronic, photonic and other devices based on graphene. Here, we report the method to make wafer scale single crystal monolayer graphene on hydrogen terminated germanium(110) surface and properties and electronic band structure of the graphene by using the tool of scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, electron transport measurement, electron diffraction and angle-resolved photoemission spectroscopy.

  18. Monolayer Graphene Bolometer as a Sensitive Far-IR Detector

    Science.gov (United States)

    Karasik, Boris S.; McKitterick, Christopher B.; Prober, Daniel E.

    2014-01-01

    In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few micro m(sup 2) of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature approx. 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity.

  19. Graphene-like monolayer low-buckled honeycomb germanium film

    Science.gov (United States)

    He, Yezeng; Luo, Haibo; Li, Hui; Sui, Yanwei; Wei, Fuxiang; Meng, Qingkun; Yang, Weiming; Qi, Jiqiu

    2017-04-01

    Molecular dynamics simulations have been performed to study the cooling process of two-dimensional liquid germanium under nanoslit confinement. The results clearly indicates that the liquid germanium undergoes an obvious liquid-solid phase transition to a monolayer honeycomb film with the decrease of temperature, accompanying the rapid change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the solidification process, some hexagonal atomic islands first randomly emerge in the disordered liquid film and then grow up to stable crystal grains which keep growing and finally connect together to form a honeycomb polycrystalline film. It is worth noting that the honeycomb germanium film is low-buckled, quite different from the planar graphene.

  20. Intrinsic magnetism of monolayer graphene oxide quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuanyuan [Nanjing National Laboratory of Microstructures & Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Institute of Condensed Matter Physics, School of Science, Linyi University, Linyi 276000 (China); Zheng, Yongping; Chen, Jie; Zhang, Weili; Tang, Nujiang, E-mail: tangnujiang@nju.edu.cn; Du, Youwei [Nanjing National Laboratory of Microstructures & Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-01-18

    Monolayer graphene oxide quantum dots (GOQDs) were obtained by oxidative cutting. The magnetic properties of GOQDs were studied. The results show that most of GOQDs are nonmagnetic, and only few of GOQDs are weakly paramagnetic. The ratio of magnetic GOQDs with the average diameter of 4.13, 3.3, and 1.67 nm is 1/14, 1/15, and 1/70, respectively. It is proposed that the edge states magnetism is suppressed by the edge defects and/or the magnetic correlation induced spins cancellation between magnetic fragments of the boundary, and hydroxyl groups on the basal plane are the major magnetic source of magnetic GOQDs.

  1. Towards intrinsic magnetism of graphene sheets with irregular zigzag edges.

    Science.gov (United States)

    Chen, Lianlian; Guo, Liwei; Li, Zhilin; Zhang, Han; Lin, Jingjing; Huang, Jiao; Jin, Shifeng; Chen, Xiaolong

    2013-01-01

    The magnetism of graphene has remained divergent and controversial due to absence of reliable experimental results. Here we show the intrinsic magnetism of graphene edge states revealed based on unidirectional aligned graphene sheets derived from completely carbonized SiC crystals. It is found that ferromagnetism, antiferromagnetism and diamagnetism along with a probable superconductivity exist in the graphene with irregular zigzag edges. A phase diagram is constructed to show the evolution of the magnetism. The ferromagnetic ordering curie-temperature of the fundamental magnetic order unit (FMOU) is 820 ± 80 K. The antiferromagnetic ordering Neel temperature of the FMOUs belonging to different sublattices is about 54 ± 2 K. The diamagnetism is similar to that of graphite and can be well described by the Kotosonov's equation. Our experimental results provide new evidences to clarify the controversial experimental phenomena observed in graphene and contribute to a deeper insight into the nature of magnetism in graphene based system.

  2. Elastic Buckling Behaviour of General Multi-Layered Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Rong Ming Lin

    2015-04-01

    Full Text Available Elastic buckling behaviour of multi-layered graphene sheets is rigorously investigated. Van der Waals forces are modelled, to a first order approximation, as linear physical springs which connect the nodes between the layers. Critical buckling loads and their associated modes are established and analyzed under different boundary conditions, aspect ratios and compressive loading ratios in the case of graphene sheets compressed in two perpendicular directions. Various practically possible loading configurations are examined and their effect on buckling characteristics is assessed. To model more accurately the buckling behaviour of multi-layered graphene sheets, a physically more representative and realistic mixed boundary support concept is proposed and applied. For the fundamental buckling mode under mixed boundary support, the layers with different boundary supports deform similarly but non-identically, leading to resultant van der Waals bonding forces between the layers which in turn affect critical buckling load. Results are compared with existing known solutions to illustrate the excellent numerical accuracy of the proposed modelling approach. The buckling characteristics of graphene sheets presented in this paper form a comprehensive and wholesome study which can be used as potential structural design guideline when graphene sheets are employed for nano-scale sensing and actuation applications such as nano-electro-mechanical systems.

  3. Passivation of CdSe Quantum Dots by Graphene and MoS2 Monolayer Encapsulation

    Science.gov (United States)

    Zhang, Datong; Wang, Dennis Zi-Ren; Creswell, Richard C.; Lu, Chenguang; Herman, Irving P.

    The encapsulation of a monolayer of CdSe quantum dots (QDs) by one-to-three layer graphene and MoS2 sheets protects the QDs from oxidation. Photoluminescence (PL) from the QD cores shows a much slower decrease in core diameter over time due to slower oxidation in regions where the QDs are covered by van der Waals (vdW) layers than in those where they are not, for chips stored both in the dark and in the presence of light. PL mapping shows that the CdSe QDs under the central part of the vdW sheet age slower than those near its edges, because oxidation of the covered QDs is limited by transport of oxygen from the edges of the vdW sheets and not transport across the vdW layers. This encapsulation effect is also tested with other environments. Preliminary results show that vdW materials could be promising candidates for nano-coating materials for devices operating in extreme environments.

  4. Easy synthesis of graphene sheets from alfalfa plants by treatment of nitric acid

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jiao, E-mail: qujiao@bhu.edu.cn [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013 (China); School of Urban and Environmental Sciences, Northeast Normal University, Changchun 130024 (China); Luo, Chunqiu, E-mail: fplj_lcq@163.com [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013 (China); Zhang, Qian; Cong, Qiao [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013 (China); Yuan, Xing [School of Urban and Environmental Sciences, Northeast Normal University, Changchun 130024 (China)

    2013-04-01

    Highlights: ► An easy method for synthesis of graphene sheets using alfalfa plants was introduced. ► An novelty formation mechanism of graphene sheets using alfalfa plants was proposed. ► This method exploits a new carbon source and provides a novel idea to synthesize graphene sheets. -- Abstract: This letter focuses on synthesis of graphene sheets from alfalfa plants by treatment of nitric acid. The transmission electron microscopy image (TEM) demonstrates that the graphene sheets are agglomerated and overlapped, the energy dispersive spectrum (EDS) indicates that the products are pure, and the Raman spectrum shows the graphene sheets are well graphitized. In addition, the formation mechanism of the graphene sheets from alfalfa plants by treatment nitric acid is discussed. These findings inspire the search for a new strategy for synthesis of graphene sheets from renewable natural products, and the lower cost of this new process and carbon source may facilitate industrial production.

  5. Nonlocal thermal transport across embedded few-layer graphene sheets.

    Science.gov (United States)

    Liu, Ying; Huxtable, Scott T; Yang, Bao; Sumpter, Bobby G; Qiao, Rui

    2014-12-17

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g. the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. The nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transport involving few-layer graphene sheets or other ultra-thin layered materials.

  6. Electrochemical fabrication and amperometric sensor application of graphene sheets

    Science.gov (United States)

    Öztürk, Ayşe; Alanyalıoğlu, Murat

    2016-07-01

    Graphene sheets have been fabricated by applying two-step electrochemical processes in two-electrode cell system containing 0.1 M sodium dodecyl sulfate (SDS). First step is intercalation of SDS into graphite anode electrode and this process has been applied at different intercalation potential values of 1, 3, 5, and 7 V. Second step includes exfoliation of SDS-intercalated graphite electrode in the same medium by acting as cathode. Stable graphene dispersions are obtained after these two electrochemical steps. Characterization of graphene sheets have been carried out using scanning electron microscopy, electron dispersive spectroscopy, fourier transform infrared spectroscopy, UV-Vis. absorption spectroscopy, X-ray diffraction, and cyclic voltammetry techniques. Graphene sheets have been modified onto glassy carbon electrode (GCE) by drop-casting of graphene dispersion. Graphene/GCE having a good electrocatalytic activity has been used for amperometric determination of nitrite in both standard laboratory and real samples. The oxidation current density was linearly proportional to the nitrite concentration in a range between 1 and 250 μM. The sensitivity of the sensor was calculated as 0.843 μAμM-1 cm-2 with a detection limit of 0.24 μM at a signal-to-noise ratio of 3.0.

  7. Electron transport nonlocality in monolayer graphene modified with hydrogen silsesquioxane polymerization

    NARCIS (Netherlands)

    Kaverzin, A. A.; van Wees, B. J.

    2015-01-01

    A number of practical and fundamental applications of graphene requires modification of some of its properties. In this paper we study the effect of polymerization of a hydrogen silsesquioxane film on top of monolayer graphene with the intent to increase the strength of the spin-orbit interaction. T

  8. Observing Altshuler--Aronov--Spivak Oscillation in a Hexagonal Antidot Array of Monolayer Graphene

    Science.gov (United States)

    Yagi, Ryuta; Shimomura, Midori; Tahara, Fumiya; Kobara, Hiroaki; Fukada, Seiya

    2012-06-01

    We show that hexagonal antidot lattices of monolayer graphene exhibited the Altshuler--Aronov--Spivak (AAS) effect in low field magnetoresistance. In higher magnetic fields, Aharonov--Bohm-type oscillations were visible. The phase of AAS oscillation indicated that the chirality effect of graphene is suppressed because of inter-valley scattering due to boundary scatterings.

  9. Controllable Growth of the Graphene from Millimeter-Sized Monolayer to Multilayer on Cu by Chemical Vapor Deposition

    Science.gov (United States)

    Liu, Jinyang; Huang, Zhigao; Lai, Fachun; Lin, Limei; Xu, Yangyang; Zuo, Chuandong; Zheng, Weifeng; Qu, Yan

    2015-11-01

    As is well established, mastery to precise control of the layer number, stacking order of graphene, and the size of single-crystal monolayer graphene is very important for both fundamental interest and practical applications. In this report, millimeter-sized single-crystal monolayer graphene has been synthesized to multilayer graphene on Cu by chemical vapor deposition. The relationship of the growth process between monolayer graphene and multilayer graphene is investigated carefully. Besides the general multilayer graphene with Bernal stacking order, parts of multilayer graphene with non-Bernal stacking order were modulated under optimized growth conditions. The oxide nanoparticle on the Cu surface derived from annealing has been found to play the key role in nucleation. In addition, the hydrogen concentration impacts significantly on the layer number and shape of the graphene. Moreover, a possible mechanism was proposed to understand the growth process discussed above, which may provide an instruction to graphene growth on Cu by chemical vapor deposition.

  10. Pseudomagnetic fields and ballistic transport in a suspended graphene sheet.

    Science.gov (United States)

    Fogler, M M; Guinea, F; Katsnelson, M I

    2008-11-28

    We study a suspended graphene sheet subject to the electric field of a gate underneath. We compute the elastic deformation of the sheet and the corresponding effective gauge field, which modifies the electronic transport. In a clean system the two-terminal conductance of the sample is reduced below the ballistic limit and is almost totally suppressed at low carrier concentrations in samples under tension. Residual disorder restores a small finite conductivity.

  11. Preparation of nanoporous graphene sheets via free radical oxidation of graphene oxide and their application in lithium ion battery

    Science.gov (United States)

    Zhou, Xuejiao; Xu, Liangyou; Ma, Xiaohua

    2017-07-01

    Graphene is an attractive candidate for use as an electrode material in electrochemical energy storage due to its unique structure and excellent properties. Compared with graphene, nanoporous graphene is a superior electrode material, owing to the porous structure of its graphene sheets, which facilitates cross-plane lithium ion transportation and provides more binding sites for the lithium ions during the lithiation/delithiation process. In this work, we demonstrate a simple and efficient strategy for obtaining nanoporous graphene on a large scale. Nanoporous graphene can be generated through the oxidation of graphene oxide by H2O2 under high-power UV irradiation with a subsequent reduction process. The morphology, chemical composition and defects of the as-generated nanoporous graphene were studied. The electrochemical evaluation of the nanoporous graphene sheets showed that it delivered higher specific capacity and better charge/discharge rate capability compared with chemically reduced graphene sheets for use as an anode material in lithium ion batteries.

  12. Ultraclean suspended monolayer graphene achieved by in situ current annealing

    Science.gov (United States)

    Wang, Haidong; Zhang, Xing; Takamatsu, Hiroshi

    2017-01-01

    Ultraclean graphene is essential for studying its intrinsic transport properties or fabricating high-performance electronic devices. Unfortunately, the contamination on graphene is unavoidable after microelectromechanical system processing. Here, we report an in situ current-annealing method for achieving ultraclean suspended monolayer graphene. The charge mobility of cleaned graphene reached a surprising 3.8 × 105 cm2 V‑1 s‑1, one of the highest values ever reported. For the first time, the process of current annealing was recorded under a high-resolution electron scanning microscope. It was demonstrated that temperature was the only dominant factor of the current-annealing process. Meanwhile, the mobility of suspended graphene was found to be highly sensitive to structural defects. The mobility decreased by a factor of over 100 after ion irradiation on graphene. The results revealed the underlying mechanism of current annealing on graphene and provided an effective means of preparing ultraclean graphene membranes.

  13. Graphene oxides dispersing and hosting graphene sheets for unique nanocomposite materials.

    Science.gov (United States)

    Tian, Leilei; Anilkumar, Parambath; Cao, Li; Kong, Chang Yi; Meziani, Mohammed J; Qian, Haijun; Veca, L Monica; Thorne, Tim J; Tackett, Kenneth N; Edwards, Travis; Sun, Ya-Ping

    2011-04-26

    Graphene oxides (GOs), beyond their widely reported use as precursors for single-layer graphene sheets, are in fact excellent materials themselves (polymers in two-dimension, polyelectrolyte-like, aqueous solubility and biocompatibility, etc.). In this reported work we used aqueous GOs to effectively disperse few-layer graphene sheets (GNs) in suspension for facile wet-processing into nanocomposites of GNs embedded in GOs (as the polymeric matrix). The resulting lightweight and plastic-like nanocomposite materials remained mechanically flexible even at high loadings of GNs, and they were found to be highly efficient in thermal transport, with the experimentally determined thermal diffusivity competitive to those typically observed only in well-known thermally conductive metals such as aluminum and copper. As demonstrated, GOs apparently represent a unique class of two-dimensional polymeric materials for potentially "all-carbon" nanocomposites, among others, which may find technological applications independent of those widely proclaimed for graphene sheets.

  14. Electronic and vibrational properties of graphene monolayers with iron adatoms: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, Nicholas, E-mail: dimakis@utpa.edu [Department of Physics and Geology, University of Texas-Pan American, Edinburg, TX (United States); Navarro, Nestor E. [Department of Chemistry, University of Texas-Pan American, Edinburg, TX (United States); Velazquez, Julian; Salgado, Andres [Department of Physics and Geology, University of Texas-Pan American, Edinburg, TX (United States)

    2015-04-15

    Highlights: • Periodic density functional calculations were performed on graphene monolayers with and without an iron adatom. • Densities of states, charge transfers, and overlap populations were used to elucidate the effects of weak iron adsorption on graphene compared to CO adsorption on Pt. • Infrared intensities and normal mode analysis verify weak iron adsorption on graphene by studying the shift in prominent vibrational modes and changes in lattice dynamics. - Abstract: Periodic density functional calculations on graphene monolayers with and without an iron adatom have been used to elucidate iron-graphene adsorption and its effects on graphene electronic and vibrational properties. Density-of-states calculations and charge density contour plots reveal charge transfer from the iron s orbitals to the d orbitals, in agreement with past reports. Adsorbed iron atoms covalently bind to the graphene substrate, verified by the strong hybridization of iron d-states with the graphene bands in the energy region just below the Fermi level. This adsorption is weak and compared to the well-analyzed CO adsorption on Pt: It is indicated by its small adsorption energy and the minimal change of the substrate geometry due to the presence of the iron adatoms. Graphene vibrational spectra are analyzed though a systematic variation of the graphene supercell size. The shifts of graphene most prominent infrared active vibrational modes due to iron adsorption are explored using normal mode eigenvectors.

  15. Monolayer graphene bolometer as a sensitive far-IR detector

    Science.gov (United States)

    Karasik, Boris S.; McKitterick, Christopher B.; Prober, Daniel E.

    2014-07-01

    In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few μm2 of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature ~ 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity. The analysis shows that the readout contribution can be reduced to that of the bolometer phonon noise if the detector device is operated at 0.05 K and the JNT signal is read at about 10 GHz where the Johnson noise emitted in equilibrium is substantially reduced. Beside the high sensitivity (NEP saturation limit and thus can be used for far-IR sky imaging with arbitrary contrast. By changing the operating temperature of the bolometer the sensitivity can be fine tuned to accommodate the background photon flux in a particular application. By using a broadband low-noise kinetic inductance parametric amplifier, ~100s of graphene HEBs can be read simultaneously without saturation of the system output.

  16. Stability of two-dimensional PN monolayer sheets and their electronic properties.

    Science.gov (United States)

    Ma, ShuangYing; He, Chaoyu; Sun, L Z; Lin, Haiping; Li, Youyong; Zhang, K W

    2015-12-21

    Three two-dimensional phosphorus nitride (PN) monolayer sheets (named as α-, β-, and γ-PN, respectively) with fantastic structures and properties are predicted based on first-principles calculations. The α-PN and γ-PN have a buckled structure, whereas β-PN shows puckered characteristics. Their unique structures endow these atomic PN sheets with high dynamic stabilities and anisotropic mechanical properties. They are all indirect semiconductors and their band gap sensitively depends on the in-plane strain. Moreover, the nanoribbons patterned from these three PN monolayers demonstrate a remarkable quantum size effect. In particular, the zigzag α-PN nanoribbon shows size-dependent ferromagnetism. Their significant properties show potential in nano-electronics. The synthesis of the three phases of the PN monolayer sheet is proposed theoretically, which is deserving of further study in experiments.

  17. Fabricating Large-Area Sheets of Single-Layer Graphene by CVD

    Science.gov (United States)

    Bronikowski, Michael; Manohara, Harish

    2008-01-01

    This innovation consists of a set of methodologies for preparing large area (greater than 1 cm(exp 2)) domains of single-atomic-layer graphite, also called graphene, in single (two-dimensional) crystal form. To fabricate a single graphene layer using chemical vapor deposition (CVD), the process begins with an atomically flat surface of an appropriate substrate and an appropriate precursor molecule containing carbon atoms attached to substituent atoms or groups. These molecules will be brought into contact with the substrate surface by being flowed over, or sprayed onto, the substrate, under CVD conditions of low pressure and elevated temperature. Upon contact with the surface, the precursor molecules will decompose. The substituent groups detach from the carbon atoms and form gas-phase species, leaving the unfunctionalized carbon atoms attached to the substrate surface. These carbon atoms will diffuse upon this surface and encounter and bond to other carbon atoms. If conditions are chosen carefully, the surface carbon atoms will arrange to form the lowest energy single-layer structure available, which is the graphene lattice that is sought. Another method for creating the graphene lattice includes metal-catalyzed CVD, in which the decomposition of the precursor molecules is initiated by the catalytic action of a catalytic metal upon the substrate surface. Another type of metal-catalyzed CVD has the entire substrate composed of catalytic metal, or other material, either as a bulk crystal or as a think layer of catalyst deposited upon another surface. In this case, the precursor molecules decompose directly upon contact with the substrate, releasing their atoms and forming the graphene sheet. Atomic layer deposition (ALD) can also be used. In this method, a substrate surface at low temperature is covered with exactly one monolayer of precursor molecules (which may be of more than one type). This is heated up so that the precursor molecules decompose and form one

  18. Sucrose Treated Carbon Nanotube and Graphene Yarns and Sheets

    Science.gov (United States)

    Sauti, Godfrey (Inventor); Kim, Jae-Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor)

    2017-01-01

    Consolidated carbon nanotube or graphene yarns and woven sheets are consolidated through the formation of a carbon binder formed from the dehydration of sucrose. The resulting materials, on a macro-scale are lightweight and of a high specific modulus and/or strength. Sucrose is relatively inexpensive and readily available, and the process is therefore cost-effective.

  19. Spontaneous Symmetry Breaking in Metal Adsorbed Graphene Sheets

    CERN Document Server

    Jalbout, A F

    2012-01-01

    Graphene has received a great deal of attention and this has more recently extended to boron nitride sheets (BNS) with a similar structure. Both have hexagonal lattices and it is only the alternation of atoms in boron nitride, which changes the symmetry structure. This difference can for example be seen in the mean field equations, which for the corners of the Brillouin Zone are Dirac equations. For the case of graphene (equal atoms) we have the equation for massless particles, while for Boron Nitride has a finite gap and is more near a Dirac equation with mass near this gap.. Carbon structures in general and in particular also graphene can adsorb electron donors, such as alkaline atoms or molecules with a dipole moment. Typically these atoms and the dipoles can only attach in the sense to donate electron density. Some results for small sheet like structures are available.

  20. Monolayer graphene bolometer as a sensitive far-IR detector

    CERN Document Server

    Karasik, Boris S; Prober, Daniel E

    2014-01-01

    In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few {\\mu}m$^2$ of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature ~ 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity. The analysis shows that the readout contribution can be reduced to that of the bolometer phonon noise if the detector device is operated at 0.05 K and the JNT signal is read at abo...

  1. Recent progresses in application of functionalized graphene sheets

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Graphene,a rapidly rising star on the horizon of material science,has a unique two-dimensional nanostructure as well as exceptional mechanical and electronic properties.Despite its short history,graphene has exhibited great potential in various applications.In order to implement the potential applications,functionalization of graphene is necessary to obtain uniform dispersions for good processability.Two kinds are dominant for functionalization such as covalent and non-covalent methods.The former is based on the formation of covalent bonds,and the latter the interaction among molecules.In this review,we summarized briefly the recent progress of functionalized graphene sheets (FGs) in different fields,such as optoelectronic materials,sensors,energy storage materials,catalytic,reinforcing components and so on,and also prospected the development trend of FGs in the future.

  2. Free electromagnetic radiation from the graphene monolayer with spatially modulated conductivity in THz range

    Science.gov (United States)

    Gerasik, Vladimir; Wartak, Marek S.; Zhukov, Alexander V.; Belonenko, Mikhail B.

    2016-03-01

    An infinite graphene layer is known to support graphene surface plasmon polariton (GSP) confined at the interface between the two dielectric half-spaces. In the case of finite width graphene stripe, the termination of the graphene layer acts both as a scattering source and as a “mirror”, thus producing Fabry-Perot (FP)-type resonance. These resonant wavelengths in the presence of free-standing graphene stripe are investigated using the homogeneous convolution-type integral equation approach. The capabilities of the suggested numerical method are illustrated with the results for the transmission spectrum of TM electromagnetic waves travelling in the direction perpendicular to the graphene stripe. Special attention is paid to the case of spatially modulated conductivity of the graphene monolayer, and thus the feasibility of controlling the GSP response.

  3. Facile fabrication of properties-controllable graphene sheet

    Science.gov (United States)

    Choi, Jin Sik; Choi, Hongkyw; Kim, Ki-Chul; Jeong, Hu Young; Yu, Young-Jun; Kim, Jin Tae; Kim, Jin-Soo; Shin, Jin-Wook; Cho, Hyunsu; Choi, Choon-Gi

    2016-04-01

    Graphene has been received a considerable amount of attention as a transparent conducting electrode (TCE) which may be able to replace indium tin oxide (ITO) to overcome the significant weakness of the poor flexibility of ITO. Given that graphene is the thinnest 2-dimensional (2D) material known, it shows extremely high flexibility, and its lateral periodic honeycomb structure of sp2-bonded carbon atoms enables ~2.3% of incident light absorption per layer. However, there is a trade-off between the electrical resistance and the optical transmittance, and the fixed absorption rate in graphene limits is use when fabricating devices. Therefore, a more efficient method which continuously controls the optical and electrical properties of graphene is needed. Here, we introduce a method which controls the optical transmittance and the electrical resistance of graphene through various thicknesses of the top Cu layers with a Cu/Ni metal catalyst structure used to fabricate a planar mesh pattern of single and multi-layer graphene. We exhibit a continuous transmittance change from 85% (MLG) to 97.6% (SLG) at an incident light wavelength of 550 nm on graphene samples simultaneously grown in a CVD quartz tube. We also investigate the relationships between the sheet resistances.

  4. Effect of Fe, Co, Si and Ge impurities on optical properties of graphene sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kheyri, A. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Nourbakhsh, Z., E-mail: z.nourbakhsh@sci.ui.ac.ir [Physics Department, Faculty of Science, University of Isfahan, Isfahan (Iran, Islamic Republic of); Darabi, E. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-08-01

    The electronic and linear optical properties of pure graphene and impurity-graphene (with Fe, Co, Si and Ge impurities) sheets are investigated by using the full potential linear augmented plane wave plus local orbital (FPLAPW + lo) in the framework of the density functional theory (DFT). The calculated results are obtained within the generalized gradient approximation using the Perdew–Burke–Ernzerhof scheme in the presence of spin-orbit interaction. The band structure, partial electron density of states, dielectric function, absorption coefficient, optical conductivity, extinction index, energy loss function, reflectivity and the refraction index of these sheets for parallel and perpendicular electromagnetic wave polarization to sheet are investigated. The optical conductivity of Si-graphene and Ge-graphene sheets for the parallel electromagnetic wave polarization to the sheet starts with a gap about 0.4 eV confirms that these sheets have semiconductor behavior. Also the optical spectra of these sheets are anisotropic along these two wave polarizations. The dielectric function in the static limit of pure graphene sheet for perpendicular electromagnetic wave polarization to sheet does not significant change in the presence of Si, Ge, Fe and Co impurities. The static refractive index of Fe-graphene and Co-graphene sheets for parallel electromagnetic wave polarization to sheet is much larger than the corresponding value of pure graphene sheet. - Highlights: • Graphene sheet with Fe and Co impurities is metal. • Graphene sheet with Si and Ge impurities is semiconductor with 0.2 eV energy band gap. • These sheets optical spectra have metallic behavior for perpendicular polarization. • These sheets optical spectra have semiconductor behavior for parallel polarization. • Graphene sheet with Si and Ge impurities can use for optoelectronic devices.

  5. Optical Conductivity of Graphene Sheet Including Electron-Phonon Interaction

    Institute of Scientific and Technical Information of China (English)

    Hamze Mousavi

    2012-01-01

    Using an expression of optical conductivity, based on the linear response theory, the Green's function technique and within the Holstein Hamiltonian model, the effect of electron-phonon interaction on the optical conductivity of graphene plane is studied. It is found that the electron-phonon coupling increases the optical conductivity of graphene sheet in the low frequency region due to decreasing quasiparticle weight of electron excitation while the optical conductivity reduces in the high frequency region. The latter is due to role of electrical field's frequency.

  6. Photocatalytic and antibacterial properties of Au-TiO2 nanocomposite on monolayer graphene: From experiment to theory

    Science.gov (United States)

    He, Wangxiao; Huang, Hongen; Yan, Jin; Zhu, Jian

    2013-11-01

    The formation of the Au-TiO2 nanocomposite on monolayer Graphene (GTA) by sequentially depositing titanium dioxide particles and gold nanoparticles on graphene sheet was synthesized and analyzed in our work. The structural, morphological, and physicochemical properties of samples were thoroughly investigated by UV-Vis spectrophotometer, Raman spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscope, and transmission electron microscope. Photocatalytic performance of GTA, graphene (GR), TiO2, and TiO2 -graphene nanocomposite (GT) were comparatively studied for degradation of methyl orange, and it was found that GTA had highest performance among all samples. More importantly, antibacterial performance of this novel composite against Gram-positive bacteria, Gram-negative bacteria, and fungus was predominant compared to GR, TiO2, and GT. And the result of biomolecules oxidation tests suggested that antimicrobial actions were contributed by oxidation stress on both membrane and antioxidant systems. Besides, the rate of two decisive processes during photocatalytic reaction, the rate of the charge transfer (kCT) and the rate of the electron-hole recombination (kR) have been studied by Perturbation theory, Radiation theory, and Schottky barrier theory. Calculation and derivation results show that GTA possesses superior charge separation and transfer rate, which gives an explanation for the excellent oxidation properties of GTA.

  7. Photocatalytic and antibacterial properties of Au-TiO{sub 2} nanocomposite on monolayer graphene: From experiment to theory

    Energy Technology Data Exchange (ETDEWEB)

    He, Wangxiao; Huang, Hongen; Yan, Jin [School of Life Sciences and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Zhu, Jian [School of Life Sciences and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

    2013-11-28

    The formation of the Au-TiO{sub 2} nanocomposite on monolayer Graphene (GTA) by sequentially depositing titanium dioxide particles and gold nanoparticles on graphene sheet was synthesized and analyzed in our work. The structural, morphological, and physicochemical properties of samples were thoroughly investigated by UV-Vis spectrophotometer, Raman spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscope, and transmission electron microscope. Photocatalytic performance of GTA, graphene (GR), TiO{sub 2,} and TiO{sub 2} -graphene nanocomposite (GT) were comparatively studied for degradation of methyl orange, and it was found that GTA had highest performance among all samples. More importantly, antibacterial performance of this novel composite against Gram-positive bacteria, Gram-negative bacteria, and fungus was predominant compared to GR, TiO{sub 2}, and GT. And the result of biomolecules oxidation tests suggested that antimicrobial actions were contributed by oxidation stress on both membrane and antioxidant systems. Besides, the rate of two decisive processes during photocatalytic reaction, the rate of the charge transfer (k{sub CT}) and the rate of the electron-hole recombination (k{sub R}) have been studied by Perturbation theory, Radiation theory, and Schottky barrier theory. Calculation and derivation results show that GTA possesses superior charge separation and transfer rate, which gives an explanation for the excellent oxidation properties of GTA.

  8. Designing nanoscale constructs from atomic thin sheets of graphene, boron nitride and gold nanoparticles for advanced material applications

    Science.gov (United States)

    Jasuja, Kabeer

    2011-12-01

    ' interaction with graphene, and applied to address the challenge of dispersing bare-surfaced GNPs for efficient liquid-phase catalysis. We also revisited the functionalization of graphene and present a non-invasive surface introduction of interfaceable moieties. Isostructural to graphene, ultrathin BN sheet is another atomic-thick nanomaterial possessing a highly diverse set of properties inconceivable from graphene. Exfoliating UTBNSs has been challenging due to their exceptional intersheet-bonding and chemical-inertness. To develop applications of BN monolayers and evolve research, a facile lab-scale approach was desired that can produce processable dispersions of BN monolayers. We demonstrated a novel chlorosulfonic acid based treatment that resulted in protonation assisted layer-by-layer exfoliation of BN monolayers with highest reported yields till date. Further, the BN monolayers exhibited extensively protonated N centers, which are utilized for chemically interfacing GNPs, demonstrating their ability to act as excellent nano-templates. The scientific details obtained from the research shown here will significantly support current research activities and greatly impact their future applications. Our research findings have been published in ACS Nano, Small, Journal of Physical Chemistry Letters, MRS Proceedings and have gathered >45 citations.

  9. Synthesis of Functionalized Single Graphene Sheets by Thermal Exfoliation of Graphite Oxide

    OpenAIRE

    2014-01-01

    Synthesis is described to produce single sheets functionalized graphene through thermal exfoliation of graphite oxide .Synthesis yields a single sheet structure resulting from the reaction sites involved in oxidation and reduction process. Application of graphite used for unelectrical material and used pencil meanwhile main applications of graphene sheets are electrical materials.

  10. A comparison of the transport properties of bilayer graphene,monolayer graphene, and two-dimensional electron gas

    Institute of Scientific and Technical Information of China (English)

    Sun Li-Feng; Dong Li-Min; Wu Zhi-Fang; Fang Chao

    2013-01-01

    we studied and compared the transport properties of charge carriers in bilayer graphene,monolayer graphene,and the conventional semiconductors (the two-dimensional electron gas (2DEG)).It is elucidated that the normal incidence transmission in the bilayer graphene is identical to that in the 2DEG but totally different from that in the monolayer graphene.However,resonant peaks appear in the non-normal incidence transmission profile for a high barrier in the bilayer graphene,which do not occur in the 2DEG.Furthermore,there are tunneling and forbidden regions in the transmission spectrum for each material,and the division of the two regions has been given in the work.The tunneling region covers a wide range of the incident energy for the two graphene systems,but only exists under specific conditions for the 2DEG.The counterparts of the transmission in the conductance profile are also given for the three materials,which may be used as high-performance devices based on the bilayer graphene.

  11. Highly enhanced compatibility of human brain vascular pericyte cells on monolayer graphene.

    Science.gov (United States)

    Kim, Jangheon; Kim, Soohyun; Jung, Wonsuk

    2017-01-02

    We introduce a method for increasing the compatibility of human brain vascular pericyte (HBVP) cells on a glass substrate, based on wet transferred monolayer graphene without any treatment. As a novel material, graphene has key properties for incubating cells, such as chemical stability, transparency, appropriate roughness, hydrophobicity and high electrical conductivity. These outstanding properties of graphene were examined by Raman spectroscopy, water contact angle measurements and atomic force microscopy. The performance of this graphene-based implant was investigated by a cell compatibility test, comparing the growth rate of cells on the graphene surface and that on a bare glass substrate. After an incubation period of 72 h, the number of live HBVP cells on a graphene surface with an area of 1×1 mm(2) was 1.83 times greater than that on the glass substrate.

  12. Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur

    Science.gov (United States)

    Denis, Pablo A.

    2010-06-01

    The chemical doping of monolayer and bilayer graphene with aluminium, silicon, phosphorus and sulfur was investigated. Si-doped graphene has the lowest formation energy although it is semimetallic. P-doped graphene has a magnetic moment of 1 μ B and for 3 at.% of doping the band gap is 0.67 eV. Al-doped graphene is very unstable but it is an attractive material because it is metallic. To reduce the formation energies of the substitutional defects we investigated the formation of interlayer bonds in bilayer graphene. Phosphorus forms the strongest bonds between layers giving particular stability to this material. P-doped bilayer graphene has a gap of 0.43 eV but it is has no magnetic moment.

  13. Sublattice dependent magnetic response of dual Cr doped graphene monolayer: a full potential approach

    Science.gov (United States)

    Thakur, Jyoti; Kashyap, Manish K.; Taya, Ankur; Rani, Priti; Saini, Hardev S.

    2017-01-01

    In the present scenario, many researchers are exploring the possibility of inducing a magnetic channel in graphene by introducing various types of defects. To examine the Cr-Cr interactions in dual Cr doped graphene monolayer for magnetic response and spin polarization, the first-principles density functional theory based calculations are performed. Further, the possibility of achieving 100 % spin polarization in various possible configurations of dual Cr-doping have been explored. Dual doping of Cr atoms in graphene monolayer preferring ferromagnetic ordering, generates a spin magnetic state with a local moment of 4.00 µB. Depending upon the relative position of two Cr impurities in graphene, the ground states of doped systems are found be ferromagnetic, antiferromagnetic or paramagnetic. The origin of particular magnetic state observed in all possible dual Cr-doping configurations has been explained on the basis of RKKY indirect exchange interactions.

  14. The valley filter efficiency of monolayer graphene and bilayer graphene line defect model

    Science.gov (United States)

    Cheng, Shu-guang; Zhou, Jiaojiao; Jiang, Hua; Sun, Qing-Feng

    2016-10-01

    In addition to electron charge and spin, novel materials host another degree of freedom, the valley. For a junction composed of valley filter sandwiched by two normal terminals, we focus on the valley efficiency under disorder with two valley filter models based on monolayer and bilayer graphene. Applying the transfer matrix method, valley resolved transmission coefficients are obtained. We find that: (i) under weak disorder, when the line defect length is over about 15 {nm}, it functions as a perfect channel (quantized conductance) and valley filter (totally polarized); (ii) in the diffusive regime, combination effects of backscattering and bulk states assisted intervalley transmission enhance the conductance and suppress the valley polarization; (iii) for very long line defect, though the conductance is small, polarization is indifferent to length. Under perpendicular magnetics field, the characters of charge and valley transport are only slightly affected. Finally we discuss the efficiency of transport valley polarized current in a hybrid system.

  15. One-pot synthesis of graphene oxide sheets and graphene oxide quantum dots from graphite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Rashid, Suraya, E-mail: suraya-ar@upm.edu.my; Mohd Zobir, Syazwan Afif [Universiti Putra Malaysia, Materials Processing and Technology Laboratory, Nanomaterials and Nanotechnology Group, Institute of Advanced Technology (Malaysia); Krishnan, Shutesh; Hassan, Mohd Murshid [Graphene Nanochem Sdn. Bhd., Level 9, WORK@Clearwater (Malaysia); Lim, Hong Ngee [Universiti Putra Malaysia, UPM, Department of Chemistry, Faculty of Science (Malaysia)

    2015-05-15

    A one-pot synthesis of graphene oxide (GO) sheets and GO quantum dots using graphite nanofibers (GNF) as starting material is reported. Two types of GNF starting materials, namely herringbone and platelet structures, were used. HRTEM revealed that platelet GNF produces quantum dots typically less than 10 nm in size while herringbone GNF produces relatively larger GO sheets. SAED patterns indicate that the produced GO sheets have a hexagonal crystal structure. UV–Vis, PL, XPS, and Raman show salient differences between the produced GO nanostructures which correlate well with the morphological analysis. Unlike the GO sheets, the GO quantum dots are photoluminescent. The difference in PL properties was attributed to the higher oxygen content in GO quantum dots which were shown by XPS. The results offer a new insight to the importance of starting material in the synthesis of graphene nanostructures.

  16. Diode-pumped Yb,Y:CaF2 laser mode-locked by monolayer graphene

    Science.gov (United States)

    Zhu, Hongtong; Liu, Jie; Jiang, Shouzhen; Xu, Shicai; Su, Liangbi; Jiang, Dapeng; Qian, Xiaobo; Xu, Jun

    2015-12-01

    The large-area and high-quality monolayer graphene saturable absorber with a sandwich structure is prepared by the chemical vapor deposition technique. Using graphene saturable absorber, the mode locking operation of a diode-pumped Yb,Y:CaF2 laser is demonstrated. Without extra negative dispersion elements, 4.8 ps pulses are yielded at 1051 nm. The pulse repetition rate is 60 MHz.

  17. On the material geometry of continuously defective corrugated graphene sheets

    OpenAIRE

    Trzesowski, Andrzej

    2014-01-01

    Geometrical objects describing the material geometry of continuously defective graphene sheets are introduced and their compatibility conditions are formulated. Effective edge dislocations embedded in the Riemann-Cartan material space and defined by their scalar density and by local Burgers vectors, are considered. The case of secondary curvature-type defects created by this distribution of dislocations is analysed in terms of the material space. The variational geometry of the material space...

  18. Low-Temperature, Dry Transfer-Printing of a Patterned Graphene Monolayer

    Science.gov (United States)

    Cha, Sugkyun; Cha, Minjeong; Lee, Seojun; Kang, Jin Hyoun; Kim, Changsoon

    2015-12-01

    Graphene has recently attracted much interest as a material for flexible, transparent electrodes or active layers in electronic and photonic devices. However, realization of such graphene-based devices is limited due to difficulties in obtaining patterned graphene monolayers on top of materials that are degraded when exposed to a high-temperature or wet process. We demonstrate a low-temperature, dry process capable of transfer-printing a patterned graphene monolayer grown on Cu foil onto a target substrate using an elastomeric stamp. A challenge in realizing this is to obtain a high-quality graphene layer on a hydrophobic stamp made of poly(dimethylsiloxane), which is overcome by introducing two crucial modifications to the conventional wet-transfer method - the use of a support layer composed of Au and the decrease in surface tension of the liquid bath. Using this technique, patterns of a graphene monolayer were transfer-printed on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate and MoO3, both of which are easily degraded when exposed to an aqueous or aggressive patterning process. We discuss the range of application of this technique, which is currently limited by oligomer contaminants, and possible means to expand it by eliminating the contamination problem.

  19. Electronic band structure effects in monolayer, bilayer, and hybrid graphene structures

    Science.gov (United States)

    Puls, Conor

    Since its discovery in 2005, graphene has been the focus of intense theoretical and experimental study owing to its unique two-dimensional band structure and related electronic properties. In this thesis, we explore the electronic properties of graphene structures from several perspectives including the magnetoelectrical transport properties of monolayer graphene, gap engineering and measurements in bilayer graphene, and anomalous quantum oscillation in the monolayer-bilayer graphene hybrids. We also explored the device implications of our findings, and the application of some experimental techniques developed for the graphene work to the study of a complex oxide, Ca3Ru2O7, exhibiting properties of strongly correlated electrons. Graphene's high mobility and ballistic transport over device length scales, make it suitable for numerous applications. However, two big challenges remain in the way: maintaining high mobility in fabricated devices, and engineering a band gap to make graphene compatible with logical electronics and various optical devices. We address the first challenge by experimentally evaluating mobilities in scalable monolayer graphene-based field effect transistors (FETs) and dielectric-covered Hall bars. We find that the mobility is limited in these devices, and is roughly inversely proportional to doping. By considering interaction of graphene's Dirac fermions with local charged impurities at the interface between graphene and the top-gate dielectric, we find that Coulomb scattering is responsible for degraded mobility. Even in the cleanest devices, a band gap is still desirable for electronic applications of graphene. We address this challenge by probing the band structure of bilayer graphene, in which a field-tunable energy band gap has been theoretically proposed. We use planar tunneling spectroscopy of exfoliated bilayer graphene flakes demonstrate both measurement and control of the energy band gap. We find that both the Fermi level and

  20. Probing top-gated field effect transistor of reduced graphene oxide monolayer made by dielectrophoresis

    OpenAIRE

    Vasu, K. S.; Chakraborty, Biswanath; Sampath, S.; Sood, A. K.

    2010-01-01

    We demonstrate top-gated field effect transistor made of reduced graphene oxide (RGO) monolayer (graphene) by dielectrophoresis. Raman spectrum of RGO flakes of typical size of 5{\\mu}m x 5{\\mu}m show a single 2D band at 2687 cm-1, characteristic of a single layer graphene. The two probe current - voltage measurements of RGO flakes, deposited in between the patterned electrodes with a gap of 2.5 {\\mu}m using a.c. dielectrophoresis show ohmic behavior with a resistance of ~ 37k{\\Omega}. The tem...

  1. Water and Molecular Transport across Nanopores in Monolayer Graphene Membranes

    Science.gov (United States)

    Jang, Doojoon; O'Hern, Sean; Kidambi, Piran; Boutilier, Michael; Song, Yi; Idrobo, Juan-Carlos; Kong, Jing; Laoui, Tahar; Karnik, Rohit

    2015-11-01

    Graphene's atomic thickness and high tensile strength allow it to outstand as backbone material for next-generation high flux separation membrane. Molecular dynamics simulations predicted that a single-layer graphene membrane could exhibit high permeability and selectivity for water over ions/molecules, qualifying as novel water desalination membranes. However, experimental investigation of water and molecular transport across graphene nanopores had remained barely explored due to the presence of intrinsic defects and tears in graphene. We introduce two-step methods to seal leakage across centimeter scale single-layer graphene membranes create sub-nanometer pores using ion irradiation and oxidative etching. Pore creation parameters were varied to explore the effects of created pore structures on water and molecular transport driven by forward osmosis. The results demonstrate the potential of nanoporous graphene as a reliable platform for high flux nanofiltration membranes.

  2. Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures.

    Science.gov (United States)

    Pierucci, Debora; Henck, Hugo; Avila, Jose; Balan, Adrian; Naylor, Carl H; Patriarche, Gilles; Dappe, Yannick J; Silly, Mathieu G; Sirotti, Fausto; Johnson, A T Charlie; Asensio, Maria C; Ouerghi, Abdelkarim

    2016-07-13

    Two-dimensional layered MoS2 shows great potential for nanoelectronic and optoelectronic devices due to its high photosensitivity, which is the result of its indirect to direct band gap transition when the bulk dimension is reduced to a single monolayer. Here, we present an exhaustive study of the band alignment and relativistic properties of a van der Waals heterostructure formed between single layers of MoS2 and graphene. A sharp, high-quality MoS2-graphene interface was obtained and characterized by micro-Raman spectroscopy, high-resolution X-ray photoemission spectroscopy (HRXPS), and scanning high-resolution transmission electron microscopy (STEM/HRTEM). Moreover, direct band structure determination of the MoS2/graphene van der Waals heterostructure monolayer was carried out using angle-resolved photoemission spectroscopy (ARPES), shedding light on essential features such as doping, Fermi velocity, hybridization, and band-offset of the low energy electronic dynamics found at the interface. We show that, close to the Fermi level, graphene exhibits a robust, almost perfect, gapless, and n-doped Dirac cone and no significant charge transfer doping is detected from MoS2 to graphene. However, modification of the graphene band structure occurs at rather larger binding energies, as the opening of several miniband-gaps is observed. These miniband-gaps resulting from the overlay of MoS2 and the graphene layer lattice impose a superperiodic potential.

  3. Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer

    KAUST Repository

    Chen, Paiyen

    2014-09-01

    We model and design a graphene-based infrared beamformer based on the concept of leaky-wave (fast traveling wave) antennas. The excitation of infrared surface plasmon polaritons (SPPs) over a \\'one-atom-thick\\' graphene monolayer is typically associated with intrinsically \\'slow light\\'. By modulating the graphene with elastic vibrations based on flexural waves, a dynamic diffraction grating can be formed on the graphene surface, converting propagating SPPs into fast surface waves, able to radiate directive infrared beams into the background medium. This scheme allows fast on-off switching of infrared emission and dynamic tuning of its radiation pattern, beam angle and frequency of operation, by simply varying the acoustic frequency that controls the effective grating period. We envision that this graphene beamformer may be integrated into reconfigurable transmitter/receiver modules, switches and detectors for THz and infrared wireless communication, sensing, imaging and actuation systems.

  4. Fast low-temperature plasma reduction of monolayer graphene oxide at atmospheric pressure

    Science.gov (United States)

    Bodik, Michal; Zahoranova, Anna; Micusik, Matej; Bugarova, Nikola; Spitalsky, Zdenko; Omastova, Maria; Majkova, Eva; Jergel, Matej; Siffalovic, Peter

    2017-04-01

    We report on an ultrafast plasma-based graphene oxide reduction method superior to conventional vacuum thermal annealing and/or chemical reduction. The method is based on the effect of non-equilibrium atmospheric-pressure plasma generated by the diffuse coplanar surface barrier discharge in proximity of the graphene oxide layer. As the reduction time is in the order of seconds, the presented method is applicable to the large-scale production of reduced graphene oxide layers. The short reduction times are achieved by the high-volume power density of plasma, which is of the order of 100 W cm‑3. Monolayers of graphene oxide on silicon substrate were prepared by a modified Langmuir–Schaefer method and the efficient and rapid reduction by methane and/or hydrogen plasma was demonstrated. The best results were obtained for the graphene oxide reduction in hydrogen plasma, as verified by x-ray photoelectron spectroscopy and Raman spectroscopy.

  5. Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria

    Science.gov (United States)

    Chang, Jingbo; Mao, Shun; Zhang, Yang; Cui, Shumao; Zhou, Guihua; Wu, Xiaogang; Yang, Ching-Hong; Chen, Junhong

    2013-04-01

    Due to potential risks to the environment and human health arising from pathogens/chemical contaminants, novel devices are being developed for rapid and precise detection of those contaminants. Here, we demonstrate highly sensitive and selective field-effect transistor (FET) sensor devices for detection of Escherichia coli (E. coli) bacteria using thermally reduced monolayer graphene oxide (TRMGO) sheets as semiconducting channels. The graphene oxide (GO) sheets are assembled on the aminoethanethiol (AET)-functionalized gold (Au) electrodes through electrostatic interactions with ultrasonic assistance. Anti-Escherichia coli (anti-E. coli) antibodies are used as receptors for selective detection of E. coli cells and integrated on the FET device through covalent bonding with Au nanoparticles on the GO surface. The TRMGO FET device shows great electronic stability and high sensitivity to E. coli cells with a concentration as low as 10 colony-forming units (cfu) per mL. The biosensing platform reported here is promising for large-scale, sensitive, selective, low-cost, and real-time detection of E. coli bacteria.

  6. Spatially resolving unconventional interface Landau quantization in a graphene monolayer-bilayer planar junction

    Science.gov (United States)

    Yan, Wei; Li, Si-Yu; Yin, Long-Jing; Qiao, Jia-Bin; Nie, Jia-Cai; He, Lin

    2016-05-01

    Hybrid quantum Hall (QH) junctions have been extensively studied by transport measurements due to their exciting physics and device applications. Here we report on spatially resolving electronic properties of such a junction on the nanoscale. We present a subnanometer-resolved scanning tunneling microscopy (STM) and scanning tunneling spectroscopy study of a monolayer-bilayer graphene planar junction in the QH regime. The atomically well-defined interface of such a junction allows us to spatially resolve the interface electronic properties. Around the interface, we detect Landau quantization of massless Dirac fermions as expected in the graphene monolayer for filled states of the junction, whereas unexpectedly, only Landau quantization of massive Dirac fermions as expected in the graphene bilayer is observed for empty states. The observed unconventional interface Landau quantization arises from the fact that the quantum conductance across the interface is solely determined by the minimum filling factors (number of edge modes) in the graphene monolayer and bilayer regions of the junction. Our finding opens the way to spatially explore the QH effect of different graphene hybrid structures only using a STM.

  7. Screening effect of graphite and bilayer graphene on excitons in MoSe2 monolayer

    Science.gov (United States)

    Wang, Yuan; Zhang, Shuai; Huang, Di; Cheng, Jingxin; Li, Yingguo; Wu, Shiwei

    2017-03-01

    Excitons in transition metal dichalcogenide monolayer have recently attracted great interest due to their extremely large binding energy, causing giant bandgap renormalization. In this work, we examined the screening effect of graphite and bilayer graphene on the excitons in molybdenum diselenide (MoSe2) monolayer grown by molecular beam epitaxy (MBE). Through the combinational study of scanning tunneling spectroscopy (STS) and photoluminescence (PL) measurements, we determined the binding energy of ~0.58 eV for MoSe2 monolayer on both substrates at 16 K, and no obvious difference between them. Our result is consistent with a previous report [Zhang et al 2015 Nano Letters 15, 6494], but is contradictory to another one [Ugeda 2014 Nature Materials 13, 1091]. Physical picture for no noticeable difference on screening effect between bilayer graphene and graphite substrate is discussed. Possible reasons for causing the discrepancy are also mentioned.

  8. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer.

    Science.gov (United States)

    Li, Jinhua; Wang, Gang; Zhu, Hongqin; Zhang, Miao; Zheng, Xiaohu; Di, Zengfeng; Liu, Xuanyong; Wang, Xi

    2014-03-12

    Graphene has attracted increasing attention for potential applications in biotechnology due to its excellent electronic property and biocompatibility. Here we use both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) to investigate the antibacterial actions of large-area monolayer graphene film on conductor Cu, semiconductor Ge and insulator SiO2. The results show that the graphene films on Cu and Ge can surprisingly inhibit the growth of both bacteria, especially the former. However, the proliferation of both bacteria cannot be significantly restricted by the graphene film on SiO2. The morphology of S. aureus and E. coli on graphene films further confirms that the direct contact of both bacteria with graphene on Cu and Ge can cause membrane damage and destroy membrane integrity, while no evident membrane destruction is induced by graphene on SiO2. From the viewpoint of charge transfer, a plausible mechanism is proposed here to explain this phenomenon. This study may provide new insights for the better understanding of antibacterial actions of graphene film and for the better designing of graphene-based antibiotics or other biomedical applications.

  9. Optical Soliton Propagation in a Free-Standing Nonlinear Graphene Monolayer with Defects

    CERN Document Server

    Moxley, Frederick Ira; Radadia, Adarsh; Dai, Weizhong

    2013-01-01

    Recently, optical soliton propagation in an intrinsic nonlinear graphene monolayer configuration has been discovered. However, optical soliton behavior in a free-standing graphene monolayer with defects has not yet been studied. The objective of this article is to employ the generalized finite- difference time-domain (G-FDTD) method to efficiently simulate bright optical solitons, illustrating propagation of the electric field distribution in a free-standing nonlinear layer with variation in nonlinearity along its width. These variations of nonlinearity along the width represent graphene impurities, or defects. Results show that solitons propagate effectively even in the presence of strong spatial variations in the nonlinearity, implying the robustness of the medium with respect to optical propagation.

  10. Near-unity absorption of graphene monolayer with a triple-layer waveguide coupled grating

    Science.gov (United States)

    Zhang, Haojing; Zheng, Gaige; Xian, Fenglin; Zou, Xiujuan; Wang, Jicheng

    2017-10-01

    In order to achieve the enhancement and manipulation of light absorption in graphene monolayer within the visible (Vis) and near infrared (NIR) regions, a design of absorber inspired by contact coupled gratings with an absentee layer is demonstrated. It is proved that the absorptance of monolayer graphene can be greatly enhanced to near unity through rigorous coupled-wave analysis (RCWA) numerical calculation. The thickness of grating and homogeneous absentee layers can significantly change the linewidth and resonant mode position in absorption spectrum. Furthermore, the lateral shift of the contact coupled gratings changes the magnetic field distributions in the grating cavity and the surface-confined mode at the cover/grating interface, thus facilitating the dynamic control of the spectral bandwidth of the graphene absorber. The proposed devices could be efficiently exploited as tunable and selective absorbers, allowing to realize other two-dimensional (2D) materials-based selective photo-detectors.

  11. Size-dependent deformation behavior of nanocrystalline graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Huang, Yuhong [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Sun, Yunjin [Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Laboratory of Food Quality and Safety, Beijing 102206 (China); Xu, Kewei, E-mail: kwxu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Opt-electronic Engineering, Xi’an University of Arts and Science, Xi’an 710065, Shaanxi (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Highlights: • MD simulation is conducted to study the deformation of nanocrystalline graphene. • Unexpectedly, the elastic modulus decreases with the grain size considerably. • But the fracture stress and strain are nearly insensitive to the grain size. • A composite model with grain domains and GBs as two components is suggested. - Abstract: Molecular dynamics (MD) simulation is conducted to study the deformation behavior of nanocrystalline graphene sheets. It is found that the graphene sheets have almost constant fracture stress and strain, but decreased elastic modulus with grain size. The results are different from the size-dependent strength observed in nanocrystalline metals. Structurally, the grain boundaries (GBs) become a principal component in two-dimensional materials with nano-grains and the bond length in GBs tends to be homogeneously distributed. This is almost the same for all the samples. Hence, the fracture stress and strain are almost size independent. As a low-elastic-modulus component, the GBs increase with reducing grain size and the elastic modulus decreases accordingly. A composite model is proposed to elucidate the deformation behavior.

  12. Covalently functionalized graphene sheets with biocompatible natural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Abdolmaleki, Amir, E-mail: abdolmaleki@cc.iut.ac.ir [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Borandeh, Sedigheh [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-07-01

    Graphene sheets were covalently functionalized with aromatic–aliphatic amino acids (phenylalanine and tyrosine) and aliphatic amino acids (alanine, isoleucine, leucine, methionine and valine) by simple and green procedure. For this aim, at first natural graphite was converted into graphene oxide (GO) through strong oxidation procedure; then, based on the surface-exposed epoxy and carboxylic acid groups in GO solid, its surface modification with naturally occurring amino acids, occurred easily throughout the corresponding nucleophilic substitution and condensation reactions. Amino acid functionalized graphene demonstrates stable dispersion in water and common organic solvents. Fourier transform infrared, Raman and X-ray photoelectron spectroscopies, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy were used to investigate the nanostructures and properties of prepared materials. Each amino acid has different considerable effects on the structure and morphology of the pure graphite, from increasing the layer spacing to layer scrolling, based on their structures, functional groups and chain length. In addition, therogravimetric analysis was used for demonstrating a successful grafting of amino acid molecules to the surface of graphene.

  13. Synthesis and characterization of nickel oxide/graphene sheet/graphene ribbon composite

    Energy Technology Data Exchange (ETDEWEB)

    Lavanya, J.; Gomathi, N., E-mail: sivakumar.gomathi@gmail.com [Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, 695547, Kerala (India)

    2016-04-13

    A novel and simple hydrothermal synthesis of nickel oxide (NiO)/graphene sheets (GNS)/graphene ribbon (GR) hybrid material is reported for the first time. The crystalline property and surface morphology of NiO/GNS/GR (NiO/HG) hybrid material is characterized by X-ray diffraction, Raman spectroscopy and Transmission electron spectroscopy. The fast electron transfer of GNS/GR along with NiO contributes an excellent electrochemical performance in the field of non-enzymatic glucose sensor.

  14. Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC.

    Science.gov (United States)

    Chen, Jianing; Nesterov, Maxim L; Nikitin, Alexey Yu; Thongrattanasiri, Sukosin; Alonso-González, Pablo; Slipchenko, Tetiana M; Speck, Florian; Ostler, Markus; Seyller, Thomas; Crassee, Iris; Koppens, Frank H L; Martin-Moreno, Luis; García de Abajo, F Javier; Kuzmenko, Alexey B; Hillenbrand, Rainer

    2013-01-01

    We employ tip-enhanced infrared near-field microscopy to study the plasmonic properties of epitaxial quasi-free-standing monolayer graphene on silicon carbide. The near-field images reveal propagating graphene plasmons, as well as a strong plasmon reflection at gaps in the graphene layer, which appear at the steps between the SiC terraces. When the step height is around 1.5 nm, which is two orders of magnitude smaller than the plasmon wavelength, the reflection signal reaches 20% of its value at graphene edges, and it approaches 50% for step heights as small as 5 nm. This intriguing observation is corroborated by numerical simulations and explained by the accumulation of a line charge at the graphene termination. The associated electromagnetic fields at the graphene termination decay within a few nanometers, thus preventing efficient plasmon transmission across nanoscale gaps. Our work suggests that plasmon propagation in graphene-based circuits can be tailored using extremely compact nanostructures, such as ultranarrow gaps. It also demonstrates that tip-enhanced near-field microscopy is a powerful contactless tool to examine nanoscale defects in graphene.

  15. Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties.

    Science.gov (United States)

    Zhang, Danhui; Liu, Xiaoheng; Wang, Xin

    2011-09-01

    A widely soluble graphene oxide sheets decorated by silver nanoprisms were prepared through green synthesis at the room temperature using gelatin as reducing and stabilizing agent. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy and fluorescence spectra. The results demonstrate that these silver-nanoprisms assembled on graphene oxide sheets are flexible and can form stable suspensions in aqueous solutions. Furthermore, the formation mechanism of soluble graphene oxide sheets decorated by silver nanoprisms was successfully explained. The anti-bacterial properties of graphene oxide sheets decorated by silver nanoprisms were tested against Escherichia coli. This work provides a simple and "green" method for the synthesis of graphene oxide sheets decorated by silver nanoprisms in aqueous solution with promising antibacterial property.

  16. Strong Plasmon Reflection at Nanometer-Size Gaps in Monolayer Graphene on SiC

    Science.gov (United States)

    Kuzmenko, Alexey B.; Chen, Jiaining; Nesterov, Maxim L.; Nikitin, Alexey Yu.; Thongrattanasiri, Sukosin; Alonso-Gonzalez, Pablo; Slipchenko, Tetiana M.; Speck, Florian; Ostler, Markus; Seyller, Thomas; Crassee, Iris; Koppens, Frank H. L.; Martin-Moreno, Luis; Garcia de Abajo, F. Javier; Hillenbrand, Rainer

    2014-03-01

    Tip-enhanced infrared near-field microscopy is used to study propagating plasmons in epitaxial quasi-free-standing monolayer graphene on silicon carbide. We observe that plasmons are strongly reflected at graphene gaps at the steps between the substrate terraces. For the step height of only 1.5 nm, which is two orders of magnitude smaller than the plasmon wavelength, the reflection signal reaches 20 percent of its value at graphene edges, and it approaches 0.5 for steps of 5 nm. We support this observation with extensive numerical simulations and give physical rationale for this intriguing phenomenon. Our work suggests that plasmon propagation in graphene-based circuits can be controlled using ultracompact nanostructures. J. Chen et al., Nano Lett., DOI: 10.1021/nl403622t (2013).

  17. Creating periodic local strain in monolayer graphene with nanopillars patterned by self-assembled block copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Hongyi; Mikael, Solomon; Seo, Jung-Hun; Gui, Gui; Ma, Alice L.; Ma, Zhenqiang, E-mail: nealey@uchicago.edu, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Liu, Chi-Chun; Nealey, Paul F., E-mail: nealey@uchicago.edu, E-mail: mazq@engr.wisc.edu [Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)

    2015-10-05

    A simple and viable method was developed to produce biaxial strain in monolayer graphene on an array of SiO{sub 2} nanopillars. The array of SiO{sub 2} nanopillars (1 cm{sup 2} in area, 80 nm in height, and 40 nm in pitch) was fabricated by employing self-assembled block copolymer through simple dry etching and deposition processes. According to high resolution micro-Raman spectroscopy and atomic force microscopy analyses, 0.9% of maximum biaxial tensile strain and 0.17% of averaged biaxial tensile strain in graphene were created. This technique provides a simple and viable method to form biaxial tensile strain in graphene and offers a practical platform for future studies in graphene strain engineering.

  18. Centimeter-scale high-resolution metrology of entire CVD-grown graphene sheets.

    Science.gov (United States)

    Kyle, Jennifer Reiber; Guvenc, Ali; Wang, Wei; Ghazinejad, Maziar; Lin, Jian; Guo, Shirui; Ozkan, Cengiz S; Ozkan, Mihrimah

    2011-09-19

    A high-throughput metrology method for measuring the thickness and uniformity of entire large-area chemical vapor deposition-grown graphene sheets on arbitrary substrates is demonstrated. This method utilizes the quenching of fluorescence by graphene via resonant energy transfer to increase the visibility of graphene on a glass substrate. Fluorescence quenching is visualized by spin-coating a solution of polymer mixed with fluorescent dye onto the graphene then viewing the sample under a fluorescence microscope. A large-area fluorescence montage image of the dyed graphene sample is collected and processed to identify the graphene and indicate the graphene layer thickness throughout the entire graphene sample. Using this metrology method, the effect of different transfer techniques on the quality of the graphene sheet is studied. It is shown that small-area characterization is insufficient to truly evaluate the effect of the transfer technique on the graphene sample. The results indicate that introducing a drop of acetone or liquid poly(methyl methacrylate) (PMMA) on top of the transfer PMMA layer before soaking the graphene sample in acetone improves the quality of the graphene dramatically over immediately soaking the graphene in acetone. This work introduces a new method for graphene quantification that can quickly and easily identify graphene layers in a large area on arbitrary substrates. This metrology technique is well suited for many industrial applications due to its repeatability and flexibility.

  19. 25 GHz embedded-gate graphene transistors with high-k dielectrics on extremely flexible plastic sheets.

    Science.gov (United States)

    Lee, Jongho; Ha, Tae-Jun; Li, Huifeng; Parrish, Kristen N; Holt, Milo; Dodabalapur, Ananth; Ruoff, Rodney S; Akinwande, Deji

    2013-09-24

    Despite the widespread interest in graphene electronics over the past decade, high-performance graphene field-effect transistors (GFETs) on flexible substrates have been rarely achieved, even though this atomic sheet is widely understood to have greater prospects for flexible electronic systems. In this article, we report detailed studies on the electrical and mechanical properties of vapor synthesized high-quality monolayer graphene integrated onto flexible polyimide substrates. Flexible graphene transistors with high-k dielectric afforded intrinsic gain, maximum carrier mobilities of 3900 cm(2)/V·s, and importantly, 25 GHz cutoff frequency, which is more than a factor of 2.5 times higher than prior results. Mechanical studies reveal robust transistor performance under repeated bending, down to 0.7 mm bending radius, whose tensile strain is a factor of 2-5 times higher than in prior studies. In addition, integration of functional coatings such as highly hydrophobic fluoropolymers combined with the self-passivation properties of the polyimide substrate provides water-resistant protection without compromising flexibility, which is an important advancement for the realization of future robust flexible systems based on graphene.

  20. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet

    Science.gov (United States)

    Yuan, Wenjing; Zhou, Yu; Li, Yingru; Li, Chun; Peng, Hailin; Zhang, Jin; Liu, Zhongfan; Dai, Liming; Shi, Gaoquan

    2013-01-01

    Graphene has a unique atom-thick two-dimensional structure and excellent properties, making it attractive for a variety of electrochemical applications, including electrosynthesis, electrochemical sensors or electrocatalysis, and energy conversion and storage. However, the electrochemistry of single-layer graphene has not yet been well understood, possibly due to the technical difficulties in handling individual graphene sheet. Here, we report the electrochemical behavior at single-layer graphene-based electrodes, comparing the basal plane of graphene to its edge. The graphene edge showed 4 orders of magnitude higher specific capacitance, much faster electron transfer rate and stronger electrocatalytic activity than those of graphene basal plane. A convergent diffusion effect was observed at the sub-nanometer thick graphene edge-electrode to accelerate the electrochemical reactions. Coupling with the high conductivity of a high-quality graphene basal plane, graphene edge is an ideal electrode for electrocatalysis and for the storage of capacitive charges. PMID:23896697

  1. Vibrational characteristics of graphene sheets elucidated using an elastic network model.

    Science.gov (United States)

    Kim, Min Hyeok; Kim, Daejoong; Choi, Jae Boong; Kim, Moon Ki

    2014-08-01

    Recent studies of graphene have demonstrated its great potential for highly sensitive resonators. In order to capture the intrinsic vibrational characteristics of graphene, we propose an atomistic modeling method called the elastic network model (ENM), in which a graphene sheet is modeled as a mass-spring network of adjacent atoms connected by various linear springs with specific bond ratios. Normal mode analysis (NMA) reveals the various vibrational features of bi-layer graphene sheets (BLGSs) clamped at two edges. We also propose a coarse-graining (CG) method to extend our graphene study into the meso- and macroscales, at which experimental measurements and synthesis of graphene become practical. The simulation results show good agreement with experimental observations. Therefore, the proposed ENM approach will not only shed light on the theoretical study of graphene mechanics, but also play an important role in the design of highly-sensitive graphene-based resonators.

  2. Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film

    Science.gov (United States)

    Qiu, Hengwei; Gao, Saisai; Chen, Peixi; Li, Zhen; Liu, Xiaoyun; Zhang, Chao; Xu, Yuanyuan; Jiang, Shouzhen; Yang, Cheng; Huo, Yanyan; Yue, Weiwei

    2016-05-01

    An evanescent wave absorption (EWA) sensor based on tapered multimode fiber (TMMF) coated with monolayer graphene film for the detection of double-stranded DNA (DS-DNA) is investigated in this work. The TMMF is a silica multimode fiber (nominally at 62.5 μm), which was tapered to symmetric taper with waist diameters of ~30 μm and total length of ~3 mm. Monolayer graphene film was grown on a copper foil via chemical vapor deposition (CVD) technology and transferred onto skinless tapered fiber core via dry transfer technology. All the components of the sensor are coupled together by fusion splicer in order to eliminate the external disturbance. DS-DNA is created by the assembly of two relatively complemented oligonucleotides. The measurements are obtained by using a spectrometer in the optical wavelength range of 400-900 nm. With the increase of DS-DNA concentration, the output light intensity (OPLI) arisen an obvious attenuation. Importantly, the absorbance (A) and the DS-DNA concentrations shown a reasonable linear variation in a wide range of 5-400 μM. Through a series of comparison, the accuracy of TMMF sensor with graphene (G-TMMF) is much better than that without graphene (TMMF), which can be attributed to the molecular enrichment of graphene by π-π stacking.

  3. Graphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides

    Science.gov (United States)

    Nourbakhsh, Amirhasan; Adelmann, Christoph; Song, Yi; Lee, Chang Seung; Asselberghs, Inge; Huyghebaert, Cedric; Brizzi, Simone; Tallarida, Massimo; Schmeißer, Dieter; van Elshocht, Sven; Heyns, Marc; Kong, Jing; Palacios, Tomás; de Gendt, Stefan

    2015-06-01

    Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the capacitive properties of GO with its electronic structure. Capacitance-voltage measurements showed that the capacitive behavior of Al2O3/GO depends on the oxidation level of GO. Finally, GO was successfully used as an ALD seed layer for the deposition of Al2O3 on chemically inert single layer graphene, resulting in high performance top-gated field-effect transistors.Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the

  4. Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser

    Science.gov (United States)

    Zhu, Hongtong; Zhao, Lina; Liu, Jie; Xu, Shicai; Cai, Wei; Jiang, Shouzhen; Zheng, Lihe; Su, Liangbi; Xu, Jun

    2016-08-01

    The uniform-quality, large-area, monolayer graphene saturable absorber (SA) with sandwich structure was fabricated, tested, and successfully applied for the generation of diode-pumped Yb:Y2SiO5 mode-locked laser. Without extra negative dispersion elements, the shortest pulse with duration of ˜883 fs was obtained at 1042.6 nm with an output power of ˜1 W. These promising experimental results suggested that the low-cost, high-quality graphene SA could potentially be employed in practical, high-power, ultrafast mode-locking laser systems.

  5. Near-field heat transfer between graphene monolayers: Dispersion relation and parametric analysis

    Science.gov (United States)

    Yin, Ge; Yang, Jiang; Ma, Yungui

    2016-12-01

    Plasmon polaritons in graphene can enhance near-field heat transfer. In this work, we give a complete parametric analysis on the near-field heat transfer between two graphene monolayers that allows transfer efficiencies several orders-of-magnitude larger than blackbody radiation. Influences of major parameters are conclusively clarified from the changes of the interlayer supermode coupling and their dispersion relations. The method to maximize the near-field heat flux is discussed. The generalized Stefan-Boltzmann formula is proposed to describe the near-field heat transfer dominated by evanescent wave tunneling. Our results are of practical significance in guiding the design of thermal management systems.

  6. Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO2

    OpenAIRE

    Geringer, V.; Liebmann, M.; Echtermeyer, T.; Runte, S.; Schmidt, M.; Rückamp, R.; Lemme, M.; Morgenstern, M.

    2008-01-01

    Using scanning tunneling microscopy (STM) in ultra high vacuum and atomic force microscopy, we investigate the corrugation of graphene flakes deposited by exfoliation on a Si/SiO2 (300 nm) surface. While the corrugation on SiO2 is long-range with a correlation length of about 25 nm, some of the graphene monolayers exhibit an additional corrugation with a preferential wave length of about 15 nm. A detailed analysis shows that the long range corrugation of the substrate is also visible on graph...

  7. Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging

    Science.gov (United States)

    Yu, Yuanfang; Li, Zhenzhen; Wang, Wenhui; Guo, Xitao; Jiang, Jie; Nan, Haiyan; Ni, Zhenhua

    2017-03-01

    CVD graphene is a promising candidate for optoelectronic applications due to its high quality and high yield. However, multi-layer domains could inevitably form at the nucleation centers during the growth. Here, we propose an optical imaging technique to precisely identify the multilayer domains and also the ratio of their coverage in large-scale CVD monolayer graphene. We have also shown that the stacking disorder in twisted bilayer graphene as well as the impurities on the graphene surface could be distinguished by optical imaging. Finally, we investigated the effects of bilayer domains on the optical and electrical properties of CVD graphene, and found that the carrier mobility of CVD graphene is seriously limited by scattering from bilayer domains. Our results could be useful for guiding future optoelectronic applications of large-scale CVD graphene. Project supported by the National Natural Science Foundation of China (Nos. 61422503, 61376104), the Open Research Funds of Key Laboratory of MEMS of Ministry of Education (SEU, China), and the Fundamental Research Funds for the Central Universities.

  8. Functionalized graphene sheet-Poly(vinylidene fluoride) conductive nanocomposites

    KAUST Repository

    Ansari, Seema

    2009-05-01

    PVDF nanocomposites based on functionalized graphene sheets, FGS prepared from graphite oxide, and exfoliated graphite, EG, were prepared by solution processing and compression molding. FGS remains well dispersed in the PVDF composites as evidenced by the lack of the characteristic graphite reflection in the composites. Although the α-phase of PVDF is seen in the EG-based composites, a mixture of α- and β-phases is present in the FGS analogs. SEM and TEM imaging show smooth fractured surfaces with oriented platelets of graphite stacks and obvious debonding from the matrix in the EG-PVDF composites. In contrast, the FGS-PVDF composites show a wrinkled topography of relatively thin graphene sheets bonded well to the matrix. Storage modulus of the composites was increased with FGS and EG concentration. A lower percolation threshold (2 wt %) was obtained for FGSPVDF composites compared to EG-PVDF composites (above 5 wt %). Lastly, the FGS-PVDF composites show an unusual resistance/temperature behavior. The resistance decreases with temperature, indicating an NTC behavior, whereas EG-PVDF composites show a PTC behavior (e.g., the resistance increases with temperature). We attribute the NTC behavior of the FGS based composites to the higher aspect ratio of FGS which leads to contact resistance predominating over tunneling resistance. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 888-897, 2009.

  9. Heat Conduction across Monolayer and Few-Layer Graphenes

    Science.gov (United States)

    2010-05-01

    J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth , S.; Geim, A. K. Raman Spectrum of...Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz , T. F. Ultraflat Graphene. Nature 2009, 462, 339–341. (29) Zheng, X.; Cahill, D. G.; Weaver, R.; Zhao, J.-C

  10. Self-assembly of hydrofluorinated Janus graphene monolayer

    DEFF Research Database (Denmark)

    Jin, Yakang; Xue, Qingzhong; Zhu, Lei

    2016-01-01

    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van...

  11. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates

    Science.gov (United States)

    2011-01-01

    et al. Macroscopic Graphene Membranes and Their Extra- ordinary Stiffness. Nano Lett. 2008, 8, 2442–2446. 23. Aleman , B.; Regan, W.; Aloni, S.; Altoe...Structure Constant Defines Visual Transparency of Gra- phene. Science 2008, 320, 1308–1308. 31. Regan, W.; Alem, N.; Aleman , B.; Geng, B. S.; Girit, C

  12. Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Jepsen, Peter Uhd

    2013-01-01

    We experimentally demonstrate graphene-plasmon polariton excitation in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The subwavelength silicon grating is fabricated by a nanosphere lithography technique with a self-assembled nanosphere array...... as a template. Measured transmission spectra illustrate the excitation of graphene-plasmon polaritons, which is further supported by numerical simulations and theoretical prediction of plasmon-band diagrams. Our grating-assisted coupling to graphene-plasmon polaritons forms an important platform for graphene...

  13. Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating

    CERN Document Server

    Zhu, Xiaolong; Jepsen, Peter Uhd; Hansen, Ole; Mortensen, N Asger; Xiao, Sanshui

    2013-01-01

    We experimentally demonstrate graphene-plasmon polariton excitation in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The subwavelength silicon grating is fabricated by a nanosphere lithography technique with a self-assembled nanosphere array as a template. Measured transmission spectra illustrate the excitation of graphene-plasmon polaritons, which is further supported by numerical simulations and theoretical prediction of plasmonband diagrams. Our grating-assisted coupling to graphene-plasmon polaritons forms an important platform for graphene-based opto-electronics applications.

  14. Path integral centroid molecular dynamics simulation of para-hydrogen sandwiched by graphene sheets

    Science.gov (United States)

    Minamino, Yuki; Kinugawa, Kenichi

    2016-11-01

    The carbon-hydrogen composite systems of para-hydrogen (p-H2) sandwiched by a couple of graphene sheets have been investigated by means of path integral centroid molecular dynamics simulations at 17 K. It has been shown that sandwiched hydrogen is liquid-like but p-H2 molecules are preferably adsorbed onto the graphene sheets because of attractive graphene-hydrogen interaction. The diffusion coefficient of p-H2 molecules in the direction parallel to the graphene sheets is comparable to that in pure liquid p-H2. There exists a characteristic mode of 140 cm-1 of the p-H2 molecules, attributed to adsorption-binding motion perpendicular to the graphene sheets.

  15. Conductive-probe AFM characterization of graphene sheets bonded to gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hauquier, Fanny [Laboratoire de Genie Electrique de Paris, CNRS UMR8507, SUPELEC, UPMC Univ Paris 06, Univ Paris-Sud, 11 rue Joliot Curie, F-91192, Gif-sur-Yvette (France); CEA, IRAMIS, SPCSI Chemistry of Surfaces and Interfaces Group, F-91191 Gif-sur-Yvette (France); Alamarguy, David, E-mail: david.alamarguy@supelec.fr [Laboratoire de Genie Electrique de Paris, CNRS UMR8507, SUPELEC, UPMC Univ Paris 06, Univ Paris-Sud, 11 rue Joliot Curie, F-91192, Gif-sur-Yvette (France); Viel, Pascal [CEA, IRAMIS, SPCSI Chemistry of Surfaces and Interfaces Group, F-91191 Gif-sur-Yvette (France); Noeel, Sophie [Laboratoire de Genie Electrique de Paris, CNRS UMR8507, SUPELEC, UPMC Univ Paris 06, Univ Paris-Sud, 11 rue Joliot Curie, F-91192, Gif-sur-Yvette (France); Filoramo, Arianna [CEA, IRAMIS, LLB, Laboratory for Molecular Electronics, F-91191 Gif-sur-Yvette (France); Huc, Vincent [Univ Paris-Sud, ICMMO, UMR CNRS 8182, 15 rue Georges Clemenceau, F-91440 Orsay (France); Houze, Frederic [Laboratoire de Genie Electrique de Paris, CNRS UMR8507, SUPELEC, UPMC Univ Paris 06, Univ Paris-Sud, 11 rue Joliot Curie, F-91192, Gif-sur-Yvette (France); Palacin, Serge [CEA, IRAMIS, SPCSI Chemistry of Surfaces and Interfaces Group, F-91191 Gif-sur-Yvette (France)

    2012-01-15

    Conducting probe atomic force microscopy (CP-AFM) has been used to perform mechanical and electrical experiments on graphene layers bonded to polyaminophenylene (PAP) films grafted on gold substrates. This technique is a new approach for the characterization of graphene sheets and represents a complementary tool to Raman spectroscopy. The combination of friction and electrical imaging reveals that different stacked graphene sheets have been successfully distinguished from each other and from the underlying PAP films. Lateral force microscopy has shown that the friction is greatly reduced on graphene sheets in comparison with the organic coating. The electrical resistance images show very different local conduction properties which can be linked to the number of underlying graphene sheets. The resistance decreases very slowly when the normal load increases. Current-voltage curves display characteristics of metal-molecule-metal junctions.

  16. Quantitative Analysis of Graphene Sheet Content in Wood Char Powders during Catalytic Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Yan-Jia Liou; Wu-Jang Huang

    2013-01-01

    The quantitative characterization of the graphene sheet content in carbon-containing materials is arguable and has not yet been developed.The authors report on a feasible method to characterize graphene sheet content quantitatively in pyrolized carbon materials using an X-ray diffraction (XRD) spectrometer.A direct carbonation at 300 ℃ followed by catalytic pyrolysis (heat-treatment temperature was set at 700-1400 ℃)under a vacuum condition was used for turning wood waste into pyrolized wood char powders.The graphene content in the samples was calculated through an analysis of full width at half maximum (FWHM) of the carbon (100) crystal plane at around 42°-43° in XRD.Results showed that the FWHM and the calculated graphene sheet content of pyrolized wood char powders depended on the heat-treatment temperature,and the FWHM of wood char powder with well-developed graphene sheets (100%) was determined to be 5.0.In addition,the trend to 100% graphene sheet-contained pyrolized carbon powder was obtained at a heattreatment temperature of 2700 ℃.The resistivity of the wood char powder with 100% graphene sheets was predicted to be 0.01 Ω cm,close to our experimental data of 0.012 and 0.006 Ω cm for commercial graphite and graphene products,respectively.

  17. Ground-state Properties of Inhomogeneous Graphene Sheets

    Science.gov (United States)

    Polini, Marco

    2009-03-01

    When inter-valley scattering is weak and gauge fields due to e.g. ripples are neglected, doped and gated graphene sheets can be described using an envelope-function Hamiltonian with a new sublattice pseudospin degree-of freedom, an ultrarelativistic massless-Dirac free-fermion term, a pseudospin scalar disorder potential, and a non-relativistic instantaneous Coulombic interaction term. There is considerable evidence from experiment that this simplified description of a honeycomb lattice of Carbon atoms is usually a valid starting point for theories of those observables that depend solely on the electronic properties of π-electrons near the graphene Dirac point [1]. Although the use of this model simplifies the physics considerably it still leaves us with a many-body problem without translational invariance, which we do not know how to solve. In this talk we present a Kohn-Sham-Dirac density-functional-theory (DFT) scheme for graphene sheets that treats slowly-varying inhomogeneous scalar external potentials and electron-electron interactions on an equal footing [2]. The theory is able to account for the unusual property that the exchange-correlation contribution to chemical potential increases with carrier density in graphene [3,4]. Consequences of this property, and advantages and disadvantages of using the DFT approach to describe it, are discussed. The approach is illustrated by solving the Kohn-Sham-Dirac equations self-consistently for a model random potential describing charged point-like impurities located close to the graphene plane. The influence of electron-electron interactions on these non-linear screening calculations is discussed at length, in the light of recent experiments [5,6] reporting evidence for the presence of electron-hole puddles in nearly-neutral graphene sheets. [4pt] [1] A.K. Geim and K.S. Novoselov, Nature Mater. 6, 183 (2007); A.K. Geim and A.H. MacDonald, Phys. Today 60, 35 (2007); A.H. Castro Neto, F. Guinea, N.M.R. Peres, K

  18. Transport properties in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe

    Science.gov (United States)

    Lu, Jian-Duo; Li, Yun-Bao; Liu, Hong-Yu; Peng, Shun-Jin; Zhao, Fei-Xiang

    2016-09-01

    Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier.

  19. Asymmetric Electron Transport at Monolayer-Bilayer Heterojunctions of Epitaxial Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Li, An-Ping [ORNL; Clark, Kendal W [ORNL; Zhang, Xiaoguang [ORNL; Gu, Gong [University of Tennessee, Knoxville (UTK); He, Guowei [Carnegie Mellon University (CMU); Feenstra, Randall [Carnegie Mellon University (CMU)

    2014-01-01

    The symmetry of the graphene honeycomb lattice is a key element determining many of graphene s unique electronic properties, such as the linear energy-momentum dispersion and the suppressed backscattering 1,2. However, line defects in large-scale epitaxial graphene films, such as grain boundaries, edges, surface steps, and changes in layer thickness, often break the sublatttice symmetry and can impact transport properties of graphene profoundly 3-6. Here we report asymmetric electron transport upon polarity reversal at individual monolayer-bilayer (ML-BL) boundaries in epitaxial graphene on SiC (0001), revealed by scanning tunneling potentiometry. A greater voltage drop is observed when the current flows from BL to ML graphene than in the reverse direction, and the difference remains nearly unchanged with increasing current. This is not a typical nonlinear conductance due to electron transmission through an asymmetric potential. Rather, it indicates the opening of a dynamic energy gap at the Fermi energy due to the Coulomb interaction between the injected nonequilibrium electron density and the pseudospin polarized Friedel oscillation charge density at the boundary. This intriguing heterojunction transport behavior opens a new avenue towards novel quantum functions such as quantum switching.

  20. Optical and morphological properties of graphene sheets decorated with ZnO nanowires via polyol enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vinay, E-mail: winn201@gmail.com; Rajaura, Rajveer Singh, E-mail: winn201@gmail.com [Centre for Converging Technologies, University of Rajasthan, Jaipur - 302004 (India); Sharma, Preetam K.; Srivastava, Subodh; Vijay, Y. K. [Department of Physics, Thin Film and Membrane Science Lab., University of Rajasthan, Jaipur - 302004 (India); Sharma, S. S. [Department of Physics, Govt. Women Engineering College, Ajmer- 305002 (India)

    2014-04-24

    Graphene-ZnO nanocomposites have proven to be very useful materials for photovoltaic and sensor applications. Here, we report a facile, one-step in situ polymerization method for synthesis of graphene sheets randomly decorated with zinc oxide nanowires using ethylene glycol as solvent. We have used hydrothermal treatment for growth of ZnO nanowires. UV-visible spectra peak shifting around 288nm and 307 nm shows the presence of ZnO on graphene structure. Photoluminiscence spectra (PL) in 400nm-500nm region exhibits the luminescence quenching effect. Scanning electron microscopy (SEM) image confirms the growth of ZnO nanowires on graphene sheets.

  1. Temperature-induced strain and doping in monolayer and bilayer isotopically labeled graphene

    Science.gov (United States)

    Verhagen, T. G. A.; Drogowska, K.; Kalbac, M.; Vejpravova, J.

    2015-09-01

    The electronic band structure of graphene is strongly dependent on the amount of strain and/or doping present. We performed a comprehensive study of temperature-dependent strain and doping in isotopically labeled graphene mono- and bilayers on a SiO2/Si substrate by Raman spectral mapping at well-defined temperatures between 300 and 10 K. The principal Raman active modes of the graphene (G, 2D) were subjected to correlation analysis, which enabled reliable separation of the strain and doping contributions. The influence of strain on the monolayer and top and bottom layers of the bilayer graphene is large and shows a pronounced temperature-dependent variation. A clear difference is observed in local strain fluctuations on length scales much smaller than the laser spot. In both the monolayer and the bottom layer of the bilayer, which are in contact with the substrate, a significant amount of local strain is induced when the temperature is varied. In contrast, the influence of local strain on the top layer of the bilayer is much smaller. Temperature dependence of the doping is clearly present in both layers, suggesting equalization of the captured charge in the bilayer down to low temperatures.

  2. Graphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides.

    Science.gov (United States)

    Nourbakhsh, Amirhasan; Adelmann, Christoph; Song, Yi; Lee, Chang Seung; Asselberghs, Inge; Huyghebaert, Cedric; Brizzi, Simone; Tallarida, Massimo; Schmeisser, Dieter; Van Elshocht, Sven; Heyns, Marc; Kong, Jing; Palacios, Tomás; De Gendt, Stefan

    2015-06-28

    Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the capacitive properties of GO with its electronic structure. Capacitance-voltage measurements showed that the capacitive behavior of Al2O3/GO depends on the oxidation level of GO. Finally, GO was successfully used as an ALD seed layer for the deposition of Al2O3 on chemically inert single layer graphene, resulting in high performance top-gated field-effect transistors.

  3. Formation, Energetics, and Electronic Properties of Graphene Monolayer and Bilayer Doped with Heteroatoms

    Directory of Open Access Journals (Sweden)

    Yoshitaka Fujimoto

    2015-01-01

    Full Text Available Doping with heteroatoms is one of the most effective methods to tailor the electronic properties of carbon nanomaterials such as graphene and carbon nanotubes, and such nanomaterials doped with heteroatom dopants might therefore provide not only new physical and chemical properties but also novel nanoelectronics/optoelectronics device applications. The boron and nitrogen are neighboring elements to carbon in the periodic table, and they are considered to be good dopants for carbon nanomaterials. We here review the recent work of boron and nitrogen doping effects into graphene monolayer as well as bilayer on the basis of the first-principles electronic structure calculations in the framework of the density-functional theory. We show the energetics and the electronic properties of boron and nitrogen defects in graphene monolayer and bilayer. As for the nitrogen doping, we further discuss the stabilities, the growth processes, and the electronic properties associated with the plausible nitrogen defect formation in graphene which is suggested by experimental observations.

  4. Understanding the impact of graphene sheet tailoring on the conductance of GNRFETs

    Indian Academy of Sciences (India)

    Devendra Upadhyay; Sudhanshu Choudhary

    2015-12-01

    The effect of tailoring the graphene sheets used as channel in a graphene nanoribbon field effect transistor (GNRFET) was investigated. The study was performed using self-consistent solution of Poisson's and Schrodinger's equation in combination with non-equilibrium Green's function (NEGF) formalism. Graphene sheet channel was tailored into different shapes and found that with the introduction of edge roughness along the border of GNR sheet the bandgap of GNRFET channel increases. Tailoring the channel decreases mobility and transmission probability to a great extent and thus the performance of I–V characteristics of GNRFET degrades.

  5. DFT calculation for adatom adsorption on graphene sheet as a prototype of carbon nanotube functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, A; Yamamoto, M; Asano, H; Fujiwara, K [Department of Applied Mathematics and Physics, Tottori University Koyama, Tottori 680-8552 (Japan)], E-mail: ishii@damp.tottori-u.ac.jp

    2008-03-15

    DFT calculation of various atomic species on graphene sheet is investigated as prototypes for formation of nano-structures on carbon nanotube (CNT) wall. We investigate computationally adsorption energies and adsorption sites on graphene sheet for a lot of atomic species including transition metals, noble metals, nitrogen and oxygen, using the DFT calculation as a prototype for CNT. The suitable atomic species can be chosen as each application from those results. The calculated results show us that Mo and Ru are bounded strongly on graphene sheet with large diffusion barrier energy. On the other hand, some atomic species has large binding energies with small diffusion barrier energies.

  6. Wetting of Liquid Iron in Carbon Nanotubes and on Graphene Sheets: A Molecular Dynamics Study

    Institute of Scientific and Technical Information of China (English)

    GAO Yu-Feng; YANG Yang; SUN De-Yan

    2011-01-01

    Using molecular dynamics simulations, we study the wetting of liquid iron in a carbon nanotube and on a graphene sheet. It is found that the contact angle of a droplet in a carbon nanotube increases linearly with the increase of wall curvature but is independent of the length of the filled liquid. The contact angle for a droplet on a graphene sheet decreases with the increasing droplet size. The line tension of a droplet on a graphene sheet is also obtained.Detailed studies show that liquid iron near the carbon walls exhibits the ordering tendencies in both the normal and tangential directions.

  7. Infrared Spectroscopy of Functionalized Graphene Sheets from First Principle Calculations

    Science.gov (United States)

    Zhang, Cui; Dabbs, Daniel; Aksay, Ilhan; Car, Roberto; Selloni, Annabella

    2014-03-01

    Detailed characterization of the structure of functionalized graphene sheets (FGSs) is an important and challenging task which could help to improve the performance of FGS materials for technological applications. We present here first principles calculations for the infrared (IR) spectra of different FGS models aimed at identifying the IR signatures of different functional groups and defect sites on FGSs. We found that vacancies and edges have significant effects on the IR frequencies of the functional groups on FGSs. In particular, hydroxyl groups close to vacancies have higher stretching and lower bending frequencies in comparison to hydroxyls in defect free regions of FGSs. More interestingly, the OH vibrations of carboxyl groups at edges exhibit unique features in the high frequency IR bands, which originate from the interactions with neighboring groups and the relative orientation of the carboxyl with respect to the FGS plane. Our results are supported by experimental IR measurements on FGS powders.

  8. Processing of monolayer materials via interfacial reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2014-05-20

    A method of forming and processing of graphene is disclosed based on exposure and selective intercalation of the partially graphene-covered metal substrate with atomic or molecular intercalation species such as oxygen (O.sub.2) and nitrogen oxide (NO.sub.2). The process of intercalation lifts the strong metal-carbon coupling and restores the characteristic Dirac behavior of isolated monolayer graphene. The interface of graphene with metals or metal-decorated substrates also provides for controlled chemical reactions based on novel functionality of the confined space between a metal surface and a graphene sheet.

  9. Quantum effects in graphene monolayers: Path-integral simulations

    Science.gov (United States)

    Herrero, Carlos P.; Ramírez, Rafael

    2016-12-01

    Path-integral molecular dynamics (PIMD) simulations have been carried out to study the influence of quantum dynamics of carbon atoms on the properties of a single graphene layer. Finite-temperature properties were analyzed in the range from 12 to 2000 K, by using the LCBOPII effective potential. To assess the magnitude of quantum effects in structural and thermodynamic properties of graphene, classical molecular dynamics simulations have been also performed. Particular emphasis has been laid on the atomic vibrations along the out-of-plane direction. Even though quantum effects are present in these vibrational modes, we show that at any finite temperature classical-like motion dominates over quantum delocalization, provided that the system size is large enough. Vibrational modes display an appreciable anharmonicity, as derived from a comparison between kinetic and potential energies of the carbon atoms. Nuclear quantum effects are found to be appreciable in the interatomic distance and layer area at finite temperatures. The thermal expansion coefficient resulting from PIMD simulations vanishes in the zero-temperature limit, in agreement with the third law of thermodynamics.

  10. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    Science.gov (United States)

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-09-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis.

  11. Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment

    KAUST Repository

    Shen, Chao

    2012-05-24

    Structural changes of few-layer graphene sheets induced by CF4 plasma treatment are studied by optical microscopy and Raman spectroscopy, together with theoretical simulation. Experimental results suggest a thickness reduction of few-layer graphene sheets subjected to prolonged CF4 plasma treatment while plasma treatment with short time only leads to fluorine functionalization on the surface layer by formation of covalent bonds. Raman spectra reveal an increase in disorder by physical disruption of the graphene lattice as well as functionalization during the plasma treatment. The F/CF3 adsorption and the lattice distortion produced are proved by theoretical simulation using density functional theory, which also predicts p-type doping and Dirac cone splitting in CF4 plasma-treated graphene sheets that may have potential in future graphene-based micro/nanodevices.

  12. Exfoliation of graphene sheets via high energy wet milling of graphite in 2-ethylhexanol and kerosene

    Directory of Open Access Journals (Sweden)

    Al-Sayed Al-Sherbini

    2017-05-01

    Full Text Available Graphene sheets have been exfoliated from bulk graphite using high energy wet milling in two different solvents that were 2-ethylhexanol and kerosene. The milling process was performed for 60 h using a planetary ball mill. Morphological characteristics were investigated using scanning electron microscope (SEM and transmission electron microscope (TEM. On the other hand, the structural characterization was performed using X-ray diffraction technique (XRD and Raman spectrometry. The exfoliated graphene sheets have represented good morphological and structural characteristics with a valuable amount of defects and a good graphitic structure. The graphene sheets exfoliated in the presence of 2-ethylhexanol have represented many layers, large crystal size and low level of defects, while the graphene sheets exfoliated in the presence of kerosene have represented fewer number of layers, smaller crystal size and higher level of defects.

  13. Exfoliation of graphene sheets via high energy wet milling of graphite in 2-ethylhexanol and kerosene.

    Science.gov (United States)

    Al-Sherbini, Al-Sayed; Bakr, Mona; Ghoneim, Iman; Saad, Mohamed

    2017-05-01

    Graphene sheets have been exfoliated from bulk graphite using high energy wet milling in two different solvents that were 2-ethylhexanol and kerosene. The milling process was performed for 60 h using a planetary ball mill. Morphological characteristics were investigated using scanning electron microscope (SEM) and transmission electron microscope (TEM). On the other hand, the structural characterization was performed using X-ray diffraction technique (XRD) and Raman spectrometry. The exfoliated graphene sheets have represented good morphological and structural characteristics with a valuable amount of defects and a good graphitic structure. The graphene sheets exfoliated in the presence of 2-ethylhexanol have represented many layers, large crystal size and low level of defects, while the graphene sheets exfoliated in the presence of kerosene have represented fewer number of layers, smaller crystal size and higher level of defects.

  14. Monolayer MoS2-Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity.

    Science.gov (United States)

    Jiang, Lianfu; Lin, Binghui; Li, Xiaoming; Song, Xiufeng; Xia, Hui; Li, Liang; Zeng, Haibo

    2016-02-03

    Monolayer MoS2 nanosheets (NSs) are promising anode materials for lithium-ion batteries because all redox reactions take place at the surface without lithium-ion diffusion limit. However, the expanded band gap of monolayer MoS2 NSs (∼1.8 eV) compared to their bulk counterparts (∼1.2 eV) and restacking tendency due to the van der Waals forces result in poor electron transfer and loss of the structure advantage. Here, a facile approach is developed to fabricate the MoS2-graphene aerogels comprising controlled three-dimensional (3D) porous architectures constructed by interconnected monolayer MoS2-graphene hybrid NSs. The robust 3D architectures combining with the monolayer feature of the hybrid NSs not only prevent the MoS2 and graphene NSs from restacking, but also enable fast electrode kinetics due to the surface reaction mechanism and highly conductive graphene matrix. As a consequence, the 3D porous monolayer MoS2-graphene composite aerogels exhibit a large reversible capacity up to 1200 mAh g(-1) as well as outstanding cycling stability and rate performance, making them promising as advanced anode materials for lithium-ion batteries.

  15. Electrostatically Confined Monolayer Graphene Quantum Dots with Orbital and Valley Splittings.

    Science.gov (United States)

    Freitag, Nils M; Chizhova, Larisa A; Nemes-Incze, Peter; Woods, Colin R; Gorbachev, Roman V; Cao, Yang; Geim, Andre K; Novoselov, Kostya S; Burgdörfer, Joachim; Libisch, Florian; Morgenstern, Markus

    2016-09-14

    The electrostatic confinement of massless charge carriers is hampered by Klein tunneling. Circumventing this problem in graphene mainly relies on carving out nanostructures or applying electric displacement fields to open a band gap in bilayer graphene. So far, these approaches suffer from edge disorder or insufficiently controlled localization of electrons. Here we realize an alternative strategy in monolayer graphene, by combining a homogeneous magnetic field and electrostatic confinement. Using the tip of a scanning tunneling microscope, we induce a confining potential in the Landau gaps of bulk graphene without the need for physical edges. Gating the localized states toward the Fermi energy leads to regular charging sequences with more than 40 Coulomb peaks exhibiting typical addition energies of 7-20 meV. Orbital splittings of 4-10 meV and a valley splitting of about 3 meV for the first orbital state can be deduced. These experimental observations are quantitatively reproduced by tight binding calculations, which include the interactions of the graphene with the aligned hexagonal boron nitride substrate. The demonstrated confinement approach appears suitable to create quantum dots with well-defined wave function properties beyond the reach of traditional techniques.

  16. Theoretical study of polyiodide formation and stability on monolayer and bilayer graphene.

    Science.gov (United States)

    Tristant, Damien; Puech, Pascal; Gerber, Iann C

    2015-11-28

    The presence of polyiodide complexes have been reported several times when carbon-based materials were doped by iodine molecules, but their formation mechanism remains unclear. By using first-principles calculations that include nonlocal correlation effects by means of a van der Waals density functional approach, we propose that the formation of triiodide (I3(-)) and pentaiodide (I5(-)) is due to a large density of iodine molecules (I2) in interaction with a carbonaceous substrate. As soon as the concentration of surface iodine reaches a threshold value of 12.5% for a graphene monolayer and 6.25% for a bilayer, these complexes spontaneously appear. The corresponding structural and energetic aspects, electronic structures and vibrational frequencies support this statement. An upshift of the Dirac point from the Fermi level with values of 0.45 and 0.52 eV is observed for adsorbed complexes on graphene and intercalated complexes between two layers, respectively. For doped-graphene, it corresponds to a graphene hole density of around 1.1 × 10(13) cm(-2), in quantitative agreement with experiments. Additionally, we have studied the thermal stability at room temperature of these adsorbed ions on graphene by means of ab initio molecular dynamics, which also shows successful p-doping with polyiodide complexes.

  17. Probing top-gated field effect transistor of reduced graphene oxide monolayer made by dielectrophoresis

    Science.gov (United States)

    Vasu, K. S.; Chakraborty, Biswanath; Sampath, S.; Sood, A. K.

    2010-08-01

    We demonstrate a top-gated field effect transistor made of a reduced graphene oxide (RGO) monolayer (graphene) by dielectrophoresis. The Raman spectrum of RGO flakes of typical size of 5 μm×5 μm shows a single 2D band at 2687 cm -1, characteristic of single-layer graphene. The two-probe current-voltage measurements of RGO flakes, deposited in between the patterned electrodes with a gap of 2.5 μm using ac dielectrophoresis, show ohmic behavior with a resistance of ˜37 kΩ. The temperature dependence of the resistance (R) of RGO measured between 305 K and 393 K yields a temperature coefficient of resistance [dR/dT]/R˜-9.5×10-4/K, the same as that of mechanically exfoliated single-layer graphene. The field-effect transistor action was obtained by electrochemical top-gating using a solid polymer electrolyte (PEO+LiClO 4) and Pt wire. The ambipolar nature of graphene flakes is observed up to a doping level of ˜6×1012/cm and carrier mobility of ˜50 cm 2/V s. The source-drain current characteristics show a tendency of current saturation at high source-drain voltage which is analyzed quantitatively by a diffusive transport model.

  18. Active Multiple Plasmon-Induced Transparency with Graphene Sheets Resonators in Mid-Infrared Frequencies

    Directory of Open Access Journals (Sweden)

    Jicheng Wang

    2016-01-01

    Full Text Available A multiple plasmon-induced transparency (PIT device operated in the mid-infrared region has been proposed. The designed model is comprised of one graphene ribbon as main waveguide and two narrow graphene sheets resonators. The phase coupling between two graphene resonators has been investigated. The multimode PIT resonances have been found in both cases and can be dynamically tuned via varying the chemical potential of graphene resonators without optimizing its geometric parameters. In addition, this structure can get multiple PIT effect by equipping extra two sheets on the symmetric positions of graphene waveguide. The simulation results based on finite element method (FEM are in good agreement with the resonance theory. This work may pave new way for graphene-based thermal plasmonic devices applications.

  19. Controlled modulation of electronic properties of graphene by self-assembled monolayers on SiO2 substrates.

    Science.gov (United States)

    Yan, Zheng; Sun, Zhengzong; Lu, Wei; Yao, Jun; Zhu, Yu; Tour, James M

    2011-02-22

    In this study, with self-assembled monolayers (SAMs) of aminopropyl-, ammoniumpropyl-, butyl-, and 1H,1H,2H,2H-perfluorooctyltriethoxysilanes deposited in-between graphene and the SiO(2) substrate, a controlled doping of graphene was realized with a threshold voltage ranging from -18 to 30 V. In addition, the SAMs are covalently bonded to the SiO(2) surface rather than the graphene surface, thereby producing minimal effects on the mobility of the graphene. Finally, it is more stable than conventional noncovalent dopants.

  20. Sensing Characteristics of a Graphene-like Boron Carbide Monolayer towards Selected Toxic Gases.

    Science.gov (United States)

    Mahabal, Manasi S; Deshpande, Mrinalini D; Hussain, Tanveer; Ahuja, Rajeev

    2015-11-16

    By using first-principles calculations based on density functional theory, we study the adsorption efficiency of a BC3 sheet for various gases, such as CO, CO2, NO, NO2, and NH3. The optimal adsorption position and orientation of these gas molecules on the BC3 surface is determined and the adsorption energies are calculated. Among the gas molecules, CO2 is predicted to be weakly adsorbed on the graphene-like BC3 sheet, whereas the NH3 gas molecule shows a strong interaction with the BC3 sheet. The charge transfer between the molecules and the sheet is discussed in terms of Bader charge analysis and density of states. The calculated work function of BC3 in the presence of CO, CO2, and NO is greater than that of a bare BC3 sheet. The decrease in the work function of BC3 sheets in the presence of NO2 and NH3 further explains the affinity of the sheet towards the gas molecules. The energy gap of the BC3 sheets is sensitive to the adsorption of the gas molecules, which implies possible future applications in gas sensors.

  1. Superconductivity and magnetic short-range order in the system with a Pd sheet sandwiched between graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masatsugu [Department of Physics, State University of New York at Binghamton, Binghamton, NY 13902-6016 (United States); Suzuki, Itsuko S [Department of Physics, State University of New York at Binghamton, Binghamton, NY 13902-6016 (United States); Walter, Juergen [Department of Physics, State University of New York at Binghamton, Binghamton, NY 13902-6016 (United States)

    2004-02-18

    Pd-metal graphite (Pd-MG) has a layered structure, where each Pd sheet is sandwiched between adjacent graphene sheets. The DC magnetization and AC magnetic susceptibility of Pd-MG have been measured using a SQUID magnetometer. Pd-MG undergoes a superconducting transition at T{sub c} (= 3.63 {+-} 0.04 K). The superconductivity occurs in the Pd sheets. The irreversibility between {chi}{sub ZFC} and {chi}{sub FC} occurs well above T{sub c}. The susceptibility {chi}{sub FC} obeys a Curie-Weiss behaviour with a negative Curie-Weiss temperature (-13.1 {<=}{theta} {<=}-5.4 K). The growth of magnetic order is limited by the disordered nature of nanographites, forming magnetic short-range order at low temperature in the graphene sheets.

  2. Convert Graphene Sheets to Boron Nitride and Boron Nitride-Carbon Sheets via a Carbon-Substitution-Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Han, W.; Yu, H.-G.; Liu. Z.

    2011-05-16

    Here we discuss our synthesis of highly crystalline pure boron nitride (BN) and BN-carbon (BN-C) sheets by using graphene sheets as templates via a carbon-substitution reaction. Typically, these sheets are several micrometers wide and have a few layers. The composition ratios of BN-C sheets can be controlled by the post-treatment (remove carbon by oxidation) temperature. We also observed pure BN and BN-C nanoribbons. We characterized the BN-C sheets via Raman spectroscopy and density functional theory calculations. The results reveal that BN-C sheets with an armchair C-BN chain, and embedded C{sub 2} or C{sub 6} units in BN-dominated regions energetically are the most favorable.

  3. The Tunable Hybrid Surface Phonon and Plasmon Polariton Modes in Boron Nitride Nanotube and Graphene Monolayer Heterostructures

    CERN Document Server

    Sun, Yu; Cheng, Jiangtao; Liu, Jiansheng

    2014-01-01

    The hybrid modes incorporating surface phonon polariton (SPhP) modes in boron nitride nanotubes (BNNTs) and surface plasmon polariton (SPP) modes in graphene monolayers are theoretically studied. The combination of the 1D BNNTs and 2D graphene monolayer further improves the modal characteristics with electrical tunability. Superior to the graphene monolayers, the proposed heterostructures supports single mode transmission with lateral optical confinement. The modal characteristics can be shifted from SPP-like toward SPhP-like. Both the figure of merit and field enhancement of hybrid modes are improved over 3 times than those of BNNT SPhP modes, which may further enable sub-wavelength mid-infrared applications.

  4. Self-assembly of hydrofluorinated Janus graphene monolayer

    DEFF Research Database (Denmark)

    Jin, Yakang; Xue, Qingzhong; Zhu, Lei;

    2016-01-01

    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van...... der Waals (vdW) interaction and the coupling of C-H/π/C-F interaction and π/π interaction are proven to offer the continuous driving force of self-assembly of J-GN. The results show that J-GN can self-assemble into various J-NSs structures, including arcs, multi-wall J-NS and arm-chair-like J......-NS by manipulating its original geometry (size and aspect ratio). Moreover, we also investigated self-assembly of hydrofluorinated J-GN and Fe nanowires (NWs), suggesting that Fe NW is a good alternative to activate J-GN to form J-NS. Differently, the strong vdW interaction between J-GN and Fe NW provides the main...

  5. Optical absorption signature of a self-assembled dye monolayer on graphene

    Directory of Open Access Journals (Sweden)

    Tessnim Sghaier

    2016-06-01

    Full Text Available A well-organized monolayer of alkylated perylene-3,4,9,10-tetracarboxylic-3,4,9,10-diimide (PTCDI has been formed onto CVD graphene transferred on a transparent substrate. Its structure has been probed by scanning tunnelling microscopy and its optical properties by polarized transmission spectroscopy at varying incidence. The results show that the transition dipoles of adsorbed PTCDI are all oriented parallel to the substrate. The maximum absorption is consistent with the measured surface density of molecules and their absorption cross section. The spectrum presents mainly a large red-shift of the absorption line compared with the free molecules dispersed in solution, whereas the relative strengths of the vibronic structures are preserved. These changes are attributed to non-resonant interactions with the graphene layer and the neighbouring molecules.

  6. Relaxation of charge in monolayer graphene: Fast nonlinear diffusion versus Coulomb effects

    Science.gov (United States)

    Kolomeisky, Eugene B.; Straley, Joseph P.

    2017-01-01

    Pristine monolayer graphene exhibits very poor screening because the density of states vanishes at the Dirac point. As a result, charge relaxation is controlled by the effects of zero-point motion (rather than by the Coulomb interaction) over a wide range of parameters. Combined with the fact that graphene possesses finite intrinsic conductivity, this leads to a regime of relaxation described by a nonlinear diffusion equation with a diffusion coefficient that diverges at zero charge density. Some consequences of this fast diffusion are self-similar superdiffusive regimes of relaxation, the development of a charge depleted region at the interface between electron- and hole-rich regions, and finite extinction times for periodic charge profiles.

  7. Magnetic quantum oscillations in a monolayer graphene under a perpendicular magnetic field

    Institute of Scientific and Technical Information of China (English)

    Fu Zhen-Guo; Wang zhi-Gang; Li shu-shen; Zhang Ping

    2011-01-01

    The de Haas-van Alphen (dHvA) oscillations of electronic magnetization in a monolayer graphene with structureinduced spin-orbit interaction (SOI) are studied. The results show that the dHvA oscillating centre in this system deviates from the well known (zero) value in a conventional two-dimensional electron gas. The inclusion of SOI will change the well-defined sawtooth pattern of magnetic quantum oscillations and result in a beating pattern. In addition,the SOI effects on Hall conductance and magnetic susceptibility are also discussed.

  8. Effect of annealing on Raman scattering spectra of monolayer graphene samples gradually disordered by ion irradiation

    OpenAIRE

    Zion, E.; BUTENKO A.; Kaganovskii, Yu.; Richter, V.; Wolfson, L; Sharoni, A.; Kogan, E.; Kaveh, M.; Shlimak, I.

    2016-01-01

    The Raman scattering spectra (RS) of two series of monolayer graphene samples irradiated with various doses of C$^{+}$ and Xe$^{+}$ ions were measured after annealing in high vacuum, and in forming gas (95\\%Ar+5\\%H$_{2}$). It was found that these methods of annealing have dramatically different influence on the RS lines. Annealing in vacuum below 500$^{\\circ}$C leads to significant decrease of both D-line, associated with defects, and 2D-line, associated with the intact lattice structure, whi...

  9. Variable range hopping and nonlinear transport in monolayer epitaxial graphene grown on SiC

    Science.gov (United States)

    Liu, Chieh-I.; Wu, Bi-Yi; Chuang, Chiashain; Lee, Ya-Chi; Ho, Yi-Ju; Yang, Yanfei; Elmquist, Randolph E.; Lo, Shun-Tsung; Liang, Chi-Te

    2016-10-01

    We report experimental results on variable range hopping (VRH) and nonlinear transport in monolayer epitaxial graphene. In the linear regime in which the conductance is independent of voltage, the resistance curve derivative analysis method can be used to unequivocally determine whether Mott VRH or Efros-Shklovskii VRH is the dominant transport mechanism in our devices. In the nonlinear regime in which the conductance shows a strong dependence on voltage, we find that our experimental results can be successfully described by existing theoretical models. We suggest that the observed vastly different exponents in the threshold voltage-temperature dependence require further experimental and theoretical studies.

  10. Grüneisen parameter of the G mode of strained monolayer graphene

    KAUST Repository

    Cheng, Yingchun

    2011-03-28

    We present a detailed analysis of the effects of uniaxial and biaxial strain on the frequencies of the G mode of monolayer graphene, using first principles calculations. Our results allow us to explain discrepancies in the experimentally determined values of the Grüneisen parameter. The direction and strength of the applied strain, Poisson\\'s ratio of the substrate, and the intrinsic strain in different experimental setups turn out to be important. A reliable determination of the Grüneisen parameter is a prerequisite of strain engineering.

  11. Voltage-controlled nonvolatile molecular memory of an azobenzene monolayer through solution-processed reduced graphene oxide contacts.

    Science.gov (United States)

    Min, Misook; Seo, Sohyeon; Lee, Sae Mi; Lee, Hyoyoung

    2013-12-23

    The solution-processed fabrication of an azobenzene (ABC10) monolayer-based nonvolatile memory device on a reduced graphene oxide (rGO) electrode is successfully accomplished. Trans--cis isomerizations of ABC10 between two rGO electrodes in a crossbar device are controlled by applied voltage. An rGO soft-contact top electrode plays an important role in the conformational-change-dependent conductance switching process of an ABC10 monolayer.

  12. Preparation of Single- and Few-Layer Graphene Sheets Using Co Deposition on SiC Substrate

    Directory of Open Access Journals (Sweden)

    Cun Li

    2011-01-01

    Full Text Available Single- and few-layer graphene sheets were fabricated by selective chemical reactions between Co film and SiC substrate. A rapid cooling process was employed. The number of layers and crystallinity of graphene sheets were controlled by process parameters. The formation mechanism of graphene was highly sensitive to carbon diffusion. Free carbon precipitated and then moved across the product layer that was composed mainly of cobalt-silicides. The graphene layer formed homogeneously on the surface and then transferred to the other substrate. This could provide a method for high-quality fabrication of wafer-sized graphene sheets.

  13. High-performance and high-sensitivity applications of graphene transistors with self-assembled monolayers.

    Science.gov (United States)

    Yeh, Chao-Hui; Kumar, Vinod; Moyano, David Ricardo; Wen, Shao-Hsuan; Parashar, Vyom; Hsiao, She-Hsin; Srivastava, Anchal; Saxena, Preeti S; Huang, Kun-Ping; Chang, Chien-Chung; Chiu, Po-Wen

    2016-03-15

    Charge impurities and polar molecules on the surface of dielectric substrates has long been a critical obstacle to using graphene for its niche applications that involve graphene's high mobility and high sensitivity nature. Self-assembled monolayers (SAMs) have been found to effectively reduce the impact of long-range scatterings induced by the external charges. Yet, demonstrations of scalable device applications using the SAMs technique remains missing due to the difficulties in the device fabrication arising from the strong surface tension of the modified dielectric environment. Here, we use patterned SAM arrays to build graphene electronic devices with transport channels confined on the modified areas. For high-mobility applications, both rigid and flexible radio-frequency graphene field-effect transistors (G-FETs) were demonstrated, with extrinsic cutoff frequency and maximum oscillation frequency enhanced by a factor of ~2 on SiO2/Si substrates. For high sensitivity applications, G-FETs were functionalized by monoclonal antibodies specific to cancer biomarker chondroitin sulfate proteoglycan 4, enabling its detection at a concentration of 0.01 fM, five orders of magnitude lower than that detectable by a conventional colorimetric assay. These devices can be very useful in the early diagnosis and monitoring of a malignant disease.

  14. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route.

    Science.gov (United States)

    Pan, Shuyang; Aksay, Ilhan A

    2011-05-24

    We have studied the effect of the oxidation path and the mechanical energy input on the size of graphene oxide sheets derived from graphite oxide. The cross-planar oxidation of graphite from the (0002) plane results in periodic cracking of the uppermost graphene oxide layer, limiting its lateral dimension to less than 30 μm. We use an energy balance between the elastic strain energy associated with the undulation of graphene oxide sheets at the hydroxyl and epoxy sites, the crack formation energy, and the interaction energy between graphene layers to determine the cell size of the cracks. As the effective crack propagation rate in the cross-planar direction is an order of magnitude smaller than the edge-to-center oxidation rate, graphene oxide single sheets larger than those defined by the periodic cracking cell size are produced depending on the aspect ratio of the graphite particles. We also demonstrate that external energy input from hydrodynamic drag created by fluid motion or sonication, further reduces the size of the graphene oxide sheets through tensile stress buildup in the sheets.

  15. Local atomic and electronic structure of boron chemical doping in monolayer graphene.

    Science.gov (United States)

    Zhao, Liuyan; Levendorf, Mark; Goncher, Scott; Schiros, Theanne; Pálová, Lucia; Zabet-Khosousi, Amir; Rim, Kwang Taeg; Gutiérrez, Christopher; Nordlund, Dennis; Jaye, Cherno; Hybertsen, Mark; Reichman, David; Flynn, George W; Park, Jiwoong; Pasupathy, Abhay N

    2013-10-09

    We use scanning tunneling microscopy and X-ray spectroscopy to characterize the atomic and electronic structure of boron-doped and nitrogen-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 carriers into the graphene sheet per dopant. Density functional theory calculations indicate that boron dopants interact strongly with the underlying copper substrate while nitrogen dopants do not. The local bonding differences between graphitic boron and nitrogen dopants lead to large scale differences in dopant distribution. The distribution of dopants is observed to be completely random in the case of boron, while nitrogen displays strong sublattice clustering. Structurally, nitrogen-doped graphene is relatively defect-free while boron-doped graphene films show a large number of Stone-Wales defects. These defects create local electronic resonances and cause electronic scattering, but do not electronically dope the graphene film.

  16. Surface Plasmonic Lattice Solitons in Semi-infinite Graphene Sheet Arrays

    CERN Document Server

    Wang, Zhouqing; Long, Hua; Wang, Kai; Lu, Peixiang

    2016-01-01

    We investigate the surface plasmonic lattice solitons (PLSs) in semi-infinite graphene sheet arrays. The surface soliton is formed as the SPPs tunneling is inhibited by the graphene nonlinearity, and meanwhile the incident power should be above a threshold value. Thanks to the strong confinement of surface plasmon polaritons (SPPs) on graphene, the effective width of surface PLSs can be squeezed into deep-subwavelength scale of ~ 0.001{\\lambda}. Based on the stable propagation of surface PLSs, we find that the light propagation can be switched from the array boundary to the inner graphene sheets by reducing the incident power or increasing the chemical potential of graphene. The study may find promising application in optical switches on deep-subwavelength scale.

  17. A molecular dynamics study on the interaction between epoxy and functionalized graphene sheets

    Science.gov (United States)

    Melro, L. S.; Pyrz, R.; Jensen, L. R.

    2016-07-01

    The interaction between graphene and epoxy resin was studied using molecular dynamics simulations. The interfacial shear strength and pull out force were calculated for functionalised graphene layers (carboxyl, carbonyl, and hydroxyl) and epoxy composites interfaces. The influence of functional groups, as well as their distribution and coverage density on the graphene sheets were also analysed through the determination of the Young's modulus. Functionalisation proved to be detrimental to the mechanical properties, nonetheless according to interfacial studies the interaction between graphene and epoxy resin increases.

  18. VARIATIONAL PRINCIPLES FOR NONLOCAL CONTINUUM MODEL OF ORTHOTROPIC GRAPHENE SHEETS EMBEDDED IN AN ELASTIC MEDIUM

    Institute of Scientific and Technical Information of China (English)

    Sarp Adali

    2012-01-01

    Equations governing the vibrations and buckling of multilayered orthotropic graphene sheets can be expressed as a system of n partial differential equations where n refers to the number of sheets.This description is based on the continuum model of the graphene sheets which can also take the small scale effects into account by employing a nonlocal theory.In the present article a variational principle is derived for the nonlocal elastic theory of rectangular graphene sheets embedded in an elastic medium and undergoing transverse vibrations.Moreover the graphene sheets are subject to biaxial compression.Rayleigh quotients are obtained for the frequencies of freely vibrating graphene sheets and for the buckling load. The influence of small scale effects on the frequencies and the buckling load can be observed qualiatively from the expressions of the Rayleigh quotients.Elastic medium is modeled as a combination of Winkler and Pasternak foundations acting on the top and bottom layers of the mutilayered nano-structure.Natural boundary conditions of the problem are derived using the variational principle formulated in the study.It is observed that free boundaries lead to coupled boundary conditions due to nonlocal theory used in the continuum formulation while the local (classical) elasticity theory leads to uncoupled boundary conditions.The mathematical methods used in the study involve calculus of variations and the semi-inverse method for deriving the variational integrals.

  19. Controllable formation of graphene and graphene oxide sheets using photo-catalytic reduction and oxygen plasma treatment

    Science.gov (United States)

    Ostovari, Fatemeh; Abdi, Yaser; Ghasemi, Foad

    2012-12-01

    Au/SiO2/Si interdigital electrodes with thickness of 1 μm were created on silicon substrate. Graphene oxide (GO) sheets hanging from these electrodes were obtained by spin coating of chemically synthesized GO dispersed in water. We used UV-light-induced photo-catalytic activity of titanium oxide nanoparticles to reduce the GO layer. Effects of the photo-induced chemical reduction on the conductivity of the GO were investigated. Also, low power DC plasma was used for oxidation of the sheets. Oxygen bombardment leads to sheets with low electrical conductivity. Measurements show that graphene and GO sheets with the controlled electrical conductivity were obtained by these processes. Scanning electron and atomic force microscopy were used to study the morphology of the TiO2/GO and graphene structures. X-ray diffraction and Raman scattering analysis were used to verify the structural characteristics of the prepared sheets. Analysis showed a gradual increase in the number of C-O bonds on the surface of the graphene layer as a result of increasing the time of plasma bombardment. Based on the Raman spectroscopy, the photo-catalytic activity of TiO2 nanoparticles resulted in a decrease in the number of C-O bonds.

  20. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties.

    Science.gov (United States)

    Noroozi, Monir; Zakaria, Azmi; Radiman, Shahidan; Abdul Wahab, Zaidan

    2016-01-01

    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene.

  1. A phenomenological model for self-rippling energy of free graphene monolayers

    Science.gov (United States)

    Wu, Bingjie; Ru, C. Q.

    2016-07-01

    Several candidate phenomenological expressions are studied for self-rippling energy that drives ripple formation of free single-layer graphene sheets. One phenomenological expression is admitted, while all others are rejected because they cannot admit stable periodic ripple mode. The admitted phenomenological expression contains two terms: one quadratic term which acts like a compressive force and has a destabilizing effect, and another fourth-order term which acts like a nonlinear elastic foundation and has a stabilizing effect. The two associated coefficients depend on specific mechanism of self-rippling and can be determined based on observed wavelength and amplitude of ripple mode. Based on the admitted expression, the effect of an applied force on ripple formation is studied. The present model predicts that the rippling can be controlled or even suppressed with an applied tensile force or collapsed into narrow wrinkles (of deformed wavelengths down to around 2 nm) under an applied compressive force, and the estimated minimum tensile strain to suppress rippling is in remarkable agreement with some known data. Our results show that self-rippling energy dominates ripple formation of sufficiently long free graphene ribbons, although it cannot drive self-rippling of sufficiently short free graphene ribbons. Consequently, a critical length is estimated so that self-rippling occurs only when the length of free single-layer graphene ribbons is much longer than the critical length. The estimated critical length is reasonably consistent with the known fact that self-rippling cannot occur in shorter free graphene sheets (say, of length below 20 nm).

  2. Strong THz and Infrared Optical Forces on a Suspended Single-Layer Graphene Sheet

    CERN Document Server

    Mousavi, S Hossein; Wang, Zheng

    2014-01-01

    Single-layer graphene exhibits exceptional mechanical properties attractive for optomechanics: it combines low mass density, large tensile modulus, and low bending stiffness. However, at visible wavelengths, graphene absorbs weakly and reflects even less, thereby inadequate to generate large optical forces needed in optomechanics. Here, we numerically show that a single-layer graphene sheet is sufficient to produce strong optical forces under terahertz or infrared illumination. For a system as simple as graphene suspended atop a uniform substrate, high reflectivity from the substrate is crucial in creating a standing-wave pattern, leading to a strong optical force on graphene. This force is readily tunable in amplitude and direction by adjusting the suspension height. In particular, repellent optical forces can levitate graphene to a series of stable equilibrium heights above the substrate. One of the key parameters to maximize the optical force is the excitation frequency: peak forces are found near the scat...

  3. Adsorbing H₂S onto a single graphene sheet: A possible gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A. H., E-mail: maalidph@yahoo.co.uk [New Technologies-Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Auluck, S. [Council of Scientific and Industrial Research-National Physical Laboratory, Dr. K S Krishnan Marg, New Delhi 110012 (India)

    2014-09-14

    The electronic structure of pristine graphene sheet and the resulting structure of adsorbing a single molecule of H₂S on pristine graphene in three different sites (bridge, top, and hollow) are studied using the full potential linearized augmented plane wave method. Our calculations show that the adsorption of H₂S molecule on the bridge site opens up a small direct energy gap of about 0.1 eV at symmetry point M, while adsorption of H₂S on top site opens a gap of 0.3 eV around the symmetry point K. We find that adsorbed H₂S onto the hollow site of pristine graphene sheet causes to push the conduction band minimum and the valence band maximum towards Fermi level resulting in a metallic behavior. Comparing the angular momentum decomposition of the atoms projected electronic density of states of pristine graphene sheet with that of H₂S–graphene for three different cases, we find a significant influence of the location of the H₂S molecule on the electronic properties especially the strong hybridization between H₂S molecule and graphene sheet.

  4. Strain-tunable half-metallicity in hybrid graphene-hBN monolayer superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanchao, E-mail: fanchao.meng@mail.mcgill.ca [Department of Mining and Materials Engineering, McGill University, Montréal, QC H3A 0C5 (Canada); Zhang, Shiqi [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281 (United States); Lee, In-Ho [Korea Research Institute of Standards and Science, 1 Doryong-Dong, Yuseong-Gu, Daejeon 305-600 (Korea, Republic of); Jun, Sukky [Department of Mechanical Engineering, University of Wyoming, Laramie, WY 82071 (United States); Ciobanu, Cristian V., E-mail: cciobanu@mines.edu [Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401 (United States)

    2016-07-01

    Highlights: • Armchair superlattices have a bandgap modulated by the deformed domain widths. • Strain and domain width lead to novel spin-dependent behavior for zigzag boundaries. • Limits for spin-dependent bandgap and half-metallic behavior have been charted. - Abstract: As research in 2-D materials evolves toward combinations of different materials, interesting electronic and spintronic properties are revealed and may be exploited in future devices. A way to combine materials is the formation of spatially periodic domain boundaries in an atom-thick monolayer: as shown in recent reports, when these domains are made of graphene and hexagonal boron nitride, the resulting superlattice has half-metallic properties in which one spin component is (semi)metallic and the other is semiconductor. We explore here the range of spin-dependent electronic properties that such superlattices can develop for different type of domain boundaries, domain widths, and values of tensile strain applied to the monolayer. We show evidence of an interplay between strain and domain width in determining the electronic properties: while for armchair boundaries the bandgap is the same for both spin components, superlattices with zigzag boundaries exhibit rich spin-dependent behavior, including different bandgaps for each spin component, half-metallicity, and reversal of half-metallicity. These findings can lead to new ways of controlling the spintronic properties in hybrid-domain monolayers, which may be exploited in devices based on 2-D materials.

  5. Immobilization of TiO2 nanofibers on reduced graphene sheets: Novel strategy in electrospinning.

    Science.gov (United States)

    Pant, Hem Raj; Adhikari, Surya Prasad; Pant, Bishweshwar; Joshi, Mahesh K; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2015-11-01

    A simple and efficient approach is developed to immobilize TiO2 nanofibers onto reduced graphene oxide (RGO) sheets. Here, TiO2 nanofiber-intercalated RGO sheets are readily produced by two-step procedure involving the use of electrospinning process to fabricate TiO2 precursor containing polymeric fibers on the surface of GO sheets, followed by simultaneous TiO2 nanofibers formation and GO reduction by calcinations. GO sheets deposited on the collector during electrospinning/electrospray can act as substrate on to which TiO2 precursor containing polymer nanofibers can be deposited which give TiO2 NFs doped RGO sheets on calcinations. Formation of corrugated structure cavities of graphene sheets decorated with TiO2 nanofibers on their surface demonstrates that our method constitutes an alternative top-down strategy toward fabricating verities of nanofiber-decorated graphene sheets. It was found that the synthesized TiO2/RGO composite revealed a remarkable increased in photocatalytic activity compared to pristine TiO2 nanofibers. Therefore, engineering of TiO2 nanofiber-intercalated RGO sheets using proposed facile technique can be considered a promising method for catalytic and other applications.

  6. Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns.

    Science.gov (United States)

    Wang, Bin; Huang, Ming; Tao, Li; Lee, Sun Hwa; Jang, A-Rang; Li, Bao-Wen; Shin, Hyeon Suk; Akinwande, Deji; Ruoff, Rodney S

    2016-01-26

    We explored a support-free method for transferring large area graphene films grown by chemical vapor deposition to various fluoric self-assembled monolayer (F-SAM) modified substrates including SiO2/Si wafers, polyethylene terephthalate films, and glass. This method yields clean, ultrasmooth, and high-quality graphene films for promising applications such as transparent, conductive, and flexible films due to the absence of residues and limited structural defects such as cracks. The F-SAM introduced in the transfer process can also lead to graphene transistors with enhanced field-effect mobility (up to 10,663 cm(2)/Vs) and resistance modulation (up to 12×) on a standard silicon dioxide dielectric. Clean graphene patterns can be realized by transfer of graphene onto only the F-SAM modified surfaces.

  7. Fluorination of edges and central areas of monolayer graphene by SF6 and CHF3 plasma treatments.

    Science.gov (United States)

    Chen, Minjiang; Qiu, Caiyu; Zhou, Haiqing; Yang, Huaichao; Yu, Fang; Sun, Lianfeng

    2013-02-01

    In this work, we report the fluorination of edges and central areas of monolayer graphene by SF6 and CHF3 plasma treatments. After fluorination by SF6 plasma, G and 2D peaks of Raman spectroscopy for the edges have upshifts, which are much bigger than the upshifts for central areas of monolayer graphene. For the intensity ratio of I(2D)/I(G), it becomes smaller after SF6 plasma treatments and magnitude of change is similar for the edges and that of the central areas. These observations indicate that the fluorination by SF6 plasma treatments can induce p-doping to graphene, which is more significant for the edges comparing to the central areas. Moreover, the ratio of I(D)/I(G) becomes larger both for the edges and the central areas. For CHF3 plasma treatments, although similar results can be obtained, the p-doping to graphene is less and more defects are introduced comparing to SF6 plasma treatment. Therefore, for fluorination of monolayer graphene, SF6 plasma is better than CHF3 plasma.

  8. Tuning the mechanical properties of vertical graphene sheets through atomic layer deposition.

    Science.gov (United States)

    Davami, Keivan; Jiang, Yijie; Cortes, John; Lin, Chen; Shaygan, Mehrdad; Turner, Kevin T; Bargatin, Igor

    2016-04-15

    We report the fabrication and characterization of graphene nanostructures with mechanical properties that are tuned by conformal deposition of alumina. Vertical graphene (VG) sheets, also called carbon nanowalls (CNWs), were grown on copper foil substrates using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique and conformally coated with different thicknesses of alumina (Al2O3) using atomic layer deposition (ALD). Nanoindentation was used to characterize the mechanical properties of pristine and alumina-coated VG sheets. Results show a significant increase in the effective Young's modulus of the VG sheets with increasing thickness of deposited alumina. Deposition of only a 5 nm thick alumina layer on the VG sheets nearly triples the effective Young's modulus of the VG structures. Both energy absorption and strain recovery were lower in VG sheets coated with alumina than in pure VG sheets (for the same peak force). This may be attributed to the increase in bending stiffness of the VG sheets and the creation of connections between the sheets after ALD deposition. These results demonstrate that the mechanical properties of VG sheets can be tuned over a wide range through conformal atomic layer deposition, facilitating the use of VG sheets in applications where specific mechanical properties are needed.

  9. Ab initio calculations for structural, electronic and magnetic behaviors of nitrogenized monolayer graphene decorated with 5d transition metal atoms

    Science.gov (United States)

    Rafique, Muhammad; Shuai, Yong; Xu, Meng; Zhang, Guohua; Guo, Yanming

    2017-09-01

    Graphene-based magnetic materials have revealed great potential for developing high-performance electronic units at sub-nanometer such as spintronic data storage devices. However, a significant ferromagnetism behavior and ample band gap in the electronic structure of graphene is required before it can be used for actual engineering applications. Based on first-principles calculations, here we demonstrate the structural, electronic and magnetic behaviors of 5d transition metal (TM) atom-substituted nitrogenized monolayer graphene. We find that, during TMN(3)4 cluster-substitution, tight bonding occurs between impurity atoms and graphene with significant binding energies. Charge transfer occurs from graphene layer to the TMN(3)4 clusters. Interestingly, PtN3, TaN4 and ReN4 cluster-doped graphene structures exhibit dilute magnetic semiconductor behavior with 1.00 μB, 1.04 μB and 1.05 μB magnetic moments, respectively. While, OsN4 and PtN4 cluster-doped structures display nonmagnetic direct band gap semiconductor behavior. Remaining, TMN(3)4 cluster-doped graphene complexes exhibit half metal properties. Detailed analysis of density of states (DOS) plots indicate that d orbitals of TM atoms should be responsible for arising magnetic moments in graphene. Given results pave a new route for potential applications of dilute magnetic semiconductors and half-metals in spintronic devices by employing TMN(3)4 cluster-doped graphene complexes.

  10. Three-dimensional porous architectures of carbon nanotubes and graphene sheets for energy applications

    OpenAIRE

    2014-01-01

    Owing to their extraordinary physicochemical, electrical, and mechanical properties, carbon nanotubes (CNTs) and graphene materials have been widely used to improve energy storage and conversion. In this article, we briefly review the latest development on fabrication of 3D porous structures of CNTs or graphene sheets or their hybrids, and their applications in various energy devices including supercapacitors, (bio-) fuel cells, and lithium ion batteries.

  11. Three-Dimensional Porous Architectures of Carbon Nanotubes and Graphene Sheets for Energy Applications

    OpenAIRE

    2014-01-01

    Owing to their extraordinary physicochemical, electrical, and mechanical properties, carbon nanotubes (CNTs) and graphene materials have been widely used to improve energy storage and conversion. In this article, we briefly review the latest development on fabrication of 3D porous structures of CNTs or graphene sheets or their hybrids, and their applications in various energy devices including supercapacitors, (bio-) fuel cells, and lithium ion batteries.

  12. Three-dimensional porous architectures of carbon nanotubes and graphene sheets for energy applications

    Directory of Open Access Journals (Sweden)

    Xuewan eWang

    2014-08-01

    Full Text Available Owing to their extraordinary physicochemical, electrical, and mechanical properties, carbon nanotubes (CNTs and graphene materials have been widely used to improve energy storage and conversion. In this article, we briefly review the latest development on fabrication of 3D porous structures of CNTs or graphene sheets or their hybrids, and their applications in various energy devices including supercapacitors, (bio- fuel cells, and lithium ion batteries.

  13. Rapid fabricating technique for multi-layered human hepatic cell sheets by forceful contraction of the fibroblast monolayer.

    Directory of Open Access Journals (Sweden)

    Yusuke Sakai

    Full Text Available Cell sheet engineering is attracting attention from investigators in various fields, from basic research scientists to clinicians focused on regenerative medicine. However, hepatocytes have a limited proliferation potential in vitro, and it generally takes a several days to form a sheet morphology and multi-layered sheets. We herein report our rapid and efficient technique for generating multi-layered human hepatic cell (HepaRG® cell sheets using pre-cultured fibroblast monolayers derived from human skin (TIG-118 cells as a feeder layer on a temperature-responsive culture dish. Multi-layered TIG-118/HepaRG cell sheets with a thick morphology were harvested on day 4 of culturing HepaRG cells by forceful contraction of the TIG-118 cells, and the resulting sheet could be easily handled. In addition, the human albumin and alpha 1-antitrypsin synthesis activities of TIG-118/HepaRG cells were approximately 1.2 and 1.3 times higher than those of HepaRG cells, respectively. Therefore, this technique is considered to be a promising modality for rapidly fabricating multi-layered human hepatocyte sheets from cells with limited proliferation potential, and the engineered cell sheet could be used for cell transplantation with highly specific functions.

  14. Modified morphology of graphene sheets by Argon-atom bombardment: molecular dynamics simulations.

    Science.gov (United States)

    Wei, Xiao-Lin; Zhang, Kai-Wang; Wang, Ru-Zhi; Liu, Wen-Liang; Zhong, Jian-Xin

    2011-12-01

    By a molecular dynamics method, we simulated the process of Argon-atom bombardment on a graphene sheet with 2720 carbon atoms. The results show that, the damage of the bombardment on the graphene sheet depends not only on the incident energy but also on the particle flux density of Argon atoms. To compare and analyze the effect of the incident energy and the particle flux density in the Argon-atom bombardment, we defined the impact factor on graphene sheet by calculating the broken-hole area. The results indicate that, there is an exponential accumulated-damage for the impact of both the incident energy and the particle flux density and there is a critical incident energy ranging from 20-30 eV/atom in Argon-atom bombardment. Different configurations, such as sieve-like and circle-like graphene can be formed by controlling of different particle flux density as the incident energy is more than the critical value. Our results supply a feasible method on fabrication of porous graphene-based materials for gas-storages and molecular sieves, and it also helps to understand the damage mechanism of graphene-based electronic devices under high particle radiation.

  15. Graphene folding on flat substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoming; Zhao, Yadong; Ke, Changhong, E-mail: cke@binghamton.edu [Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902 (United States); Zhang, Liuyang; Wang, Xianqiao [College of Engineering, University of Georgia, Athens, Georgia 30602 (United States)

    2014-10-28

    We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.

  16. Enhancement of absorption in vertically-oriented graphene sheets growing on a thin copper layer

    Science.gov (United States)

    Rozouvan, Tamara; Poperenko, Leonid; Kravets, Vasyl; Shaykevich, Igor

    2017-02-01

    The optical properties and surface structure of graphene films grown on thin copper Cu (1 μm) layer using chemical vapour deposition method were investigated via spectroscopic ellipsometry and nanoscopic measurements. Angle variable ellipsometry measurements were performed to analyze the features of dispersion of the complex refractive index and optical conductivity. It was observed significant enhancement of the absorption band in the vertically-oriented graphene sheets layer with respect to the bulk graphite due to interaction between excited localized surface plasmon at surface of thin Cu layer and graphene's electrons. Scanning tunneling microscopy measurements with atomic spatial resolution revealed vertical crystal lattice structure of the deposited graphene layer. The obtained results provide direct evidence of the strong influence of the growing condition and morphology of nanostructure on electronic and optical behaviours of graphene film.

  17. Direct generation of graphene plasmonic polaritons at THz frequencies via four wave mixing in the hybrid graphene sheets waveguides.

    Science.gov (United States)

    Sun, Yu; Qiao, Guofu; Sun, Guodong

    2014-11-17

    A compact waveguide incorporating a high-index nano-ridge sandwiched between graphene sheets is proposed for the direct generation of graphene plasmonic polaritons (GSPs) via four wave mixing (FWM). The proposed waveguide supports GSP modes at the THz frequencies and photonic modes at the infrared wavelengths. Due to the strong confinement of coupled graphene sheets, the GSP modes concentrate in the high-index nano-ridge far below the diffraction limit, which improves integral overlap with the photonic modes and greatly facilitates the FWM process. To cope with the ultra-high effective refractive of the GSP modes, an alternative energy conservation diagram is selected for the degenerated FWM, which corresponds to one pump photon transfers its energy to two signal photons and one GSP photon. The single mode condition of the generated symmetric GSP modes is analyzed by the effective index method to suppress the undesired conversion. Due to the unique tunability of GSPs, the phase matching condition can be satisfied by tuning the chemical potential of the graphene sheets employing external gates. The FWM pumped at 1,550 nm with a peak power of 1 kW is theoretically investigated by solving the modified coupled mode equations. The generated GSP power reaches its maximum up to 67 W at a propagation distance of only 43.7 μm. The proposed waveguide have a great potential for integrated chip-scale GSP source.

  18. Modeling the effect of doping on the catalyst-assisted growth and field emission properties of plasma-grown graphene sheet

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku [Department of Applied Physics, Delhi Technological University (DTU), Shahbad Daulatpur, Bawana Road, Delhi-110042 (India)

    2016-08-15

    A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness and shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.

  19. On the semimetal-insulator transition and Lifshitz transition in simulations of mono-layer graphene

    CERN Document Server

    Smith, Dominik; von Smekal, Lorenz

    2014-01-01

    We report on the status of ongoing Hybrid-Monte-Carlo simulations of the tight-binding model of mono-layer graphene. We present results concerning the semimetal-insulator phase transition, whereby two-body interactions are modeled by a partially screened Coulomb potential which takes into account screening by electrons in the lower $\\sigma$-orbitals. We obtain evidence that finite-size effects may still be present in the current estimate of the critical coupling strength $\\alpha_C$, which was previously extracted from simulations on lattice-sizes up to $N_x=N_y=18$. We also present preliminary results concerning the Neck-disrupting Lifshitz transition which occurs at finite Fermion-density in the limit of vanishing two-body interactions. A sign-problem is circumvented by using a spin-dependent chemical potential in our simulations.

  20. Broadband perfect light trapping in the thinnest monolayer graphene-MoS$_{2}$ photovoltaic cell

    CERN Document Server

    Wu, Yun-Beng; Wang, Tong-Biao; Deng, Xin-Hua; Liu, Jiang-Tao

    2015-01-01

    The light absorption of a monolayer graphene-molybdenum disulfide photovoltaic (GM-PV) cell in a wedge-shaped microcavity with a spectrum-splitting structure is investigated theoretically. The GM-PV cell, which is three times thinner than the traditional photovoltaic cell, exhibits up to 98\\% light absorptivity in a wide wavelength range. This rate exceeds the fundamental limit of nanophotonic light trapping in solar cells. The effects of defect layer thickness, GM-PV cell position in the microcavity, incident angle, and lens aberration on the light absorption rate of the GM-PV cell is explored. Regardless of errors, the GM-PV cell can still achieve at least 90\\% light absorptivity with the current technology. Our proposal provides different methods to design light-trapping structures and apply spectrum-splitting systems.

  1. Strong electron-hole symmetric Rashba spin-orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures

    Science.gov (United States)

    Yang, Bowen; Lohmann, Mark; Barroso, David; Liao, Ingrid; Lin, Zhisheng; Liu, Yawen; Bartels, Ludwig; Watanabe, Kenji; Taniguchi, Takashi; Shi, Jing

    2017-07-01

    Despite its extremely weak intrinsic spin-orbit coupling (SOC), graphene has been shown to acquire considerable SOC by proximity coupling with exfoliated transition metal dichalcogenides (TMDs). Here we demonstrate strong induced Rashba SOC in graphene that is proximity coupled to a monolayer TMD film, Mo S2 or WS e2 , grown by chemical-vapor deposition with drastically different Fermi level positions. Graphene/TMD heterostructures are fabricated with a pickup-transfer technique utilizing hexagonal boron nitride, which serves as a flat template to promote intimate contact and therefore a strong interfacial interaction between TMD and graphene as evidenced by quenching of the TMD photoluminescence. We observe strong induced graphene SOC that manifests itself in a pronounced weak-antilocalization (WAL) effect in the graphene magnetoconductance. The spin-relaxation rate extracted from the WAL analysis varies linearly with the momentum scattering time and is independent of the carrier type. This indicates a dominantly Dyakonov-Perel spin-relaxation mechanism caused by the induced Rashba SOC. Our analysis yields a Rashba SOC energy of ˜1.5 meV in graphene/WS e2 and ˜0.9 meV in graphene/Mo S2 . The nearly electron-hole symmetric nature of the induced Rashba SOC provides a clue to possible underlying SOC mechanisms.

  2. Synthesis of silanized maghemite nanoparticles onto reduced graphene sheets composites

    Science.gov (United States)

    Cosio-Castañeda, C.; Martínez-García, R.; Socolovsky, L. M.

    2014-04-01

    Novel γ-Fe2O3@APTES@rGO composites are successfully synthesized by using graphene oxide and silanized maghemite nanoparticles. Graphene oxide and maghemite were obtained by Hummers and Massart methods, respectively. The silanization process was done to functionalize maghemite surface with a controllable quantity of amino groups. Then, by adding aqueous graphene oxide suspension, the bonding between graphene oxide and silanized maghemite nanoparticles was done in refluxing conditions. Afterwards, chemical reduced graphene oxide reaction was realized by addition of hydrazine solution. The characterization of γ-Fe2O3@APTES@rGO composites was studied by X-ray Diffraction, Fourier Transformed Infrared Spectroscopy, thermogravimetric analysis and scanning electron microscopy.

  3. Coupling Graphene Sheets with Magnetic Nanoparticles for Energy Storage and Microelectronics

    Science.gov (United States)

    2015-08-13

    corrected STM images obtained: (a) in air on a monolayer graphene substrate grown by chemical vapor deposition on a polycrystalline copper foil...substrate imposed by the polycrystalline copper carrier material (as shown by Figure 19b, which was acquired over a particularly rough surface area...HOPG and graphene building blocks bearing a ligand to the upper deck of the pillar in order to promote ligand exchange. OC10H21OC10H21 OC10H21 OC10H21

  4. Quasi-freestanding monolayer heterostructure of graphene and hexagonal boron nitride on Ir(111) with a chiral boundary

    CERN Document Server

    Liu, Mengxi; Chen, Pengcheng; Sun, Jingyu; Ma, Donglin; Gao, Teng; Gao, Yabo; Li, Qiucheng; Cheng, Zhihai; Qiu, Xiaohui; Fang, Ying; Zhang, Yanfeng; Liu, Zhongfan

    2014-01-01

    Monolayer lateral heterostructure of graphene and hexagonal boron nitride (h-BNC) has attracted a growing attention mainly due to its tunable band-gap character and unique physical properties at interface. Hereby, we reported the first-time synthesis of a nearly freestanding h-BNC hybrid on a weakly coupled substrate of Ir (111), where graphene and h-BN possessing different surface heights and corrugations formed a perfect monolayer hybrid. With the aid of scanning tunneling microscopy/spectroscopy (STM/STS), we demonstrated that h-BN can patch alongside the boundary of pre-deposited graphene domains and vice versa to form a seamless monolayer hybrid, with the realization of predominant zigzag type chiral boundaries at the interface. Density-functional theory calculations and STM/STS measurements aided us to reveal that this interface between graphene and h-BN were atomically sharp in aspects of the chemical bonding as well as the local electronic property from both theoretical and experimental points of view...

  5. Graphene kirigami

    Science.gov (United States)

    Blees, Melina K.; Barnard, Arthur W.; Rose, Peter A.; Roberts, Samantha P.; McGill, Kathryn L.; Huang, Pinshane Y.; Ruyack, Alexander R.; Kevek, Joshua W.; Kobrin, Bryce; Muller, David A.; McEuen, Paul L.

    2015-08-01

    For centuries, practitioners of origami (`ori', fold; `kami', paper) and kirigami (`kiru', cut) have fashioned sheets of paper into beautiful and complex three-dimensional structures. Both techniques are scalable, and scientists and engineers are adapting them to different two-dimensional starting materials to create structures from the macro- to the microscale. Here we show that graphene is well suited for kirigami, allowing us to build robust microscale structures with tunable mechanical properties. The material parameter crucial for kirigami is the Föppl-von Kármán number γ: an indication of the ratio between in-plane stiffness and out-of-plane bending stiffness, with high numbers corresponding to membranes that more easily bend and crumple than they stretch and shear. To determine γ, we measure the bending stiffness of graphene monolayers that are 10-100 micrometres in size and obtain a value that is thousands of times higher than the predicted atomic-scale bending stiffness. Interferometric imaging attributes this finding to ripples in the membrane that stiffen the graphene sheets considerably, to the extent that γ is comparable to that of a standard piece of paper. We may therefore apply ideas from kirigami to graphene sheets to build mechanical metamaterials such as stretchable electrodes, springs, and hinges. These results establish graphene kirigami as a simple yet powerful and customizable approach for fashioning one-atom-thick graphene sheets into resilient and movable parts with microscale dimensions.

  6. Strain-engineered band parameters of graphene-like SiC monolayer

    Science.gov (United States)

    Behera, Harihar; Mukhopadhyay, Gautam

    2014-10-01

    Using full-potential density functional theory (DFT) calculations we show that the band gap and effective masses of charge carriers in SiC monolayer (ML-SiC) in graphene-like two-dimensional honeycomb structure are tunable by strain engineering. ML-SiC was found to preserve its flat 2D graphene-like structure under compressive strain up to 7%. A transition from indirect-to-direct gap-phase is predicted to occur for a strain value lying within the interval (1.11 %, 1.76%). In both gap-phases band gap decreases with increasing strain, although the rate of decrease is different in the two gap-phases. Effective mass of electrons show a non-linearly decreasing trend with increasing tensile strain in the direct gap-phase. The strain-sensitive properties of ML-SiC, may find applications in future strain-sensors, nanoelectromechanical systems (NEMS) and nano-optomechanical systems (NOMS) and other nano-devices.

  7. Density functional theory calculations on the adsorption of formaldehyde and other harmful gases on pure, Ti-doped, or N-doped graphene sheets

    Science.gov (United States)

    Zhang, Hong-ping; Luo, Xue-gang; Lin, Xiao-yang; Lu, Xiong; Leng, Yang; Song, Hong-tao

    2013-10-01

    Understanding the interaction mechanisms of CO, NO, SO2, and HCHO with graphene are important in developing graphene-based sensors for gas detection and removal. In this study, the effects of doped Ti or N atom on the interaction of these gases with graphene were investigated by density functional theory calculations. Analyses of adsorption energy, electron density difference, and density of states indicated that the doped Ti atom could greatly improve the interaction of gas molecules with graphene. The Ti-doped graphene sheet demonstrated selective gas absorption. The order of interaction between the gas molecules and the Ti-doped graphene sheet was as follows: SO2 > NO > HCHO > CO. By contrast, the N-doped graphene sheet did not exhibit apparent selective gas absorption. These results imply that the Ti-doped graphene sheet is more effective than the N-doped graphene sheet in detecting and removing gas molecules because of its high selectivity.

  8. Structural, electronic and magnetic properties of 3d metal trioxide clusters-doped monolayer graphene: A first-principles study

    Science.gov (United States)

    Rafique, Muhammad; Shuai, Yong; Tan, He-Ping; Hassan, Muhammad

    2017-03-01

    We present first-principles density-functional calculations for the structural, electronic and magnetic properties of monolayer graphene doped with 3d (Ti, V, Cr, Fe, Co, Mn and Ni) metal trioxide TMO3 halogen clusters. In this paper we used two approaches for 3d metal trioxide clusters (i) TMO3 halogen cluster was embedded in monolayer graphene substituting four carbon (C) atoms (ii) three C atoms were substituted by three oxygen (O) atoms in one graphene ring and TM atom was adsorbed at the hollow site of O atoms substituted graphene ring. All the impurities were tightly bonded in the graphene ring. In first case of TMO3 doped graphene layer, the bond length between Csbnd O atom was reduced and bond length between TM-O atom was increased. In case of Cr, Fe, Co and Ni atoms substitution in between the O atoms, leads to Fermi level shifting to conduction band thereby causing the Dirac cone to move into valence band, however a band gap appears at high symmetric K-point. In case of TiO3 and VO3 substitution, system exhibits semiconductor properties. Interestingly, TiO3-substituted system shows dilute magnetic semiconductor behavior with 2.00 μB magnetic moment. On the other hand, the substitution of CoO3, CrO3, FeO3 and MnO3 induced 1.015 μB, 2.347 μB, 2.084 μB and 3.584 μB magnetic moment, respectively. In second case of O atoms doped in graphene and TM atoms adsorbed at the hollow site, the O atom bulges out of graphene plane and bond length between TM-O atom is increased. After TM atoms adsorption at the O substituted graphene ring the Fermi level (EF) shifts into conduction band. In case of Cr and Ni adsorption, system displays indirect band gap semiconductor properties with 0.0 μB magnetic moment. Co adsorption exhibits dilute magnetic semiconductor behavior producing 0.916 μB magnetic moment. Fe, Mn, Ti and V adsorption introduces band gap at high symmetric K-point also inducing 1.54 μB, 0.9909 μB, 1.912 μB, and 0.98 μB magnetic moments, respectively

  9. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    Science.gov (United States)

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-01-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin–tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis. PMID:27585984

  10. Nernst heat theorem for the thermal Casimir interaction between two graphene sheets

    Science.gov (United States)

    Bezerra, V. B.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Romero, C.

    2016-10-01

    We find analytic asymptotic expressions at low temperature for the Casimir free energy, entropy, and pressure of two parallel graphene sheets in the framework of the Lifshitz theory. The reflection coefficients of electromagnetic waves on graphene are described on the basis of first principles of quantum electrodynamics at nonzero temperature using the polarization tensor in (2+1)-dimensional space-time. The leading contributions to the Casimir entropy and to the thermal corrections to the Casimir energy and pressure are given by the thermal correction to the polarization tensor at nonzero Matsubara frequencies. It is shown that the Casimir entropy for two graphene sheets goes to zero when the temperature vanishes, i.e., the third law of thermodynamics (the Nernst heat theorem) is satisfied. At low temperature, the magnitude of the thermal correction to the Casimir pressure between two graphene sheets is shown to vary inversely proportional to the separation. The Nernst heat theorem for graphene is discussed in the context of problems occurring in Casimir physics for both metallic and dielectric plates.

  11. A simple approach for immobilization of gold nanoparticles on graphene oxide sheets by covalent bonding

    NARCIS (Netherlands)

    Pham, Tuan Anh; Choi, Byung Choon; Lim, Kwon Taek; Jeong, Yeon Tae

    2011-01-01

    Amino - functionalized gold nanoparticles with a diameter of around 5 nm were immobilized onto the surface of graphene oxide sheets (GOS) by covalent bonding through a simple amidation reaction. Pristine graphite was firstly oxidized and exfoliated to obtain GOS, which further were acylated with

  12. A simple approach for immobilization of gold nanoparticles on graphene oxide sheets by covalent bonding

    NARCIS (Netherlands)

    Pham, Tuan Anh; Choi, Byung Choon; Lim, Kwon Taek; Jeong, Yeon Tae

    2011-01-01

    Amino - functionalized gold nanoparticles with a diameter of around 5 nm were immobilized onto the surface of graphene oxide sheets (GOS) by covalent bonding through a simple amidation reaction. Pristine graphite was firstly oxidized and exfoliated to obtain GOS, which further were acylated with thi

  13. The most stable mono-layers of (111)-Pt (fcc) on Graphene: A first-principles GGA study

    Science.gov (United States)

    Otalora-Acevedo, J.; Rodríguez Martínez, J. A.; Moreno-Armenta, G.; Vera, E.; Takeuchi Tan, N.

    2016-08-01

    We investigate monolayers of planes (111) of Pt in the FCC structure located on graphene. The energy of formation showed that the most stable structure is √3×√3 — Pt on 2 × 2 — graphene. This system has a mismatch in the lattice constant of 0.45. The layers are completely flat, and its band structure shows that the new structure is metallic and the Dirac's cones are displaced 0.6eV above of the Fermi level. In this work we present the dependence of the enthalpy of formation of these structures and we calculated all structural parameters of their relaxation.

  14. Formation of hierarchical porous graphene films with defects using a nanosecond laser on polyimide sheet

    Science.gov (United States)

    Wang, Fangcheng; Wang, Kedian; Dong, Xia; Mei, Xuesong; Zhai, Zhaoyang; Zheng, Buxiang; Lv, Jing; Duan, Wenqiang; Wang, Wenjun

    2017-10-01

    The cost of effective preparation of graphene-based nanomaterials is a challenge in high-performance flexible electrodes. We demonstrated the formation of hierarchical porous graphene (HPG) films with defects from polyimide (PI) sheets using a high repetition rate nanosecond fiber laser. The honeycomb structure with mesopores and macropores can be rapidly induced on the polyimide by the localized focused laser beam in air atmosphere. Employing laser direct writing method, the one-step synthesis and patterning of conductive HPG films were achieved directly on the surface of polyimide sheets. The results show that the unique honeycomb porous structure on HPG film is composed of few-layer graphene or graphene stacks. The lattice structure of graphene nanoplatelets contains the Stone-Wales defects. Furthermore, there are a lot of small-size graphene nanoplatelets on the surface of HPG films with high content of edge defects. These two defects can not only enhance the adsorption without compromising on high diffusivity of ions, but also contribute to the infiltration and flow of electrolyte on the surface of electrode. The proposed one-step laser direct writing technique with highly valuable suitable for developing large-scale fabrication of conductive HPG based flexible electrodes at low-cost.

  15. Spin-inversion in nanoscale graphene sheets with a Rashba spin-orbit barrier

    Directory of Open Access Journals (Sweden)

    Somaieh Ahmadi

    2012-03-01

    Full Text Available Spin-inversion properties of an electron in nanoscale graphene sheets with a Rashba spin-orbit barrier is studied using transfer matrix method. It is found that for proper values of Rashba spin-orbit strength, perfect spin-inversion can occur in a wide range of electron incident angle near the normal incident. In this case, the graphene sheet with Rashba spin-orbit barrier can be considered as an electron spin-inverter. The efficiency of spin-inverter can increase up to a very high value by increasing the length of Rashba spin-orbit barrier. The effect of intrinsic spin-orbit interaction on electron spin inversion is then studied. It is shown that the efficiency of spin-inverter decreases slightly in the presence of intrinsic spin-orbit interaction. The present study can be used to design graphene-based spintronic devices.

  16. Absorption of calcium ions on oxidized graphene sheets and study its dynamic behavior by kinetic and isothermal models

    Directory of Open Access Journals (Sweden)

    Mahmoud Fathy

    2016-07-01

    Full Text Available Abstract Sorption of calcium ion from the hard underground water using novel oxidized graphene (GO sheets was studied in this paper. Physicochemical properties and microstructure of graphene sheets were investigated using Raman spectrometer, thermogravimetry analyzer, transmission electron microscope, scanning electron microscope. The kinetics adsorption of calcium on graphene oxide sheets was examined using Lagergren first and second orders. The results show that the Lagergren second-order was the best-fit model that suggests the conception process of calcium ion adsorption on the Go sheets. For isothermal studies, the Langmuir and Freundlich isotherm models were used at temperatures ranging between 283 and 313 K. Thermodynamic parameters resolved at 283, 298 and 313 K indicating that the GO adsorption was exothermic spontaneous process. Finally, the graphene sheets show high partiality toward calcium particles and it will be useful in softening and treatment of hard water.

  17. Rice husk-derived graphene with nano-sized domains and clean edges.

    Science.gov (United States)

    Muramatsu, Hiroyuki; Kim, Yoong Ahm; Yang, Kap-Seung; Cruz-Silva, Rodolfo; Toda, Ikumi; Yamada, Takumi; Terrones, Mauricio; Endo, Morinobu; Hayashi, Takuya; Saitoh, Hidetoshi

    2014-07-23

    A new synthetic method is demonstrated for transforming rice husks into bulk amounts of graphene through its calcination and chemical activation. The bulk sample consists of crystalline nano-sized graphene and corrugated individual graphene sheets; the material generally contains one, two, or a few layers, and corrugated graphene domains are typically observed in monolayers containing topological defects within the hexagonal lattice and edges. Both types of graphenes exhibit atomically smooth surfaces and edges.

  18. Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules.

    Science.gov (United States)

    Liang, Yanyu; Frisch, Johannes; Zhi, Linjie; Norouzi-Arasi, Hassan; Feng, Xinliang; Rabe, Jürgen P; Koch, Norbert; Müllen, Klaus

    2009-10-28

    Transparent and highly conductive graphene electrodes have been fabricated through acetylene-assisted thermolysis of graphite oxide (GO) sheets. This novel procedure uses acetylene as a supplemental carbon source to repair substantial defects within GO sheets, leading to the enhancement of graphitization of synthesized graphene electrodes. The as-prepared graphene on quartz substrates exhibits an electrical conductivity of 1425 S cm(-1) with an optical transmittance of more than 70% at a wavelength of 500 nm. Such an acetylene-assisted thermal treatment approach is also adopted to fabricate graphene electrodes from synthetic nanographene molecules, with an almost five times increase in conductivity compared to samples prepared by the common thermal reduction.

  19. Dual-loss-modulated Q-switched Tm:LuAG laser with AOM and monolayer graphene.

    Science.gov (United States)

    Luan, Chao; Yang, Ke Jian; Zhao, Jia; Zhao, Sheng Zhi; Qiao, Wen Chao; Li, Tao; Feng, Tian Li; Liu, Cheng; Qiao, Jun Peng; Zheng, Li He; Xu, Jun; Wang, Qing Guo; Su, Liang Bi

    2015-09-20

    A laser-diode-pumped dual-loss-modulated Q-switching Tm:LuAG laser with an acousto-optic modulator (AOM) and monolayer graphene saturable absorber (SA) around 2 μm is presented for the first time to the best of our knowledge. The average output power and the pulse widths for different repetition rates have been measured. In comparison with the singly Q-switching laser with AOM or with monolayer graphene SA, the dual-loss-modulated Q-switching laser could generate shorter pulse width and higher peak power. The maximum pulse width compression ratio was found to be 3.11, and the highest peak power was enhanced 97.4 times. The experimental results show that the dual-loss-modulated technology is an efficient method for compressing the pulse width, improving the peak power, and enhancing the pulse stability for the Q-switched lasers at 2 μm.

  20. Si面4H-SiC衬底上外延石墨烯近平衡态制备%Quasi-equilibrium growth of monolayer epitaxial graphene on SiC (0001)

    Institute of Scientific and Technical Information of China (English)

    蔚翠; 李佳; 刘庆彬; 蔡树军; 冯志红

    2014-01-01

    SiC热解法是制备大面积、高质量石墨烯的理想选择之一.外延石墨烯的晶体质量仍是制约其应用的关键因素之一.本文通过SiC热解法在4H-SiC (0001)衬底上制备单层外延石墨烯.通过引入氩气惰性气氛和硅蒸气,使SiC 衬底表面的Si原子升华与返回概率接近平衡,外延石墨烯生长速率大大减慢,单层石墨烯的生长时间从15 min延长至75 min.测试分析表明,生长速率减慢,外延石墨烯中缺陷减少,晶体质量提高,使得外延石墨烯的电性能都得到改善,单层外延石墨烯的最高载流子迁移率达到1200 cm2/V·s,方阻604Ω/?.以上结果表明,控制生长气氛,减慢生长速率是实现高质量外延石墨烯的可行途径之一.%Sublimation of SiC substrates is a promising way to prepare high-quality graphene on large scale. Nowadays, growth of high-quality epitaxial graphene is still a crucial issue. In this work, monolayer epitaxial graphene is grown on Si-terminated 4H-SiC (0001) substrate. By introducing argon inert gas and silicon vapor as background atmosphere, the Si evaporation rate and condensation rate on the SiC surface is close to equilibrium and the growth of monolayer epitaxial graphene with very low speed is realized. The growth duration of monolayer epitaxial graphene is prolonged to 75 minutes from 15 minutes. It is found that the disorder-induced Raman D peak shows an obvious decrease as the growth speed decreases, indicating the improvement of crystal quality, which makes the electrical properties of the monolayer epitaxial graphene is improved. The maximum carrier mobility and sheet resistance have reached 1200 cm2/V·s and 604Ω/?, respectively. The above results indicate that slowing down of growth speed by controlling of growth atmosphere is an efficient way to prepare high-quality epitaxial graphene.

  1. Balance between physical and chemical interactions of second-row diatomic molecules with graphene sheet

    Science.gov (United States)

    Rahali, Seyfeddine; Belhocine, Youghourta; Touzeau, Jeremy; Tangour, Bahoueddine; Maurel, François; Seydou, Mahamadou

    2017-02-01

    We present a computational investigation of adsorption on graphene concerning the second-row diatomic molecules (Li2, B2, C2, O2, N2 and F2). The adsorption energies and the nature of the interaction between guest molecules and graphene, in both periodic and non-periodic approaches, were evaluated using dispersion-corrected density functional theory calculations (DFT/PBE-D3). A periodic graphene model, used to tune the coverage, is compared with a cluster model in which the graphene sheet is represented by coronene. The results of both energetic and electronic state analyses reveal a variety of adsorption processes. While B2 and C2 adsorb in a bridge position in order to establish two covalent bonds with the surface, O2 and N2 are clearly physisorbed in positions parallel to the surface. Li2 and F2 show intermediate behavior, with strong physisorption accompanied by charge transfer.

  2. Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Nourmohammadi, Amin; Rahighi, Reza [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Akhavan, Omid, E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Moshfegh, Alireza [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of)

    2014-11-05

    Highlights: • Involvement of GO into the vertically aligned ZnO nanowires using electrophoretic deposition. • UV assisted photocatalytic reduction of the GO sheets involved in the ZnO nanowires. • Visible light photoinactivation of bacteria by the reduced graphene oxide/ZnO nanocomposite. - Abstract: Vertically aligned ZnO nanowires (NWs) hybridized with reduced graphene oxide sheets (rGO) were applied in efficient visible light photoinactivation of bacteria. To incorporate graphene oxide (GO) sheets within the NWs two different methods of drop-casting and electrophoretic deposition (EPD) were utilized. The EPD method yielded effective penetration of the positively charged GO sheets into the NWs to form a spider net-like structure, whereas the drop-casting method resulted in only a surface coverage of the GO sheets on top of the NWs. The electrical connection between the EPD-incorporated sheets and the NWs was checked by monitoring the electron transfer from UV-assisted photoexcited ZnO NWs into the GO sheets, during photocatalytic reduction of the sheets. The obtained rGO/ZnO composites were applied in visible light photoinactivation of Escherichia coli bacteria. The ZnO NWs could inactivate only ∼58% of the bacteria, while both drop-casting and EPD-prepared GO/ZnO composites exhibited strong antibacterial activities (especially the EPD sample with ∼99.5% photoinactivation), under visible light irradiation for 1 h. In fact, the visible light photocatalytic activity of the EPD-prepared GO/ZnO NW composite was found ∼1.9 and 6.2 folds of the activity of the GO/ZnO composite prepared by drop-casting method and the bare ZnO NWs.

  3. Epitaxial graphene electronic structure and transport

    Energy Technology Data Exchange (ETDEWEB)

    De Heer, Walt A; Berger, Claire; Wu Xiaosong; Sprinkle, Mike; Hu Yike; Ruan Ming; First, Phillip N [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Stroscio, Joseph A [Center for Nanoscale Science and Technology, NIST, Gaithersburg, MD 20899 (United States); Haddon, Robert [Center for Nanoscale Science and Engineering, Departments of Chemistry and Chemical and Environmental Engineering, University of California, Riverside, CA 92521 (United States); Piot, Benjamin; Faugeras, Clement; Potemski, Marek [LNCMI -CNRS, Grenoble, 38042 Cedex 9 (France); Moon, Jeong-Sun, E-mail: walt.deheer@physics.gateh.ed [HRL Laboratories LLC, Malibu, CA 90265 (United States)

    2010-09-22

    Since its inception in 2001, the science and technology of epitaxial graphene on hexagonal silicon carbide has matured into a major international effort and is poised to become the first carbon electronics platform. A historical perspective is presented and the unique electronic properties of single and multilayered epitaxial graphenes on electronics grade silicon carbide are reviewed. Early results on transport and the field effect in Si-face grown graphene monolayers provided proof-of-principle demonstrations. Besides monolayer epitaxial graphene, attention is given to C-face grown multilayer graphene, which consists of electronically decoupled graphene sheets. Production, structure and electronic structure are reviewed. The electronic properties, interrogated using a wide variety of surface, electrical and optical probes, are discussed. An overview is given of recent developments of several device prototypes including resistance standards based on epitaxial graphene quantum Hall devices and new ultrahigh frequency analogue epitaxial graphene amplifiers.

  4. Squeezing water clusters between graphene sheets: energetics, structure, and intermolecular interactions.

    Science.gov (United States)

    McKenzie, S; Kang, H C

    2014-12-21

    The behavior of water confined at the nanoscale between graphene sheets has attracted much theoretical and experimental attention recently. However, the interactions, structure, and energy of water at the molecular scale underpinning the behavior of confined water have not been characterized by first-principles calculations. In this work we consider small water clusters up to the hexamer adsorbed between graphene sheets using density functional theory calculations with van der Waals corrections. We investigate the effects on structure, energy, and intermolecular interactions due to confinement between graphene sheets. For interlayer distances of about one nanometer or more, the cluster adsorption energy increases approximately linearly with the cluster size by 0.1 eV per molecule in the cluster. As the interlayer distance decreases, the cluster adsorption energy reaches a maximum at 6 to 7 Å with approximately 0.16 eV stabilization energy relative to large interlayer distances. This suggests the possibility of controlling the amount of adsorption in graphene nanomaterials by varying the interlayer distance. We also quantify the intermolecular hydrogen bonding in the clusters by calculating the dissociation energy required to remove one molecule from each cluster. For each cluster size, this is constant for interlayer distances larger than approximately 6 to 8 Å. For smaller distances the intermolecular interaction decreases rapidly thus leading to weaker cohesion between molecules in a squeezed cluster. We expect a mechanism of concerted motion for hydrogen-bonded water molecules confined between graphene sheets, as has been observed for water confined within the carbon nanotubes. Thus, the decrease in the dissociation energy we observed here is consistent with experimental results for water transport through graphene and related membranes that are of interest in nanofiltration. We also calculate the corrugation in the interaction potential between graphene

  5. A general strategy towards encapsulation of nanoparticles in sandwiched graphene sheets and the synergic effect on energy storage.

    Science.gov (United States)

    Wang, Yu; Bai, Yuanjuan; Li, Xiao; Feng, Yangyang; Zhang, Huijuan

    2013-03-04

    A novel and universal approach towards the unique encapsulation of nanoparticles in the sandwiched graphene sheets is presented here. In the method, a low-cost, sustainable and environmentally friendly carbon source, glucose, is firstly applied to yield the high-quality, uniform and coupled graphene sheets in a large scale, and the pre-fabricated hydrated nanosheets act as the sacrificial templates to generate the enveloped metallic nanoparticles. After controllable oxidation or removal of the encapsulated nanoparticles, sandwiched nanocomposite with oxidizes nanoparticles encapsulated in graphene sheets or pure phase of sandwich-like and coupled graphene sheets would be achieved. Moreover, the synergic effect on energy storage via Li-ion batteries is solidly verified in the Co(3)O(4)@graphene nanocomposite. More importantly, the unique structure of the nanoparticles-encapsulated sandwiched graphene sheets will definitely result in additional applications, such as biosensors, supercapacitors and specific catalyses. These results have enriched the family of graphene-based materials and recognized some new graphene derivatives, which will be considerably meaningful in chemistry and materials sciences.

  6. Topological edge modes in multilayer graphene systems

    KAUST Repository

    Ge, Lixin

    2015-08-10

    Plasmons can be supported on graphene sheets as the Dirac electrons oscillate collectively. A tight-binding model for graphene plasmons is a good description as the field confinement in the normal direction is strong. With this model, the topological properties of plasmonic bands in multilayer graphene systems are investigated. The Zak phases of periodic graphene sheet arrays are obtained for different configurations. Analogous to Su-Schrieffer-Heeger (SSH) model in electronic systems, topological edge plasmon modes emerge when two periodic graphene sheet arrays with different Zak phases are connected. Interestingly, the dispersion of these topological edge modes is the same as that in the monolayer graphene and is invariant as the geometric parameters of the structure such as the separation and period change. These plasmonic edge states in multilayer graphene systems can be further tuned by electrical gating or chemical doping. © 2015 Optical Society of America.

  7. Preparation of Graphene Sheets by Electrochemical Exfoliation of Graphite in Confined Space and Their Application in Transparent Conductive Films.

    Science.gov (United States)

    Wang, Hui; Wei, Can; Zhu, Kaiyi; Zhang, Yu; Gong, Chunhong; Guo, Jianhui; Zhang, Jiwei; Yu, Laigui; Zhang, Jingwei

    2017-10-04

    A novel electrochemical exfoliation mode was established to prepare graphene sheets efficiently with potential applications in transparent conductive films. The graphite electrode was coated with paraffin to keep the electrochemical exfoliation in confined space in the presence of concentrated sodium hydroxide as the electrolyte, yielding ∼100% low-defect (the D band to G band intensity ratio, ID/IG = 0.26) graphene sheets. Furthermore, ozone was first detected with ozone test strips, and the effect of ozone on the exfoliation of graphite foil and the microstructure of the as-prepared graphene sheets was investigated. Findings indicate that upon applying a low voltage (3 V) on the graphite foil partially coated with paraffin wax that the coating can prevent the insufficiently intercalated graphite sheets from prematurely peeling off from the graphite electrode thereby affording few-layer (graphene sheets in a yield of as much as 60%. Besides, the ozone generated during the electrochemical exfoliation process plays a crucial role in the exfoliation of graphite, and the amount of defect in the as-prepared graphene sheets is dependent on electrolytic potential and electrode distance. Moreover, the graphene-based transparent conductive films prepared by simple modified vacuum filtration exhibit an excellent transparency and a low sheet resistance after being treated with NH4NO3 and annealing (∼1.21 kΩ/□ at ∼72.4% transmittance).

  8. Fabrication, electrical characterization, and detection application of graphene-sheet-based electrical circuits.

    Science.gov (United States)

    Peng, Yitian; Lei, Jianping

    2014-01-01

    The distribution of potential, electric field, and gradient of square of electric field was simulated via a finite element method for dielectrophoresis (DEP) assembly. Then reduced graphene oxide sheets (RGOS)- and graphene oxide sheets (GOS)-based electrical circuits were fabricated via DEP assembly. The mechanically exfoliated graphene sheets (MEGS)-based electrical circuit was also fabricated for comparison. The electrical transport properties of three types of graphene-based electrical circuits were measured. The MEGS-based electrical circuit possesses the best electrical conductivity, and the GOS-based electrical circuit has the poorest electrical conductivity among all three circuits. The three types of electrical circuits were applied for the detection of copper ions (Cu(2+)). The RGOS-based electrical circuit can detect the Cu(2+) when the concentration of Cu(2+) was as low as 10 nM in solution. The GOS-based electrical circuit can only detect Cu(2+) after chemical reduction. The possible mechanism of electron transfer was proposed for the detection. The facile fabrication method and excellent performance imply the RGOS-based electrical circuit has great potential to be applied to metal ion sensors.

  9. Ferromagnetic properties of Mn/graphene/SiO{sub 2} sheets

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, I. T.; Shon, Y.; Kwon, Y. H.; Kang, T. W. [Dongguk University, Seoul (Korea, Republic of); Park, C. S. [Korea University, Seoul (Korea, Republic of)

    2014-09-15

    In the present study, Mn/graphene/SiO{sub 2} films have been successfully prepared by spin coating a manganese dinitrate hydrate standard solution (10,000 μg/mL Mn{sup +2} in 2% HNO{sub 3}) on a graphene /SiO{sub 2} sheet. The samples were characterized by using an X-ray diffractometer, a scanning electron microscope, a superconducting quantum interference device and an atomic force microscope. The magnetic measurement revealed that the Mn/graphene/SiO{sub 2} films exhibited a ferromagnetic behavior at 5 K and 300 K. We concluded that the ferromagnetism observed in the Mn/graphene/SiO{sub 2} sheets was associated with parasitic ferromagnetic Mn clusters imposed on the antiferromagnetic structure of MnO{sub 2}, which might have resulted from a distortion of the lattice structure due to oxygen vacancies, which might have been due to the effects of magnetic and structural disorder introduced by a random incorporation and inhomogeneous distribution of Mn atoms in the graphene layer.

  10. Computational insights of water droplet transport on graphene sheet with chemical density

    Science.gov (United States)

    Zhang, Liuyang; Wang, Xianqiao

    2014-05-01

    Surface gradient has been emerging as an intriguing technique for nanoscale particle manipulation and transportation. Owing to its outstanding and stable chemical properties, graphene with covalently bonded chemical groups represents extraordinary potential for the investigation of nanoscale transport in the area of physics and biology. Here, we employ molecular dynamics simulations to investigate the fundamental mechanism of utilizing a chemical density on a graphene sheet to control water droplet motions on it. Simulation results have demonstrated that the binding energy difference among distinct segment of graphene in terms of interaction between the covalently bonded oxygen atoms on graphene and the water molecules provides a fundamental driving force to transport the water droplet across the graphene sheet. Also, the velocity of the water droplet has showed a strong dependence on the relative concentration of oxygen atoms between successive segments. Furthermore, a multi-direction channel provides insights to guide the transportation of objects towards a targeted position, separating the mixtures with a system of specific chemical functionalization. Our findings shed illuminating lights on the surface gradient method and therefore provide a feasible way to control nanoscale motion on the surface and mimic the channelless microfluidics.

  11. Highly efficient visible light mediated azo dye degradation through barium titanate decorated reduced graphene oxide sheets

    Science.gov (United States)

    Rastogi, Monisha; Kushwaha, H. S.; Vaish, Rahul

    2016-03-01

    This study investigates BaTiO3 decorated reduced graphene oxide sheets as a potential visible light active catalyst for dye degradation (Rhodamine B). The composites were prepared through conventional hydrothermal synthesis technique using hydrazine as a reducing agent. A number of techniques have been employed to affirm the morphology, composition and photocatalytic properties of the composites; these include UV-visible spectrophotoscopy that assisted in quantifying the concentration difference of Rhodamine B. The phase homogeneity of the composites was examined through x-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) was employed to confirm the orientation of the BaTiO3 particles over the reduced graphene oxide sheets. Photoluminescence (PL) emission spectra assisted in determining the surface structure and excited state of the catalyst. Fourier transformed-infrared (FTIR) spectra investigated the vibrations and adsorption peak of the composites, thereby ascertaining the formation of reduced graphene oxide. In addition, diffuse reflectance spectroscopy (DRS) demonstrated an enhanced absorption in the visible region. The experimental investigations revealed that graphene oxide acted as charge collector and simultaneously facilitated surface adsorption and photo-sensitization. It could be deduced that BaTiO3-reduced graphene oxide composites are of significant interest the field of water purification through solar photocatalysis. [Figure not available: see fulltext.

  12. Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets.

    Science.gov (United States)

    Niu, Liyong; Li, Mingjian; Tao, Xiaoming; Xie, Zhuang; Zhou, Xuechang; Raju, Arun P A; Young, Robert J; Zheng, Zijian

    2013-08-21

    We report a facile and low-cost method to directly exfoliate graphite powders into large-size, high-quality, and solution-dispersible few-layer graphene sheets. In this method, aqueous mixtures of graphite and inorganic salts such as NaCl and CuCl2 are stirred, and subsequently dried by evaporation. Finally, the mixture powders are dispersed into an orthogonal organic solvent solution of the salt by low-power and short-time ultrasonication, which exfoliates graphite into few-layer graphene sheets. We find that the as-made graphene sheets contain little oxygen, and 86% of them are 1-5 layers with lateral sizes as large as 210 μm(2). Importantly, the as-made graphene can be readily dispersed into aqueous solution in the presence of surfactant and thus is compatible with various solution-processing techniques towards graphene-based thin film devices.

  13. In situ growth of Au nanocrystals on graphene oxide sheets

    Science.gov (United States)

    Qin, Yong; Li, Juan; Kong, Yong; Li, Xiazhang; Tao, Yongxin; Li, Shan; Wang, Yuan

    2014-01-01

    Au nanocrystals (AuNCs) with a size of 10-20 nm decorated on graphene oxide (GO) were fabricated successfully through a hydrothermal reduction and crystallization route without any extra reductants and capping agents. The hydrophobic areas of GO benefit the formation of nanocrystals (NCs) with {111} facets totally exposed; however, the hydrophilic areas are detrimental to the crystallization. The morphology of AuNCs could be tailored by the degree of oxidation on the GO surface. The shape-controllable and reducing properties of GO are in favor of ``clean'' synthesis of noble metal NCs decorated on graphene.Au nanocrystals (AuNCs) with a size of 10-20 nm decorated on graphene oxide (GO) were fabricated successfully through a hydrothermal reduction and crystallization route without any extra reductants and capping agents. The hydrophobic areas of GO benefit the formation of nanocrystals (NCs) with {111} facets totally exposed; however, the hydrophilic areas are detrimental to the crystallization. The morphology of AuNCs could be tailored by the degree of oxidation on the GO surface. The shape-controllable and reducing properties of GO are in favor of ``clean'' synthesis of noble metal NCs decorated on graphene. Electronic supplementary information (ESI) available: Fig. S1-S4. See DOI: 10.1039/c3nr04714h

  14. Piezoresistive Effect in Plasma-Doping of Graphene Sheet for High-Performance Flexible Pressure Sensing Application.

    Science.gov (United States)

    Haniff, M A S M; Hafiz, S M; Huang, N M; Rahman, S A; Wahid, K A A; Syono, M I; Azid, I A

    2017-05-03

    This paper presents a straightforward plasma treatment modification of graphene with an enhanced piezoresistive effect for the realization of a high-performance pressure sensor. The changes in the graphene in terms of its morphology, structure, chemical composition, and electrical properties after the NH3/Ar plasma treatment were investigated in detail. Through a sufficient plasma treatment condition, our studies demonstrated that plasma-treated graphene sheet exhibits a significant increase in sensitivity by one order of magnitude compared to that of the unmodified graphene sheet. The plasma-doping introduced nitrogen (N) atoms inside the graphene structure and was found to play a significant role in enhancing the pressure sensing performance due to the tunneling behavior from the localized defects. The high sensitivity and good robustness demonstrated by the plasma-treated graphene sensor suggest a promising route for simple, low-cost, and ultrahigh resolution flexible sensors.

  15. One-pot preparation of unsaturated polyester nanocomposites containing functionalized graphene sheets via a novel solvent-exchange method

    Science.gov (United States)

    This paper reports a convenient one-pot method integrating a novel solvent-exchange method into in situ melt polycondensation to fabricate unsaturated polyester nanocomposites containing functionalized graphene sheets (FGS). A novel solvent-exchange method was first developed to prepare graphene oxi...

  16. Design of electron wave filters in monolayer graphene with velocity modulations

    Institute of Scientific and Technical Information of China (English)

    Sun Li-Feng; Dong Li-Min; Fang Chao

    2013-01-01

    We compare the transport properties of electrons in monolayer graphene by modulating the Fermi velocity inside the barrier.A critical transmission angle is found only when the Fermi velocity in the barriers is larger than the one outside the barriers.It is shown that the transmission exhibits periodicity with the incident angle below the critical transmission angle,and attenuates exponentially in the opposite situation.For both situations,peak splitting occurs in the transmission as the number of the velocity barriers increases,and the characteristics of the transmission suggest an interesting application of an excellent band-pass filter.The dependence of the conductance on the Fermi energy through an identical velocitymodulation structure differs wildly with different Fermi velocities of the barrier.The counterpart of the peak splitting is the sharp oscillations in the conductance profile.Furthermore,some oscillations for the multiple barriers are so sharp that the structure may be used as an excellent sensor.

  17. Transition metal decorated graphene-like zinc oxide monolayer: A first-principles investigation

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Jie [School of Physics and National Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100 (China); School of Science, Qilu University of Technology, Jinan, Shandong 250353 (China); Xu, Ming-Chun; Hu, Shu-Jun, E-mail: hushujun@sdu.edu.cn [School of Physics and National Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100 (China)

    2015-09-14

    Transition metal (TM) atoms have been extensively employed to decorate the two-dimensional materials, endowing them with promising physical properties. Here, we have studied the adsorption of TM atoms (V, Cr, Mn, Fe, and Co) on graphene-like zinc oxide monolayer (g-ZnO) and the substitution of Zn by TM using first-principles calculations to search for the most likely configurations when TM atoms are deposited on g-ZnO. We found that when a V atom is initially placed on the top of Zn atom, V will squeeze out Zn from the two-dimensional plane then substitute it, which is a no barrier substitution process. For heavier elements (Cr to Co), although the substitution configurations are more stable than the adsorption ones, there is an energy barrier for the adsorption-substitution transition with the height of tens to hundreds meV. Therefore, Cr to Co prefers to be adsorbed on the hollow site or the top of oxygen, which is further verified by the molecular dynamics simulations. The decoration of TM is revealed to be a promising approach in terms of tuning the work function of g-ZnO in a large energy range.

  18. Ion selection of charge-modified large nanopores in a graphene sheet

    Science.gov (United States)

    Zhao, Shijun; Xue, Jianming; Kang, Wei

    2013-09-01

    Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl- while enhance the transport of K+, which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl- can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity.

  19. The adjustable thermal resistor by reversibly folding a graphene sheet

    OpenAIRE

    Song, Qichen; An, Meng; Chen, Xiandong; Peng, Zhan; Zang, Jianfeng; Yang, Nuo

    2016-01-01

    Phononic (thermal) devices are studied such as thermal diode, thermal transistors, thermal logic gates, and thermal memories. However, the thermal resistor has not been demonstrated yet. Here, we propose an instantaneously adjustable thermal resistor by folded graphene. Through theoretical analysis and molecular dynamics simulations, we studied the phonon folding effect and the dependent of thermal resistivity on the length between two folds and the overall length. Further, we discuss on the ...

  20. Theoretical analysis of transverse impact response in double layer graphene sheets

    Directory of Open Access Journals (Sweden)

    Toshiaki Natsuki

    2016-01-01

    Full Text Available In designing future nanoscale devices or nanostructures as new element in structural mechanics, it is very important to predict the responses for these elements against various mechanical loading conditions. In this letter, an analytical solution of the impact response in double layer graphene sheets (DLGSs is presented using a continuum mechanics theory. In this analytical model, the DLGSs are considered as a layer stack of two individual graphene sheet (GS bound together by van der Waals (vdW forces. The influence of impact velocity and mass on the impact response are predicted by using numerical simulation. The result shows that impact response of GSs subjected to nanomass has exceedingly short times with picoseconds order.

  1. Hybrid graphene-BC2N monolayers and nanoribbons with extended line defects: An ab initio study

    Science.gov (United States)

    Guerra, T.; Azevedo, S.; Machado, M.

    2017-02-01

    Opening a bandgap in graphene is probably one of the most important and urgent topics in the graphene research currently, since most of the proposed applications for graphene in nanoelectronic devices require the ability to adjust its bandgap. In this work we perform first-principles calculations to investigate the alterations at the structural, energetic, electronic and magnetic properties of hybrid graphene-BC2N monolayers (GBMLs) and zigzag graphene-BC2N nanoribbons (ZGBNRs) with different types of extended line defects (ELDs) at the grain boundary. Different reconstruction processes are observed forming different types of ELDs depending on the nature of the atoms into the grain boundary as well as the structures type, arrangement, position/size of domains, and inserted atoms. The inclusion of these ELDs creates edge type effects in the ELD at GBNMLs, inducing spin polarization and localization of states at the Fermi level. GBNMLs show a wide range of electronic structures going from semimetallic to semiconducting and metallic, which can have magnetic ground states with ferromagnetic and antiferromagnetic. ZGBNRs are always metallic with ferromagnetic coupling between carbon atoms at the structures edges.

  2. Functionalized graphene sheets as immobilization matrix for Fenugreek β-amylase: enzyme kinetics and stability studies.

    Directory of Open Access Journals (Sweden)

    Garima Srivastava

    Full Text Available β-Amylase finds application in food and pharmaceutical industries. Functionalized graphene sheets were customised as a matrix for covalent immobilization of Fenugreek β-amylase using glutaraldehyde as a cross-linker. The factors affecting the process were optimized using Response Surface Methodology based Box-Behnken design of experiment which resulted in 84% immobilization efficiency. Scanning and Transmission Electron Microscopy (SEM, TEM and Fourier Tansform Infrared (FTIR spectroscopy were employed for the purpose of characterization of attachment of enzyme on the graphene. The enzyme kinetic studies were carried out for obtaining best catalytic performance and enhanced reusability. Optimum temperature remained unchanged, whereas optimum pH showed shift towards acidic range for immobilized enzyme. Increase in thermal stability of immobilized enzyme and non-toxic nature of functionalized graphene can be exploited for production of maltose in food and pharmaceutical industries.

  3. The effect of gradually constricted channel on the I-V characteristics of graphene sheets

    Science.gov (United States)

    Zanella, Fernando; Nobrega, K. Z.; Dartora, C. A.

    2016-10-01

    Ideal graphene is a gapless semiconductor consisting of a single layer of carbon atoms regularly arranged in a honeycomb lattice having infinite spatial extent in the (x,y)-plane, in which electrons behave as Dirac massless fermions. Even neglecting interactions with the anchoring substrate, a graphene sheet in real world has finite extent, leading to distinctive features in the conductivity of a given sample. In this letter we study the effect of a gradual channel constriction in graphene nanoribbons on their I-V characteristics, using non-equilibrium Green's function formalism. The constriction width and the border cutting angle are the main parameters to be varied. We found that transmission through the channel is considerably affected by these parameters, presenting sharp peaks at specific energies, which can be attributed to a resonance due to the tuning of energy eigenvalues.

  4. Charge density waves in the graphene sheets of the superconductor CaC(6).

    Science.gov (United States)

    Rahnejat, K C; Howard, C A; Shuttleworth, N E; Schofield, S R; Iwaya, K; Hirjibehedin, C F; Renner, Ch; Aeppli, G; Ellerby, M

    2011-11-29

    Graphitic systems have an electronic structure that can be readily manipulated through electrostatic or chemical doping, resulting in a rich variety of electronic ground states. Here we report the first observation and characterization of electronic stripes in the highly electron-doped graphitic superconductor, CaC(6), by scanning tunnelling microscopy and spectroscopy. The stripes correspond to a charge density wave with a period three times that of the Ca superlattice. Although the positions of the Ca intercalants are modulated, no displacements of the carbon lattice are detected, indicating that the graphene sheets host the ideal charge density wave. This provides an exceptionally simple material-graphene-as a starting point for understanding the relation between stripes and superconductivity. Furthermore, our experiments suggest a strategy to search for superconductivity in graphene, namely in the vicinity of striped 'Wigner crystal' phases, where some of the electrons crystallize to form a superlattice.

  5. On Mechanical Properties of Graphene Sheet Estimated Using Molecular Dynamics Simulations

    Science.gov (United States)

    Das, D. K.; Ghosh, M. M.

    2017-09-01

    This work reports estimation of mechanical properties, particularly Young's modulus of a single-layered graphene sheet by molecular dynamics (MD) simulation-based four different approaches, viz. tensile modeling, bending modeling, oscillation modeling and equilibrium MD modeling. The Young's modulus is estimated to be of the order of some TPa. The equilibrium MD method has yielded a Young's modulus value lower than the other non-equilibrium methods, due to the absence of any external forcing factor. Among the non-equilibrium MD methods, the bending modeling is found to predict the highest value of Young's modulus. Comparison among different non-equilibrium methods has established the effect of strain rate on the estimated value of the Young's modulus. The MD simulation-based approaches adopted here can be useful for the design of graphene and graphene-based materials in advanced mechanical applications.

  6. Quantum pumping in graphene with a perpendicular magnetic field

    NARCIS (Netherlands)

    Tiwari, R.P.; Blaauboer, M.

    2010-01-01

    We consider quantum pumping of Dirac fermions in a monolayer of graphene in the presence of a perpendicular magnetic field in the central pumping region. The two external pump parameters are electrical voltages applied to the graphene sheet on either side of the pumping region. We analyze this pump

  7. Thermal fluctuations and effective bending stiffness of elastic thin sheets and graphene: A nonlinear analysis

    Science.gov (United States)

    Ahmadpoor, Fatemeh; Wang, Peng; Huang, Rui; Sharma, Pradeep

    2017-10-01

    The study of statistical mechanics of thermal fluctuations of graphene-the prototypical two-dimensional material-is rendered rather complicated due to the necessity of accounting for geometric deformation nonlinearity. Unlike fluid membranes such as lipid bilayers, coupling of stretching and flexural modes in solid membranes like graphene leads to a highly anharmonic elastic Hamiltonian. Existing treatments draw heavily on analogies in the high-energy physics literature and are hard to extend or modify in the typical contexts that permeate materials, mechanics and some of the condensed matter physics literature. In this study, using a variational perturbation method, we present a ;mechanics-oriented; treatment of the thermal fluctuations of elastic sheets such as graphene and evaluate their effect on the effective bending stiffness at finite temperatures. In particular, we explore the size, pre-strain and temperature dependency of the out-of-plane fluctuations, and demonstrate how an elastic sheet becomes effectively stiffer at larger sizes. Our derivations provide a transparent approach that can be extended to include multi-field couplings and anisotropy for other 2D materials. To reconcile our analytical results with atomistic considerations, we also perform molecular dynamics simulations on graphene and contrast the obtained results and physical insights with those in the literature.

  8. Phonon dispersions in graphene sheet and single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    Dinesh Kumar; Veena Verma; H S Bhatti; Keya Dharamvir

    2013-12-01

    In the present research paper, phonons in graphene sheet have been calculated by constructing a dynamical matrix using the force constants derived from the second-generation reactive empirical bond order potential by Brenner and co-workers. Our results are comparable to inelastic X-ray scattering as well as first principle calculations. At point, for graphene, the optical modes (degenerate) lie near 1685 cm−1. The frequency regimes are easily distinguishable. The lowfrequency ($ → 0$) modes are derived from acoustic branches of the sheet. The radial modes can be identified with → 584 cm−1. High-frequency regime is above 1200 cm−1 (i.e. ZO mode) and consists of TO and LO modes. The phonons in a nanotube can be derived from zone folding method using phonons of a single layer of the hexagonal sheet. The present work aims to explore the agreement between theory and experiment. A better knowledge of the phonon dispersion of graphene is highly desirable to model and understand the properties of carbon nanotubes. The development and production of carbon nanotubes (CNTs) for possible applications need reliable and quick analytical characterization. Our results may serve as an accurate tool for the spectroscopic determination of the tube radii and chiralities.

  9. Tunable wideband-directive thermal emission from SiC surface using bundled graphene sheets

    Science.gov (United States)

    Inampudi, Sandeep; Mosallaei, Hossein

    2017-09-01

    Coherent thermal radiation emitters based on diffraction gratings inscribed on surface of a polar material, such as silicon carbide, always possess high angular dispersion resulting in wideband-dispersive or monochromatic-directive emission. In this paper, we identify roots of the high angular dispersion as the rapid surface phonon polariton (SPhP) resonance of the material surface and the misalignment of the dispersion curve of the diffraction orders of the grating with respect to light line. We minimize the rapid variation of SPhP resonance by compensating the material dispersion using bundled graphene sheets and mitigate the misalignment by a proper choice of the grating design. Utilizing a modified form of rigorous coupled wave analysis to simultaneously incorporate atomic-scale graphene sheets and bulk diffraction gratings, we accurately compute the emissivity profiles of the composite structure and demonstrate reduction in the angular dispersion of thermal emission from as high as 30∘ to as low as 4∘ in the SPhP dominant wavelength range of 11-12 μ m . In addition, we demonstrate that the graphene sheets via their tunable optical properties allow a fringe benefit of dynamical variation of the angular dispersion to a wide range.

  10. Controlled graphene oxide assembly on silver nanocube monolayers for SERS detection: dependence on nanocube packing procedure

    Directory of Open Access Journals (Sweden)

    Martina Banchelli

    2016-01-01

    Full Text Available Hybrid graphene oxide/silver nanocubes (GO/AgNCs arrays for surface-enhanced Raman spectroscopy (SERS applications were prepared by means of two procedures differing for the method used in the assembly of the silver nanocubes onto the surface: Langmuir–Blodgett (LB transfer and direct sequential physisorption of silver nanocubes (AgNCs. Adsorption of graphene oxide (GO flakes on the AgNC assemblies obtained with both procedures was monitored by quartz crystal microbalance (QCM technique as a function of GO bulk concentration. The experiment provided values of the adsorbed GO mass on the AgNC array and the GO saturation limit as well as the thickness and the viscoelastic properties of the GO film. Atomic force microscopy (AFM measurements of the resulting samples revealed that a similar surface coverage was achieved with both procedures but with a different distribution of silver nanoparticles. In the GO covered LB film, the AgNC distribution is characterized by densely packed regions alternating with empty surface areas. On the other hand, AgNCs are more homogeneously dispersed over the entire sensor surface when the nanocubes spontaneously adsorb from solution. In this case, the assembly results in less-packed silver nanostructures with higher inter-cube distance. For the two assembled substrates, AFM of silver nanocubes layers fully covered with GO revealed the presence of a homogeneous, flexible and smooth GO sheet folding over the silver nanocubes and extending onto the bare surface. Preliminary SERS experiments on adenine showed a higher SERS enhancement factor for GO on Langmuir–Blodgett films of AgNCs with respect to bare AgNC systems. Conversely, poor SERS enhancement for adenine resulted for GO-covered AgNCs obtained by spontaneous adsorption. This indicated that the assembly and packing of AgNCs obtained in this way, although more homogeneous over the substrate surface, is not as effective for SERS analysis.

  11. Tribological Properties of Few-layer Graphene Oxide Sheets as Oil-Based Lubricant Additives

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhe; LIU Yuhong; LUO Jianbin

    2016-01-01

    The performance of a lubricant largely depends on the additives it involves. However, currently used additives cause severe pollution if they are burned and exhausted. Therefore, it is necessary to develop a new generation of green additives. Graphene oxide (GO) consists of only C, H and O and thus is considered to be environmentally friendly. So the tribological properties of the few-layer GO sheet as an additive in hydrocarbon base oil are investigated systematically. It is found that, with the addition of GO sheets, both the coefficient of friction (COF) and wear are decreased and the working temperature range of the lubricant is expanded in the positive direction. Moreover, GO sheets has better performance under higher sliding speed and the optimized concentration of GO sheets is determined to be 0.5wt%. After rubbing, GO is detected on the wear scars through Raman spectroscopy. And it is believed that, during the rubbing, GO sheets adhere to the sliding surfaces, behaving like protective films and preventing the sliding surfaces from contacting with each other directly. This paper proves that the GO sheet is an effective lubricant additive, illuminates the lubrication mechanism, and provides some critical parameters for the practical application of GO sheets in lubrication.

  12. Tribological properties of few-layer graphene oxide sheets as oil-based lubricant additives

    Science.gov (United States)

    Chen, Zhe; Liu, Yuhong; Luo, Jianbin

    2016-03-01

    The performance of a lubricant largely depends on the additives it involves. However, currently used additives cause severe pollution if they are burned and exhausted. Therefore, it is necessary to develop a new generation of green additives. Graphene oxide (GO) consists of only C, H and O and thus is considered to be environmentally friendly. So the tribological properties of the few-layer GO sheet as an additive in hydrocarbon base oil are investigated systematically. It is found that, with the addition of GO sheets, both the coefficient of friction (COF) and wear are decreased and the working temperature range of the lubricant is expanded in the positive direction. Moreover, GO sheets has better performance under higher sliding speed and the optimized concentration of GO sheets is determined to be 0.5wt%. After rubbing, GO is detected on the wear scars through Raman spectroscopy. And it is believed that, during the rubbing, GO sheets adhere to the sliding surfaces, behaving like protective films and preventing the sliding surfaces from contacting with each other directly. This paper proves that the GO sheet is an effective lubricant additive, illuminates the lubrication mechanism, and provides some critical parameters for the practical application of GO sheets in lubrication.

  13. Adjustable thermal resistor by reversibly folding a graphene sheet.

    Science.gov (United States)

    Song, Qichen; An, Meng; Chen, Xiandong; Peng, Zhan; Zang, Jianfeng; Yang, Nuo

    2016-08-11

    Phononic (thermal) devices such as thermal diodes, thermal transistors, thermal logic gates, and thermal memories have been studied intensively. However, tunable thermal resistors have not been demonstrated yet. Here, we propose an instantaneously adjustable thermal resistor based on folded graphene. Through theoretical analysis and molecular dynamics simulations, we study the phonon-folding scattering effect and the dependence of thermal resistivity on the length between two folds and the overall length. Furthermore, we discuss the possibility of realizing instantaneously adjustable thermal resistors in experiment. Our studies bring new insights into designing thermal resistors and understanding the thermal modulation of 2D materials by adjusting basic structure parameters.

  14. Green-synthesized gold nanoparticles decorated graphene sheets for label-free electrochemical impedance DNA hybridization biosensing.

    Science.gov (United States)

    Hu, Yuwei; Hua, Shucheng; Li, Fenghua; Jiang, Yuanyuan; Bai, Xiaoxue; Li, Dan; Niu, Li

    2011-07-15

    Sensitive electrochemical impedance assay of DNA hybridization by using a novel graphene sheets platform was achieved. The graphene sheets were firstly functionalized with 3,4,9,10-perylene tetracarboxylic acid (PTCA). PTCA molecules separated graphene sheets efficiently and introduced more negatively-charged -COOH sites, both of which were beneficial to the decoration of graphene with gold nanoparticles. Then amine-terminated ionic liquid (NH₂-IL) was applied to the reduction of HAuCl₄ to gold nanoparticles. The green-synthesized gold nanoparticles, with the mean diameter of 3 nm, dispersed uniformly on graphene sheets and its outer layer was positively charged imidazole termini. Due to the presence of large graphene sheets and NH₂-IL protected gold nanoparticles, DNA probes could be immobilized via electrostatic interaction and adsorption effect. Electrochemical impedance value increased after DNA probes immobilization and hybridization, which was adopted as the signal for label-free DNA hybridization detection. Unlike previously anchoring DNA to gold nanoparticles, this label-free method was simple and noninvasive. The conserved sequence of the pol gene of human immunodeficiency virus 1 was satisfactorily detected via this strategy.

  15. Finite temperature effect on mechanical properties of graphene sheets with various grain boundaries

    Science.gov (United States)

    Yong, Ge; Hong-Xiang, Sun; Yi-Jun, Guan; Gan-He, Zeng

    2016-06-01

    The mechanical properties of graphene sheets with various grain boundaries are studied by molecular dynamics method at finite temperatures. The finite temperature reduces the ultimate strengths of the graphenes with different types of grain boundaries. More interestingly, at high temperatures, the ultimate strengths of the graphene with the zigzag-orientation grain boundaries at low tilt angles exhibit different behaviors from those at lower temperatures, which is determined by inner initial stress in grain boundaries. The results indicate that the finite temperature, especially the high one, has a significant effect on the ultimate strength of graphene with grain boundaries, which gives a more in-depth understanding of their mechanical properties and could be useful for potential graphene applications. Project supported by the Nation Natural Science Foundation of China (Grant Nos. 11347219 and 11404147), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140519), the Training Project of Young Backbone Teacher of Jiangsu University, the Advanced Talents of Jiangsu University, China (Grant No. 11JDG118), the Practice Innovation Training Program Projects for Industrial Center of Jiangsu University, China, and the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLOA201308).

  16. Synthesis and Characterisation of Graphene Single Sheets%石墨烯的合成与表征

    Institute of Scientific and Technical Information of China (English)

    童小翠; 王静; 张瑾

    2012-01-01

    Graphene sheets was a fascinating material with its tantalizing applied foreground. A prerequisite for ex- ploiting most proposed applications for graphene was to seek for a method that readily and simply produced graphene sheets in large quantities. By far, graphene sheets can be prepared by three techniques in general. Among them, oxidation and reduction processing graphene sheets was the most suitable for producing graphene sheets in large quantity. XRD, trans- mission electron microscopy and FT - IR spectra analysis indicated that graphene single sheets were readily synthesized through the chemical processing. Moreover, the crystal structure of the graphene nanosheets was maintained intact after chemical functionalisation.%由于其诱人的应用前景,石墨烯已经被看成一种极好的材料。要扩大石墨烯的应用领域的一个先决条件就是找到一种简单方法能够大量生产石墨烯。到目前为止,大体上有三种制备石墨烯的方法,而氧化还原法是最适宜大量生产的。在本文中,使用x射线衍射仪,透射电镜和红外光谱对采用化学法制备出的石墨烯进行表征。另外,石墨烯的纳米层状结构在化学功能化之后保持不变。

  17. Controllable preparation of vertically standing graphene sheets and their wettability and supercapacitive properties

    Science.gov (United States)

    Zhou, Hai-Tao; Yu, Ning; Zou, Fei; Yao, Zhao-Hui; Gao, Ge; Shen, Cheng-Min

    2016-09-01

    Vertically standing graphene (VSG) sheets have been fabricated by using plasma enhanced chemical vapor deposition (PECVD) method. The lateral size of VSG nanosheets could be well controlled by varying the substrate temperature. The higher temperature usually gives rise to a smaller sheet size. The wettability of VSG films was tuned between hydrophobicity and hydrophilicity by means of oxygen and hydrogen plasma treatment. The supercapacitor electrode made of VSG sheets exhibited an ideal double-layer-capacitor feature and the specific capacitance reached a value up to 9.62 F·m-2. Project supported by the National Basic Research Program of China (Grant No. 2013CBA01603), the National Natural Science Foundation of China (Grant No. 61335006), and the Chinese Academy of Sciences (Grant Nos. 1731300500015 and XDB07030100).

  18. Effect of Platinum loading on Graphene Nano Sheets at Cathode

    Directory of Open Access Journals (Sweden)

    Rikson Siburian

    2017-02-01

    Full Text Available The effect of Ptloading on graphenenanosheets (GNS at electrode catalyst fuel cell was carried out. The purpose of this research is to know the effect of Pt loading on GNS and support material for catalytic activity of Pt/GNS. The results show 20 wt % Pt/GNS is highest catalytic activity among the others and thecatalytic activity of Pt on GNS is higherthan that of Pt on carbon black (CB commercial catalyst. A core level shift of Pt 4f in XPS indicates that Pt is chemically interacted with GNS.It has been ascribed to the difference in the interface interaction between Pt and graphene via different strength of the π–d hybridization.

  19. Influence of ageing on Raman spectra and the conductivity of monolayer graphene samples irradiated by heavy and light ions

    Energy Technology Data Exchange (ETDEWEB)

    Butenko, A.; Zion, E.; Richter, V.; Sharoni, A. [Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900 (Israel); Kaganovskii, Yu.; Wolfson, L.; Kogan, E.; Kaveh, M.; Shlimak, I. [Department of Physics, Jack and Pearl Resnick Institute, Bar-Ilan University, Ramat Gan 52900 (Israel)

    2016-07-28

    The influence of long-term ageing (about one year) on the Raman scattering (RS) spectra and the temperature dependence of conductivity has been studied in two series of monolayer graphene samples irradiated by different doses of C{sup +} and Xe{sup +} ions. It is shown that the main result of ageing consists of changes in the intensity and position of D- and G- and 2D-lines in RS spectra and in an increase of the conductivity. The observed effects are explained in terms of an increase of the radius of the “activated” area around structural defects.

  20. The pristine atomic structure of MoS{sub 2} monolayer protected from electron radiation damage by graphene

    Energy Technology Data Exchange (ETDEWEB)

    Algara-Siller, Gerardo; Kurasch, Simon; Sedighi, Mona; Lehtinen, Ossi; Kaiser, Ute [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University (Germany)

    2013-11-11

    Materials can, in principle, be imaged at the level of individual atoms with aberration-corrected transmission electron microscopy. However, such resolution can be attained only with very high electron doses. Consequently, radiation damage is often the limiting factor when characterizing sensitive materials. Here, we demonstrate a simple and an effective method to increase the electron radiation tolerance of materials by using graphene as protective coating. This leads to an improvement of three orders of magnitude in the radiation tolerance of monolayer MoS{sub 2}. Further on, we construct samples in different heterostructure configurations to separate the contributions of different radiation damage mechanisms.

  1. The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene

    Science.gov (United States)

    Algara-Siller, Gerardo; Kurasch, Simon; Sedighi, Mona; Lehtinen, Ossi; Kaiser, Ute

    2013-11-01

    Materials can, in principle, be imaged at the level of individual atoms with aberration-corrected transmission electron microscopy. However, such resolution can be attained only with very high electron doses. Consequently, radiation damage is often the limiting factor when characterizing sensitive materials. Here, we demonstrate a simple and an effective method to increase the electron radiation tolerance of materials by using graphene as protective coating. This leads to an improvement of three orders of magnitude in the radiation tolerance of monolayer MoS2. Further on, we construct samples in different heterostructure configurations to separate the contributions of different radiation damage mechanisms.

  2. MoS2 Nanosheets Vertically Grown on Graphene Sheets for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Teng, Yongqiang; Zhao, Hailei; Zhang, Zijia; Li, Zhaolin; Xia, Qing; Zhang, Yang; Zhao, Lina; Du, Xuefei; Du, Zhihong; Lv, Pengpeng; Świerczek, Konrad

    2016-09-27

    A designed nanostructure with MoS2 nanosheets (NSs) perpendicularly grown on graphene sheets (MoS2/G) is achieved by a facile and scalable hydrothermal method, which involves adsorption of Mo7O24(6-) on a graphene oxide (GO) surface, due to the electrostatic attraction, followed by in situ growth of MoS2. These results give an explicit proof that the presence of oxygen-containing groups and pH of the solution are crucial factors enabling formation of a lamellar structure with MoS2 NSs uniformly decorated on graphene sheets. The direct coupling of edge Mo of MoS2 with the oxygen from functional groups on GO (C-O-Mo bond) is proposed. The interfacial interaction of the C-O-Mo bonds can enhance electron transport rate and structural stability of the MoS2/G electrode, which is beneficial for the improvement of rate performance and long cycle life. The graphene sheets improve the electrical conductivity of the composite and, at the same time, act not only as a substrate to disperse active MoS2 NSs homogeneously but also as a buffer to accommodate the volume changes during cycling. As an anode material for lithium-ion batteries, the manufactured MoS2/G electrode manifests a stable cycling performance (1077 mAh g(-1) at 100 mA g(-1) after 150 cycles), excellent rate capability, and a long cycle life (907 mAh g(-1) at 1000 mA g(-1) after 400 cycles).

  3. Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors.

    Science.gov (United States)

    Park, Jaesung; Lee, Wi Hyoung; Huh, Sung; Sim, Sung Hyun; Kim, Seung Bin; Cho, Kilwon; Hong, Byung Hee; Kim, Kwang S

    2011-04-21

    We have devised a method to optimize the performance of organic field-effect transistors (OFETs) by controlling the work functions of graphene electrodes by functionalizing the surface of SiO2 substrates with self-assembled monolayers (SAMs). The electron-donating NH2-terminated SAMs induce strong n-doping in graphene, whereas the CH3-terminated SAMs neutralize the p-doping induced by SiO2 substrates, resulting in considerable changes in the work functions of graphene electrodes. This approach was successfully utilized to optimize electrical properties of graphene field-effect transistors and organic electronic devices using graphene electrodes. Considering the patternability and robustness of SAMs, this method would find numerous applications in graphene-based organic electronics and optoelectronic devices such as organic light-emitting diodes and organic photovoltaic devices.

  4. First-principles calculations of the superconducting properties in Li-decorated monolayer graphene within the anisotropic Migdal-Eliashberg formalism

    Science.gov (United States)

    Zheng, Jing-Jing; Margine, E. R.

    2016-08-01

    The ab initio anisotropic Migdal-Eliashberg formalism has been used to examine the pairing mechanism and the nature of the superconducting gap in the recently discovered lithium-decorated monolayer graphene superconductor. Our results provide evidence that the superconducting transition in Li-decorated monolayer graphene can be explained within a standard phonon-mediated mechanism. We predict a single anisotropic superconducting gap and a critical temperature Tc=5.1 -7.6 K , in very good agreement with the experimental results.

  5. Massless Dirac fermions trapping in a quasi-one-dimensional n p n junction of a continuous graphene monolayer

    Science.gov (United States)

    Bai, Ke-Ke; Qiao, Jia-Bin; Jiang, Hua; Liu, Haiwen; He, Lin

    2017-05-01

    Massless Dirac fermions in graphene provide unprecedented opportunities to realize the Klein paradox, which is one of the most exotic and striking properties of relativistic particles. In the seminal theoretical work [M. I. Katsnelson et al., Nat. Phys. 2, 620 (2006), 10.1038/nphys384], it was predicted that the massless Dirac fermions can pass through one-dimensional (1D) potential barriers unimpededly at normal incidence. Such a result seems to preclude confinement of the massless Dirac fermions in graphene by using 1D potential barriers. Here, we demonstrate both experimentally and theoretically that massless Dirac fermions can be trapped in a quasi-1D n p n junction of a continuous graphene monolayer. Because of highly anisotropic transmission of the massless Dirac fermions at n-p junction boundaries (the so-called Klein tunneling in graphene), charge carriers incident at large oblique angles will be reflected from one edge of the junction with high probability and continue to bounce from the opposite edge. Consequently, these electrons are trapped for a finite time to form quasibound states in the quasi-1D n p n junction. The quasibound states seen as pronounced resonances are probed and the quantum interference patterns arising from these states are directly visualized in our scanning tunneling microscope measurements.

  6. Theoretical Analysis of Vibration Frequency of Graphene Sheets Used as Nanomechanical Mass Sensor

    Directory of Open Access Journals (Sweden)

    Toshiaki Natsuki

    2015-09-01

    Full Text Available Nanoelectromechanical resonator sensors based on graphene sheets (GS show ultrahigh sensitivity to vibration. However, many factors such as the layer number and dimension of the GSs will affect the sensor characteristics. In this study, an analytical model is proposed to investigate the vibration behavior of double-layered graphene sheets (DLGSs with attached nanoparticles. Based on nonlocal continuum mechanics, the influences of the layer number, dimensions of the GSs, and of the mass and position of nanoparticles attached to the GSs on the vibration response of GS resonators are discussed in detail. The results indicate that nanomasses can easily be detected by GS resonators, which can be used as a highly sensitive nanomechanical element in sensor systems. A logarithmically linear relationship exists between the frequency shift and the attached mass when the total mass attached to GS is less than about 1.0 zg. Accordingly, it is convenient to use a linear calibration for the calculation and determination of attached nanomasses. The simulation approach and the parametric investigation are useful tools for the design of graphene-based nanomass sensors and devices.

  7. Excitation of plasmon modes in a graphene monolayer supported on a 2D subwavelength silicon grating

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Jepsen, Peter Uhd;

    2013-01-01

    Graphene is a two-dimensional (2D) carbon-based material, whose unique electronic and optical properties have attracted a great deal of research interest. Despite the fact that graphene is an atomically thin layer the optical absorption of a single layer can be as high as 2.3% (defined by the fine...... structure constant). Nevertheless, for light-matter interactions this number is imposing challenges and restrictions for graphene-based optoelectronic devices. One promising way to enhance optical absorption is to excite graphene-plasmon polaritons (GPPs) supported by graphene....

  8. Sheet Size-Induced Evaporation Behaviors of Inkjet-Printed Graphene Oxide for Printed Electronics.

    Science.gov (United States)

    Kim, Haena; Jang, Jeong In; Kim, Hyun Ho; Lee, Geon-Woong; Lim, Jung Ah; Han, Joong Tark; Cho, Kilwon

    2016-02-10

    The size of chemically modified graphene nanosheets is a critical parameter that affects their performance and applications. Here, we show that the lateral size of graphene oxide (GO) nanosheets is strongly correlated with the concentration of graphite oxide present in the suspension as graphite oxide is exfoliated by sonication. The size of the GO nanosheets increased from less than 100 nm to several micrometers as the concentration of graphite oxide in the suspension was increased up to a critical concentration. An investigation of the evaporation behavior of the GO nanosheet solution using inkjet printing revealed that the critical temperature of formation of a uniform film, T(c), was lower for the large GO nanosheets than for the small GO nanosheets. This difference was attributed to the interactions between the two-dimensional structures of GO nanosheets and the substrate as well as the interactions among the GO nanosheets. Furthermore, we fabricated organic thin film transistors (OTFTs) using line-patterned reduced GO as electrodes. The OTFTs displayed different electrical performances, depending on the graphene sheet size. We believe that our new strategy to control the size of GO nanosheets and our findings about the colloidal and electrical properties of size-controlled GO nanosheets will be very effective to fabricate graphene based printed electronics.

  9. Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly.

    Science.gov (United States)

    Ou, Junfei; Wang, Jinqing; Liu, Sheng; Mu, Bo; Ren, Junfang; Wang, Honggang; Yang, Shengrong

    2010-10-19

    Reduced graphene oxide (RGO) sheets were covalently assembled onto silicon wafers via a multistep route based on the chemical adsorption and thermal reduction of graphene oxide (GO). The formation and microstructure of RGO were analyzed by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Raman spectroscopy, and water contact angle (WCA) measurements. Characterization by atomic force microscopy (AFM) was performed to evaluate the morphology and microtribological behaviors of the samples. Macrotribological performance was tested on a ball-on-plate tribometer. Results show that the assembled RGO possesses good friction reduction and antiwear ability, properties ascribed to its intrinsic structure, that is, the covalent bonding to the substrate and self-lubricating property of RGO.

  10. Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system.

    Science.gov (United States)

    Luo, Weiwei; Cai, Wei; Xiang, Yinxiao; Wang, Lei; Ren, Mengxin; Zhang, Xinzheng; Xu, Jingjun

    2016-03-21

    General actively tunable near-field plasmon-induced transparency (PIT) systems based on couplings between localized plasmon resonances of graphene nanostructures not only suffer from interantenna separations of smaller than 20 nm, but also lack switchable effect about the transparency window. Here, the performance of an active PIT system based on graphene grating-sheet with near-field coupling distance of more than 100 nm is investigated in mid-infrared. The transparency window in spectrum is analyzed objectively and proved to be more likely stemmed from Aulter-Townes splitting. The proposed system exhibits flexible tunability in slow-light and electro-optical switches, promising for practical active photonic devices.

  11. Crumpling deformation regimes of monolayer graphene on substrate: a molecular mechanics study.

    Science.gov (United States)

    Al-Mulla, Talal; Qin, Zhao; Buehler, Markus J

    2015-09-04

    Experiments and simulations demonstrating reversible and repeatable crumpling of graphene warrant a detailed understanding of the underlying mechanisms of graphene crumple formation, especially for design of tailored nanostructures. To systematically study the formation of crumples in graphene, we use a simple molecular dynamics model, and perform a series of simulations to characterize the finite number of deformation regimes of graphene on substrate after compression. We formulate a quantitative measure of predicting these deformations based on observed results of the simulations and distinguish graphene crumpling considered in this study from others. In our study, graphene is placed on a model substrate while controlling and varying the interfacial energy between graphene and substrate and the substrate roughness through a set of particles embedded in the substrate. We find that a critical value of interfacial adhesion energy marks a transition point that separates two deformation regimes of graphene on substrate under uniaxial compression. The interface between graphene and substrate plays a major role in the formation of crumples, and we show that the choice of substrate can help in designing desired topologies in graphene.

  12. On the plasma-based growth of ‘flowing’ graphene sheets at atmospheric pressure conditions

    Science.gov (United States)

    Tsyganov, D.; Bundaleska, N.; Tatarova, E.; Dias, A.; Henriques, J.; Rego, A.; Ferraria, A.; Abrashev, M. V.; Dias, F. M.; Luhrs, C. C.; Phillips, J.

    2016-02-01

    A theoretical and experimental study on atmospheric pressure microwave plasma-based assembly of free standing graphene sheets is presented. The synthesis method is based on introducing a carbon-containing precursor (C2H5OH) through a microwave (2.45 GHz) argon plasma environment, where decomposition of ethanol molecules takes place and carbon atoms and molecules are created and then converted into solid carbon nuclei in the ‘colder’ nucleation zones. A theoretical model previously developed has been further updated and refined to map the particle and thermal fluxes in the plasma reactor. Considering the nucleation process as a delicate interplay between thermodynamic and kinetic factors, the model is based on a set of non-linear differential equations describing plasma thermodynamics and chemical kinetics. The model predictions were validated by experimental results. Optical emission spectroscopy was applied to detect the plasma emission related to carbon species from the ‘hot’ plasma zone. Raman spectroscopy, scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS) techniques have been applied to analyze the synthesized nanostructures. The microstructural features of the solid carbon nuclei collected from the colder zones of plasma reactor vary according to their location. A part of the solid carbon was deposited on the discharge tube wall. The solid assembled from the main stream, which was gradually withdrawn from the hot plasma region in the outlet plasma stream directed to a filter, was composed by ‘flowing’ graphene sheets. The influence of additional hydrogen, Ar flow rate and microwave power on the concentration of obtained stable species and carbon-dicarbon was evaluated. The ratio of sp3/sp2 carbons in graphene sheets is presented. A correlation between changes in C2 and C number densities and sp3/sp2 ratio was found.

  13. Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    Science.gov (United States)

    Mou, Chengbo; Arif, Raz; Lobach, Anatoly S.; Khudyakov, Dmitry V.; Spitsina, Nataliya G.; Kazakov, Valery A.; Turitsyn, Sergei; Rozhin, Aleksey

    2015-02-01

    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.

  14. Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Mou, Chengbo, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk; Turitsyn, Sergei; Rozhin, Aleksey, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Arif, Raz [Aston Institute of Photonic Technologies, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Physics Department, Faculty of Science, University of Sulaimani, Sulaimani, Kurdistan Region (Iraq); Lobach, Anatoly S.; Spitsina, Nataliya G. [Institute of Problems of Chemical Physics RAS, Ac. Semenov Av. 1, Chernogolovka, Moscow Region 142432 (Russian Federation); Khudyakov, Dmitry V. [Institute of Problems of Chemical Physics RAS, Ac. Semenov Av. 1, Chernogolovka, Moscow Region 142432 (Russian Federation); Physics Instrumentation Center of the Institute of General Physics A.M. Prokhorov Russian Academy of Sciences, Troitsk, Moscow Region 142190 (Russian Federation); Kazakov, Valery A. [Keldysh Center, Onezhskaya 8, Moscow 125438 (Russian Federation)

    2015-02-09

    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.

  15. Spontaneous symmetry breaking and strong deformations in metal adsorbed graphene sheets

    Science.gov (United States)

    Jalbout, A. F.; Ortiz, Y. P.; Seligman, T. H.

    2013-03-01

    We study the adsorption of Li to graphene flakes simulated as aromatic molecules. Surprisingly the out of plane deformation is much stronger for the double adsorption from both sides to the same ring than for a single adsorption, although a symmetric solution seems possible. We thus have an interesting case of spontaneous symmetry breaking. While we cannot rule out a Jahn Teller deformation with certainty, this explanation seems unlikely and other options are discussed. We find a similar behavior for boron-nitrogen sheets, and also for other light alkalines as adsorbants.

  16. Spontaneous Symmetry Breaking and Strong Deformations in Metal Adsorbed Graphene Sheets

    CERN Document Server

    Jalbout, A F; Seligman, T H

    2013-01-01

    We study the adsorption of Li to graphene flakes described as aromatic molecules. Surprisingly the out of plane deformation is much stronger for the double adsorption from both sides to the same ring than for a single adsorption, although a symmetric solution seems possible. We thus have an interesting case of spontaneous symmetry breaking. While we cannot rule out a Jahn Teller deformation with certainty, this explanation seems unlikely and other options are discussed. We find a similar behavior for Boron-Nitrogen sheets, and also for other light alkalines.

  17. Boundary condition and pre-strain effects on the free standing indentation response of graphene monolayer.

    Science.gov (United States)

    Zhou, Lixin; Wang, Yugang; Cao, Guoxin

    2013-11-27

    Using molecular mechanics simulations, we investigated the true pre-stress/pre-strain state of graphene in free standing indentation and the effect of the pre-strain (ε0) on the free standing indentation response of graphene is also considered. We found that there is essentially no effective pre-tension in graphene during free standing indentation and the reported pre-tensile stress determined from the indentation tests does not show the true pre-stress state of graphene, which is a 'fake stress' caused by the assumption (the indenter tip displacement is equal to the displacement of graphene) typically used in the classic indentation analysis. A negative ε0 will increase the van der Waals (VDW) interaction between the indenter tip and graphene to cause a larger overestimation of both values of the elastic modulus (E) and the nonlinear elastic constant (c) of graphene from the classic indentation analysis. However, applying a positive ε0 in graphene, the VDW effect will be significantly decreased, and a more accurate value of E can be obtained, but the value of c will decrease to zero, which may become an effective way to more accurately obtain the elastic stiffness of graphene from indentation tests.

  18. Vibration of quadrilateral embedded multilayered graphene sheets based on noniocal continuum models using the Galerkin method

    Institute of Scientific and Technical Information of China (English)

    H. Babaei; A.R. Shahidi

    2011-01-01

    Free vibration analysis of quadrilateral multilayered graphene sheets (MLGS) embedded in polymer matrix is carried out employing nonlocal continuum mechanics.The principle of virtual work is employed to derive the equations of motion.The Galerkin method in conjunction with the natural coordinates of the nanoplate is used as a basis for the analysis.The dependence of small scale effect on thickness,elastic modulus,polymer matrix stiffness and interaction coefficient between two adjacent sheets is illustrated.The non-dimensional natural frequencies of skew,rhombic,trapezoidal and rectangular MLGS are obtained with various geometrical parameters and mode numbers taken into account,and for each case the effects of the small length scale are investigated.

  19. Synthesis and Characterization of Silicon Nanoparticles Inserted into Graphene Sheets as High Performance Anode Material for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2014-01-01

    Full Text Available Silicon nanoparticles have been successfully inserted into graphene sheets via a novel method combining freeze-drying and thermal reduction. The structure, electrochemical performance, and cycling stability of this anode material were characterized by SEM, X-ray diffraction (XRD, charge/discharge cycling, and cyclic voltammetry (CV. CV showed that the Si/graphene nanocomposite exhibits remarkably enhanced cycling performance and rate performance compared with bare Si nanoparticles for lithium ion batteries. XRD and SEM showed that silicon nanoparticles inserted into graphene sheets were homogeneous and had better layered structure than the bare silicon nanoparticles. Graphene sheets improved high rate discharge capacity and long cycle-life performance. The initial capacity of the Si nanoparticles/graphene keeps above 850 mAhg−1 after 100 cycles at a rate of 100 mAg−1. The excellent cycle performances are caused by the good structure of the composites, which ensured uniform electronic conducting sheet and intensified the cohesion force of binder and collector, respectively.

  20. Characterization and physical modeling of MOS capacitors in epitaxial graphene monolayers and bilayers on 6H-SiC

    Directory of Open Access Journals (Sweden)

    M. Winters

    2016-08-01

    Full Text Available Capacitance voltage (CV measurements are performed on planar MOS capacitors with an Al2O3 dielectric fabricated in hydrogen intercalated monolayer and bilayer graphene grown on 6H-SiC as a function of frequency and temperature. Quantitative models of the CV data are presented in conjunction with the measurements in order to facilitate a physical understanding of graphene MOS systems. An interface state density of order 2 ⋅ 1012 eV−1 cm−2 is found in both material systems. Surface potential fluctuations of order 80-90meV are also assessed in the context of measured data. In bilayer material, a narrow bandgap of 260meV is observed consequent to the spontaneous polarization in the substrate. Supporting measurements of material anisotropy and temperature dependent hysteresis are also presented in the context of the CV data and provide valuable insight into measured and modeled data. The methods outlined in this work should be applicable to most graphene MOS systems.

  1. Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and influence of nitrogen impurities on carrier transport.

    Science.gov (United States)

    Lu, Yu-Fen; Lo, Shun-Tsung; Lin, Jheng-Cyuan; Zhang, Wenjing; Lu, Jing-Yu; Liu, Fan-Hung; Tseng, Chuan-Ming; Lee, Yi-Hsien; Liang, Chi-Te; Li, Lain-Jong

    2013-08-27

    A significant advance toward achieving practical applications of graphene as a two-dimensional material in nanoelectronics would be provided by successful synthesis of both n-type and p-type doped graphene. However, reliable doping and a thorough understanding of carrier transport in the presence of charged impurities governed by ionized donors or acceptors in the graphene lattice are still lacking. Here we report experimental realization of few-layer nitrogen-doped (N-doped) graphene sheets by chemical vapor deposition of organic molecule 1,3,5-triazine on Cu metal catalyst. When reducing the growth temperature, the atomic percentage of nitrogen doping is raised from 2.1% to 5.6%. With increasing doping concentration, N-doped graphene sheet exhibits a crossover from p-type to n-type behavior accompanied by a strong enhancement of electron-hole transport asymmetry, manifesting the influence of incorporated nitrogen impurities. In addition, by analyzing the data of X-ray photoelectron spectroscopy, Raman spectroscopy, and electrical measurements, we show that pyridinic and pyrrolic N impurities play an important role in determining the transport behavior of carriers in our N-doped graphene sheets.

  2. Polyester fabric sheet layers functionalized with graphene oxide for sensitive isolation of circulating tumor cells.

    Science.gov (United States)

    Bu, Jiyoon; Kim, Young Jun; Kang, Yoon-Tae; Lee, Tae Hee; Kim, Jeongsuk; Cho, Young-Ho; Han, Sae-Won

    2017-05-01

    The metastasis of cancer is strongly associated with the spread of circulating tumor cells (CTCs). Based on the microfluidic devices, which offer rapid recovery of CTCs, a number of studies have demonstrated the potential of CTCs as a diagnostic tool. However, not only the insufficient specificity and sensitivity derived from the rarity and heterogeneity of CTCs, but also the high-cost fabrication processes limit the use of CTC-based medical devices in commercial. Here, we present a low-cost fabric sheet layers for CTC isolation, which are composed of polyester monofilament yarns. Fabric sheet layers are easily functionalized with graphene oxide (GO), which is beneficial for improving both sensitivity and specificity. The GO modification to the low-cost fabrics enhances the binding of anti-EpCAM antibodies, resulting in 10-25% increase of capture efficiency compared to the surface without GO (anti-EpCAM antibodies directly onto the fabric sheets), while achieving high purity by isolating only 50-300 leukocytes in 1 mL of human blood. We investigated CTCs in ten human blood samples and successfully isolated 4-42 CTCs/mL from cancer patients, while none of cancerous cells were found among healthy donors. This remarkable results show the feasibility of GO-functionalized fabric sheet layers to be used in various CTC-based clinical applications, with high sensitivity and selectivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Facile synthesis of decorated graphene oxide sheets with WO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Adineh, Ensieh; Rasuli, Reza [University of Zanjan, Department of Physics, Faculty of Science, P.O. Box 45371-38791, Zanjan (Iran, Islamic Republic of)

    2015-09-15

    Potential applications of graphene oxide (GO) nanocomposites have attracted remarkable attention to modify its properties by functionalizing and decorating with nanoparticles. In this work, after synthesis of GO sheets by oxidation and exfoliation of natural graphite, they were decorated with tungsten oxide nanoparticles using arc discharge in GO solution. Transmission electron microscopy shows that the chain of WO{sub 3} nanoparticles decorates the GO sheets. Fourier transform infrared spectroscopy and Raman spectroscopy show that WO{sub 3} nanoparticles are attached to GO sheets by bond formation between the tungsten and oxygen of functional groups, especially with epoxides on the GO sheets. Nanocomposite production in different arc currents shows that the greater the electrical current, the stronger the bond is formed between WO{sub 3} and GO. X-ray diffraction confirms that the WO{sub 3} nanoparticles on the GO are highly crystalline in monoclinic phase. Moreover, by increasing the arc current from 20 to 40 A, the band gap energy of GO + WO{sub 3} decreases to ∝2.6 eV. (orig.)

  4. Continuum Plate Theory and Atomistic Modeling to Find the Flexural Rigidity of a Graphene Sheet Interacting with a Substrate

    Directory of Open Access Journals (Sweden)

    M. W. Roberts

    2010-01-01

    Full Text Available Using a combination of continuum modeling, atomistic simulations, and numerical optimization, we estimate the flexural rigidity of a graphene sheet. We consider a rectangular sheet that is initially parallel to a rigid substrate. The sheet interacts with the substrate by van der Waals forces and deflects in response to loading on a pair of opposite edges. To estimate the flexural rigidity, we model the graphene sheet as a continuum and numerically solve an appropriate differential equation for the transverse deflection. This solution depends on the flexural rigidity. We then use an optimization procedure to find the value of the flexural rigidity that minimizes the difference between the numerical solutions and the deflections predicted by atomistic simulations. This procedure predicts a flexural rigidity of 0.26 nN nm=1.62 eV.

  5. Enhanced neurite outgrowth of PC-12 cells on graphene-monolayer-coated substrates as biomimetic cues

    Science.gov (United States)

    Lee, Jong Ho; Shin, Yong Cheol; Jin, Oh Seong; Han, Dong-Wook; Kang, Seok Hee; Hong, Suck Won; Kim, Jong Man

    2012-11-01

    Neurons are electrically excitable cells that transmit and process information in the nervous system. Recently, the differentiation of human neural stem cells to neurons has been shown to be enhanced on graphene substrates, and differentiated neurons have been shown to be able to still carry electrical signals when stimulated by graphene electrodes. Graphene films grown by using chemical vapor deposition were transferred onto glass coverslips by using the scooping method and were then coated with fetal bovine serum for a neuronal cell culture. The graphene substrates as biomimetic cues have been shown to enhance the neurite outgrowth of PC-12 cells. Our findings suggest that graphene has a unique surface property that can promote neuronal cells, which should open tremendous opportunities in neuroscience, neural engineering and regenerative medicine.

  6. Nonlinear dynamics of bi-layered graphene sheet, double-walled carbon nanotube and nanotube bundle

    Science.gov (United States)

    Gajbhiye, Sachin O.; Singh, S. P.

    2016-05-01

    Due to strong van der Waals (vdW) interactions, the graphene sheets and nanotubes stick to each other and form clusters of these corresponding nanostructures, viz. bi-layered graphene sheet (BLGS), double-walled carbon nanotube (DWCNT) and nanotube bundle (NB) or ropes. This research work is concerned with the study of nonlinear dynamics of BLGS, DWCNT and NB due to nonlinear interlayer vdW forces using multiscale atomistic finite element method. The energy between two adjacent carbon atoms is represented by the multibody interatomic Tersoff-Brenner potential, whereas the nonlinear interlayer vdW forces are represented by Lennard-Jones 6-12 potential function. The equivalent nonlinear material model of carbon-carbon bond is used to model it based on its force-deflection relation. Newmark's algorithm is used to solve the nonlinear matrix equation governing the motion of the BLGS, DWCNT and NB. An impulse and harmonic excitations are used to excite these nanostructures under cantilevered, bridged and clamped boundary conditions. The frequency responses of these nanostructures are computed, and the dominant resonant frequencies are identified. Along with the forced vibration of these structures, the eigenvalue extraction problem of armchair and zigzag NB is also considered. The natural frequencies and corresponding mode shapes are extracted for the different length and boundary conditions of the nanotube bundle.

  7. Solvothermal Synthesis of Mn3O4 Nanoparticle/Graphene Sheet Composites and Their Supercapacitive Properties

    Directory of Open Access Journals (Sweden)

    Y. F. Liu

    2014-01-01

    Full Text Available Mn3O4 nanoparticle/graphene sheet (GM composites were synthesized via a one-pot and low-cost solvothermal process in an ethanol solution. The as-prepared materials were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Results showed that the nanosized Mn3O4 particles had tetragonal hausmannite structure and were successfully loaded on the graphene sheets. Moreover, the electrochemical performances of GM composites produced by different mass percents of Mn2+/graphite oxide (GO were evaluated by means of cyclic voltammetry and galvanostatic charge-discharge studies. The composite prepared with Mn2+/GO mass percent of 10 : 90 showed a high specific capacitance of 245 F/g at 5 mV/s in the 6 M KOH solution and better long-term stability along with 81% of its initial capacitance after 1200 cycles at 0.5 A/g.

  8. Dual protection of sulfur by carbon nanospheres and graphene sheets for lithium-sulfur batteries.

    Science.gov (United States)

    Wang, Bei; Wen, Yanfen; Ye, Delai; Yu, Hua; Sun, Bing; Wang, Guoxiu; Hulicova-Jurcakova, Denisa; Wang, Lianzhou

    2014-04-25

    Well-confined elemental sulfur was implanted into a stacked block of carbon nanospheres and graphene sheets through a simple solution process to create a new type of composite cathode material for lithium-sulfur batteries. Transmission electron microscopy and elemental mapping analysis confirm that the as-prepared composite material consists of graphene-wrapped carbon nanospheres with sulfur uniformly distributed in between, where the carbon nanospheres act as the sulfur carriers. With this structural design, the graphene contributes to direct coverage of sulfur to inhibit the mobility of polysulfides, whereas the carbon nanospheres undertake the role of carrying the sulfur into the carbon network. This composite achieves a high loading of sulfur (64.2 wt %) and gives a stable electrochemical performance with a maximum discharge capacity of 1394 mAh g(-1) at a current rate of 0.1 C as well as excellent rate capability at 1 C and 2 C. The improved electrochemical properties of this composite material are attributed to the dual functions of the carbon components, which effectively restrain the sulfur inside the carbon nano-network for use in lithium-sulfur rechargeable batteries.

  9. Effective material parameter retrieval for thin sheets: theory and application to graphene, thin silver films, and single-layer metamaterials

    CERN Document Server

    Tassin, Philippe; Soukoulis, Costas M; 10.1016/j.physb.2012.01.119

    2012-01-01

    An important tool in the field of metamaterials is the extraction of effective material parameters from simulated or measured scattering parameters of a sample. Here we discuss a retrieval method for thin-film structures that can be approximated by a two-dimensional scattering sheet. We determine the effective sheet conductivity from the scattering parameters and we point out the importance of the magnetic sheet current to avoid an overdetermined inversion problem. Subsequently, we present two applications of the sheet retrieval method. First, we determine the effective sheet conductivity of thin silver films and we compare the resulting conductivities with the sheet conductivity of graphene. Second, we apply the method to a cut-wire metamaterial with an electric dipole resonance. The method is valid for thin-film structures such as two-dimensional metamaterials and frequency-selective surfaces and can be easily generalized for anisotropic or chiral media.

  10. Effective material parameter retrieval for thin sheets: theory and application to graphene, thin silver films, and single-layer metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas

    2012-01-30

    An important tool in the field of metamaterials is the extraction of effective material parameters from simulated or measured scattering parameters of a sample. Here we discuss a retrieval method for thin-film structures that can be approximated by a two-dimensional scattering sheet. We determine the effective sheet conductivity from the scattering parameters and we point out the importance of the magnetic sheet current to avoid an overdetermined inversion problem. Subsequently, we present two applications of the sheet retrieval method. First, we determine the effective sheet conductivity of thin silver films and we compare the resulting conductivities with the sheet conductivity of graphene. Second, we apply the method to a cut-wire metamaterial with an electric dipole resonance. The method is valid for thin-film structures such as two-dimensional metamaterials and frequency-selective surfaces and can be easily generalized for anisotropic or chiral media.

  11. Effective material parameter retrieval for thin sheets: Theory and application to graphene, thin silver films, and single-layer metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tassin, Philippe, E-mail: tassin@ameslab.gov [Ames Laboratory - U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Koschny, Thomas, E-mail: koschny@ameslab.gov [Ames Laboratory - U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Soukoulis, Costas M., E-mail: soukoulis@ameslab.gov [Ames Laboratory - U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Institute of Electronic Structure and Lasers (IESL), FORTH, 71110 Heraklion, Crete (Greece)

    2012-10-15

    An important tool in the field of metamaterials is the extraction of effective material parameters from simulated or measured scattering parameters of a sample. Here we discuss a retrieval method for thin-film structures that can be approximated by a two-dimensional scattering sheet. We determine the effective sheet conductivity from the scattering parameters and we point out the importance of the magnetic sheet current to avoid an overdetermined inversion problem. Subsequently, we present two applications of the sheet retrieval method. First, we determine the effective sheet conductivity of thin silver films and we compare the resulting conductivities with the sheet conductivity of graphene. Second, we apply the method to a cut-wire metamaterial with an electric dipole resonance. The method is valid for thin-film structures such as two-dimensional metamaterials and frequency-selective surfaces and can be easily generalized for anisotropic or chiral media.

  12. Anchoring hydrous RuO{sub 2} on graphene sheets for high-performance electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhong-Shuai; Ren, Wencai; Zhao, Jinping; Zhou, Guangmin; Li, Feng; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); Wang, Da-Wei [ARC Centre of Excellence for Functional Nanomaterials, AIBN, University of Queensland, Brisbane (Australia)

    2010-10-22

    Hydrous ruthenium oxide (RuO{sub 2})/graphene sheet composites (ROGSCs) with different loadings of Ru are prepared by combining sol-gel and low-temperature annealing processes. The graphene sheets (GSs) are well-separated by fine RuO{sub 2} particles (5-20 nm) and, simultaneously, the RuO{sub 2} particles are anchored by the richly oxygen-containing functional groups of reduced, chemically exfoliated GSs onto their surface. Benefits from the combined advantages of GSs and RuO{sub 2} in such a unique structure are that the ROGSC-based supercapacitors exhibit high specific capacitance ({proportional_to}570 F g{sup -1} for 38.3 wt% Ru loading), enhanced rate capability, excellent electrochemical stability ({proportional_to}97.9% retention after 1000 cycles), and high energy density (20.1 Wh kg{sup -1}) at low operation rate (100 mA g{sup -1}) or high power density (10000 W kg{sup -1}) at a reasonable energy density (4.3 Wh kg{sup -1}). Interestingly, the total specific capacitance of ROGSCs is higher than the sum of specific capacitances of pure GSs and pure RuO{sub 2} in their relative ratios, which is indicative of a positive synergistic effect of GSs and RuO{sub 2} on the improvement of electrochemical performance. These findings demonstrate the importance and great potential of graphene-based composites in the development of high-performance energy-storage systems. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Quantitative Evaluation of the Dispersion of Graphene Sheets With and Without Functional Groups Using Molecular Dynamics Simulations.

    Science.gov (United States)

    Cha, JinHyeok; Kyoung, Woomin; Song, Kyonghwa; Park, Sangbaek; Lim, Taewon; Lee, Jongkook; Kang, Hyunmin

    2016-12-01

    Nanofluids with enhanced thermal properties are candidates for thermal management in automotive systems, with scope for improving energy efficiency. In particular, many studies have reported on dispersions of nanoparticles with long-term stability in the base fluid, with qualitative evaluations of the dispersion stability via either the naked eye or optical instruments. Additives such as surfactants can be used to enhance the dispersion of nanoparticles; however, this may diminish their intrinsic thermal properties. Here, we describe molecular dynamics simulations of nanofluids containing graphene sheets dispersed in ethylene glycol and water. We go on to suggest a quantitative evaluation method for the degree of dispersion, based on the ratio of the total number of nanoparticles to the number of clustered nanoparticles. Moreover, we investigate the effects of functional groups on the surface of graphene, which are expected to improve the dispersion without requiring additives such as surfactants due to steric hindrance and chemical affinity for the surrounding fluid. We find that, for pure graphene, the degree of dispersion decreased as the quantity of graphene sheets increased, which is attributed to an increased probability of aggregation at higher loadings; however, the presence of functional groups inhibited the graphene sheets from forming aggregates.

  14. Characterization of Au and Bimetallic PtAu Nanoparticles on PDDA-Graphene Sheets as Electrocatalysts for Formic Acid Oxidation

    Science.gov (United States)

    Yung, Tung-Yuan; Liu, Ting-Yu; Huang, Li-Ying; Wang, Kuan-Syun; Tzou, Huei-Ming; Chen, Po-Tuan; Chao, Chi-Yang; Liu, Ling-Kang

    2015-09-01

    Nanocomposite materials of the Au nanoparticles (Au/PDDA-G) and the bimetallic PtAu nanoparticles on poly-(diallyldimethylammonium chloride) (PDDA)-modified graphene sheets (PtAu/PDDA-G) were prepared with hydrothermal method at 90 °C for 24 h. The composite materials Au/PDDA-G and PtAu/PDDA-G were evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) for exploring the structural characterization for the electrochemical catalysis. According to TEM results, the diameter of Au and bimetallic PtAu nanoparticles is about 20-50 and 5-10 nm, respectively. X-ray diffraction (XRD) results indicate that both of PtAu and Au nanoparticles exhibit the crystalline plane of (111), (200), (210), and (311). Furthermore, XRD data also show the 2°-3° difference between pristine graphene sheets and the PDDA-modified graphene sheets. For the catalytic activity tests of Au/PDDA-G and PtAu/PDDA-G, the mixture of 0.5 M aqueous H2SO4 and 0.5 M aqueous formic acid was used as model to evaluate the electrochemical characterizations. The catalytic activities of the novel bimetallic PtAu/graphene electrocatalyst would be anticipated to be superior to the previous electrocatalyst of the cubic Pt/graphene.

  15. Characterization of Au and Bimetallic PtAu Nanoparticles on PDDA-Graphene Sheets as Electrocatalysts for Formic Acid Oxidation.

    Science.gov (United States)

    Yung, Tung-Yuan; Liu, Ting-Yu; Huang, Li-Ying; Wang, Kuan-Syun; Tzou, Huei-Ming; Chen, Po-Tuan; Chao, Chi-Yang; Liu, Ling-Kang

    2015-12-01

    Nanocomposite materials of the Au nanoparticles (Au/PDDA-G) and the bimetallic PtAu nanoparticles on poly-(diallyldimethylammonium chloride) (PDDA)-modified graphene sheets (PtAu/PDDA-G) were prepared with hydrothermal method at 90 °C for 24 h. The composite materials Au/PDDA-G and PtAu/PDDA-G were evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) for exploring the structural characterization for the electrochemical catalysis. According to TEM results, the diameter of Au and bimetallic PtAu nanoparticles is about 20-50 and 5-10 nm, respectively. X-ray diffraction (XRD) results indicate that both of PtAu and Au nanoparticles exhibit the crystalline plane of (111), (200), (210), and (311). Furthermore, XRD data also show the 2°-3° difference between pristine graphene sheets and the PDDA-modified graphene sheets. For the catalytic activity tests of Au/PDDA-G and PtAu/PDDA-G, the mixture of 0.5 M aqueous H2SO4 and 0.5 M aqueous formic acid was used as model to evaluate the electrochemical characterizations. The catalytic activities of the novel bimetallic PtAu/graphene electrocatalyst would be anticipated to be superior to the previous electrocatalyst of the cubic Pt/graphene.

  16. Intrinsic inhomogeneity in barrier height at monolayer graphene/SiC Schottky junction

    Science.gov (United States)

    Tomer, D.; Rajput, S.; Hudy, L. J.; Li, C. H.; Li, L.

    2014-07-01

    Graphene interfaced with a semiconductor forms a Schottky junction with rectifying properties. The inherent spatial inhomogeneity due to the formation of ripples and ridges in graphene can lead to fluctuations in the Schottky barrier height (SBH). The non-ideal behavior of the temperature dependent barrier height and ideality factor greater than 4 can be attributed to these spatial inhomogeneities. Assuming a Gaussian distribution of the barrier, mean SBHs of 1.30 ± 0.18 eV and 1.16 ± 0.16 eV are found for graphene/SiC junctions on the C- and Si-face, respectively. These findings reveal intrinsic spatial inhomogeneities in the SBHs in graphene based Schottky junctions.

  17. Energetic Stabilities, Structural and Electronic Properties of Monolayer Graphene Doped with Boron and Nitrogen Atoms

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2016-12-01

    Full Text Available The structural, energetic, and electronic properties of single-layer graphene doped with boron and nitrogen atoms with varying doping concentrations and configurations have been investigated here via first-principles density functional theory calculations. It was found that the band gap increases with an increase in doping concentration, whereas the energetic stability of the doped systems decreases with an increase in doping concentration. It was observed that both the band gaps and the cohesive energies also depend on the atomic configurations considered for the substitutional dopants. Stability was found to be higher in N-doped graphene systems as compared to B-doped graphene systems. The electronic structures of B- and N-doped graphene systems were also found to be strongly influenced by the positioning of the dopant atoms in the graphene lattice. The systems with dopant atoms at alternate sublattices have been found to have the lowest cohesive energies and therefore form the most stable structures. These results indicate an ability to adjust the band gap as required using B and N atoms according to the choice of the supercell, i.e., the doping density and substitutional dopant sites, which could be useful in the design of graphene-based electronic and optical devices.

  18. Structure and spectroscopic analysis of the graphene monolayer film directly grown on the quartz substrate via the HF-CVD technique

    Science.gov (United States)

    Mahmoud, Waleed E.; Al-Hazmi, Farag S.; Al-Ghamdi, A. A.; Shokr, F. S.; Beall, Gary W.; Bronstein, Lyudmila M.

    2016-08-01

    Direct growth of a monolayer graphene film on a quartz substrate by a hot filament chemical vapor deposition technique is reported. The monolayer graphene film prepared was characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), selected area electron diffraction (SAED), and atomic force microscopy (AFM). The optical properties were studied by spectroscopic elliposmetry. The experimental data were fitted by the Forouhi-Bloomer model to estimate the extinction coefficient and the refractive index of the monolayer graphene film. The refractive index spectrum in the visible region was studied based on the harmonic oscillator model. The lattice dielectric constant, real and imaginary dielectric constants and the ratio of the charge carrier number to the effective mass were determined. The surface and volume energy loss parameters were also found and showed that the value of the surface energy loss is greater than the volume energy loss. The determination of these optical constants will open new avenue for novel applications of graphene films in the field of wave plates, light modulators, ultrahigh-frequency signal processing and LCDs.

  19. Effect of graphene oxide sheet size on the curing kinetics and thermal stability of epoxy resins

    Science.gov (United States)

    Wang, Xiao; Jin, Jie; Song, Mo; Lin, Yue

    2016-10-01

    This work revealed the influences of graphene oxide (GO) sheet size on the curing kinetics and thermal stability of epoxy resins. A series of GO/epoxy nanocomposites were prepared by the incorporation of three different sized GO sheets, namely GO-1, GO-2 and GO-3, the average size of which was 10.79 μm, 1.72 μm and 0.70 μm, respectively. The morphologies of the nanocomposites were observed by field emission gun scanning electron microscope. The dispersion quality of each sized GO was comparable in the epoxy matrix. The curing kinetics was investigated by means of differential scanning calorimetry and analyzed based on kinetics model. Addition of a small amount of GO (0.1 wt%) exhibited strong catalytic effect on the curing reaction of epoxy resin. The activation energy was reduced by 18.9%, 28.8% and 14.6% with addition of GO-1, GO-2 and GO-3, respectively. GO-2 with medium size (1.72 μm) showed the most effective catalysis on the cure. The thermal stability of the cured resins was evaluated based on thermogravimetric analysis. GO/epoxy nanocomposites showed improved thermal stability in the range of 420 °C-500 °C, compared with the pure resin. A ˜ 4% more residue was obtained in each of the incorporated system. The variations of GO sheet size did not influence the enhancement effect on the thermal stability.

  20. Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Meng, E-mail: youmou@rift.mech.tohoku.ac.jp [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Sasaki, Shinichirou [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Suzuki, Ken; Miura, Hideo [Fracture and Reliability Research Institute, Tohoku University, Sendai 980-8579 (Japan)

    2016-03-15

    Graphical abstract: - Highlights: • For the first time, we succeeded in the LPCVD growth of monolayer graphene using acetylene as the precursor gas. • The growth rate is very high when acetylene is used as the source gas. Our process has exhibited the potential to shorten the growth time of CVD graphene. • We found that the domain size, defects density, layer number and the sheet resistance of graphene can be changed by changing the acetylene flow rates. • We found that it is also possible to form bilayer graphene using acetylene. However, further study are necessary to reduce the defects density. - Abstract: Although many studies have reported the chemical vapor deposition (CVD) growth of large-area monolayer graphene from methane, synthesis of graphene using acetylene as the source gas has not been fully explored. In this study, the low-pressure CVD (LPCVD) growth of graphene from acetylene was systematically investigated. We succeeded in regulating the domain size, defects density, layer number and the sheet resistance of graphene by changing the acetylene flow rates. Scanning electron microscopy and Raman spectroscopy were employed to confirm the layer number, uniformity and quality of the graphene films. It is found that a low flow rate of acetylene (0.28 sccm) is required to form high-quality monolayer graphene in our system. On the other hand, the high acetylene flow rate (7 sccm) will induce the growth of the bilayer graphene domains with high defects density. On the basis of selected area electron diffraction (SAED) pattern, the as-grown monolayer graphene domains were analyzed to be polycrystal. We also discussed the relation between the sheet resistacne and defects density in graphene. Our results provide great insights into the understanding of the CVD growth of monolayer and bilayer graphene from acetylene.

  1. Growth of 2D sheets of a MOF on graphene surfaces to yield composites with novel gas adsorption characteristics.

    Science.gov (United States)

    Kumar, Ram; Jayaramulu, Kolleboyina; Maji, Tapas Kumar; Rao, C N R

    2014-05-28

    Homogeneous graphene-MOF composites based on a 2D pillared-bilayer MOF (Cd-PBM), {[Cd4(azpy)2(pyrdc)4(H2O)2]·9H2O}n (azpy = 4,4'-azopyridine, pyrdc = pyridine-2,3-dicarboxylate), have been synthesized, using both graphene oxide (GO) and benzoic acid functionalized graphene (BFG). The composites GO@Cd-PBM and BFG@Cd-PBM demonstrate growth of the 2D nano-sheets of MOF on the graphene surface. While the pristine MOF, Cd-PBM shows selective CO2 uptake with a single-step type-I adsorption profile, the composites show stepwise CO2 uptake with a large hysteresis. With H2O and MeOH, on the other hand, the composites show a single-step adsorption unlike the parent MOF.

  2. Effect of out-of-plane directional intra-layer coupling from graphene monolayer on sp3 type defect with gap-plasmonic structures

    Science.gov (United States)

    Park, Won-Hwa

    2016-09-01

    The author investigates an intra-layer coupling effect through transverse acoustic (TA) phonon modes along the z-direction at Au nanoparticle (NP)-graphene monolayer (GM)-Au thin film (TF) plasmonic junctions in regard with sp3 type defect effect. The oxidation and resulting disorder of GM with breaking of six-fold symmetry have been explored. Because a Raman-forbidden D peak can be activated due to unwanted single-phonon inter-valley and intra-valley scattering processes, the quantitative estimation of the sp3 type defect is being performed by the intensity ratio between G and D peaks. By exploring the difference of the maximum peak position (TA3-TA1) and the intensity ratio, (TA1/TA3) the author can reveal that a lower z-protruded GM accompanied with weak intra-coupling and a weaker RBLM intensity show relatively high D/G. It means that larger surface area of a GM to be functionalized by oxidization can secure more easily than the higher z-protruded. This investigation presents the importance of controlling the degree of z-protrusion of GM surface in terms of not only the presence of high D/G but also its related and detailed nano-structural surface shape, leading to the enhancement of electrical properties such as a carrier mobility and sheet resistance value. The out-of-plane phonon modes will be considered as a key factor in further exploring nano-physical deformation of 2D materials in sync with its electrical performance.

  3. The Effect of Surface Functionalization on the Immobilization of Gold Nanoparticles on Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Min Song

    2012-01-01

    Full Text Available In our study, graphene oxide is synthesized by Hummers method. And then, carboxylic acid functionalized graphene (graphene-COOH, thiol-functionalized graphene (graphene-SH, and highly dispersive graphene are prepared by chemical modification of respective groups on the graphene surface. Furthermore, we explore a solution-based approach to prepare three differently functionalized graphene-gold composites by one-step chemical reduction of AuCl4 - ions in respective functionalized graphene suspensions, where the gold nanoparticles are deposited on the functionalized graphene surface during their synthesis process. In addition, we compare the influence of surface functionalization on the growth of gold nanoparticles on graphene surface. Transmission electron morphology (TEM and ultraviolet-visible (UV-Vis spectroscopy are employed to study the effect of surface functionalities on AuNPs distribution onto the graphene surface and demonstrate the successful immobilization of AuNPs on graphene surface.

  4. Density functional theory study of a graphene sheet modified with titanium in contact with different adsorbates

    Science.gov (United States)

    Rojas, M. I.; Leiva, E. P. M.

    2007-10-01

    The present work is based on the theoretical study of the behavior of a graphene sheet decorated with titanium, in contact with different molecules. When the substrate is exposed only to hydrogen molecules, it is found to store up to four molecules per adatom, as already seen in the literature for single wall carbon nanotubes. Thus, titanium decoration is seen to considerably improve the hydrogen storage capacity of these carbon systems. However, it is found that low quantities of oxygen present in the gas phase should yield the oxidation of the titanium atoms, even when hydrogen is stored in the system. It is concluded that if the experimental system is exposed to air, titanium atoms on these surfaces are expected to oxidize to titanium dioxide, showing oxygen molecules to be very reactive species. Other chemicals present in air such as nitrogen or water molecules could also be chemisorbed onto the titanium adatom, but are less competitive with hydrogen.

  5. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity.

    Science.gov (United States)

    Das, Manash R; Sarma, Rupak K; Saikia, Ratul; Kale, Vinayak S; Shelke, Manjusha V; Sengupta, Pinaki

    2011-03-01

    A solution-based approach to the synthesis of silver (Ag) nanoparticles by chemical reduction of AgNO(3) in a graphene oxide (GrO) suspension is demonstrated. X-ray diffraction and transmission electron microscopy indicate that the Ag nanoparticles, of size range 5-25nm, were decorated on the GrO sheets. The size and shape of the Ag nanoparticles are dependent on the concentration of the AgNO(3) solution. Antimicrobial activity of such hybrids materials is investigated against the Gram negative bacteria Escherichia coli and Pseudomonous aeruginosa. The bacterial growth kinetics was monitored in nutrient broth supplemented with the Ag nanoparticle-GrO suspension at different conditions. It was observed that P. aeruginosa is comparatively more sensitive to the Ag nanoparticle-GrO suspension. 2010 Elsevier B.V. All rights reserved.

  6. Atomistic evaluation of the stress concentration factor of graphene sheets having circular holes

    Science.gov (United States)

    Jalali, S. K.; Beigrezaee, M. J.; Pugno, N. M.

    2017-09-01

    Stress concentration factor concept has been developed for single-layered graphene sheets (SLGSs) with circular holes through an atomistic point of view by the application of molecular structural mechanics (MSM) approach. In this approach the response of SLGSs against unidirectional tensile loading is matched to the response of a frame-like macro structure containing beam elements by making an equivalence between strain energies of beam elements in MSM and potential energies of chemical bonds of SLGSs. Both chirality and size effects are considered and the atomistic evaluation of stress concentration factor is performed for different sizes of circular holes. Also, molecular dynamics simulations are implemented to verify the existence and location of the predicted stress concentration. The results reveal that size effects and the diameters of circular holes have a significant influence on the stress concentration factor of SLGSs and armchair SLGSs show a larger value of stress concentration than zigzag ones.

  7. High volumetric supercapacitor with a long life span based on polymer dots and graphene sheets

    Science.gov (United States)

    Wei, Ji-Shi; Chen, Jie; Ding, Hui; Zhang, Peng; Wang, Yong-Gang; Xiong, Huan-Ming

    2017-10-01

    A series of polymer dots/graphene sheets composites with high densities are prepared and tested for supercapacitors. Polymer dots (PDs) are synthesized by one-step method at room temperature. They can effectively increase surface areas of the composites (almost 10 times), and the functional groups from PDs produce high pseudocapacitance, so that the samples exhibit high specific capacitances (e. g., 364.2 F cm-3 at 1 A g-1) and high cycling stability (e. g., more than 95% of the initial capacity retention over 10 000 cycles at different current densities). The optimal sample is employed to fabricate a symmetric supercapacitor, which exhibits an energy density up to 8 Wh L-1 and a power density up to 11 800 W L-1, respectively.

  8. Schottky diode via dielectrophoretic assembly of reduced graphene oxide sheets between dissimilar metal contacts

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Muhammad R; Joung, Daeha; Khondaker, Saiful I, E-mail: saiful@mail.ucf.edu [Nanoscience Technology Center, School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32826 (United States)

    2011-03-15

    We demonstrate the fabrication of reduced graphene oxide (RGO) Schottky diodes via dielectrophoretic (DEP) assembly of RGO between two dissimilar metal contacts. Titanium (Ti) was used to make a Schottky contact, while palladium (Pd) was used to make an Ohmic contact. From the current-voltage characteristics, we obtain rectifying behavior with a rectification ratio of up to 600. The ideality factor was high (4.9), possibly due to the presence of a large number of defects in the RGO sheets. The forward biased turn-on voltage was 1 V, whereas the reverse biased breakdown voltage was -3.1 V, which improved further upon mild annealing at 200 deg. C and can be attributed to an increase in the work function of RGO due to annealing.

  9. An electrochemical DNA biosensor based on gold nanorods decorated graphene oxide sheets for sensing platform.

    Science.gov (United States)

    Han, Xiaowei; Fang, Xian; Shi, Anqi; Wang, Jiao; Zhang, Yuzhong

    2013-12-15

    A simple electrochemical sensor for sensitive and selective DNA detection was constructed based on gold nanorods (Au NRs) decorated graphene oxide (GO) sheets. The high-quality Au NRs-GO nanocomposite was synthesized via the electrostatic self-assembly technique, which is considered a potential sensing platform. Differential pulse voltammetry was used to monitor the DNA hybridization event using methylene blue as an electrochemical indicator. Under optimal conditions, the peak currents of methylene blue were linear with the logarithm of the concentrations of complementary DNA from 1.0 × 10(-9) to 1.0 × 10(-14)M with a detection limit of 3.5 × 10(-15)M (signal/noise=3). Moreover, the prepared electrochemical sensor can effectively distinguish complementary DNA sequences in the presence of a large amount of single-base mismatched DNA (1000:1), indicating that the biosensor has high selectivity.

  10. Suspended graphene variable capacitor

    Science.gov (United States)

    AbdelGhany, M.; Mahvash, F.; Mukhopadhyay, M.; Favron, A.; Martel, R.; Siaj, M.; Szkopek, T.

    2016-12-01

    Electromechanical variable capacitors, or varactors, find a wide range of applications including sensing applications and the tuning of electrical circuit resonance. We demonstrate a nano-electromechanical graphene varactor, a variable capacitor wherein the capacitance is tuned by voltage controlled deflection of a dense array of suspended graphene membranes. The low flexural rigidity of graphene monolayers is exploited to achieve low actuation voltage and high tunable capacitance density in an ultra-thin structure. Large arrays comprising thousands of suspensions were fabricated to give a tunable capacitance of over 10 pF mm-2. This capacitance density suggests that graphene offers a potential solution to the challenge of reducing the size of micro-electromechanical systems (MEMS). A capacitance tuning of 55% was achieved with a 10 V actuating voltage, exceeding the 50% tuning limit of Hookean parallel plate pull-in without the use of complex mechanical schemes that occupy substrate area. Capacitor behavior was investigated experimentally, and described by a simple theoretical model. Mechanical properties of the graphene membranes were measured independently using atomic force microscopy. We present a comparison of state-of-the-art MEMS and graphene varactors. The quality factor of graphene varactors is limited by graphene sheet resistance, pull-in voltage can be improved with more aggressive scaling, while the power handling and cycling stability of graphene varactors remains unknown.

  11. Fabrication of nanoelectrode ensembles by electrodepositon of Au nanoparticles on single-layer graphene oxide sheets

    Science.gov (United States)

    Wang, Zhijuan; Zhang, Juan; Yin, Zongyou; Wu, Shixin; Mandler, Daniel; Zhang, Hua

    2012-03-01

    Nanoelectrode ensembles (NEEs) have been fabricated by the electrodeposition of Au nanoparticles (AuNPs) on single-layer graphene oxide (GO) sheets coated on a glassy carbon electrode (GCE). The fabricated NEEs show a typical sigmoidal shaped voltammetric profile, arising from the low coverage density of AuNPs on GCE and large distance among them, which can be easily controlled by varying the electrodeposition time. As a proof of concept, after the probe HS-DNA is immobilized on the NEEs through the Au-S bonding, the target DNA is detected with the methylene blue intercalator. Our results show that the target DNA can be detected as low as 100 fM, i.e. 0.5 amol DNA in 5 μL solution.Nanoelectrode ensembles (NEEs) have been fabricated by the electrodeposition of Au nanoparticles (AuNPs) on single-layer graphene oxide (GO) sheets coated on a glassy carbon electrode (GCE). The fabricated NEEs show a typical sigmoidal shaped voltammetric profile, arising from the low coverage density of AuNPs on GCE and large distance among them, which can be easily controlled by varying the electrodeposition time. As a proof of concept, after the probe HS-DNA is immobilized on the NEEs through the Au-S bonding, the target DNA is detected with the methylene blue intercalator. Our results show that the target DNA can be detected as low as 100 fM, i.e. 0.5 amol DNA in 5 μL solution. Electronic supplementary information (ESI) available: The results of Raman, XPS, SEM and other electrochemical characterization are provided. See DOI: 10.1039/c2nr30142c

  12. Restructured graphene sheets embedded carbon film by oxygen plasma etching and its tribological properties

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Meiling [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Diao, Dongfeng, E-mail: dfdiao@szu.edu.cn [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China); Yang, Lei [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Fan, Xue [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China)

    2015-12-01

    Highlights: • Oxygen plasma etching was developed to improve tribological properties of GSEC film. • Etching restructured 3 nm top layer with smaller crystallite size and higher sp{sup 3} fraction. • The etched film had smoother surface, enhanced mechanical properties, longer wear life. • High electrical conductivity and strong magnetism were retained after etching. - Abstract: An oxygen plasma etching technique was introduced for improving the tribological properties of the graphene sheets embedded carbon (GSEC) film in electron cyclotron resonance plasma processing system. The nanostructural changing in the film caused by oxygen plasma etching was examined by transmission electron microscope, Raman spectroscopy and X-ray photoelectron spectroscopy, showing that the 3 nm thick top surface layer was restructured with smaller graphene nanocrystallite size as well as higher sp{sup 3} bond fraction. The surface roughness, mechanical behavior and tribological properties of the original GSEC and oxygen plasma treated GSEC films were compared. The results indicated that after the oxygen plasma treatment, the average roughness decreased from 20.8 ± 1.1 nm to 1.9 ± 0.1 nm, the hardness increased from 2.3 ± 0.1 GPa to 2.9 ± 0.1 GPa, the nanoscratch depth decreased from 64.5 ± 5.4 nm to 9.9 ± 0.9 nm, and the wear life increased from 930 ± 390 cycles to more than 15,000 frictional cycles. The origin of the improved tribological behavior was ascribed to the 3 nm thick graphene nanocrystallite film. This finding can be expected for wide applications in nanoscale surface engineering.

  13. Influence of Temperature on Vibrational Frequency of Graphene Sheet Used as Nano-Scale Sensing

    Directory of Open Access Journals (Sweden)

    Toshiaki Natsuki

    2017-01-01

    Full Text Available In this study, the vibrational properties of single- and double-layer graphene sheets (GSs with attached nanoparticles are analyzed based on the nonlocal elasticity theory. The potential applications of atomic-scale mass sensing are presented using GSs with simply supported boundary condition. The frequency equation for GSs with an attached nanoparticle is derived to investigate the vibration frequency of the GSs under thermal environment. Using the proposed model, the relationship between the frequency shifts of graphene-based mass sensor and the attached nanoparticles is obtained. The nonlocal effect and the temperature dependence on the variation of frequency shifts with the attached nanomass and the positions on the GS are investigated and discussed in detail. The obtained results show that the nanomass can be easily detected by using GS resonator which provides a highly sensitive nanomechanical element in sensor systems. The vibrational frequency shift of GS increases with increasing the temperature dependence. The double-layer GSs (DLGSs have higher sensitivity than the single-layer GSs (SLGSs due to high frequency shifts.

  14. Magnetite-Bridged Carbon Nanotubes/Graphene Sheets Three-Dimensional Network with Excellent Microwave Absorption

    Science.gov (United States)

    Wei, Renbo; Wang, Jialing; Wang, Zicheng; Tong, Lifen; Liu, Xiaobo

    2017-04-01

    A series of three-dimensional carbon nanotubes/graphene sheets network bridged by magnetite (Fe3O4-CNT/GS) is fabricated by solvothermal reaction and used as microwave absorption materials. Phthalonitrile-functionalized CNT (CNT-CN) and graphene oxide (GO-CN) are prepared by reacting acidulated CNT and GO with isophorone diisocyanate and 3-aminophenoxyphthalonitrile. The Fe3O4-CNT/GS is then obtained by the solvothermal reaction from CNT-CN and GO-CN with FeCl3·6H2O. Fe3O4-CNT/GS is characterized by x-ray photoelectron spectroscopic, x-ray diffraction and vibrating sample magnetometer, and its three-dimensional structure is confirmed by scanning electron microscope observation. Due to the formation of three-dimensional nano-architecture and the proper ratio of CNT and GS, the obtained Fe3O4-CNT/GS shows excellent microwave absorption with the minimum reflection loss as high as -45.3 dB at a thickness of 2.5 mm and a bandwidth below -10 dB of 3.8 GHz at a thickness of 1.5 mm. This Fe3O4-CNT/GS material will be a potential candidate as a microwave absorption material.

  15. Highly Efficient Fuel Cell Electrodes from Few-Layer Graphene Sheets and Electrochemically Deposited Palladium Nanoparticles

    CERN Document Server

    Höltig, Michael; Kipp, Tobias; Mews, Alf

    2016-01-01

    An extremely efficient ethanol fuel cell electrode is produced by combining the large surface area of vertically oriented and highly conductive few-layer graphene sheets with electrochemically deposited palladium nanoparticles. The electrodes show an extraordinary high catalyst activity of up to 7977 mA/(mg Pd) at low catalyst loadings of 0.64 $\\mu$g/cm$^2$ and a very high current density of up to 106 mA/cm$^2$ at high catalyst loadings of 83 $\\mu$g/cm$^2$. Moreover, the low onset potentials combined with a good poisoning resistance and long-term stability make these electrodes highly suitable for real applications. These features are achieved by using a newly developed electrochemical catalyst deposition process exploiting high voltages of up to 3.5 kV. This technique allows controlling the catalyst amount ranging from a homogeneous widespread distribution of small ($\\leq$ 10 nm) palladium nanoparticles to rather dense layers of particles, while every catalyst particle has electrical contact to the graphene ...

  16. Effects of physical boundary conditions on the transverse vibration of single-layer graphene sheets

    Science.gov (United States)

    Sadeghzadeh, S.; Khatibi, M. M.

    2016-09-01

    The effects of various approaches for a comprehensive application of boundary conditions on the molecular dynamics of graphene nanosheets were studied in this paper. Fixing more than two rows of carbon atoms was tested for satisfaction of clamped boundary condition in dynamics problems, and it was demonstrated that a completely different view should be taken for clamped boundary conditions. To do this, through the frequency domain decomposition approach, operational modal analysis has been developed to carry out the Laboratory of Nanometric Operational Modal Analysis on a molecular dynamics platform. The theory of the mentioned approach was introduced, and some comparisons were made with experimental works. The modeling results have shown that for graphene sheets with simply supported edges, fixing two or more rows leads to the same response as fixing one row. For clamped edges, the use of a flexible base as a substrate satisfies the boundary condition with the best possible. At the end, as an example, it has been demonstrated that the second and third natural vibration frequencies increase with the increase in aspect ratio, while the first frequency remains unchanged.

  17. Optical properties and magnetic flux-induced electronic band tuning of a T-graphene sheet and nanoribbon.

    Science.gov (United States)

    Bandyopadhyay, Arka; Nandy, Atanu; Chakrabarti, Arunava; Jana, Debnarayan

    2017-08-16

    Tetragonal graphene (T-graphene) is a theoretically proposed dynamically stable, metallic allotrope of graphene. In this theoretical investigation, a tight binding (TB) model is used to unravel the metal to semiconductor transition of this 2D sheet under the influence of an external magnetic flux. In addition, the environment under which the sheet exposes an appreciable direct band gap of 1.41 ± 0.01 eV is examined. Similarly, the electronic band structure of the narrowest armchair T-graphene nanoribbon (NATGNR) also gets modified with different combinations of magnetic fluxes through the elementary rings. The band tuning parameters are critically identified for both systems. It is observed that the induced band gaps vary remarkably with the tuning parameters. We have also introduced an exact analytical approach to address the band structure of the NATGNR in the absence of any magnetic flux. Finally, the optical properties of the sheet and NATGNR are also critically analysed for both parallel and perpendicular polarizations with the help of density functional theory (DFT). Our study predicts that this material and its nanoribbons can be used in optoelectronic devices.

  18. Novel pyrolyzed polyaniline-grafted silicon nanoparticles encapsulated in graphene sheets as Li-ion battery anodes.

    Science.gov (United States)

    Li, Zhe-Fei; Zhang, Hangyu; Liu, Qi; Liu, Yadong; Stanciu, Lia; Xie, Jian

    2014-04-23

    A simple method to fabricate graphene-encapsulated pyrolyzed polyaniline-grafted Si nanoparticles has been developed. Instead of using Si nanoparticles with a native oxide layer, HF-treated Si nanoparticles were employed in this work. The uniqueness of this method is that, first, a PANI layer over the Si nanoparticles was formed via the surface-initiated polymerization of aniline on the surface of aniline-functionalized Si nanoparticles; then, the PANI-grafted Si nanoparticles were wrapped by the GO sheets via π-π interaction and electrostatic attraction between the GO and the PANI. Finally, the GO and PANI were pyrolyzed, and this pyrolyzed PANI layer tightly binds the graphene sheets and the Si nanoparticles together in the composite. The composite materials exhibit better cycling stability and Coulombic efficiency as anodes in lithium ion batteries, as compared to pure Si nanoparticles and physically mixed graphene/Si composites. After 300 cycles at a current density of 2 A/g, the composite electrodes can still deliver a specific capacity of about 900 mAh/g, which corresponds to ∼76% capacity retention. The enhanced performance can be attributed to the absence of surface oxides, the better electronic conductivity, faster ion diffusion rate, and the strong interaction between the graphene sheets and the tightly bound carbon-coated Si nanoparticles.

  19. Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.)

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Naser A. [University of Aveiro, Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry (Portugal); Singh, Neetu; Singh, Manoj K. [University of Aveiro, Center for Mechanical Technology and Automation (TEMA) and Department of Mechanical Engineering (Portugal); Shah, Zahoor A. [University of Toledo, Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences (United States); Duarte, Armando C.; Pereira, Eduarda; Ahmad, Iqbal, E-mail: ahmadr@ua.pt [University of Aveiro, Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry (Portugal)

    2013-07-15

    Adsorbents based on single-bilayer graphene oxide sheet (hereafter termed 'graphene oxide') are widely used in contaminated environments cleanup which may easily open the avenues for their entry to different environmental compartments, exposure to organisms and their subsequent transfer to human/animal food chain. Considering a common food crop-faba bean (Vicia faba L.) germinating seedlings as a model plant system, this study assesses the V. faba-tolerance to different concentrations (0, 100, 200, 400, 800, and 1600 mg L{sup -1}) of graphene oxide (0.5-5 {mu}m) and evaluates glutathione ({gamma}-glutamyl-cysteinyl-glycine) redox system significance in this context. The results showed significantly increased V. faba sensitivity under three graphene oxide concentrations (in order of impact: 1,600 > 200 > 100 mg graphene oxide L{sup -1}), which was accompanied by decreased glutathione redox (reduced glutathione-to-oxidized glutathione) ratio, reduced glutathione pool, as well as significant and equally elevated activities of glutathione-regenerating (glutathione reductase) and glutathione-metabolizing (glutathione peroxidase; glutathione sulfo-transferase) enzymes. Contrarily, the two graphene oxide concentrations (in order of impact: 800 > 400 graphene oxide mg L{sup -1}) yielded promising results; where, significant improvements in V. faba health status (measured as increased graphene oxide tolerance) were clearly perceptible with increased ratio of the reduced glutathione-to-oxidized glutathione, reduced glutathione pool and glutathione reductase activity but decreased activities of glutathione-metabolizing enzymes. It is inferred that V. faba seedlings-sensitivity and/or tolerance to graphene oxide concentrations depends on both the cellular redox state (reduced glutathione-to-oxidized glutathione ratio) and the reduced glutathione pool which in turn are controlled by a finely tuned modulation of the coordination between glutathione-regenerating and

  20. Data mining graphene: correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects

    Science.gov (United States)

    Ziatdinov, Maxim; Fujii, Shintaro; Kiguchi, Manabu; Enoki, Toshiaki; Jesse, Stephen; Kalinin, Sergei V.

    2016-12-01

    The link between changes in the material crystal structure and its mechanical, electronic, magnetic and optical functionalities—known as the structure-property relationship—is the cornerstone of modern materials science research. The recent advances in scanning transmission electron and scanning probe microscopies (STEM and SPM) have opened an unprecedented path towards examining the structure-property relationships of materials at the single-impurity and atomic-configuration levels. However, there are no statistics-based approaches for cross-correlation of structure and property variables obtained from the different information channels of STEM and SPM experiments. Here we have designed an approach based on a combination of sliding window fast Fourier transform, Pearson correlation matrix and linear and kernel canonical correlation methods to study the relationship between lattice distortions and electron scattering from SPM data on graphene with defects. Our analysis revealed that the strength of coupling to strain is altered between different scattering channels, which can explain the coexistence of several quasiparticle interference patterns in nanoscale regions of interest. In addition, the application of kernel functions allowed us to extract a non-linear component of the relationship between the lattice strain and scattering intensity in graphene. The outlined approach can be further used to analyze correlations in various multi-modal imaging techniques where the information of interest is spatially distributed and generally has a complex multi-dimensional nature.

  1. Towards free-standing graphene/carbon nanotube composite films via acetylene-assisted thermolysis of organocobalt functionalized graphene sheets.

    Science.gov (United States)

    Su, Qi; Liang, Yanyu; Feng, Xinliang; Müllen, Klaus

    2010-11-21

    A novel approach towards highly conductive free-standing chemically reduced graphene/carbon nanotube composite films via an in situ thermolysis of functionalized graphene/organic cobalt complexes was developed. By combining 1D-CNT and 2D-graphene, a synergistic effect of conductivity was established.

  2. Few-layer graphene sheets with embedded gold nanoparticles for electrochemical analysis of adenine

    Directory of Open Access Journals (Sweden)

    Biris AR

    2013-04-01

    Full Text Available Alexandru R Biris,1 Stela Pruneanu,1 Florina Pogacean,1 Mihaela D Lazar,1 Gheorghe Borodi,1 Stefania Ardelean,1 Enkeleda Dervishi,2 Fumiya Watanabe,2 Alexandru S Biris2 1National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania; 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA Abstract: This work describes the synthesis of few-layer graphene sheets embedded with various amounts of gold nanoparticles (Gr-Au-x over an Aux/MgO catalytic system (where x = 1, 2, or 3 wt%. The sheet-like morphology of the Gr-Au-x nanostructures was confirmed by transmission electron microscopy and high resolution transmission electron microscopy, which also demonstrated that the number of layers within the sheets varied from two to seven. The sample with the highest percentage of gold nanoparticles embedded within the graphitic layers (Gr-Au-3 showed the highest degree of crystallinity. This distinct feature, along with the large number of edge-planes seen in high resolution transmission electron microscopic images, has a crucial effect on the electrocatalytic properties of this material. The reaction yields (40%–50% and the final purity (96%–98% of the Gr-Au-x composites were obtained by thermogravimetric analysis. The Gr-Au-x composites were used to modify platinum substrates and subsequently to detect adenine, one of the DNA bases. For the bare electrode, no oxidation signal was recorded. In contrast, all of the modified electrodes showed a strong electrocatalytic effect, and a clear peak for adenine oxidation was recorded at approximately +1.05 V. The highest increase in the electrochemical signal was obtained using a platinum/Gr-Au-3-modified electrode. In addition, this modified electrode had an exchange current density (I0, obtained from the Tafel plot one order of magnitude higher than that of the bare platinum electrode, which also confirmed that

  3. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals.

    Science.gov (United States)

    Shtepliuk, Ivan; Eriksson, Jens; Khranovskyy, Volodymyr; Iakimov, Tihomir; Lloyd Spetz, Anita; Yakimova, Rositsa

    2016-01-01

    A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current-voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium-graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I-V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.

  4. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

    Directory of Open Access Journals (Sweden)

    Ivan Shtepliuk

    2016-11-01

    Full Text Available A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current–voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium–graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I–V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.

  5. Graphene Plasmonics: Guiding, Excitation and Strong SERS Enhancement

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    Propagation of graphene plasmons in nanoribbon waveguides is numerically investigated and excitation of the graphene plasmons in a continuous graphene monolayer is experimentally demonstrated. Interaction between a graphene monolayer with metallic nanostructures is further experimentally studied,...

  6. The effect of edge and impurities sites properties on their localized states in semi-infinite zigzag edged 2D honeycomb graphene sheet

    OpenAIRE

    AHMED, Maher

    2011-01-01

    In this work, the tridiagonal method is used to distinguish between edges modes and area modes to study the edge sites properties effect on edge localized states of semi-infinite zigzag 2D honeycomb graphene sheet. The results show a realistic behavior for the dependance of edge localized states of zigzag graphene on the edge sites properties which explaining the experimental results of measured local density of states at the edge of graphene, while at the same time removing the inconsistence...

  7. Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear

    KAUST Repository

    Duan, Wen Hui

    2011-08-01

    The initiation and development of wrinkles in a single layer graphene sheet subjected to in-plane shear displacements are investigated. The dependence of the wavelength and amplitude of wrinkles on the applied shear displacements is explicitly obtained with molecular mechanics simulations. A continuum model is developed for the characteristics of the wrinkles which show that the wrinkle wavelength decreases with an increase in shear loading, while the amplitude of the wrinkles is found to initially increase and then become stable. The propagation and growth process of the wrinkles in the sheet is elucidated. It is expected that the research could promote applications of graphenes in the transportation of biological systems, separation science, and the development of the fluidic electronics. © 2011 Elsevier Ltd. All rights reserved.

  8. Coupling Hollow Fe3O4-Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material.

    Science.gov (United States)

    Qu, Bin; Zhu, Chunling; Li, Chunyan; Zhang, Xitian; Chen, Yujin

    2016-02-17

    We developed a strategy for coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. The hollow Fe3O4-Fe nanoparticles with average diameter and shell thickness of 20 and 8 nm, respectively, were uniformly anchored on the graphene sheets without obvious aggregation. The minimal reflection loss RL values of the composite could reach -30 dB at the absorber thickness ranging from 2.0 to 5.0 mm, greatly superior to the solid Fe3O4-Fe/G composite and most magnetic EM wave absorbing materials recently reported. Moreover, the addition amount of the composite into paraffin matrix was only 18 wt %.

  9. Growing TiO2 nanowires on the surface of graphene sheets in supercritical CO2: characterization and photoefficiency

    Science.gov (United States)

    Farhangi, Nasrin; Medina-Gonzalez, Yaocihuatl; Chowdhury, Rajib Roy; Charpentier, Paul A.

    2012-07-01

    Tremendous interest exists towards synthesizing nanoassemblies for dye-sensitized solar cells (DSSCs) using earth-abundant and -friendly materials with green synthetic approaches. In this work, high surface area TiO2 nanowire arrays were grown on the surface of functionalized graphene sheets (FGSs) containing -COOH functionalities acting as a template by using a sol-gel method in the green solvent, supercritical carbon dioxide (scCO2). The effect of scCO2 pressure (1500, 3000 and 5000 psi), temperature (40, 60 and 80 °C), acetic acid/titanium isopropoxide monomer ratios (HAc/TIP = 2, 4 and 6), functionalized graphene sheets (FGSs)/TIP weight ratios (1:20, 1:40 and 1:60 w/w) and solvents (EtOH, hexane) were investigated. Increasing the HAc/TIPweight ratio from 4 to 6 in scCO2 resulted in increasing the TiO2 nanowire diameter from 10 to 40 nm. Raman and high resolution XPS showed the interaction of TiO2 with the -COOH groups on the surface of the graphene sheets, indicating that graphene acted as a template for polycondensation growth. UV-vis diffuse reflectance and photoluminescence spectroscopy showed a reduction in titania’s bandgap and also a significant reduction in electron-hole recombination compared to bare TiO2 nanowires. Photocurrent measurements showed that the TiO2nanowire/graphene composites prepared in scCO2 gave a 5× enhancement in photoefficiency compared to bare TiO2 nanowires.

  10. Hydrothermal synthesis of reduced graphene sheets/Fe2O3 nanorods composites and their enhanced electrochemical performance for supercapacitors

    Science.gov (United States)

    Yang, Wanlu; Gao, Zan; Wang, Jun; Wang, Bin; Liu, Lianhe

    2013-06-01

    Reduced graphene nanosheets/Fe2O3 nanorods (GNS/Fe2O3) composite has been fabricated by a hydrothermal route for supercapacitor electrode materials. The obtained GNS/Fe2O3 composite formed a uniform structure with the Fe2O3 nanorods grew on the graphene surface and/or filled between the graphene sheets. The electrochemical performances of the GNS/Fe2O3 hybrid supercapacitor were tested by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge tests in 6 M KOH electrolyte. Comparing with the pure Fe2O3 electrode, GNS/Fe2O3 composite electrode exhibits an enhanced specific capacitance of 320 F g-1 at 10 mA cm-2 and an excellent cycle-ability with capacity retention of about 97% after 500 cycles. The simple and cost-effective preparation technique of this composite with good capacitive behavior encourages its potential commercial application.

  11. Date Fruits-Assisted Synthesis and Biocompatibility Assessment of Nickel Oxide Nanoparticles Anchored onto Graphene Sheets for Biomedical Applications.

    Science.gov (United States)

    Alshatwi, Ali A; Athinarayanan, Jegan; Periasamy, Vaiyapuri Subbarayan; Alatiah, Khalid A

    2017-02-01

    Nanographene- and graphene-based nanohybrids have garnered attention in the biomedical community owing to their biocompatibility, excellent aqueous processability, ease of cellular uptake, facile surface functionalization, and thermal and electrical conductivities. NiO nanoparticle-graphene nanohybrid (G-NiO) was synthesized by first depositing Ni(OH)2 onto the surface of graphene oxide (GO) sheets. The Ni(OH)2-GO hybrids were then reduced to G-NiO using date palm syrup at 85 °C. The prepared G-NiO nanohybrids were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The NiO nanoparticles, with a diameter of approximately 20-30 nm, were uniformly dispersed over the surface of the graphene sheets. The G-NiO hybrids exhibit biocompatibility in human mesenchymal stem cells (hMSCs) up to 100 μg/mL. The nanohybrids do not cause any significant changes in cellular and nuclear morphologies in hMSCs. The as-synthesized nanohybrids show excellent biocompatibility and could be a promising material for biomedical applications.

  12. Immobilization of β-galactosidase onto functionalized graphene nano-sheets using response surface methodology and its analytical applications.

    Directory of Open Access Journals (Sweden)

    Devesh Kishore

    Full Text Available BACKGROUND: β-Galactosidase is a vital enzyme with diverse application in molecular biology and industries. It was covalently attached onto functionalized graphene nano-sheets for various analytical applications based on lactose reduction. METHODOLOGY/PRINCIPAL FINDINGS: Response surface methodology based on Box-Behnken design of experiment was used for determination of optimal immobilization conditions, which resulted in 84.2% immobilization efficiency. Native and immobilized functionalized graphene was characterized with the help of transmission and scanning electron microscopy, followed by Fourier transform infrared (FTIR spectroscopy. Functionalized graphene sheets decorated with islands of immobilized enzyme were evidently visualized under both transmission and scanning electron microscopy after immobilization. FTIR spectra provided insight on various chemical interactions and bonding, involved during and after immobilization. Optimum temperature and energy of activation (E(a remains unchanged whereas optimum pH and K(m were changed after immobilization. Increased thermal stability of enzyme was observed after conjugating the enzyme with functionalized graphene. SIGNIFICANCE: Immobilized β-galactosidase showed excellent reusability with a retention of more than 92% enzymatic activity after 10 reuses and an ideal performance at broad ranges of industrial environment.

  13. Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles.

    Science.gov (United States)

    Zhao, Yuan; Yang, Dong; Li, Xiyu; Liu, Yu; Hu, Xiang; Zhou, Dianfa; Lu, Yalin

    2017-01-19

    We report a novel graphene-metal hybrid system by introducing monolayer graphene between gold nanoparticles (Au NPs) and silver nanohole (Ag NH) arrays. The design incorporates three key advantages to promote the surface-enhanced Raman scattering (SERS) sensing capacity: (i) making full use of the single-atomic feature of graphene for generating uniform sub-nanometer spaces; (ii) maintaining the bottom layer of Ag nanoarrays with an ordered manner for facilitating the transfer of graphene films and assembly of the top layer of Au NPs; (iii) integrating the advantages of the strong plasmonic effect of Ag, the chemical stability of Au, as well as the mechanical flexibility and biological compatibility of graphene. In this configuration, the plasmonic properties can be fine-tuned by separately optimizing the horizontal or vertical gaps between the metal NPs. Exactly, sub-20 nm spaces between the horizontally patterned Ag tips constructed by adjacent Ag NHs, and sub-nanometer scale graphene gaps between the vertically distributed Au NP-Ag NH have been achieved. Finite element numerical simulations demonstrate that the multi-dimensional plasmonic couplings (including the Au NP-Au NP, Au NP-Ag NH and Ag NH-Ag NH couplings) promote for the hybrid platform an electric field enhancement up to 137 times. Impressively, the as-prepared 3D Au NP-graphene-Ag NH array hybrid structure manifests ultrahigh SERS sensitivity with a detection limit of 10(-13) M for R6G molecules, as well as good reproducibility and stability. This work represents a step towards high-performance SERS substrate fabrication, and opens up a new route for graphene-plasmonic hybrids in SERS applications.

  14. Theoretical model study of dynamic ferromagnetic susceptibility in mono-layer graphene

    Science.gov (United States)

    Sahu, Sivabrata; Parashar, S. K. S.; Rout, G. C.

    2016-04-01

    We report here a microscopic theoretical study of dynamic ferromagnetic spin susceptibility of electrons for graphene systems, which deal with a tight-binding model Hamiltonian consisting of the hopping of electrons up to third-nearest-neighbors, impurity and substrate effects besides Coulomb interaction of electrons at A-and B- sub- lattices. The spin susceptibility involves four two-particle Green's functions, which are calculated by Zubarev's Green's function technique. The up and down electron occupancies at A and B sub-lattices are computed numerically and self-consistently. The temperature dependent susceptibility shows a pronounced peak at Curie temperature for critical Coulomb interaction Uc = 2.2t1.

  15. Combined effect of doping and temperature on the anisotropy of low-energy plasmons in monolayer graphene

    Science.gov (United States)

    Gumbs, Godfrey; Balassis, Antonios; Silkin, V. M.

    2017-07-01

    We compare the two-dimensional (2D) plasmon dispersion relations for monolayer graphene when the sample is doped with carriers in the conduction band and the temperature T is zero with the case when the temperature is finite and there is no doping. Additionally, we have obtained the plasmon excitations when there is doping at finite temperature. The results were obtained in the random-phase approximation which employs energy electronic bands calculated using ab initio density functional theory. We found that in the undoped case the finite temperature results in appearance in the low-energy region of a 2D plasmon which is absent for the T =0 case. Its energy is gradually increased with increasing T . It is accompanied by expansion in the momentum range where this mode is observed as well. The 2D plasmon dispersion in the Γ M direction may differ in substantial ways from that along the Γ K direction at sufficiently high temperature and doping concentrations. Moreover, at temperatures exceeding ≈300 meV a second mode emerges along the Γ K direction at lower energies like it occurs at a doping level exceeding ≈300 meV. Once the temperature exceeds ≈0.75 eV this mode ceases to exist whereas the 2D plasmon exists as a well-defined collective excitation up to T =1.5 eV , a maximal temperature investigated in this work.

  16. Anchoring transition metal elements on graphene-like ZnO monolayer by CO molecule to obtain spin gapless semiconductor

    Science.gov (United States)

    Lei, Jie; Xu, Ming-Chun; Hu, Shu-Jun

    2017-09-01

    Graphene-like zinc oxide monolayer (g-ZnO) is a newfound two-dimensional material. Here we utilize the transition metal (TM) elements (Cr, Mn, Fe, Co, Ni, and Cu) to functionalize the g-ZnO with the aim of designing novel spintronics materials by using first-principles calculations. Our results show that although the adsorption of TM atoms can endow g-ZnO with magnetization and impurity states in the bandgap, the interaction between TM elements and g-ZnO is weak. We found that the attachment of CO molecule on TM is able to stabilize the TM elements on g-ZnO based on the 'donation and back-donation' mechanism. As a result, the adsorption energy of the CO-TM complex on g-ZnO is as high as 1.41-2.11 eV. Furthermore, the incorporation of CO molecule modulates the magnetic and electronic properties of the TM-decorated g-ZnO. In particular, the CO-Mn-g-ZnO is predicted to be a spin gapless semiconductor.

  17. Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors.

    Science.gov (United States)

    Nie, Biao; Hu, Ji-Gang; Luo, Lin-Bao; Xie, Chao; Zeng, Long-Hui; Lv, Peng; Li, Fang-Ze; Jie, Jian-Sheng; Feng, Mei; Wu, Chun-Yan; Yu, Yong-Qiang; Yu, Shu-Hong

    2013-09-09

    A new Schottky junction ultraviolet photodetector (UVPD) is fabricated by coating a free-standing ZnO nanorod (ZnONR) array with a layer of transparent monolayer graphene (MLG) film. The single-crystalline [0001]-oriented ZnONR array has a length of about 8-11 μm, and a diameter of 100∼600 nm. Finite element method (FEM) simulation results show that this novel nanostructure array/MLG heterojunction can trap UV photons effectively within the ZnONRs. By studying the I-V characteristics in the temperature range of 80-300 K, the barrier heights of the MLG film/ZnONR array Schottky barrier are estimated at different temperatures. Interestingly, the heterojunction diode with typical rectifying characteristics exhibits a high sensitivity to UV light illumination and a quick response of millisecond rise time/fall times with excellent reproducibility, whereas it is weakly sensitive to visible light irradiation. It is also observed that this UV photodetector (PD) is capable of monitoring a fast switching light with a frequency as high as 2250 Hz. The generality of the above results suggest that this MLG film/ZnONR array Schottky junction UVPD will have potential application in future optoelectronic devices.

  18. In situ growth of noble metal nanoparticles on graphene oxide sheets and direct construction of functionalized porous-layered structure on gravimetric microsensors for chemical detection.

    Science.gov (United States)

    Xu, Pengcheng; Yu, Haitao; Li, Xinxin

    2012-11-11

    Noble metal nanoparticles are directly and homogeneously grown onto graphene-oxide (GO) sheets in oleylamine. After the oleylamine is removed, the GO sheets are exfoliated by the nanoparticle pillars to further form hierarchical GO nanostructures with molecule accessible nanopores. With specific sensing-groups modified, the porous-layered nanostructure can be constructed onto resonant microcantilevers for chemical sensing.

  19. A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes.

    Science.gov (United States)

    Angelova, Polina; Vieker, Henning; Weber, Nils-Eike; Matei, Dan; Reimer, Oliver; Meier, Isabella; Kurasch, Simon; Biskupek, Johannes; Lorbach, Dominik; Wunderlich, Katrin; Chen, Long; Terfort, Andreas; Klapper, Markus; Müllen, Klaus; Kaiser, Ute; Gölzhäuser, Armin; Turchanin, Andrey

    2013-08-27

    Free-standing nanomembranes with molecular or atomic thickness are currently explored for separation technologies, electronics, and sensing. Their engineering with well-defined structural and functional properties is a challenge for materials research. Here we present a broadly applicable scheme to create mechanically stable carbon nanomembranes (CNMs) with a thickness of ~0.5 to ~3 nm. Monolayers of polyaromatic molecules (oligophenyls, hexaphenylbenzene, and polycyclic aromatic hydrocarbons) were assembled and exposed to electrons that cross-link them into CNMs; subsequent pyrolysis converts the CNMs into graphene sheets. In this transformation the thickness, porosity, and surface functionality of the nanomembranes are determined by the monolayers, and structural and functional features are passed on from the molecules through their monolayers to the CNMs and finally on to the graphene. Our procedure is scalable to large areas and allows the engineering of ultrathin nanomembranes by controlling the composition and structure of precursor molecules and their monolayers.

  20. Stable configurations of graphene on silicon

    Science.gov (United States)

    Javvaji, Brahmanandam; Shenoy, Bhamy Maithry; Mahapatra, D. Roy; Ravikumar, Abhilash; Hegde, G. M.; Rizwan, M. R.

    2017-08-01

    Integration of graphene on silicon-based nanostructures is crucial in advancing graphene based nanoelectronic device technologies. The present paper provides a new insight on the combined effect of graphene structure and silicon (001) substrate on their two-dimensional anisotropic interface. Molecular dynamics simulations involving the sub-nanoscale interface reveal a most favourable set of temperature independent orientations of the monolayer graphene sheet with an angle of ∽15° between its armchair direction and [010] axis of the silicon substrate. While computing the favorable stable orientations, both the translation and the rotational vibrations of graphene are included. The possible interactions between the graphene atoms and the silicon atoms are identified from their coordination. Graphene sheet shows maximum bonding density with bond length 0.195 nm and minimum bond energy when interfaced with silicon substrate at 15° orientation. Local deformation analysis reveals probability distribution with maximum strain levels of 0.134, 0.047 and 0.029 for 900 K, 300 K and 100 K, respectively in silicon surface for 15° oriented graphene whereas the maximum probable strain in graphene is about 0.041 irrespective of temperature. Silicon-silicon dimer formation is changed due to silicon-carbon bonding. These results may help further in band structure engineering of silicon-graphene lattice.

  1. Effects of size and surface on the auxetic behaviour of monolayer graphene kirigami

    Science.gov (United States)

    Cai, Kun; Luo, Jing; Ling, Yiru; Wan, Jing; Qin, Qing-Hua

    2016-10-01

    Graphene is an active element used in the design of nano-electro-mechanical systems (NEMS) owing to its excellent in-plane physical properties on mechanical, electric and thermal aspects. Considering a component requiring negative Poisson’s ratio in NEMS, a graphene kirigami (GK) containing periodic re-entrant honeycombs is a natural option. This study demonstrates that a GK with specific auxetic property can be obtained by adjusting the sizes of its honeycombs. Using molecular dynamics experiments, the size effects on the auxetic behaviour of GK are investigated. In some cases, the auxetic difference between the hydrogenated GK and continuum kirigami (CK) is negligible, in which the results from macro CK can be used to predict auxetic behaviour of nano kirigami. Surface effect of GK is demonstrated from two aspects. One is to identify the difference of mechanical responses between the pure carbon GK and the hydrogenated GK at same geometry and loading condition. Another is from the difference of mechanical responses between the GK model and the CK model under same loading condition and geometric configuration. Generally, surface energy makes the GK possess higher variation of auxetic behaviour. It also results in higher modulus for the GK as comparing with that of the CK.

  2. Effects of Landau level mixing on the fractional quantum Hall effect in monolayer graphene.

    Science.gov (United States)

    Peterson, Michael R; Nayak, Chetan

    2014-08-22

    We report results of exact diagonalization studies of the spin- and valley-polarized fractional quantum Hall effect in the N = 0 and N = 1 Landau levels in graphene. We use an effective model that incorporates Landau level mixing to lowest order in the parameter κ = ((e(2)/εℓ)/(ħv(F)/ℓ)) = (e(2)/εv(F)ħ), which is magnetic field independent and can only be varied through the choice of substrate. We find Landau level mixing effects are negligible in the N = 0 Landau level for κ ≲ 2. In fact, the lowest Landau level projected Coulomb Hamiltonian is a better approximation to the real Hamiltonian for graphene than it is for semiconductor based quantum wells. Consequently, the principal fractional quantum Hall states are expected in the N = 0 Landau level over this range of κ. In the N = 1 Landau level, fractional quantum Hall states are expected for a smaller range of κ and Landau level mixing strongly breaks particle-hole symmetry, producing qualitatively different results compared to the N = 0 Landau level. At half filling of the N = 1 Landau level, we predict the anti-Pfaffian state will occur for κ ∼ 0.25-0.75.

  3. Wrapping of a single bacterium with Functionalized - Chemically Modified Graphene (FCMG) sheets via highly specific protein-cell wall interaction

    Science.gov (United States)

    Mohanty, Nihar; Berry, Vikas

    2009-03-01

    Graphene has recently generated a lot of interest due to its unique structural and electrical properties. It's micro-scale area and sub-nano-scale thickness coupled with ballistic electronic transport at room temperature, low Johnston noise and low charge scattering, have made it a gold mine for novel applications. Since its discovery in 2004, there have been a plethora of studies on characterizing its unique physical, chemical and electrical properties of graphene as well as on integrating it with various physical/chemical systems to utilize these properties. But there have been limited or no studies on the integration of graphene with living microorganisms or mammalian cells. Here we describe the novel wrapping of a single live bacterium (Bacillus cereus) with a chemically modified graphene sheet functionalized with the protein Concanavalin-A (Con-A) via the highly specific Con-A - Teichoic acid interaction. We are investigating the structural and the electrical properties of these novel bacteria-FCMG ensembles. Further, we are also interested in characterizing this wrapping process in detail by studying the kinetics and the mechanism of action of bacterial-wrapping via 3D modelling. This is a first step towards the live-bio-nano-integration of graphene which would open up avenues for applications as diverse as bio-batteries using the Geobacter to recombinant enzyme compartmentalization.

  4. Graphene quantum dots decorated CdS doped graphene oxide sheets in dual action mode: As initiator and platform for designing of nimesulide imprinted polymer.

    Science.gov (United States)

    Patra, Santanu; Roy, Ekta; Choudhary, Raksha; Tiwari, Ashutosh; Madhuri, Rashmi; Sharma, Prashant K

    2017-03-15

    The present work describes the preparation of a nanohybrid by a combination of the 2D graphene sheet and 0D graphene quantum dots (GQDs). The GQDs were prepared from natural green precursors i.e. carrot juice by the one-step hydrothermal process. To get the maximum fluorescence property from nanohybrid, the graphene sheets were chemically doped with cadmium sulphide (CdS). The as prepared nanohybrid was characterized by means of X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), fluorescence and UV-vis spectroscopic techniques. The nanohybrid was further modified to design a nano-iniferter, which shows dual property i.e. works as polymerization initiator as well as provides platform for synthesis of the nimesulide-imprinted polymer. For designing of imprinted polymer two biocompatible monomers (cystine monomer and N-vinyl caprolactam) were used, which provides biodegradability to the polymer matrix. The imprinted polymer shows a very good selectivity towards the detection of nimesulide with a limit of detection as low as 6.65ngL(-1) (S/N=3). The sensor was also applied for the detection of nimesulide in real samples like human blood serum, plasma and urine samples as well as some pharmaceutical tablets. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment.

    Science.gov (United States)

    Wu, Zefei; Guo, Yanqing; Guo, Yuzheng; Huang, Rui; Xu, Shuigang; Song, Jie; Lu, Huanhuan; Lin, Zhenxu; Han, Yu; Li, Hongliang; Han, Tianyi; Lin, Jiangxiazi; Wu, Yingying; Long, Gen; Cai, Yuan; Cheng, Chun; Su, Dangsheng; Robertson, John; Wang, Ning

    2016-02-07

    The transfer-free synthesis of high-quality, large-area graphene on a given dielectric substrate, which is highly desirable for device applications, remains a significant challenge. In this paper, we report on a simple rapid thermal treatment (RTT) method for the fast and direct growth of high-quality, large-scale monolayer graphene on a SiO2/Si substrate from solid carbon sources. The stack structure of a solid carbon layer/copper film/SiO2 is adopted in the RTT process. The inserted copper film does not only act as an active catalyst for the carbon precursor but also serves as a "filter" that prevents premature carbon dissolution, and thus, contributes to graphene growth on SiO2/Si. The produced graphene exhibits a high carrier mobility of up to 3000 cm(2) V(-1) s(-1) at room temperature and standard half-integer quantum oscillations. Our work provides a promising simple transfer-free approach using solid carbon sources to obtain high-quality graphene for practical applications.

  6. Hybrid opto-chemical doping in Ag nanoparticle-decorated monolayer graphene grown by chemical vapor deposition probed by Raman spectroscopy

    Science.gov (United States)

    Maiti, R.; Haldar, S.; Majumdar, D.; Singha, A.; Ray, S. K.

    2017-02-01

    The novel opto-chemical doping effect in Ag nanoparticle-decorated monolayer graphene grown by chemical vapor deposition has been investigated using Raman spectroscopy for the first time. We used both noble metal nanoparticles and optical excitation, in a hybrid opto-chemical route, to tune the doping level in graphene. Metal nanoparticle-induced chemical effects and laser power-induced substrate effects alter the doping nature of graphene from p- to n-type. Compared with earlier studies, the proposed method significantly lowers the laser intensity required for optical power-dependent doping, resulting in prevention of damage to the sample due to local heating. Some other interesting observations are the enhanced peak intensity in the Raman spectrum of graphene, enhancement of the D-band intensity and the introduction of G-band splitting. This novel, cheap and easily implemented hybrid optical-chemical doping strategy could be very useful for tuning graphene plasmons on the widely used Si/SiO2 substrates for various photonic device applications.

  7. Generated photocatalytic performance of h-BN sheet by coupling with reduced graphene oxide/fluorid: A DFT study

    Science.gov (United States)

    Lu, Baichuan; Jia, Jun; Guo, Fengjuan; Li, Dongyang; Zhao, Yunhao; Zhao, Xian; Gao, Hongtao

    2017-09-01

    First-principles calculation based on density functional theory (DFT) was performed to investigate the enhanced photocatalytic mechanism and electronic properties of hexagonal boron nitride (h-BN) sheet by coupling with reduced graphene oxide (RGO) or reduced graphene fluorid (RGF). It is demonstrated that the combination of h-BN with RGO(F) is thermodynamically favorable. The spatial configurations of O and F atoms played a key role in modifying the electronic structure and properties of h-BN/RGO(F) composites. The interaction between h-BN and RGO(F) sheets caused charge accumulation on the side of h-BN layer and charge depletion on the lower side of RGO(F) sheet. There formed a heterjunction between the interface, which could improve the separation efficiency of photogenerated carriers and inhibit their combination. Both valence band edge and conduction band edge positions of h-BN/RGO(F) composites were characterized to illustrate the enhanced oxidation-reduction performance mechanism. The theoretical investigation could provide valuable information for thoroughly understanding the mechanism of the exceptional performance of h-BN/RGO(F) composites compared to the h-BN sheet.

  8. Engineering the Mechanical Properties of Monolayer Graphene Oxide at the Atomic Level.

    Science.gov (United States)

    Soler-Crespo, Rafael A; Gao, Wei; Xiao, Penghao; Wei, Xiaoding; Paci, Jeffrey T; Henkelman, Graeme; Espinosa, Horacio D

    2016-07-21

    The mechanical properties of graphene oxide (GO) are of great importance for applications in materials engineering. Previous mechanochemical studies of GO typically focused on the influence of the degree of oxidation on the mechanical behavior. In this study, using density functional-based tight binding simulations, validated using density functional theory simulations, we reveal that the deformation and failure of GO are strongly dependent on the relative concentrations of epoxide (-O-) and hydroxyl (-OH) functional groups. Hydroxyl groups cause GO to behave as a brittle material; by contrast, epoxide groups enhance material ductility through a mechanically driven epoxide-to-ether functional group transformation. Moreover, with increasing epoxide group concentration, the strain to failure and toughness of GO significantly increases without sacrificing material strength and stiffness. These findings demonstrate that GO should be treated as a versatile, tunable material that may be engineered by controlling chemical composition, rather than as a single, archetypical material.

  9. Controllable optical bistability and multistability in a slab defected with monolayer graphene nanostructure

    Science.gov (United States)

    Solookinejad, Gh.

    2016-05-01

    In this paper, the optical bistability (OB) and optical multistability (OM) properties of weak probe light in a defect dielectric medium doped by four-level graphene nanostructure is theoretically discussed. The double dark resonance can arise by linear polarized control laser fields which consist of linear left and right circularly polarized light. We show that by adjusting the Rabi-frequencies of control fields, frequency detuning of bichromatic electric fields, the intensity threshold and hysteric curves of OB and OM can be manipulated. Moreover, the thickness of the slab is considered as a controllable parameter which can impact the OB and OM behaviors of weak probe light in a defect slab. We find that the transition from OB to OM or vice versa can be possible by adjusting the thickness of the slab. Our results may provide some new application on Nano-scale devices in future all-optical communication and quantum information technologies.

  10. Electron transfer from sulfate-reducing bacteria biofilm promoted by reduced graphene sheets

    Institute of Scientific and Technical Information of China (English)

    WAN Yi; ZHANG Dun; WANG Yi; WU Jiajia

    2012-01-01

    Reduced graphene sheets (RGSs) mediate electron transfer between sulfate-reducing bacteria (SRB) and solid electrodes,and promote the development of microbial fuelcells (MFC).We have investigated RSG-promoted electron transfer between SRB and a glassy carbon (GC) electrode.The RGSs were produced at high yield by a chemical sequence involving graphite oxidation,ultrasonic exfoliation of nanosheets,and N2H4 reduction.Cyclic voltammetric testing showed that the characteristic anodic peaks (around 0.3 V)might arise from the combination of bacterial membrane surface cytochrome c3 and the metabolic products of SRB.After 6 d,another anodic wave gradually increased to a maximum current peak and a third anodic signal became visible at around 0 V.The enhancements of two characteristic anodic peaks suggest that RSGs mediate electron-transfer kinetics between bacteria and the solid electrode.Manipulation of these recentlydiscovered electron-transport mechanisms will lead to significant advances in MFC engineering.

  11. DNA cleavage system of nanosized graphene oxide sheets and copper ions.

    Science.gov (United States)

    Ren, Hongliu; Wang, Chong; Zhang, Jiali; Zhou, Xuejiao; Xu, Dafeng; Zheng, Jing; Guo, Shouwu; Zhang, Jingyan

    2010-12-28

    The exploration of efficient DNA intercalative agents (intercalators) is essential for understanding DNA scission, repair, and signal transduction. In this work, we explored systematically the graphene oxide (GO) interaction with DNA molecules using fluorescence spectroscopic (FL) and circular dichroism (CD) studies, gel electrophoresis, and DNA thermal denaturation. We demonstrated that the GO nanosheets could intercalate efficiently into DNA molecules. Significantly, we illustrated that the scission of DNA by GO sheets combining with copper ions could take place pronouncedly. The scission of DNA by the GO/Cu(2+) system is critically dependent on the concentrations of GO and Cu(2+) and their ratio. DNA cleavage ability exhibited by the GO with several other metal ions and the fact that GO/Cu(2+)-cleaved DNA fragments can be partially relegated suggest that the mechanism of DNA cleavage by the GO/metal ion system is oxidative and hydrolytic. The result reveals that the GO/Cu(2+) could be used as a DNA cleaving system that should find many practical applications in biotechnology and as therapeutic agents.

  12. Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water.

    Science.gov (United States)

    Zhang, Panpan; Li, Jing; Lv, Lingxiao; Zhao, Yang; Qu, Liangti

    2017-05-23

    Efficient utilization of solar energy for clean water is an attractive, renewable, and environment friendly way to solve the long-standing water crisis. For this task, we prepared the long-range vertically aligned graphene sheets membrane (VA-GSM) as the highly efficient solar thermal converter for generation of clean water. The VA-GSM was prepared by the antifreeze-assisted freezing technique we developed, which possessed the run-through channels facilitating the water transport, high light absorption capacity for excellent photothermal transduction, and the extraordinary stability in rigorous conditions. As a result, VA-GSM has achieved average water evaporation rates of 1.62 and 6.25 kg m(-2) h(-1) under 1 and 4 sun illumination with a superb solar thermal conversion efficiency of up to 86.5% and 94.2%, respectively, better than that of most carbon materials reported previously, which can efficiently produce the clean water from seawater, common wastewater, and even concentrated acid and/or alkali solutions.

  13. Synthesis and photocatalytic properties of different SnO2 microspheres on graphene oxide sheets

    Science.gov (United States)

    Wei, Jia; Xue, Shaolin; Xie, Pei; Zou, Rujia

    2016-07-01

    Different SnO2 microspheres like dandelions, silkworm cocoons and urchins have been synthesized on graphene oxide sheets (GOs) by hydrothermal method at 190 °C for 24 h. The morphologies, structures, chemical compositions and optical properties of the as-grown SnO2 microspheres on GOs (SMGs) were characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), X-ray energy dispersive spectrometer (EDS), Raman spectra and UV-vis diffuse reflectance spectra (DRS) techniques. The results of XRD revealed that the as-grown SnO2 microspheres have tetragonal rutile structure. The results of Raman spectra, EDS, XRD, XPS and SEM showed that the SnO2 microspheres were grown on GOs and the average diameter of dandelion-like microsphere was about 1.5 μm. The formation mechanism of SnO2 microspheres grown on GOs was discussed. The photocatalytic activity of the SMGs composites was evaluated by photocatalytic degradation of Rhodamine B (Rh B) aqueous solution under visible light irradiation. The photocatalytic results showed that the dandelion-like SMGs exhibited a much better photocatalytic activity than those of smooth and rough SMGs.

  14. Preparation and antibacterial properties of Ag@polydopamine/graphene oxide sheet nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hao [Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Liu, Yunfang, E-mail: liuyunfang@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Chi, Weidong [Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Yu, Changyuan [College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Yu, Yingjie [Department of Materials Science and Engineering, State University of New York, Stony Brook, NY 11794-2275 (United States)

    2013-10-01

    Immobilization of silver nanoparticles (Ag NPs) on poly-dopamine (PDA) functionalized graphene oxide sheets (GOSs) were carried out by an easy in situ reduction method. The PDA layer was coated on the surface of the GOSs via the self-polymerization of dopamine under atmosphere condition. The PDA layer not only works as the chemisorption and reduction sites for silver ions to form Ag NPs but also stabilizes them. High-resolution transmission electron microscopy observation shows that the average size of the Ag NPs anchored on the PDA/GOS composite is about 2.8 nm. The inhibition zone diameter of the Ag@PDA/GOS nanocomposite is about 23.7 mm, whereas said diameter of the Ag NPs is only 18.5 mm. The minimum bactericidal concentration of the Ag@PDA/GOS nanocomposite is about 25 μg/ml that is only half of said concentration of the Ag NPs. The Ag@PDA/GOS nanocomposite exhibits an excellent antibacterial property.

  15. Water confined in nanotubes and between graphene sheets: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, G; Grossman, J C; Schwegler, E; Gygi, F; Galli, G

    2008-10-17

    Water confined at the nanoscale has been the focus of numerous experimental and theoretical investigations in recent years, y yet there is no consensus on such basic properties et as diffusion and the nature of hydrogen bonding (HB) under confinement. Unraveling these properties is important to understand fluid flow and transport at the nanoscale, and to shed light on the solvation of biomolecules. Here we report on a first principle, computational study focusing on water confined between prototypical non polar substrate, i.e. , single wall carbon nanotubes and graphene sheets, 1 to 2.5 nm apart. The results of our molecular dynamics simulations show the presence of a thin, interfacial liquid layer ({approx} 5 Angstroms) whose microscopic structure and thickness are independent of the distance between confining layers. The prop properties of the hydrogen bonded network are very similar to those of the bulk outside the interfacial region, even in the case of strong confinement , confinement. Our findings indicate that the perturbation induced by the presence of confining media is extremely local in liquid water, and we propose that many of the effects attributed to novel phases under confinement are determined by subtle electronic structure rearrangements occurring at the interface with the confining medium.

  16. Highly Sensitive Surface Enhanced Raman Spectroscopy from Ag Nanoparticles Decorated Graphene Sheet

    Directory of Open Access Journals (Sweden)

    Hui Song

    2014-01-01

    Full Text Available Surface enhanced Raman spectroscopy (SERS is a powerful analytical technique and has been most intensively studied. In this work, electroless deposition is proposed for Ag nanoparticles (NPs decorated on chemical vapor deposition (CVD growth graphene sheets (GS to create hybrid SERS substrate. From three aspects of size distribution, morphology, and coverage, Ag NPs controllable decoration on GS and SERS enhancement factors of the hybrid SERS substrate is investigated. 200–300 times enhanced SERS intensities are detected from the Ag NPs on GS hybrid as compared to pure GS. Controllable decoration is crucial for improving SERS enhancement factors βEF, because βEF from quasi cubic Ag NPs on GS is 6.53 times stronger than that from spheric one; 1.6 times βEF is detected while the Ag NPs size distribution is reduced to half, and when the coverage is doubled, βEF is nearly doubled. This controllable Ag NPs/GS hybrid is capable of serving as a high performance SERS substrate for efficient chemical and biological sensing applications.

  17. Graphene sheets stacked polyacrylate latex composites for ultra-efficient electromagnetic shielding

    Science.gov (United States)

    Li, Yong; Zhang, Song; Ni, Yuwei

    2016-07-01

    Graphene sheets (GS) are at the forefront of electromagnetic interference (EMI) shielding/attenuation materials science research because of their excellent electrical properties (Wen B et al 2014 Adv. Mater. 26 3484, Zhang Y et al 2015 Adv. Mater. 27 2049). GS/polyacrylate (PA) composites were prepared using a solvent-free latex technology, which favored the build-up of a segregated GS architecture stacked in the polymer matrix. GS were obtained from graphite flakes (GF) via a mechanical delamination approach in water. The microstructure, electrical, dielectric and electromagnetic shielding properties of the GS/PA composites were correlated in this manuscript. A remarkably low percolation threshold of ˜0.11 mass per cent for room-temperature electrical conductivity was obtained in the GS/PA composites owing to the stacked architecture of GS with high aspect ratios. This unique nanostructured GS architecture not only enhanced the electrical conductivity of composites, but also dramatically increased complex permittivity by inducing strong Maxwell-Wagner-Sillars (MWS) polarization at the highly conductive GS/non-conductive PA interfaces. The EMI shielding effectiveness (SE) of these composites was enhanced with increasing GS content, and the composite with 6 wt% GS loading exhibited a high EMI SE of ˜66 dB over a frequency of 8.2-12.4 GHz, resulting from the pronounced conduction loss, dielectric relaxation, and multi-scattering.

  18. Molecular Dynamics Study on the Resonance Properties of a Nano Resonator Based on a Graphene Sheet with Two Types of Vacancy Defects

    Directory of Open Access Journals (Sweden)

    Wenchao Tian

    2017-01-01

    Full Text Available Due to the excellent electronic, optical, thermal, chemical, and mechanical properties of graphene, it has been applied in microdevices and nanodevices. However, there are some structural defects in graphene limiting its application in micro electromechanical systems (MEMS. These structural defects are inevitable during processing, and it is difficult to assess their effect on the micro/nano devices. Therefore, this communication used molecular dynamics to study the resonance properties of a nanoelectromechanical systems (NMES resonator based on a graphene sheet with a single vacancy defect and edge defects. This communication focuses on three factors: vacancy types, external force, and temperature. The resonance frequencies of both types of graphene increased with external stress loading, and the resonance frequency of the graphene showed a clear step-shaped variation. Nonlinear deformation of the sheet occurred between resonant processes. When the external force was less than 15.91 nN, the resonance frequencies of the two types of graphene showed a consistent trend. The maximum frequency was up to 132.90 GHz. When the external force was less than 90 nN, the resonance frequencies of graphene with edge defects were greater and changed more rapidly. Temperature did not have a huge influence on the resonance frequencies of either type of graphene structure. The resonance frequencies of graphene with two different vacancy defects showed a consistent trend.

  19. Star polymer unimicelles on graphene oxide flakes.

    Science.gov (United States)

    Choi, Ikjun; Kulkarni, Dhaval D; Xu, Weinan; Tsitsilianis, Constantinos; Tsukruk, Vladimir V

    2013-08-06

    We report the interfacial assembly of amphiphilic heteroarm star copolymers (PSnP2VPn and PSn(P2VP-b-PtBA)n (n = 28 arms)) on graphene oxide flakes at the air-water interface. Adsorption, spreading, and ordering of star polymer micelles on the surface of the basal plane and edge of monolayer graphene oxide sheets were investigated on a Langmuir trough. This interface-mediated assembly resulted in micelle-decorated graphene oxide sheets with uniform spacing and organized morphology. We found that the surface activity of solvated graphene oxide sheets enables star polymer surfactants to subsequently adsorb on the presuspended graphene oxide sheets, thereby producing a bilayer complex. The positively charged heterocyclic pyridine-containing star polymers exhibited strong affinity onto the basal plane and edge of graphene oxide, leading to a well-organized and long-range ordered discrete micelle assembly. The preferred binding can be related to the increased conformational entropy due to the reduction of interarm repulsion. The extent of coverage was tuned by controlling assembly parameters such as concentration and solvent polarity. The polymer micelles on the basal plane remained incompressible under lateral compression in contrast to ones on the water surface due to strongly repulsive confined arms on the polar surface of graphene oxide and a preventive barrier in the form of the sheet edges. The densely packed biphasic tile-like morphology was evident, suggesting the high interfacial stability and mechanically stiff nature of graphene oxide sheets decorated with star polymer micelles. This noncovalent assembly represents a facile route for the control and fabrication of graphene oxide-inclusive ultrathin hybrid films applicable for layered nanocomposites.

  20. Iron (III) chloride doping of CVD graphene.

    Science.gov (United States)

    Song, Yi; Fang, Wenjing; Hsu, Allen L; Kong, Jing

    2014-10-03

    Chemical doping has been shown as an effective method of reducing the sheet resistance of graphene. We present the results of our investigations into doping large area chemical vapor deposition graphene using Iron (III) Chloride (FeCl(3)). It is shown that evaporating FeCl(3) can increase the carrier concentration of monolayer graphene to greater than 10(14) cm(-2) and achieve resistances as low as 72 Ω sq(-1). We also evaluate other important properties of the doped graphene such as surface cleanliness, air stability, and solvent stability. Furthermore, we compare FeCl(3) to three other common dopants: Gold (III) Chloride (AuCl(3)), Nitric Acid (HNO(3)), and TFSA ((CF(3)SO(2))(2)NH). We show that compared to these dopants, FeCl(3) can not only achieve better sheet resistance but also has other key advantages including better solvent stability.

  1. Ultrafast adsorption and selective desorption of aqueous aromatic dyes by graphene sheets modified by graphene quantum dots

    Science.gov (United States)

    Ying, Yulong; He, Peng; Ding, Guqiao; Peng, Xinsheng

    2016-06-01

    Graphene modified by graphene quantum dots (GQDs) has been employed to remove toxic organic dyes. An excellent removal capacity (497 mg g-1) and record-breaking adsorption rate (475 mg g-1 min-1 at 20 °C) were demonstrated for Rhodamine B. The enhancement in performance by nearly a factor of three compared to that of graphene was ascribed to the greatly increased accessible surface area of graphene in aqueous solution as well as the increase in surface charges with the modification with GQDs. Besides, this unique adsorption behavior of the modified graphene was expanded to other typical toxic aqueous aromatic dyes such as Evans Blue, Methyl Orange, Malachite Green and Rose Bengal. What is more, a unique desorption behavior of dyes was first observed when employing different solvents, which enabled the GQD-modified graphene to be exploited for selective extraction of dyes and recycling of the adsorbent. The adsorption and desorption mechanism were further investigated. Combining high removal capacity, rapid adsorption kinetics, good recyclability and unique selective desorption, GQD-modified graphene has potential applications in both water purification and separation of aromatic dyes.

  2. Copper Micro-Labyrinth with Graphene Skin: New Transparent Flexible Electrodes with Ultimate Low Sheet Resistivity and Superior Stability

    Directory of Open Access Journals (Sweden)

    Hak Ki Yu

    2016-09-01

    Full Text Available We have developed self-assembled copper (Cu micro-labyrinth (ML with graphene skin for transparent flexible electrodes of optoelectronic devices. The Cu ML is simply formed by heating a thin Cu film with a 100-nm thickness on a SiO2/Si substrate at 950 °C under hydrogen ambient to block the oxidation. Moreover, the Cu ML can have graphene skin at the surface by inserting carbo-hydroxyl molecules (CxHy during heating due to the catalytic decomposition of C–H bonds on the Cu surface. The Cu ML with graphene skin (Cu ML-G has superior sheet resistivity below 5 Ω/sq and mechanical flexibility without cracks at the bending radius of 0.1 cm. Although the transmittance of Cu ML-G is a little lower (70%~80% than that of conventional metallic nanowires electrodes (such as Ag, ~90% at the visible wavelength, it has good thermal stability in conductivity without any damage at 200 °C due to a micro-sized pattern and graphene skin which prohibits the surface migration of Cu atoms.

  3. Synthesis of few-layered, high-purity graphene oxide sheets from different graphite sources for biology

    Science.gov (United States)

    Jasim, Dhifaf A.; Lozano, Neus; Kostarelos, Kostas

    2016-03-01

    This work aimed to interrogate the role that the starting graphitic material played on the physicochemical properties of graphene oxide (GO) sheets and their impact on mammalian cell viability following exposure to those flakes. Three different GO thin sheets were synthesised from three starting graphite material: flakes (GO-f), ground (GO-g) and powder (GO-p) using a modified Hummers’ method. The synthetic yield of this methodology was found to differ according to type of starting material, with GO-p resulting in most efficient yields. Structural and morphological comparison of the three GO sheet types were carried out using transmission electron microscopy and atomic force microscopy. Optical properties were measured using UV/visible and fluorescence spectroscopy. Surface characteristics and chemistry were determined using a battery of techniques. Exposure to human cells was studied using the human A549 lung epithelial cultures. Our results revealed that all three GO samples were composed of few-layer sheets with similar physicochemical and surface characteristics. However, significant differences were observed in terms of their lateral dimensions with GO-p, prepared from graphite powder, being the largest among the GOs. No cytotoxicity was detected for any of the GO samples following exposure onto A549 cells up to 48 h. In conclusion, the form and type of the starting graphite material is shown to be an important factor that can determine the synthetic yield and the structural characteristics of the resulting GO sheets.

  4. Large-energy, narrow-bandwidth laser pulse at 1645 nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber.

    Science.gov (United States)

    Zhou, Rong; Tang, Pinghua; Chen, Yu; Chen, Shuqing; Zhao, Chujun; Zhang, Han; Wen, Shuangchun

    2014-01-10

    Nonlinear transmission parameters of monolayer graphene at 1645 nm were obtained. Based on the monolayer graphene saturable absorber, a 1532 nm LD pumped 1645 nm passively Q-switched Er:YAG laser was demonstrated. Under the pump power of 20.8 W, a 1645 nm Q-switched pulse with FWHM of 0.13 nm (without the use of etalon) and energy of 13.5 μJ per pulse can be obtained. To the best of our knowledge, this is the highest pulse energy for graphene-based passively Q-switched Er:YAG laseroperating at 1645 nm, suggesting the potentials of graphene materials for high-energy solid-state laser applications.

  5. 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Qunting; Feng, Xinliang [College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Yang, Shubin [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)

    2011-12-08

    2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors are prepared from the direct growth of FeOOH nanorods on the surface of graphene and the subsequent electrochemical transformation of FeOOH to Fe{sub 3}O{sub 4}. The Fe{sub 3}O{sub 4} rate at RGO nanocomposites exhibit superior capacitance (326 F g{sup -1}), high energy density (85 Wh kg{sup -1}), large power, and good cycling performance in 1 mol L{sup -1} LiOH solution. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Synthesis and photocatalytic properties of different SnO{sub 2} microspheres on graphene oxide sheets

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jia, E-mail: jojo.1125@hotmail.com [College of Science, Donghua University, Shanghai 201620 (China); Xue, Shaolin, E-mail: slxue@dhu.edu.cn [College of Science, Donghua University, Shanghai 201620 (China); Xie, Pei, E-mail: peipeixie@sina.com [College of Science, Donghua University, Shanghai 201620 (China); Zou, Rujia, E-mail: rujiazou@dhu.edu.cn [College of Science, Donghua University, Shanghai 201620 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China)

    2016-07-15

    Highlights: • Different SnO{sub 2} microspheres were grown on GOs by hydrothermal method. • The morphology was influenced by volume ratio of ethanol and concentrations of precursor. • The shape of SnO{sub 2} microspheres looks like dandelion. • The photocatalytic property is strongly influenced by the SnO{sub 2} morphology on GOs. - Abstract: Different SnO{sub 2} microspheres like dandelions, silkworm cocoons and urchins have been synthesized on graphene oxide sheets (GOs) by hydrothermal method at 190 °C for 24 h. The morphologies, structures, chemical compositions and optical properties of the as-grown SnO{sub 2} microspheres on GOs (SMGs) were characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), X-ray energy dispersive spectrometer (EDS), Raman spectra and UV–vis diffuse reflectance spectra (DRS) techniques. The results of XRD revealed that the as-grown SnO{sub 2} microspheres have tetragonal rutile structure. The results of Raman spectra, EDS, XRD, XPS and SEM showed that the SnO{sub 2} microspheres were grown on GOs and the average diameter of dandelion-like microsphere was about 1.5 μm. The formation mechanism of SnO{sub 2} microspheres grown on GOs was discussed. The photocatalytic activity of the SMGs composites was evaluated by photocatalytic degradation of Rhodamine B (Rh B) aqueous solution under visible light irradiation. The photocatalytic results showed that the dandelion-like SMGs exhibited a much better photocatalytic activity than those of smooth and rough SMGs.

  7. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets.

    Science.gov (United States)

    de Faria, Andreia Fonseca; Martinez, Diego Stéfani Teodoro; Meira, Stela Maris Meister; de Moraes, Ana Carolina Mazarin; Brandelli, Adriano; Filho, Antonio Gomes Souza; Alves, Oswaldo Luiz

    2014-01-01

    This work reports on the preparation, characterization and antibacterial activity of a nanocomposite formed from graphene oxide (GO) sheets decorated with silver nanoparticles (GO-Ag). The GO-Ag nanocomposite was prepared in the presence of AgNO3 and sodium citrate. The physicochemical characterization was performed by UV-vis spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman spectroscopy and transmission electron microscopy (TEM). The average size of the silver nanoparticles anchored on the GO surface was 7.5 nm. Oxidation debris fragments (a byproduct adsorbed on the GO surface) were found to be crucial for the nucleation and growth of the silver nanoparticles. The antibacterial activity of the GO and GO-Ag nanocomposite against the microorganism Pseudomonas aeruginosa was investigated using the standard counting plate methodology. The GO dispersion showed no antibacterial activity against P. aeruginosa over the concentration range investigated. On the other hand, the GO-Ag nanocomposite displayed high biocidal activity with a minimum inhibitory concentration ranging from 2.5 to 5.0 μg/mL. The anti-biofilm activity toward P. aeruginosa adhered on stainless steel surfaces was also investigated. The results showed a 100% inhibition rate of the adhered cells after exposure to the GO-Ag nanocomposite for one hour. To the best of our knowledge, this work provides the first direct evidence that GO-Ag nanocomposites can inhibit the growth of microbial adhered cells, thus preventing the process of biofilm formation. These promising results support the idea that GO-Ag nanocomposites may be applied as antibacterial coatings material to prevent the development of biofilms in food packaging and medical devices.

  8. Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries.

    Science.gov (United States)

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Wang, Donghai

    2016-02-10

    Herein, we report a synthesis of highly crumpled nitrogen-doped graphene sheets with ultrahigh pore volume (5.4 cm(3)/g) via a simple thermally induced expansion strategy in absence of any templates. The wrinkled graphene sheets are interwoven rather than stacked, enabling rich nitrogen-containing active sites. Benefiting from the unique pore structure and nitrogen-doping induced strong polysulfide adsorption ability, lithium-sulfur battery cells using these wrinkled graphene sheets as both sulfur host and interlayer achieved a high capacity of ∼1000 mAh/g and exceptional cycling stability even at high sulfur content (≥80 wt %) and sulfur loading (5 mg sulfur/cm(2)). The high specific capacity together with the high sulfur loading push the areal capacity of sulfur cathodes to ∼5 mAh/cm(2), which is outstanding compared to other recently developed sulfur cathodes and ideal for practical applications.

  9. Photocatalytic enhancement of Mg-doped ZnO nanocrystals hybridized with reduced graphene oxide sheets

    Institute of Scientific and Technical Information of China (English)

    Linqin Wang; Yan Wun; Fangyuan Chen; Xiang Yang

    2014-01-01

    Hybridization of Mg-doped ZnO and reduced graphene oxide (MZO-RGO) were synthesized through one pot reaction process. Crystallization of MZO-RGO upon thermal decomposition of the stearate precursors was investigated by X-ray diffraction technique. XRD studies point toward the particles size with 10-15 nm, which was confirmed by transmittance electronic microscopy, and also indicates that graphene oxide has been directly reduced into its reduced state graphene during the synthesis. Graphene hybridized MZO photocatalyst showed enhanced catalytic activity for the degradation of methylene blue (MB). The degree of photocatalytic activity enhancement strongly depended both on the coverage of graphene on the surface of MZO nanoparticles and the Mg doping concentration. The sample of 2 wt%graphene hybridized 5 at%Mg-doped ZnO showed the highest photocatalytic activity, which remained good photocatalytic activity after nine cycling runs.

  10. From Boron Cluster to Two-Dimensional Boron Sheet on Cu(111) Surface: Growth Mechanism and Hole Formation

    OpenAIRE

    Hongsheng Liu; Junfeng Gao; Jijun Zhao

    2013-01-01

    As attractive analogue of graphene, boron monolayers have been theoretically predicted. However, due to electron deficiency of boron atom, synthesizing boron monolayer is very challenging in experiments. Using first-principles calculations, we explore stability and growth mechanism of various boron sheets on Cu(111) substrate. The monotonic decrease of formation energy of boron cluster BN with increasing cluster size and low diffusion barrier for a single B atom on Cu(111) surface ensure cont...

  11. Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods

    OpenAIRE

    2013-01-01

    This research studied the synthesis of graphene oxide and graphene via a low-cost manufacturing method. The process started with the chemical oxidation of commercial graphite powder into graphite oxide by modified Hummer’s method, followed by the exfoliation of graphite oxide in distilled water using the ultrasound frequency from a laboratory ultrasonic bath. Finally, the oxygen functional groups on exfoliated graphite oxide or graphene oxide were eliminated by stirring in hot distilled water...

  12. Theoretical and computational analysis of second- and third-harmonic generation in periodically patterned graphene and transition-metal dichalcogenide monolayers

    Science.gov (United States)

    Weismann, Martin; Panoiu, Nicolae C.

    2016-07-01

    Remarkable optical and electrical properties of two-dimensional (2D) materials, such as graphene and transition-metal dichalcogenide (TMDC) monolayers, offer vast technological potential for novel and improved optoelectronic nanodevices, many of which rely on nonlinear optical effects in these 2D materials. This paper introduces a highly effective numerical method for efficient and accurate description of linear and nonlinear optical effects in nanostructured 2D materials embedded in periodic photonic structures containing regular three-dimensional (3D) optical materials, such as diffraction gratings and periodic metamaterials. The proposed method builds upon the rigorous coupled-wave analysis and incorporates the nonlinear optical response of 2D materials by means of modified electromagnetic boundary conditions. This allows one to reduce the mathematical framework of the numerical method to an inhomogeneous scattering matrix formalism, which makes it more accurate and efficient than previously used approaches. An overview of linear and nonlinear optical properties of graphene and TMDC monolayers is given and the various features of the corresponding optical spectra are explored numerically and discussed. To illustrate the versatility of our numerical method, we use it to investigate the linear and nonlinear multiresonant optical response of 2D-3D heteromaterials for enhanced and tunable second- and third-harmonic generation. In particular, by employing a structured 2D material optically coupled to a patterned slab waveguide, we study the interplay between geometric resonances associated to guiding modes of periodically patterned slab waveguides and plasmon or exciton resonances of 2D materials.

  13. Propagation and excitation of graphene plasmon polaritons

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Jeppesen, Claus

    2013-01-01

    We theoretically investigate the propagation of graphene plasmon polaritons in graphene nanoribbon waveguides and experimentally observe the excitation of the graphene plasmon polaritons in a continuous graphene monolayer. We show that graphene nanoribbon bends do not induce any additional loss...... and nanofocusing occurs in a tapered graphene nanoriboon, and we experimentally demonstrate the excitation of graphene plasmon polaritonss in a continuous graphene monolayer assisted by a two-dimensional subwavelength silicon grating....

  14. Chemical vapor deposition of monolayer WS2 nano- sheets on Au foils toward direct application in hydrogen evolution

    Institute of Scientific and Technical Information of China (English)

    Yanshuo Zhang[1; Jianping Shi[1; Gaofeng Han[3; Minjie Li[2; Qingqing Ji[2; Donglin Ma[2; Yu Zhang[1,2; Cong Li[1,2; Xingyou Lang[3; Yanfeng Zhang[1,2; Zhongfan Liu[2

    2015-01-01

    Monolayer tungsten disulfide (WS2), a typical member of the semiconducting transition metal dichalcogenide family has drawn considerable interest because of its unique properties. Intriguingly the edge of WS2 exhibits an ideal hydrogen binding energy which makes WS2 a potential alternative to Pt-based electrocatalysts for the hydrogen evolution reaction (HER). Here, we demonstrate for the first time the successful synthesis of uniform monolayer WS2 nanosheets on centimeter- scale Au foils using a facile, low-pressure chemical vapor deposition method. The edge lengths of the universally observed triangular WS2 nanosheets are tunable from -100 to N1,000 nm. The WS2 nanosheets on Au foils featuring abundant edges were then discovered to be efficient catalysts for the HER, exhibiting a rather high exchange current density of -30.20 μA/cm2 and a small onset potential of Nl10 mV. The effects of coverage and domain size (which correlate closely with the active edge density of WS2) on the electrocatalytic activity were investigated. This work not only provides a novel route toward the batch-production of monolayer WS2 via the introduction of metal foil substrates but also opens up its direct application for facile HER.

  15. Uniform distribution of graphene oxide sheets into a poly-vinylidene fluoride nanoparticle matrix through shear-driven aggregation.

    Science.gov (United States)

    Sheng, Xinxin; Xie, Delong; Zhang, Xinya; Zhong, Li; Wu, Hua; Morbidelli, Massimo

    2016-07-06

    A general methodology has been developed for preparing nanocomposites with uniform, random distribution of fillers in polymer matrices, purely based on intense shear-driven aggregation, while avoiding filler aggregation. This procedure is demonstrated for a binary colloid composed of graphene oxide (GO) sheets and poly-vinylidene fluoride (PVDF) nanoparticles (NPs), both negatively charged and stable at rest. On the other hand, the PVDF NPs are shear-active (i.e. aggregation occurs under intensive shear), while the GO sheets are shear-inactive. It is found that when the two suspensions are mixed and the resulting binary colloid is forced to pass through a microchannel (MC) device (at a very high shear rate, G = 1.2 × 10(6) s(-1)), the shear-inactive GO sheets are captured and well distributed inside the PVDF NP clusters or gels. In addition, it is shown that in order to have 100% capture efficiency for the GO sheets, a minimum solid content of the binary colloid is required, which can be identified experimentally as the minimum leading to gelation after passing through the MC only one time.

  16. Bridging Redox Species-Coated Graphene Oxide Sheets to Electrode for Extending Battery Life Using Nanocomposite Electrolyte.

    Science.gov (United States)

    Huang, Yi Fu; Ruan, Wen Hong; Lin, Dong Ling; Zhang, Ming Qiu

    2017-01-11

    Substituting conventional electrolyte for redox electrolyte has provided a new intriguing method for extending battery life. The efficiency of utilizing the contained redox species (RS) in the redox electrolyte can benefit from increasing the specific surface area of battery electrodes from the electrode side of the electrode-electrolyte interface, but is not limited to that. Herein, a new strategy using nanocomposite electrolyte is proposed to enlarge the interface with the aid of nanoinclusions from the electrolyte side. To do this, graphene oxide (GO) sheets are first dispersed in the electrolyte solution of tungstosilicic salt/lithium sulfate/poly(vinyl alcohol) (SiWLi/Li2SO4/PVA), and then the sheets are bridged to electrode, after casting and evaporating the solution on the electrode surface. By applying in situ conductive atomic force microscopy and Raman spectra, it is confirmed that the GO sheets doped with RS of SiWLi/Li2SO4 can be bridged and electrically reduced as an extended electrode-electrolyte interface. As a result, the RS-coated GO sheets bridged to LiTi2(PO4)3//LiMn2O4 battery electrodes are found to deliver extra energy capacity (∼30 mAh/g) with excellent electrochemical cycling stability, which successfully extends the battery life by over 50%.

  17. A molecular dynamics study on the interaction between epoxy and functionalized graphene sheets

    DEFF Research Database (Denmark)

    Melro, Liliana Sofia S. F. P.; Pyrz, Ryszard; Jensen, Lars Rosgaard

    2016-01-01

    The interaction between graphene and epoxy resin was studied using molecular dynamics simulations. The interfacial shear strength and pull out force were calculated for functionalised graphene layers (carboxyl, carbonyl, and hydroxyl) and epoxy composites interfaces. The influence of functional...... and epoxy resin increases....

  18. Rational design of carboxyl groups perpendicularly attached to a graphene sheet: a platform for enhanced biosensing applications.

    Science.gov (United States)

    Bonanni, Alessandra; Chua, Chun Kiang; Pumera, Martin

    2014-01-01

    Graphene oxide (GO)-based materials offer great potential for biofunctionalization with applications ranging from biosensing to drug delivery. Such biofunctionalization utilizes specific functional groups, typically a carboxyl moiety, as anchoring points for biomolecule. However, due to the fact that the exact chemical structure of GO is still largely unknown and poorly defined (it was postulated to consist of various oxygen-containing groups, such as epoxy, hydroxyl, carboxyl, carbonyl, and peroxy in varying ratios), it is challenging to fabricate highly biofunctionalized GO surfaces. The predominant anchoring sites (i.e., carboxyl groups) are mainly present as terminal groups on the edges of GO sheets and thus account for only a fraction of the oxygen-containing groups on GO. Herein, we suggest a direct solution to the long-standing problem of limited abundance of carboxyl groups on GO; GO was first reduced to graphene and consequently modified with only carboxyl groups grafted perpendicularly to its surface by a rational synthesis using free-radical addition of isobutyronitrile with subsequent hydrolysis. Such grafted graphene oxide can contain a high amount of carboxyl groups for consequent biofunctionalization, at which the extent of grafting is limited only by the number of carbon atoms in the graphene plane; in contrast, the abundance of carboxyl groups on "classical" GO is limited by the amount of terminal carbon atoms. Such a graphene platform embedded with perpendicularly grafted carboxyl groups was characterized in detail by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy, and its application was exemplified with single-nucleotide polymorphism detection. It was found that the removal of oxygen functionalities after the chemical reduction enhanced the electron-transfer rate of the graphene. More importantly, the introduction of carboxyl groups promoted a more efficient immobilization of DNA probes on the

  19. Insight into hydrogenation of graphene: Effect of hydrogen plasma chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Felten, A.; Nittler, L.; Pireaux, J.-J. [Research Center in Physics of Matter and Radiation (PMR), University of Namur, Namur (Belgium); McManus, D. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Rice, C.; Casiraghi, C. [School of Chemistry and Photon Science Institute, University of Manchester, Manchester (United Kingdom)

    2014-11-03

    Plasma hydrogenation of graphene has been proposed as a tool to modify the properties of graphene. However, hydrogen plasma is a complex system and controlled hydrogenation of graphene suffers from a lack of understanding of the plasma chemistry. Here, we correlate the modifications induced on monolayer graphene studied by Raman spectroscopy with the hydrogen ions energy distributions obtained by mass spectrometry. We measure the energy distribution of H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +} ions for different plasma conditions showing that their energy strongly depends on the sample position, pressure, and plasma power and can reach values as high as 45 eV. Based on these measurements, we speculate that under specific plasma parameters, protons should possess enough energy to penetrate the graphene sheet. Therefore, a graphene membrane could become, under certain conditions, transparent to both protons and electrons.

  20. Multifunctional graphene sheets embedded in silicone encapsulant for superior performance of light-emitting diodes.

    Science.gov (United States)

    Lee, Seungae; Hong, Jin-Yong; Jang, Jyongsik

    2013-07-23

    Graphene nanosheets with uniform shape are successfully incorporated into a silicone encapsulant of a light-emitting diode (LED) using a solvent-exchange approach which is a facile and straightforward method. The graphene nanosheets embedded in the silicone encapsulant have a multifunctional role which improves the performance of light-emitting diodes. The presence of graphene gives rise to effective heat dissipation, improvement of protection ability from external stimuli, such as moisture and hazardous gas, and enhancement of mechanical properties such as elastic modulus and fracture toughness. Consequently, the LEDs composed of a graphene-embedded silicone encapsulant exhibit long-term stability without loss of luminous efficiency by addition of relatively small amounts of graphene. This novel strategy offers a feasible candidate for their practical or industrial applications.

  1. Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods

    Directory of Open Access Journals (Sweden)

    Vorrada Loryuenyong

    2013-01-01

    Full Text Available This research studied the synthesis of graphene oxide and graphene via a low-cost manufacturing method. The process started with the chemical oxidation of commercial graphite powder into graphite oxide by modified Hummer’s method, followed by the exfoliation of graphite oxide in distilled water using the ultrasound frequency from a laboratory ultrasonic bath. Finally, the oxygen functional groups on exfoliated graphite oxide or graphene oxide were eliminated by stirring in hot distilled water at 95°C, as a replacement for highly toxic and dangerously unstable hydrazine. The results assured that stirring in hot distilled water could give the product of graphene or reduced graphene oxide. The samples were characterized by FTIR, XRD, TGA, Raman spectroscopy, SEM, and TEM methods.

  2. A nonlinear plate theory for the monolayer graphene%单层石墨烯片的非线性板模型*

    Institute of Scientific and Technical Information of China (English)

    黄坤; 殷雅俊; 吴继业

    2014-01-01

    In the present paper, the kinematic equation of a monolayer graphene is proposed based on a plate theory, and the nonlinear elasticity stress-strain relations are obtained from experiments. The equation includes cubic and quintic nonlinearities. The bending produced when subjected to a concentrated force at the center of the plate and the static buckling arising from edge in-plane axial uniform loads are investigated using Ritz methods for a simply-supported rectangular plate. Results suggest that the plate theory with nonlinear constitutive equation may characterize the mechanical property of a monolayer graphene appropriately, and the quintic nonlinearities have a significant effect on the bending deformations of the graphene.%基于实验得到的非线性本构关系和板理论,本文建立了包含三次及五次非线性项的单层石墨烯片的板动力学模型。针对四边简支矩形板,使用Ritz法研究了在板中点作用集中力时的静力弯曲,以及边界均匀受力时的静力屈曲问题。结果显示,基于非线性本构关系的板模型能很好的描述单层石墨烯片的力学行为,而且模型中的五次非线性项对结构的弯曲变形有显著影响。

  3. Investigation of the longitudinal magnetic field effect on dynamic response of viscoelastic graphene sheet based on sinusoidal shear deformation theory

    Science.gov (United States)

    Arani, A. Ghorbanpour; Jalaei, M. H.

    2017-02-01

    This research aims to investigate the influence of a longitudinal magnetic field on the dynamic response of single-layered graphene sheet (SLGS) resting on viscoelastic foundation based on the nonlocal sinusoidal shear deformation theory. The present model is capable of capturing both small scale effect and transverse shear deformation effects of nanoplate, and does not require shear correction factors. The material properties of graphene sheet are assumed orthotropic viscoelastic using Kelvin-Voigt model. Utilizing Hamilton's principle governing equations of motion are derived and solved analytically. The parametric study is conducted, focusing on the remarkable effects of the magnetic field, structural damping, stiffness and damping coefficient of the foundation, nonlocal parameter, aspect ratio and length to thickness ratio on the dynamic response of the SLGS. Results indicate that the longitudinal magnetic field exerted on the SLGS decreases the amplitude of dynamic response. In addition, it is observed that the magnetic field effect on the dynamic response is more distinguished as the nonlocal parameter increases while by increasing the foundation and structural damping coefficients, this effect diminishes. The results of this study can be used in design and manufacturing of nanomechanical devices in the presence of magnetic field as a parametric controller.

  4. Investigation of the longitudinal magnetic field effect on dynamic response of viscoelastic graphene sheet based on sinusoidal shear deformation theory

    Energy Technology Data Exchange (ETDEWEB)

    Arani, A. Ghorbanpour, E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience & Nanotechnology University of Kashan, Kashan (Iran, Islamic Republic of); Jalaei, M.H. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)

    2017-02-01

    This research aims to investigate the influence of a longitudinal magnetic field on the dynamic response of single-layered graphene sheet (SLGS) resting on viscoelastic foundation based on the nonlocal sinusoidal shear deformation theory. The present model is capable of capturing both small scale effect and transverse shear deformation effects of nanoplate, and does not require shear correction factors. The material properties of graphene sheet are assumed orthotropic viscoelastic using Kelvin-Voigt model. Utilizing Hamilton's principle governing equations of motion are derived and solved analytically. The parametric study is conducted, focusing on the remarkable effects of the magnetic field, structural damping, stiffness and damping coefficient of the foundation, nonlocal parameter, aspect ratio and length to thickness ratio on the dynamic response of the SLGS. Results indicate that the longitudinal magnetic field exerted on the SLGS decreases the amplitude of dynamic response. In addition, it is observed that the magnetic field effect on the dynamic response is more distinguished as the nonlocal parameter increases while by increasing the foundation and structural damping coefficients, this effect diminishes. The results of this study can be used in design and manufacturing of nanomechanical devices in the presence of magnetic field as a parametric controller.

  5. Pulsed-Plasma Physical Vapor Deposition Approach Toward the Facile Synthesis of Multilayer and Monolayer Graphene for Anticoagulation Applications.

    Science.gov (United States)

    Vijayaraghavan, Rajani K; Gaman, Cezar; Jose, Bincy; McCoy, Anthony P; Cafolla, Tony; McNally, Patrick J; Daniels, Stephen

    2016-02-01

    We demonstrate the growth of multilayer and single-layer graphene on copper foil using bipolar pulsed direct current (DC) magnetron sputtering of a graphite target in pure argon atmosphere. Single-layer graphene (SG) and few-layer graphene (FLG) films are deposited at temperatures ranging from 700 °C to 920 °C within graphene films formed. The films were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and optical transmission spectroscopy techniques. Based on the above studies, a diffusion-controlled mechanism was proposed for the graphene growth. A single-step whole blood assay was used to investigate the anticoagulant activity of graphene surfaces. Platelet adhesion, activation, and morphological changes on the graphene/glass surfaces, compared to bare glass, were analyzed using fluorescence microscopy and SEM techniques. We have found significant suppression of the platelet adhesion, activation, and aggregation on the graphene-covered surfaces, compared to the bare glass, indicating the anticoagulant activity of the deposited graphene films. Our production technique represents an industrially relevant method for the growth of SG and FLG for various applications including the biomedical field.

  6. Enhancing Sodium Ion Battery Performance by Strongly Binding Nanostructured Sb2S3 on Sulfur-Doped Graphene Sheets.

    Science.gov (United States)

    Xiong, Xunhui; Wang, Guanhua; Lin, Yuwei; Wang, Ying; Ou, Xing; Zheng, Fenghua; Yang, Chenghao; Wang, Jeng-Han; Liu, Meilin

    2016-12-27

    Sodium ion batteries (SIBs) have been considered a promising alternative to lithium ion batteries for large-scale energy storage. However, their inferior electrochemical performances, especially cyclability, become the major challenge for further development of SIBs. Large volume change and sluggish diffusion kinetics are generally considered to be responsible for the fast capacity degradation. Here we report the strong chemical bonding of nanostructured Sb2S3 on sulfur-doped graphene sheets (Sb2S3/SGS) that enables a stable capacity retention of 83% for 900 cycles with high capacities and excellent rate performances. To the best of our knowledge, the cycling performance of the Sb2S3/SGS composite is superior to those reported for any other Sb-based materials for SIBs. Computational calculations demonstrate that sulfur-doped graphene (SGS) has a stronger affinity for Sb2S3 and the discharge products than pure graphene, resulting in a robust composite architecture for outstanding cycling stability. Our study shows a feasible and effective way to solve the long-term cycling stability issue for SIBs.

  7. A molybdenum disulfide/reduced oxide-graphene nanoflakelet-on-sheet structure for lithium ion batteries

    Science.gov (United States)

    Wang, Jiayu; Zhao, Xianmin; Fu, Yongsheng; Wang, Xin

    2017-03-01

    A MoS2 nanoflakelet/graphene hybrid (MoS2/G) is designed and successfully synthesized via a simple and cost-effective strategy. It is found that the MoS2/G hybrids prepared using and without using ethanol (EtOH) show different morphologies and EtOH plays a crucial role in the formation of MoS2 nanoflakelets on graphene. The resulting nanoflakelet-on-sheet structure can be used as a high-performance anode material for lithium ion batteries, because it not only offers plenty of pores and pathways for lithium ions to shuttle back and forth, but also withstands lithium ion intercalation/de-intercalation process without collapse or deformation. The MoS2/G hybrid synthesized in EtOH/H2O exhibits remarkable reversible capacities of 1902 mAh g-1 and 1454 mAh g-1 in the first discharging and charging cycle, respectively, with a high coulombic efficiency of 76.45%. The hybrid also shows excellent cycle and rate performance. The superior Li storage performance of the MoS2/G hybrid is mainly attributed to the intrinsic properties of MoS2 nanoflakelets and the synergistic effect of the MoS2 nanoflakelets and graphene.

  8. In situ decoration of graphene sheets with gold nanoparticles synthetized by pulsed laser ablation in liquids

    Science.gov (United States)

    Torres-Mendieta, Rafael; Ventura-Espinosa, David; Sabater, Sara; Lancis, Jesus; Mínguez-Vega, Gladys; Mata, Jose A.

    2016-07-01

    The demand for nanocomposites of graphene and carbonaceous materials decorated with metallic nanoparticles is increasing on account of their applications in science and technology. Traditionally, the production of graphene-metal assemblies is achieved by the non-environmentally friendly reduction of metallic salts in carbonaceous suspensions. However, precursor residues during nanoparticle growth may reduce their surface activity and promote cross-chemical undesired effects. In this work we present a laser-based alternative to synthesize ligand-free gold nanoparticles that are anchored onto the graphene surface in a single reaction step. Laser radiation is used to generate highly pure nanoparticles from a gold disk surrounded by a graphene oxide suspension. The produced gold nanoparticles are directly immobilized onto the graphene surface. Moreover, the presence of graphene oxide influences the size of the nanoparticles and its interaction with the laser, causes only a slight reduction of the material. This work constitutes a green alternative synthesis of graphene-metal assemblies and a practical methodology that may inspire future developments.

  9. Comparison of mechanical and corrosion properties of graphene monolayer on Ti–Al–V and nanometric Nb{sub 2}O{sub 5} layer on Ti–Al–V alloy for dental implants applications

    Energy Technology Data Exchange (ETDEWEB)

    Kalisz, M., E-mail: malgorzata.kalisz@its.waw.pl [Motor Transport Institute, Jagiellońska 80, 03-301 Warsaw (Poland); Grobelny, M. [Motor Transport Institute, Jagiellońska 80, 03-301 Warsaw (Poland); Mazur, M. [Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Zdrojek, M. [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Wojcieszak, D. [Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Świniarski, M.; Judek, J. [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Kaczmarek, D. [Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw (Poland)

    2015-08-31

    In this paper the comparative studies on structural, mechanical and corrosion properties of Nb{sub 2}O{sub 5}/Ti–Al–V and graphene/Ti–Al–V alloy systems have been investigated. We show that the hardness of pure niobium pentoxide was ca. 8.64 GPa and graphene deposited on titanium alloy surface was equal 5.63 GPa. However, the graphene monolayer has no effect on surface hardness of titanium alloy and can be easily removed from the surface. On the other hand, the sample with graphene coating has much better corrosion resistance. Our results suggest, that the use of combined layers of niobium pentoxide and graphene, in the hybrid multilayer system can greatly improve the mechanical and corrosion properties of the titanium alloy surface. Such hybrid system can be used in the future, as protection coating for Ti alloy, in biomedical application and in other applications, where Ti alloys work in an aggressive corrosive environment and in engineering applications where friction is involved. - Highlights: • Corrosion properties of Nb{sub 2}O{sub 5}/TiAlV and graphene/TiAlV systems were investigated. • Nb{sub 2}O{sub 5} thin film improves titanium alloy surface hardness from 5.64 GPa to 8.64 GPa. • Nb{sub 2}O{sub 5} thin film improves corrosion resistance of Ti{sub 6}Al{sub 4}V in aggressive environment. • i{sub corr} for graphene monolayer deposited on Ti{sub 6}Al{sub 4}V surface decreases to 0.01 μA/cm{sup 2}. • Graphene monolayer caused decrease in the electrochemical activity of the Ti surface.

  10. Highly Efficient High-Pressure Homogenization Approach for Scalable Production of High-Quality Graphene Sheets and Sandwich-Structured α-Fe2O3/Graphene Hybrids for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Qi, Xin; Zhang, Hao-Bin; Xu, Jiantie; Wu, Xinyu; Yang, Dongzhi; Qu, Jin; Yu, Zhong-Zhen

    2017-03-29

    A highly efficient and continuous high-pressure homogenization (HPH) approach is developed for scalable production of graphene sheets and sandwich-structured α-Fe2O3/graphene hybrids by liquid-phase exfoliation of stage-1 FeCl3-based graphite intercalation compounds (GICs). The enlarged interlayer spacing of FeCl3-GICs facilitates their efficient exfoliation to produce high-quality graphene sheets. Moreover, sandwich-structured α-Fe2O3/few-layer graphene (FLG) hybrids are readily fabricated by thermally annealing the FeCl3 intercalated FLG sheets. As an anode material of Li-ion battery, α-Fe2O3/FLG hybrid shows a satisfactory long-term cycling performance with an excellent specific capacity of 1100.5 mA h g(-1) after 350 cycles at 200 mA g(-1). A high reversible capacity of 658.5 mA h g(-1) is achieved after 200 cycles at 1 A g(-1) and maintained without notable decay. The satisfactory cycling stability and the outstanding capability of α-Fe2O3/FLG hybrid are attributed to its unique sandwiched structure consisting of highly conducting FLG sheets and covalently anchored α-Fe2O3 particles. Therefore, the highly efficient and scalable preparation of high-quality graphene sheets along with the excellent electrochemical properties of α-Fe2O3/FLG hybrids makes the HPH approach promising for producing high-performance graphene-based energy storage materials.

  11. 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications.

    Science.gov (United States)

    Sekar, Pandiaraj; Anothumakkool, Bihag; Kurungot, Sreekumar

    2015-04-15

    Here, we report synthesis of a 3-dimensional (3D) porous polyaniline (PANI) anchored on pillared graphene (G-PANI-PA) as an efficient charge storage material for supercapacitor applications. Benzoic acid (BA) anchored graphene, having spatially separated graphene layers (G-Bz-COOH), was used as a structure controlling support whereas 3D PANI growth has been achieved by a simple chemical oxidation of aniline in the presence of phytic acid (PA). The BA groups on G-Bz-COOH play a critical role in preventing the restacking of graphene to achieve a high surface area of 472 m(2)/g compared to reduced graphene oxide (RGO, 290 m(2)/g). The carboxylic acid (-COOH) group controls the rate of polymerization to achieve a compact polymer structure with micropores whereas the chelating nature of PA plays a crucial role to achieve the 3D growth pattern of PANI. This type of controlled interplay helps G-PANI-PA to achieve a high conductivity of 3.74 S/cm all the while maintaining a high surface area of 330 m(2)/g compared to PANI-PA (0.4 S/cm and 60 m(2)/g). G-PANI-PA thus conceives the characteristics required for facile charge mobility during fast charge-discharge cycles, which results in a high specific capacitance of 652 F/g for the composite. Owing to the high surface area along with high conductivity, G-PANI-PA displays a stable specific capacitance of 547 F/g even with a high mass loading of 3 mg/cm(2), an enhanced areal capacitance of 1.52 F/cm(2), and a volumetric capacitance of 122 F/cm(3). The reduced charge-transfer resistance (RCT) of 0.67 Ω displayed by G-PANI-PA compared to pure PANI (0.79 Ω) stands out as valid evidence of the improved charge mobility achieved by the system by growing the 3D PANI layer along the spatially separated layers of the graphene sheets. The low RCT helps the system to display capacitance retention as high as 65% even under a high current dragging condition of 10 A/g. High charge/discharge rates and good cycling stability are the other

  12. Graphene as a transparent conducting and surface field layer in planar Si solar cells.

    Science.gov (United States)

    Kumar, Rakesh; Mehta, Bodh R; Bhatnagar, Mehar; S, Ravi; Mahapatra, Silika; Salkalachen, Saji; Jhawar, Pratha

    2014-01-01

    This work presents an experimental and finite difference time domain (FDTD) simulation-based study on the application of graphene as a transparent conducting layer on a planar and untextured crystalline p-n silicon solar cell. A high-quality monolayer graphene with 97% transparency and 350 Ω/□ sheet resistance grown by atmospheric pressure chemical vapor deposition method was transferred onto planar Si cells. An increase in efficiency from 5.38% to 7.85% was observed upon deposition of graphene onto Si cells, which further increases to 8.94% upon SiO2 deposition onto the graphene/Si structure. A large increase in photon conversion efficiency as a result of graphene deposition shows that the electronic interaction and the presence of an electric field at the graphene/Si interface together play an important role in this improvement and additionally lead to a reduction in series resistance due to the conducting nature of graphene.

  13. Intensified surface enhanced Raman signal of a graphene monolayer on a plasmonic substrate through the use of fluidic dielectrics

    Science.gov (United States)

    Mahigir, A.; Gartia, M. R.; Chang, T.-W.; Liu, G. L.; Veronis, G.

    2017-02-01

    It has been shown that surface enhanced Raman spectroscopy (SERS) has many promising applications in ultrasensitive detection of Raman signal of substances. However, optimizing the enhancement in SERS signal for different applications typically requires several levels of fabrication of active plasmonic SERS substrates. In this paper, we report the enhancement of SERS signal of a single layer of graphene located on a plasmonic nano-Lycurgus cup array after placing water droplets on it. The experimental data shows that addition of water droplets can enhance the SERS signal of the single layer of graphene about 10 times without requiring any modifications to the nano-Lycurgus cup array. Using fullwave electromagnetic simulations, we show that addition of water droplets enhances the local electric field at the graphene layer, resulting in stronger light-graphene interaction at the excitation pump laser wavelength. We also show that the addition of water droplets on the graphene layer enables us to modify the band diagram of the structure, in order to enhance the local density of optical states at the Raman emission wavelengths of the graphene layer. Numerical calculations of both the excitation field enhancement at the location of the graphene layer, and the emission enhancement due to enhanced local density of optical states, support the experimental results. Our results demonstrate an approach to boost the SERS signal of a target material by controlling the band diagram of the active nanostructured SERS substrate through the use of fluidic dielectrics. These results could find potential applications in biomedical and environmental technologies.

  14. Fabrication of cubic spinel MnCo2O4 nanoparticles embedded in graphene sheets with their improved lithium-ion and sodium-ion storage properties

    Science.gov (United States)

    Chen, Chang; Liu, Borui; Ru, Qiang; Ma, Shaomeng; An, Bonan; Hou, Xianhua; Hu, Shejun

    2016-09-01

    Cubic Spinel MnCo2O4/graphene sheets (MCO/GS) nanocomposites are synthesized by a facile hydrothermal method with a subsequent annealing process. Nano-sized MnCo2O4 particles are evenly embedded in paper-like graphene sheets, possessing a unique nanoparticles-on-sheets hybrid nanostructure, with particle size around 20-50 nm. Owing to the special nanoparticles-on-sheets structures, MCO/GS nanocomposites have an outstanding electrochemical performance for rechargeable energy storage devices. As an anode material for lithium-ion batteries, MCO/GS electrodes exhibit high reversible discharge capacities (1350.4 mAh g-1 at the initial rate of 100 mA g-1), excellent rate capability (462.1 mAh g-1 at a current rate of 4000 mA g-1) and outstanding cycling performance (584.3 mAh g-1 at 2000 mA g-1 after 250 cycles). Meanwhile, as an anode material for sodium-ion batteries, MCO/GS electrodes also exhibit comparably promising electrochemical characteristics. Greatly improved electrochemical properties can be assigned to the special advantageous nanostructures. Besides, the existence of graphene sheets is beneficial to the transportation of ions/electrons during battery operation. The outstanding electrochemical performance demonstrates that the lithium/sodium storage capability of MCO/GS nanocomposites is highly promising for high-capacity batteries.

  15. Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries.

    Science.gov (United States)

    Fan, Zhuang-Jun; Yan, Jun; Wei, Tong; Ning, Guo-Qing; Zhi, Lin-Jie; Liu, Jin-Cheng; Cao, Dian-Xue; Wang, Gui-Ling; Wei, Fei

    2011-04-26

    We report on the fabrication of 3D carbonaceous material composed of 1D carbon nanofibers (CNF) grown on 2D graphene sheets (GNS) via a CVD approach in a fluidized bed reactor. Nanographene-constructed carbon nanofibers contain many cavities, open tips, and graphene platelets with edges exposed, providing more extra space for Li(+) storage. More interestingly, nanochannels consisting of graphene platelets arrange almost perpendicularly to the fiber axis, which is favorable for lithium ion diffusion from different orientations. In addition, 3D interconnected architectures facilitate the collection and transport of electrons during the cycling process. As a result, the CNF/GNS hybrid material shows high reversible capacity (667 mAh/g), high-rate performance, and cycling stability, which is superior to those of pure graphene, natural graphite, and carbon nanotubes. The simple CVD approach offers a new pathway for large-scale production of novel hybrid carbon materials for energy storage.

  16. Carbon-wrapped MnO nanodendrites interspersed on reduced graphene oxide sheets as anode materials for lithium-ion batteries

    Science.gov (United States)

    Liu, Boli; Li, Dan; Liu, Zhengjiao; Gu, Lili; Xie, Wenhe; Li, Qun; Guo, Pengqian; Liu, Dequan; He, Deyan

    2017-02-01

    Carbon-wrapped MnO nanodendrites interspersed on reduced graphene oxide sheets (C-MnO/rGO) were prepared on nickel foam by a facile vacuum filtration and a subsequent thermal treatment. As a binder-free anode of lithium-ion battery, the nanodendritic structure of C-MnO accommodates the huge volume expansion and shortens the diffusion length for lithium ion and electron, rGO sheets prevent C-MnO nanodendites from aggregation and offer a good electronic conduction. As a result, the electrode with such a novel architecture delivers superior electrochemical properties including high reversible capacity, excellent rate capability and cycle stability. Moreover, MnO nanodendrites change to nanoparticles wrapped in graphene sheets during the lithiation/delithiation process, which is a more beneficial microstructure to further increase the specific capacity and cycle life of the electrode.

  17. Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure.

    Science.gov (United States)

    Wu, Yun-Ben; Yang, Wen; Wang, Tong-Biao; Deng, Xin-Hua; Liu, Jiang-Tao

    2016-02-11

    The light absorption of a monolayer graphene-molybdenum disulfide photovoltaic (GM-PV) cell in a wedge-shaped microcavity with a spectrum-splitting structure is investigated theoretically. The GM-PV cell, which is three times thinner than the traditional photovoltaic cell, exhibits up to 98% light absorptance in a wide wavelength range. This rate exceeds the fundamental limit of nanophotonic light trapping in solar cells. The effects of defect layer thickness, GM-PV cell position in the microcavity, incident angle, and lens aberration on the light absorptance of the GM-PV cell are explored. Despite these effects, the GM-PV cell can still achieve at least 90% light absorptance with the current technology. Our proposal provides different methods to design light-trapping structures and apply spectrum-splitting systems.

  18. Theoretical and computational analysis of second- and third-harmonic generation in periodically patterned graphene and transition-metal dichalcogenide monolayers

    CERN Document Server

    Weismann, Martin

    2016-01-01

    Remarkable optical and electrical properties of two-dimensional (2D) materials, such as graphene and transition-metal dichalcogenide (TMDC) monolayers, offer vast technological potential for novel and improved optoelectronic nanodevices, many of which relying on nonlinear optical effects in these 2D materials. This article introduces a highly effective numerical method for efficient and accurate description of linear and nonlinear optical effects in nanostructured 2D materials embedded in periodic photonic structures containing regular three-dimensional (3D) optical materials, such as diffraction gratings and periodic metamaterials. The proposed method builds upon the rigorous coupled-wave analysis and incorporates the nonlinear optical response of 2D materials by means of modified electromagnetic boundary conditions. This allows one to reduce the mathematical framework of the numerical method to an inhomogeneous scattering matrix formalism, which makes it more accurate and efficient than previously used appr...

  19. Highly Enhanced Electromechanical Stability of Large-Area Graphene with Increased Interfacial Adhesion Energy by Electrothermal-Direct Transfer for Transparent Electrodes.

    Science.gov (United States)

    Kim, Jangheon; Kim, Gi Gyu; Kim, Soohyun; Jung, Wonsuk

    2016-09-07

    Graphene, a two-dimensional sheet of carbon atoms in a hexagonal lattice structure, has been extensively investigated for research and industrial applications as a promising material with outstanding electrical, mechanical, and chemical properties. To fabricate graphene-based devices, graphene transfer to the target substrate with a clean and minimally defective surface is the first step. However, graphene transfer technologies require improvement in terms of uniform transfer with a clean, nonfolded and nontorn area, amount of defects, and electromechanical reliability of the transferred graphene. More specifically, uniform transfer of a large area is a key challenge when graphene is repetitively transferred onto pretransferred layers because the adhesion energy between graphene layers is too low to ensure uniform transfer, although uniform multilayers of graphene have exhibited enhanced electrical and optical properties. In this work, we developed a newly suggested electrothermal-direct (ETD) transfer method for large-area high quality monolayer graphene with less defects and an absence of folding or tearing of the area at the surface. This method delivers uniform multilayer transfer of graphene by repetitive monolayer transfer steps based on high adhesion energy between graphene layers and the target substrate. To investigate the highly enhanced electromechanical stability, we conducted mechanical elastic bending experiments and reliability tests in a highly humid environment. This ETD-transferred graphene is expected to replace commercial transparent electrodes with ETD graphene-based transparent electrodes and devices such as a touch panels with outstanding electromechanical stability.

  20. Conversion of Langmuir–Blodgett monolayers and bilayers of poly(amic acid) through polyimide to graphene

    Science.gov (United States)

    Jo, Hye Jin; Lyu, Ji Hong; Ruoff, Rodney S.; Lim, Hyunseob; In Yoon, Seong; Jeong, Hu Young; Shin, Tae Joo; Bielawski, Christopher W.; Shin, Hyeon Suk

    2017-03-01

    Various solid carbon sources, particularly poly(methyl methacrylate), have been used as precursors to graphene. The corresponding growth process generally involves the decomposition of the solids to hydrocarbon gases followed by their adsorption on metallic substrates (e.g., Cu). We report a different approach that uses a thermally-resistant polyimide (PI) as a carbon precursor. Langmuir–Blodgett films of poly(amic acid) (PAA) were transferred to copper foils and then converted to graphene via a PI intermediate. The Cu foil substrate was also discovered to facilitate the orientation of aromatic moieties upon carbonization process of the PI. As approximately 50% of the initial quantity of the PAA was found to remain at 1000 °C, thermally-stable polymers may reduce the quantity of starting material required to prepare high quality films of graphene. Graphene grown using this method featured a relatively large domain size and an absence of adventitious adlayers.

  1. Analysis of transient electromagnetic wave interactions on graphene-based devices using integral equations

    KAUST Repository

    Shi, Yifei

    2015-10-26

    Graphene is a monolayer of carbon atoms structured in the form of a honeycomb lattice. Recent experimental studies have revealed that it can support surface plasmons at Terahertz frequencies thanks to its dispersive conductivity. Additionally, characteristics of these plasmons can be dynamically adjusted via electrostatic gating of the graphene sheet (K. S. Novoselov, et al., Science, 306, 666–669, 2004). These properties suggest that graphene can be a building block for novel electromagnetic and photonic devices for applications in the fields of photovoltaics, bio-chemical sensing, all-optical computing, and flexible electronics. Simulation of electromagnetic interactions on graphene-based devices is not an easy task. The thickness of the graphene sheet is orders of magnitude smaller than any other geometrical dimension of the device. Consequently, discretization of such a device leads to significantly large number of unknowns and/or ill-conditioned matrix systems.

  2. Analytical investigation of surface plasmon excitation on a graphene sheet using four-wave mixing.

    Science.gov (United States)

    Jamalpoor, Kamal; Zarifkar, Abbas

    2017-01-20

    In the present paper, the general conditions for exciting graphene surface plasmon polaritons (GSPPs) on a suspended graphene using nonlinear optics are investigated. The approach uses the Green's function analysis to derive GSPP fields generated under the basis of momentum conservation using four-wave mixing (FWM). Since the incident beam polarization is challenging in the nonlinear excitation of GSPPs, the significant target of this paper has been set to achieve the conditions for the third-order susceptibility tensor and the wave vectors so that the incident beams with varied polarizations are able to excite GSPPs. Nonlinear optics, in particular FWM, is utilized to compensate the mismatch between the free-space and GSPPs wave vectors. In addition, it avoids the need for applying any patterning or lithography on graphene or its substrate.

  3. Nonlinear plasmonic dispersion and coupling analysis in the symmetric graphene sheets waveguide

    Science.gov (United States)

    Jiang, Xiangqian; Yuan, Haiming; Sun, Xiudong

    2016-12-01

    We study the nonlinear dispersion and coupling properties of the graphene-bounded dielectric slab waveguide at near-THz/THz frequency range, and then reveal the mechanism of symmetry breaking in nonlinear graphene waveguide. We analyze the influence of field intensity and chemical potential on dispersion relation, and find that the nonlinearity of graphene affects strongly the dispersion relation. As the chemical potential decreases, the dispersion properties change significantly. Antisymmetric and asymmetric branches disappear and only symmetric one remains. A nonlinear coupled mode theory is established to describe the dispersion relations and its variation, which agrees with the numerical results well. Using the nonlinear couple model we reveal the reason of occurrence of asymmetric mode in the nonlinear waveguide.

  4. Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field

    Science.gov (United States)

    Arani, A. Ghorbanpour; Haghparast, E.; BabaAkbar Zarei, H.

    2016-08-01

    In the present research, vibration and instability of axially moving single-layered graphene sheet (SLGS) subjected to magnetic field is investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. Third order shear deformation theory (TSDT) is utilized due to its accuracy of polynomial functions than other plate theories. Motion equations are obtained by means of Hamilton's principle and solved analytically. Influences of various parameters such as axially moving speed, magnetic field, orthotropic viscoelastic surrounding medium, thickness and aspect ratio of SLGS on the vibration characteristics of moving system are discussed in details. The results indicated that the critical speed of moving SLGS is strongly dependent on the moving speed. Therefore, the critical speed of moving SLGS can be improved by applying magnetic field. The results of this investigation can be used in design and manufacturing of marine vessels in nanoscale.

  5. Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Arani, A. Ghorbanpour, E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience & Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Haghparast, E.; BabaAkbar Zarei, H. [Faculty of Mechanical Engineering University of Kashan, Kashan (Iran, Islamic Republic of)

    2016-08-15

    In the present research, vibration and instability of axially moving single-layered graphene sheet (SLGS) subjected to magnetic field is investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. Third order shear deformation theory (TSDT) is utilized due to its accuracy of polynomial functions than other plate theories. Motion equations are obtained by means of Hamilton’s principle and solved analytically. Influences of various parameters such as axially moving speed, magnetic field, orthotropic viscoelastic surrounding medium, thickness and aspect ratio of SLGS on the vibration characteristics of moving system are discussed in details. The results indicated that the critical speed of moving SLGS is strongly dependent on the moving speed. Therefore, the critical speed of moving SLGS can be improved by applying magnetic field. The results of this investigation can be used in design and manufacturing of marine vessels in nanoscale.

  6. Ordered mesoporous carbon/graphene nano-sheets composites as counter electrodes in dye-sensitized solar cells

    Science.gov (United States)

    Shao, Leng-Leng; Chen, Ming; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2015-01-01

    The composites of ordered mesoporous carbon (OMC) and graphene nano-sheets (GNS) are prepared by mixing OMC with different weight ratios of GNS, and utilized as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Electrochemical impedance spectroscopy, Tafel polarization, and cyclic voltammetry measurements demonstrate that the OMC/GNS CEs display the enhanced electron transport property and fast reduction rate of I3- in comparison with those of the individual OMC and GNS CEs, due to the combination of superior electrical conductivity of GNS and good catalytic activity of OMC. Under AM 1.5 irradiation (100 mW cm-2), the DSSCs based on the OMC/GNS CEs show a maximum power conversion efficiency of 6.82%, which is comparable to 7.08% of the cell with the conventional Pt CE at the same experimental conditions, suggesting that the OMC/GNS composites are one of advanced CE materials for low-cost DSSCs.

  7. Synthesis of reduced graphene oxide sheets decorated by zinc oxide nanoparticles: Crystallographic, optical, morphological and photocatalytic study

    Science.gov (United States)

    Labhane, P. K.; Patle, L. B.; Huse, V. R.; Sonawane, G. H.; Sonawane, S. H.

    2016-09-01

    Reduced graphene oxide (RGO) sheets decorated by ZnO nanoparticles were synthesized using wet impregnation method. The composite material was characterized by means of X-ray diffraction (XRD), Williamson-Hall Plot (W-H Plot) and Scanning Electron Microscope (SEM) analysis. The XRD pattern revealed orderly hexagonal (wurtzite) structure of the ZnO nanoparticles. Surface morphology of ZnO, RGO and RGO-ZnO was investigated using SEM analysis. SEM images indicated the uniform distribution of ZnO onto the RGO surface. The photocatalytic activity of nanocomposite was demonstrated by determining the degradation of methylene blue dye. The degradation of dye took place due to efficient electron-hole recombination of photo-induced electrons. Finally, plausible mechanism was explained with the help of scavengers. Overall, wet impregnation method was found efficient to produce RGO with uniform ZnO loading. The prepared RGO-ZnO composite can efficiently degrade the dye under UV radiation.

  8. Synthesis and Characterization of the in Situ Bulk Polymerization of PMMA Containing Graphene Sheets Using Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Mohammad A. Aldosari

    2013-03-01

    Full Text Available Polymethylmethacrylate–graphene (PMMA/RGO nanocomposites were prepared via in situ bulk polymerization using two different preparation techniques. In the first approach, a mixture of graphite oxide (GO and methylmethacrylate monomers (MMA were polymerized using a bulk polymerization method with a free radical initiator. After the addition of the reducing agent hydrazine hydrate (HH, the product was reduced via microwave irradiation (MWI to obtain R-(GO-PMMA composites. In the second approach, a mixture of graphite sheets (RGO and MMA monomers were polymerized using a bulk polymerization method with a free radical initiator to obtain RGO-(PMMA composites. The composites were characterized by FTIR, 1H-NMR and Raman spectroscopy and XRD, SEM, TEM, TGA and DSC. The results indicate that the composite obtained using the first approach, which involved MWI, had a better morphology and dispersion with enhanced thermal stability compared with the composites prepared without MWI.

  9. Porous cubes constructed by cobalt oxide nanocrystals with graphene sheet coatings for enhanced lithium storage properties

    Science.gov (United States)

    Geng, Hongbo; Guo, Yuanyuan; Ding, Xianguang; Wang, Huangwen; Zhang, Yufei; Wu, Xinglong; Jiang, Jiang; Zheng, Junwei; Yang, Yonggang; Gu, Hongwei

    2016-03-01

    In this manuscript, graphene-encapsulated porous cobalt oxide cubes (Co3O4@G) are fabricated through a facile precipitation reaction with subsequent calcination and a self-assembly process. The synthesized porous Co3O4 cubes anchored in the conductive graphene network can realize superior electrical conductivity, withstand volume variation upon prolonged cycling and shorten the diffusion path of lithium ions. When evaluated as anode materials, the Co3O4@G electrode shows excellent electrochemical properties in terms of both stable cycling performance and good rate capabilities. For example, a reversible discharge capacity of 980 mA h g-1 is delivered after 80 cycles at a current density of 200 mA g-1. Introducing a conductive graphene network to modify other metal oxides with poor electric conductivity and large volume excursions is of great interest in the development of lithium ion battery technologies.In this manuscript, graphene-encapsulated porous cobalt oxide cubes (Co3O4@G) are fabricated through a facile precipitation reaction with subsequent calcination and a self-assembly process. The synthesized porous Co3O4 cubes anchored in the conductive graphene network can realize superior electrical conductivity, withstand volume variation upon prolonged cycling and shorten the diffusion path of lithium ions. When evaluated as anode materials, the Co3O4@G electrode shows excellent electrochemical properties in terms of both stable cycling performance and good rate capabilities. For example, a reversible discharge capacity of 980 mA h g-1 is delivered after 80 cycles at a current density of 200 mA g-1. Introducing a conductive graphene network to modify other metal oxides with poor electric conductivity and large volume excursions is of great interest in the development of lithium ion battery technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01024e

  10. Effect of edge vacancies on localized states in semi-infinite zigzag graphene sheet

    Science.gov (United States)

    Glebov, A. A.; Katkov, V. L.; Osipov, V. A.

    2016-12-01

    The effect of vacancies on the robustness of zero-energy edge electronic states in zigzag-type graphene layer is studied at different concentrations and distributions of defects. All calculations are performed by using the Green's function method and the tight-binding approximation. It is found that the arrangement of defects plays a crucial role in the destruction of the edge states. We have specified a critical distance between edge vacancies when their mutual influence becomes significant and affects markedly the density of electronic states at graphene edge.

  11. Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics

    Science.gov (United States)

    2015-12-18

    polycrystalline copper foil showing the alveolar graphene atomic structure (2.2x2.2 nm, setpoint lT=110pA, sample bias VB= -350 mV), and (b,c) at the...areas and protrusions on the substrate imposed by the polycrystalline copper carrier material (as shown by Figure 19b, which was acquired over a...and adsorb on HOPG and graphene building blocks bearing a ligand to the upper deck of the pillar in order to promote ligand exchange. OC10H21OC10H21

  12. Synthesis of Reduced Graphene Oxide Using Novel Exfoliation Technique and its Characterizations

    Directory of Open Access Journals (Sweden)

    Asha R. Pai

    2013-05-01

    Full Text Available For processing of graphene based composite materials Graphene oxide is considered to be the main precursor. Though epitaxial growth and chemical vapor deposition techniques have been utilized to get monolayers of graphene, wet chemical process have been used for its large scale synthesis. For the extraction of graphene monolayer the chemical route relies on the weakening of the Van der Waals cohesive force upon the insertion of reactants in the inter layer space as a consequence sp2 lattice is partially degraded into a sp2-sp3 sheet that possesses a less π-π stacking stability. The method described here uses a novel chemical exfoliation technique. The graphite from the pencil lead is used as the precursor and it is treated with alcohol-ketone-surfactant mixture and mechanically and thermally agitated so as to get the golden brown colored suspension. The material was characterized by Fourier Transform Infra Red spectroscopy. The absence of 1570 cm – 1 peak clearly indicates the oxidation of C = C bonds. The SEM images confirmed the presence of the nanoplatelets of graphene oxide. The AFM analysis confirmed the sheet thickness of the graphene oxide sheets to be < 5 nm. The sheet resistance of the sheets of thermally treated graphene oxide or reduced graphene oxide on Si wafer (p-type, 4-6 Ω/cm was measured as 200-300 Ω/□. The Ellipsometric characterisations also matches with that of the thermally reduced graphene oxide films formed.

  13. Electrochemical determination of hydrochlorothiazide and folic acid in real samples using a modified graphene oxide sheet paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Beitollahi, Hadi, E-mail: h.beitollahi@yahoo.com [Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Hamzavi, Mozhdeh [Department of Chemistry, Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Torkzadeh-Mahani, Masoud [Biotechnology Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of)

    2015-07-01

    A new ferrocene-derivative compound, 2-chlorobenzoyl ferrocene, was synthesized and used to construct a modified graphene oxide sheet paste electrode. The electrooxidation of hydrochlorothiazide at the surface of the modified electrode was studied. Under optimized conditions, the square wave voltammetric (SWV) peak current of hydrochlorothiazide increased linearly with hydrochlorothiazide concentration in the range of 5.0 × 10{sup −8} to 2.0 × 10{sup −4} M and a detection limit of 20.0 nM was obtained for hydrochlorothiazide. The diffusion coefficient and kinetic parameters (such as electron transfer coefficient and the heterogeneous rate constant) for hydrochlorothiazide oxidation were also determined. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of hydrochlorothiazide and folic acid which makes it suitable for the detection of hydrochlorothiazide in the presence of folic acid in real samples. - Highlights: • A novel modified-graphene oxide nanosheet paste electrode has been fabricated. • This electrode reduced the oxidation potential of hydrochlorothiazide by about 315 mV. • Hydrochlorothiazide was measured in the range of 5.0 × 10{sup −8} to 2.0 × 10{sup −4} M. • The detection limit for hydrochlorothiazide was obtained at 20.0 nM. • It resolved the voltammetric waves of hydrochlorothiazide and folic acid.

  14. Fe3O4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins.

    Science.gov (United States)

    Sharafeldin, Mohamed; Bishop, Gregory W; Bhakta, Snehasis; El-Sawy, Abdelhamid; Suib, Steven L; Rusling, James F

    2017-05-15

    Ultrasensitive mediator-free electrochemical detection for biomarker proteins was achieved at low cost using a novel composite of Fe3O4 nanoparticles loaded onto graphene oxide (GO) nano-sheets (Fe3O4@GO). This paramagnetic Fe3O4@GO composite (1µm size range) was decorated with antibodies against prostate specific antigen (PSA) and prostate specific membrane antigen (PSMA), and then used to first capture these biomarkers and then deliver them to an 8-sensor detection chamber of a microfluidic immunoarray. Screen-printed carbon sensors coated with electrochemically reduced graphene oxide (ERGO) and a second set of antibodies selectively capture the biomarker-laden Fe3O4@GO particles, which subsequently catalyze hydrogen peroxide reduction to detect PSA and PSMA. Accuracy was confirmed by good correlation between patient serum assays and enzyme-linked immuno-sorbent assays (ELISA). Excellent detection limits (LOD) of 15 fg/mL for PSA and 4.8 fg/mL for PSMA were achieved in serum. The LOD for PSA was 1000-fold better than the only previous report of PSA detection using Fe3O4. Dynamic ranges were easily tunable for concentration ranges encountered in serum samples by adjusting the Fe3O4@GO Concentration. Reagent cost was only $0.85 for a single 2-protein assay.

  15. An investigation into graphene exfoliation and potential graphene application in MEMS devices

    Science.gov (United States)

    Fercana, George; Kletetschka, Gunther; Mikula, Vilem; Li, Mary

    2011-02-01

    The design of microelectromecanical systems (MEMS) and micro-opto-electromechanical systems (MOEMS) are often materials-limited with respect to the efficiency and capability of the material. Graphene, a one atom thick honeycomb lattice of carbon, is a highly desired material for MEMS applications. Relevant properties of graphene include the material's optical transparency, mechanical strength, energy efficiency, and electrical and thermal conductivity due to its electron mobility. Aforementioned properties make graphene a strong candidate to supplant existing transparent electrode technology and replace the conventionally used material, indium-tin oxide. In this paper we present preliminary results on work toward integration of graphene with MEMS structures. We are studying mechanical exfoliation of highly ordered pyrolytic graphite (HOPG) crystals by repeatedly applying and separating adhesive materials from the HOPG surface. The resulting graphene sheets are then transferred to silicon oxide substrate using the previously applied adhesive material. We explored different adhesive options, particularly the use of Kapton tape, to improve the yield of graphene isolation along with chemical cross-linking agents which operate on a mechanism of photoinsertion of disassociated nitrene groups. These perfluorophenyl nitrenes participate in C=C addition reactions with graphene monolayers creating a covalent binding between the substrate and graphene. We are focusing on maximizing the size of isolated graphene sheets and comparing to conventional exfoliation. Preliminary results allow isolation of few layer graphene (FLG) sheets (n<3) of approximately 10μm x 44μm. Photolithography could possibly be utilized to tailor designs for microshutter technology to be used in future deep space telescopes.

  16. Growth of 3D hierarchical porous NiO@carbon nanoflakes on graphene sheets for high-performance lithium-ion batteries.

    Science.gov (United States)

    Wang, Xiongwei; Zhang, Ludan; Zhang, Zehui; Yu, Aishui; Wu, Peiyi

    2016-02-07

    Nickel oxide (NiO) as one of the anode electrode materials for lithium ion batteries (LIBs) has attracted considerable research attention. However, the poor electron conductivity and bad capacity retention performance greatly hinder its wide application. Herein, we prepared a novel three-dimensional (3D) hierarchical porous graphene@NiO@carbon composite via a simple solvothermal process, in which the graphene sheets were uniformly wrapped by porous NiO@carbon nanoflakes. In this case, nickelocene was creatively used as the precursor for both NiO and amorphous carbon, while graphene oxide sheets were employed as a template for the two-dimensional nanostructure and the conductive graphene backbone. The resultant composites possess high surface area (196 m(2) g(-1)) and large pore volume (0.46 cm(3) g(-1)). When it is applied as an anode for LIBs, the carbon outer-layer can effectively suppress the large volume change and serious aggregation of NiO nanoparticles during the charge-discharge process. Therefore, the graphene@NiO@carbon composites show a high reversible capacity of 1042 mA h g(-1) at a current density of 200 mA g(-1), an excellent rate performance and long cycle life. We believe that our method provides a new route for the fabrication of novel transition metal oxide composites.

  17. Graphene on silicon nitride micromembranes for optoelectromechanical devices

    DEFF Research Database (Denmark)

    Schmid, Silvan; Bagci, Tolga; Rasmussen, Andreas Næsby

    2012-01-01

    Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes......, and are smooth and uniform across whole wafers, as inspected by optical-, scanning electron-, and atomic force microscopy. The sp(2) hybridized carbon structure is confirmed by Raman spectroscopy. Room temperature electrical measurements show ohmic behavior (sheet resistance similar to exfoliated graphene......) and up to 13% of electric-field effect. The Hall mobility is similar to 40 cm(2)/ Vs, which is an order of magnitude higher than previously reported values for nanocrystalline graphene. Transmission electron microscopy, Raman spectroscopy, and transport measurements indicate a graphene crystalline domain...

  18. Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers

    Science.gov (United States)

    Liu, Yanpeng; Yuan, Li; Yang, Ming; Zheng, Yi; Li, Linjun; Gao, Libo; Nerngchamnong, Nisachol; Nai, Chang Tai; Sangeeth, C. S. Suchand; Feng, Yuan Ping; Nijhuis, Christian A.; Loh, Kian Ping

    2014-11-01

    Layer-by-layer-stacked chemical vapour deposition (CVD) graphene films find applications as transparent and conductive electrodes in solar cells, organic light-emitting diodes and touch panels. Common to lamellar-type systems with anisotropic electron delocalization, the plane-to-plane (vertical) conductivity in such systems is several orders lower than its in-plane conductivity. The poor electronic coupling between the planes is due to the presence of transfer process organic residues and trapped air pocket in wrinkles. Here we show the plane-to-plane tunnelling conductivity of stacked CVD graphene layers can be improved significantly by inserting 1-pyrenebutyric acid N-hydroxysuccinimide ester between the graphene layers. The six orders of magnitude increase in plane-to-plane conductivity is due to hole doping, orbital hybridization, planarization and the exclusion of polymer residues. Our results highlight the importance of interfacial modification for enhancing the performance of LBL-stacked CVD graphene films, which should be applicable to other types of stacked two-dimensional films.

  19. The preparation of the poly(vinyl alcohol/graphene nanocomposites with low percolation threshold and high electrical conductivity by using the large-area reduced graphene oxide sheets

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2013-09-01

    Full Text Available We report a method to prepare the poly(vinyl alcohol/reduced graphene oxide (PVA/rGO nanocomposites with low percolation threshold and high electrical conductivity by using the large-area reduced graphene oxide (LrGO sheets. The large-area graphene oxide (LGO sheets are expected to overlap better with each other and form the continuous GO network in PVA matrix than small-area graphene oxide (SGO. During the thermal reduction process, the LGO sheets are easily restored and improve the electrical conductivity of nanocomposites due to their low damage level of conjugate-structure. As a result, the percolation threshold of PVA/LrGO nanocomposites is ~0.189 wt% lower than present reports (0.5~0.7 wt%. At the LrGO content of 0.7 wt%, the electrical conductivity of PVA/LrGO nanocomposites reaches 6.3•10–3 S/m. Besides that, this method only takes 15~30 min to reduce the PVA/GO nanocomposites effectively.

  20. Preparation and characterization of platinum (Pt) and palladium (Pd) nanoparticle decorated graphene sheets and their utilization for the elimination of basic fuchsin and indigo carmine dyes

    Science.gov (United States)

    Kurt, Belma Zengin; Durmus, Zehra; Durmus, Ali

    2016-01-01

    In this study, graphene nano sheets, prepared with chemical oxidation and reduction routes via modified-Hummer method, were successfully decorated with platinum (Pt) and palladium (Pd) nanoparticles. Structural and morphological features of resulted graphene-metal nanocomposites were characterized with FT-IR, XRD, SEM and TEM methods. Anti-oxidant activity (AOA) values of nanocomposites were determined. The IC50 values of Pt-graphene and Pd-graphene nanocomposites were found to be 46.1 and 90.2 μg/mL, respectively based on the ABTS method and 80.2 and 143.7 μg/mL according to the DPPH method. It was found that the graphene-metal nanocomposites exhibited superior free radical scavenging activity compared to several types of noble metal nano particles although the nanocomposites consist of much lower amount of active metal sites than the nano-crystalline metal powders. It was consequently reported that the graphene-metal nanocomposites could be successfully used for the photocatalytic elimination of fuchsin and indigo carmine dyes under light irradiation.

  1. BF-theory in graphene: a route toward topological quantum computing?

    CERN Document Server

    Marzuoli, Annalisa

    2011-01-01

    Besides the plenty of applications of graphene allotropes in condensed matter and nanotechnology, we argue that graphene sheets might be engineered to support room-temperature topological quantum processing of information. The argument is based on the possibility of modeling the monolayer graphene effective action by means of a 3d Topological Quantum Field Theory of BF-type able to sustain non-Abelian anyon dynamics. This feature is the basic requirement of recently proposed theoretical frameworks for universal, fault-tolerant and decoherence protected quantum computation.

  2. Preparation of colloidal graphene in quantity by electrochemical exfoliation.

    Science.gov (United States)

    Chen, Kunfeng; Xue, Dongfeng

    2014-12-15

    We reported the preparation of colloidal graphene in quantity via the anodic exfoliation of graphite in (NH4)2SO4 aqueous solution. In the currently designed electrochemical exfoliation route, mass high-quality graphene was produced within short reaction time, around 1h. The proposed electrochemical exfoliation mechanism showed that SO4(2-) and H2O can be intercalated into those graphite sheets, monolayer and few-layer graphene were obtained by the formation of gaseous SO2 and O2 within graphite sheets. Stability evaluation showed that our exfoliated colloidal graphene can be perfectly stabilized in DMF solvent more than 1 week. The colloidal graphene can be used to construct various simple and complex patterns by writing it on A4 paper, which can be applied to flexible printed electronic devices. Furthermore, colloidal graphene can show promising applications in the fabrication of binder- and additive-free electrodes for supercapacitors and lithium-ion batteries. Our present method shows huge potential for industrial-scale synthesis of high-quality graphene and further commercialization of graphene colloid for numerous advanced applications in flexible printed electronics and energy storage devices.

  3. Sensitive Immunosensor for Cancer Biomarker Based on Dual Signal Amplification Strategy of Graphene Sheets and Multi-Enzyme Functionalized Carbon Nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Du, Dan; Zou, Zhexiang; Shin, Yongsoon; Wang, Jun; Wu, Hong; Engelhard, Mark H.; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-03-30

    A novel electrochemical immunosensor for sensitive detection of cancer biomarker α fetoprotein (AFP) is described that uses a graphene sheet sensor platform and functionalized carbon nanospheres (CNSs) labeling with horseradish peroxidase-secondary antibodies (HRP-Ab2). Greatly enhanced sensitivity for the cancer biomarker is based on a dual signal amplification strategy: first, the synthesized CNSs yielded a homogeneous and narrow size distribution, which allowed several binding events of HRP-Ab2 on each nanosphere. Enhanced sensitivity was achieved by introducing the multi-bioconjugates of HRP-Ab2-CNSs onto the electrode surface through sandwich immunoreactions. Secondly, functionalized graphene sheets used for the biosensor platform increased the surface area to capture a large amount of primary antibodies (Ab1), thus amplifying the detection response. This amplification strategy is a promising platform for clinical screening of cancer biomarkers and point-of-care diagnostics.

  4. Growth of Hollow Transition Metal (Fe, Co, Ni) Oxide Nanoparticles on Graphene Sheets through Kirkendall Effect as Anodes for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Yu, Xianbo; Qu, Bin; Zhao, Yang; Li, Chunyan; Chen, Yujin; Sun, Chunwen; Gao, Peng; Zhu, Chunling

    2016-01-26

    A general strategy based on the nanoscale Kirkendall effect has been developed to grow hollow transition metal (Fe, Co or Ni) oxide nanoparticles on graphene sheets. When applied as lithium-ion battery anodes, these hollow transition metal oxide-based composites exhibit excellent electrochemical performance, with high reversible capacities and long-term stabilities at a high current density, superior to most transition metal oxides reported to date.

  5. The electronic properties, electronic heat capacity and magnetic susceptibility of monolayer boron nitride graphene-like structure in the presence of electron-phonon coupling

    Science.gov (United States)

    Yarmohammadi, Mohsen

    2017-03-01

    In this work, we have studied the influences of electron-phonon (e-ph) coupling and chemical potential on the boron nitride graphene-like sheet. In particular, by starting the Green's function technique and Holstein model, the electronic density of states (DOS), electronic heat capacity (EHC) and magnetic susceptibility (MS) of this system have been investigated in the context of self-consistent second order perturbation theory which has been implemented to find the electronic self-energy. Our findings show that the band gap size decreases (increases) with e-ph coupling (chemical potential) parameters. The Schottky anomaly (crossover) decreases in EHC (MS) as soon as e-ph coupling increases. Also, the corresponding temperature with Schottky anomaly is considerably affected by e-ph coupling.

  6. Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries

    Science.gov (United States)

    Sun, Wei; Hu, Renzong; Zhang, Miao; Liu, Jiangwen; Zhu, Min

    2016-06-01

    A novel approach has been developed to prepare silicon@carbon/graphene sheets (Si@C/G) composite with a unique structure, in which carbon coated Si nanoparticles are uniformly dispersed in a matrix of graphene sheets, to enhance the cycleability and electronic conductivity of Si-based anodes for Li-ion batteries. In this study, Si nanoparticles and expanded graphite (EG) are treated by combining high-energy wet ball-milling in sucrose solution with subsequent pyrolysis treatment to produce this Si@C/G composite. To achieve better overall electrochemical performance, the carbon content of the composites is also studied systematically. The as-designed Si30@C40/G30 (Si:C:G = 30:40:30, by weight) composite exhibits a high Li-storage capacity of 1259 mAh g-1 at a current density of 0.2 A g-1 in the first cycle. Further, a stable cycleability with 99.1/88.2% capacity retention from initial reversible charge capacity can be achieved over 100/300 cycles, showing great promise for batteries applications. This good electrochemical performance can be attributed to the uniform coating and binding effect of pyrolytic carbon as well as the network of graphene sheets, which increase the electronic conductivity and Li+ diffusion in the composite, and effectively accommodated the volume change of Si nanoparticles during the Li+ alloying and dealloying processes.

  7. Facile synthesis of Ni-decorated multi-layers graphene sheets as effective anode for direct urea fuel cells

    Directory of Open Access Journals (Sweden)

    Ahmed Yousef

    2017-09-01

    Full Text Available A large amount of urea-containing wastewater is produced as a by-product in the fertilizer industry, requiring costly and complicated treatment strategies. Considering that urea can be exploited as fuel, this wastewater can be treated and simultaneously exploited as a renewable energy source in a direct urea fuel cell. In this study, multi-layers graphene/nickel nanocomposites were prepared by a one-step green method for use as an anode in the direct urea fuel cell. Typically, commercial sugar was mixed with nickel(II acetate tetrahydrate in distilled water and then calcined at 800 °C for 1 h. Raman spectroscopy, X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM and energy dispersive spectroscopy (EDS were employed to characterize the final product. The results confirmed the formation of multi-layers graphene sheets decorated by nickel nanoparticles. To investigate the influence of metal nanoparticles content, samples were prepared using different amounts of the metal precursor; nickel acetate content was changed from 0 to 5 wt.%. Investigation of the electrochemical characterizations indicated that the sample prepared using the original solution with 3 wt.% nickel acetate had the best current density, 81.65 mA/cm2 in a 0.33 M urea solution (in 1 M KOH at an applied voltage 0.9 V vs Ag/AgCl. In a passive direct urea fuel cell based on the optimal composition, the observed maximum power density was 4.06 × 10−3 mW/cm2 with an open circuit voltage of 0.197 V at room temperature in an actual electric circuit. Overall, this study introduces a cheap and beneficial methodology to prepare effective anode materials for direct urea fuel cells.

  8. Formation of carbon nanoscrolls from graphene sheet: A molecular dynamics study

    Science.gov (United States)

    Zhang, Danhui; Yang, Houbo

    2016-12-01

    In recent year, carbon nanoscrolls have attracted intensive attention both in theory and experiments for their unique and excellent fundamental properties and the wide range of potential applications. In this paper, the fabrication of carbon nanoscrolls using graphene and carbon nanotubes has been studied by molecular dynamics (MD) method. The formation mechanism of carbon nanoscrolls has been presented convincing explanations. Furthermore, the position and number of carbon nanotubes also influence the formation of carbon nanoscrolls. Our theoretical results will provide researchers a powerful guide and helpful assistance in designing better targeted programs in experiments.

  9. Effect of copper surface pre-treatment on the properties of CVD grown graphene

    Directory of Open Access Journals (Sweden)

    Min-Sik Kim

    2014-12-01

    Full Text Available Here, we report the synthesis of high quality monolayer graphene on the pre-treated copper (Cu foil by chemical vapor deposition method. The pre-treatment process, which consists of pre-annealing in a hydrogen ambient, followed by diluted nitric acid etching of Cu foil, helps in removing impurities. These impurities include native copper oxide and rolling lines that act as a nucleation center for multilayer graphene. Raman mapping of our graphene grown on pre-treated Cu foil primarily consisted of ∼98% a monolayer graphene with as compared to 75 % for the graphene grown on untreated Cu foil. A high hydrogen flow rate during the pre-annealing process resulted in an increased I2D/IG ratio of graphene up to 3.55. Uniform monolayer graphene was obtained with a I2D/IG ratio and sheet resistance varying from 1.84 – 3.39 and 1110 – 1290 Ω/□, respectively.

  10. Graphene patterning by nanosecond laser ablation: the effect of the substrate interaction with graphene

    Science.gov (United States)

    Pérez-Mas, Ana M.; Álvarez, Patricia; Campos, Nuria; Gómez, David; Menéndez, Rosa

    2016-08-01

    This paper focuses on the development of patterned graphene/substrate by means of green nanosecond pulse laser irradiation. Monolayer graphene samples supported on a Si/SiO2 substrate were patterned using 532 nm laser irradiation under fluence conditions ranging from 31 mJ cm-2 to 4240 mJ cm-2. Raman spectroscopy was used to investigate the effect of laser irradiation on the graphene. It was found that at 356 mJ cm-2 selective ablation of the graphene occurs. However, at fluence values above 1030 mJ cm-2 (when damage to the substrate is observed) no ablation of the graphene takes place. In contrast, its graphenic structure was found to have been modified. Only at fluence values where the ablation of the substrate occurs, is graphene eliminated in an area almost equivalent to that of the ablated substrate. In this case, additional damage to the graphene sheet edges is produced. The increment in the number of oxygenated functional groups in these regions, as measured by x-ray photoelectron spectroscopy (XPS), suggests that this damage is probably caused by thermal phenomena during the ablation of the substrate.

  11. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes

    Science.gov (United States)

    Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-01

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and

  12. Mechanical and Structural Properties of Graphene-like Carbon Nitride Sheets

    CERN Document Server

    de Sousa, J M; Perim, E; Bizao, R A; Galvao, Douglas S

    2016-01-01

    Carbon nitride-based nanostructures have attracted special attention (from theory and experiments) due to their remarkable electromechanical properties. In this work we have investigated the mechanical properties of some graphene-like carbon nitride membranes through fully atomistic reactive molecular dynamics simulations. We have analyzed three different structures of these CN families, the so-called graphene-based g-CN, triazine-based g-C3N4 and heptazine-based g-C3N4. The stretching dynamics of these membranes was studied for deformations along their two main axes and at three different temperatures: 10K, 300K and 600K. We show that g-CN membranes have the lowest ultimate fracture strain value, followed by heptazine-based and triazine-based ones, respectively. This behavior can be explained in terms of their differences in terms of density values, topologies and types of chemical bonds. The dependency of the fracture patterns on the stretching directions is also discussed.

  13. High performance asymmetric supercapacitor based on polypyrrole/graphene composite and its derived nitrogen-doped carbon nano-sheets

    Science.gov (United States)

    Zhu, Jianbo; Feng, Tianyu; Du, Xianfeng; Wang, Jingping; Hu, Jun; Wei, LiPing

    2017-04-01

    Neutral aqueous medium is a promising electrolyte for supercapacitors because it is low-cost, environmental-friendly and can achieve rapid charging/discharging with high power density. However, the energy density of such supercapacitor is significantly limited by its narrow operational voltage window. Herein, we demonstrated an effective approach to broaden the operational voltage window by fabricating an asymmetric supercapacitor (ASC) with polypyrrole/reduced graphene oxide (PPy/rGO) composite and its derived Nitrogen-doped carbon nano-sheets (NCs) as positive and negative electrode material, respectively. The homogeneous nano-sheet and mesoporous structure of PPy/rGO and NCs can facilitate rapid charge/ion migration and provide more active sites for ions adsorption/exchange to improve their electrochemical performance. Benefiting from high capacitance and good rate performance of PPy/rGO and NCs electrodes, the as-fabricated ASCs devices in a polyvinyl alcohol/LiCl gel electrolyte can realize a wide operational voltage of 1.6 V and deliver high energy density of 15.8 wh kg-1 (1.01 mWh cm-3) at 0.14 kW kg-1 (19.3 mW cm-3), which still remains 9.5 wh kg-1as power density increases to 6.56 kW kg-1, as well as excellent long-term cycling stability with about 88.7% capacitance retention after 10000 cycles. The remarkable performances suggest that the ASCs devices are promising for future energy storage applications.

  14. Self-Construction from 2D to 3D: One-Pot Layer-by-Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers.

    Science.gov (United States)

    Zakaria, Mohamed B; Li, Cuiling; Ji, Qingmin; Jiang, Bo; Tominaka, Satoshi; Ide, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Yamauchi, Yusuke

    2016-07-11

    Deposition of Ni-based cyanide bridged coordination polymer (NiCNNi) flakes onto the surfaces of graphene oxide (GO) sheets, which allows precise control of the resulting lamellar nanoarchitecture by in situ crystallization, is reported. GO sheets are utilized as nucleation sites that promote the optimized crystal growth of NiCNNi flakes. The NiCNNi-coated GO sheets then self-assemble and are stabilized as ordered lamellar nanomaterials. Regulated thermal treatment under nitrogen results in a Ni3 C-GO composite with a similar morphology to the starting material, and the Ni3 C-GO composite exhibits outstanding electrocatalytic activity and excellent durability for the oxygen reduction reaction.

  15. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density.

    Science.gov (United States)

    Zhao, Lei; Qiu, Yejun; Yu, Jie; Deng, Xianyu; Dai, Chenglong; Bai, Xuedong

    2013-06-07

    Improvement of energy density is an urgent task for developing advanced supercapacitors. In this paper, aqueous supercapacitors with high voltage of 1.8 V and energy density of 29.1 W h kg(-1) were fabricated based on carbon nanofibers (CNFs) and Na2SO4 electrolyte. The CNFs with radially grown graphene sheets (GSs) and small average diameter down to 11 nm were prepared by electrospinning and carbonization in NH3. The radially grown GSs contain between 1 and a few atomic layers with their edges exposed on the surface. The CNFs are doped with nitrogen and oxygen with different concentrations depending on the carbonizing temperature. The supercapacitors exhibit excellent cycling performance with the capacity retention over 93.7% after 5000 charging-discharging cycles. The unique structure, possessing radially grown GSs, small diameter, and heteroatom doping of the CNFs, and application of neutral electrolyte account for the high voltage and energy density of the present supercapacitors. The present supercapacitors are of high promise for practical application due to the high energy density and the advantages of neutral electrolyte including low cost, safety, low corrosivity, and convenient assembly in air.

  16. Engineering the electrochemical capacitive properties of graphene sheets in ionic-liquid electrolytes by correct selection of anions.

    Science.gov (United States)

    Shi, Minjie; Kou, Shengzhong; Yan, Xingbin

    2014-11-01

    Graphene sheet (GS)-ionic liquid (IL) supercapacitors are receiving intense interest because their specific energy density far exceeds that of GS-aqueous electrolytes supercapacitors. The electrochemical properties of ILs mainly depend on their diverse ions, especially anions. Therefore, identifying suitable IL electrolytes for GSs is currently one of the most important tasks. The electrochemical behavior of GSs in a series of ILs composed of 1-ethyl-3-methylimidazolium cation (EMIM(+)) with different anions is systematically studied. Combined with the formula derivation and building models, it is shown that the viscosity, ion size, and molecular weight of ILs affect the electrical conductivity of ILs, and thus, determine the electrochemical performances of GSs. Because the EMIM-dicyanamide IL has the lowest viscosity, ion size, and molecular weight, GSs in it exhibit the highest specific capacitance, smallest resistance, and best rate capability. In addition, because the tetrafluoroborate anion (BF4(-)) has the best electrochemical stability, the GS-[EMIM][BF4] supercapacitor has the widest potential window, and thus, displays the largest energy density. These results may provide valuable information for selecting appropriate ILs and designing high-performance GS-IL supercapacitors to meet different needs.

  17. Cascading Boost Effect on the Capacity of Nitrogen-Doped Graphene Sheets for Li- and Na-Ion Batteries.

    Science.gov (United States)

    Tian, Lei-Lei; Li, Si-Bai; Zhang, Ming-Jian; Li, Shuan-Kui; Lin, Ling-Piao; Zheng, Jia-Xin; Zhuang, Quan-Chao; Amine, Khalil; Pan, Feng

    2016-10-12

    Specific capacity and cyclic performance are critically important for the electrode materials of rechargeable batteries. Herein, a capacity boost effect of Li- and Na-ion batteries was presented and clarified by nitrogen-doped graphene sheets. The reversible capacities progressively increased from 637.4 to 1050.4 mAh g(-1) (164.8% increase) in Li-ion cell tests from 20 to 185 cycles, and from 187.3 to 247.5 mAh g(-1) (132.1% increase) in Na-ion cell tests from 50 to 500 cycles. The mechanism of the capacity boost is proposed as an electrochemical induced cascading evolution of graphitic N to pyridinic and/or pyrrolic N, during which only these graphitic N adjacent pyridinic or pyrrolic structures can be taken precedence. The original and new generated pyridinic and pyrrolic N have strengthened binding energies to Li/Na atoms, thus increased the Li/Na coverage and delivered a progressive capacity boost with cycles until the entire favorable graphitic N transform into pyridinic and pyrrolic N.

  18. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Reduced Graphene Oxide Sheets for Supercapacitors

    Science.gov (United States)

    Wang, Li; Ye, Yinjian; Lu, Xingping; Wen, Zhubiao; Li, Zhuang; Hou, Haoqing; Song, Yonghai

    2013-01-01

    Here we reported a novel route to synthesize a hierarchical nanocomposite (PANI-frGO) of polyaniline (PANI) nanowire arrays covalently bonded on reduced graphene oxide (rGO). In this strategy, nitrophenyl groups were initially grafted on rGO via C-C bond, and then reduced to aminophenyl to act as anchor sites for the growth of PANI arrays on rGO. The functionalized process was confirmed by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analysis. The electrochemical properties of the PANI-frGO as supercapacitor materials were investigated. The PANI-frGO nanocomposites showed high capacitance of 590 F g−1 at 0.1 A g−1, and had no loss of capacitance after 200 cycles at 2 A g−1. The improved electrochemical performance suggests promising application of the PANI-frGO nanocomposites in high-performance supercapacitors. PMID:24356535

  19. Synthesis and Characterization of Mass Produced High Quality Few Layered Graphene Sheets via a Chemical Method

    KAUST Repository

    Khenfouch, Mohammed

    2014-04-01

    Graphene is a two-dimensional crystal of carbon atoms arranged in a honeycomb lattice. It is a zero band gap semimetal with very unique physical and chemical properties which make it useful for many applications such as ultra-high-speed field-effect transistors, p-n junction diodes, terahertz oscillators, and low-noise electronic, NEMS and sensors. When the high quality mass production of this nanomaterial is still a big challenge, we developed a process which will be an important step to achieve this goal. Atomic Force Microscopy, Scanning Electron Microscopy, Scanning tunneling microscopy, High Resolution Transmission Electron Microscopy, X-Ray Diffraction, Raman spectroscopy, Energy Dispersive X-ray system were investigated to characterize and examine the quality of this product.

  20. Noncovalently-functionalized reduced graphene oxide sheets by water-soluble methyl green for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiaoying; Hu, Zhongai, E-mail: zhongai@nwnu.edu.cn; Hu, Haixiong; Qiang, Ruibin; Li, Li; Li, Zhimin; Yang, Yuying; Zhang, Ziyu; Wu, Hongying

    2015-10-15

    Graphical abstract: Electroactive methyl green (MG) is selected to functionalize reduced graphene oxide (RGO) through non-covalent modification and the composite achieves high specific capacitance, good rate capability and excellent long life cycle. - Highlights: • MG–RGO composites were firstly prepared through non-covalent modification. • The mass ratio in composites is a key for achieving high specific capacitance. • MG–RGO 5:4 exhibits the highest specific capacitance of 341 F g{sup −1}. • MG–RGO 5:4 shows excellent rate capability and long life cycle. - Abstract: In the present work, water-soluble electroactive methyl green (MG) has been used to non-covalently functionalize reduced graphene oxide (RGO) for enhancing supercapacitive performance. The microstructure, composition and morphology of MG–RGO composites are systematically characterized by UV–vis absorption, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical performances are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). The fast redox reactions from MG could generate additional pseudocapacitance, which endows RGO higher capacitances. As a result, the MG–RGO composite (with the 5:4 mass ratio of MG:RGO) achieve a maximum value of 341 F g{sup −1} at 1 A g{sup −1} within the potential range from −0.25 to 0.75 V and provide a 180% enhancement in specific capacitance in comparison with pure RGO. Furthermore, excellent rate capability (72% capacitance retention from 1 A g{sup −1} to 20 A g{sup −1}) and long life cycle (12% capacitance decay after 5000 cycles) are achieved for the MG–RGO composite electrode.

  1. Electronic Energy Band and Transport Properties in Monolayer Graphene with Periodically Modulated Magnetic Vector Potential and Electrostatic Potential

    Institute of Scientific and Technical Information of China (English)

    刘正方; 伍清萍; 刘念华

    2012-01-01

    We investigated the electronic energy band and transport features of graphene superlattice with periodically modulated magnetic vector potential and electrostatic potential. It is found that both parallel magnetic vector potential and electrostatic potential can decisively shift Dirac point in a different way, which may be an efficient way to achieve electron or hole filter. We a/so find that applying modulated parallel and anti-parallel magnetic vector potential to the electrons can efficiently change electronic states between pass and stop states, which can be useful in designing electron or hole switches and lead to large magneto-resistance.

  2. Lithium-Boron (Li-B) Monolayers: First-Principles Cluster Expansion and Possible Two-Dimensional Superconductivity.

    Science.gov (United States)

    Wu, Chao; Wang, Hua; Zhang, Jiajia; Gou, Gaoyang; Pan, Bicai; Li, Ju

    2016-02-03

    Recent works demonstrated that the superconductivity at two-dimensional (2-D) can be achieved in Li-decorated graphene (Nature Phys. 2012, 8, 131 and Proc. Natl. Acad. Sci. 2015, 112, 11795). Inspired by the progress made in graphene, we predict by using the first-principles calculations that Li-incorporated B monolayers (Li-B monolayers) can be alternative 2-D superconductors. First-principles cluster expansion approach was used to evaluate the structural diversity and energetic stability of the 2-D Li-B monolayers by treating them as ternary Lix⬡yB1-x-y pseudoalloys (⬡ refers to B hexagonal hole). After thoroughly exploring the Li-B configuration space, several well-ordered and stable Li-B monolayers were identified. Detailed analyses regarding the electronic structures and lattice dynamics properties of the predicted Li-B monolayers were performed. Compared with the non-superconducting pure B-sheet, some predicted Li-B monolayers can exhibit the phonon-mediated superconducting properties above the liquid helium temperature.

  3. Surface plasmon enhancement of spontaneous emission in graphene waveguides

    CERN Document Server

    Cuevas, Mauro

    2016-01-01

    This work analyzes the spontaneous emission of a single emitter placed near the graphene waveguide formed by two parallel graphene monolayers, with an insulator spacer layer. In this case, the eigenmodes supported by the structure, such as surface plasmon and wave guided modes, provide decay channels for the electric dipole placed close to the waveguide. We calculated the contribution to the decay rate of symmetric and antisymmetric eigenmodes as a function of frequency and the orientation of the emitter. Our results show that the modi?cation of the spontaneous emission due to excitation of guided modes is much lower than the corresponding decays through the excitation of symmetric and antisymmetric surface plasmons, for which, the spontaneous emission is dramatically enhanced. As a consequence of the high con?nement of surface plasmons in the graphene waveguide, we found that the decay rate of the emitter with vertical orientation (with respect to graphene sheets) is twice the corresponding decay of the same...

  4. Stepwise Reduction of Immobilized Mono layer Graphene Oxides

    DEFF Research Database (Denmark)

    Petersen, Søren; He, Yudong; Lang, Jiang

    2013-01-01

    Chemically converted graphene is highly relevant for transparent conducting film applications such as display and photovoltaic uses. So far, the major obstacle for realizing the potential has been to fully reduce/deoxygenate the graphene oxide (GO), which is challenging in part due...... to the pronounced aggregation that accompanies deoxygenation of GO in solution. Surface immobilization of monolayered graphene oxide (mGO) in Langmuir-Blodgett (LB) films was investigated as a method to circumvent this problem. Two types of LB films with different density of mGO flakes were prepared, i.e., diluted...... spectroscopy (XPS) along with electrical characterization. XPS measurements confirmed a full conversion into virtually oxygen-free chemically converted graphene. The electrical characterization revealed large variations in the conductivity for single sheets in the diluted LB films, with an average conductivity...

  5. Enhanced universal absorption of graphene in a Salisbury screen

    Science.gov (United States)

    Ying, Xiangxiao; Pu, Yang; Luo, Yi; Peng, Hao; Li, Zhe; Jiang, Yadong; Xu, Jimmy; Liu, Zhijun

    2017-01-01

    As an emerging optoelectronic material, graphene's universal absorption of about 2.3% over a broad frequency range from infrared to visible, as determined by its interband transition, presents both a new opportunity and a limitation. Here we report on a multifold enhancement of the absorption using a simple strategy, often referred to as the Salisbury screen. It consists of a graphene sheet on top of a SiO2 dielectric layer backed with a copper metallic reflector. For a monolayer graphene, peak absorptions of 9% at near normal incidence and 40% at near grazing angle are experimentally demonstrated in the near-infrared region, in good agreement with calculations using transfer matrix method. The resultant absorption enhancement suggests a great potential for graphene to be used in infrared optoelectronic components.

  6. Polyacrylonitrile Fibers Anchored Cobalt/Graphene Sheet Nanocomposite: A Low-Cost, High-Performance and Reusable Catalyst for Hydrogen Generation.

    Science.gov (United States)

    Zhang, Fei; Huang, Guoji; Hou, Chengyi; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2016-06-01

    Cobalt and its composites are known to be active and inexpensive catalysts in sodium borohydride (NaBH4) hydrolysis to generate clean and renewable hydrogen energy. A novel fiber catalyst, cobalt/graphene sheet nanocomposite anchored on polyacrylonitrile fibers (Co/GRs-PANFs), which can be easily recycled and used in any reactor with different shapes, were synthesized by anchoring cobalt/graphene (Co/GRs) on polyacrylonitrile fibers coated with graphene (GRs-PANFs) at low temperature. The unique structure design effectively prevents the inter-sheet restacking of Co/GRs and fully exploits the large surface area of novel hybrid material for generate hydrogen. And the extra electron transfer path supplied by GRs on the surface of GRs-PANFs can also enhance their catalysis performances. The catalytic activity of the catalyst was investigated by the hydrolysis of NaBH4 in aqueous solution with GRs-PANFs. GRs powders and Co powders were used as control groups. It was found that both GRs and fiber contributed to the hydrogen generation rate of Co/GRs-PANFs (3222 mL x min(-1) x g(-1)), which is much higher than that of cobalt powders (915 mL x min(-1) x g(-1)) and Co/GRs (995 mL x min(-1) x g(-1)). The improved hydrogen generation rate, low cost and uncomplicated recycling make the Co/GRs-PANFs promising candidate as catalysts for hydrogen generation.

  7. Graphitization of self-assembled monolayers using patterned nickel-copper layers

    Science.gov (United States)

    Yang, Gwangseok; Kim, Hong-Yeol; Kim, Jihyun

    2017-07-01

    Controlling the optical and electrical properties of graphene is of great importance because it is directly related to commercialization of graphene-based electronic and optoelectronic devices. The development of a spatially controlled layer-tunable and direct growth method is a favored strategy because it allows for the manipulation of the optical and electrical properties of graphene without complex processes. Here, patterned Ni on Cu layers is employed to achieve spatially thickness-tuned graphene because its thickness depends on the carbon solubility of catalytic metals. Transfer-free graphene is directly grown on an arbitrary target substrate by using self-assembled monolayers as the carbon source. The optical transmittance at a wavelength of 550 nm and the sheet resistance of graphene are adjusted from 65.0% and 2.33 kΩ/◻ to 85.8% and 7.98 kΩ/◻, respectively. Ambipolar behavior with a hole carrier mobility of 3.4 cm2/(V.s) is obtained from the fabricated device. Therefore, a spatially controlled layer-tunable and transfer-free growth method can be used to realize advanced designs for graphene-based optical and electrical devices.

  8. Copper and nickel hexacyanoferrate nanostructures with graphene-coated stainless steel sheets for electrochemical supercapacitors

    Science.gov (United States)

    Wu, Mao-Sung; Lyu, Li-Jyun; Syu, Jhih-Hao

    2015-11-01

    Copper and nickel hexacyanoferrate (CuHCF and NiHCF) nanostructures featuring three-dimensional open-framework tunnels are prepared using a solution-based coprecipitation process. CuHCF shows superior supercapacitive behavior than the NiHCF, due to the presence of numerous macropores in CuHCF particles for facilitating the transport of electrolyte. Both CuHCF and NiHCF electrodes with stainless steel (SS) substrate tend to lose their electroactivity towards intercalation/deintercalation of hydrated potassium ions owing to the partial corrosion of SS. Formation of a protective and conductive carbon layer in between SS and CuHCF (NiHCF) film is of paramount importance for improving the irreversible loss of electroactivity. Thin and compact graphene (GN) layer without observable holes in its normal plane is the most effective way to suppress the corrosion of SS compared with porous carbon nanotube and activated carbon layers. Specific capacitance of CuHCF electrode with GN layer (CuHCF/GN/SS) reaches 570 F g-1, which is even better than that of CuHCF with Pt substrate (500 F g-1) at 1 A g-1. The CuHCF/GN/SS exhibits high stability with 96% capacitance retention over 1000 cycles, greater than the CuHCF with Pt (75%).

  9. Electrochemical Study and Application on Shikonin at Poly(diallyldimethylammonium chloride) Functionalized Graphene Sheets Modified Glass Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    AN Jing; LI Ji-ping; CHEN Wen-xia; YANG Chun-xia; HU Fang-di; WANG Chun-ming

    2013-01-01

    The electrochemical behaviors of shikonin at a poly(diallyldimethylammonium chloride) functionalized graphene sheets modified glass carbon electrode(PDDA-GS/GCE) have been investigated.Shikonin could exhibit a pair of well-defined redox peaks at the PDDA-GS/GCE located at 0.681 V(Epa) and 0.662 V(Epc)[vs.saturated calomel electrode(SCE)] in 0.1 mol/L phosphate buffer solution(pH=2.0) with a peak-to-peak separation of about 20 mV,revealing a fast electron-transfer process.Moreover,the current response was remarkably increased at PDDAGS/GCE compared with that at the bare GCE.The electrochemical behaviors of shikonin at the modified electrode were investigated.And the results indicate that the reaction involves the transfer of two electrons,accompanied by two protons and the electrochemical process is a diffusional-controlled electrode process.The electrochemical parameters of shikonin at the modified electrode,the electron-transfer coefficient(α),the electron-transfer number(n) and the electrode reaction rate constant(ks) were calculated to be as 0.53,2.18 and 3.6 s-1,respectively.Under the optimal conditions,the peak current of differential pulse voltammetry(DPV) increased linearly with the shikonin concentration in a range from 9.472×10-8 mol/L to 3.789×10-6 mol/L with a detection limit of 3.157×10-8 mol/L.The linear regression equation was Ip=0.7366c+0.7855(R=0.9978; Ip:10 7 A,c:10-8 mol/L).In addition,the modified glass carbon electrode also exhibited good stability,selectivity and acceptable reproducibility that could be used for the sensitive,simple and rapid determination of shikonin in real samples.Therefore,the present work offers a new way to broaden the analytical application of graphene in pharmaceutical analysis.

  10. Charge transfer modeling in monolayer circular graphene quantum dots-ZnO nanowires system for application in photovoltaic devices

    Science.gov (United States)

    Tamandani, Shahryar; Darvish, Ghafar

    2017-01-01

    We investigate electron transport between circular graphene quantum dots (CGQDs) and ZnO nanowires (ZnO NWs). This structure can be used as donor and acceptor in hybrid solar cells. We consider circular quantum dots (QDs) and use analytical calculation in order to estimate wavefunctions of GQD and ZnO NWs. After calculating the wavefunctions overlap, we use Marcus relation in order to calculate electron transfer rate. Also, we calculate this transfer rate for CdSe QDs-ZnO NWs system. Results from analytical calculation show that the transfer rate is limited to 1013 s-1. This result is in agreement with experimental results which are reported earlier. Such systems could be suitable for solar cells.

  11. Deposition of an Ultraflat Graphene Oxide Nanosheet on Atomically Flat Substrates

    Science.gov (United States)

    Khan, M. Z. H.; Shahed, S. M. F.; Yuta, N.; Komeda, T.

    2017-02-01

    In this study, graphene oxide (GO) sheets produced in the form of stable aqueous dispersions were deposited on Au (111), freshly cleaved mica, and highly oriented pyrolytic graphite (HOPG) substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study the presence and distinct contact of GO sheets on the substrates. It was revealed from the topography images that high-quality ultraflat GO monolayer sheets formed on the substrates without distinct cracking/wrinkling or folding. GO sheets with apparent height variation observed by microscopy also indicate ultraflat deposition with clear underlying steps. It was observed that ultrasonication and centrifuge steps prior to deposition were very effective for getting oxidation debris (OD)-free ultraflat single monolayer GO nanosheets onto substrates and that the process depends on the concentration of supplied GO solutions.

  12. Deposition of an Ultraflat Graphene Oxide Nanosheet on Atomically Flat Substrates

    Science.gov (United States)

    Khan, M. Z. H.; Shahed, S. M. F.; Yuta, N.; Komeda, T.

    2017-07-01

    In this study, graphene oxide (GO) sheets produced in the form of stable aqueous dispersions were deposited on Au (111), freshly cleaved mica, and highly oriented pyrolytic graphite (HOPG) substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study the presence and distinct contact of GO sheets on the substrates. It was revealed from the topography images that high-quality ultraflat GO monolayer sheets formed on the substrates without distinct cracking/wrinkling or folding. GO sheets with apparent height variation observed by microscopy also indicate ultraflat deposition with clear underlying steps. It was observed that ultrasonication and centrifuge steps prior to deposition were very effective for getting oxidation debris (OD)-free ultraflat single monolayer GO nanosheets onto substrates and that the process depends on the concentration of supplied GO solutions.

  13. Influence of the Total Gas Flow at Different Reaction Times for CVD-Graphene Synthesis on Polycrystalline Nickel

    Directory of Open Access Journals (Sweden)

    M. P. Lavin-Lopez

    2016-01-01

    Full Text Available Optimization of the total gas flow (CH4+H2 during the reaction step for different reaction times for CVD-graphene synthesis on polycrystalline nickel foil using an atmospheric pressure set-up is reported. A thickness value related to number of graphene layers in each of the synthesized samples was determined using an Excel-VBA application. This method assigned a thickness value between 1 and 1000 and provided information on the percentage of each type of graphene (monolayer, bilayer, and multilayer deposited onto the polycrystalline nickel sheet. The influence of the total gas flow during the reaction step and the reaction time was studied in detail. Optical microscopy showed that samples were covered with different types of graphene, such as multilayer, few-layer, bilayer, and monolayer graphene. The synthesis variables were optimized according to the thickness value and the results were verified by Raman spectroscopy. The best conditions were obtained with a reaction temperature of 980°C, a CH4/H2 flow rate ratio of 0.07 v/v, a reaction time of 1 minute, and a total gas flow of 80 NmL/min. In the sample obtained under the optimized conditions, 80% of the area was covered with monolayer graphene and less than 1% with multilayer graphene.

  14. Graphene Nanodevices

    NARCIS (Netherlands)

    Calado, V.E.

    2013-01-01

    This thesis describes a divergent set of experiments on graphene, a one-atom thin sheet of carbon. We employ graphene’s unique properties to explore fundamental physics and novel applications. This is done by nano fabricating graphene to nanodevices, which are subject to experiments. Here we first d

  15. Graphene Nanodevices

    NARCIS (Netherlands)

    Calado, V.E.

    2013-01-01

    This thesis describes a divergent set of experiments on graphene, a one-atom thin sheet of carbon. We employ graphene’s unique properties to explore fundamental physics and novel applications. This is done by nano fabricating graphene to nanodevices, which are subject to experiments. Here we first d

  16. Graphene Nanodevices

    NARCIS (Netherlands)

    Calado, V.E.

    2013-01-01

    This thesis describes a divergent set of experiments on graphene, a one-atom thin sheet of carbon. We employ graphene’s unique properties to explore fundamental physics and novel applications. This is done by nano fabricating graphene to nanodevices, which are subject to experiments. Here we first

  17. 化学镀镍法制备Ni/石墨烯%Synthesis of Ni/graphene sheets by an electroless Ni-plating method

    Institute of Scientific and Technical Information of China (English)

    胡庆华; 王玺堂; 陈浩; 王周福

    2012-01-01

    Ni/graphene sheets were synthesized from graphene oxide sheets using electroless Ni-plating in a NiSO4 solution,with NaBH4 as a reducing agent.The samples were characterized by X-ray diffraction,scanning and transmission electron microscopy.Ni deposited on the surface of the reduced graphene oxide sheets had a high dispersion without aggregation,although the amount of Ni was as high as 32.9% by mass.,The stacking of Ni/graphene sheets resulted in the formation of meso- and macropores.Nitrogen adsorption showed that the meso- and macropores had a slit shape and that the Brunauer-Emmett-Teller specific surface area reached 91 m2/g.The average pore size calculated by the BarretJoyner-Halenda method from desorption studies was 3.83 m,with a pore volume of 0.28 cm3/g.%采用化学镀镍方法,以氧化石墨烯薄片为基体、NaBH4为还原剂,在NiSO4溶液中制备了Ni/石墨烯.通过X射线衍射、场发射扫描电镜和透射电镜对样品进行了表征,结果表明:沉积在石墨烯片表面Ni的的质量分数高达32.9%时,仍具有高度的分散性;相互堆积Ni/石墨烯片形成了介孔和大孔.氮气等温吸附表明:其介孔和大孔为狭缝型结构,孔的Brunauer-Emmett-Teller比表面积为91 m2/g;吸附支的Barret-Joyner-Halenda平均孔径为3.83nm,孔容为0.28 cm3/g.

  18. Effect of graphene on photoluminescence properties of graphene/GeSi quantum dot hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. L.; Ma, Y. J.; Wang, W. Q.; Ding, K.; Wu, Q.; Fan, Y. L.; Yang, X. J.; Zhong, Z. Y.; Jiang, Z. M., E-mail: zmjiang@fudan.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433 (China); Chen, D. D.; Xu, F. [SHU-SolarE R and D Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444 (China)

    2014-07-14

    Graphene has been discovered to have two effects on the photoluminescence (PL) properties of graphene/GeSi quantum dot (QD) hybrid structures, which were formed by covering monolayer graphene sheet on the multilayer ordered GeSi QDs sample surfaces. At the excitation of 488 nm laser line, the hybrid structure had a reduced PL intensity, while at the excitation of 325 nm, it had an enhanced PL intensity. The attenuation in PL intensity can be attributed to the transferring of electrons from the conducting band of GeSi QDs to the graphene sheet. The electron transfer mechanism was confirmed by the time resolved PL measurements. For the PL enhancement, a mechanism called surface-plasmon-polariton (SPP) enhanced absorption mechanism is proposed, in which the excitation of SPP in the graphene is suggested. Due to the resonant excitation of SPP by incident light, the absorption of incident light is much enhanced at the surface region, thus leading to more exciton generation and a PL enhancement in the region. The results may be helpful to provide us a way to improve optical properties of low dimensional surface structures.

  19. Synthesis and photocatalytic property of Fe{sub 3}O{sub 4}@TiO{sub 2} core/shell nanoparticles supported by reduced graphene oxide sheets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Peichang [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Jiang, Wei, E-mail: climentjw@126.com [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Fenghe [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Li, Fengsheng; Shen, Ping; Chen, Mudan; Wang, Yujiao; Liu, Jie; Li, Pingyun [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2013-11-25

    Highlights: •Fe{sub 3}O{sub 4}@TiO{sub 2} nanoparticles loaded on graphene sheets are synthesized for the first time. •This ternary structure can induce photo-degradation of methyl orange. •The interfacial structure between TiO{sub 2} and Fe{sub 3}O{sub 4} is stable at 450 °C. •Fe{sub 3}O{sub 4}@TiO{sub 2}/graphene as ternary photocatalyst can be retrieved by magnetic field. -- Abstract: A ternary nanocomposite of Fe{sub 3}O{sub 4}@TiO{sub 2}/reduced graphene oxide (FTR) was prepared successfully by a facile route in this work. Fe{sub 3}O{sub 4}@TiO{sub 2} core/shell nanospheres were loaded on the surface of reduced graphene oxide (RGO), making the ternary nanocomposite possessed enhanced charge separation efficiency in combined with the supporting media of RGO. The morphology of the ternary nanocomposite was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic degradation efficiency on methyl orange of the FTR nanocomposite was investigated. The photocatalytic degradation efficiency of ternary composite was about three times than that of pure TiO{sub 2}. The result show that the photocatalytic efficiency of 25 mg FTR can reach 83.8% in 50 min, In addition to the high efficiency of the degradation property, the ternary composite can be easily recycled by normal magnet due to the magnetite core. It is suggested that the FTR ternary composite of Fe{sub 3}O{sub 4}@TiO{sub 2}/reduced graphene oxide can be an efficient multifunctional photocatalyst for the degradation of hazardous compounds in waste water.

  20. ZnO nanoparticles decorated on graphene sheets through liquid arc discharge approach with enhanced photocatalytic performance under visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Ashkarran, Ali Akbar, E-mail: ashkarran@umz.ac.ir; Mohammadi, Bahareh

    2015-07-01

    Graphical abstract: TEM image of ZnO–graphene composite. - Highlights: • Innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures. • Combination of bottom-up and top-down methods. • Decoration of ZnO nanoparticles on the surface of graphene. • Visible-light photocatalytic performance. - Abstract: We present an innovative approach for synthesis of zinc oxide–graphene (ZnO–G) hybrid nanostructures through combination of improved hummer and arc discharge methods in liquid. A detailed study of the considerable visible-light photocatalytic activities of these nanostructures for the degradation of Phenol red (PR) and Methyl orange (MO) as standard organic compounds under the irradiation of 90 W halogen light for 2 h has been performed. The ZnO–G nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer Emmett Teller (BET) and ultra violet–visible absorption spectroscopy (UV–vis). The results revealed that the ZnO–G nanostructures extended the light absorption spectrum toward the visible region and remarkably enhanced the photodegradation of standard dyes under visible-light irradiation. It has been confirmed that the ZnO–G nanostructures could be excited by visible-light (E ∼ 2.6 eV). The major enhancement in the photocatalytic activity of ZnO–G nanostructures under visible-light irradiation can be attributed to the effect of electron transport among ZnO nanoparticles (NPs) and graphene sheets. A mechanism for photocatalytic degradation of organic pollutants over ZnO–G photocatalyst was proposed based on our observations.