WorldWideScience

Sample records for monogenetic volcanic fields

  1. Timing the evolution of a monogenetic volcanic field: Sierra Chichinautzin, Central Mexico

    Science.gov (United States)

    Jaimes-Viera, M. C.; Martin Del Pozzo, A. L.; Layer, P. W.; Benowitz, J. A.; Nieto-Torres, A.

    2018-05-01

    The unique nature of monogenetic volcanism has always raised questions about its origin, longevity and spatial distribution. Detailed temporal and spatial boundaries resulted from a morphometric study, mapping, relative dating, twenty-four new 40Ar/39Ar dates, and chemical analyses for the Sierra Chichinautzin, Central Mexico. Based on these results the monogenetic cones were divided into four groups: (1) Peñón Monogenetic Volcanic Group (PMVG); (2) Older Chichinautzin Monogenetic Volcanic Group (Older CMVG); (3) Younger Chichinautzin Monogenetic Volcanic Group (Younger CMVG) and (4) Sierra Santa Catarina Monogenetic Volcanic Group (SSC). The PMVG cover the largest area and marks the northern and southern boundaries of this field. The oldest monogenetic volcanism (PMVG; 1294 ± 36 to 765 ± 30 ka) started in the northern part of the area and the last eruption of this group occurred in the south. These basaltic-andesite cones are widely spaced and are aligned NE-SW (N60°E). After this activity, monogenetic volcanism stopped for 527 ka. Monogenetic volcanism was reactivated with the birth of the Tezoyuca 1 Volcano, marking the beginning of the second volcanic group (Older CMVG; 238 ± 51 to 95 ± 12 ka) in the southern part of the area. These andesitic to basaltic andesite cones plot into two groups, one with high MgO and Nb, and the other with low MgO and Nb, suggesting diverse magma sources. The eruption of the Older CMVG ended with the eruption of Malacatepec volcano and then monogenetic volcanism stopped again for 60 ka. At 35 ka, monogenetic volcanism started again, this time in the eastern part of the area, close to Popocatépetl volcano, forming the Younger CMVG (<35 ± 4 ka). These cones are aligned in an E-W direction. Geochemical composition of eruptive products of measured samples varies from basalts to dacites with low and high MgO. The Younger CMVG is considered still active since the last eruptions took place <2 ka. The SSC (132 ± 70 to 2 ± 56 ka

  2. Geophysical exploration on the subsurface geology of La Garrotxa monogenetic volcanic field (NE Iberian Peninsula)

    Science.gov (United States)

    Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel

    2014-11-01

    We applied self-potential (SP) and electrical resistivity tomography (ERT) to the exploration of the uppermost part of the substrate geology and shallow structure of La Garrotxa monogenetic volcanic field, part of the European Neogene-Quaternary volcanic province. The aim of the study was to improve knowledge of the shallowest part of the feeding system of these monogenetic volcanoes and of its relationship with the subsurface geology. This study complements previous geophysical studies carried out at a less detailed scale and aimed at identifying deeper structures, and together will constitute the basis to establish volcanic susceptibility in La Garrotxa. SP study complemented previous smaller-scale studies and targeted key areas where ERT could be conducted. The main new results include the generation of resistivity models identifying dykes and faults associated with several monogenetic cones. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These structures coincide with the deeper ones identified in previous studies, and show that previous Alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Moreover, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area are controlled by shallow stratigraphical, structural and hydrogeological differences underneath these monogenetic volcanoes.

  3. Resolving the architecture of monogenetic feeder systems from exposures of extinct volcanic fields

    Science.gov (United States)

    Muirhead, J.; Van Eaton, A. R.; Re, G.; White, J. D. L.; Ort, M. H.

    2016-12-01

    Monogenetic volcanic fields pose hazards to a number of major cities worldwide. During an eruption, the evolution of the intrusive feeder network modulates eruption behavior and location, as well as the warning signs of impending activity. However, historical examples of monogenetic eruptions are rare, particularly those monitored with the modern tools required to constrain the geometry and interconnectivity of subsurface intrusive feeders (e.g., InSAR, GPS). Geologic exposures in extinct fields around the Colorado Plateau provide clues to the geometry of shallow intrusions (<1000 m depth) that feed monogenetic volcanoes. We present field- and satellite-based observations of exposed intrusions in the Hopi Buttes volcanic field (Arizona), which reveal that many eruptions were fed by interconnected dike-sill systems. Results from the Hopi Buttes show that volcanic cone alignment studies are biased to the identification of dike intrusions, and thereby neglect the important contributions of sills to shallow feeder systems. For example, estimates of intruded volumes in fields exhumed by uplift and erosion in Utah and Arizona show that sills make up 30 - 92% of the shallow intruded volume within 1000 m of the paleosurface. By transporting magma toward and away from eruptive conduits, these sills likely played a role in modulating eruption styles (e.g., explosive vs effusive) and controlling lateral vent migrations. Sill transitions at Hopi Buttes would have produced detectable surface uplifts, and illustrate the importance of geological studies for informing interpretations of geodetic and seismological data during volcanic crises.

  4. The monogenetic Bayuda Volcanic Field, Sudan - New insights into geology and volcanic morphology

    Science.gov (United States)

    Lenhardt, Nils; Borah, Suranjana B.; Lenhardt, Sukanya Z.; Bumby, Adam J.; Ibinoof, Montasir A.; Salih, Salih A.

    2018-05-01

    The small monogenetic Bayuda Volcanic Field (BVF; 480 km2), comprising at least 53 cinder cones and 15 maar volcanoes in the Bayuda desert of northern Sudan is one of a few barely studied volcanic occurrences of Quaternary age in Sudan. The exact age of the BVF and the duration of volcanic activity has not yet been determined. Furthermore, not much is known about the eruptional mechanisms and the related magmatic and tectonic processes that led to the formation of the volcanic field. In the framework of a larger project focusing on these points it is the purpose of this contribution to provide a first account of the general geology of the BVF volcanoes as well as a first description of a general stratigraphy, including a first description of their morphological characteristics. This was done by means of fieldwork, including detailed rock descriptions, as well as the analysis of satellite images (SRTM dataset at 30 m spatial resolution). The BVF cinder cones are dominated by scoracious lapilli tephra units, emplaced mainly by pyroclastic fallout from Strombolian eruptions. Many cones are breached and are associated with lava flows. The subordinate phreatomagmatism represented by maar volcanoes suggests the presence of ground and/or shallow surface water during some of the eruptions. The deposits constituting the rims around the maar volcanoes are interpreted as having mostly formed due to pyroclastic surges. Many of the tephra rings around the maars are underlain by thick older lava flows. These are inferred to be the horizons where rising magma interacted with groundwater. The existence of phreatomagmatic deposits may point to a time of eruptive activity during a phase with wetter conditions and therefore higher groundwater levels than those encountered historically. This is supported by field observations as well as the morphological analysis, providing evidence for relatively high degrees of alteration of the BVF volcanoes and therefore older eruption ages as

  5. Soil CO2 flux baseline in an urban monogenetic volcanic field: the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Mazot, Agnès; Smid, Elaine R.; Schwendenmann, Luitgard; Delgado-Granados, Hugo; Lindsay, Jan

    2013-11-01

    The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m-2 day-1, with an average of 27.1 g m-2 day-1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.

  6. Geophysical Analysis of Young Monogenetic Volcanoes in the San Francisco Volcanic Field, Arizona

    Science.gov (United States)

    Rees, S.; Porter, R. C.; Riggs, N.

    2017-12-01

    The San Francisco Volcanic Field (SFVF), located in northern Arizona, USA, contains some of the youngest intracontinental volcanism within the United States and, given its recent eruptive history, presents an excellent opportunity to better understand how these systems behave. Geophysical techniques such as magnetics, paleomagnetics, and seismic refraction can be used to understand eruptive behavior and image shallow subsurface structures. As such, they present an opportunity to understand eruptive processes associated with the monogenetic volcanism that is common within the SFVF. These techniques are especially beneficial in areas where erosion has not exposed shallow eruptive features within the volcano. We focus on two volcanoes within the SFVF, Merriam Crater and Crater 120 for this work. These are thought to be some of the youngest volcanoes in the field and, as such, are well preserved. Aside from being young, they both exhibit interesting features such as multiple vents, apparent vent alignment, and lack of erosional features that are present at many of the other volcanoes in the SFVF, making them ideal for this work. Initial results show that shallow subsurface basaltic masses can be located using geophysical techniques. These masses are interpreted as dikes or lava flows that are covered by younger scoria. Propagating dikes drive eruptions at monogenetic volcanoes, which often appear in aligned clusters. Locating these features will further the understanding of how magma is transported and how eruptions may have progressed.

  7. Structural control of monogenetic volcanism in the Garrotxa volcanic field (Northeastern Spain) from gravity and self-potential measurements

    Science.gov (United States)

    Barde-Cabusson, S.; Gottsmann, J.; Martí, J.; Bolós, X.; Camacho, A. G.; Geyer, A.; Planagumà, Ll.; Ronchin, E.; Sánchez, A.

    2014-01-01

    We report new geophysical observations on the distribution of subsurface structures associated with monogenetic volcanism in the Garrotxa volcanic field (Northern Spain). As part of the Catalan Volcanic Zone, this Quaternary volcanic field is associated with the European rifts system. It contains the most recent and best preserved volcanic edifices of the Catalan Volcanic Zone with 38 monogenetic volcanoes identified in the Garrotxa Natural Park. We conducted new gravimetric and self-potential surveys to enhance our understanding of the relationship between the local geology and the spatial distribution of the monogenetic volcanoes. The main finding of this study is that the central part of the volcanic field is dominated by a broad negative Bouguer anomaly of around -0.5 mGal, within which a series of gravity minima are found with amplitudes of up to -2.3 mGal. Inverse modelling of the Bouguer data suggests that surficial low-density material dominates the volcanic field, most likely associated with effusive and explosive surface deposits. In contrast, an arcuate cluster of gravity minima to the NW of the Croscat volcano, the youngest volcano of this zone, is modelled by vertically extended low-density bodies, which we interpret as a complex ensemble of fault damage zones and the roots of young scoria cones. A ground-water infiltration zone identified by a self-potential anomaly is associated with a steep horizontal Bouguer gravity gradient and interpreted as a fault zone and/or magmatic fissure, which fed the most recent volcanic activity in the Garrotxa. Gravimetric and self-potential data are well correlated and indicate a control on the locations of scoria cones by NNE-SSW and NNW-SSE striking tectonic features, which intersect the main structural boundaries of the study area to the north and south. Our interpretation of the data is that faults facilitated magma ascent to the surface. Our findings have major implications for understanding the relationship

  8. Monogenetic volcanoes fed by interconnected dikes and sills in the Hopi Buttes volcanic field, Navajo Nation, USA

    Science.gov (United States)

    Muirhead, James D.; Van Eaton, Alexa R.; Re, Giuseppe; White, James D. L.; Ort, Michael H.

    2016-01-01

    Although monogenetic volcanic fields pose hazards to major cities worldwide, their shallow magma feeders (networks. Analysis of vent alignments using the pyroclastic massifs and other eruptive centers (e.g., maar-diatremes) shows a NW-SE trend, parallel to that of dikes in the region. We therefore infer that dikes fed many of the eruptions. Dikes are also observed in places transforming to transgressive (ramping) sills. Estimates of the observable volume of dikes (maximum volume of 1.90 × 106 m3) and sills (minimum volume of 8.47 × 105 m3) in this study reveal that sills at Hopi Buttes make up at least 30 % of the shallow intruded volume (∼2.75 × 106 m3 total) within 350 m of the paeosurface. We have also identified saucer-shaped sills, which are not traditionally associated with monogenetic volcanic fields. Our study demonstrates that shallow feeders in monogenetic fields can form geometrically complex networks, particularly those intruding poorly consolidated sedimentary rocks. We conclude that the Hopi Buttes eruptions were primarily fed by NW-SE-striking dikes. However, saucer-shaped sills also played an important role in modulating eruptions by transporting magma toward and away from eruptive conduits. Sill development could have been accompanied by surface uplifts on the order of decimeters. We infer that the characteristic feeder systems described here for the Hopi Buttes may underlie monogenetic fields elsewhere, particularly where magma intersects shallow, and often weak, sedimentary rocks. Results from this study support growing evidence of the important role of shallow sills in active monogenetic fields.

  9. Applying geophysical surveys for studying subsurface geology of monogenetic volcanic fields: the example of La Garrotxa Volcanic Field (NE of Iberian Peninsula)

    Science.gov (United States)

    Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel

    2014-05-01

    Improving knowledge of the shallowest part of the feeding system of monogenetic volcanoes and the relationship with the subsurface geology is an important task. We applied high-precision geophysical techniques that are self-potential and electrical resistivity tomography, for the exploration of the uppermost part of the substrate of La Garrotxa Volcanic Field, which is part of the European Cenozoic Rift System. Previous geophysical studies carried out in the same area at a less detailed scale were aimed at identifying deeper structures, and together constitute the basis to establish volcanic susceptibility in La Garrotxa. Self-potential study allowed identifying key areas where electrical resistivity tomography could be conducted. Dykes and faults associated with several monogenetic cones were identified through the generation of resistivity models. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These studies show that previous alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Furthermore, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area can be controlled by shallow stratigraphical, structural, and hydrogeological features underneath these monogenetic volcanoes. This study was partially funded by the Beca Ciutat d'Olot en Ciències Naturals and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO").

  10. The Valle de Bravo Volcanic Field. A monogenetic field in the central front of the Mexican Volcanic Belt

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Jaimes-Viera, M. D.; Nieto-Obreg¢n, J.; Lozano-Santacruz, R.

    2003-12-01

    The Valle de Bravo volcanic field, VBVF, is located in the central-southern front of the Mexican Volcanic Belt just to the southwest of Nevado de Toluca volcano. The VBVF covers 3,703 square Km and includes at least 122 cinder cones, 1 shield volcano, several domes, and the 2 volcanic complexes of Zitacuaro and Villa de Allende. Morphometric parameters calibrated with isotopic ages of the volcanic products indicate four groups or units for the VBVF, Pliocene domes and lava flows, undifferentiated Pleistocene lava flows,> 40 Ka cones and lavas, 40 to 25 Ka cones and lavas, 25 to 10 Ka cones and lavas, and < 10 Ka cones and lavas. Whole-rock chemistry shows that all products of the VBVF range from basaltic andesites to dacites. No basalts were found, in spite of many units are olivine-rich and large some with large weight percent contents of MgO, 1 to 9. There is the possibility that some or all of the olivines in some samples could be xenocrysts. Some andesites are high in Sr, 1000 to 1800 ppm, that correlates with relatively high values of Ba, Cr, Ni, Cu, CaO and MgO. Y and Nb have the typical low values for orogenic rocks. The only shield volcano of the VBVF has a base of 9 Km, and its composition is practically the average composition of the whole field. Stratigraphycally, it is one of the earlier events of the VBVF. Compared with other volcanic fields of the Mexican Volcanic Belt, it lacks basalts and alkalic rocks. All volcanism of this field is calcalkaline

  11. A model for calculating eruptive volumes for monogenetic volcanoes — Implication for the Quaternary Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Agustín-Flores, Javier; Smith, Ian E. M.; Lindsay, Jan

    2013-10-01

    Monogenetic basaltic volcanism is characterised by a complex array of behaviours in the spatial distribution of magma output and also temporal variability in magma flux and eruptive frequency. Investigating this in detail is hindered by the difficulty in evaluating ages of volcanic events as well as volumes erupted in each volcano. Eruptive volumes are an important input parameter for volcanic hazard assessment and may control eruptive scenarios, especially transitions between explosive and effusive behaviour and the length of eruptions. Erosion, superposition and lack of exposure limit the accuracy of volume determination, even for very young volcanoes. In this study, a systematic volume estimation model is developed and applied to the Auckland Volcanic Field in New Zealand. In this model, a basaltic monogenetic volcano is categorised in six parts. Subsurface portions of volcanoes, such as diatremes beneath phreatomagmatic volcanoes, or crater infills, are approximated by geometrical considerations, based on exposed analogue volcanoes. Positive volcanic landforms, such as scoria/spatter cones, tephras rings and lava flow, were defined by using a Light Detection and Ranging (LiDAR) survey-based Digital Surface Model (DSM). Finally, the distal tephra associated with explosive eruptions was approximated using published relationships that relate original crater size to ejecta volumes. Considering only those parts with high reliability, the overall magma output (converted to Dense Rock Equivalent) for the post-250 ka active Auckland Volcanic Field in New Zealand is a minimum of 1.704 km3. This is made up of 1.329 km3 in lava flows, 0.067 km3 in phreatomagmatic crater lava infills, 0.090 km3 within tephra/tuff rings, 0.112 km3 inside crater lava infills, and 0.104 km3 within scoria cones. Using the minimum eruptive volumes, the spatial and temporal magma fluxes are estimated at 0.005 km3/km2 and 0.007 km3/ka. The temporal-volumetric evolution of Auckland is

  12. Monogenetic volcanism: personal views and discussion

    Science.gov (United States)

    Németh, K.; Kereszturi, G.

    2015-11-01

    Monogenetic volcanism produces small-volume volcanoes with a wide range of eruptive styles, lithological features and geomorphic architectures. They are classified as spatter cones, scoria (or cinder) cones, tuff rings, maars (maar-diatremes) and tuff cones based on the magma/water ratio, dominant eruption styles and their typical surface morphotypes. The common interplay between internal, such as the physical-chemical characteristics of magma, and external parameters, such as groundwater flow, substrate characteristics or topography, plays an important role in creating small-volume volcanoes with diverse architectures, which can give the impression of complexity and of similarities to large-volume polygenetic volcanoes. In spite of this volcanic facies complexity, we defend the term "monogenetic volcano" and highlight the term's value, especially to express volcano morphotypes. This study defines a monogenetic volcano, a volcanic edifice with a small cumulative volume (typically ≤1 km3) that has been built up by one continuous, or many discontinuous, small eruptions fed from one or multiple magma batches. This definition provides a reasonable explanation of the recently recognized chemical diversities of this type of volcanism.

  13. Rangitoto Volcano Drilling Project: Life of a Small 'Monogenetic' Basaltic Shield in the Auckland Volcanic Field

    Science.gov (United States)

    Shane, P. A. R.; Linnell, T.; Lindsay, J. M.; Smith, I. E.; Augustinus, P. M.; Cronin, S. J.

    2014-12-01

    Rangitoto is a small basaltic shield volcano representing the most recent and most voluminous episode of volcanism in the Auckland Volcanic Field, New Zealand. Auckland City is built on the field, and hence, Rangitoto's importance in hazard-risk modelling. The symmetrical edifice, ~6 km wide and 260 m high, has volume of 1.78 km3. It comprises summit scoria cones and a lava field. However, the lack of deep erosion dissection has prevented the development of an eruptive stratigraphy. Previous studies suggested construction in a relatively short interval at 550-500 yrs BP. However, microscopic tephra have been interpreted as evidence of intermittent activity from 1498 +/- 140 to 504 +/- 6 yrs BP, a longevity of 1000 years. A 150-m-deep hole was drilled through the edifice in February 2014 to obtain a continuous core record. The result is an unparalleled stratigraphy of the evolution of a small shield volcano. The upper 128 m of core comprises at least 27 lava flows with thicknesses in the range 0.3-15 m, representing the main shield-building phase. Underlying marine sediments are interbedded with 8 m of pyroclastic lapilli, and a thin lava flow, representing the explosive phreatomagmatic birth of the volcano. Preliminary geochemical analyses reveal suite of relatively uniform transitional basalts (MgO = 8.1 to 9.7 wt %). However, 4 compositional groups are distinguished that were erupted in sequential order. High-MgO magmas were erupted first, followed by a two more heterogeneous groups displaying differentiation trends with time. Finally, distinct low-MgO basalts were erupted. Each magma type appears to represent a new magma batch. The core places the magma types in a time series, which can be correlated to the surface lava field. Hence, allowing a geometrical reconstruction of the shield growth. Additional petrologic investigations are providing insight to magmatic ascent processes, while radiocarbon and paleomagnetic secular variation studies will reveal the

  14. Thermobarometry of Whangarei volcanic field lavas, New Zealand: Constraints on plumbing systems of small monogenetic basalt volcanoes

    Science.gov (United States)

    Shane, Phil; Coote, Alisha

    2018-04-01

    The intra-plate, basaltic Whangarei volcanic field (WVF) is a little-studied cluster of Quaternary monogenetic volcanoes in northern New Zealand. Clinopyroxene-melt equilibria provides an insight to the ascent and storage of the magmas that is not evident from whole-rock-scale geochemistry. Basalts from two of the younger volcanoes contain a population of equilibrium and disequilibrium clinopyroxene phenocrysts. Many of the crystals are resorbed, and are characterised by diffuse, patchy zoning, and low MgO (Mg#70-80) and Cr2O3 contents. Such crystals also occur as relic cores in other phenocrysts. These grew in a magma that was more evolved than that of the host rock composition. Equilibrium clinopyroxenes are enriched in MgO (Mg#83-88) and Cr2O3 ( 0.4-0.9 wt%), and occur as reverse-zoned crystals, and rim/mantle overgrowths on relic cores of other crystals. These crystals and rim/mantles zones nucleated in magma with a composition similar to that of the host rock. The textural relationships demonstrate that a mafic magma intruded a more silicic resident magma, resulting in crystal-exchange and entrainment of antecrysts. Clinopyroxene-melt equilibria indicate that the crystallisation occurred at temperatures in the range 1135-1195 °C, and pressures in the range 290-680 MPa. The dominant pressure mode (400-550 MPa) equates to depths of about 15-19 km which coincides with a present-day body of partial melt in the crust. Higher pressures indicated by subordinate crystal populations indicate staged ascent and crystallisation above the Moho ( 26 km depth). Thus, the magmatic system is envisaged as a crystal mush column through the lower and mid crust. Such crystallisation histories are perhaps not expected in low flux, monogenetic magma systems, and reflect the importance of the crustal density structure beneath the volcanoes. Future activity could be preceded by seismic events in the lower crust as the magmas intrude localised crystal mush bodies.

  15. Crystallisation condition of the Quaternary basanites of volcanic centre Black Rock, monogenetic field Lunar Crater

    Science.gov (United States)

    Turova, Mariia; Plechov, Pavel; Scherbakov, Vasily; Larin, Nikolay

    2017-04-01

    The Lunar Crater volcanic field is located in a tension zone Basin and Range Province (USA). This tension is connected with dives oceanic plate under the continental plate [1]. Lunar Crater consists of flows basalt, basanite, trachybasalt has a different age [2]. In this work we investigate the youngest rock - basanite. The basanite is highly crystalline consisting of about megacrysts (3-10 cm) 30-60 wt% phenocrysts ( 800-1500 µm) and microphenocrysts (100-800 µm) and 40-60% microlites (Mathematical, Physical and Engineering Sciences. - 1981. - T. 300. - №. 1454. - C. 407-434. 2. Wood, X., and Keinle, Y., 1990, Volcanoes of North America: Cambridge,United Kingdom, Cambridge University Press, 354 p. 3. Nimis P. Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems //Contributions to Mineralogy and Petrology. - 1999. - T. 135. - №. 1. - C. 62-74. 4. Ballhaus C., Berry R. F., Green D. H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle //Contributions to Mineralogy and Petrology. - 1991. - T. 107. - №. 1. - C. 27-40.

  16. Initial results from the Volcanic Risk in Saudi Arabia project: Microearthquakes in the northern Harrat Rahat monogenetic volcanic field, Madinah, Saudi Arabia

    Science.gov (United States)

    Kenedi, C. L.; Alvarez, M. G.; Abdelwahed, M. F.; Aboud, E.; Lindsay, J. M.; Mokhtar, T. A.; Moufti, M. R.

    2012-12-01

    An 8-station borehole seismic research array is recording microearthquake data in northern Harrat Rahat. This recently active monogenetic volcanic field lies southeast of the Islamic holy city of Madinah, Kingdom of Saudi Arabia. The VORiSA seismographs are operated in collaboration between King Abdulaziz University in Jeddah and the Institute of Earth Science and Engineering, University of Auckland, in New Zealand. The goal of the VORiSA project is to evaluate the seismic and volcanic hazard around Madinah. To this end, we will evaluate the local earthquake activity including the extent to which local earthquakes are tectonic or volcanic. We also will use seismicity to understand the subsurface structure. The analytical goals of the seismic research array are the following: (1) Calculate a new seismic velocity model, (2) Map subsurface structures using seismic tomography, and (3) Explore for fracture zones using shear wave splitting analysis. As compared to seismographs installed on the surface, borehole seismometers detect smaller and more numerous microearthquake signals. The sensitivity and location of the borehole sensors in the VORiSA array are designed to detect these weak signals. The array has a total aperture of 17 km with station spacing at 5 - 10 km. The seismometers are housed in IESE model S21g-2.0, two Hz, 3-component borehole sondes. Sensor depths range from 107 - 121 m. The data acquisition system at each stand-alone station consists of a Reftek 130-01, 6-channel, 24 bit data logger which records at 250 samples per second. The power source is a deep cycle battery with solar recharge. Local temperatures reach extremes of 0° to 50°C, so the battery and recorder are contained in a specially designed underground vault. The vault also provides security in the remote and sparsely populated volcanic field. Recording began on 31 March 2012. An average of one earthquake every three days suggests that currently this is not a highly seismic area. However

  17. Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichinautzin Volcanic Field, south of México City

    Science.gov (United States)

    Agustín-Flores, Javier; Siebe, Claus; Guilbaud, Marie-Noëlle

    2011-04-01

    This study focuses on the geology and geochemistry of three closely-spaced monogenetic volcanoes that are located in the NE sector of the Sierra Chichinautzin Volcanic Field near México City. Pelagatos (3020 m.a.s.l.) is a small scoria cone (0.0017 km 3) with lava flows (0.036 km 3) that covered an area of 4.9 km 2. Cerro del Agua scoria cone (3480 m.a.s.l., 0.028 km 3) produced several lava flows (0.24 km 3) covering an area of 17.6 km 2. Dos Cerros is a lava shield which covers an area of 80.3 km 2 and is crowned by two scoria cones: Tezpomayo (3080 m.a.s.l., 0.022 km 3) and La Ninfa (3000 m.a.s.l., 0.032 km 3). The eruptions of Cerro del Agua and Pelagatos occurred between 2500 and 14,000 yr BP. The Dos Cerros eruption took place close to 14,000 yr BP as constrained by radiocarbon dating. Rocks from these three volcanoes are olivine-hypersthene normative basaltic andesites and andesites with porphyritic, aphanitic, and glomeroporphyritic textures. Their mineral assemblages include olivine, clinopyroxene, and orthopyroxene phenocrysts (≤ 10 vol.%) embedded in a trachytic groundmass which consists mainly of plagioclase microlites and glass. Pelagatos rocks also present quartz xenocrysts. Due to their high Cr and Ni contents, and high Mg#s, Pelagatos rocks are considered to be derived from primitive magmas, hence the importance of this volcano for understanding petrogenetic processes in this region. Major and trace element abundances and petrography of products from these volcanoes indicate a certain degree of crystal fractionation during ascent to the surface. However, the magmas that formed the volcanoes evolved independently from each other and are not cogenetically related. REE, HFSE, LILE, and isotopic (Sr, Nd, and Pb) compositions point towards a heterogeneous mantle source that has been metasomatized by aqueous/melt phases from the subducted Cocos slab. There is no clear evidence of important crustal contributions in the compositions of Pelagatos and

  18. Monitoring diffuse degassing in monogenetic volcanic field during seismic-volcanic unrest: the case of Tenerife North-West Rift Zone (NWRZ), Canary Islands, Spain

    Science.gov (United States)

    García, E.; Botelho, A. H.; Regnier, G. S. G.; Rodríguez, F.; Alonso Cótchico, M.; Melián, G.; Asensio-Ramos, M.; Padrón, E.; Hernández, P. A.; Pérez, N. M.

    2017-12-01

    Tenerife North-West Rift-Zone (NWRZ) is the most active volcano of the oceanic active volcanic island of Tenerife and the scenario of three historical eruptions (Boca Cangrejo S. XVI, Arenas Negras 1706 and Chinyero 1909). Since no visible degassing (fumaroles, etc.) at Tenerife NWRZ occurs, a geochemical monitoring program at Tenerife NWRZ was established mainly consisting on performing soil CO2 efflux surveys (50 surveys since 2000) to evaluate the temporal and spatial variations of soil CO2 efflux measurements and the diffuse CO2 emission rate. To do so, about 340 sampling sites were selected for each survey to obtain a homogeneous distribution after taking into consideration the local geology, structure, and accessibility. Measurements of soil CO2 efflux were performed in situ by means of a portable non-dispersive infrared sensor following the accumulation chamber method. The soil CO2 efflux values of the 2017 survey ranged from non-detectable to 46.6 g m-2 d-1. Statistical-graphical analysis of the 2017 data show two different geochemical populations; background (B) and peak (P) represented by 93.3% and 1.9% of the total data, respectively. The geometric means of the B and P populations are 2.4 and 19.1 g m-2 d-1, respectively. Most of the area showed B values while the P values were mainly observed at the N-W side of the volcanic rift. To estimate the diffuse CO2 emission in metric tons per day released from Tenerife NWRZ (75 km2) for the 2017 survey, we ran about 100 sGs simulations. The estimated 2017 diffuse CO2 output released to atmosphere by the Tenerife NWRZ volcano was 297 ± 13 t d-1. This 2017 diffuse CO2 emission rate value is relatively higher than the estimated background value (144 t d-1) and falls within the estimated background range (72 - 321 t d-1) observed for Tenerife NWRZ volcano during the 2000-2017 period. The observed temporal variation in the diffuse CO2 degassing output during this period does not seem to be driven by external

  19. Creating global comparative analyses of tectonic rifts, monogenetic volcanism and inverted relief

    Science.gov (United States)

    van Wyk de Vries, Benjamin

    2016-04-01

    I have been all around the world, and to other planets and have travelled from the present to the Archaean and back to seek out the most significant tectonic rifts, monogenetic volcanoes and examples of inverted relief. I have done this to provide a broad foundation of the comparative analysis for the Chaîne des Puys - Limagne fault nomination to UNESCO world Heritage. This would have been an impossible task, if not for the cooperation of the scientific community and for Google Earth, Google Maps and academic search engines. In preparing global comparisons of geological features, these quite recently developed tools provide a powerful way to find and describe geological features. The ability to do scientific crowd sourcing, rapidly discussing with colleagues about features, allows large numbers of areas to be checked and the open GIS tools (such as Google Earth) allow a standardised description. Search engines also allow the literature on areas to be checked and compared. I will present a comparative study of rifts of the world, monogenetic volcanic field and inverted relief, integrated to analyse the full geological system represented by the Chaîne des Puys - Limagne fault. The analysis confirms that the site is an exceptional example of the first steps of continental drift in a mountain rift setting, and that this is necessarily seen through the combined landscape of tectonic, volcanic and geomorphic features. The analysis goes further to deepen the understanding of geological systems and stresses the need for more study on geological heritage using such a global and broad systems approach.

  20. Unravelling the magmatic system beneath a monogenetic volcanic complex (Jagged Rocks Complex, Hopi Buttes, AZ, USA)

    Science.gov (United States)

    Re, G.; Palin, J. M.; White, J. D. L.; Parolari, M.

    2017-12-01

    The Jagged Rocks complex is the eroded remnant of the plumbing systems of closely spaced monogenetic alkaline volcanic centres in the southern Hopi Buttes Volcanic Field (AZ, USA). It contains different clinopyroxene populations with distinctive textures and geochemical patterns. In the Northwestern part of the complex, which exposes the best developed system of conduits, most of the clinopyroxenes consist of large- to medium-sized resorbed cores overgrown by euhedral rims (type 1), small moderately resorbed greenish cores with the same overgrown rims (type 2), and phlogopite as an accessory phase. By contrast, in the Southern part of the complex the majority of clinopyroxenes are euhedral with oscillatory zonation (type 3) and are accompanied by minor euhedral olivine. The differences between these mineral assemblages indicate a composite history of crystallization and magmatic evolution for the two parts of the complex, governed by different mechanisms and ascent patterns from a single source at 50 km depth (16 kbar). The Northwest system preserves a high-pressure assemblage that cooled rapidly from near-liquidus conditions, suggesting direct ascent from the source to the surface at high-to-moderate transport rates (average 1.25 m/s). By contrast, the Southern system represents magma that advanced upward at much lower overall ascent rates, stalling at times to form small-volume mid-crustal storage zones (e.g., sills or a network of sheeted intrusions); this allowed the re-equilibration of the magma at lower pressure ( 30 km; 8 kbar), and led to nucleation and growth of euhedral clinopyroxene and olivine phenocrysts.

  1. Geomorphometric variability of "monogenetic" volcanic cones: Evidence from Mauna Kea, Lanzarote and experimental cones

    Science.gov (United States)

    Kervyn, M.; Ernst, G. G. J.; Carracedo, J.-C.; Jacobs, P.

    2012-01-01

    Volcanic cones are the most common volcanic constructs on Earth. Their shape can be quantified using two morphometric ratios: the crater/cone base ratio (W cr/W co) and the cone height/width ratio (H co/W co). The average values for these ratios obtained over entire cone fields have been explained by the repose angle of loose granular material (i.e. scoria) controlling cone slopes. The observed variability in these ratios between individual cones has been attributed to the effect of erosional processes or contrasting eruptive conditions on cone morphometry. Using a GIS-based approach, high spatial resolution Digital Elevation Models and airphotos, two new geomorphometry datasets for cone fields at Mauna Kea (Hawaii, USA) and Lanzarote (Canary Islands, Spain) are extracted and analyzed here. The key observation in these datasets is the great variability in morphometric ratios, even for simple-shape and well-preserved cones. Simple analog experiments are presented to analyze factors influencing the morphometric ratios. The formation of a crater is simulated within an analog cone (i.e. a sand pile) by opening a drainage conduit at the cone base. Results from experiments show that variability in the morphometric ratios can be attributed to variations in the width, height and horizontal offset of the drainage point relative to the cone symmetry axis, to the dip of the underlying slope or to the influence of a small proportion of fine cohesive material. GIS analysis and analog experiments, together with specific examples of cones documented in the field, suggest that the morphometric ratios for well-preserved volcanic cones are controlled by a combination of 1) the intrinsic cone material properties, 2) time-dependent eruption conditions, 3) the local setting, and 4) the method used to estimate the cone height. Implications for interpreting cone morphometry solely as either an age or as an eruption condition indicator are highlighted.

  2. Compositional and volumetric development of a monogenetic lava flow field: The historical case of Paricutin (Michoacán, Mexico)

    Science.gov (United States)

    Larrea, Patricia; Salinas, Sergio; Widom, Elisabeth; Siebe, Claus; Abbitt, Robbyn J. F.

    2017-12-01

    Paricutin volcano is the youngest and most studied monogenetic volcano in the Michoacán-Guanajuato volcanic field (Mexico), with an excellent historical record of its nine years (February 1943 to March 1952) of eruptive activity. This eruption offered a unique opportunity to observe the birth of a new volcano and document its entire eruption. Geologists surveyed all of the eruptive phases in progress, providing maps depicting the volcano's sequential growth. We have combined all of those previous results and present a new methodological approach, which utilizes state of the art GIS mapping tools to outline and identify the 23 different eruptive phases as originally defined by Luhr and Simkin (1993). Using these detailed lava flow distribution maps, the volume of each of the flows was estimated with the aid of pre- and post-eruption digital elevation models. Our procedure yielded a total lava flow volume ranging between 1.59 and 1.68 km3 DRE, which is larger than previous estimates based on simpler methods. In addition, compositional data allowed us to estimate magma effusion rates and to determine variations in the relative proportions of the different magma compositions issued during the eruption. These results represent the first comprehensive documentation of the combined chemical, temporal, and volumetric evolution of the Paricutin lava field and provide key constraints for petrological interpretations of the nature of the magmatic plumbing system that fed the eruption.

  3. Reconstructing the eruption magnitude and energy budgets for the pre-historic eruption of the monogenetic ˜5 ka Mt. Gambier Volcanic Complex, south-eastern Australia

    Science.gov (United States)

    van Otterloo, Jozua; Cas, Raymond A. F.

    2013-12-01

    Understanding explosive volcanic eruptions, especially phreatomagmatic eruptions, their intensities and energy budgets is of major importance when it comes to risk and hazard studies. With only a few historic occurrences of phreatomagmatic activity, a large amount of our understanding comes from the study of pre-historic volcanic centres, which causes issues when it comes to preservation and vegetation. In this research, we show that using 3D geometrical modelling it is possible to obtain volume estimates for different deposits of a pre-historic, complex, monogenetic centre, the Mt. Gambier Volcanic Complex, south-eastern Australia. Using these volumes, we further explore the energy budgets and the magnitude of this eruption (VEI 4), including dispersal patterns (eruption columns varying between 5 and 10 km, dispersed towards north-east to south), to further our understanding of intraplate, monogenetic eruptions involving phreatomagmatic activity. We also compare which thermodynamic model fits best in the creation of the maar crater of Mt. Gambier: the major-explosion-dominated model or the incremental growth model. In this case, the formation of most of the craters can best be explained by the latter model.

  4. Paleomagnetically inferred ages of a cluster of Holocene monogenetic eruptions in the Tacámbaro-Puruarán area (Michoacán, México): Implications for volcanic hazards

    Science.gov (United States)

    Mahgoub, Ahmed Nasser; Böhnel, Harald; Siebe, Claus; Salinas, Sergio; Guilbaud, Marie-Noëlle

    2017-11-01

    The paleomagnetic dating procedure was applied to a cluster of four partly overlapping monogenetic Holocene volcanoes and associated lava flows, namely La Tinaja, La Palma, Mesa La Muerta, and Malpaís de Cutzaróndiro, located in the Tacámbaro-Puruarán area, at the southeastern margin of the Michoacán-Guanajuato volcanic field. For this purpose, 21 sites distributed as far apart as possible from each other were sampled to obtain a well-averaged mean paleomagnetic direction for each single lava flow. For intensity determinations, double-heating Thellier experiments using the IZZI protocol were conducted on 55 selected samples. La Tinaja is the oldest of these flows and was dated by the 14C method at 5115 ± 130 years BP (cal 4184-3655 BCE). It is stratigraphically underneath the other three flows with Malpaís de Cutzaróndiro lava flow being the youngest. The paleomagnetic dating procedure was applied using the Matlab archaeo-dating tool in couple with the geomagnetic field model SHA.DIF.14k. Accordingly, for La Tinaja several possible age ranges were obtained, of which the range 3650-3480 BCE is closest to the 14C age. Paleomagnetic dating on La Palma produced a unique age range of 3220-2880 BCE. Two ages ranges of 2240-2070 BCE and 760-630 BCE were obtained for Mesa La Muerta and a well-constrained age of 420-320 BCE for Malpaís de Cutzaróndiro. Although systematic archaeological excavations have so far not been carried out in this area, it is possible that the younger eruptions were contemporary to local human occupation. Our paleomagnetic dates indicate that all four eruptions, although closely clustered in space, occurred separately in time with varying recurrence intervals ranging between 300 and 2300 years. This finding should be considered when constraining the nature of the magmatic plumbing system and developing a strategy aimed at reducing risk in the volcanically active Michoacán-Guanajuato volcanic field, where several young monogenetic volcano

  5. Sources of Quaternary volcanism in the Itasy and Ankaratra volcanic fields, Madagascar

    Science.gov (United States)

    Rasoazanamparany, C.; Widom, E.; Kuentz, D. C.; Raharimahefa, T.; Rakotondrazafy, F. M. A.; Rakotondravelo, K. M.

    2017-12-01

    fields occur in essentially identical tectonic and geological settings, they exhibit distinct chemical and isotopic signatures indicative of mantle heterogeneity that occurs on a small spatial scale, similar to that observed recently in other mafic monogenetic volcanic fields in both intraplate and subduction settings.

  6. Spatio-volumetric hazard estimation in the Auckland volcanic field

    Science.gov (United States)

    Bebbington, Mark S.

    2015-05-01

    The idea of a volcanic field `boundary' is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a `hard' boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the `gaps' between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.

  7. Co-located monogenetic eruptions similar to 200 kyr apart driven by tapping vertically separated mantle source regions, Chagwido, Jeju Island, Republic of Korea

    NARCIS (Netherlands)

    Brenna, M.; Nemeth, K.; Cronin, S.J.; Sohn, Y.K.; Smith, I.E.M.; Wijbrans, J.R.

    2015-01-01

    New eruptions in monogenetic volcanic fields conceptually occur independently of previous ones. In some instances, however, younger volcanic structures and vents may overlap with older edifices. The genetic links between such co-located eruptions remain unclear. We mapped and analysed the

  8. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    Science.gov (United States)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  9. Optimal likelihood-based matching of volcanic sources and deposits in the Auckland Volcanic Field

    Science.gov (United States)

    Kawabata, Emily; Bebbington, Mark S.; Cronin, Shane J.; Wang, Ting

    2016-09-01

    In monogenetic volcanic fields, where each eruption forms a new volcano, focusing and migration of activity over time is a very real possibility. In order for hazard estimates to reflect future, rather than past, behavior, it is vital to assemble as much reliable age data as possible on past eruptions. Multiple swamp/lake records have been extracted from the Auckland Volcanic Field, underlying the 1.4 million-population city of Auckland. We examine here the problem of matching these dated deposits to the volcanoes that produced them. The simplest issue is separation in time, which is handled by simulating prior volcano age sequences from direct dates where known, thinned via ordering constraints between the volcanoes. The subproblem of varying deposition thicknesses (which may be zero) at five locations of known distance and azimuth is quantified using a statistical attenuation model for the volcanic ash thickness. These elements are combined with other constraints, from widespread fingerprinted ash layers that separate eruptions and time-censoring of the records, into a likelihood that was optimized via linear programming. A second linear program was used to optimize over the Monte-Carlo simulated set of prior age profiles to determine the best overall match and consequent volcano age assignments. Considering all 20 matches, and the multiple factors of age, direction, and size/distance simultaneously, results in some non-intuitive assignments which would not be produced by single factor analyses. Compared with earlier work, the results provide better age control on a number of smaller centers such as Little Rangitoto, Otuataua, Taylors Hill, Wiri Mountain, Green Hill, Otara Hill, Hampton Park and Mt Cambria. Spatio-temporal hazard estimates are updated on the basis of the new ordering, which suggest that the scale of the 'flare-up' around 30 ka, while still highly significant, was less than previously thought.

  10. CO2 diffuse emission from maar lake: An example in Changbai volcanic field, NE China

    Science.gov (United States)

    Sun, Yutao; Guo, Zhengfu; Liu, Jiaqi; Du, Jianguo

    2018-01-01

    Numerous maars and monogenetic volcanic cones are distributed in northeast China, which are related to westward deep subduction of the Pacific Ocean lithosphere, comprising a significant part of the "Pacific Ring of Fire". It is well known that diffuse CO2 emissions from monogenetic volcanoes, including wet (e.g., maar lake) and dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.), may contribute to budget of globally nature-derived greenhouse gases. However, their relationship between wet (e.g., maar lake) and concomitant dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.) related to monogenetic volcanic field is poorly understood. Yuanchi maar, one of the typical monogenetic volcanic systems, is located on the eastern flank of Tianchi caldera in Changbai volcanic field of northeast China, which displays all of three forms of CO2 degassing including the maar lake, soil micro-seepage and fault degassing. Measurements of efflux of CO2 diffusion from the Yuanchi maar system (YMS) indicate that the average values of CO2 emissions from soil micro-seepage, fault degassing and water-air interface diffusion are 24.3 ± 23.3 g m- 2 d- 1, 39.2 ± 22.4 g m- 2 d- 1 and 2.4 ± 1.1 g m- 2 d- 1, respectively. The minimum output of CO2 diffuse emission from the YMS to the atmosphere is about 176.1 ± 88.3 ton/yr, of which 80.4% results from the dry degassing system. Degassing from the fault contributes to the most of CO2 emissions in all of the three forms of degassing in the YMS. Contributions of mantle, crust, air and organic CO2 to the soil gas are 0.01-0.10%, 10-20%, 32-36% and 48-54%, respectively, which are quantitatively constrained by a He-C isotope coupling calculation model. We propose that CO2 exsolves from the upper mantle melting beneath the Tianchi caldera, which migrates to the crustal magma chamber and further transports to the surface of YMS along the deep fault system. During the transportation processes, the emission

  11. A 3D model of crustal magnetization at the Pinacate Volcanic Field, NW Sonora, Mexico

    Science.gov (United States)

    García-Abdeslem, Juan; Calmus, Thierry

    2015-08-01

    The Pinacate Volcanic Field (PVF) is located near the western border of the southern Basin and Range province, in the State of Sonora NW Mexico, and within the Gulf of California Extensional Province. This volcanic field contains the shield volcano Santa Clara, which mainly consists of basaltic to trachytic volcanic rocks, and reaches an altitude of 1200 m. The PVF disrupts a series of discontinuous ranges of low topographic relief aligned in a NW direction, which consist mainly of Proterozoic metamorphic rocks and Proterozoic through Paleogene granitoids. The PVF covers an area of approximately 60 by 55 km, and includes more than 400 well-preserved cinder cones and vents and eight maar craters. It was active from about 1.7 Ma until about 13 ka. We have used the ages and magnetic polarities of the volcanic rocks, along with mapped magnetic anomalies and their inverse modeling to determine that the Pinacate Volcanic Field was formed during two volcanic episodes. The oldest one built the Santa Clara shield volcano of basaltic and trachytic composition, and occurred during the geomagnetic Matuyama Chron of reverse polarity, which also includes the normal polarity Jaramillo and Olduvai Subchrons, thus imprinting both normal and reverse magnetization in the volcanic products. The younger Pinacate series of basaltic composition represents monogenetic volcanic activity that extends all around the PVF and occurred during the subsequent geomagnetic Brunhes Chron of normal polarity. Magnetic anomalies toward the north of the Santa Clara volcano are the most intense in the PVF, and their inverse modeling indicates the presence of a large subsurface body magnetized in the present direction of the geomagnetic field. This suggests that the magma chambers at depth cooled below the Curie temperature during the Brunhes Chron.

  12. Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Procter, Jonathan; Agustín-Flores, Javier

    2014-10-01

    Monogenetic basaltic volcanism is characterised by a complex array of eruptive behaviours, reflecting spatial and temporal variability of the magmatic properties (e.g. composition, eruptive volume, magma flux) as well as environmental factors at the vent site (e.g. availability of water, country rock geology, faulting). These combine to produce changes in eruption style over brief periods (minutes to days) in many eruption episodes. Monogenetic eruptions in some volcanic fields often start with a phreatomagmatic vent-opening phase that later transforms into "dry" magmatic explosive or effusive activity, with a strong variation in the duration and importance of this first phase. Such an eruption sequence pattern occurred in 83% of the known eruption in the 0.25 My-old Auckland Volcanic Field (AVF), New Zealand. In this investigation, the eruptive volumes were compared with the sequences of eruption styles preserved in the pyroclastic record at each volcano of the AVF, as well as environmental influencing factors, such as distribution and thickness of water-saturated semi- to unconsolidated sediments, topographic position, distances from known fault lines. The AVF showed that there is no correlation between ejecta ring volumes and environmental influencing factors that is valid for the entire AVF. In contrary, using a set of comparisons of single volcanoes with well-known and documented sequences, resultant eruption sequences could be explained by predominant patterns of the environment in which these volcanoes were erupted. Based on the spatial variability of these environmental factors, a first-order susceptibility hazard map was constructed for the AVF that forecasts areas of largest likelihood for phreatomagmatic eruptions by overlaying topographical and shallow geological information. Combining detailed phase-by-phase breakdowns of eruptive volumes and the event sequences of the AVF, along with the new susceptibility map, more realistic eruption scenarios can be

  13. Age of the Auckland Volcanic Field

    International Nuclear Information System (INIS)

    Lindsay, J.; Leonard, G.S.

    2009-01-01

    In 2008 a multi-disciplinary research programme was launched, a GNS Science-University of Auckland collaboration with the aim of DEtermining VOlcanic Risk in Auckland (DEVORA). A major aspiration of DEVORA is development of a probabilistic hazard model for the Auckland Volcanic Field (AVF). This will be achieved by investigating past eruption magnitude-frequency relationships and comparing these with similar data from analogous volcanic fields. A key data set underpinning this is an age database for the AVF. To this end a comprehensive dating campaign is planned as part of DEVORA. This report, Age of the Auckland Volcanic Field, is a synthesis of all currently available age data for the AVF. It represents one of several reports carried out as part of the 'synthesis' phase of DEVORA, whereby existing data from all previous work is collated and summarised, so that gaps in current knowledge can be identified and addressed. (author). 60 refs., 7 figs., 31 tabs.

  14. Intraplate volcanism influenced by distal subduction tectonics at Jeju Island, Republic of Korea

    NARCIS (Netherlands)

    Brenna, M.; Cronin, S.J.; Kereszturi, G.; Sohn, Y.K.; Smith, I.E.M.; Wijbrans, J.R.

    2015-01-01

    The drivers behind the inception of, and the variable, pulsatory eruption rates at distributed intraplate volcanic fields are not well understood. Such broad areas of monogenetic volcanism cover vast areas of the world and are often heavily populated. Reliable models to unravel their behaviour

  15. Construction of the North Head (Maungauika) tuff cone: a product of Surtseyan volcanism, rare in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Agustín-Flores, Javier; Németh, Károly; Cronin, Shane J.; Lindsay, Jan M.; Kereszturi, Gábor

    2015-02-01

    The Auckland Volcanic Field (AVF) comprises at least 52 monogenetic eruption centres dispersed over ˜360 km2. Eruptions have occurred sporadically since 250 ka, predominantly when glacio-eustatic sea levels were lower than today. Now that around 35 % of the field is covered by shallow water (up to 30 m depth), any eruption occurring in the present or near future within this area may display Surtseyan dynamics. The North Head tuff cone evidences eruptive dynamics caused by magma interaction with seawater. The first stages of the eruption comprise a phreatomagmatic phase that built a 48-m-high tuff cone. North Head tuff deposits contain few lithic fragments (Auckland area was at least 10-12 m above the pre-eruptive surface. The hazards associated with this type of eruption pose a risk to the densely populated coastal residential zones and the activities of one of the busiest harbours in New Zealand.

  16. From "Volcanic Field" to "Volcanic Province": A Continuum of Spatial-Clustered Structures With Geological Significance or a Matter of Academic Snobbism?

    Science.gov (United States)

    Canon-Tapia, E.

    2017-12-01

    "Volcanic Field" is a term commonly used to describe a group of small, monogenetic and dominantly basaltic volcanoes, but that often includes groups of mixed monogenetic and polygenetic edifices. Besides ambiguities on the type of edifice that should be considered to form a VF, there is a lack of agreement concerning the number of volcanoes required to define a VF (ranging from five to over 1000), it is uncertain if the area covered by the volcanoes forming a VF must have a minimum number of volcanoes/unit area, or if the distance between adjacent structures needs to have a specific length. Furthermore, in many cases it is uncertain whether some area is occupied by two adjacent fields or if it is occupied by two subgroups belonging to a unique field. On the other hand, in analogy with the official definition of a geologic province, a "Volcanic Province" can be defined as a large region or area characterized by similar volcanic features, or by a history differing significantly from that of adjacent areas. Because neither the dimensions of the region nor the characteristics of the features to be used as reference are specified, there is an inherent ambiguity in this definition, which in some cases might become the source of unnecessary confusion. This work presents a review of the various ambiguities that remain unaddressed on the definition of a VF, and that bear some connection with the definition of VPs in general, with special interest in intraplate settings. It is shown that questions such as a) how many volcanoes are required to form a VF and b) when two "neighbor" volcanoes should not be considered to be part of the same field, can be adequately addressed by adopting the techniques of cluster analysis. Other parameters might not be as easy to address including aspects related to total volume of magma erupted, overall composition of the erupted products and age spans of activity and intermediate gaps. Based on the evidence presented, it is shown that there is a

  17. The origin of plagioclase phenocrysts in basalts from continental monogenetic volcanoes of the Kaikohe-Bay of Islands field, New Zealand: implications for magmatic assembly and ascent

    Science.gov (United States)

    Coote, Alisha; Shane, Phil; Stirling, Claudine; Reid, Malcolm

    2018-02-01

    Late Quaternary, porphyritic basalts erupted in the Kaikohe-Bay of Islands area, New Zealand, provide an opportunity to explore the crystallization and ascent history of small volume magmas in an intra-continental monogenetic volcano field. The plagioclase phenocrysts represent a diverse crystal cargo. Most of the crystals have a rim growth that is compositionally similar to groundmass plagioclase ( An65) and is in equilibrium with the host basalt rock. The rims surround a resorbed core that is either less calcic ( An20-45) or more calcic (> An70), having crystallized in more differentiated or more primitive melts, respectively. The relic cores, particularly those that are less calcic (The erupted basalts represent mafic recharge of this system, as indicated by the final crystal rim growths around the entrained antecrystic and xenocrystic cargo. The recharge also entrained cognate gabbros that occur as inclusions, and produced mingled groundmasses. Multi-stage magmatic ascent and interaction is indicated, and is consistent with the presence of a partial melt body in the lower crust detected by geophysical methods. This crystallization history contrasts with traditional concepts of low-flux basaltic systems where rapid ascent from the mantle is inferred. From a hazards perspective, the magmatic system inferred here increases the likelihood of detecting eruption precursor phenomena such as seismicity, degassing and surface deformation.

  18. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    Science.gov (United States)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of

  19. A Tale of Two Olivines: Magma Ascent in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Smid, E. R.; McGee, L. E.; Smith, I. E.; Lindsay, J. M.

    2013-12-01

    The Auckland Volcanic Field (AVF) is a nephelinitic to subalkali basaltic monogenetic field centered on the city of Auckland, New Zealand. Lavas are olivine-phyric, and the deposits of several volcanoes in the field contain olivine crystals with chrome spinel (Cr-spinel) inclusions. Microprobe analyses show at least two populations of olivine, categorised by their Mg# and their spinel inclusion compositions: the first has olivines that are euhedral, have compositions slightly less forsteritic than expected for whole rock Mg#, and have Cr-spinel inclusions with relatively low Cr2O3 contents of ~20%. These are interpreted as antecrysts inherited from the mantle source that yielded their host magma. The second population is characterised by olivines that are sub- to euhedral, are significantly more forsteritic than expected from their host whole rock Mg#, and have Cr-spinel inclusons with relatively high Cr2O3 contents of ~50%. These are interpreted as xenocrysts. The composition of these high Cr2O3 spinels very closely resembles the composition of spinels within olivines in dunite sampled from the Dun Mountain Ophiolite on the South Island of New Zealand. The northward extension of the Dun Mountain complex beneath the North Island is defined by the Junction Magnetic Anomaly, marking a crustal terrane boundary that underlies the Auckland Volcanic Field. These data indicate that the magmas that have risen to produce the volcanoes of the Auckland Volcanic Field have carried crystals from an underlying ultramafic crust as well as from their asthenospheric source. Euhedral olivine crystals which do not contain Cr-spinel are also present in AVF lavas and these are interpreted as true phenocrysts that crystallised directly from their host magmas. The lack of reaction textures at crystal margins suggests rapid ascent rates. A crustal origin for the xenocrysts not only has large implications for ascent rate modelling of olivines, but also for the crustal structure of the

  20. Geochemical and geophysical monitoring activities in Campo de Calatrava Volcanic Field (Spain)

    Science.gov (United States)

    Luengo-Oroz, Natividad; Villasante-Marcos, Víctor; López-Díaz, Rubén; Calvo, Marta; Albert, Helena; Domínguez Cerdeña, Itahiza

    2017-04-01

    The Campo de Calatrava Volcanic Field (CCVF) or Spanish Central Volcanic Zone is located in central continental Spain (Ciudad Real province) and covers about 5000 km2. It includes around 240 eruptive centers, mainly monogenetic basaltic cones but also explosive maar structures. According to K-Ar geochronology, its main activity phase occurred during Pliocene and Pleistocene epochs (between 5 and 1.7 Ma) and involved alkaline to ultraalkaline magmas, although an older ultrapotassic phase is dated around 8.7-6.4 Ma. However, some recent works have proposed Holocene ages for some of the volcanic products, opening the possibility of considering the CCVF "active" according to international standards. Responding to this situation, the Instituto Geográfico Nacional (IGN) has initiated geochemical and geophysical monitoring activities in the CCVF. Here, we describe these ongoing efforts and we report results about groundwater geochemistry at several natural highly-gaseous springs in the area (hervideros), as well as soil temperature, CO2 diffuse flux from the soil and electrical self-potential data mapped on a small degassing structure called La Sima. In order to analyze microseismicity or any seismic anomaly in the CCVF, a seismic station has also been installed close to this degassing structure. Physicochemical parameters (temperature, pH, Eh and electric conductivity) were measured in situ in four springs and samples were taken in order to analyze major ions and trace elements. Total composition of dissolved gases and helium isotopic ratios were also determined. To complete soil temperature, self-potential and gas prospections performed in La Sima, soil gases were sampled at the bottom of the structure at a depth of 20 cm. Analysis of the total gas composition found 957400 ppm of CO2. Low values of O2 and N2 were also detected (5600 and 24800 ppm respectively).

  1. Field-trip guide to a volcanic transect of the Pacific Northwest

    Science.gov (United States)

    Geist, Dennis; Wolff, John; Harpp, Karen

    2017-08-01

    The Pacific Northwest region of the United States provides world-class and historically important examples of a wide variety of volcanic features. This guide is designed to give a broad overview of the region’s diverse volcanism rather than focusing on the results of detailed studies; the reader should consult the reference list for more detailed information on each of the sites, and we have done our best to recognize previous field trip leaders who have written the pioneering guides. This trip derives from one offered as a component of the joint University of Idaho- Washington State University volcanology class taught from 1995 through 2014, and it borrows in theme from the classic field guide of Johnston and Donnelly-Nolan (1981). For readers interested in using this field guide as an educational tool, we have included an appendix with supplemental references to resources that provide useful background information on relevant topics, as well as a few suggestions for field-based exercises that could be useful when bringing students to these locations in the future. The 4-day trip begins with an examination of lava flow structures of the Columbia River Basalt, enormous lava fields that were emplaced during one of the largest eruptive episodes in Earth’s recent history. On the second day, the trip turns to the High Lava Plains, a bimodal volcanic province that transgressed from southeast to northwest from the Miocene through the Holocene, at the northern margin of the Basin and Range Province. This volcanic field provides excellent examples of welded ignimbrite, silicic lavas and domes, monogenetic basaltic lava fields, and hydrovolcanic features. The third day is devoted to a circumnavigation of Crater Lake, the result of one of the world’s best-documented caldera-forming eruptions. The caldera walls also expose the anatomy of Mount Mazama, a stratovolcano of the Cascade Range. The last day is spent at Newberry Volcano, a back-arc shield volcano topped by a

  2. Remote Sensing and GIS as Tools for Identifying Risk for Phreatomagmatic Eruptions in the Bishoftu Volcanic Field, Ethiopia

    Science.gov (United States)

    Pennington, H. G.; Graettinger, A.

    2017-12-01

    Bishoftu is a fast-growing town in the Oromia region of Ethiopia, located 47 km southeast of the nation's capital, Addis Ababa. It is situated atop a monogenetic basaltic volcanic field, called the Bishoftu Volcanic Field (BVF), which is composed of maar craters, scoria cones, lava flows, and rhyolite domes. Although not well dated, the morphology and archeological evidence have been used to infer a Holocene age, indicating that the community is exposed to continued volcanic risk. The presence of phreatomagmatic constructs in particular indicates that the hazards are not only vent-localized, but may have far reaching impacts. Hazard mapping is an essential tool for evaluating and communicating risks. This study presents the results of GIS analyses of proximal and distal syn-eruptive hazards associated with phreatomagmatic eruptions in the BVF. A digitized infrastructure map based on a SPOT 6 satellite image is used to identify the areas at risk from eruption scenarios. Parameters such as wind direction, vent location, and explosion energy are varied for hazard simulations to quantify the area impacted by different eruption scenarios. Proximal syn-eruptive hazards include tephra fall, base pyroclastic surges, and ballistic bombs. Distal hazards include predominantly ash fall. Eruption scenarios are simulated using Eject and Plumeria models as well as similar case studies from other urban volcanic fields. Within 5 km of the volcanic field center, more than 30 km2 of residential and commercial/industrial infrastructure will be damaged by proximal syn-eruptive hazards, in addition to 34 km2 of agricultural land, 291 km of roads, more than 10 km of railway, an airport, and two health centers. Within 100 km of the volcanic field center, ash fall will affect 3946 km2 of agricultural land, 179 km2 of residential land, and 28 km2 of commercial/industrial land. Approximately 2700 km of roads and railways, 553 km of waterways, an airport, and 14 health centers are located

  3. K-Ar ages, paleomagnetism, and geochemistry of the South Auckland volcanic field, North Island, New Zealand

    International Nuclear Information System (INIS)

    Briggs, R.M.; Okada, T.; Itaya, T.; Shibuya, H.; Smith, I.E.M.

    1994-01-01

    The South Auckland volcanic field is one of the Pliocene-Quaternary intraplate basaltic fields in northern North Island. It consists of at least 97 monogenetic volcanic centres covering an area of c. 300 km 2 , 38 km south of Auckland. Fifty-nine of the volcanic centres are characterised by mainly magmatic or effusive activity that constructed scoria cones and lava flows, while 38 are mainly phreatomagmatic or explosive that produced tuff rings and maars. Rock types consist of basanites, hawaiites, nepheline hawaiites, transitional basalts, and ol-tholeiitic basalts, with relatively minor amounts of nephelinites, alkali basalts, Q-tholeiitic basalts, and nepheline mugearites. Forty-three new K-Ar ages are presented, which range from 0.51 to 1.59 Ma, and show two peaks of activity at 0.6 and 1.3 Ma. Paleomagnetic determinations at 26 selected sites agree well with the paleomagnetic reversal time scale and support the K-Ar age data. Age data from each of the volcanic fields of Okete, Ngatutura, South Auckland, and Auckland, which constitute the Auckland intraplate basaltic province, show that they have developed within a time span of 0.3-1.1 Ma. After activity ceased in any particular field, a new field then developed 35-38 km to the north. These consistent time/space patterns indicate the possibility of a mantle source migrating northwards at c. 5 cm/yr. There is no correlation of rock composition with time, which is consistent with observations in the Northland intraplate province, but is not consistent with the formerly invoked rising diapir model. (author). 30 refs., 8 figs., 3 tabs

  4. A geostatistical method applied to the geochemical study of the Chichinautzin Volcanic Field in Mexico

    Science.gov (United States)

    Robidoux, P.; Roberge, J.; Urbina Oviedo, C. A.

    2011-12-01

    The origin of magmatism and the role of the subducted Coco's Plate in the Chichinautzin volcanic field (CVF), Mexico is still a subject of debate. It has been established that mafic magmas of alkali type (subduction) and calc-alkali type (OIB) are produced in the CVF and both groups cannot be related by simple fractional crystallization. Therefore, many geochemical studies have been done, and many models have been proposed. The main goal of the work present here is to provide a new tool for the visualization and interpretation of geochemical data using geostatistics and geospatial analysis techniques. It contains a complete geodatabase built from referred samples over the 2500 km2 area of CVF and its neighbour stratovolcanoes (Popocatepetl, Iztaccihuatl and Nevado de Toluca). From this database, map of different geochemical markers were done to visualise geochemical signature in a geographical manner, to test the statistic distribution with a cartographic technique and highlight any spatial correlations. The distribution and regionalization of the geochemical signatures can be viewed in a two-dimensional space using a specific spatial analysis tools from a Geographic Information System (GIS). The model of spatial distribution is tested with Linear Decrease (LD) and Inverse Distance Weight (IDW) interpolation technique because they best represent the geostatistical characteristics of the geodatabase. We found that ratio of Ba/Nb, Nb/Ta, Th/Nb show first order tendency, which means visible spatial variation over a large scale area. Monogenetic volcanoes in the center of the CVF have distinct values compare to those of the Popocatepetl-Iztaccihuatl polygenetic complex which are spatially well defined. Inside the Valley of Mexico, a large quantity of monogenetic cone in the eastern portion of CVF has ratios similar to the Iztaccihuatl and Popocatepetl complex. Other ratios like alkalis vs SiO2, V/Ti, La/Yb, Zr/Y show different spatial tendencies. In that case, second

  5. Sr, Nd and Pb isotope and geochemical data from the Quaternary Nevado de Toluca volcano, a source of recent adakitic magmatism, and the Tenango Volcanic Field, Mexico

    Science.gov (United States)

    Martínez-Serrano, Raymundo G.; Schaaf, Peter; Solís-Pichardo, Gabriela; Hernández-Bernal, Ma. del Sol; Hernández-Treviño, Teodoro; Julio Morales-Contreras, Juan; Macías, José Luis

    2004-11-01

    Volcanic activity at Nevado de Toluca (NT) volcano began 2.6 Ma ago with the emission of andesitic lavas, but over the past 40 ka, eruptions have produced mainly lava flows and pyroclastic deposits of predominantly orthopyroxene-hornblende dacitic composition. In the nearby Tenango Volcanic Field (TVF) pyroclastic products and lava flows ranging in composition from basaltic andesite to andesite were erupted at most of 40 monogenetic volcanic centers and were coeval with the last stages of NT. All volcanic rocks in the study area are characterized by a calc-alkaline affinity that is consistent with a subduction setting. Relatively high concentrations of Sr (>460 ppm) coupled with low Y (45 km) that underlies the volcanoes of the study area, the geochemical and isotopic patterns of these rocks indicate low interaction with this crust. NT volcano was constructed at the intersection of three fault systems, and it seems that the Plio-Quaternary E-W system played an important role in the ascent and storage of magmas during the recent volcanic activity in the two regions. Chemical and textural features of orthopyroxene, amphibole and Fe-Ti oxides from NT suggest that crystallization of magmas occurred at polybaric conditions, confirming the rapid upwelling of magmas.

  6. Combining probabilistic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Sandri, Laura; Jolly, Gill; Lindsay, Jan; Howe, Tracy; Marzocchi, Warner

    2010-05-01

    One of the main challenges of modern volcanology is to provide the public with robust and useful information for decision-making in land-use planning and in emergency management. From the scientific point of view, this translates into reliable and quantitative long- and short-term volcanic hazard assessment and eruption forecasting. Because of the complexity in characterizing volcanic events, and of the natural variability of volcanic processes, a probabilistic approach is more suitable than deterministic modeling. In recent years, two probabilistic codes have been developed for quantitative short- and long-term eruption forecasting (BET_EF) and volcanic hazard assessment (BET_VH). Both of them are based on a Bayesian Event Tree, in which volcanic events are seen as a chain of logical steps of increasing detail. At each node of the tree, the probability is computed by taking into account different sources of information, such as geological and volcanological models, past occurrences, expert opinion and numerical modeling of volcanic phenomena. Since it is a Bayesian tool, the output probability is not a single number, but a probability distribution accounting for aleatory and epistemic uncertainty. In this study, we apply BET_VH in order to quantify the long-term volcanic hazard due to base surge invasion in the region around Auckland, New Zealand's most populous city. Here, small basaltic eruptions from monogenetic cones pose a considerable risk to the city in case of phreatomagmatic activity: evidence for base surges are not uncommon in deposits from past events. Currently, we are particularly focussing on the scenario simulated during Exercise Ruaumoko, a national disaster exercise based on the build-up to an eruption in the Auckland Volcanic Field. Based on recent papers by Marzocchi and Woo, we suggest a possible quantitative strategy to link probabilistic scientific output and Boolean decision making. It is based on cost-benefit analysis, in which all costs

  7. The Lathrop Wells volcanic center

    International Nuclear Information System (INIS)

    Crowe, B.; Morley, R.

    1992-01-01

    The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. This paper discusses a detailed Study Plan which was prepared describing planned geochronology and field studies to assess the chronology of the Lathrop Wells volcanic center and other Quaternary volcanic centers in the region. A paper was published discussing the geomorphic and soil evidence for a late Pleistocene or Holoceno age for the main cone of the center. The purpose of this paper was to expose the ideas concerning the age of the Lathrop Wells center to scientific scrutiny. Additionally, field evidence was described suggesting the Lathrop Wells center may have formed from multiple eruptive events with significant intervals of no activity between events. This interpretation breaks with established convention in the volcanological literature that small volume basalt centers are monogenetic

  8. Emplacement Dynamics and Timescale of a Holocene Flow from the Cima Volcanic Field (CA): Insights from Rheology and Morphology

    Science.gov (United States)

    Soldati, A.; Beem, J. R.; Gomez, F.; Huntley, J. W.; Robertson, T.; Whittington, A. G.

    2017-12-01

    We present a rheological and morphological study of a Holocene lava flow emitted by a monogenetic cinder cone in the Cima Volcanic Field, eastern California. By combining field observations and experimental results, we reconstructed the few weeks-long emplacement timeline of the Cima flow. Sample textural analyses revealed that the near-vent portion of the flow is significantly more crystalline (fxtal=0.95±0.04) than the main flow body (fxtal=0.66±0.11), which reveals a multi-stage emplacement history. Airborne photogrammetry data were used to generate a digital elevation model, which allowed us to estimate the flow volume. The rheology of Cima lavas was determined experimentally by concentric cylinder viscometry between 1550 °C and 1160 °C, including the first subliquidus rheology measurements for a continental intraplate trachybasaltic lava. The experimentally determined effective viscosity increases from 54 Pa·s to 1,361 Pa·s during cooling from the liquidus ( 1230 ˚C) to 1160 ˚C, where crystal fraction is 0.11. Flow curves fitted to measurements at different strain rates indicate a Herschel-Bulkley rheological behavior, combining shear-thinning with a yield strength negligible at the higher measured temperatures but increasing up to 357±41 Pa at 1160˚C. The lava viscosity over this range is still lower than most basaltic melts, due to the high alkali content of Cima lavas ( 6 wt% Na2O+K2O). We determined that the morphological pahoehoe to `a'ā transition of this trachybasalt occurs at a temperature of 1160±10 ˚C, similar to that observed for Hawaiian tholeiitic lavas, but at higher apparent viscosity values. Monogenetic volcanism in the Western United States is typically characterized by low effusion rates and eruption on sub-horizontal desert plains. Under these low strain-rate conditions, the pahoehoe to `a'ā transition is likely to occur abruptly upon minimal cooling, i.e. very close to the vent, but lava tubes may transport fluid lava to flow

  9. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field

    Science.gov (United States)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.

    2013-12-01

    The High Rock, Lake Owyhee, and McDermitt volcanic fields, consisting of regionally extensive ash flow tuffs and associated calderas, developed in NW Nevada and SE Oregon following eruption of the ca. 16.7 Ma Steens flood basalt. The first ash flow, the Tuff of Oregon Canyon, erupted from the McDermitt volcanic field at 16.5Ma. It is chemically zoned from peralkaline rhyolite to dacite with trace element ratios that distinguish it from other ash flow tuffs. The source caldera, based on tuff distribution, thickness, and size of lithic fragments, is in the area in which the McDermitt caldera (16.3 Ma) subsequently formed. Gravity and magnetic anomalies are associated with some but not all of the calderas. The White Horse caldera (15.6 Ma), the youngest caldera in the McDermitt volcanic field has the best geophysical expression, with both aeromagnetic and gravity lows coinciding with the caldera. Detailed aeromagnetic and gravity surveys of the McDermitt caldera, combined with geology and radiometric surveys, provides insight into the complexities of caldera collapse, resurgence, post collapse volcanism, and hydrothermal mineralization. The McDermitt caldera is among the most mineralized calderas in the world, whereas other calderas in these three Mid Miocene volcanic fields do not contain important hydrothermal ore deposits, despite having similar age and chemistry. The McDermitt caldera is host to Hg, U, and Li deposits and potentially significant resources of Ga, Sb, and REE. The geophysical data indicate that post-caldera collapse intrusions were important in formation of the hydrothermal systems. An aeromagnetic low along the E caldera margin reflects an intrusion at a depth of 2 km associated with the near-surface McDermitt-hot-spring-type Hg-Sb deposit, and the deeper level, high-sulfidation Ga-REE occurrence. The Li deposits on the W side of the caldera are associated with a series of low amplitude, small diameter aeromagnetic anomalies that form a continuous

  10. Grand Sarcoui volcano (Chaîne des Puys, Massif Central, France), a case study for monogenetic trachytic lava domes

    Science.gov (United States)

    Miallier, D.; Pilleyre, T.; Boivin, P.; Labazuy, P.; Gailler, L.-S.; Rico, J.

    2017-10-01

    The Grand Sarcoui is a prominent trachytic volcano of the intraplate Quaternary volcanic field of Chaîne des Puys (Massif Central, France), which fulfills basic requirements for being qualified as monogenetic. Grand Sarcoui looks like a simple axisymmetric lava dome, but close observation reveals a complex and dissymmetric structure and composition. The construction of the dome, about 12.5 ka ago, combined both endogenous and exogenous growth which resulted in variable modes of emplacement and textures of the lava. One of its most interesting features is a large ( 0.29 106 m2) fan of deposits bearing hummocks and secondary hydro-eruption craters. Cross sections of these deposits demonstrate that they originated from a sector collapse accompanied by a blast-like event. The dome is covered by a thin layer of lapilli and ash, attributed to a delayed summit eruption which occurred about 10.6 ka ago, surprisingly late after its construction. So, this volcano has, at a reduced scale, features that are more usually observed in large composite volcanoes. However, some of these features differ slightly from those that have been documented to date, and they remain partly unexplained. This shows that monogenetic, well preserved, trachytic lava domes, are uncommon and poorly known, unlike rhyolitic, andesitic and dacitic domes.

  11. Review of the petrology of the Auckland Volcanic Field

    International Nuclear Information System (INIS)

    Smith, I.E.M.; McGee, L.E.; Lindsay, J.M.

    2009-01-01

    Research has long shown that the petrology of suites of volcanic rock can be used to define and understand the fundamental parameters of the magmatic systems that feed volcanoes. The geochemistry of volcanic rocks provides information about the nature of the source rocks, depths and amounts of melting, the processes that act on magmas as they rise to the surface and, most importantly, the rates of these processes. In turn, the answers to fundamental petrological questions can provide input to important questions concerning volcano hazard scenarios and hazard mitigation challenges. The multi-disciplinary DEVORA research programme, launched in 2008, is a GNS Science-University of Auckland collaboration with the aim of DEtermining VOlcanic Risk in Auckland. One of its main themes is the development of an integrated geological model for the Auckland Volcanic Field (AVF) by investigating the physical controls on magma generation, ascent and eruption though detailed structural and petrological investigations. A key data set underpinning this theme is a comprehensive geochemical database for the rocks of the AVF. This report, Review of the Petrology of the Auckland Volcanic Field, is a synthesis and commentary of all petrological and geochemical data currently available for the AVF. It represents one of several reports carried out as part of the 'synthesis' phase of DEVORA, whereby existing data from previous work is collated and summarised, so that gaps in current knowledge can be appropriately addressed. In this report we utilise published and unpublished sources to summarise the petrological data available up to May 2009, and identify where new data and approaches will improve our understanding of the magmatic system which feeds the field. (author). 53 refs., 7 figs., 2 tabs.

  12. Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland Volcanic Field (New Zealand)

    Science.gov (United States)

    Agustín-Flores, Javier; Németh, Károly; Cronin, Shane J.; Lindsay, Jan M.; Kereszturi, Gábor; Brand, Brittany D.; Smith, Ian E. M.

    2014-04-01

    Maungataketake is a monogenetic basaltic volcano formed at ~ 85-89 ka in the southern part of the Auckland Volcanic Field (AVF), New Zealand. It comprises a basal 1100-m diameter tuff ring, with a central scoria/spatter cone and lava flows. The tuff ring was formed under hydrogeological and geographic conditions very similar to the present. The tuff records numerous density stratified, wet base surges that radiated outward up to 1 km, decelerating rapidly and becoming less turbulent with distance. The pyroclastic units dominantly comprise fine-grained expelled grains from various sedimentary deposits beneath the volcano mixed with a minor component of juvenile pyroclasts (~ 35 vol.%). Subtle lateral changes relate to deceleration with distance and vertical transformations are minor, pointing to stable explosion depths and conditions, with gradual transitions between units and no evidence for eruptive pauses. This volcano formed within and on ~ 60 m-thick Plio/Pleistocene, poorly consolidated, highly permeable shelly sands and silts (Kaawa Formation) capped by near-impermeable, water-saturated muds (Tauranga Group). These sediments rest on moderately consolidated Miocene-aged permeable turbiditic sandstones and siltstones (Waitemata Group). Magma-water fuelled thermohydraulic explosions remained in the shallow sedimentary layers, excavating fine-grained sediments without brittle fragmentation required. On the whole, the resulting cool, wet pyroclastic density currents were of low energy. The unconsolidated shallow sediments deformed to accommodate rapidly rising magma, leading to development of complex sill-like bodies and a range of magma-water contact conditions at any time. The weak saturated sediments were also readily liquefied to provide an enduring supply of water and fine sediment to the explosion loci. Changes in magma flux and/or subsequent stabilisation of the conduit area by a lava ring-barrier led to ensuing Strombolian and fire-fountaining eruption

  13. High-precision 40Ar/39Ar dating of Quaternary basalts from Auckland Volcanic Field, New Zealand, with implications for eruption rates and paleomagnetic correlations

    Science.gov (United States)

    Leonard, Graham S.; Calvert, Andrew T.; Hopkins, Jenni L.; Wilson, Colin J. N.; Smid, Elaine R.; Lindsay, Jan M.; Champion, Duane E.

    2017-09-01

    The Auckland Volcanic Field (AVF), which last erupted ca. 550 years ago, is a late Quaternary monogenetic basaltic volcanic field (ca. 500 km2) in the northern North Island of New Zealand. Prior to this study only 12 out of the 53 identified eruptive centres of the AVF had been reliably dated. Careful sample preparation and 40Ar/39Ar analysis has increased the number of well-dated centres in the AVF to 35. The high precision of the results is attributed to selection of fresh, non-vesicular, non-glassy samples from lava flow interiors. Sample selection was coupled with separation techniques that targeted only the groundmass of samples with 10 μm wide, coupled with ten-increment furnace step-heating of large quantities (up to 200 mg) of material. The overall AVF age data indicate an onset at 193.2 ± 2.8 ka, an apparent six-eruption flare-up from 30 to 34 ka, and a ≤ 10 kyr hiatus between the latest and second-to-latest eruptions. Such non-uniformity shows that averaging the number of eruptions over the life-span of the AVF to yield a mean eruption rate is overly simplistic. Together with large variations in eruption volumes, and the large sizes and unusual chemistry within the latest eruptions (Rangitoto 1 and Rangitoto 2), our results illuminate a complex episodic eruption history. In particular, the rate of volcanism in AVF has increased since 60 ka, suggesting that the field is still in its infancy. Multiple centres with unusual paleomagnetic inclination and declination orientations are confirmed to fit into a number of geomagnetic excursions, with five identified in the Mono Lake, two within the Laschamp, one within the post-Blake or Blake, and two possibly within the Hilina Pali.

  14. Volcanism at 1.45 Ma within the Yellowstone Volcanic Field, United States

    Science.gov (United States)

    Rivera, Tiffany A.; Furlong, Ryan; Vincent, Jaime; Gardiner, Stephanie; Jicha, Brian R.; Schmitz, Mark D.; Lippert, Peter C.

    2018-05-01

    Rhyolitic volcanism in the Yellowstone Volcanic Field has spanned over two million years and consisted of both explosive caldera-forming eruptions and smaller effusive flows and domes. Effusive eruptions have been documented preceding and following caldera-forming eruptions, however the temporal and petrogenetic relationships of these magmas to the caldera-forming eruptions are relatively unknown. Here we present new 40Ar/39Ar dates for four small-volume eruptions located on the western rim of the second-cycle caldera, the source of the 1.300 ± 0.001 Ma Mesa Falls Tuff. We supplement our new eruption ages with whole rock major and trace element chemistry, Pb isotopic ratios of feldspar, and paleomagnetic and rock magnetic analyses. Eruption ages for the effusive Green Canyon Flow (1.299 ± 0.002 Ma) and Moonshine Mountain Dome (1.302 ± 0.003 Ma) are in close temporal proximity to the eruption age of the Mesa Falls Tuff. In contrast, our results indicate a period of volcanism at ca 1.45 Ma within the Yellowstone Volcanic Field, including the eruption of the Bishop Mountain Flow (1.458 ± 0.002 Ma) and Tuff of Lyle Spring (1.450 ± 0.003 Ma). These high-silica rhyolites are chemically and isotopically distinct from the Mesa Falls Tuff and related 1.3 Ma effusive eruptions. The 40Ar/39Ar data from the Tuff of Lyle Spring demonstrate significant antecrystic inheritance, prevalent within the upper welded ash-flow tuff matrix, and minimal within individual pumice. Antecrysts are up to 20 kyr older than the eruption, with subpopulations of grains occurring every few thousand years. We interpret these results as an indicator for the timing of magmatic pulses into a growing magmatic system that would ultimately erupt the Tuff of Lyle Spring, and which we more broadly interpret as the tempo of crustal accumulation associated with bimodal magmatism. We propose a system whereby chemically, isotopically, and temporally distinct, isolated small-volume magma batches are

  15. Timing and compositional evolution of Late Pleistocene to Holocene volcanism within the Harrat Rahat volcanic field, Kingdom of Saudi Arabia

    Science.gov (United States)

    Stelten, M. E.; Downs, D. T.; Dietterich, H. R.

    2017-12-01

    Harrat Rahat is one of the largest ( 20,000 km2) of 15 active Cenozoic volcanic fields that stretch 3,000 km along the western Arabian Peninsula from Yemen to Syria. The Harrat Rahat volcanic field is 310 km long (N-S) by 75 km wide (E-W), and is dominated by alkalic basalts with minor hawaiite, mugearite, benmoreite, and trachyte eruptives. The timing of volcanism within greater Harrat Rahat is poorly constrained, but field relations and geochronology indicate that northern Harrat Rahat hosted the most recent eruptions. To better constrain the timing and compositional evolution of Harrat Rahat during this recent phase, we present 743 geochemical analyses, 144 40Ar/39Ar ages, and 9 36Cl exposure ages for volcanic strata from northernmost Harrat Rahat. These data demonstrate that volcanism has been ongoing from at least 1.2 Ma to the present, with the most recent eruption known from historical accounts at 1256 CE. Basalt has erupted persistently from 1.2 Ma to the present, but more evolved volcanism has been episodic. Benmoreite erupted at 1.1 Ma and between 550 to 400 ka. Trachytic volcanism has only occurred over the past 150 ka, with the most recent eruption at 5 ka. Aside from the well-documented basaltic eruption at 1256 CE, prior workers interpreted 6 additional basaltic eruptions during the Holocene. However, our 36Cl exposure ages demonstrate that these erupted between 60 to 13 ka. Interestingly, in the northern part of our field area, where the spatial density of volcanic vents is low, young volcanism (<150 ka) is dominated by basaltic eruptions. Conversely, young volcanism in the southern part of our field area, where volcanic vent density is high, is dominated by trachyte. This observation is consistent with a process wherein the time-integrated effects of basaltic influx into the crust in the south produced a mafic intrusive complex, through which younger basaltic magmas cannot ascend. Instead, these magmas stall and produce trachyte, likely through

  16. Earthquake prediction using extinct monogenetic volcanoes: A possible new research strategy

    Science.gov (United States)

    Szakács, Alexandru

    2011-04-01

    Volcanoes are extremely effective transmitters of matter, energy and information from the deep Earth towards its surface. Their capacities as information carriers are far to be fully exploited so far. Volcanic conduits can be viewed in general as rod-like or sheet-like vertical features with relatively homogenous composition and structure crosscutting geological structures of far more complexity and compositional heterogeneity. Information-carrying signals such as earthquake precursor signals originating deep below the Earth surface are transmitted with much less loss of information through homogenous vertically extended structures than through the horizontally segmented heterogeneous lithosphere or crust. Volcanic conduits can thus be viewed as upside-down "antennas" or waveguides which can be used as privileged pathways of any possible earthquake precursor signal. In particular, conduits of monogenetic volcanoes are promising transmitters of deep Earth information to be received and decoded at surface monitoring stations because the expected more homogenous nature of their rock-fill as compared to polygenetic volcanoes. Among monogenetic volcanoes those with dominantly effusive activity appear as the best candidates for privileged earthquake monitoring sites. In more details, effusive monogenetic volcanic conduits filled with rocks of primitive parental magma composition indicating direct ascent from sub-lithospheric magma-generating areas are the most suitable. Further selection criteria may include age of the volcanism considered and the presence of mantle xenoliths in surface volcanic products indicating direct and straightforward link between the deep lithospheric mantle and surface through the conduit. Innovative earthquake prediction research strategies can be based and developed on these grounds by considering conduits of selected extinct monogenetic volcanoes and deep trans-crustal fractures as privileged emplacement sites of seismic monitoring stations

  17. Alberca De Guadalupe Maar Crater, Zacapu Basin : A Rare Type of Volcano within the Michoacán-Guanajuato Volcanic Field, México

    Science.gov (United States)

    Kshirsagar, P. V.; Siebe, C.; Guilbaud, M. N.; Salinas, S.

    2014-12-01

    Phreato-magmatic vents (esp. maar craters) are rare in the ~40,000 Km2 Plio-Quaternary monogenetic Michoacán-Guanajuato Volcanic Field (MGVF) located in the central part of the Mexican Volcanic Belt. In contrast to >1000 scoria cones, only 2 dozen phreato-magmatic monogenetic vents (e.g. tuff cones, tuff rings, and maars) have been identified. About half of these form a cluster near Valle de Santiago in the Lerma river valley at the northern margin of the MGVF, while the others occur in a rather scattered fashion. Here we discuss the origin of Alberca de Guadalupe maar crater, one of the three phreato-magmatic vents (in addition to El Caracol and Alberca de Los Espinos) that occur within the boundaries of the inter-montane lacustrine Zacapu basin, a tectonic graben bound by an ENE-WSW normal fault system. The maar crater came into existence between 20,000 and 23,000 y BP, forming a 140 m deep hole in the otherwise planar surrounding ground of theearly Pleistocene lava flows of Cerro Pelón.The maar crater has a diameter of ~1 Km and bears a 9 m deep lake. Eruptive products include typical surge deposits that are best exposed around the rim and inner crater walls. They are poorly sorted (Mdø= -1.56 to -3.75, ø= 1.43 to 3.23), rich in accidental lithics (angular andesitic lava and ignimbrite clasts) constituting 51-88% of the deposit with few juveniles (basaltic andesite with phenocrysts of plagioclase, olivine, and pyroxene in a quenched glassy matrix; SiO2=54-58 wt. %). Dry surge units are friable and clast-supported, in contrast the wet surge units are fairly indurated and bear accretionary lapilli. Bedding is frequently distorted by ballistic impact-sag structures. The entire construct is disrupted by an E-W trending regional fault, downthrowing the northern part by ~30 m.The unusual formation of this maar crater in the semi-arid highlands of Zacapu was favored by the local hydrological and topographical conditions. Such conditions still prevail in several

  18. 1992-93 Results of geomorphological and field studies Volcanic Studies Program, Yucca Mountain Project

    International Nuclear Information System (INIS)

    Wells, S.G.

    1993-10-01

    Field mapping and stratigraphic studies were completed of the Black Tank volcanic center, which represents the southwestern most eruptive center in the Cima volcanic field of California. The results of this mapping are presented. Contacts between volcanic units and geomorphic features were field checked, incorporating data from eight field trenches as well as several exposures along Black Tank Wash. Within each of the eight trenches, logs were measured and stratigraphic sections were described. These data indicate that three, temporally separate volcanic eruptions occurred at the Black Tank center. The field evidence for significant time breaks between each stratigraphic unit is the presence of soil and pavement-bounded unconformities

  19. Constraining volcanic inflation at Three Sisters Volcanic Field in Oregon, USA, through microgravity and deformation modeling

    Science.gov (United States)

    Zurek, Jeffrey; William-Jones, Glyn; Johnson, Dan; Eggers, Al

    2012-10-01

    Microgravity data were collected between 2002 and 2009 at the Three Sisters Volcanic Complex, Oregon, to investigate the causes of an ongoing deformation event west of South Sister volcano. Three different conceptual models have been proposed as the causal mechanism for the deformation event: (1) hydraulic uplift due to continual injection of magma at depth, (2) pressurization of hydrothermal systems and (3) viscoelastic response to an initial pressurization at depth. The gravitational effect of continual magma injection was modeled to be 20 to 33 μGal at the center of the deformation field with volumes based on previous deformation studies. The gravity time series, however, did not detect a mass increase suggesting that a viscoelactic response of the crust is the most likely cause for the deformation from 2002 to 2009. The crust, deeper than 3 km, in the Three Sisters region was modeled as a Maxwell viscoelastic material and the results suggest a dynamic viscosity between 1018 to 5 × 1019 Pa s. This low crustal viscosity suggests that magma emplacement or stall depth is controlled by density and not the brittle ductile transition zone. Furthermore, these crustal properties and the observed geochemical composition gaps at Three Sisters can be best explained by different melt sources and limited magma mixing rather than fractional crystallization. More generally, low intrusion rates, low crustal viscosity, and multiple melt sources could also explain the whole rock compositional gaps observed at other arc volcanoes.

  20. Emplacement dynamics and timescale of a Holocene flow from the Cima Volcanic Field (CA): Insights from rheology and morphology

    Science.gov (United States)

    Soldati, Arianna; Beem, Jordon; Gomez, Francisco; Huntley, John Warren; Robertson, Timothy; Whittington, Alan

    2017-11-01

    We present a rheological and morphological study of a Holocene lava flow emitted by a monogenetic cinder cone in the Cima Volcanic Field, eastern California. Our field observations focused on surface morphology, which transitions from smooth core extrusions near the vent to jagged 'a'ā blocks over the majority of the flow, and on channel and levée dimensions. We collected airborne photogrammetry data and used it to generate a digital elevation model. From this, the total flow volume was estimated and surface roughness was quantified in terms of standard deviation of the real surface (5 cm resolution) from the software-generated 1 m-average plane. Sample textural analyses revealed that the near-vent portion of the flow is significantly more crystalline (ϕxtal = 0.95 ± 0.04) than the main flow body (ϕxtal = 0.66 ± 0.11). The rheology of Cima lavas was determined experimentally by concentric cylinder viscometry between 1550 °C and 1160 °C, including the first subliquidus rheology measurements for a continental intraplate trachybasaltic lava. The experimentally determined effective viscosity increases from 54 Pa·s to 1361 Pa·s during cooling from the liquidus ( 1230 °C) to 1160 °C, where crystal fraction is 0.11. The lava viscosity over this range is still lower than most basaltic melts, due to the high alkali content of Cima lavas ( 6 wt% Na2O + K2O). Monte Carlo simulations were used to account for and propagate experimental uncertainties, and to determine which rheological model (Bingham, power law, or Herschel-Bulkley) provides the best-fit of the obtained rheological data. Results suggest that Bingham and Herschel-Bulkley models are statistically indistinguishable from each other, and that both fit the data better than a power law model. By combining field observations and experimental results, we reconstructed the eruption temperature and few days-long emplacement history of the Cima flow.

  1. Magnetotelluric data, Taos Plateau Volcanic Field, New Mexico

    Science.gov (United States)

    Ailes, Chad E.; Rodriguez, Brian D.

    2010-01-01

    The population of the San Luis Basin region of northern New Mexico is growing. Water shortfalls could have serious consequences. Future growth and land management in the region depend on accurate assessment and protection of the region's groundwater resources. An important issue in managing the groundwater resources is a better understanding of the hydrogeology of the Santa Fe Group and the nature of the sedimentary deposits that fill the Rio Grande rift, which contain the principal groundwater aquifers. The shallow unconfined aquifer and the deeper confined Santa Fe Group aquifer in the San Luis Basin are the main sources of municipal water for the region. The U.S. Geological Survey (USGS) is conducting a series of multidisciplinary studies of the San Luis Basin. Detailed geologic mapping, high-resolution airborne magnetic surveys, gravity surveys, an electromagnetic survey called magnetotellurics (MT), and hydrologic and lithologic data are being used to better understand the aquifers. This report describes a regional east-west MT sounding profile acquired in late July 2009 across the Taos Plateau Volcanic Field where drillhole data are sparse. Resistivity modeling of the MT data can be used to help map changes in electrical resistivity with depths that are related to differences in rock types. These various rock types help control the properties of aquifers. The purpose of this report is to release the MT sounding data collected along the east-west profile. No interpretation of the data is included.

  2. Monogenetic origin of Ubehebe Crater maar volcano, Death Valley, California: Paleomagnetic and stratigraphic evidence

    Science.gov (United States)

    Champion, Duane E.; Cyr, Andy; Fierstein, Judy; Hildreth, Wes

    2018-04-01

    Paleomagnetic data for samples collected from outcrops of basaltic spatter at the Ubehebe Crater cluster, Death Valley National Park, California, record a single direction of remanent magnetization indicating that these materials were emplaced during a short duration, monogenetic eruption sequence 2100 years ago. This conclusion is supported by geochemical data encompassing a narrow range of oxide variation, by detailed stratigraphic studies of conformable phreatomagmatic tephra deposits showing no evidence of erosion between layers, by draping of sharp rimmed craters by later tephra falls, and by oxidation of later tephra layers by the remaining heat of earlier spatter. This model is also supported through a reinterpretation and recalculation of the published 10Be age results (Sasnett et al., 2012) from an innovative and bold exposure-age study on very young materials. Their conclusion of multiple and protracted eruptions at Ubehebe Crater cluster is here modified through the understanding that some of their quartz-bearing clasts inherited 10Be from previous exposure on the fan surface (too old), and that other clasts were only exposed at the surface by wind and/or water erosion centuries after their eruption (too young). Ubehebe Crater cluster is a well preserved example of young monogenetic maar type volcanism protected within a National Park, and it represents neither a protracted eruption sequence as previously thought, nor a continuing volcanic hazard near its location.

  3. NW-SE Pliocene-Quaternary extension in the Apan-Acoculco region, eastern Trans-Mexican Volcanic Belt

    Science.gov (United States)

    García-Palomo, Armando; Macías, José Luis; Jiménez, Adrián; Tolson, Gustavo; Mena, Manuel; Sánchez-Núñez, Juan Manuel; Arce, José Luis; Layer, Paul W.; Santoyo, Miguel Ángel; Lermo-Samaniego, Javier

    2018-01-01

    The Apan-Acoculco area is located in the eastern portion of the Mexico basin and the Trans-Mexican Volcanic Belt. The area is transected by right-stepping variably dipping NE-SW normal faults. The Apan-Tlaloc Fault System is a major discontinuity that divides the region into two contrasting areas with different structural and volcanic styles. a) The western area is characterized by a horst-graben geometry with widespread Quaternary monogenetic volcanism and scattered outcrops of Miocene and Pliocene rocks. b) The eastern area is dominated by tilted horsts with a domino-like geometry with widespread Miocene and Pliocene rocks, scattered Quaternary monogenetic volcanoes and the Acoculco Caldera. Gravity data suggest that this structural geometry continues into the Mesozoic limestones. Normal faulting was active since the Pliocene with three stages of extension. One of them, an intense dilatational event began during late Pliocene and continues nowadays, contemporaneously with the emplacement of the Apan-Tezontepec Volcanic Field and the Acoculco caldera. Statistical analysis of cone elongation, cone instability, and the kinematic analysis of faults attest for a NW50°SE ± 7° extensional regime in the Apan-Acoculco area. The activity in some portions of the Apan-Tlaloc Fault System continues today as indicated by earthquake swarms recorded in 1992 and 1996, that disrupted late Holocene paleosols, and Holocene volcanism.

  4. The Western Arabian intracontinental volcanic fields as a potential UNESCO World Heritage site

    Science.gov (United States)

    Németh, Károly; Moufti, Mohammed R.

    2017-04-01

    UNESCO promotes conservation of the geological and geomoprhological heritage through promotion of protection of these sites and development of educational programs under the umbrella of geoparks among the most globally significant ones labelled as UNESCO Global Geoparks. UNESCO also maintains a call to list those natural sites that provide universal outstanding values to demonstrate geological features or their relevance to our understanding the evolution of Earth. Volcanoes currently got a surge in nomination to be UNESCO World Heritage sites. Volcanic fields in the contrary fell in a grey area of nominations as they represents the most common manifestation of volcanism on Earth hence they are difficult to view as having outstanding universal values. A nearly 2500-km long 300-km wide region of dispersed volcanoes located in the Western Arabian Penninsula mostly in the Kingdom of Saudi Arabia form a near-continuous location that carries universal outstanding value as one of the most representative manifestation of dispersed intracontinental volcanism on Earth to be nominated as an UNESCO World Heritage site. The volcanic fields formed in the last 20 Ma along the Red Sea as group of simple basaltic to more mature and long-lived basalt to trachyte-to-rhyolite volcanic fields each carries high geoheritage values. While these volcanic fields are dominated by scoria and spatter cones and transitional lava fields, there are phreatomagmatic volcanoes among them such as maars and tuff rings. Phreatomagmatism is more evident in association with small volcanic edifices that were fed by primitive magmas, while phreatomagmatic influences during the course of a larger volume eruption are also known in association with the silicic eruptive centres in the harrats of Rahat, Kishb and Khaybar. Three of the volcanic fields are clearly bimodal and host small-volume relatively short-lived lava domes and associated block-and-ash fans providing a unique volcanic landscape commonly not

  5. Transition of neogene arc volcanism in central-western Hokkaido, viewed from K-Ar ages, style of volcanic activity, and bulk rock chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Wataru; Iwasaki, Miyuki; Nakagawa, Mitsuhiro [Hokkaido Univ., Sapporo (Japan)

    2000-02-01

    Spatial and temporal variations in late Cenozoic volcanism of southwestern Hokkaido at the northern end of NE-Japan arc have been clarified by 261 K-Ar and 76 FT ages including 49 newly determined K-Ar ages, volcanic stratigraphy, physical volcanology and whole-rock geochemistry. Arc volcanism characterized by rocks with low-Ti and Nb, and by across-arc increase in K{sub 2}O content in these rocks has continued at least since 12 Ma. Based on volcanic stratigraphy, physical volcanology and whole-rock geochemistry, volcanism after 12 Ma can be subdivided into 4 stages, 12-5, 5-1.7, and 1.7-0 Ma. The volcanism from 12 Ma to 5 Ma extended northward widely compared with distribution of Quaternary arc volcanism (1.7-0 Ma). This suggests that the arc trench junction between Kuril and NE-Japan arc's trenches was located about 100 km northward from the present position. Since around 5 Ma until 1.7 Ma, different type of volcanism under local extension field, characterized by a group of monogenetic volcanoes of alkali basalt and shield volcanoes of calc-alkaline andesite, had occurred at northern end of the volcanic region (Takikawa-Mashike region). During and after this volcanism, the northern edge of arc volcanism in the area has migrated southward. This suggests that the trench junction has migrated about 100 km southward since {approx}5 Ma. The quaternary arc volcanism (1.7-0 Ma) has been restricted at the southern part of the region. The volcanism since 12 Ma might be influenced by oblique subduction of Pacific plate beneath Kuril arc, resulting in the formation of local back arc basin at the junction and to southward migration of the trench junction. (author)

  6. Development of a risk assessment tool for volcanic urban environments: RiskScape and the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Deligne, N. I.; Leonard, G.; King, A.; Wilson, G.; Wilson, T.; Lindsay, J. M.

    2013-12-01

    Auckland city, home to a third of New Zealand's population, is situated on top of the Auckland Volcanic Field (AVF), which last erupted roughly 500 years ago. Since 2008, the Determining Volcanic Risk in Auckland (DEVORA) program has investigated the geologic context of the AVF, improved timing constraints of past eruptions, explored possible tempo-spatial-volume eruption trends, and identified likely styles and hazards of future eruptions. DEVORA is now moving into development of risk and societal models for Auckland. The volcanic module of RiskScape, a multi-hazard risk assessment tool developed by Crown Research Institutes GNS Science and NIWA, will be expanded and used to model risk and impact to the built environment and population caused by a future AVF eruption. RiskScape models casualties, damage and disruption caused by various hazards, the resulting reduced functionality of assets, and associated clean up costs. A strength of RiskScape is that the effect of various mitigation strategies can be explored by strengthening asset attributes and examining resulting changes in the output risk evaluation. We present our framework for building a volcano hazard exposure module for RiskScape along with our approach for assessing asset vulnerability through the development of fragility functions. We also present the framework for engagement with regional Auckland stakeholders, including representatives of local and regional governments and utility companies, to identify complementary needs to ensure that final risk products are relevant and useable by end users.

  7. Field-trip guides to selected volcanoes and volcanic landscapes of the western United States

    Science.gov (United States)

    ,

    2017-06-23

    The North American Cordillera is home to a greater diversity of volcanic provinces than any comparably sized region in the world. The interplay between changing plate-margin interactions, tectonic complexity, intra-crustal magma differentiation, and mantle melting have resulted in a wealth of volcanic landscapes.  Field trips in this guide book collection (published as USGS Scientific Investigations Report 2017–5022) visit many of these landscapes, including (1) active subduction-related arc volcanoes in the Cascade Range; (2) flood basalts of the Columbia Plateau; (3) bimodal volcanism of the Snake River Plain-Yellowstone volcanic system; (4) some of the world’s largest known ignimbrites from southern Utah, central Colorado, and northern Nevada; (5) extension-related volcanism in the Rio Grande Rift and Basin and Range Province; and (6) the eastern Sierra Nevada featuring Long Valley Caldera and the iconic Bishop Tuff.  Some of the field trips focus on volcanic eruptive and emplacement processes, calling attention to the fact that the western United States provides opportunities to examine a wide range of volcanological phenomena at many scales.The 2017 Scientific Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) in Portland, Oregon, was the impetus to update field guides for many of the volcanoes in the Cascades Arc, as well as publish new guides for numerous volcanic provinces and features of the North American Cordillera. This collection of guidebooks summarizes decades of advances in understanding of magmatic and tectonic processes of volcanic western North America. These field guides are intended for future generations of scientists and the general public as introductions to these fascinating areas; the hope is that the general public will be enticed toward further exploration and that scientists will pursue further field-based research.

  8. Geologic map of the Simcoe Mountains Volcanic Field, main central segment, Yakama Nation, Washington

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2015-01-01

    Mountainous parts of the Yakama Nation lands in south-central Washington are mostly covered by basaltic lava flows and cinder cones that make up the Simcoe Mountains volcanic field. The accompanying geologic map of the central part of the volcanic field has been produced by the U.S. Geological Survey (USGS) on behalf of the Water Resources Program of the Yakama Nation. The volcanic terrain stretches continuously from Mount Adams eastward as far as Satus Pass and Mill Creek Guard Station. Most of the many hills and buttes are volcanic cones where cinders and spatter piled up around erupting vents while lava flows spread downslope. All of these small volcanoes are now extinct, and, even during their active lifetimes, most of them erupted for no more than a few years. On the Yakama Nation lands, the only large long-lived volcano capable of erupting again in the future is Mount Adams, on the western boundary.

  9. Mapping Intraplate Volcanic Fields: A Case Study from Harrat Rahat, Saudi Arabia

    Science.gov (United States)

    Downs, D. T.; Stelten, M. E.; Champion, D. E.; Dietterich, H. R.

    2017-12-01

    Continental intraplate mafic volcanoes are typically small-volume (200 volcanic fields proposed to be active worldwide during the Holocene. Their small individual eruption volumes make any hazards low, however their high prevalence offsets this by raising the risk to populations and infrastructure. The western Arabian Plate hosts at least 15 continental, intra-plate volcanic fields that stretch >3,000 km south to north from Yemen to Turkey. In total, these volcanic fields comprise one of the largest alkali basalt volcanic provinces on Earth, covering an area of 180,000 km2. With a total volume of 20,000 km3, Harrat Rahat in western Saudi Arabia is one of the largest of these volcanic fields. Our study focused on mapping the northern third of the Harrat Rahat volcanic field using a multidisciplinary approach. We have discriminated >200 individual eruptive units, mainly basaltic lava flows throughout Harrat Rahat that are distinguished through a combination of field observations, petrography, geochemistry, paleomagnetism, and 40Ar/39Ar radiometric and 36Cl cosmogenic surface-exposure dating. We have compiled these results into a high-resolution geologic map, which provides new information about the timing, compositions, and eruptive processes of Quaternary volcanism in Harrat Rahat. For example, prior mapping and geochronology undertaken during the 1980s suggested that the majority of mafic and silicic volcanics erupted during the Miocene and Pliocene, whereas several of the youngest-appearing lava flows were interpreted to be Neolithic ( 7,000 to 4,500 years BP) to post-Neolithic. New mapping and age-constrained stratigraphic relations indicate that all exposed volcanic units within the northern third of Harrat Rahat erupted during the Pleistocene, with the exception of a single Holocene eruption in 1256 AD. This new multidisciplinary mapping is critical for understanding the overall spatial, temporal, and compositional evolution of Harrat Rahat, timescales of

  10. Geologic field-trip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau

    Science.gov (United States)

    Morgan Morzel, Lisa Ann; Shanks, W. C. Pat; Lowenstern, Jacob B.; Farrell, Jamie M.; Robinson, Joel E.

    2017-11-20

    Yellowstone National Park, a nearly 9,000 km2 (~3,468 mi2) area, was preserved in 1872 as the world’s first national park for its unique, extraordinary, and magnificent natural features. Rimmed by a crescent of older mountainous terrain, Yellowstone National Park has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of late Cenozoic explosive and effusive volcanism, on-going tectonism, glaciation, and hydrothermal activity. The Yellowstone Caldera is the centerpiece of the Yellowstone Plateau. The Yellowstone Plateau lies at the most northeastern front of the 17-Ma Yellowstone hot spot track, one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Over six days, this field trip presents an intensive overview into volcanism, tectonism, and hydrothermal activity on the Yellowstone Plateau (fig. 1). Field stops are linked directly to conceptual models related to monitoring of the various volcanic, geochemical, hydrothermal, and tectonic aspects of the greater Yellowstone system. Recent interest in young and possible future volcanism at Yellowstone as well as new discoveries and synthesis of previous studies, (for example, tomographic, deformation, gas, aeromagnetic, bathymetric, and seismic surveys), provide a framework in which to discuss volcanic, hydrothermal, and seismic activity in this dynamic region.

  11. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Crowe, B.M.; Vaniman, D.T.; Carr, W.J.

    1983-03-01

    Volcanism studies of the Nevada Test Site (NTS) region are concerned with hazards of future volcanism with respect to underground disposal of high-level radioactive waste. The hazards of silicic volcanism are judged to be negligible; hazards of basaltic volcanism are judged through research approaches combining hazard appraisal and risk assessment. The NTS region is cut obliquely by a N-NE trending belt of volcanism. This belt developed about 8 Myr ago following cessation of silicic volcanism and contemporaneous with migration of basaltic activity toward the southwest margin of the Great Basin. Two types of fields are present in the belt: (1) large-volume, long-lived basalt and local rhyolite fields with numerous eruptive centers and (2) small-volume fields formed by scattered basaltic scoria cones. Late Cenozoic basalts of the NTS region belong to the second field type. Monogenetic basalt centers of this region were formed mostly by Strombolian eruptions; Surtseyean activity has been recognized at three centers. Geochemically, the basalts of the NTS region are classified as straddle A-type basalts of the alkalic suite. Petrological studies indicate a volumetric dominance of evolved hawaiite magmas. Trace- and rare-earth-element abundances of younger basalt ( - 8 to 10 - 10 as calculated for a 1-yr period. Potential disruptive and dispersal effects of magmatic penetration of a repository are controlled primarily by the geometry of basalt feeder systems, the mechanism of waste incorporation in magma, and Strombolian eruption processes

  12. Rapid uplift in Laguna del Maule volcanic field of the Andean Southern Volcanic Zone (Chile) measured by satellite radar interferometry

    Science.gov (United States)

    Feigl, K.; Ali, T.; Singer, B. S.; Pesicek, J. D.; Thurber, C. H.; Jicha, B. R.; Lara, L. E.; Hildreth, E. W.; Fierstein, J.; Williams-Jones, G.; Unsworth, M. J.; Keranen, K. M.

    2011-12-01

    The Laguna del Maule (LdM) volcanic field of the Andean Southern Volcanic Zone extends over 500 square kilometers and comprises more than 130 individual vents. As described by Hildreth et al. (2010), the history has been defined from sixty-eight Ar/Ar and K-Ar dates. Silicic eruptions have occurred throughout the past 3.7 Ma, including welded ignimbrite associated with caldera formation at 950 ka, small rhyolitic eruptions between 336 and 38 ka, and a culminating ring of 36 post-glacial rhyodacite and rhyolite coulees and domes that encircle the lake. Dating of five post-glacial flows implies that these silicic eruptions occurred within the last 25 kyr. Field relations indicate that initial eruptions comprised modest volumes of mafic rhyodacite magma that were followed by larger volumes of high silica rhyolite. The post-glacial flare-up of silicic magmatism from vents distributed around the lake, is unprecedented in the history of this volcanic field. Using satellite radar interferometry (InSAR), Fournier et al. (2010) measured uplift at a rate of more than 180 mm/year between 2007 and 2008 in a round pattern centered on the west side of LdM. More recent InSAR observations suggest that rapid uplift has continued from 2008 through early 2011. In contrast, Fournier et al. found no measurable deformation in an interferogram spanning 2003 through 2004. In this study, we model the deformation field using the General Inversion of Phase Technique (GIPhT), as described by Feigl and Thurber (2009). Two different models fit the data. The first model assumes a sill at ~5 km depth has been inflating at a rate of more than 20 million cubic meters per year since 2007. The second model assumes that the water level in the lake dropped at a rate of 20 m/yr from January 2007 through February 2010, thus reducing the load on an elastic simulation of the crust. The rate of intrusion inferred from InSAR is an order of magnitude higher than the average rate derived from well-dated arc

  13. Geologic structure and volcanic history of the Yanaizu-Nishiyama (Okuaizu) geothermal field, Northeast Japan

    Energy Technology Data Exchange (ETDEWEB)

    Mizugaki, Keiko [Geological Survey of Japan, Geothermal Research Dept., Higashi Tsukuba (Japan)

    2000-04-01

    The Yanaizu-Nishiyama geothermal field, also known as Okuaizu, supports a 65 MWe geothermal power station. It is located in the western part of Fukushima Prefecture, northeast Japan. This field is characterised by rhyolitic volcanism of about 0.3-0.2 Ma that formed Sunagohara volcano. Drillcore geology indicates that volcanism began with a caldera-forming eruption in the center of this field, creating a 2-km-diameter funnel-shaped caldera. Subsequently, a fault-bounded block including this caldera subsided to form a 5-km-wide lake that accumulated lake sediments. Post-caldera volcanism formed lava domes and intrusions within the lake, and deposited ash-flow tuffs in and around the lake. The hydrothermal system of this field is strongly controlled by subvertical faults that have no relation to the volcanism. The principal production zone occurs at a depth of 1.0-2.6 km within fractured Neogene formations along two northwest-trending faults to the southeast of the caldera. These faults also formed fracture zones in the lake sediments, but there was no apparent offset of the sediments. Stratigraphic studies suggest that post-caldera activities of Sunagohara volcano have migrated southeastward to the present high-temperature zone. The source magma of Sunagohara volcano may contribute to the thermal potential of this field. (Author)

  14. Infection of a mammal by monogenetic insect trypanosomatids (Kinetoplastida, trypanosomatidae

    Directory of Open Access Journals (Sweden)

    Ana M. Jansen

    1988-09-01

    Full Text Available Monogenetic insect trypanosomatids of the genera Crithidia, Leptomonas and Herpetomonas, multiplied as in axenic cultures, for many months, in the lumen of the scent glands of the opossum Didelphis marsupialis. Specific antibodies were detected in the serum of the animals but there was no evidence of invasion of their tissues by the parasites.

  15. Hydrothermal uranium vein deposits in Marysvale volcanic field, Utah

    International Nuclear Information System (INIS)

    Rasmussen, J.D.; Cunningham, C.G.; Steven, T.A.; Rye, R.O.; Romberger, S.B.

    1984-01-01

    Hydrothermal uranium veins are exposed over a 300 m (980 ft) vertical range in mines of the Central Mining area, near Marysvale, Utah. They cut 23 Ma quartz monzonite, 21 Ma granite, and 19 Ma rhyolite ash-flow tuff. The veins formed 18-19 Ma, in an area 1 km (0.6 mi) across, above the center of a composite magma chamber at least 12 x 6 km across that fed a sequence of 21-14 Ma hypabyssal granitic stocks, and rhyolitic lava flows, ash-flow tuffs, and volcanic domes. Intrusive pressure uplifted and fractured the roof; molybdenite-bearing, uranium-rich glassy dikes were intruded; and a breccia pipe and uranium-bearing veins were formed. The veins appear to have been deposited near the surface above a concealed rhyolite stock, where they filled high-angle fault zones and flat-lying to concave-downward pull-apart fractures. Low pH and fO 2 hydrothermal fluids at temperatures near 200 0 C (392 0 F) permeated the fractured rocks; these fluids were rich in fluorine and potassium, and contained uranium as uranous-fluoride complexes. Fluid-wall rock interaction increased fluid pH, causing precipitation of uranium minerals. At the deepest exposed levels, wall rocks were altered to kaolinite and sericite, and uraninite, coffinite, jordisite, fluorite, molybdenite, quartz, and pyrite (with delta 34 S near zero per mil) were deposited. The fluids were progressively oxidized higher in the system; iron in the wall rocks was oxidized to hematite, and sooty uraninite and umohoite were deposited

  16. Field-trip guide to mafic volcanism of the Cascade Range in Central Oregon—A volcanic, tectonic, hydrologic, and geomorphic journey

    Science.gov (United States)

    Deligne, Natalia I.; Mckay, Daniele; Conrey, Richard M.; Grant, Gordon E.; Johnson, Emily R.; O'Connor, Jim; Sweeney, Kristin

    2017-08-16

    The Cascade Range in central Oregon has been shaped by tectonics, volcanism, and hydrology, as well as geomorphic forces that include glaciations. As a result of the rich interplay between these forces, mafic volcanism here can have surprising manifestations, which include relatively large tephra footprints and extensive lava flows, as well as water shortages, transportation and agricultural disruption, and forest fires. Although the focus of this multidisciplinary field trip will be on mafic volcanism, we will also look at the hydrology, geomorphology, and ecology of the area, and we will examine how these elements both influence and are influenced by mafic volcanism. We will see mafic volcanic rocks at the Sand Mountain volcanic field and in the Santiam Pass area, at McKenzie Pass, and in the southern Bend region. In addition, this field trip will occur during a total solar eclipse, the first one visible in the United States in more than 25 years (and the first seen in the conterminous United States in more than 37 years).The Cascade Range is the result of subduction of the Juan de Fuca plate underneath the North American plate. This north-south-trending volcanic mountain range is immediately downwind of the Pacific Ocean, a huge source of moisture. As moisture is blown eastward from the Pacific on prevailing winds, it encounters the Cascade Range in Oregon, and the resulting orographic lift and corresponding rain shadow is one of the strongest precipitation gradients in the conterminous United States. We will see how the products of the volcanoes in the central Oregon Cascades have had a profound influence on groundwater flow and, thus, on the distribution of Pacific moisture. We will also see the influence that mafic volcanism has had on landscape evolution, vegetation development, and general hydrology.

  17. Fault control on patterns of Quaternary monogenetic vents in the ...

    African Journals Online (AJOL)

    Field and remote sensing data are used to examine the distribution of volcanism and fault geometry in the Ethiopian Rift between Omo-Chew Bahir rift and Tendaho graben during the Quaternary and evaluate their influence on the location and shape of individual vents as well as the development of alignments. The results ...

  18. Seismic and GPS constraints on the dynamics and kinematics of the Yellowstone volcanic field

    Science.gov (United States)

    Smith, R. B.; Farrell, J.; Jordan, M.; Puskas, C.; Waite, G. P.

    2007-12-01

    The seismically and volcanically Yellowstone hotspot resulted from interaction of a mantle plume with the overriding North America plate. This feature and related processes have modified continental lithosphere producing the Yellowstone-Snake River Plain-Newberry silicic volcanic field (YSRPN) system, with its NE volcanically active Yellowstone volcanic field. The size and accessibility of the Yellowstone area has allowed a range of geophysical experiments including earthquake monitoring and seismic and GPS imaging of this system. Seismicity is dominated by small-magnitude normal- to oblique-slip faulting earthquake swarms with shallow focal depths, maximum of ~5 km, restricted by high temperatures and a weak elastic layer. There is developing evidence of non-double couple events. Outside the caldera, earthquakes are deeper, ~20 km, and capable of M 7+ earthquakes. We integrate the results from a multi-institution experiment that recorded data from 110 seismic stations and 180 GPS stations for 1999-2004. The tomographic images confirm the existence of a low Vp-body beneath the Yellowstone caldera at depths greater than 8 km, possibly representing hot, crystallizing magma. A key result of our study is a volume of anomalously low Vp and Vp/Vs in the northwestern part of the volcanic field at shallow depths of stress field inverted from seismic and GPS data is dominated by regional SW extension with superimposed volumetric expansion and uplift from local volcanic sources. Mantle tomography derived from integrated inversion of teleseismic and local earthquake data constrained by geoid, crustal structure, discontinuity structure reveals an upper-mantle low P and S velocity body extends from 80 km to ~250 km directly beneath Yellowstone and then continues to 650 km with unexpected westward tilt to the west at ~60° with a 1% to 2% melt. This geometry is consistent with the ascent of the buoyant magma entrained in eastward return-flow of the upper mantle. Some remaining

  19. Metallogenic hydrothermal solution system of post volcanic magma in Xiangshan ore field

    International Nuclear Information System (INIS)

    Xu Hengli; Shao Fei; Zou Maoqin

    2009-01-01

    This paper has systematically described uranium metallogenic characteristics of Xiangshan ore field.Sources of metallogenic materials are discussed in different temporal and spatial scale. Combining with background analysis of metallogenic tectonic-magmatic-geodynamics, formation and evolution of metallogenic hydrothermal solution system in Xiangshan volcanic basin are studied. Metallogenic hydrothermal solution system in Xiangshan ore field is considered as the objective product of systematic evolution of hydrothermal solution in post volcanic magma constrained by regional tectonic environment. In time scale, metallogenic hydrothermal solution system developed for about 50 Ma, but its active spaces varied in different time domains. So temporal and spatial distribution of uranium mineralization is constrained. Further exploration for the ore field is also suggested in this paper. (authors)

  20. Origin of metaluminous and alkaline volcanic rocks of the Latir volcanic field, northern Rio Grande rift, New Mexico

    Science.gov (United States)

    Johnson, C.M.; Lipman, P.W.

    1988-01-01

    Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes

  1. The Middlesex Fells Volcanic Complex: A Revised Tectonic Model based on Geochronology, Geochemistry, and Field Data

    Science.gov (United States)

    Hampton, R.

    2017-12-01

    The Boston Bay area is composed of several terranes originating on the paleocontinent of Avalonia, an arc terrane that accreted onto the continent of Laurentia during the Devonian. Included in these terranes is the Middlesex Fells Volcanic Complex, a bimodal complex composed of both intrusive and extrusive igneous rocks. Initial studies suggested that this volcanic complex formed during a rift event as the Avalonian continent separated from its parent continent 700-900 Ma. New geochemical and geochronological data and field relationships observed in this study establishes a new tectonic model. U-Pb laser ablation zircon data on four samples from different units within the complex reveal that the complex erupted 600 Ma. ICP-MS geochemical analysis of the metabasalt member of the complex yield a trace element signature enriched in Rb, Pb, and Sr and depleted in Th, indicating a subduction component to the melt and interpreted as an eruption into a back-arc basin. The felsic units similarly have an arc related signature when plotted on trace element spider diagrams and tectonic discrimination diagrams. Combined with the field relationships, including an erosional unconformity, stratigraphic and intrusional relationships and large faults from episodic extension events, this data suggests that the Middlesex Fells Volcanic Complex was erupted as part of the arc-sequence of Avalonia and as part of the formation of a back-arc basin well after Avalonia separated from its parent continent. This model presents a significantly younger eruption scenario for the Middlesex Fells Volcanics than previously hypothesized and may be used to study and compare to other volcanics from Avalon terranes in localities such as Newfoundland and the greater Boston area.

  2. Role of crustal assimilation and basement compositions in the petrogenesis of differentiated intraplate volcanic rocks: a case study from the Siebengebirge Volcanic Field, Germany

    Science.gov (United States)

    Schneider, K. P.; Kirchenbaur, M.; Fonseca, R. O. C.; Kasper, H. U.; Münker, C.; Froitzheim, N.

    2016-06-01

    The Siebengebirge Volcanic Field (SVF) in western Germany is part of the Cenozoic Central European Volcanic Province. Amongst these volcanic fields, the relatively small SVF comprises the entire range from silica-undersaturated mafic lavas to both silica-undersaturated and silica-saturated differentiated lavas. Owing to this circumstance, the SVF represents a valuable study area representative of intraplate volcanism in Europe. Compositions of the felsic lavas can shed some new light on differentiation of intraplate magmas and on the extent and composition of potential crustal assimilation processes. In this study, we provide detailed petrographic and geochemical data for various differentiated SVF lavas, including major and trace element concentrations as well as Sr-Nd-Hf-Pb isotope compositions. Samples include tephriphonolites, latites, and trachytes with SiO2 contents ranging between 53 and 66 wt%. If compared to previously published compositions of mafic SVF lavas, relatively unradiogenic 143Nd/144Nd and 176Hf/177Hf coupled with radiogenic 87Sr/86Sr and 207Pb/204Pb lead to the interpretation that the differentiated volcanic rocks have assimilated significant amounts of lower crustal mafic granulites like the ones found as xenoliths in the nearby Eifel volcanic field. These crustal contaminants should possess unradiogenic 143Nd/144Nd and 176Hf/177Hf, radiogenic 87Sr/86Sr, and highly radiogenic 207Pb/204Pb compositions requiring the presence of ancient components in the central European lower crust that are not sampled on the surface. Using energy-constrained assimilation-fractional crystallisation (EC-AFC) model calculations, differentiation of the SVF lithologies can be modelled by approximately 39-47 % fractional crystallisation and 6-15 % crustal assimilation. Notably, the transition from silica-undersaturated to silica-saturated compositions of many felsic lavas in the SVF that is difficult to account for in closed-system models is also well explained by

  3. The Lathrop Wells volcanic center: Status of field and geochronology studies

    International Nuclear Information System (INIS)

    Crowe, B.; Morley, R.; Wells, S.; Geissman, J.; McDonald, E.; McFadden, L.; Perry, F.; Murrell, M.; Poths, J.; Forman, S.

    1992-01-01

    The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells volcanic center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results. The paper is divided into two parts. The first part describes the status of continuing field studies for the volcanic center for this area south of Yucca Mountain, Nevada. The second part presents an overview of the preliminary results of ongoing chronology studies and their constraints on the age and stratigraphy of the Lathrop Wells volcanic center. Along with the chronology data, the assumptions, strengths, and limitations of each methods are discussed

  4. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    Science.gov (United States)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  5. Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ander, M.E.; Heiken, G.; Eichelberger, J.; Laughlin, A.W.; Huestis, S.

    1981-05-01

    A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed. The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.

  6. Volcanic Hazard Education through Virtual Field studies of Vesuvius and Laki Volcanoes

    Science.gov (United States)

    Carey, S.; Sigurdsson, H.

    2011-12-01

    Volcanic eruptions pose significant hazards to human populations and have the potential to cause significant economic impacts as shown by the recent ash-producing eruptions in Iceland. Demonstrating both the local and global impact of eruptions is important for developing an appreciation of the scale of hazards associated with volcanic activity. In order to address this need, Web-based virtual field exercises at Vesuvius volcano in Italy and Laki volcano in Iceland have been developed as curriculum enhancements for undergraduate geology classes. The exercises are built upon previous research by the authors dealing with the 79 AD explosive eruption of Vesuvius and the 1783 lava flow eruption of Laki. Quicktime virtual reality images (QTVR), video clips, user-controlled Flash animations and interactive measurement tools are used to allow students to explore archeological and geological sites, collect field data in an electronic field notebook, and construct hypotheses about the impacts of the eruptions on the local and global environment. The QTVR images provide 360o views of key sites where students can observe volcanic deposits and formations in the context of a defined field area. Video sequences from recent explosive and effusive eruptions of Carribean and Hawaiian volcanoes are used to illustrate specific styles of eruptive activity, such as ash fallout, pyroclastic flows and surges, lava flows and their effects on the surrounding environment. The exercises use an inquiry-based approach to build critical relationships between volcanic processes and the deposits that they produce in the geologic record. A primary objective of the exercises is to simulate the role of a field volcanologist who collects information from the field and reconstructs the sequence of eruptive processes based on specific features of the deposits. Testing of the Vesuvius and Laki exercises in undergraduate classes from a broad spectrum of educational institutions shows a preference for the

  7. Imaging an off-axis volcanic field in the Main Ethiopian Rift using 3-D magnetotellurics

    Science.gov (United States)

    Huebert, J.; Whaler, K. A.; Fisseha, S.; Hogg, C.

    2017-12-01

    In active continental rifts, asthenospheric upwelling and crustal thinning result in the ascent of melt through the crust to the surface. In the Main Ethiopian Rift (MER), most volcanic activity is located in magmatic segments in the rift centre, but there are areas of significant off-axis magmatism as well. The Butajira volcanic field is part of the Silti Debre Zeyt Fault (SDZF) zone in the western Main Ethiopian Rift. It is characterized by densely clustered volcanic vents (mostly scoria cones) and by limited seismic activity, which is mainly located along the big border faults that form the edge of a steep escarpment. Seismic P-Wave tomography reveals a crustal low velocity anomaly in this area. We present newly collected Magnetotelluric (MT) data to image the electrical conductivity structure of the area. We deployed 12 LMT instruments and 27 broadband stations in the western flank of the rift to further investigate the along-rift and depth extent of a highly conductive region under the SDZF which was previously identified by MT data collected on the central volcano Aluto and along a cross-rift transverse. This large conductor was interpreted as potential pathways for magma and fluid in the crust. MT Stations were positioned in five NW-SE running 50 km long profiles, covering overall 100km along the rift and providing good coverage for a 3-D inversion of the data to image this enigmatic area of the MER.

  8. Paleogene volcanism in Central Afghanistan: Possible far-field effect of the India-Eurasia collision

    Science.gov (United States)

    Motuza, Gediminas; Šliaupa, Saulius

    2017-10-01

    A volcanic-sedimentary succession of Paleogene age is exposed in isolated patches at the southern margin of the Tajik block in the Ghor province of Central Afghanistan. The volcanic rocks range from basalts and andesites to dacites, including adakites. They are intercalated with sedimentary rocks deposited in shallow marine environments, dated biostratigraphically as Paleocene-Eocene. This age corresponds to the age of the Asyābēd andesites located in the western Ghor province estimated by the 40Ar/39Ar method as 54 Ma. The magmatism post-dates the Cimmerian collision between the Tajik block (including the Band-e-Bayan block) and the Farah Rod block located to the south. While the investigated volcanic rocks apparently bear geochemical signatures typical to an active continental margin environment, it is presumed that the magmatism was related to rifting processes most likely initiated by far-field tectonics caused by the terminal collision of the Indian plate with Eurasia (Najman et al., 2017). This event led to the dextral movement of the Farah Rod block, particularly along Hari Rod (Herat) fault system, resulting in the development of a transtensional regime in the proximal southern margin of the Tajik block and giving rise to a rift basin where marine sediments were interbedded with pillow lavas intruded by sheeted dyke series.

  9. Shallow magma diversions during explosive maar-diatreme eruptions in mafic volcanic fields

    Science.gov (United States)

    Le Corvec, N.; Muirhead, J.; White, J. D. L.

    2017-12-01

    Maar-diatremes are inverted conical structures formed by subterranean excavation and remobilization of country rocks during explosive volcanism and common in mafic volcanic fields. We focus on impacts of excavation and filling of maar-diatremes on the local state of stress, and its subsequent influence on underlying feeder dikes, which are critical for understanding the development of intrusive networks that feed surface eruptions. We address this issue using finite element models in COMSOL Multiphysics®. Inverted conical structures of varying sizes are excavated in a gravitationally loaded elastic half-space, and then progressively filled with volcaniclastic material, resulting in changes in the orientations and magnitudes of stresses generated within surrounding rocks and within the filling portion of the maar-diatreme. Our results show that rapid unloading during maar-diatreme excavation generates a horizontal compressive stress state beneath diatremes. These stresses allow magma to divert laterally as saucer-shaped sills and circumferential dikes at varying depths in the shallow feeder system, and produce intrusion geometries consistent with both field observations from exhumed volcanic fields and conceptual models of diatreme growth. Stresses generated in these models also provide an explanation for the evolving locations of fragmentation zones over the course of diatreme's filling. In particular, results from this study suggest that: (1) extensional stresses at the base of the diatreme fill favor magma ascent in the lower half of the structure, and possibly promote volatile exsolution and magma fragmentation; and (2) increased filling of diatremes creates a shallow compressive stress state that can inhibit magma ascent to the surface, promoting widespread intra-diatreme explosions, efficient mixing of host rock, and upward widening of the diatreme structure.

  10. Earth's Largest Terrestrial Landslide (The Markagunt Gravity Slide of Southwest Utah): Insights from the Catastrophic Collapse of a Volcanic Field

    Science.gov (United States)

    Hacker, D. B.; Biek, R. F.; Rowley, P. D.

    2015-12-01

    The newly discovered Miocene Markagunt gravity slide (MGS; Utah, USA) represents the largest volcanic landslide structure on Earth. Recent geologic mapping of the MGS indicates that it was a large contiguous volcanic sheet of allochthonous andesitic mudflow breccias and lava flows, volcaniclastic rocks, and intertonguing regional ash-flow tuffs that blanketed an area of at least 5000 km2 with an estimated volume of ~3000 km3. From its breakaway zone in the Tushar and Mineral Mountains to its southern limits, the MGS is over 95 km long and at least 65 km wide. The MGS consists of four distinct structural segments: 1) a high-angle breakaway segment, 2) a bedding-plane segment, ~60 km long and ~65 km wide, typically located within the volcaniclastic Eocene-Oligocene Brian Head Formation, 3) a ramp segment ~1-2 km wide where the slide cuts upsection, and 4) a former land surface segment where the upper-plate moved at least 35 km over the Miocene landscape. The presence of basal and lateral cataclastic breccias, clastic dikes, jigsaw puzzle fracturing, internal shears, pseudotachylytes, and the overall geometry of the MGS show that it represents a single catastrophic emplacement event. The MGS represents gravitationally induced collapse of the southwest sector of the Oligocene to Miocene Marysvale volcanic field. We suggest that continuous growth of the Marysvale volcanic field, loading more volcanic rocks on a structurally weak Brian Head basement, created conditions necessary for gravity sliding. In addition, inflation of the volcanic pile due to multiple magmatic intrusions tilted the strata gently southward, inducing lateral spreading of the sub-volcanic rocks prior to failure. Although similar smaller-scale failures have been recognized from individual volcanoes, the MGS represents a new class of low frequency but high impact hazards associated with catastrophic sector collapse of large volcanic fields containing multiple volcanoes. The relationship of the MGS to

  11. Xenoliths from Bunyaruguru volcanic field: Some insights into lithology of East African Rift upper mantle

    Science.gov (United States)

    Muravyeva, N. S.; Senin, V. G.

    2018-01-01

    The mineral composition of mantle xenoliths from kamafugites of the Bunyaruguru volcanic field has been determined. The major and some trace elements (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, Cr, Ni, Ba, Sr, La, Ce, Nd, Nb) has been analyzed in olivine, clinopyroxene, phlogopite, Cr-spinel, titanomagnetite, perovskite and carbonates of xenoliths and their host lavas. Bunyaruguru is one of three (Katwe-Kikorongo, Fort Portal and Bunyaruguru) volcanic fields included in the Toro-Ankole province located on the North end of the West Branch of the East African Rift. The xenoliths from three craters within the Bunyaruguru volcanic field revealed the different character of metasomatic alteration, reflecting the heterogeneity of the mantle on the kilometer scale. The most unusual finding was composite glimmerite-wehrlite xenolith from the crater Kazimiro, which contains the fresh primary high-Mg olivine with inclusions of Cr-spinel that had not been previously identified in this area. The different composition of phenocryst and xenolith minerals indicates that the studied xenoliths are not cumulus of enclosing magma, but the composition of xenoliths characterizes the lithology of the upper mantle of the area. The carbonate melt inclusions in olivine Fo90 demonstrate the existence of primary carbonatitic magmas in Bunyaruguru upper mantle. The results of texture and chemical investigation of the xenolith minerals indicate the time sequence of metasomatic alteration of Bunyaruguru upper mantle: MARID metasomatism at the first stage followed by carbonate metasomatism. The abundances of REE in perovskites from kamafugite are 2-4 times higher than similar values for xenolith. Therefore the kamafugite magma was been generated from a more enriched mantle source than the source of the xenoliths. The evaluation of P-T conditions formation of clinopyroxene xenolith revealed the range of pressure 20-65 kbar and the temperatures range 830-1040 °C. The pressure of clinopyroxene phenocryst

  12. Investigating the consequences of urban volcanism using a scenario approach I: Development and application of a hypothetical eruption in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Deligne, Natalia I.; Fitzgerald, Rebecca H.; Blake, Daniel M.; Davies, Alistair J.; Hayes, Josh L.; Stewart, Carol; Wilson, Grant; Wilson, Thomas M.; Castelino, Renella; Kennedy, Ben M.; Muspratt, Scott; Woods, Richard

    2017-04-01

    What happens when a city has a volcanic eruption within its boundaries? To explore the consequences of this rare but potentially catastrophic combination, we develop a detailed multi-hazard scenario of an Auckland Volcanic Field (AVF) eruption; the AVF underlies New Zealand's largest city, Auckland. We start with an existing AVF unrest scenario sequence and develop it through a month-long hypothetical eruption based on geologic investigations of the AVF and historic similar eruptions from around the world. We devise a credible eruption sequence and include all volcanic hazards that could occur in an AVF eruption. In consultation with Civil Defence and Emergency Management staff, we create a series of evacuation maps for before, during, and after the hypothetical eruption sequence. Our result is a versatile scenario with many possible applications, developed further in companion papers that explore eruption consequences on transportation and water networks. However, here we illustrate one application: evaluating the consequences of an eruption on electricity service provision. In a collaborative approach between scientists and electricity service providers, we evaluate the impact of the hypothetical eruption to electricity generation, transmission, and distribution infrastructure. We then evaluate how the impacted network functions, accounting for network adaptations (e.g., diverting power away from evacuated areas), site access, and restoration factors. We present a series of regional maps showing areas with full service, rolling outages, and no power as a result of the eruption. This illustrative example demonstrates how a detailed scenario can be used to further understand the ramifications of urban volcanism on local and regional populations, and highlights the importance of looking beyond damage to explore the consequences of volcanism.

  13. Gold-silver mining districts, alteration zones, and paleolandforms in the Miocene Bodie Hills Volcanic Field, California and Nevada

    Science.gov (United States)

    Vikre, Peter G.; John, David A.; du Bray, Edward A.; Fleck, Robert J.

    2015-09-25

    The Bodie Hills is a ~40 by ~30 kilometer volcanic field that straddles the California-Nevada state boundary between Mono Lake and the East Walker River. Three precious metal mining districts and nine alteration zones are delineated in Tertiary-Quaternary volcanic and Mesozoic granitic and metamorphic rocks that comprise the volcanic field. Cumulative production from the mining districts, Bodie, Aurora, and Masonic, is 3.4 million ounces of gold and 28 million ounces of silver. Small amounts of mercury were produced from the Potato Peak, Paramount-Bald Peak, and Cinnabar Canyon-US 395 alteration zones; a native sulfur resource in the Cinnabar Canyon-US 395 alteration zone has been identified by drilling. There are no known mineral resources in the other six alteration zones, Red Wash-East Walker River, East Brawley Peak, Sawtooth Ridge, Aurora Canyon, Four Corners, and Spring Peak. The mining districts and alteration zones formed between 13.4 and 8.1 Ma in predominantly ~15–9 Ma volcanic rocks of the Bodie Hills volcanic field. Ages of hydrothermal minerals in the districts and zones are the same as, or somewhat younger than, the ages of volcanic host rocks.

  14. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    International Nuclear Information System (INIS)

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-01-01

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma)

  15. Post-eruptive sediment transport and surface processes on unvegetated volcanic hillslopes - A case study of Black Tank scoria cone, Cima Volcanic Field, California

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly

    2016-08-01

    Conical volcanic edifices that are made up from lapilli to block/bomb pyroclastic successions, such as scoria cones, are widespread in terrestrial and extraterrestrial settings. Eruptive processes responsible for establishing the final facies architecture of a scoria cone are not well linked to numerical simulations of their post-eruptive sediment transport. Using sedimentological, geomorphic and 2D fragment morphology data from a 15-ky-old scoria cone from the Cima Volcanic Field, California, this study provides field evidence of the various post-eruptive sediment transport and degradation processes of scoria cones located in arid to semi-arid environments. This study has revealed that pyroclast morphologies vary downslope due to syn-eruptive granular flows, along with post-eruptive modification by rolling, bouncing and sliding of individual particles down a slope, and overland flow processes. The variability of sediment transport rates on hillslopes are not directly controlled by local slope angle variability and the flank length but rather by grain size, and morphological characteristics of particles, such as shape irregularity of pyroclast fragments and block/lapilli ratio. Due to the abundance of hillslopes degrading in unvegetated regions, such as those found in the Southwestern USA, granulometric influences should be accounted for in the formulation of sediment transport laws for geomorphic modification of volcanic terrains over long geologic time.

  16. The eruption history of the quaternary Eifel volcanic fields: Implications from the ELSA - Tephra - Stack

    Science.gov (United States)

    Förster, Michael; Sirocko, Frank

    2015-04-01

    Numerous tephra layers occur in maar sediments in the quaternary Eifel volcanic fields. The sediments were systematically drilled and cored since 1998 by the Eifel Laminated Sediment Archive project (ELSA) (Sirocko et al. 2013). These maar sediments are laminated and the tephra is easily recognizeable by a coarser grain size. Additionaly, tephra layers appear dark grey to black in color. The ashes were sieved to a fraction of 250 - 100 µm and sorted into grains of: reddish and greyish sandstone, quartz, amphibole, pyroxene, scoria and pumice, sanidine, leucite and biotite. A minimum of 100 grains for each tephra layer were used for a sediment petrographic tephra characterisation (SPTC). The grain counts resemble the vol. -% of each grain species. Three types of tephra could be identified by their distinctive grain pattern: (1) phreatomagmatic tephra, rich in basement rocks like greyish/reddish sandstone and quartz. (2) Strombolian tephra, rich in scoria and mafic minerals like pyroxene. (3) evolved tephra, rich in sanidine and pumice. 16 drill-cores, covering the last 500 000 years have been examined. Younger cores were dated by 14C ages and older cores by optical stimulated luminescence. Independently from this datings, the drill-cores were cross-correlated by pollen and the occurences of specific marker-tephra layers, comprising characteristic grain-types. These marker-tephra layers are especially thick and of evolved composition with a significant abundance of sanidine and pumice. The most prominent tephra layers of this type are the Laacher See tephra, dated to 12 900 b2k by Zolitschka (1998), the 40Ar/39Ar dated tephra layers of Dümpelmaar, Glees and Hüttenberg, dated to 116 000 b2k, 151 000 b2k and 215 000 b2k by van den Bogaard & Schmincke (1990), van den Bogaard et al. (1989). These datings set the time-frame for the eruption-phases of the quaternary Eifel Volcanic Fields. Our study refines these findings and shows that phases of activity are very

  17. The Lathrop Wells volcanic center: Status of field and geochronology studies

    International Nuclear Information System (INIS)

    Crowe, B.; Morley, R.; Wells, S.; Geissman, J.; McDonald, E.; McFadden, L.; Perry, F.; Murrell, M.; Poths, J.; Forman, S.

    1993-01-01

    The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. It has long been recognized as the youngest basalt center in the region. However, determination of the age and eruptive history of the center has proven problematic. The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results

  18. Geology of the Mid-Miocene Rooster Comb Caldera and Lake Owyhee Volcanic Field, eastern Oregon: Silicic volcanism associated with Grande Ronde flood basalt

    Science.gov (United States)

    Benson, Thomas R.; Mahood, Gail A.

    2016-01-01

    The Lake Owyhee Volcanic Field (LOVF) of eastern Oregon consists of rhyolitic caldera centers and lava fields contemporaneous with and spatially related to Mid-Miocene Columbia River flood basalt volcanism. Previous studies delineated two calderas in the southeastern part of LOVF near Owyhee Reservoir, the result of eruptions of two ignimbrites, the Tuff of Leslie Gulch and the Tuff of Spring Creek. Our new interpretation is that these two map units are differentially altered parts of a single ignimbrite produced in a major phreatomagmatic eruption at 15.8 Ma. Areas previously mapped as Tuff of Spring Creek are locations where the ignimbrite contains abundant clinoptilolite ± mordenite, which made it susceptible to erosion. The resistant intracaldera Tuff of Leslie Gulch has an alteration assemblage of albite ± quartz, indicative of low-temperature hydrothermal alteration. Our new mapping of caldera lake sediments and pre- and post-caldera rhyolitic lavas and intrusions that are chemically similar to intracaldera Tuff of Leslie Gulch point to a single 20 × 25 km caldera, which we name the Rooster Comb Caldera. Erosion of the resurgently uplifted southern half of the caldera created dramatic exposures of intracaldera Tuff of Leslie Gulch cut by post-caldera rhyolite dikes and intrusions that are the deeper-level equivalents of lava domes and flows that erupted into the caldera lake preserved in exposures to the northeast. The Rooster Comb Caldera has features in common with more southerly Mid-Miocene calderas of the McDermitt Volcanic Field and High Rock Caldera Complex, including formation in a basinal setting shortly after flood basalt eruptions ceased in the region, and forming on eruption of peralkaline ignimbrite. The volcanism at Rooster Comb Caldera postdates the main activity at McDermitt and High Rock, but, like it, begins 300 ky after flood basalt volcanism begins in the area, and while flood basalts don't erupt through the silicic focus, are

  19. Shear-wave velocity models and seismic sources in Campanian volcanic areas: Vesuvius and Phlegraean fields

    Energy Technology Data Exchange (ETDEWEB)

    Guidarelli, M; Zille, A; Sarao, A [Dipartimento di Scienze della Terra, Universita degli Studi di Trieste, Trieste (Italy); Natale, M; Nunziata, C [Dipartimento di Geofisica e Vulcanologia, Universita di Napoli ' Federico II' , Napoli (Italy); Panza, G F [Dipartimento di Scienze della Terra, Universita degli Studi di Trieste, Trieste (Italy); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2006-12-15

    This chapter summarizes a comparative study of shear-wave velocity models and seismic sources in the Campanian volcanic areas of Vesuvius and Phlegraean Fields. These velocity models were obtained through the nonlinear inversion of surface-wave tomography data, using as a priori constraints the relevant information available in the literature. Local group velocity data were obtained by means of the frequency-time analysis for the time period between 0.3 and 2 s and were combined with the group velocity data for the time period between 10 and 35 s from the regional events located in the Italian peninsula and bordering areas and two station phase velocity data corresponding to the time period between 25 and 100 s. In order to invert Rayleigh wave dispersion curves, we applied the nonlinear inversion method called hedgehog and retrieved average models for the first 30-35 km of the lithosphere, with the lower part of the upper mantle being kept fixed on the basis of existing regional models. A feature that is common to the two volcanic areas is a low shear velocity layer which is centered at the depth of about 10 km, while on the outside of the cone and along a path in the northeastern part of the Vesuvius area this layer is absent. This low velocity can be associated with the presence of partial melting and, therefore, may represent a quite diffused crustal magma reservoir which is fed by a deeper one that is regional in character and located in the uppermost mantle. The study of seismic source in terms of the moment tensor is suitable for an investigation of physical processes within a volcano; indeed, its components, double couple, compensated linear vector dipole, and volumetric, can be related to the movements of magma and fluids within the volcanic system. Although for many recent earthquake events the percentage of double couple component is high, our results also show the presence of significant non-double couple components in both volcanic areas. (author)

  20. Spectral image analysis of the Hopi Buttes volcanic field, Arizona, U.S.A

    International Nuclear Information System (INIS)

    Gabelman, J.W.; Wescott, T.F.

    1987-01-01

    The possibility of economic deposits, the semi-arid environment and the youth of applied remote-sensing technology suit the Hopi Buttes volcanic field as a test site for the application of multispectral image analysis to geologic interpretation and uranium evaluation. All possible enhancements of seasonal images were created in the General Electric interactive multispectral analyzer, model 100, and photographed for study. Contrast and directional edge-enhancement excellently delineated the patterns of megafractures and lineaments which are obscure to ground observation, but may control vent positions. Two sets of orthogonal groups of megafractures are oriented in the cardinal and diagonal directions; they suggest rotation of the stress ellipsoid, or the overlap of stresses from a differently oriented ellipsoid in a neighboring region. A megacircle of vents suggests a deep cylindrical fracture zone and possible incipient cauldron. Other circular areas with unusually abundant travertine maars or volcanic-material-free pipes suggest incipient collapse. Band ratios, density slices and histogram stretches selectively enhanced and differentiated stratigraphic formations, limburgite, tuff, travertine, gypsum-argillized rock and Fe-enriched rock. These were portrayed successfully on thematic map-images. A signature was derived for uraniferous travertine-marl and used to map its distribution. 30 refs.; 24 figs

  1. The correlation between geomagnetic field reversals, Hawaiian volcanism, and the motion of the Pacific plate

    Directory of Open Access Journals (Sweden)

    W. Dong

    1996-06-01

    Full Text Available The correlation between geomagnetic field reversals and volcanism is investigated, according to the speculated consequence on volcanoes of the transient electric currents in the geodynamo, through Joule's heating, before and after every reversal event. We evaluate the temporal variation during the last ~ 70 Ma both of the magma emplacement rate Q(t from the Hawaii hot spot, and of the speed v(t of the Pacific plate, by means of the observed volumes of islands and seamounts along the Hawaii/Emperor Seamounts chain, and their respective radiometric datings. Results confirm expectations. A justification of the volcanic crises that lead to the generation of the large igneous provinces during the last ~ 250 Ma also emerged. We describe in detail the complex pattern of the timings of the different effects. Joule's power is generally responsible for ~ 75-80% of magmatism, and friction power only for ~ 20-25%; but, on some occasions almost ~ 100% is fuelled by friction alone. The visco-elastic coupling between lithosphere and asthenosphere results ~ 96% viscous, and ~ 4% elastic.

  2. Reconstruction of eroded monogenic Strombolian cones of Miocene age: A case study on character of volcanic activity of the Jičín Volcanic Field (NE Bohemia) and subsequent erosional rates estimation

    Czech Academy of Sciences Publication Activity Database

    Rapprich, V.; Cajz, Vladimír; Košťák, M.; Pécskay, Z.; Řídkošil, T.; Raška, P.; Radoň, M.

    2007-01-01

    Roč. 52, 3-4 (2007), s. 169-180 ISSN 0449-2560 R&D Projects: GA AV ČR IAA300130612 Institutional research plan: CEZ:AV0Z30130516 Keywords : cinder cone * Strombolian eruption * volcanic facies * erosion rate * Jičín Volcanic Field * Bohemian Paradise GeoPark Subject RIV: DB - Geology ; Mineralogy

  3. Primitive magmas at five Cascade volcanic fields: Melts from hot, heterogeneous sub-arc mantle

    Science.gov (United States)

    Bacon, C.R.; Bruggman, P.E.; Christiansen, R.L.; Clynne, M.A.; Donnelly-Nolan, J. M.; Hildreth, W.

    1997-01-01

    Major and trace element concentrations, including REE by isotope dilution, and Sr, Nd, Pb, and O isotope ratios have been determined for 38 mafic lavas from the Mount Adams, Crater Lake, Mount Shasta, Medicine Lake, and Lassen volcanic fields, in the Cascade arc, northwestern part of the United States. Many of the samples have a high Mg# [100Mg/(Mg + FeT) > 60] and Ni content (>140 ppm) such that we consider them to be primitive. We recognize three end-member primitive magma groups in the Cascades, characterized mainly by their trace-element and alkali-metal abundances: (1) High-alumina olivine tholeiite (HAOT) has trace element abundances similar to N-MORB, except for slightly elevated LILE, and has Eu/Eu* > 1. (2) Arc basalt and basaltic andesite have notably higher LILE contents, generally have higher SiO2 contents, are more oxidized, and have higher Cr for a given Ni abundance than HAOT. These lavas show relative depletion in HFSE, have lower HREE and higher LREE than HAOT, and have smaller Eu/Eu* (0.94-1.06). (3) Alkali basalt from the Simcoe volcanic field east of Mount Adams represents the third end-member, which contributes an intraplate geochemical signature to magma compositions. Notable geochemical features among the volcanic fields are: (1) Mount Adams rocks are richest in Fe and most incompatible elements including HFSE; (2) the most incompatible-element depleted lavas occur at Medicine Lake; (3) all centers have relatively primitive lavas with high LILE/HFSE ratios but only the Mount Adams, Lassen, and Medicine Lake volcanic fields also have relatively primitive rocks with an intraplate geochemical signature; (4) there is a tendency for increasing 87Sr/86Sr, 207Pb/204Pb, and ??18O and decreasing 206Pb/204Pb and 143Nd/144Nd from north to south. The three end-member Cascade magma types reflect contributions from three mantle components: depleted sub-arc mantle modestly enriched in LILE during ancient subduction; a modern, hydrous subduction component

  4. Pliocene to late Pleistocene magmatism in the Aurora Volcanic Field, Nevada and California, USA

    Science.gov (United States)

    Kingdon, S.; Cousens, B.; John, D. A.; du Bray, E. A.

    2013-12-01

    The 3.9- 0.1 Ma Aurora Volcanic Field (AVF) covers 325 km2 east and southeast of the Bodie Hills, north of Mono Lake, California, USA. The AVF is located immediately northwest of the Long Valley magmatic system and adjacent and overlapping the Miocene Bodie Hills Volcanic Field (BHVF). Rock types range from trachybasalt to trachydacite, and high-silica rhyolite. The trachybasalts to trachydacites are weakly to moderately porphyritic (1-30%) with variable phenocryst assemblages that are some combination of plagioclase, hornblende, clinopyroxene, and lesser orthopyroxene, olivine, and/or biotite. Microphenocrysts are dominated by plagioclase, and include opaque oxides, clinopyroxene, and apatite. These rocks are weakly to strongly devitrified. The high-silica rhyolites are sparsely porphyritic with trace to 10% phenocrysts of quartz, sanidine, plagioclase, biotite, (+/- hornblende), accessory opaque oxide minerals, titanite, allanite, (+/-apatite, zircon), and have glassy groundmasses. Rocks in the AVF are less strongly porphyritic than those of BHVF. Plagioclase phenocrysts are often oscillatory zoned and many have sieve texture. Amphiboles have distinct black opaque rims. Xenocrystic quartz and plagioclase are rare. AVF lavas have bimodal SiO2 compositions, ranging from 49 to 78 wt%, with a gap between 65 and 75 wt%. They are high-K calc-alkaline to shoshonitic in composition, and are metaluminous to weakly peraluminous. They are enriched in rare earth elements (REE), especially light REEs, compared to the Miocene BHVF rocks. Primordial mantle-normalized incompatible element patterns show arc- or subduction-related signatures, with enrichment in Ba and Pb, and depletion in Nb and Ta. Enrichment in K and Sr and depletion in Ti are less pronounced than in the BHVF rocks. There is no correlation between lead isotope ratios and silica (initial 206Pb/204Pb ratios range from 18.974 to 19.151). Neodymium isotope ratios show a moderate negative correlation with silica

  5. Reconstructing an Explosive Basaltic Eruption in the Pinacate Volcanic Field, NW Sonora, Mexico

    Science.gov (United States)

    Zawacki, E. E.; Clarke, A. B.; Arrowsmith, R.; Lynch, D. J.

    2017-12-01

    Tephra deposits from explosive volcanic eruptions provide a means to reconstruct eruption characteristics, such as column height and erupted volume. Parameters like these are essential in assessing the explosivity of past eruptions and associated volcanic hazards. We applied such methods to a basaltic tephra deposit from one of the youngest eruptions in the Pinacate volcanic field (NW Sonora, Mexico). This roughly circular tephra blanket extends 13 km E-W and 13 km N-S, and covers an area of at least 135 km2. The source vent of this eruption is hypothesized to be the Tecolote volcano (lat 31.877, long -113.362), which is dated to 27 ± 6 ka (40Ar/39Ar). Fifty-three pits were dug across the extent of the tephra deposit to measure its thickness, record stratigraphy, characterize grain size distribution, and determine maximum clast size. Isopleth and isopach maps were created from these data to determine the column height (>9 km), estimate mass eruption rate (>2.1x106 kg/s), and calculate the erupted volume (>4.2x10-2 km3). Stratigraphic descriptions support two distinct episodes of tephra production. Unit A is dispersed in an approximately circular pattern ( 6.5 km radius) with its center shifted to the east of the vent. The distribution of Unit B is oblate ( 9.5 km major axis, 4.5 km minor axis) and trends to the southeast of the vent. Lava samples were collected from each of the seven Tecolote flows for XRF and ICP-MS geochemical analyses. These samples were compared to geochemical signatures from a Tecolote bomb, tephra from Units A and B, and cinder from the La Laja cone, which is the youngest dated cone in the field at 12 ± 4 ka (40Ar/39Ar). The La Laja sample is geochemically distinct from all Tecolote samples, confirming that it did not contribute to the two tephra units. Tephra from Unit A and Unit B have distinct signatures and fit within the geochemical evolution of the Tecolote lavas, supporting two explosive episodes from the Tecolote volcano, which has

  6. An approach of understanding acid volcanics and tuffaceous volcaniclastics from field studies: A case from Tadpatri Formation, Proterozoic Cuddapah basin, Andhra Pradesh, India

    Science.gov (United States)

    Goswami, Sukanta; Upadhyay, P. K.; Bhagat, Sangeeta; Zakaulla, Syed; Bhatt, A. K.; Natarajan, V.; Dey, Sukanta

    2018-03-01

    The lower stratigraphic part of the Cuddapah basin is marked by mafic and felsic volcanism. Tadpatri Formation consists of a greater variety of rock types due to bimodal volcanism in the upper part. Presence of bimodal volcanism is an indication of continental rift setting. Various genetic processes involved in the formation of such volcanic sequence result in original textures which are classified into volcaniclastic and coherent categories. Detailed and systematic field works in Tadpatri-Tonduru transect of SW Cuddapah basin have provided information on the physical processes producing this diversity of rock types. Felsic volcanism is manifested here with features as finger print of past rhyolite-dacite eruptions. Acid volcanics, tuffs and associated shale of Tadpatri Formation are studied and mapped in the field. With supporting subordinate studies on geochemistry, mineralogy and petrogenesis of the volcanics to validate field features accurately, it is understood that volcanism was associated with rifting and shallow marine environmental condition. Four facies (i.e., surge, flow, fall and resedimented volcaniclastic) are demarcated to describe stratigraphic units and volcanic history of the mapped area. The present contribution focuses on the fundamental characterization and categorization of field-based features diagnostic of silica-rich volcanic activities in the Tadpatri Formation.

  7. Occurrence of an unknown Atlantic eruption in the Chaîne des Puys volcanic field (Massif Central, France)

    Science.gov (United States)

    Jouannic, G.; Walter-Simonnet, A. V.; Bossuet, G.; Cubizolle, H.; Boivin, P.; Devidal, J. L.; Oberlin, C.

    2014-08-01

    A volcanic ash layer, called MF1, was recently identified in Holocene sediments from the Gourgon and Molhiac peat bogs (Monts du Forez, French Massif Central). This ash layer consists of colorless shards with a heterogeneous trachytic to rhyolitic composition. The trace elements analyzed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) attest to a local origin. Radiocarbon dating of peat samples taken within and below the ash layer indicates the best age at 6339 ± 61 cal yr BP, i.e. an age contemporaneous with the volcanic activity of Montchal, Montcineyre and Pavin volcanoes from the Chaîne des Puys volcanic field. These volcanoes are characterized by basaltic and trachytic products, thus the rhyolitic composition of MF1 tephra suggests that it is likely originated from an unknown eruption. These results again confirm the interest of studying the distal volcanic ash fallouts in order to establish or specify records of past eruptions of volcanic fields. Identification of this new tephra layer also provides an additional tephrochronological marker for Eastern French Massif Central.

  8. Paleomagnetism in the Determination of the Emplacement Temperature of Cerro Colorado Tuff Cone, El Pinacate Volcanic Field, Sonora, Mexico.

    Science.gov (United States)

    Rodriguez Trejo, A.; Alva-Valdivia, L. M.; Vidal Solano, J. R.; Garcia Amador, B.; Gonzalez-Rangel, J. A.

    2014-12-01

    Cerro Colorado Maar is located at the World Heritage Site, biosphere reserve El Pinacate and Gran Desierto del Altar, at the NNW region of Sonora, Mexico (in El Pinacate Volcanic Field). It is a tuff cone, about 1 km diameter, result of several phreatomagmatic episodes during the late Quaternary. We report paleomagnetic and rock magnetic properties from fusiform volcanic bombs obtained from the borders of Cerro Colorado. This study is based in the thermoremanent magnetization TRM normally acquired by volcanic rocks, which can be used to estimate the emplacement temperature range. We performed the experiments on 20 lithic fragments (10 cm to 20 cm approximately), taking 6-8 paleomagnetic cores from each. Rock magnetic experiments (magnetic susceptibility vs. temperature (k-T), hysteresis curves and FORC analysis, shows that the main magnetic mineral carriers of magnetization are titanomagnetite and titanohematite in different levels of intergrowth. The k-T curves suggest in many cases, only one magnetic phase, but also in other cases a second magnetic phase. Thermal demagnetization was used to demagnetize the specimens in detailed short steps and make a well-defined emplacement temperature determination ranges. We found that temperature emplacement determination range for these two magnetic phases is between 350-450 °C, and 550-580 °C, respectively. These results are consistent with those expected in an eruption of Surtsey type, showing a distinct volcanic activity compared to the other craters from El Pinacate volcanic field.

  9. Validation of gravity data from the geopotential field model for subsurface investigation of the Cameroon Volcanic Line (Western Africa)

    Science.gov (United States)

    Marcel, Jean; Abate Essi, Jean Marcel; Nouck, Philippe Njandjock; Sanda, Oumarou; Manguelle-Dicoum, Eliézer

    2018-03-01

    Belonging to the Cameroon Volcanic Line (CVL), the western part of Cameroon is an active volcanic zone with volcanic eruptions and deadly gas emissions. The volcanic flows generally cover areas and bury structural features like faults. Terrestrial gravity surveys can hardly cover entirely this mountainous area due to difficult accessibility. The present work aims to evaluate gravity data derived from the geopotential field model, EGM2008 to investigate the subsurface of the CVL. The methodology involves upward continuation, horizontal gradient, maxima of horizontal gradient-upward continuation combination and Euler deconvolution techniques. The lineaments map inferred from this geopotential field model confirms several known lineaments and reveals new ones covered by lava flows. The known lineaments are interpreted as faults or geological contacts such as the Foumban fault and the Pan-African Belt-Congo craton contact. The lineaments highlighted coupled with the numerous maar lakes identified in this volcanic sector attest of the vulnerability of the CVL where special attention should be given for geohazard prevention.

  10. Structural analysis and thermal remote sensing of the Los Humeros Volcanic Complex: Implications for volcano structure and geothermal exploration

    Science.gov (United States)

    Norini, G.; Groppelli, G.; Sulpizio, R.; Carrasco-Núñez, G.; Dávila-Harris, P.; Pellicioli, C.; Zucca, F.; De Franco, R.

    2015-08-01

    The Los Humeros Volcanic Complex (LHVC) is an important geothermal target in the Trans-Mexican Volcanic Belt. Understanding the structure of the LHVC and its influence on the occurrence of thermal anomalies and hydrothermal fluids is important to get insights into the interplay between the volcano-tectonic setting and the characteristics of the geothermal resources in the area. In this study, we present a structural analysis of the LHVC, focused on Quaternary tectonic and volcano-tectonic features, including the areal distribution of monogenetic volcanic centers. Morphostructural analysis and structural field mapping revealed the geometry, kinematics and dynamics of the structural features in the study area. Also, thermal infrared remote sensing analysis has been applied to the LHVC for the first time, to map the main endogenous thermal anomalies. These data are integrated with newly proposed Unconformity Bounded Stratigraphic Units, to evaluate the implications for the structural behavior of the caldera complex and geothermal field. The LHVC is characterized by a multistage formation, with at least two major episodes of caldera collapse: Los Humeros Caldera (460 ka) and Los Potreros Caldera (100 ka). The study suggests that the geometry of the first collapse recalls a trap-door structure and impinges on a thick volcanic succession (10.5-1.55 Ma), now hosting the geothermal reservoir. The main ring-faults of the two calderas are buried and sealed by the widespread post-calderas volcanic products, and for this reason they probably do not have enough permeability to be the main conveyers of the hydrothermal fluid circulation. An active, previously unrecognized fault system of volcano-tectonic origin has been identified inside the Los Potreros Caldera. This fault system is the main geothermal target, probably originated by active resurgence of the caldera floor. The active fault system defines three distinct structural sectors in the caldera floor, where the

  11. Combining Geological and Geophysical Data in Volcanic Hazard Estimation for Dominica, Lesser Antilles

    Science.gov (United States)

    George, O.; Latchman, J. L.; Connor, C.; Malservisi, R.; Connor, L.

    2014-12-01

    Risk posed by volcanic eruptions are generally quantified in a few ways; in the short term geophysical data such as seismic activity or ground deformation are used to assess the state of volcanic unrest while statistical approaches such as spatial density estimates are used for long term hazard assessment. Spatial density estimates have been used in a number of monogenetic volcanic fields for hazard map generation and utilize the age, location and volumes of previous eruptions to calculate the probability of a new event occurring at a given location within this field. In a previously unpublished study, spatial density estimates of the Lesser Antilles volcanic arc showed the island of Dominica to have the highest likelihood of future vent formation. In this current study, this technique was used in combination with relocated seismic events occurring beneath Dominica within the last ~ 20 years as well as InSAR images of ground deformation to generate a hazard map which not only takes into consideration the past events but also the current state of unrest. Here, geophysical data serve as a weighting factor in the estimates with those centers showing more vigorous activity receiving stronger favorability in the assessment for future activity. In addition to this weighting, the bandwidth utilized in the 2D-radially symmetric kernel density function was optimized using the SAMSE method so as to find the value which best minimizes the error in the estimate. The end results of this study are dynamic volcanic hazards maps which will be readily updatable as changes in volcanic unrest occurs within the system.

  12. Field Courses for Volcanic Hazards Mapping at Parícutinand Jorullo Volcanoes (Mexico)

    Science.gov (United States)

    Victoria Morales, A.; Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Linares López, C.

    2007-05-01

    During the last decades, Mexico has suffered several geologic phenomena-related disasters. The eruption of El Chichón volcano in 1982 killed >2000 people and left a large number of homeless populations and severe economic damages. The best way to avoid and mitigate disasters and their effects is by making geologic hazards maps. In volcanic areas these maps should show in a simplified fashion, but based on the largest geologic background possible, the probable (or likely) distribution in time and space of the products related to a variety of volcanic processes and events, according to likely magnitude scenarios documented on actual events at a particular volcano or a different one with similar features to the volcano used for calibration and weighing geologic background. Construction of hazards maps requires compilation and acquisition of a large amount of geological data in order to obtain the physical parameters needed to calibrate and perform controlled simulation of volcanic events under different magnitude-scenarios in order to establish forecasts. These forecasts are needed by the authorities to plan human settlements, infrastructure, and economic development. The problem is that needs are overwhelmingly faster than the adjustments of university programs to include courses. At the Earth Science División of the Faculty of Engineering at the Universidad Nacional Autónoma de México, the students have a good background that permits to learn the methodologies for hazards map construction but no courses on hazards evaluations. Therefore, under the support of the university's Program to Support Innovation and Improvement of Teaching (PAPIME, Programa de Apoyo para la Innovación y Mejoramiento de la Enseñanza) a series of field-based intensive courses allow the Earth science students to learn what kind of data to acquire, how to record, and process in order to carry out hazards evaluations. This training ends with hazards maps that can be used immediately by the

  13. Lithofacies characteristics of diatreme deposits: Examples from a basaltic volcanic field of SW Sardinia (Italy)

    Science.gov (United States)

    Mundula, F.; Cioni, R.; Funedda, A.; Leone, F.

    2013-04-01

    A deeply eroded diatreme field, consisting in several, decametric-sized, vertical, mainly clastic volcanic bodies of basaltic composition is described for the first time in the Variscan basement of SW Sardinia. The recognition and description of four different lithofacies in these diatremes allowed discussion of the role of the different processes which control magma eruption and conduit infilling, and making general inferences about diatremes. The studied diatremes have a cross-sectional shape from elliptical to sub-triangular, and are slightly elongated nearly parallel to the main foliation of the intruded meta-sedimentary rocks. Foliation of host rocks is locally reoriented or folded close to the contact with the diatremes, suggesting that magma possibly rose to the surface through fissures oriented nearly parallel to host rock foliation. Textural features of the volcanic bodies show many analogies with kimberlitic diatremes, despite the difference in petrography and composition. Juvenile lapilli are mainly made by ghosts of mafic phenocrysts (olivine and clinopyroxene) set in a groundmass formed by plagioclase microlites immersed in a cryptocrystalline, chlorite-rich matrix. The four lithofacies were described mainly based on the shape and physical features of the clasts and textural anisotropy: a globular, juvenile-rich, lapilli tuff facies (GJLt); an angular, juvenile-rich, lapilli tuff facies (AJLt); a lithic-rich, lapilli tuff facies LiRLt), and a coherent, lava-like facies (COH). All the clastic lithofacies are generally well sorted and typically lack a fine-grained matrix. Juvenile fragments are lapilli sized and from equant to oblate in axial ratio, and from rounded-globular to very angular in shape. Conversely, lithic clasts are largely variable in shape and size, and are mainly represented by basement-derived clasts. The absence of bedding, the scarcity of the coherent facies and the dominance of clast supported, structureless, volcaniclastic facies

  14. Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.

    2012-12-01

    The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and 35 kPa can be expected within 3 km from source, ensuring complete destruction of the area; Pdyn > 15 kPa up to 5 km from source, resulting in heavy structural damage to most buildings and near destruction of weaker buildings; and Pdyn <10 kPa at ~6 km from source, resulting in severe damage to weaker structures at least up to this distance. This exercise illustrates our ability to combine field measurements with numerical techniques to explore controlling parameters of dilute PDC dynamics. These tools can be used to understand and estimate the damage potential and

  15. Multi-criteria correlation of tephra deposits to source centres applied in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Hopkins, Jenni L.; Wilson, Colin J. N.; Millet, Marc-Alban; Leonard, Graham S.; Timm, Christian; McGee, Lucy E.; Smith, Ian E. M.; Smith, Euan G. C.

    2017-07-01

    Linking tephras back to their source centre(s) in volcanic fields is crucial not only to reconstruct the eruptive history of the volcanic field but also to understand tephra dispersal patterns and thus the potential hazards posed by a future eruption. Here we present a multi-disciplinary approach to correlate distal basaltic tephra deposits from the Auckland Volcanic Field (AVF) to their source centres using proximal whole-rock geochemical signatures. In order to achieve these correlations, major and trace element tephra-derived glass compositions are compared with published and newly obtained whole-rock geochemical data for the entire field. The results show that incompatible trace element ratios (e.g. (Gd/Yb)N, (La/Yb)N, (Zr/Yb)N) vary widely across the AVF (e.g. (La/Yb)N = 5 to 40) but show a more restricted range within samples from a single volcanic centre (e.g. (La/Yb)N = 5 to 10). These ratios are also the least affected by fractional crystallisation and are therefore the most appropriate geochemical tools for correlation between tephra and whole-rock samples. However, findings for the AVF suggest that each volcanic centre does not have a unique geochemical signature in the field as a whole, thus preventing unambiguous correlation of tephras to source centre using geochemistry alone. A number of additional criteria are therefore combined to further constrain the source centres of the distal tephras including age, eruption scale, and location (of centres, and sites where tephra were sampled). The combination of tephrostratigraphy, 40Ar/39Ar dating and morphostratigraphic constraints allow, for the first time, the relative and absolute ordering of 48 of 53 volcanic centres of the Auckland Volcanic Field to be resolved. Eruption frequencies are shown to vary between 0.13 and 1.5 eruptions/kyr and repose periods between individual eruptions vary from <0.1 to 13 kyr, with 23 of the 48 centres shown to have pre-eruptive repose periods of <1000 years. No spatial

  16. Landsat 5 TM images and DEM in lithologic mapping of Payen Volcanic Field (Mendoza Province, Argentina)

    International Nuclear Information System (INIS)

    Fornaciai, A.; Bisson, M.; Mazzarini, F.; Del Carlo, P.; Pasquare, G.

    2009-01-01

    Satellite image such as Landsat 5 TM scene provides excellent representation of Earth and synoptic view of large geographic areas in different band combination. Landsat TM images allow automatic and semi-automatic classification of land cover, nevertheless the software frequently may some difficulties in distinguishing between similar radiometric surfaces. In this case, the use of Digital Elevation Model (DEM) can be an important tool to identify different surface covers. In this study, several False Color Composite (FCC) of Landsat 5 TM Image, DEM and the respective draped image of them, were used to delineate lithological boundaries and tectonic features of regional significance of the Paven Volcanic Field (PVF). PFV is a Quaternary fissural structure belonging to the black-arc extensional areas of the Andes in the Mendoza Province (Argentina) characterized by many composite basaltic lava flow fields. The necessity to identify different lava flows with the same composition, and then with same spectral features, allows to highlight the improvement of synergic use of TM images and shaded DEM in the visual interpretation. Information obtained from Satellite data and DEM have been compared with previous geological maps and transferred into a topographical base map. Based on these data a new lithological map at 1:100.000 scale has been presented [it

  17. Bibliography of literature pertaining to Long Valley Caldera and associated volcanic fields

    Science.gov (United States)

    Ewert, John W.; Harpel, Christopher J.; Brooks, Suzanna K.; Marcaida, Mae

    2011-01-01

    define the beginning of the Brunhes Chron and helps constrain the Brunhes-Matuyama boundary. The Bishop ash, which was dispersed as far east as Nebraska, Kansas, and Texas, provides an important tephrostratigraphic marker throughout the Western United States. The obsidian domes of both the Mono and Inyo Craters, which were produced by rhyolitic eruptions in the past 40,000 years, have been well studied, including extensive scientific drilling through the domes. Exploratory drilling to 3-km depth on the resurgent dome and subsequent instrumentation of the Long Valley Exploratory Well (LVEW) have led to a number of important new insights. Scientific drilling also has been done within the Casa Diablo geothermal field, which, aside from drilling, has been commercially developed and is currently feeding 40 MW of power into the Southern California Edison grid. Studies in all the above-mentioned volcanic fields have contributed to the extensive scientific literature published on the Long Valley region. Although most of this scientific literature has been published since 1970, a significant amount of historical literature extends backward to the late 1800s. The purpose of this bibliography is to compile references pertaining to the Long Valley region from all time periods and all Earth science fields into a single listing, thus providing an easily accessible guide to the published literature for current and future researchers.

  18. Sedimentology, eruptive mechanism and facies architecture of basaltic scoria cones from the Auckland Volcanic Field (New Zealand)

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly

    2016-09-01

    Scoria cones are a common type of basaltic to andesitic small-volume volcanoes (e.g. 10- 1-10- 5 km3) that results from gas-bubble driven explosive eruptive styles. Although they are small in volume, they can produce complex eruptions, involving multiple eruptive styles. Eight scoria cones from the Quaternary Auckland Volcanic Field in New Zealand were selected to define the eruptive style variability from their volcanic facies architecture. The reconstruction of their eruptive and pyroclastic transport mechanisms was established on the basis of study of their volcanic sedimentology, stratigraphy, and measurement of their pyroclast density, porosity, Scanning Electron Microscopy, 2D particle morphology analysis and Visible and Near Visible Infrared Spectroscopy. Collection of these data allowed defining three end-member types of scoria cones inferred to be constructed from lava-fountaining, transitional fountaining and Strombolian type, and explosive Strombolian type. Using the physical and field-based characteristics of scoriaceous samples a simple generalised facies model of basaltic scoria cones for the AVF is developed that can be extended to other scoria cones elsewhere. The typical AVF scoria cone has an initial phreatomagmatic phases that might reduce the volume of magma available for subsequent scoria cone forming eruptions. This inferred to have the main reason to have decreased cone volumes recognised from Auckland in comparison to other volcanic fields evolved dominantly in dry eruptive condition (e.g. no external water influence). It suggests that such subtle eruptive style variations through a scoria cone evolution need to be integrated into the hazard assessment of a potentially active volcanic field such as that in Auckland.

  19. Trace Element Geochemistry of Basaltic Tephra in Maar Cores; Implications for Centre Correlation, Field Evolution, and Mantle Source Characteristics of the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Hopkins, J. L.; Leonard, G.; Timm, C.; Wilson, C. J. N.; Neil, H.; Millet, M. A.

    2014-12-01

    Establishing volcanic hazard and risk management strategies hinges on a detailed understanding of the type, timing and tephra dispersal of past eruptions. In order to unravel the pyroclastic eruption history of a volcanic field, genetic links between the deposits and eruption source centre need to be established. The Auckland Volcanic Field (AVF; New Zealand) has been active for ca. 200 kyr and comprises ca. 53 individual centres covering an area of ca. 360km2. These centres show a range of sizes and eruptive styles from maar craters and tuff rings, to scoria cones and lava flows consistent with both phreatomagmatic and magmatic eruptions. Superimposition of the metropolitan area of Auckland (ca. 1.4 million inhabitants) on the volcanic field makes it critically important to assess the characteristics of the volcanic activity, on which to base assessment and management of the consequent hazards. Here we present a geochemical approach for correlating tephra deposits to their source centres. To acquire the most complete stratigraphic record of pyroclastic events, maar crater cores from different locations, covering various depths and thus ages across the field were selected. Magnetic susceptibility and x-ray density scanning of the cores was used to identify the basaltic tephra horizons, which were sampled and in-situ analysis of individual shards undertaken for major and trace elements using EPMA and LA-ICP-MS techniques, respectively. Our results show that tephra shard trace element ratios are comparable and complementary to the AVF whole rock database. The use of specific trace element ratios (e.g. Gd/Yb vs. Zr/Yb) allows us to fingerprint and cross correlate tephra horizons between cores and, when coupled with newly acquired 40Ar-39Ar age dating and eruption size estimates, correlate horizons to their source centres. This integrated style of study can provide valuable information to help volcanic hazard management and forecasting, and mitigation of related risks.

  20. The timing and origin of pre- and post-caldera volcanism associated with the Mesa Falls Tuff, Yellowstone Plateau volcanic field

    Science.gov (United States)

    Stelten, Mark E.; Champion, Duane E.; Kuntz, Mel A.

    2018-01-01

    We present new sanidine 40Ar/39Ar ages and paleomagnetic data for pre- and post-caldera rhyolites from the second volcanic cycle of the Yellowstone Plateau volcanic field, which culminated in the caldera-forming eruption of the Mesa Falls Tuff at ca. 1.3 Ma. These data allow for a detailed reconstruction of the eruptive history of the second volcanic cycle and provide new insights into the petrogenesis of rhyolite domes and flows erupted during this time period. 40Ar/39Ar age data for the biotite-bearing Bishop Mountain flow demonstrate that it erupted approximately 150 kyr prior to the Mesa Falls Tuff. Integrating 40Ar/39Ar ages and paleomagnetic data for the post-caldera Island Park rhyolite domes suggests that these five crystal-rich rhyolites erupted over a centuries-long time interval at 1.2905 ± 0.0020 Ma (2σ). The biotite-bearing Moonshine Mountain rhyolite dome was originally thought to be the downfaulted vent dome for the pre-caldera Bishop Mountain flow due to their similar petrographic and oxygen isotope characteristics, but new 40Ar/39Ar dating suggest that it erupted near contemporaneously with the Island Park rhyolite domes at 1.2931 ± 0.0018 Ma (2σ) and is a post-caldera eruption. Despite their similar eruption ages, the Island Park rhyolite domes and the Moonshine Mountain dome are chemically and petrographically distinct and are not derived from the same source. Integrating these new data with field relations and existing geochemical data, we present a petrogenetic model for the formation of the post-Mesa Falls Tuff rhyolites. Renewed influx of basaltic and/or silicic recharge magma into the crust at 1.2905 ± 0.0020 Ma led to [1] the formation of the Island Park rhyolite domes from the source region that earlier produced the Mesa Falls Tuff and [2] the formation of Moonshine Mountain dome from the source region that earlier produced the biotite-bearing Bishop Mountain flow. These magmas were stored in the crust for less than a few thousand

  1. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    Science.gov (United States)

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and

  2. Five millions years of paleosecular variations from the Golan Heights volcanic field, Israel

    Science.gov (United States)

    Behar, N.; Shaar, R.; Asefaw, H.; Ebert, Y.; Koppers, A.; Tauxe, L.

    2017-12-01

    One of the most fundamental assumption in paleomagnetism is that the averaged geomagnetic field on geological timescales is a geocentric axial dipole (GAD). Given the first order importance of the GAD hypothesis, it is essential to rigorously test its validity and to understand the limits of its use. Additionally, it is equally vital to characterize statistically paleomagnetic secular variations (PSV) over timescales of 106 years. The Plio-Pleistocene volcanic field in the Golan Heights, Israel (32.7°N-33.3°N) is a nearly ideal location to investigate these issues, owing to excellent exposure of basaltic flows, dated using more than 100 radiometric (K/Ar and Ar/Ar) ages covering the past 5 Myr. Here we present new data from 89 basalt flows from the Golan Heights with ages spanning from 5.4 Ma to 0.1 Ma, and 18 new Ar/Ar ages. This relatively large dataset allows us to calculate three different Virtual Geomagnetic Poles (VGP): Pleistocene, Pliocene, and a combined Plio-Pleistocene. From each pole we calculate the inclination anomaly (ΔI) and the VGP scatter parameter (SB). The Pleistocene pole yields a VGP scatter parameter around SB =13, lower than predictions of PSV models. Also, it demonstrates negligible inclination anomaly of less than 2°, suggesting validation of the GAD model. The Pliocene pole shows a larger scatter (SB 18) and a negative inclination anomaly around ΔI = -7°. We discuss these results in view of the worldwide paleomagnetic database and the available PSV models.

  3. A field trip guide to the petrology of Quaternary volcanism on the Yellowstone Plateau

    Science.gov (United States)

    Vazquez, Jorge A.; Stelten, Mark; Bindeman, Ilya N.; Cooper, Kari

    2017-12-19

    The Yellowstone Plateau is one of the largest manifestations of silicic volcanism on Earth, and marks the youngest focus of magmatism associated with the Yellowstone Hot Spot. The earliest products of Yellowstone Hot Spot volcanism are from ~17 million years ago, but may be as old as ~32 Ma, and include contemporaneous eruption of voluminous mafic and silicic magmas, which are mostly located in the region of northwestern Nevada and southeastern Oregon. Since 17 Ma, the main locus of Yellowstone Hot Spot volcanism has migrated northeastward producing numerous silicic caldera complexes that generally remain active for ~2–4 million years, with the present-day focus being the Yellowstone Plateau. Northeastward migration of volcanism associated with the Yellowstone Hot Spot resulted in the formation of the Snake River Plain, a low relief physiographic feature extending ~750 kilometers from northern Nevada to eastern Idaho. Most of the silicic volcanic centers along the Snake River Plain have been inundated by younger basalt volcanism, but many of their ignimbrites and lava flows are exposed in the extended regions at the margins of the Snake River Plain. 

  4. A geologic and anthropogenic journey from the Precambrian to the new energy economy through the San Juan volcanic field

    Science.gov (United States)

    Yager, Douglas B.; Burchell,; Johnson, Raymond H.

    2010-01-01

    The San Juan volcanic field comprises 25,000 km2 of intermediate composition mid-Tertiary volcanic rocks and dacitic to rhyolitic calderas including the San Juan–Uncompahgre and La Garita caldera-forming super-volcanoes. The region is famous for the geological, ecological, hydrological, archeological, and climatological diversity. These characteristics supported ancestral Puebloan populations. The area is also important for its mineral wealth that once fueled local economic vitality. Today, mitigating and/or investigating the impacts of mining and establishing the region as a climate base station are the focuses of ongoing research. Studies include advanced water treatment, the acid neutralizing capacity (ANC) of propylitic bedrock for use in mine-lands cleanup, and the use of soil amendments including biochar from beetle-kill pines. Biochar aids soil productivity and revegetation by incorporation into soils to improve moisture retention, reduce erosion, and support the natural terrestrial carbon sequestration (NTS) potential of volcanic soils to help offset atmospheric CO2 emissions. This field trip will examine the volcano-tectonic and cultural history of the San Juan volcanic field as well as its geologic structures, economic mineral deposits and impacts, recent mitigation measures, and associated climate research. Field trip stops will include a visit to (1) the Summitville Superfund site to explore quartz alunite-Au mineralization, and associated alteration and new water-quality mitigation strategies; (2) the historic Creede epithermal-polymetallic–vein district with remarkably preserved resurgent calderas, keystone-graben, and moat sediments; (3) the historic mining town of Silverton located in the nested San Juan–Silverton caldera complex that exhibits base-metal Au-Ag mineralization; and (4) the site of ANC and NTS studies. En route back to Denver, we will traverse Grand Mesa, a high NTS area with Neogene basalt-derived soils and will enjoy a soak

  5. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    Science.gov (United States)

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  6. King's Bowl Pit Crater, Lava Field and Eruptive Fissure, Idaho - A Multipurpose Volcanic Planetary Analog

    Science.gov (United States)

    Hughes, S. S.; Garry, B.; Kobs-Nawotniak, S. E.; Sears, D. W. G.; Borg, C.; Elphic, R. C.; Haberle, C. W.; Kobayashi, L.; Lim, D. S. S.; Sears, H.; Skok, J. R.; Heldmann, J. L.

    2014-12-01

    King's Bowl (KB) and its associated eruptive fissure and lava field on the eastern Snake River Plain, is being investigated by the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team as a planetary analog to similar pits on the Moon, Mars and Vesta. The 2,220 ± 100 BP basaltic eruption in Craters of the Moon National Monument and Preserve represents early stages of low shield growth, which was aborted when magma supply was cut off. Compared to mature shields, KB is miniscule, with ~0.02 km3 of lava over ~3 km2, yet the ~6 km long series of fissures, cracks and pits are well-preserved for analog studies of volcanic processes. The termination of eruption was likely related to proximity of the 2,270 ± 50 BP eruption of the much larger Wapi lava field (~5.5 km3 over 325 km2 area) on the same rift. Our investigation extends early work by R. Greeley and colleagues, focusing on imagery, compositional variations, ejecta distribution, dGPS profiles and LiDAR scans of features related to: (1) fissure eruptions - spatter ramparts, cones, feeder dikes, extension cracks; (2) lava lake formation - surface morphology, squeeze-ups, slab pahoehoe lava mounds, lava drain-back, flow lobe overlaps; and (3) phreatic steam blasts - explosion pits, ejecta blankets of ash and blocks. Preliminary results indicate multiple fissure eruptions and growth of a basin-filled lava lake up to ~ 10 m thick with outflow sheet lava flows. Remnant mounds of original lake crust reveal an early high lava lake level, which subsided as much as 5 m as the molten interior drained back into the fissure system. Rapid loss of magma supply led to the collapse of fissure walls allowing groundwater influx that triggered multiple steam blasts along at least 500 m. Early blasts occurred while lake magma pressure was still high enough to produce squeeze-ups when penetrated by ejecta blocks. The King's Bowl pit crater exemplifies processes of a small, but highly energetic

  7. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico

    Science.gov (United States)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.

    2010-01-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic

  8. Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Palaoco and Fortunoso volcanic fields, Mendoza Region, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup; Holm, Paul Martin; Llambias, Eduardo J.

    2013-01-01

    New 40Ar/39Ar analyses constrain the formation of the volcanic succession of Sierra de Palaoco in the present back-arc of the Andean Southern Volcanic Zone (SVZ), near 36°S, to the Late Miocene and assigns them to the Huincán II Formation. The composition of major and trace elements, Sr, Nd and P...

  9. A unique volcanic field in Tharsis, Mars: Pyroclastic cones as evidence for explosive eruptions

    Czech Academy of Sciences Publication Activity Database

    Brož, Petr; Hauber, E.

    2012-01-01

    Roč. 218, č. 1 (2012), s. 88-99 ISSN 0019-1035 R&D Projects: GA MŠk ME09011 Institutional research plan: CEZ:AV0Z30120515 Keywords : Mars * volcanism * Mars surface Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.161, year: 2012

  10. The questa magmatic system: Petrologic, chemical and isotopic variations in cogenetic volcanic and plutonic rocks of the latir volcanic field and associated intrusives, northern New Mexico

    International Nuclear Information System (INIS)

    Johnson, C.M.

    1986-01-01

    Field, chemical and isotopic data demonstrate that nearly all igneous rocks at Questa resulted from interactions between mantle-derived parental magmas and the crust. Strontium, neodymium and lead isotope ratios of early andesites to rhyolites (28 to 26 Ma) indicate that these magmas assimilated > 25% lower crust. Injection of basaltic magmas extensively modified the strontium and neodymium but not the lead isotope compositions of the lower crust. Eruption of comendite magmas and the peralkaline Amalia Tuff 26 Ma is correlated with inception of regional extension. Lead isotope ratios identify different sources for the metaluminous granites and the peralkaline rocks. 26 Ma metaluminous granite to granodiorite intrusions have chemical and isotopic compositions to those of the precaldera intermediate-composition rocks, and are interpreted as representing the solidified equivalents of the precaldera magmatic episode. However, both conventional and ion-microprobe isotopic data prohibit significant assimilation of crustal rocks at the level of exposure, suggesting that the plutons were emplaced a relatively crystal-rich mushes which did not have sufficient heat to assimilate country rocks. This suggest that in some cases plutonic rocks are better than volcanic rocks in representing the isotopic compositions of their source regions, because the assimilation potential of crystal-rich magmas is significantly less than that of largely liquid magmas

  11. Origins and exploration significance of replacement and vein-type alunite deposits in the Marysvale volcanic field, west central Utah.

    Science.gov (United States)

    Cunningham, C.G.; Rye, R.O.; Steven, T.A.; Mehnert, H.H.

    1984-01-01

    Alunite in the Marysvale volcanic field forms two (three are described) different types of deposits which contrast in appearance and conditions of origin: 1) Replacement deposits are generally fine-grained and formed by near-surface replacement of intermediate-composition volcanic rocks. The deposits form a bead necklace around a monzonite stock. Each deposit is zoned horizontally from alunitic cores to kaolinitic and propylitic envelopes and zoned vertically from pyrite/propylite upward through alunite/jarosite/hematite to a silica cap. Alunite does not extend below 100 m. Sulphur isotope ratios agree with derivation from underlying Mesozoic evaporites. 2) Natroalunite of 14-m.y. age crosscuts replacement-type alunite deposits. Its S-isotope ratios are comparable with those of pyrite in the volcanics. The Na may be from underlying Mesozoic halites. 3) Veins of coarse-grained alunite of 14-m.y. age filled extension fractures above a postulated stock. S-isotope ratios indicate a probable magmatic source. The contrasting properties of the Marysvale alunite deposits preclude any simple relation to ore deposits, but serve to refine interpretations based on other geological considerations. The replacement deposits are a logical near-surface result of skarn forming processes at depth around the monzonite stock. The vein- type deposits are a logical near-surface result of porphyry metallization in an underlying stock. -G.J.N.

  12. Isotopically (δ13C and δ18O) heavy volcanic plumes from Central Andean volcanoes: a field study

    Science.gov (United States)

    Schipper, C. Ian; Moussallam, Yves; Curtis, Aaron; Peters, Nial; Barnie, Talfan; Bani, Philipson; Jost, H. J.; Hamilton, Doug; Aiuppa, Alessandro; Tamburello, Giancarlo; Giudice, Gaetano

    2017-08-01

    Stable isotopes of carbon and oxygen in volcanic gases are key tracers of volatile transfer between Earth's interior and atmosphere. Although important, these data are available for few volcanoes because they have traditionally been difficult to obtain and are usually measured on gas samples collected from fumaroles. We present new field measurements of bulk plume composition and stable isotopes (δ13CCO2 and δ18OH2O+CO2) carried out at three northern Chilean volcanoes using MultiGAS and isotope ratio infrared spectroscopy. Carbon and oxygen in magmatic gas plumes of Lastarria and Isluga volcanoes have δ13C in CO2 of +0.76‰ to +0.77‰ (VPDB), similar to slab carbonate; and δ18O in the H2O + CO2 system ranging from +12.2‰ to +20.7‰ (VSMOW), suggesting significant contributions from altered slab pore water and carbonate. The hydrothermal plume at Tacora has lower δ13CCO2 of -3.2‰ and δ18OH2O+CO2 of +7.0‰, reflecting various scrubbing, kinetic fractionation, and contamination processes. We show the isotopic characterization of volcanic gases in the field to be a practical complement to traditional sampling methods, with the potential to remove sampling bias that is a risk when only a few samples from accessible fumaroles are used to characterize a given volcano's volatile output. Our results indicate that there is a previously unrecognized, relatively heavy isotopic signature to bulk volcanic gas plumes in the Central Andes, which can be attributed to a strong influence from components of the subducting slab, but may also reflect some local crustal contamination. The techniques we describe open new avenues for quantifying the roles that subduction zones and arc volcanoes play in the global carbon cycle.

  13. 3D upper crustal seismic structure across Santorini volcanic field: Constraints on magmatic and tectonic interactions

    Science.gov (United States)

    Heath, B.; Hooft, E. E. E.; Toomey, D. R.; Papazachos, C. V.; Walls, K.; Paulatto, M.; Morgan, J. V.; Nomikou, P.; Warner, M.

    2017-12-01

    To investigate magmatic-tectonic interactions at an arc volcano, we collected a dense, active-source, seismic dataset across the Santorini Volcano, Greece, with 90 ocean bottom seismometers, 65 land seismometers, and 14,300 marine sound sources. We use over 140,000 travel-time picks to obtain a P-wave tomography model of the upper crustal structure of the Santorini volcano and surrounding tectonically extended region. Regionally, the shallow (Bouguer gravity anomalies and preliminary shallow attenuation results (using waveform amplitudes and t* values). We find regional Pliocene and younger faults bounding basement grabens and horsts to be predominately oriented in a NE-SW direction with Santorini itself located in a graben bounded by faults striking in this direction. In contrast, volcanic vents and dikes expressed at the surface seem to strike about 20° clockwise relative to these regional faults. In the northern caldera of Santorini, a 4-km wide region of anomalously low velocities and high attenuation directly overlies an inferred source of 2011-2012 inflation (4-4.5 km depth), however it is located at shallower depths ( 1-2km). The imaged low-velocity anomaly may correspond to hydrothermal activity (due to increased porosity and alteration) and/or brecciation from a prior episode of caldera collapse. It is bounded by anomalously fast velocities (at 1-2 km depth) that parallel the regional fault orientation and are correspondingly rotated 20° to surface dikes. At 4-5 km depth beneath the northern caldera basin, low-velocity anomalies and attenuated seismic arrivals provide preliminary evidence for a magma body; the low-velocity anomaly is elongated in the same direction as regional volcanic vents. The difference in strike of volcanic and tectonic features indicates oblique extension and potential time-variation in the minimum stress direction.

  14. Paleointensity Variation of The Earth's Magnetic Field Obtained from Neogene and Quaternary Volcanic Rocks in Central Anatolian Plateau

    Science.gov (United States)

    Kaya, Nurcan; Makaroǧlu, Özlem; Hisarlı, Z. Mümtaz

    2017-04-01

    We present the variation of the earth magnetic field intensity obtained from Neogene and Quaternary volcanic rocks located in the Central Anatolian plateau. Total of four hundred and fifty volcanic rocks were sub-sampled in eighteen different sites around the study region. A modified Thellier method including the Leonhardt protocol was used to determine paleointensity values. Paleointensity results from ten sites were accepted according to the confidence criteria . According to first results the average total paleointensity field values, indicated by F, are 51.797±5.044 μT for site NK8,NK17,NK18,NK15 with age of 4.4-10.7 my, 51.91±4.651 for site NK4, NK3, NK12, NK6, NK11, NK14 with age of 0.1-2.6 m.y. The average VDMs (Virtual Dipol Moments) correspond to 8.39x1022 , 8.92x1022 Am2 for the four Neogene and six Quaternary rocks sites respectively. Our data were correlated with IAGA database that were obtained from the surrounding area. The correlation showed that the paleointensity data from the Central Anatolia plateau considerably agree with the IAGA data.

  15. Incremental assembly and prolonged consolidation of Cordilleran magma chambers--Evidence from the Southern Rocky Mountain volcanic field

    Science.gov (United States)

    Lipman, Peter W.

    2007-01-01

    Recent inference that Mesozoic Cordilleran plutons grew incrementally during >106 yr intervals, without the presence of voluminous eruptible magma at any stage, minimizes close associations with large ignimbrite calderas. Alternatively, Tertiary ignimbrites in the Rocky Mountains and elsewhere, with volumes of 1–5 × 103 km3, record multistage histories of magma accumulation, fractionation, and solidification in upper parts of large subvolcanic plutons that were sufficiently liquid to erupt. Individual calderas, up to 75 km across with 2–5 km subsidence, are direct evidence for shallow magma bodies comparable to the largest granitic plutons. As exemplified by the composite Southern Rocky Mountain volcanic field (here summarized comprehensively for the first time), which is comparable in areal extent, magma composition, eruptive volume, and duration to continental-margin volcanism of the central Andes, nested calderas that erupted compositionally diverse tuffs document deep composite subsidence and rapid evolution in subvolcanic magma bodies. Spacing of Tertiary calderas at distances of tens to hundreds of kilometers is comparable to Mesozoic Cordilleran pluton spacing. Downwind ash in eastern Cordilleran sediments records large-scale explosive volcanism concurrent with Mesozoic batholith growth. Mineral fabrics and gradients indicate unified flow-age of many pluton interiors before complete solidification, and some plutons contain ring dikes or other textural evidence for roof subsidence. Geophysical data show that low-density upper-crustal rocks, inferred to be plutons, are 10 km or more thick beneath many calderas. Most ignimbrites are more evolved than associated plutons; evidence that the subcaldera chambers retained voluminous residua from fractionation. Initial incremental pluton growth in the upper crust was likely recorded by modest eruptions from central volcanoes; preparation for caldera-scale ignimbrite eruption involved recurrent magma input and

  16. Miocene magmatism in the Bodie Hills volcanic field, California and Nevada: A long-lived eruptive center in the southern segment of the ancestral Cascades arc

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Blakely, Richard J.; Fleck, Robert J.; Vikre, Peter; Box, Stephen E.; Moring, Barry C.

    2012-01-01

    The Middle to Late Miocene Bodie Hills volcanic field is a >700 km2, long-lived (∼9 Ma) but episodic eruptive center in the southern segment of the ancestral Cascades arc north of Mono Lake (California, U.S.). It consists of ∼20 major eruptive units, including 4 trachyandesite stratovolcanoes emplaced along the margins of the field, and numerous, more centrally located silicic trachyandesite to rhyolite flow dome complexes. Bodie Hills volcanism was episodic with two peak periods of eruptive activity: an early period ca. 14.7–12.9 Ma that mostly formed trachyandesite stratovolcanoes and a later period between ca. 9.2 and 8.0 Ma dominated by large trachyandesite-dacite dome fields. A final period of small silicic dome emplacement occurred ca. 6 Ma. Aeromagnetic and gravity data suggest that many of the Miocene volcanoes have shallow plutonic roots that extend to depths ≥1–2 km below the surface, and much of the Bodie Hills may be underlain by low-density plutons presumably related to Miocene volcanism.Compositions of Bodie Hills volcanic rocks vary from ∼50 to 78 wt% SiO2, although rocks with Bodie Hills rocks are porphyritic, commonly containing 15–35 vol% phenocrysts of plagioclase, pyroxene, and hornblende ± biotite. The oldest eruptive units have the most mafic compositions, but volcanic rocks oscillated between mafic and intermediate to felsic compositions through time. Following a 2 Ma hiatus in volcanism, postsubduction rocks of the ca. 3.6–0.1 Ma, bimodal, high-K Aurora volcanic field erupted unconformably onto rocks of the Miocene Bodie Hills volcanic field.At the latitude of the Bodie Hills, subduction of the Farallon plate is inferred to have ended ca. 10 Ma, evolving to a transform plate margin. However, volcanism in the region continued until 8 Ma without an apparent change in rock composition or style of eruption. Equidimensional, polygenetic volcanoes and the absence of dike swarms suggest a low differential horizontal stress regime

  17. 40Ar/39Ar geochronology and geochemical reconnaissance of the Eocene Lowland Creek volcanic field, west-central Montana

    Science.gov (United States)

    Dudas, F.O.; Ispolatov, V.O.; Harlan, S.S.; Snee, L.W.

    2010-01-01

    We report geochronological and geochemical data for the calc-alkalic Lowland Creek volcanic field (LCVF) in westcentral Montana. 40Ar/ 39Ar age determinations show that the LCVF was active from 52.9 to 48.6 Ma, with tuff-forming eruptions at 52.9 ?? 0.14 and 51.8 ?? 0.14 Ma. These dates span the age range of vigorous Eocene igneous activity in the Kamloops-Absaroka-Challis belt. The LCVF evolved upward from basal rhyolites (SiO 2>71 wt%) to dacites and andesites (SiO 2 > 62 wt%). Compositional change parallels a transition from early explosive volcanism to late effusive activity. Four geochemical components can be detected in the rocks. A component with 206Pb/204Pb 18.3 and epsilon;Nd>-9 contain a third component; and an andesite with low Nd content and epsilon;Nd near-9 probably contains a fourth component. The first three components probably derive from the lower and middle crust, whereas the fourth is probably from the lithospheric mantle. ?? 2010 by The University of Chicago.

  18. Evaluation of the evolving stress field of the Yellowstone volcanic plateau, 1988 to 2010, from earthquake first-motion inversions

    Science.gov (United States)

    Russo, E.; Waite, G. P.; Tibaldi, A.

    2017-03-01

    Although the last rhyolite eruption occurred around 70 ka ago, the silicic Yellowstone volcanic field is still considered active due to high hydrothermal and seismic activity and possible recent magma intrusions. Geodetic measurements document complex deformation patterns in crustal strain and seismic activity likewise reveal spatial and temporal variations in the stress field. We use earthquake data recorded between 1988 and 2010 to investigate these variations and their possible causes in more detail. Earthquake relocations and a set of 369 well-constrained, double-couple, focal mechanism solutions were computed. Events were grouped according to location and time to investigate trends in faulting. The majority of the events have normal-faulting solutions, subordinate strike-slip kinematics, and very rarely, reverse motions. The dominant direction of extension throughout the 0.64 Ma Yellowstone caldera is nearly ENE, consistent with the perpendicular direction of alignments of volcanic vents within the caldera, but our study also reveals spatial and temporal variations. Stress-field solutions for different areas and time periods were calculated from earthquake focal mechanism inversion. A well-resolved rotation of σ3 was found, from NNE-SSW near the Hebgen Lake fault zone, to ENE-WSW near Norris Junction. In particular, the σ3 direction changed throughout the years around Norris Geyser Basin, from being ENE-WSW, as calculated in the study by Waite and Smith (2004), to NNE-SSW, while the other σ3 directions are mostly unchanged over time. The presence of ;chocolate tablet; structures, with two sets of nearly perpendicular normal faults, was identified in many stages of the deformation history both in the Norris Geyser Basin area and inside the caldera.

  19. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    Science.gov (United States)

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in

  20. Improved techniques in data analysis and interpretation of potential fields: examples of application in volcanic and seismically active areas

    Directory of Open Access Journals (Sweden)

    G. Florio

    2002-06-01

    Full Text Available Geopotential data may be interpreted by many different techniques, depending on the nature of the mathematical equations correlating specific unknown ground parameters to the measured data set. The investigation based on the study of the gravity and magnetic anomaly fields represents one of the most important geophysical approaches in the earth sciences. It has now evolved aimed both at improving of known methods and testing other new and reliable techniques. This paper outlines a general framework for several applications of recent techniques in the study of the potential methods for the earth sciences. Most of them are here described and significant case histories are shown to illustrate their reliability on active seismic and volcanic areas.

  1. Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA

    Science.gov (United States)

    Christopher D. Henry,; John, David A.

    2013-01-01

    The western Nevada volcanic field is the western third of a belt of calderas through Nevada and western Utah. Twenty-three calderas and their caldera-forming tuffs are reasonably well identified in the western Nevada volcanic field, and the presence of at least another 14 areally extensive, apparently voluminous ash-flow tuffs whose sources are unknown suggests a similar number of undiscovered calderas. Eruption and caldera collapse occurred between at least 34.4 and 23.3 Ma and clustered into five ∼0.5–2.7-Ma-long episodes separated by quiescent periods of ∼1.4 Ma. One eruption and caldera collapse occurred at 19.5 Ma. Intermediate to silicic lavas or shallow intrusions commonly preceded caldera-forming eruptions by 1–6 Ma in any specific area. Caldera-related as well as other magmatism migrated from northeast Nevada to the southwest through time, probably resulting from rollback of the formerly shallow-dipping Farallon slab. Calderas are restricted to the area northeast of what was to become the Walker Lane, although intermediate and effusive magmatism continued to migrate to the southwest across the future Walker Lane.Most ash-flow tuffs in the western Nevada volcanic field are rhyolites, with approximately equal numbers of sparsely porphyritic (≤15% phenocrysts) and abundantly porphyritic (∼20–50% phenocrysts) tuffs. Both sparsely and abundantly porphyritic rhyolites commonly show compositional or petrographic evidence of zoning to trachydacites or dacites. At least four tuffs have volumes greater than 1000 km3, with one possibly as much as ∼3000 km3. However, the volumes of most tuffs are difficult to estimate, because many tuffs primarily filled their source calderas and/or flowed and were deposited in paleovalleys, and thus are irregularly distributed.Channelization and westward flow of most tuffs in paleovalleys allowed them to travel great distances, many as much as ∼250 km (original distance) to what is now the western foothills of the

  2. Stability Evaluation of Volcanic Slope Subjected to Rainfall and Freeze-Thaw Action Based on Field Monitoring

    Directory of Open Access Journals (Sweden)

    Shima Kawamura

    2011-01-01

    Full Text Available Rainfall-induced failures of natural and artificial slopes such as cut slopes, which are subjected to freezing and thawing, have been frequently reported in Hokkaido, Japan. In particular, many failures occur intensively from spring to summer seasons. Despite numerous field studies, explanation of their mechanical behavior based on in situ data has not yet been completely achieved due to the difficulty in grasping failure conditions. This study aims at clarifying the aspects of in-situ volcanic slopes subjected to rainfall and freeze-thaw action. The changes in soil moisture, pore pressure, deformations, and temperatures in the slope were investigated using soil moisture meters, tensiometers, thermocouple sensors, clinometers, settlement gauges, an anemovane, a snow gauge, and a rainfall gauge. The data generated from these measures indicated deformation in the slope examined mainly proceeded during the drainage process according to changes in soil moisture. Based on this data, a prediction method for failures is discussed in detail.

  3. Full moment tensor retrieval and fluid dynamics in volcanic areas: The case of phlegraean field (south Italy)

    International Nuclear Information System (INIS)

    Campus, P.; Cespuglio, G.

    1994-04-01

    When studying seismicity in volcanic areas it is appropriate to treat the seismic source in a form a priori not restricted to a double couple, since its mechanism may reflect not only small scale tectonics but also fluid dynamics. The monitoring of fluid dynamics can be therefore attempted from the retrieval of the rupture processes. It is not possible to use standard methods, based on the distribution of polarities of first arrivals to determine the non double-couple components of the seismic source. The new method presented here is based on the wave form inversion of the dominant part of the seismograms, where the signal to noise ratio is very large and allows the inversion of the full seismic moment tensor. The results of a pilot study in the Phlegraean Fields (South Italy) are presented. 13 refs, 10 figs, 4 tabs

  4. Coeval Formation of Zircon Megacrysts and Host Magmas in the Eifel Volcanic Field (Germany) Based on High Spatial Resolution Petrochronology

    Science.gov (United States)

    Schmitt, Axel; Klitzke, Malte; Gerdes, Axel; Ludwig, Thomas; Schäfer, Christof

    2017-04-01

    Zircon megacrysts (approx. 0.5-6 mm in diameter) from the Quaternary West and East Eifel volcanic fields, Germany, occur as euhedral crystals in porous K-spar rich plutonic ejecta clasts, and as partially resorbed xenocrysts in tephrite lava. Their relation to the host volcanic rocks has remained contentious because the dominantly basanitic to phonolitic magma compositions in the Eifel are typically zircon undersaturated. We carried out a detailed microanalytical study of zircon megacrysts from seven locations (Emmelberg and Rockeskyll in the West Eifel; Bellerberg, Laacher See, Mendig, Rieden, and Wehr in the East Eifel). Crystals were embedded in epoxy, sectioned to expose interiors through grinding with abrasives, diamond-polished, and mapped by optical microscopy, backscattered electron, and cathodoluminescence imaging. Subsequently, isotope-specific analysis using secondary ionization mass spectrometry (SIMS) and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) was carried out placing 100 correlated spots on 20 selected crystals. Concordant U-Th disequilibrium and U-Pb ages determined by SIMS are between ca. 430 ka (Rieden) and 170 ka (Mendig) and indicate that the megacryst zircons crystallized almost always briefly before eruption. A significant gap between zircon megacryst crystallization (ca. 230 ka) and eruption (ca. 45 ka) ages was only detected for the Emmelberg location. SIMS trace element abundances (e.g., rare earth elements) vary by orders-of-magnitude and correlate with domain boundaries visible in cathodoluminescence; trace element patterns match those reported for zircon from syenitic origins. Isotopic compositions are homogeneous within individual crystals, but show some heterogeneity between different crystals from the same locality. Average isotopic values (δ18O SMOW = +5.3±0.6 ‰ by SIMS; present-day ɛHf = +1.7±2.5 ‰ by LA-ICP-MS; 1 standard deviation), however, are consistent with source magmas being dominantly mantle

  5. Shear-wave velocities beneath the Harrat Rahat volcanic field, Saudi Arabia, using ambient seismic noise analysis

    Science.gov (United States)

    Civilini, F.; Mooney, W.; Savage, M. K.; Townend, J.; Zahran, H. M.

    2017-12-01

    We present seismic shear-velocities for Harrat Rahat, a Cenozoic bimodal alkaline volcanic field in west-central Saudi Arabia, using seismic tomography from natural ambient noise. This project is part of an overall effort by the Saudi Geological Survey and the United States Geological Survey to describe the subsurface structure and assess hazards within the Saudi Arabian shield. Volcanism at Harrat Rahat began approximately 10 Ma, with at least three pulses around 10, 5, and 2 Ma, and at least several pulses in the Quaternary from 1.9 Ma to the present. This area is instrumented by 14 broadband Nanometrics Trillium T120 instruments across an array aperture of approximately 130 kilometers. We used a year of recorded natural ambient noise to determine group and phase velocity surface wave dispersion maps with a 0.1 decimal degree resolution for radial-radial, transverse-transverse, and vertical-vertical components of the empirical Green's function. A grid-search method was used to carry out 1D shear-velocity inversions at each latitude-longitude point and the results were interpolated to produce pseudo-3D shear velocity models. The dispersion maps resolved a zone of slow surface wave velocity south-east of the city of Medina spatially correlated with the 1256 CE eruption. A crustal layer interface at approximately 20 km depth was determined by the inversions for all components, matching the results of prior seismic-refraction studies. Cross-sections of the 3D shear velocity models were compared to gravity measurements obtained in the south-east edge of the field. We found that measurements of low gravity qualitatively correlate with low values of shear-velocity below 20 km along the cross-section profile. We apply these methods to obtain preliminary tomography results on the entire Arabian Shield.

  6. Field-scale permeability and temperature of volcanic crust from borehole data: Campi Flegrei, southern Italy

    Science.gov (United States)

    Carlino, Stefano; Piochi, Monica; Tramelli, Anna; Mormone, Angela; Montanaro, Cristian; Scheu, Bettina; Klaus, Mayer

    2018-05-01

    We report combined measurements of petrophysical and geophysical parameters for a 501-m deep borehole located on the eastern side of the active Campi Flegrei caldera (Southern Italy), namely (i) in situ permeability by pumping tests, (ii) laboratory-determined permeability of the drill core, and (iii) thermal gradients by distributed fiber optic and thermocouple sensors. The borehole was drilled during the Campi Flegrei Deep Drilling Project (in the framework of the International Continental Scientific Drilling Program) and gives information on the least explored caldera sector down to pre-caldera deposits. The results allow comparative assessment of permeability obtained from both borehole (at depth between 422 a 501 m) and laboratory tests (on a core sampled at the same depth) for permeability values of 10-13 m2 (borehole test) and 10-15 m2 (laboratory test) confirm the scale-dependency of permeability at this site. Additional geochemical and petrophysical determinations (porosity, density, chemistry, mineralogy and texture), together with gas flow measurements, corroborate the hypothesis that discrepancies in the permeability values are likely related to in-situ fracturing. The continuous distributed temperature profile points to a thermal gradient of about 200 °C km-1. Our findings (i) indicate that scale-dependency of permeability has to be carefully considered in modelling of the hydrothermal system at Campi Flegrei, and (ii) improve the understanding of caldera dynamics for monitoring and mitigation of this very high volcanic risk area.

  7. Fluid circulation and structural system of Cerritos Colorados geothermal field in La Primavera volcanic caldera (Mexico) inferred from geophysical surveys

    Science.gov (United States)

    Bolós, X.; Cifuentes-Nava, G.; Macias, J. L.; Sosa-Ceballos, G.; García-Tenorio, F.; Albor, M., III; Juarez, M.; Gamez, V.

    2017-12-01

    Hydrothermal activity in volcanic calderas is the consequence of energy transfer between deep magmatic chambers and subsurface layers saturated in water. This hydrothermal system is generated by convection of the groundwater supplied by meteoric water recharged and the ascent of hot volcanic gasses exsolved from deep magma reservoirs. Calderas are heterogeneous geological structures that due to their formation and evolution produced a complex stratigraphy. All of these heterogeneities can be affected by deformation and also by the presence of fractures and faults which constitute the main pathways whereby hydrothermal fluids can move easily through the surface as spring discharges and fumarolic activity. Geophysical methods have been used in the last decades to investigate the relationship between structural geology and hydrothermal systems in different volcanic areas around the world. In this work, we have focused on the role of subsurface structures to understand and localize the pathways of fluids related to the hydrothermal system of the Cerritos Colorados geothermal field. We focused in the central area of the caldera (P12 well and Cerritos Colorados graben), where active hydrothermal activity is evidenced by fumaroles, thermal anomalies, CO2 diffuse emission, and sulfur precipitation. We have applied a self-potential method (SP) that combined with temperature measurements that allowed to identify the main infiltration and ascending fluid zones in the area, and their specific surface temperature coinciding with fumarolic activity. From this data we an applied Electrical Resistivity Tomography (ERT) survey in two selected places. One ERT profile (1.2 km in length) was located in the P12 well area. A 3D resistivity model used with the equatorial method was carried out on the Cerritos Colorados graben area. Combining the results of the SP, TºC, and ERT data with a detailed structural map we identified the main degassing zones (i.e. fumaroles) that correspond to

  8. Volcanic-plutonic connections and metal fertility of highly evolved magma systems: A case study from the Herberton Sn-W-Mo Mineral Field, Queensland, Australia

    Science.gov (United States)

    Cheng, Yanbo; Spandler, Carl; Chang, Zhaoshan; Clarke, Gavin

    2018-03-01

    Understanding the connection between the highly evolved intrusive and extrusive systems is essential to explore the evolution of high silicic magma systems, which plays an important role in discussions of planetary differentiation, the growth of continents, crustal evolution, and the formation of highly evolved magma associated Sn-W-Mo mineral systems. To discern differences between "fertile" and "non-fertile" igneous rocks associated with Sn-W-Mo mineralization and reveal the genetic links between coeval intrusive and extrusive rocks, we integrate whole rock geochemistry, geochronology and Hf isotope signatures of igneous zircons from contemporaneous plutonic and volcanic rocks from the world-class Herberton Mineral Field of Queensland, Australia. The 310-300 Ma intrusive rocks and associated intra-plutonic W-Mo mineralization formed from relatively oxidized magmas after moderate degrees of crystal fractionation. The geochemical and isotopic features of the coeval volcanic succession are best reconciled utilizing the widely-accepted volcanic-plutonic connection model, whereby the volcanic rocks represent fractionated derivatives of the intrusive rocks. Older intrusions emplaced at 335-315 Ma formed from relatively low fO2 magmas that fractionated extensively to produce highly evolved granites that host Sn mineralization. Coeval volcanic rocks of this suite are compositionally less evolved than the intrusive rocks, thereby requiring a different model to link these plutonic-volcanic sequences. In this case, we propose that the most fractionated magmas were not lost to volcanism, but instead were effectively retained at the plutonic level, which allowed further localized build-up of volatiles and lithophile metals in the plutonic environment. This disconnection to the volcanism and degassing may be a crucial step for forming granite-hosted Sn mineralization. The transition between these two igneous regimes in Herberton region over a ∼30 m.y. period is attributed to

  9. Buildings vs. ballistics: Quantifying the vulnerability of buildings to volcanic ballistic impacts using field studies and pneumatic cannon experiments

    Science.gov (United States)

    Williams, G. T.; Kennedy, B. M.; Wilson, T. M.; Fitzgerald, R. H.; Tsunematsu, K.; Teissier, A.

    2017-09-01

    Recent casualties in volcanic eruptions due to trauma from blocks and bombs necessitate more rigorous, ballistic specific risk assessment. Quantitative assessments are limited by a lack of experimental and field data on the vulnerability of buildings to ballistic hazards. An improved, quantitative understanding of building vulnerability to ballistic impacts is required for informing appropriate life safety actions and other risk reduction strategies. We assessed ballistic impacts to buildings from eruptions at Usu Volcano and Mt. Ontake in Japan and compiled available impact data from eruptions elsewhere to identify common damage patterns from ballistic impacts to buildings. We additionally completed a series of cannon experiments which simulate ballistic block impacts to building claddings to investigate their performance over a range of ballistic projectile velocities, masses and energies. Our experiments provide new insights by quantifying (1) the hazard associated with post-impact shrapnel from building and rock fragments; (2) the effect of impact obliquity on damage; and (3) the additional impact resistance buildings possess when claddings are struck in areas directly supported by framing components. This was not well identified in previous work which may have underestimated building vulnerability to ballistic hazards. To improve assessment of building vulnerability to ballistics, we use our experimental and field data to develop quantitative vulnerability models known as fragility functions. Our fragility functions and field studies show that although unreinforced buildings are highly vulnerable to large ballistics (> 20 cm diameter), they can still provide shelter, preventing death during eruptions.

  10. Geologic Map of the Bodie Hills Volcanic Field, California and Nevada: Anatomy of Miocene Cascade Arc Magmatism in the Western Great Basin

    Science.gov (United States)

    John, D. A.; du Bray, E. A.; Blakely, R. J.; Box, S.; Fleck, R. J.; Vikre, P. G.; Rytuba, J. J.; Moring, B. C.

    2011-12-01

    The Bodie Hills Volcanic Field (BHVF) is a >700 km2, long-lived (~9 Ma) but episodic, Miocene eruptive center in the southern part of the ancestral Cascade magmatic arc. A 1:50,000-scale geologic map based on extensive new mapping, combined with 40Ar/39Ar dates, geochemical data, and detailed gravity and aeromagnetic surveys, defines late Miocene magmatic and hydrothermal evolution of the BHVF and contrasts the subduction-related BHVF with the overlying, post-subduction, bimodal Plio-Pleistocene Aurora Volcanic Field (AVF). Important features of the BHVF include: Eruptions occurred during 3 major eruptive stages: dominantly trachyandesite stratovolcanoes (~14.7 to 12.9 Ma), mixed silicic trachyandesite, dacite, and rhyolite (~11.3 to 9.6 Ma), and dominantly silicic trachyandesite to dacite domes (~9.2 to 8.0 Ma). Small rhyolite domes were emplaced at ~6 Ma. Trachyandesitic stratovolcanoes with extensive debris flow aprons form the outer part of BHVF, whereas silicic trachyandesite to rhyolite domes are more centrally located. Geophysical data suggest that many BHVF volcanoes have shallow plutonic roots that extend to depths ≥1-2 km below the surface, and much of the Bodie Hills may be underlain by low density plutons presumably related to BHVF volcanism. BHVF rocks contain ~50 to 78% SiO2 (though few rocks have Bodie Hills at ~10 Ma, but the composition and eruptive style of volcanism continued unchanged for 2 Ma. However, kinematic data for veins and faults in mining districts suggest a change in the stress field from transtensional to extensional approximately coincident with cessation of subduction. The Bodie Hills are flanked to the east, north, and west by sedimentary basins that began to form in the late Miocene (locally >11 Ma). Fine to coarse sedimentary deposits within the BHVF include stream deposits in channels that cut across the hills and were partly filled by ~9.4 Ma Eureka Valley Tuff erupted 20 km to the northwest. Shallow dips and preservation of

  11. High-resolution 40Ar/39Ar geochronology of volcanic rocks from the Siebengebirge (Central Germany)—Implications for eruption timescales and petrogenetic evolution of intraplate volcanic fields

    Science.gov (United States)

    Przybyla, Thomas; Pfänder, Jörg A.; Münker, Carsten; Kolb, Melanie; Becker, Maike; Hamacher, Uli

    2017-11-01

    A key parameter in understanding mantle dynamics beneath continents is the temporal evolution of intraplate volcanism in response to lithospheric thinning and asthenospheric uplift. To contribute to a better understanding of how intraplate volcanic fields evolve through time, we present a high precision 40Ar/39Ar age dataset for volcanic rocks from the Siebengebirge volcanic field (SVF) from central Germany, one of the best studied and compositionally most diverse intraplate volcanic fields of the Cenozoic Central European Volcanic Province (CEVP). Petrological and geochemical investigations suggest that the formation of the different rock types that occur in the SVF can be explained by a combination of assimilation and fractional crystallisation processes, starting from at least two different parental magmas with different levels of silica saturation (alkali basaltic and basanitic), and originating from different mantle sources. These evolved along two differentiation trends to latites and trachytes, and to tephrites and tephriphonolites, respectively. In contrast to their petrogenesis, the temporal evolution of the different SVF suites is poorly constrained. Previous K/Ar ages suggested a time of formation between about 28 and 19 Ma for the mafic rocks, and of about 27 to 24 Ma for the differentiated rocks. Our results confirm at high precision that the differentiated lithologies of both alkaline suites (40Ar/39Ar ages from 25.3 ± 0.2 Ma to 25.9 ± 0.3 Ma) erupted contemporaneously within a very short time period of 0.6 Ma, whereas the eruption of mafic rocks (basanites) lasted at least 8 Ma (40Ar/39Ar ages from 22.2 ± 0.2 Ma to 29.5 ± 0.3 Ma). This implies that felsic magmatism in the central SVF was likely a single event, possibly triggered by an intense phase of rifting, and that ongoing melting and eruption of mostly undifferentiated mafic lavas dominate the > 8 Ma long magmatic history of this region. Among the mafic lavas, most basanites and tephrites

  12. Layered hydrothermal barite-sulfide mound field, East Diamante Caldera, Mariana volcanic arc

    Science.gov (United States)

    Hein, James R.; de Ronde, Cornel E. J.; Koski, Randolph A.; Ditchburn, Robert G.; Mizell, Kira; Tamura, Yoshihiko; Stern, Robert J.; Conrad, Tracey; Ishizuka, Osamu; Leybourne, Matthew I.

    2014-01-01

    East Diamante is a submarine volcano in the southern Mariana arc that is host to a complex caldera ~5 × 10 km (elongated ENE-WSW) that is breached along its northern and southwestern sectors. A large field of barite-sulfide mounds was discovered in June 2009 and revisited in July 2010 with the R/V Natsushima, using the ROV Hyper-Dolphin. The mound field occurs on the northeast flank of a cluster of resurgent dacite domes in the central caldera, near an active black smoker vent field. A 40Ar/39Ar age of 20,000 ± 4000 years was obtained from a dacite sample. The mound field is aligned along a series of fractures and extends for more than 180 m east-west and >120 m north-south. Individual mounds are typically 1 to 3 m tall and 0.5 to 2 m wide, with lengths from about 3 to 8 m. The mounds are dominated by barite + sphalerite layers with the margins of each layer composed of barite with disseminated sulfides. Rare, inactive spires and chimneys sit atop some mounds and also occur as clusters away from the mounds. Iron and Mn oxides are currently forming small (caldera, mineralization resulted from focused flow along small segments of linear fractures rather than from a point source, typical of hydrothermal chimney fields. Based on the mineral assemblage, the maximum fluid temperatures were ~260°C, near the boiling point for the water depths of the mound field (367–406 m). Lateral fluid flow within the mounds precipitated interstitial sphalerite, silica, and Pb minerals within a network of barite with disseminated sulfides; silica was the final phase to precipitate. The current low-temperature precipitation of Fe and Mn oxides and silica may represent rejuvenation of the system.

  13. Examining Volcanic Terrains Using In Situ Geochemical Technologies; Implications for Planetary Field Geology

    Science.gov (United States)

    Young, K. E.; Bleacher, J. E.; Evans, C. A.; Rogers, A. D.; Ito, G.; Arzoumanian, Z.; Gendreau, K.

    2015-01-01

    Regardless of the target destination for the next manned planetary mission, the crew will require technology with which to select samples for return to Earth. The six Apollo lunar surface missions crews had only the tools to enable them to physically pick samples up off the surface or from a boulder and store those samples for return to the Lunar Module and eventually to Earth. Sample characterization was dependent upon visual inspection and relied upon their extensive geology training. In the four decades since Apollo however, great advances have been made in traditionally laboratory-based instrument technologies that enable miniaturization to a field-portable configuration. The implications of these advancements extend past traditional terrestrial field geology and into planetary surface exploration. With tools that will allow for real-time geochemical analysis, an astronaut can better develop a series of working hypotheses that are testable during surface science operations. One such technology is x-ray fluorescence (XRF). Traditionally used in a laboratory configuration, these instruments have now been developed and marketed commercially in a field-portable mode. We examine this technology in the context of geologic sample analysis and discuss current and future plans for instrument deployment. We also discuss the development of the Chromatic Mineral Identification and Surface Texture (CMIST) instrument at the NASA Goddard Space Flight Center (GSFC). Testing is taking place in conjunction with the RIS4E (Remote, In Situ, and Synchrotron Studies for Science and Exploration) SSERVI (Solar System Exploration and Research Virtual Institute) team activities, including field testing at Kilauea Volcano, HI..

  14. Pleniglacial sedimentation process reconstruction on laminated lacustrine sediments from lava-dammed Paleolake Alf, West Eifel Volcanic Field (Germany)

    Science.gov (United States)

    Eichhorn, Luise; Pirrung, Michael; Zolitschka, Bernd; Büchel, Georg

    2017-09-01

    Differentiating between regularly seasonal, irregular and event-based clastic sedimentation is difficult if sedimentation structures resemble and dating methods are imprecise. In this study - clastic light and dark laminae from lava-dammed Paleolake Alf in the Late Pleistocene in the Quaternary West Eifel Volcanic Field are analyzed to clarify how they formed and if they are of annual origin and comparable to assumed periglacial varves from neighboring Lake Holzmaar. Therefore, a multiproxy approach is applied combining sediment thin section analysis which focuses on composition and structure with 14C dates. The results are compared to recently-formed annually-laminated clastic sediments of, e.g., the High Canadian Arctic. Observed sedimentation structures reveal sediment delivery by over- and interflows and deposition from suspension forming two characteristic microfacies: Type I graded laminae and Type II laminae with graded sublayers. Additionally, erosional bases and event deposits indicate episodic underflows. Thus, lamination is potentially seasonal but is significantly veiled by extreme runoff causing erosion and resuspension processes or a mixed water body preventing sediment delivery into the lake basin. However, sedimentation processes between watershed and lake could be reconstructed by comparing recent and paleosediment structures.

  15. Inferring Shallow Subsurface Density Structure from Surface and Underground Gravity Measurements: Calibrating Models for Relatively Undeformed Volcanic Strata at the Jemez Volcanic Field, New Mexico, USA

    Science.gov (United States)

    Roy, Mousumi; Lewis, Megan; Johnson, Alex; George, Nicolas; Rowe, Charlotte; Guardincerri, Elena

    2018-03-01

    Imaging shallow subsurface density structure is an important goal in a variety of applications, from hydrogeology to seismic and volcanic hazard assessment. We assess the effectiveness of surface and subsurface gravity measurements in estimating the density structure of a well-characterized rock volume: the mesa (a small, flat-topped plateau) upon which the town of Los Alamos, New Mexico, USA is located. Our gravity measurements were made on the mesa surface above a horizontal tunnel and underground, within the tunnel. We demonstrate that, in the absence of other geophysical data such as seismic data or muon attenuation, subsurface (tunnel) gravity measurements are critical to accurately recovering geologic structure. Without the tunnel data, our resolution is limited to roughly the surface gravity station spacing, but by including the tunnel data we can resolve structure to a depth of 10 times the surface gravity station spacing. Densities were obtained using both forward modeling and a Bayesian inverse modeling approach, incorporating relevant constraints from geologic observations. We find that Bayesian inversion, with geologically relevant prior, is a superior approach to the forward models in terms of both robustness and efficiency and correctly predicts the orientation and elevation of important geologic features.

  16. Numerical modeling perspectives on zircon crystallization and magma reservoir growth at the Laguna del Maule volcanic field, central Chile

    Science.gov (United States)

    Andersen, N. L.; Dufek, J.; Singer, B. S.

    2017-12-01

    Magma reservoirs in the middle to upper crust are though to accumulate incrementally over 104 -105 years. Coupled crystallization ages and compositions of zircon are a potentially powerful tracer of reservoir growth and magma evolution. However, complex age distributions and disequilibrium trace element partitioning complicate the interpretation of the zircon record in terms of magmatic processes. In order to make quantitative predictions of the effects of magmatic processes that contribute reservoir growth and evolution—such as cooling and crystallization, magma recharge and mixing, and rejuvenation and remelting of cumulate-rich reservoir margins—we develop a model of zircon saturation and growth within a numerical framework of coupled thermal transfer, phase equilibrium, and magma dynamics. We apply this model to the Laguna del Maule volcanic field (LdM), located in central Chile. LdM has erupted at least 40 km3 of rhyolite from 36 vents distributed within a 250 km2 lake basin. Ongoing unrest demonstrates the large, silicic magma system beneath LdM remains active to this day. Zircon from rhyolite erupted between c. 23 and 1.8 ka produce a continuous distribution of 230Th-238U ages ranging from eruption to 40 ka, as well as less common crystal domains up to 165 ka and rare xenocrysts. Zircon trace element compositions fingerprint compositionally distinct reservoirs that grew within the larger magma system. Despite the dominantly continuous distributions of ages, many crystals are characterized by volumetrically substantial, trace element enriched domains consistent with rapid crystal growth. We utilize numerical simulations to assess the magmatic conditions required to catalyze these "blooms" of crystallization and the magma dynamics that contributed to the assembly of the LdM magma system.

  17. Paleomagnetism and 40Ar / 39Ar Geochronology of Yemeni Oligocene volcanics: Implications for timing and duration of Afro-Arabian traps and geometry of the Oligocene paleomagnetic field

    Science.gov (United States)

    Riisager, Peter; Knight, Kim B.; Baker, Joel A.; Ukstins Peate, Ingrid; Al-Kadasi, Mohamed; Al-Subbary, Abdulkarim; Renne, Paul R.

    2005-09-01

    A combined paleomagnetic and 40Ar / 39Ar study was carried out along eight stratigraphically overlapping sections in the Oligocene Afro-Arabian flood volcanic province in Yemen (73 sites). The composite section covers the entire volcanic stratigraphy in the sampling region and represents five polarity zones that are correlated to the geomagnetic polarity time scale based on 40Ar / 39Ar ages from this and previous studies. The resulting magnetostratigraphy is similar to that of the conjugate margin in Ethiopia. The earliest basaltic volcanism took place in a reverse polarity chron that appears to correspond to C11r, while the massive rhyolitic ignimbrite eruptions correlated to ash layers in Oligocene Indian Ocean sediment 2700 km away from the Afro-Arabian traps, appear to have taken place during magnetochron C11n. The youngest ignimbrite was emplaced during magnetochron C9n. Both 40Ar / 39Ar and paleomagnetic data suggest rapid Red Sea. By analyzing Afro-Arabian paleomagnetic data in conjunction with contemporaneous paleomagnetic poles available from different latitudes we argue that the Oligocene paleomagnetic field was dominated by the axial dipole with insignificant non-dipole field contributions.

  18. Time lag between deformation and seismicity along monogenetic volcanic unrest periods: The case of El Hierro Island (Canary Islands)

    Science.gov (United States)

    Lamolda, Héctor; Felpeto, Alicia; Bethencourt, Abelardo

    2017-07-01

    Between 2011 and 2014 there were at least seven episodes of magmatic intrusion in El Hierro Island, but only the first one led to a submarine eruption in 2011-2012. In order to study the relationship between GPS deformation and seismicity during these episodes, we compare the temporal evolution of the deformation with the cumulative seismic energy released. In some of the episodes both deformation and seismicity evolve in a very similar way, but in others a time lag appears between them, in which the deformation precedes the seismicity. Furthermore, a linear correlation between decimal logarithm of intruded magma volume and decimal logarithm of total seismic energy released along the different episodes has been observed. Therefore, if a future magmatic intrusion in El Hierro Island follows this behavior with a proper time lag, we could have an a priori estimate on the order of magnitude the seismic energy released would reach.

  19. A combined field and numerical approach to understanding dilute pyroclastic density current dynamics and hazard potential: Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Brand, Brittany D.; Gravley, Darren M.; Clarke, Amanda B.; Lindsay, Jan M.; Bloomberg, Simon H.; Agustin-Flores, Javier; Németh, Károly

    2014-04-01

    The most dangerous and deadly hazards associated with phreatomagmatic eruptions in the Auckland Volcanic Field (AVF; Auckland, New Zealand) are those related to volcanic base surges - dilute, ground-hugging, particle laden currents with dynamic pressures capable of severe to complete structural damage. We use the well-exposed base surge deposits of the Maungataketake tuff ring (Manukau coast, Auckland), to reconstruct flow dynamics and destructive potential of base surges produced during the eruption. The initial base surge(s) snapped trees up to 0.5 m in diameter near their base as far as 0.7-0.9 km from the vent. Beyond this distance the trees were encapsulated and buried by the surge in growth position. Using the tree diameter and yield strength of the wood we calculate that dynamic pressures (Pdyn) in excess of 12-35 kPa are necessary to cause the observed damage. Next we develop a quantitative model for flow of and sedimentation from a radially-spreading, dilute pyroclastic density currents (PDCs) to determine the damage potential of the base surges produced during the early phases of the eruption and explore the implications of this potential on future eruptions in the region. We find that initial conditions with velocities on the order of 65 m s- 1, bulk density of 38 kg m- 3 and initial, near-vent current thicknesses of 60 m reproduce the field-based Pdyn estimates and runout distances. A sensitivity analysis revealed that lower initial bulk densities result in shorter run-out distances, more rapid deceleration of the current and lower dynamic pressures. Initial velocity does not have a strong influence on run-out distance, although higher initial velocity and slope slightly decrease runout distance due to higher rates of atmospheric entrainment. Using this model we determine that for base surges with runout distances of up to 4 km, complete destruction can be expected within 0.5 km from the vent, moderate destruction can be expected up to 2 km, but much

  20. Origin of leucite-rich and sanidine-rich flow layers in the Leucite Hills Volcanic Field, Wyoming

    Science.gov (United States)

    Gunter, W. D.; Hoinkes, Georg; Ogden, Palmer; Pajari, G. E.

    1990-09-01

    Two types of orendite (sanidine-phlogopite lamproite) and wyomingite (leucite-phlogopite lamproite) intraflow layering are present in the ultrapotassic Leucite Hills Volcanic Field, Wyoming. In large-scale layering, wyomingites are confined to the base of the flow, while in centimeter-scale layering, orendite and wyomingite alternate throughout the flow. The mineralogy of the orendites and wyomingites are the same; only the relative amount of each mineral vary substantially. The chemical compositions of adjacent layers of wyomingite and orendite are almost identical except for water. The centimeter-scale flow layering probably represents fossil streamlines of the lava and therefore defines the path of circulation of the viscous melt. Toward the front of the flow, the layers are commonly folded. Structures present which are indicative that the flows may have possessed a yield strength are limb shears, boudinage, and slumping. Phlogopite phenocrysts are poorly aligned in the orendite layers, while they are often in subparallel alignment in the wyomingite layers; and they are used as a measure of shearing intensity during emplacement of the flow. Vesicle volumes are concentrated in the orendite layers. In the large-scale layering, a discontinuous base rubble zone of autobreccia is overlain by a thin platy zone followed by a massive zone which composes more than the upper 75% of the flow. Consequently, we feel that the origin of the layering may be related to shearing. Two extremes in the geometry of shearing are proposed: closely spaced, thin, densely sheared layers separated by discrete intervals throughout a lava flow as in the centimeter-scale layering and classical plug flow where all the shearing is confined to the base as in the large-scale layering. A mechanism is proposed which causes thixotropic behavior and localizes shearing: the driving force is the breakdown of molecular water to form T-OH bonds which establishes a chemical potential gradient for water in

  1. Compositional variation through time and space in Quaternary magmas of the Chyulu Hills Volcanic Province, Kenya

    Science.gov (United States)

    Widom, E.; Kuentz, D. C.

    2017-12-01

    The Chyulu Hills Volcanic Province, located in southern Kenya >100 km east of the Kenya Rift Valley, has produced mafic, monogenetic eruptions throughout the Quaternary. The volcanic field is considered to be an off-rift manifestation of the East African Rift System, and is known for the significant compositional variability of its eruptive products, which range from nephelinites to basanites, alkali basalts, hawaiites, and orthopyroxene-normative subalkaline basalts [1]. Notably, erupted compositions vary systematically in time and space: Pleistocene volcanism, occurring in the northern Chyulu Hills, was characterized by highly silica-undersaturated magmas, whereas Holocene volcanism, restricted to the southern Chyulu Hills, is less silica-understaturated, consistent with a progressive decrease in depth and increase in degree of melting with time, from north to south [1]. Pronounced negative K anomalies, and enriched trace element and Sr-Nd-Pb isotope signatures have been attributed to a metasomatized, amphibole-bearing, sub-continental lithospheric mantle (SCLM) source [2]. Seismic evidence for a partially molten zone in the SCLM beneath this region [3] may be consistent with such an interpretation. We have analyzed Chyulu Hills samples for Os, Hf and high precision Pb isotopes to further evaluate the magma sources and petrogenetic processes leading to systematic compositional variation in time and space. Sr-Nd-Pb-Hf isotope systematics and strong negative correlations of 206Pb/204Pb and highly incompatible trace element ratios with SiO2 are consistent with the progression from a deeper, HIMU-type source to a shallower, EM-type source. Os isotope systematics, however, suggest a more complex relationship; although all samples are more radiogenic than primitive mantle, the least radiogenic values (similar to primitive OIB) are found in magmas with intermediate SiO2, and those with lower or higher SiO2 are more radiogenic. This may be explained by interaction

  2. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Rissmann, C.; Christenson, B.; Werner, C.; Leybourne, M.; Cole, J.; Gravley, D.

    2012-01-01

    Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20a of production (116MW e). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (Wm -2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20a of production, current CO2 emissions equated to 111??6.7T/d. Observed heat flow was 70??6.4MW, compared with a pre-production value of 122MW. This 52MW reduction in surface heat flow is due to production-induced drying up of all alkali-Cl outflows (61.5MW) and steam-heated pools (8.6MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali-Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18MW (from 25MW to 43.3??5MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20a of production, with an observed heat flow of 26.7??3MW and a CO 2 emission rate of 39??3T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali-Cl outflows once contributed significantly to the natural surface heat flow (~50%) they contributed little (99% of the original CO 2

  3. Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona

    Science.gov (United States)

    Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.

    2009-01-01

    We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to

  4. Monitoring diffuse degassing in monogentic volcanic field during magmatic reactivation: the case of El Hierro (Canary Islands, Spain)

    Science.gov (United States)

    Morales-Ocaña, C.; Feldman, R. C.; Pointer, Z. R.; Rodríguez, F.; Asensio-Ramos, M.; Melián, G.; Padrón, E.; Hernández, P. A.; Pérez, N. M.

    2017-12-01

    El Hierro (278 km2), the younger, smallest and westernmost island of the Canarian archipelago, is a 5-km-high edifice constructed by rapid constructive and destructive processes in 1.12 Ma, with a truncated trihedron shape and three convergent ridges of volcanic cones. It experienced a submarine eruption from 12 October, 2011 and 5 March 2012, off its southern coast that was the first one to be monitored from the beginning in the Canary Islands. As no visible emanations occur at the surface environment of El Hierro, diffuse degassing studies have become a useful geochemical tool to monitor the volcanic activity in this volcanic island. Diffuse CO2 emission has been monitored at El Hierro Island since 1998 in a yearly basis, with much higher frequency in the period 2011-2012. At each survey, about 600 sampling sites were selected to obtain a homogeneous distribution. Measurements of soil CO2 efflux were performed in situ following the accumulation chamber method. During pre-eruptive and eruptive periods, the diffuse CO2 emission released by the whole island experienced significant increases before the onset of the submarine eruption and the most energetic seismic events of the volcanic-seismic unrest (Melián et al., 2014. J. Geophys. Res. Solid Earth, 119, 6976-6991). The soil CO2 efflux values of the 2017 survey ranged from non-detectable to 53.1 g m-2 d-1. Statistical-graphical analysis of the data show two different geochemical populations; background (B) and peak (P) represented by 77.6% and 22.4% of the total data, respectively, with geometric means of 1.8 and 9.2 g m-2 d-1, respectively. Most of the area showed B values while the P values were mainly observed at the interception center of the three convergent ridges and the north of the island. To estimate the diffuse CO2 emission for the 2017 survey, we ran about 100 sGs simulations. The estimated 2017 diffuse CO2 output released to atmosphere by El Hierro was at 1,150 ± 42 t d-1, value higher than the

  5. Geothermal Prospecting with Remote Sensing and Geographical Information System Technologies in Xilingol Volcanic Field in the Eastern Inner Mongolia, NE China

    Science.gov (United States)

    Peng, F.; Huang, S.; Xiong, Y.; Zhao, Y.; Cheng, Y.

    2013-05-01

    Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, we apply RS and GIS technics in prospecting the geothermal energy potential in Xilingol, a Cenozoic volcanic field in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with the single-channel algorithm on the platform of ENVI developed by ITT Visual Information Solutions. Information of linear and circular geological structure is then extracted from the LST maps and compared to the existing geological data. Several useful technologies such as principal component analysis (PCA), vegetation suppression technique, multi-temporal comparative analysis, and 3D Surface View based on DEM data are used to further enable a better visual geologic interpretation with the Landsat imagery of Xilingol. The Preliminary results show that major faults in the study area are mainly NE and NNE oriented. Several major volcanism controlling faults and Cenozoic volcanic eruption centers have been recognized from the linear and circular structures in the remote images. Seven areas have been identified as potential targets for further prospecting geothermal energy based on the visual

  6. Origin and evolution of primitive melts from the Debunscha Maar, Cameroon: Consequences for mantle source heterogeneity within the Cameroon Volcanic Line

    Science.gov (United States)

    Ngwa, Caroline N.; Hansteen, Thor H.; Devey, Colin W.; van der Zwan, Froukje M.; Suh, Cheo E.

    2017-09-01

    Debunscha Maar is a monogenetic volcano forming part of the Mt. Cameroon volcanic field, located within the Cameroon Volcanic Line (CVL). Partly glassy cauliflower bombs have primitive basanite-picrobasalt compositions and contain abundant normally and reversely zoned olivine (Fo 77-87) and clinopyroxene phenocrysts. Naturally quenched melt inclusions in the most primitive olivine phenocrysts show compositions which, when corrected for post-entrapment modification, cover a wide range from basanite to alkali basalt (MgO 6.9-11.7 wt%), and are generally more primitive than the matrix glasses (MgO 5.0-5.5 wt%) and only partly fall on a common liquid line of descent with the bulk rock samples and matrix glasses. Melt inclusion trace element compositions lie on two distinct geochemical trends: one (towards high Ba/Nb) is thought to represent the effect of various proportions of anhydrous lherzolite and amphibole-bearing peridotite in the source, while the other (for example, high La/Y) reflects variable degrees of partial melting. Comparatively low fractionation-corrected CaO in the melt inclusions with the highest La/Y suggests minor involvement of a pyroxenite source component that is only visible at low degrees of melting. Most of the samples show elevated Gd/Yb, indicating up to 8% garnet in the source. The range of major and trace elements represented by the melt inclusions covers the complete geochemical range given by basalts from different volcanoes of the Cameroon volcanic line, indicating that geochemical signatures that were previously thought to be volcano-specific in fact are probably present under all volcanoes. Clinopyroxene-melt barometry strongly indicates repeated mixing of compositionally diverse melts within the upper mantle at 830 ± 170 MPa prior to eruption. Mantle potential temperatures estimated for the primitive melt inclusions suggest that the thermal influence of a mantle plume is not required to explain the magma petrogenesis.

  7. The Quaternary history of effusive volcanism of the Nevado de Toluca area, Central Mexico

    Science.gov (United States)

    Torres-Orozco, R.; Arce, J. L.; Layer, P. W.; Benowitz, J. A.

    2017-11-01

    Andesite and dacite lava flows and domes, and intermediate-mafic cones from the Nevado de Toluca area were classified into five groups using field data and 40Ar/39Ar geochronology constraints. Thirty-four lava units of diverse mineralogy and whole-rock major-element geochemistry, distributed between the groups, were identified. These effusive products were produced between ∼1.5 and ∼0.05 Ma, indicating a mid-Pleistocene older-age for Nevado de Toluca volcano, coexisting with explosive products that suggest a complex history for this volcano. A ∼0.96 Ma pyroclastic deposit attests for the co-existence of effusive and explosive episodes in the mid-Pleistocene history. Nevado de Toluca initiated as a composite volcano with multiple vents until ∼1.0 Ma, when the activity began to centralize in an area close to the present-day crater. The modern main edifice reached its maximum height at ca. 50 ka after bulky, spiny domes erupted in the current summit of the crater. Distribution and geochemical behavior in major elements of lavas indicate a co-magmatic relationship between different andesite and dacite domes and flows, although unrelated to the magmatism of the monogenetic volcanism. Mafic-intermediate magma likely replenished the system at Nevado de Toluca since ca. ∼1.0 Ma and contributed to the eruption of new domes, cones, as well as effusive-explosive activity. Altogether, field and laboratory data suggest that a large volume of magma was ejected around 1 Ma in and around the Nevado de Toluca.

  8. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

    International Nuclear Information System (INIS)

    Rissmann, Clinton; Christenson, Bruce; Werner, Cynthia; Leybourne, Matthew; Cole, Jim; Gravley, Darren

    2012-01-01

    Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20 a of production (116 MW e ). Soil CO 2 degassing was quantified with 2663 CO 2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (W m −2 ) using published soil temperature heat flow functions. Both CO 2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20 a of production, current CO 2 emissions equated to 111 ± 6.7 T/d. Observed heat flow was 70 ± 6.4 MW, compared with a pre-production value of 122 MW. This 52 MW reduction in surface heat flow is due to production-induced drying up of all alkali–Cl outflows (61.5 MW) and steam-heated pools (8.6 MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali–Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18 MW (from 25 MW to 43.3 ± 5 MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20 a of production, with an observed heat flow of 26.7 ± 3 MW and a CO 2 emission rate of 39 ± 3 T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali–Cl outflows once contributed significantly to the natural surface heat flow (∼50%) they

  9. Remote Sensing as a First Step in Geothermal Exploration in the Xilingol Volcanic Field in NE China

    Science.gov (United States)

    Peng, F.; Huang, S.; Xiong, Y.

    2013-12-01

    Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Geological structures play an important role in the transfer and storage of geothermal energy. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting techniques, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, RS and GIS techniques are utilized to prospect the geothermal energy potential in Xilingol, a Cenozoic volcanic area in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with a single-channel algorithm. Prior to the LST retrieval, the imagery data are preprocessed to eliminate abnormal values by reference to the normalized difference vegetation index (NDVI) and the improved normalized water index (MNDWI) on the ENVI platform developed by ITT Visual Information Solutions. Linear and circular geological structures are then inferred through visual interpretation of the LST maps with references to the existing geological maps in conjunction with the computer automatic interpretation features such as lineament frequency, lineament density, and lineament intersection. Several useful techniques such as principal component analysis (PCA), image classification, vegetation suppression, multi-temporal comparative analysis, and 3D Surface View based on DEM data are

  10. The polycyclic Lausche Volcano (Lausitz Volcanic Field) and its message concerning landscape evolution in the Lausitz Mountains (northern Bohemian Massif, Central Europe)

    Science.gov (United States)

    Wenger, Erik; Büchner, Jörg; Tietz, Olaf; Mrlina, Jan

    2017-09-01

    The Tertiary Lausitz Volcanic Field covers a broad area encompassing parts of Eastern Saxony (Germany), Lower Silesia (Poland) and North Bohemia (Czech Republic). Volcanism was predominantly controlled by the volcano-tectonic evolution of the Ohře Rift and culminated in the Lower Oligocene. This paper deals with the highest volcano of this area, the Lausche Hill (792.6 m a.s.l.) situated in the Lausitz Mountains. We offer a reconstruction of the volcanic edifice and its eruptive history. Its complex genesis is reflected by six different eruption styles and an associated petrographic variety. Furthermore, the Lausche Volcano provides valuable information concerning the morphological evolution of its broader environs. The remnant of an alluvial fan marking a Middle Paleocene-Lower Eocene (62-50 Ma) palaeo-surface is preserved at the base of the volcano. The deposition of this fan can be attributed to a period of erosion of its nearby source area, the Lausitz Block that has undergone intermittent uplift at the Lausitz Overthrust since the Upper Cretaceous. The Lausche Hill is one of at least six volcanoes in the Lausitz Mountains which show an eminent low level of erosion despite their Oligocene age and position on elevated terrain. These volcanoes are exposed in their superficial level which clearly contradicts their former interpretation as subvolcanoes. Among further indications, this implies that the final morphotectonic uplift of the Lausitz Mountains started in the upper Lower Pleistocene ( 1.3 Ma) due to revived subsidence of the nearby Zittau Basin. It is likely that this neotectonic activity culminated between the Elsterian and Saalian Glaciation ( 320 ka). The formation of the low mountain range was substantially controlled by the intersection of the Lausitz Overthrust and the Ohře Rift.

  11. Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy

    Directory of Open Access Journals (Sweden)

    Angelo Algieri

    2018-03-01

    Full Text Available This work aims to investigate the energy performances of small-scale Organic Rankine Cycles (ORCs for the exploitation of high temperature geothermal sources in volcanic areas. For this purpose, a thermodynamic model has been developed, and a parametric analysis has been performed that considers subcritical and transcritical configurations, and different organic fluids (isobutane, isopentane, and R245ca. The investigation illustrates the significant effect of the temperature at the entrance of the expander on the ORC behaviour and the rise in system effectiveness when the internal heat exchange (IHE is adopted. As a possible application, the analysis has focused on the active volcanic area of Phlegraean Fields (Southern Italy where high temperature geothermal reservoirs are available at shallow depths. The work demonstrates that ORC systems represent a very interesting option for exploiting geothermal sources and increasing the share of energy production from renewables. In particular, the investigation has been performed considering a 1 kg/s geothermal mass flow rate at 230 °C. The comparative analysis highlights that transcritical configurations with IHE guarantee the highest performance. Isopentane is suggested to maximise the ORC electric efficiency (17.7%, while R245ca offers the highest electric power (91.3 kWel. The selected systems are able to fulfil a significant quota of the annual electric load of domestic users in the area.

  12. The tropospheric processing of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations

    Directory of Open Access Journals (Sweden)

    A. Aiuppa

    2007-01-01

    Full Text Available Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily. Sulphur dioxide (SO2, hydrogen sulphide (H2S, hydrogen chloride (HCl and hydrogen fluoride (HF concentrations in the volcanic plumes (typically several minutes to a few hours old were repeatedly determined at distances from the summit vents ranging from 0.1 to ~10 km, and under different environmental conditions. At both volcanoes, acidic gas concentrations were found to decrease exponentially with distance from the summit vents (e.g., SO2 decreases from ~10 000 μg/m3at 0.1 km from Etna's vents down to ~7 μg/m3 at ~10 km distance, reflecting the atmospheric dilution of the plume within the acid gas-free background troposphere. Conversely, SO2/HCl, SO2/HF, and SO2/H2S ratios in the plume showed no systematic changes with plume aging, and fit source compositions within analytical error. Assuming that SO2 losses by reaction are small during short-range atmospheric transport within quiescent (ash-free volcanic plumes, our observations suggest that, for these short transport distances, atmospheric reactions for H2S and halogens are also negligible. The one-dimensional model MISTRA was used to simulate quantitatively the evolution of halogen and sulphur compounds in the plume of Mt. Etna. Model predictions support the hypothesis of minor HCl chemical processing during plume transport, at least in cloud-free conditions. Larger

  13. Basaltic Diatreme To Root Zone Volcanic Processes In Tuzo Kimberlite Pipe (Gahcho Kué Kimberlite Field, NWT, Canada)

    Science.gov (United States)

    Seghedi, I.; Kurszlaukis, S.; Maicher, D.

    2009-05-01

    Tuzo pipe is infilled by a series of coherent and fragmental kimberlite facies types typical for a diatreme to root zone transition level. Coherent or transitional coherent kimberlite facies dominate at depth, but also occur at shallow levels, either as dikes or as individual or agglutinated coherent kimberlite clasts (CKC). Several fragmental kimberlite varieties fill the central and shallow portions of the pipe. The definition, geometry and extent of the geological units are complex and are controlled by vertical elements. Specific for Tuzo is: (1) high abundance of locally derived xenoliths (granitoids and minor diabase) between and within the kimberlite phases, varying in size from sub-millimeter to several tens of meters, frequent in a belt-like domain between 120-200 m depth in the pipe; (2) the general presence of CKC, represented by round-subround, irregular to amoeboid-shaped clasts with a macrocrystic or aphanitic texture, mainly derived from fragmentation of erupting magma and less commonly from previously solidified kimberlite, as well as recycled pyroclasts. In addition, some CKC are interpreted to be intersections of a complex dike network. This diversity attests formation by various volcanic processes, extending from intrusive to explosive; (3) the presence of bedded polymict wall- rock and kimberlite breccia occurring mostly in deep levels of the pipe below 345 m depth. The gradational contact relationships of these deposits with the surrounding kimberlite rocks and their location suggest that they formed in situ. The emplacement of Tuzo pipe involved repetitive volcanic explosions alternating with periods of relative quiescence causing at least partial consolidation of some facies. The volume deficit in the diatreme-root zone after each eruption was compensated by gravitational collapse of overlying diatreme tephra and pre-fragmented wall-rock xenoliths. Highly explosive phases were alternating with weak explosions or intrusive phases, suggesting

  14. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  15. Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand National Disaster Exercise `Ruaumoko'

    Science.gov (United States)

    Lindsay, Jan; Marzocchi, Warner; Jolly, Gill; Constantinescu, Robert; Selva, Jacopo; Sandri, Laura

    2010-03-01

    The Auckland Volcanic Field (AVF) is a young basaltic field that lies beneath the urban area of Auckland, New Zealand’s largest city. Over the past 250,000 years the AVF has produced at least 49 basaltic centers; the last eruption was only 600 years ago. In recognition of the high risk associated with a possible future eruption in Auckland, the New Zealand government ran Exercise Ruaumoko in March 2008, a test of New Zealand’s nation-wide preparedness for responding to a major disaster resulting from a volcanic eruption in Auckland City. The exercise scenario was developed in secret, and covered the period of precursory activity up until the eruption. During Exercise Ruaumoko we adapted a recently developed statistical code for eruption forecasting, namely BET_EF (Bayesian Event Tree for Eruption Forecasting), to independently track the unrest evolution and to forecast the most likely onset time, location and style of the initial phase of the simulated eruption. The code was set up before the start of the exercise by entering reliable information on the past history of the AVF as well as the monitoring signals expected in the event of magmatic unrest and an impending eruption. The average probabilities calculated by BET_EF during Exercise Ruaumoko corresponded well to the probabilities subjectively (and independently) estimated by the advising scientists (differences of few percentage units), and provided a sound forecast of the timing (before the event, the eruption probability reached 90%) and location of the eruption. This application of BET_EF to a volcanic field that has experienced no historical activity and for which otherwise limited prior information is available shows its versatility and potential usefulness as a tool to aid decision-making for a wide range of volcano types. Our near real-time application of BET_EF during Exercise Ruaumoko highlighted its potential to clarify and possibly optimize decision-making procedures in a future AVF eruption

  16. Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems

    Science.gov (United States)

    Portnyagin, Maxim; Duggen, Svend; Hauff, Folkmar; Mironov, Nikita; Bindeman, Ilya; Thirlwall, Matthew; Hoernle, Kaj

    2015-12-01

    We present new major and trace element, high-precision Sr-Nd-Pb (double spike), and O-isotope data for the whole range of rocks from the Holocene Tolbachik volcanic field in the Central Kamchatka Depression (CKD). The Tolbachik rocks range from high-Mg basalts to low-Mg basaltic trachyandesites. The rocks considered in this paper represent mostly Late Holocene eruptions (using tephrochronological dating), including historic ones in 1941, 1975-1976 and 2012-2013. Major compositional features of the Tolbachik volcanic rocks include the prolonged predominance of one erupted magma type, close association of middle-K primitive and high-K evolved rocks, large variations in incompatible element abundances and ratios but narrow range in isotopic composition. We quantify the conditions of the Tolbachik magma origin and evolution and revise previously proposed models. We conclude that all Tolbachik rocks are genetically related by crystal fractionation of medium-K primary magmas with only a small range in trace element and isotope composition. The primary Tolbachik magmas contain 14 wt.% of MgO and 4% wt.% of H2O and originated by partial melting ( 6%) of moderately depleted mantle peridotite with Indian-MORB-type isotopic composition at temperature of 1250 °C and pressure of 2 GPa. The melting of the mantle wedge was triggered by slab-derived hydrous melts formed at 2.8 GPa and 725 °C from a mixture of sediments and MORB- and Meiji-type altered oceanic crust. The primary magmas experienced a complex open-system evolution termed Recharge-Evacuation-Fractional Crystallization (REFC). First the original primary magmas underwent open-system crystal fractionation combined with periodic recharge of the magma chamber with more primitive magma, followed by mixing of both magma types, further fractionation and finally eruption. Evolved high-K basalts, which predominate in the Tolbachik field, and basaltic trachyandesites erupted in 2012-2013 approach steady-state REFC liquid

  17. Origin and potential geothermal significance of China Hat and other late Pleistocene topaz rhyolite lava domes of the Blackfoot Volcanic Field, SE Idaho

    Science.gov (United States)

    McCurry, M. O.; Pearson, D. M.; Welhan, J. A.; Kobs-Nawotniak, S. E.; Fisher, M. A.

    2014-12-01

    The Snake River Plain and neighboring regions are well known for their high heat flow and robust Neogene-Quaternary tectonic and magmatic activity. Interestingly, however, there are comparatively few surficial manifestations of geothermal activity. This study is part of a renewed examination of this region as a possible hidden or blind geothermal resource. We present a testable, integrated volcanological, petrogenetic, tectonic and hydrothermal conceptual model for 57 ka China Hat and cogenetic topaz rhyolite lava domes of the Blackfoot Volcanic Field. This field is well suited for analysis as a blind resource because of its distinctive combination of (1) young bimodal volcanism, petrogenetic evidence of shallow magma storage and evolution, presence of coeval extension, voluminous travertine deposits, and C- and He-isotopic evidence of active magma degassing; (2) a paucity of hot springs or other obvious indicators of a geothermal resource in the immediate vicinity of the lava domes; and (3) proximity to a region of high crustal heat flow, high-T geothermal fluids at 2.5-5 km depth and micro-seismicity characterized by its swarming nature. Eruptions of both basalt and rhyolite commonly evolve from minor phreatomagmatic to effusive. In our model, transport of both magmatic and possible deep crustal aqueous fluids may be controlled by preexisting crustal structures, including west-dipping thrust faults. Geochemical evolution of rhyolite magma is dominated by mid- to upper-crustal fractional crystallization (with pre-eruption storage and phenocryst formation at ~14 km). Approximately 1.2 km3 of topaz rhyolite have been erupted since 1.4 Ma, yielding an average eruption rate of 0.8 km3/m.y. Given reasonable assumptions of magma cumulate formation and eruption rates, and initial and final volatile concentrations, we infer average H2O and CO2 volatile fluxes from the rhyolite source region of ~2MT/year and 340 T/day, respectively. Lithium flux may be comparable to CO2.

  18. Magma displacements under insular volcanic fields, applications to eruption forecasting: El Hierro, Canary Islands, 2011-2013

    Science.gov (United States)

    García, A.; Fernández-Ros, A.; Berrocoso, M.; Marrero, J. M.; Prates, G.; De la Cruz-Reyna, S.; Ortiz, R.

    2014-04-01

    Significant deformations, followed by increased seismicity detected since 2011 July at El Hierro, Canary Islands, Spain, prompted the deployment of additional monitoring equipment. The climax of this unrest was a submarine eruption first detected on 2011 October 10, and located at about 2 km SW of La Restinga, southernmost village of El Hierro Island. The eruption ceased on 2012 March 5, after the volcanic tremor signals persistently weakened through 2012 February. However, the seismic activity did not end with the eruption, as several other seismic crises followed. The seismic episodes presented a characteristic pattern: over a few days the number and magnitude of seismic event increased persistently, culminating in seismic events severe enough to be felt all over the island. Those crises occurred in 2011 November, 2012 June and September, 2012 December to 2013 January and in 2013 March-April. In all cases the seismic unrest was preceded by significant deformations measured on the island's surface that continued during the whole episode. Analysis of the available GPS and seismic data suggests that several magma displacement processes occurred at depth from the beginning of the unrest. The first main magma movement or `injection' culminated with the 2011 October submarine eruption. A model combining the geometry of the magma injection process and the variations in seismic energy release has allowed successful forecasting of the new-vent opening.

  19. Volcanic risk

    International Nuclear Information System (INIS)

    Rancon, J.P.; Baubron, J.C.

    1995-01-01

    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles' volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO 2 , H 2 O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs

  20. Reconsideration of evolutionary model of the Hawaiian-type volcano: 40Ar/39Ar ages for lavas from deep interior of Oahu Island and alkali basalts from the North Arch volcanic field

    Science.gov (United States)

    Uto, K.; Ishizuka, O.; Garcia, M. O.; Clague, D. A.; Naka, J.

    2002-12-01

    Growth history of Hawaiian-type volcanoes is typified into four stages: pre-shield, shield-forming, post-shield and rejuvinated. Duration of volcanism from pre-shield to post-shield stage is considered to be at most two million years, and is followed by the rejuvinated-stage after the dormance of one to two million years. There are, however, considerable amount of volcanic products hidden beneath the surface, and the above model may not be real due to the limited observation. US-Japan joint research on Hawaiian volcanism using ROV {\\KAIKO} and submersible {\\SHINKAI6500} of JAMSTEC has revealed many unknown volcanic processes of Hawaii. We challenge the well-established growth model of Hawaiian volcanoes from 40Ar/39Ar dating on rocks collected from the deep root of the submarine cliff of Oahu Island and from the widespread lava field off the coast of Oahu. Northern slope of Oahu Island is a deeply dissected steep wall from the ridge 1,000 m above the sea level to 3,000 m beneath the sea level. We expected to discover the deeper part of volcanic products forming Oahu Island. We obtained 6 40Ar/39Ar ages for tholeiitic lavas collected from 3,000 m to 2,600 m below the sea level. Ages are 5.7 and 6 Ma for two samples from the depth of 2,800 - 3,000 m, 4 Ma for a sample from 2,630 m, 3 Ma for a rock dredged between 2,500 and 2,800m, and 2.2 Ma for a sample from 2,602 m. Ages between 2.2 and 4 Ma are compatible with existing ages on subaerial shield-forming lavas on Koolau and Waianae volcano on Oahu, but ages of 5.7 and 6 Ma are about two million years older. Duplicate analyses gave concordant results and isochron ages have atmospheric 40Ar/36Ar initials. We, therefore, consider that these ages represent eruptive ages of samples. Current results suggest that tholeiitic volcanism forming Oahu Island continued almost 4 million years, which is far longer than ever considered. Considering the 8.7 cm/y of plate velocity, volcanism continued while Oahu Island moved 350 km

  1. A micro-scale investigation of melt production and extraction in the upper mantle based on silicate melt pockets in ultramafic xenoliths from the Bakony-Balaton Highland Volcanic Field (Western Hungary)

    DEFF Research Database (Denmark)

    Bali, Eniko; Zanetti, A.; Szabo, C.

    2008-01-01

    Mantle xenoliths in Neogene alkali basalts of the Bakony-Balaton Highland Volcanic Field (Western Hungary) frequently have melt pockets that contain silicate minerals, glass, and often carbonate globules. Textural, geochemical and thermobarometric data indicate that the melt pockets formed at rel...

  2. Tools and techniques for developing tephra stratigraphies in lake cores: A case study from the basaltic Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Hopkins, Jenni L.; Millet, Marc-Alban; Timm, Christian; Wilson, Colin J. N.; Leonard, Graham S.; Palin, J. Michael; Neil, Helen

    2015-09-01

    Probabilistic hazard forecasting for a volcanic region relies on understanding and reconstructing the eruptive record (derived potentially from proximal as well as distal volcanoes). Tephrostratigraphy is commonly used as a reconstructive tool by cross-correlating tephra deposits to create a stratigraphic framework that can be used to assess magnitude-frequency relationships for eruptive histories. When applied to widespread rhyolitic deposits, tephra identifications and correlations have been successful; however, the identification and correlation of basaltic tephras are more problematic. Here, using tephras in drill cores from six maars in the Auckland Volcanic Field (AVF), New Zealand, we show how X-ray density scanning coupled with magnetic susceptibility analysis can be used to accurately and reliably identify basaltic glass shard-bearing horizons in lacustrine sediments and which, when combined with the major and trace element signatures of the tephras, can be used to distinguish primary from reworked layers. After reliably identifying primary vs. reworked basaltic horizons within the cores, we detail an improved method for cross-core correlation based on stratigraphy and geochemical fingerprinting. We present major and trace element data for individual glass shards from 57 separate basaltic horizons identified within the cores. Our results suggest that in cases where major element compositions (SiO2, CaO, Al2O3, FeO, MgO) do not provide unambiguous correlations, trace elements (e.g. La, Gd, Yb, Zr, Nb, Nd) and trace element ratios (e.g. [La/Yb]N, [Gd/Yb]N, [Zr/Yb]N) are successful in improving the compositional distinction between the AVF basaltic tephra horizons, thereby allowing an improved eruptive history of the AVF to be reconstructed.

  3. Scientific Drilling in a Central Italian Volcanic District

    Directory of Open Access Journals (Sweden)

    Paola Montone

    2007-09-01

    Full Text Available The Colli Albani Volcanic District, located 15 km SE of Rome (Fig. 1, is part of the Roman Magmatic Province, a belt of potassic to ultra-potassic volcanic districts that developed along the Tyrrhenian Sea margin since Middle Pleistocene time (Conticelli and Peccerillo, 1992; Marra et al., 2004; Giordano et al., 2006 and references therein. Eruption centers are aligned along NW-SE oriented majorextensional structures guiding the dislocation of Meso-Cenozoic siliceous-carbonate sedimentary successions at the rear of the Apennine belt. Volcanic districts developed in structural sectors with most favorable conditions for magma uprise. In particular, the Colli Albani volcanism is located in a N-S shear zone where it intersects the extensional NW- and NE-trending fault systems. In the last decade, geochronological measurements allowed for reconstructions of the eruptive history and led to the classification as "dormant" volcano. The volcanic history may be roughly subdivided into three main phases marked by different eruptive mechanisms andmagma volumes. The early Tuscolano-Artemisio Phase (ca. 561–351 ky, the most explosive and voluminous one, is characterized by five large pyroclastic flow-forming eruptions. After a ~40-ky-long dormancy, a lesser energetic phase of activity took place (Faete Phase; ca. 308–250 ky, which started with peripheral effusive eruptions coupled with subordinate hydromagmatic activity. A new ~50-ky-long dormancypreceded the start of the late hydromagmatic phase (ca. 200–36 ky, which was dominated by pyroclastic-surge eruptions, with formation of several monogenetic or multiple maars and/or tuff rings.

  4. Immersive Virtual Reality Field Trips in the Geosciences: Integrating Geodetic Data in Undergraduate Geoscience Courses

    Science.gov (United States)

    La Femina, P. C.; Klippel, A.; Zhao, J.; Walgruen, J. O.; Stubbs, C.; Jackson, K. L.; Wetzel, R.

    2017-12-01

    High-quality geodetic data and data products, including GPS-GNSS, InSAR, LiDAR, and Structure from Motion (SfM) are opening the doors to visualizing, quantifying, and modeling geologic, tectonic, geomorphic, and geodynamic processes. The integration of these data sets with other geophysical, geochemical and geologic data is providing opportunities for the development of immersive Virtual Reality (iVR) field trips in the geosciences. iVR fieldtrips increase accessibility in the geosciences, by providing experiences that allow for: 1) exploration of field locations that might not be tenable for introductory or majors courses; 2) accessibility to outcrops for students with physical disabilities; and 3) the development of online geosciences courses. We have developed a workflow for producing iVR fieldtrips and tools to make quantitative observations (e.g., distance, area, and volume) within the iVR environment. We use a combination of terrestrial LiDAR and SfM data, 360° photos and videos, and other geophysical, geochemical and geologic data to develop realistic experiences for students to be exposed to the geosciences from sedimentary geology to physical volcanology. We present two of our iVR field trips: 1) Inside the Volcano: Exploring monogenetic volcanism at Thrihnukagigar Iceland; and 2) Changes in Depositional Environment in a Sedimentary Sequence: The Reedsville and Bald Eagle Formations, Pennsylvania. The Thrihnukagigar experience provides the opportunity to investigate monogenetic volcanism through the exploration of the upper 125 m of a fissure-cinder cone eruptive system. Students start at the plate boundary scale, then zoom into a single volcano where they can view the 3D geometry from either terrestrial LiDAR or SfM point clouds, view geochemical data and petrologic thins sections of rock samples, and a presentation of data collection and analysis, results and interpretation. Our sedimentary geology experience is based on a field lab from our

  5. Miocene volcanism in the Oaş-Gutâi Volcanic Zone, Eastern Carpathians, Romania: Relationship to geodynamic processes in the Transcarpathian Basin

    Science.gov (United States)

    Kovacs, Marinel; Seghedi, Ioan; Yamamoto, Masatsugu; Fülöp, Alexandrina; Pécskay, Zoltán; Jurje, Maria

    2017-12-01

    We present the first comprehensive study of Miocene volcanic rocks of the Oaş-Gutâi Volcanic Zone (OGVZ), Romania, which are exposed in the eastern Transcarpathian Basin (TB), within the Eastern Alpine-Western Carpathian-Northern Pannonian (ALCAPA) block. Collision between the ALCAPA block and Europe at 18-16 Ma produced the Carpathian fold-and-thrust belt. This was followed by clockwise rotation and an extensional regime forming core complexes of the separated TB fragment. Based on petrographic and geochemical data, including Srsbnd Nd isotopic compositions and Ksbnd Ar ages, we distinguish three types of volcanic activity in the OGVZ: (1) early Miocene felsic volcanism that produced caldera-related ignimbrites in the Gutâi Mountains (15.4-14.8 Ma); (2) widespread middle-late Miocene intermediate/andesitic volcanism (13.4-7.0 Ma); and (3) minor late Miocene andesitic/rhyolitic volcanism comprising the Oraşu Nou rhyolitic volcano and several andesitic-dacitic domes in the Oaş Mountains (11.3-9.5 Ma). We show that magma evolution in the OGVZ was controlled by assimilation-fractional crystallization and magma-mixing processes within an interconnected multi-level crustal magmatic reservoir. The evolution of volcanic activity within the OGVZ was controlled by the geodynamics of the Transcarpathian Basin. The early felsic and late intermediate Miocene magmas were emplaced in a post-collisional setting and were derived from a mantle source region that was modified by subduction components (dominantly sediment melts) and lower crust. The style of volcanism within the eastern TB system exhibits spatial variations, with andesitic composite volcanoes (Gutâi Mountains) observed at the margins, and isolated andesitic-rhyolitic monogenetic volcanoes (Oaş Mountains) in the center of the basin.

  6. Constraints on the origin and evolution of magmas in the Payún Matrú Volcanic Field, Quaternary Andean back-arc of western Argentina

    DEFF Research Database (Denmark)

    Hernadno, I R; Aragón, E; Frei, Robert

    2014-01-01

    and Sr–Nd isotopic compositions of the basaltic lavas and Payún Matrú rocks indicate that the trachytes of Payún Matrú are the result of fractional crystallization of basaltic parent magmas without significant upper crustal contamination, and that the basalts have a geochemical similarity to ocean island...... basalt (La/Nb = 0·8–1·5, La/Ba = 0·05–0·08). The Sr–Nd isotopic compositions of the basaltic to trachytic rocks range between 0·703813 and 0·703841 (87Sr/86Sr) and 0·512743 and 0·512834 (143Nd/144Nd). Mass-balance and Rayleigh fractionation models support the proposed origin of the trachytes...... that the basaltic lavas originated in the asthenospheric mantle, probably within the spinel stability field and beneath an attenuated continental lithosphere in the back-arc area. The lack of a slab-fluid signature in the Payún Matrú Volcanic Field rocks, along with unpublished and published geophysical results...

  7. Volcanic features of Io

    International Nuclear Information System (INIS)

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    The volcanic features of Io as detected during the Voyager mission are discussed. The volcanic activity is apparently higher than on any other body in the Solar System. Its volcanic landforms are compared with features on Earth to indicate the type of volcanism present on Io. (U.K.)

  8. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  9. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    Science.gov (United States)

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  10. A new genetic interpretation for the Caotaobei uranium deposit associated with the shoshonitic volcanic rocks in the Hecaokeng ore field, southern Jiangxi, China

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Yang

    2017-03-01

    Full Text Available Combined with in-situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS zircon UPb geochronology, published and unpublished literature on the Caotaobei uranium deposit in southern Jiangxi province, China, is re-examined to provide an improved understanding of the origin of the main ore (103 Ma. The Caotaobei deposit lies in the Hecaokeng ore field and is currently one of China's largest, volcanic-related uranium producers. Unlike commonly known volcanogenic uranium deposits throughout the world, it is spatially associated with intermediate lavas with a shoshonitic composition. Uranium mineralization (pitchblende occurs predominantly as veinlets, disseminations, and massive ores, hosted by the cryptoexplosive breccias rimming the Caotaobei crater. Zircons from one latite define four distinct 206Pb/238U age groups at 220–235 Ma (Triassic, 188 Ma (Early Jurassic, 131–137 Ma (Early Cretaceous, and 97–103 Ma (Early-Late Cretaceous transition, hereafter termed mid-Cretaceous. The integrated age (134 ± 2 Ma of Early Cretaceous zircons (group III is interpreted as representing the time of lava emplacement. The age data, together with the re-examination of literature, does not definitively support a volcanogenic origin for the generation of the deposit, which was proposed by the previous workers based mainly on the close spatial relationship and the age similarity between the main ore and volcanic lavas. Drill core and grade-control data reveal that rich concentrations of primary uranium ore are common around the granite porphyry dikes cutting the lavas, and that the cryptoexplosive breccias away from the dikes are barren or unmineralized. These observations indicate that the emplacement of the granite porphyries exerts a fundamental control on ore distribution and thus a genetic link exists between main-stage uranium mineralization and the intrusions of the dikes. Zircon overgrowths of mid-Cretaceous age (99.6

  11. State-space approach to evaluate spatial variability of field measured soil water status along a line transect in a volcanic-vesuvian soil

    Directory of Open Access Journals (Sweden)

    A. Comegna

    2010-12-01

    Full Text Available Unsaturated hydraulic properties and their spatial variability today are analyzed in order to use properly mathematical models developed to simulate flow of the water and solute movement at the field-scale soils. Many studies have shown that observations of soil hydraulic properties should not be considered purely random, given that they possess a structure which may be described by means of stochastic processes. The techniques used for analyzing such a structure have essentially been based either on the theory of regionalized variables or to a lesser extent, on the analysis of time series. This work attempts to use the time-series approach mentioned above by means of a study of pressure head h and water content θ which characterize soil water status, in the space-time domain. The data of the analyses were recorded in the open field during a controlled drainage process, evaporation being prevented, along a 50 m transect in a volcanic Vesuvian soil. The isotropic hypothesis is empirical proved and then the autocorrelation ACF and the partial autocorrelation functions PACF were used to identify and estimate the ARMA(1,1 statistical model for the analyzed series and the AR(1 for the extracted signal. Relations with a state-space model are investigated, and a bivariate AR(1 model fitted. The simultaneous relations between θ and h are considered and estimated. The results are of value for sampling strategies and they should incite to a larger use of time and space series analysis.

  12. UPDATING AN EXPERT ELICITATION IN THE LIGHT OF NEW DATA: TEN YEARS OF PROBABILISTIC VOLCANIC HAZARD ANALYSIS FOR THE PROPOSED HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    F.V. Perry; A. Cogbill; R. Kelley

    2005-01-01

    The U.S. Department of Energy (DOE) considers volcanism to be a potentially disruptive class of events that could affect the safety of the proposed high-level waste repository at Yucca Mountain. Volcanic hazard assessment in monogenetic volcanic fields depends on an adequate understanding of the temporal and spatial pattern of past eruptions. At Yucca Mountain, the hazard is due to an 11 Ma-history of basaltic volcanism with the latest eruptions occurring in three Pleistocene episodes to the west and south of Yucca Mountain. An expert elicitation convened in 1995-1996 by the DOE estimated the mean hazard of volcanic disruption of the repository as slightly greater than 10 -8 dike intersections per year with an uncertainty of about two orders of magnitude. Several boreholes in the region have encountered buried basalt in alluvial-filled basins; the youngest of these basalts is dated at 3.8 Ma. The possibility of additional buried basalt centers is indicated by a previous regional aeromagnetic survey conducted by the USGS that detected approximately 20 magnetic anomalies that could represent buried basalt volcanoes. Sensitivity studies indicate that the postulated presence of buried post-Miocene volcanoes to the east of Yucca Mountain could increase the hazard by an order of magnitude, and potentially significantly impact the results of the earlier expert elicitation. Our interpretation of the aeromagnetic data indicates that post-Miocene basalts are not present east of Yucca Mountain, but that magnetic anomalies instead represent faulted and buried Miocene basalt that correlates with nearby surface exposures. This interpretation is being tested by drilling. The possibility of uncharacterized buried volcanoes that could significantly change hazard estimates led DOE to support an update of the expert elicitation in 2004-2006. In support of the expert elicitation data needs, the DOE is sponsoring (1) a new higher-resolution, helicopter-borne aeromagnetic survey

  13. Spectroscopic mapping of the white horse alunite deposit, Marysvale volcanic field, Utah: Evidence of a magmatic component

    Science.gov (United States)

    Rockwell, B.W.; Cunningham, C.G.; Breit, G.N.; Rye, R.O.

    2006-01-01

    Previous studies have demonstrated that the replacement alunite deposits just north of the town of Marysvale, Utah, USA, were formed primarily by low-temperature (100??-170?? C), steam-heated processes near the early Miocene paleoground surface, immediately above convecting hydrothermal plumes. Pyrite-bearing propylitically altered rocks occur mainly beneath the steam-heated alunite and represent the sulfidized feeder zone of the H2S-dominated hydrothermal fluids, the oxidation of which at higher levels led to the formation of the alunite. Maps of surface mineralogy at the White Horse deposit generated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were used in conjunction with X-ray diffraction studies of field samples to test the accuracy and precision of AVIRIS-based mineral mapping of altered rocks and demonstrate the utility of spectroscopic mapping for ore deposit characterization. The mineral maps identified multiple core zones of alunite that grade laterally outward to kaolinite. Surrounding the core zones are dominantly propylitically altered rocks containing illite, montmorillonite, and chlorite, with minor pyrite, kaolinite, gypsum, and remnant potassium feldspar from the parent rhyodacitic ash-flow tuff. The AVIRIS mapping also identified fracture zones expressed by ridge-forming selvages of quartz + dickite + kaolinite that form a crude ring around the advanced argillic core zones. Laboratory analyses identified the aluminum phosphate-sulfate (APS) minerals woodhouseite and svanbergite in one sample from these dickite-bearing argillic selvages. Reflectance spectroscopy determined that the outer edges of the selvages contain more dickite than do the medial regions. The quartz + dickite ?? kaolinite ?? APS-mineral selvages demonstrate that fracture control of replacement processes is more prevalent away from the advanced argillic core zones. Although not exposed at the White Horse deposit, pyrophyllite ?? ordered illite was identified

  14. The steam condensate alteration mineralogy of Ruatapu cave, Orakei Korako geothermal field, Taupo Volcanic Zone, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, K.A.; Hamlin, K.A.; Browne, P.R.L.; Campbell, K.A. [Aukland Univ., Dept. of Geology, Auckland (New Zealand); Martin, R.

    2000-02-01

    Ruatapu cave has developed beneath a block of hydrothermally altered quaternary vitric tuff in the active Orakei Korako geothermal field. The cave extends {approx}45 m, with a vertical drop of 23 m, to a shallow pool of clear, sulfate-rich ({approx}450 {mu}g/g), warm (T = 43-48degC), acid (pH 3.0) water. Steam, accompanied by H{sub 2}S, rises from the pool surface, from a second pool nearby, and from fumaroles and joints in the ignimbrite, to condense on surfaces within the cave. Oxidation of the H{sub 2}S to H{sub 2}SO{sub 4} produces acid sulfate fluids which react with the surficial rocks to generate three principal and distinct assemblages of secondary minerals. Kaolinite {+-} opal-A {+-} cristobalite {+-} alunite {+-} alunogen dominate the assemblage at the cave mouth; the essential Al, K and Si are derived from the tuffs and Na, Ca, Fe and Mg removed. In the main body of the cave the highly limited throughflow of water results in the more soluble of the leached constituents, notably Na and K, being retained in surface moisture and becoming available to form tamarugite and potash alum as efflorescences, in part at the expense of kaolin, along with lesser amounts of alunogen, meta-alunogen, mirabilite, halotrichite, kalinite, gypsum and, possibly, tschermigite; the particular species being determined by the prevailing physico-chemical conditions. Heat and moisture assist in moving Fe out of the rock to the air-water interface but, unlike typical surficial acid alteration systems elsewhere in the TVZ, there is an insufficient flow of water, of appropriate Eh-pH, to continue to move Fe out of the cave system. Much becomes locally immobilised as Fe oxides and oxyhydroxides that mottle the side and roof of the cave. Jarosite crusts have developed where acid sulfate pool waters have had protracted contact with ignimbrite wallrock coated with once-living microbial mats. Subsequent lowering of the waters has caused the porous jarositic crusts to alter to potatsh alum

  15. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.; Delworth, Thomas L.; Ramaswamy, V.; Stouffer, Ronald J.; Wittenberg, Andrew; Zeng, Fanrong

    2009-01-01

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean

  16. Magma injection into a long-lived reservoir to explain geodetically measured uplift: Application to the 2007-2014 unrest episode at Laguna del Maule volcanic field, Chile.

    Science.gov (United States)

    Le Mével, Hélène; Gregg, Patricia M; Feigl, Kurt L

    2016-08-01

    Moving beyond the widely used kinematic models for the deformation sources, we present a new dynamic model to describe the process of injecting magma into an existing magma reservoir. To validate this model, we derive an analytical solution and compare its results to those calculated using the Finite Element Method. A Newtonian fluid characterized by its viscosity, density, and overpressure (relative to the lithostatic value) flows through a vertical conduit, intruding into a reservoir embedded in an elastic domain, leading to an increase in reservoir pressure and time-dependent surface deformation. We apply our injection model to Interferometric Synthetic Aperture Radar (InSAR) data from the ongoing unrest episode at Laguna del Maule (Chile) volcanic field that started in 2007. Using a grid search optimization, we minimize the misfit to the InSAR displacement data and vary the three parameters governing the analytical solution: the characteristic timescale τ P for magma propagation, the maximum injection pressure, and the inflection time when the acceleration switches from positive to negative. For a spheroid with semimajor axis a = 6200 m, semiminor axis c = 100 m, located at a depth of 4.5 km in a purely elastic half-space, the best fit to the InSAR displacement data occurs for τ P =9.5 years and an injection pressure rising up to 11.5 MPa for 2 years. The volume flow rate increased to 1.2 m 3 /s for 2 years and then decreased to 0.7 m 3 /s in 2014. In 7.3 years, at least 187 × 10 6 m 3 of magma was injected.

  17. Expanding Geophysical and Geochemical Investigation of Causes of Extraordinary Unrest at the Laguna del Maule (Rhyolitic) Volcanic Field, Southern Andes, Chile

    Science.gov (United States)

    Singer, B. S.

    2014-12-01

    The Laguna del Maule Volcanic Field, Chile, includes an unusually large and recent concentration of silicic eruptions. Since 2007 the crust here has been inflating at an astonishing rate of 25 cm/yr. Findings thus far lead to the hypothesis that the silicic vents have tapped an extensive layer of crystal-poor, rhyolitic melt that began to form atop a magmatic mush zone that was established by ~20 ka with a renewed phase of rhyolite eruptions during the Holocene. Modeling of surface deformation, magnetotelluric data, and gravity changes suggest that magma is currently intruding at a depth of ~5 km. Swarms of volcano-tectonic and long period earthquakes, mostly of M San Juan-Argentina, Nanyang Technological University-Singapore, SERNAGEOMIN, OVDAS, USGS, and SEGEMAR-Argentina. Team members will be introduced in this presentation. Our approach includes augmenting the OVDAS array of 6 permanent seisic stations with 40 additional instruments to conduct tomographic, receiver function and ambient noise studies. We continue to collect 4-D gravity data from 37 stations. Surface deformation is monitored via cGPS at 5 permanent receivers and InSAR data. A magnetotelluric survey across the Andes at 36o S is planned. Geochemical studies include mineral zoning and U-Th disequilibrium of zircons to constrain the timing of magma intrusion and mixing events prior to the current unrest. The overall aim is to integrate these observations and to construct numerical models of system dynamics. We are developing communications protocols and a web site to facilitate sharing of findings among the team members and with the public.

  18. Ferrous iron- and ammonium-rich diffuse vents support habitat-specific communities in a shallow hydrothermal field off the Basiluzzo Islet (Aeolian Volcanic Archipelago).

    Science.gov (United States)

    Bortoluzzi, G; Romeo, T; La Cono, V; La Spada, G; Smedile, F; Esposito, V; Sabatino, G; Di Bella, M; Canese, S; Scotti, G; Bo, M; Giuliano, L; Jones, D; Golyshin, P N; Yakimov, M M; Andaloro, F

    2017-09-01

    Ammonium- and Fe(II)-rich fluid flows, known from deep-sea hydrothermal systems, have been extensively studied in the last decades and are considered as sites with high microbial diversity and activity. Their shallow-submarine counterparts, despite their easier accessibility, have so far been under-investigated, and as a consequence, much less is known about microbial communities inhabiting these ecosystems. A field of shallow expulsion of hydrothermal fluids has been discovered at depths of 170-400 meters off the base of the Basiluzzo Islet (Aeolian Volcanic Archipelago, Southern Tyrrhenian Sea). This area consists predominantly of both actively diffusing and inactive 1-3 meters-high structures in the form of vertical pinnacles, steeples and mounds covered by a thick orange to brown crust deposits hosting rich benthic fauna. Integrated morphological, mineralogical, and geochemical analyses revealed that, above all, these crusts are formed by ferrihydrite-type Fe 3+ oxyhydroxides. Two cruises in 2013 allowed us to monitor and sampled this novel ecosystem, certainly interesting in terms of shallow-water iron-rich site. The main objective of this work was to characterize the composition of extant communities of iron microbial mats in relation to the environmental setting and the observed patterns of macrofaunal colonization. We demonstrated that iron-rich deposits contain complex and stratified microbial communities with a high proportion of prokaryotes akin to ammonium- and iron-oxidizing chemoautotrophs, belonging to Thaumarchaeota, Nitrospira, and Zetaproteobacteria. Colonizers of iron-rich mounds, while composed of the common macrobenthic grazers, predators, filter-feeders, and tube-dwellers with no representatives of vent endemic fauna, differed from the surrounding populations. Thus, it is very likely that reduced electron donors (Fe 2+ and NH 4 + ) are important energy sources in supporting primary production in microbial mats, which form a habitat

  19. On the plumbing system of volcanic complexes: field constraints from the Isle of Skye (UK) and FEM elasto-plastic modelling including gravity and tectonics.

    Science.gov (United States)

    Bistacchi, A.; Pisterna, R.; Romano, V.; Rust, D.; Tibaldi, A.

    2009-04-01

    The plumbing system that connects a sub-volcanic magma reservoir to the surface has been the object of field characterization and mechanical modelling efforts since the pioneering work by Anderson (1936), who produced a detailed account of the spectacular Cullin Cone-sheet Complex (Isle of Skye, UK) and a geometrical and mechanical model aimed at defining the depth to the magma chamber. Since this work, the definition of the stress state in the half space comprised between the magma reservoir and the surface (modelled either as a flat surface or a surface comprising a volcanic edifice) was considered the key point in reconstructing dike propagation paths from the magma chamber. In fact, this process is generally seen as the propagation in an elastic media of purely tensional joints (mode I or opening mode propagation), which follow trajectories perpendicular to the least compressive principal stress axis. Later works generally used different continuum mechanics methodologies (analytic, BEM, FEM) to solve the problem of a pressure source (the magma chamber, either a point source or a finite volume) in an elastic (in some cases heterogeneous) half space (bounded by a flat topography or topped by a "volcano"). All these models (with a few limited exceptions) disregard the effect of the regional stress field, which is caused by tectonic boundary forces and gravitational body load, and consider only the pressure source represented by the magma chamber (review in Gudmundsson, 2006). However, this is only a (sometimes subordinate) component of the total stress field. Grosfils (2007) first introduced the gravitational load (but not tectonic stresses) in an elastic model solved with FEM in a 2D axisymmetric half-space, showing that "failure to incorporate gravitational loading correctly" affect the calculated stress pattern and many of the predictions that can be drawn from the models. In this contribution we report on modelling results that include: 2D axisymmetric or true

  20. Paleoproterozoic (~1.88Ga felsic volcanism of the Iricoumé Group in the Pitinga Mining District area, Amazonian Craton, Brazil: insights in ancient volcanic processes from field and petrologic data

    Directory of Open Access Journals (Sweden)

    Ronaldo Pierosan

    2011-09-01

    Full Text Available The Iricoumé Group correspond to the most expressive Paleoproterozoic volcanism in the Guyana Shield, Amazonian craton. The volcanics are coeval with Mapuera granitoids, and belong to the Uatumã magmatism. They have U-Pb ages around 1880 Ma, and geochemical signatures of α-type magmas. Iricoumé volcanics consist of porphyritic trachyte to rhyolite, associated to crystal-rich ignimbrites and co-ignimbritic fall tuffs and surges. The amount and morphology of phenocrysts can be useful to distinguish lava (flow and dome from hypabyssal units. The morphology of ignimbrite crystals allows the distinction between effusive units and ignimbrite, when pyroclasts are obliterated. Co-ignimbritic tuffs are massive, and some show stratifications that suggest deposition by current traction flow. Zircon and apatite saturation temperatures vary from 799°C to 980°C, are in agreement with most temperatures of α-type melts and can be interpreted as minimum liquidus temperature. The viscosities estimation for rhyolitic and trachytic compositions yield values close to experimentally determined melts, and show a typical exponential decay with water addition. The emplacement of Iricoumé volcanics and part of Mapuera granitoids was controlled by ring-faults in an intracratonic environment. A genesis related to the caldera complex setting can be assumed for the Iricoumé-Mapuera volcano-plutonic association in the Pitinga Mining District.O Grupo Iricoumé corresponde ao mais expressivo vulcanismo Paleoproterozóico do Escudo das Guianas, craton Amazônico. As rochas vulcânicas são coexistentes com os granitóides Mapuera, e pertencem ao magmatismo Uatumã. Possuem idades U-Pb em torno 1888 Ma, e assinaturas geoquímicas de magmas tipo-A. As vulcânicas do Iricoumé consistem de traquitos a riolitos porfiríticos, associados a ignimbritos ricos em cristal e tufos co-ignimbríticos de queda e surge. A quantidade e a morfologia dos fenocristais podem ser

  1. Imaging the Laguna del Maule Volcanic Field, central Chile using magnetotellurics: Evidence for crustal melt regions laterally-offset from surface vents and lava flows

    Science.gov (United States)

    Cordell, Darcy; Unsworth, Martyn J.; Díaz, Daniel

    2018-04-01

    Magnetotelluric (MT) data were collected at the Laguna del Maule volcanic field (LdMVF), located in central Chile (36°S, 70.5°W), which has been experiencing unprecedented upward ground deformation since 2007. These data were used to create the first detailed three-dimensional electrical resistivity model of the LdMVF and surrounding area. The resulting model was spatially complex with several major conductive features imaged at different depths and locations around Laguna del Maule (LdM). A near-surface conductor (C1; 0.5 Ωm) approximately 100 m beneath the lake is interpreted as a conductive smectite clay cap related to a shallow hydrothermal reservoir. At 4 km depth, a strong conductor (C3; 0.3 Ωm) is located beneath the western edge of LdM. The proximity of C3 to the recent Pleistocene-to-Holocene vents in the northwest LdMVF and nearby hot springs suggests that C3 is a hydrous (>5 wt% H2O), rhyolitic partial melt with melt fraction >35% and a free-water hydrothermal component. C3 dips towards, and is connected to, a deeper conductor (C4; 1 Ωm). C4 is located to the north of LdM at >8 km depth below surface and is interpreted as a long-lived, rhyolitic-to-andesitic magma reservoir with melt fractions less than 35%. It is hypothesized that the deeper magma reservoir (C4) is providing melt and hydrothermal fluids to the shallower magma reservoir (C3). A large conductor directly beneath the LdMVF is not imaged with MT suggesting that any mush volume beneath LdM must be anhydrous (10 km) as it moves from the deep magma reservoir (C4) to create small, ephemeral volumes of eruptible melt (C3). It is hypothesized that there may be a north-south contrast in physical processes affecting the growth of melt-rich zones since major conductors are imaged in the northern LdMVF while no major conductors are detected beneath the southern vents. The analysis and interpretation of features directly beneath the lake is complicated by the surface conductor C1 which attenuates

  2. Basement control of alkalic flood rhyolite magmatism of the Davis Mountains volcanic field, Trans-Pecos Texas, U.S.A.

    Science.gov (United States)

    Parker, Don F.; White, John C.; Ren, Minghua; Barnes, Melanie

    2017-11-01

    Voluminous silicic lava flows, erupted 37.4 Ma from widespread centers within the Davis Mountains Volcanic Field (DMVF), covered approximately 10,000 km2 with an initial volume as great as 1000 km3. Lava flows form three major stratigraphic units: the Star Mountain Rhyolite (minimum 220 km3) of the eastern Davis Mountains and adjacent Barilla Mountains, the Crossen Formation ( 75 km3) of the southern Davis Mountains, and the Bracks Rhyolite ( 75 km3) of the Rim Rock region west of the Davis Mountains proper. Similar extensive rhyolite lava also occurs in slightly younger units (Adobe Canyon Rhyolite, 125 km3, 37.1 Ma), Sheep Pasture Formation ( 125 km3, 36 Ma) and, less voluminously, in the Paisano central volcano ( 36.9 Ma) and younger units in the Davis Mountains. Individual lava flows from these units formed fields as extensive as 55 km and 300-m-thick. Flood rhyolite lavas of the Davis Mountains are marginally peralkaline quartz trachyte to low-silica rhyolite. Phenocrysts include alkali feldspar, clinopyroxene, FeTi oxides, and apatite, and, rarely, fayalite, as well as zircon in less peralkaline units. Many Star Mountain flows may be assigned to one of four geochemical groupings. Temperatures were moderately high, ranging from 911 to 860 °C in quartz trachyte and low silica rhyolite. We suggest that flood rhyolite magma evolved from trachyte magma by filter pressing processes, and trachyte from mafic magma in deeper seated plutons. The Davis Mountains segment of Trans-Pecos Texas overlies Grenville basement and is separated from the older Southern Granite and Rhyolite Province to the north by the Grenville Front, and from the younger Coahuila terrane to the south by the Ouachita Front. We suggest that basement structure strongly influenced the timing and nature of Trans-Pecos magmatism, probably in varying degrees of impeding the ascent of mantle-derived mafic magmas, which were produced by upwelling of asthenospheric mantle above the foundered Farallon slab

  3. The polycyclic Lausche Volcano (Lausitz Volcanic Field) and its message concerning landscape evolution in the Lausitz Mountains (northern Bohemian Massif, Central Europe)

    Czech Academy of Sciences Publication Activity Database

    Wenger, E.; Büchner, J.; Tietz, O.; Mrlina, Jan

    2017-01-01

    Roč. 292, September (2017), s. 193-210 ISSN 0169-555X Institutional support: RVO:67985530 Keywords : Lausche * polycyclic volcanism * Lausitz Overthrust (Lusatian Fault) * North Bohemian-Saxonian Cretaceous Basin Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 2.958, year: 2016

  4. Volcanic stratigraphy: A review

    Science.gov (United States)

    Martí, Joan; Groppelli, Gianluca; Brum da Silveira, Antonio

    2018-05-01

    Volcanic stratigraphy is a fundamental component of geological mapping in volcanic areas as it yields the basic criteria and essential data for identifying the spatial and temporal relationships between volcanic products and intra/inter-eruptive processes (earth-surface, tectonic and climatic), which in turn provides greater understanding of the geological evolution of a region. Establishing precise stratigraphic relationships in volcanic successions is not only essential for understanding the past behaviour of volcanoes and for predicting how they might behave in the future, but is also critical for establishing guidelines for exploring economic and energy resources associated with volcanic systems or for reconstructing the evolution of sedimentary basins in which volcanism has played a significant role. Like classical stratigraphy, volcanic stratigraphy should also be defined using a systematic methodology that can provide an organised and comprehensive description of the temporal and spatial evolution of volcanic terrain. This review explores different methods employed in studies of volcanic stratigraphy, examines four case studies that use differing stratigraphic approaches, and recommends methods for using systematic volcanic stratigraphy based on the application of the concepts of traditional stratigraphy but adapted to the needs of volcanological environment.

  5. Magma-derived CO2 emissions in the Tengchong volcanic field, SE Tibet: Implications for deep carbon cycle at intra-continent subduction zone

    Science.gov (United States)

    Zhang, Maoliang; Guo, Zhengfu; Sano, Yuji; Zhang, Lihong; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank

    2016-09-01

    Active volcanoes at oceanic subduction zone have long been regard as important pathways for deep carbon degassed from Earth's interior, whereas those at continental subduction zone remain poorly constrained. Large-scale active volcanoes, together with significant modern hydrothermal activities, are widely distributed in the Tengchong volcanic field (TVF) on convergent boundary between the Indian and Eurasian plates. They provide an important opportunity for studying deep carbon cycle at the ongoing intra-continent subduction zone. Soil microseepage survey based on accumulation chamber method reveals an average soil CO2 flux of ca. 280 g m-2 d-1 in wet season for the Rehai geothermal park (RGP). Combined with average soil CO2 flux in dry season (ca. 875 g m-2 d-1), total soil CO2 output of the RGP and adjacent region (ca. 3 km2) would be about 6.30 × 105 t a-1. Additionally, we conclude that total flux of outgassing CO2 from the TVF would range in (4.48-7.05) × 106 t a-1, if CO2 fluxes from hot springs and soil in literature are taken into account. Both hot spring and soil gases from the TVF exhibit enrichment in CO2 (>85%) and remarkable contribution from mantle components, as indicated by their elevated 3He/4He ratios (1.85-5.30 RA) and δ13C-CO2 values (-9.00‰ to -2.07‰). He-C isotope coupling model suggests involvement of recycled organic metasediments and limestones from subducted Indian continental lithosphere in formation of the enriched mantle wedge (EMW), which has been recognized as source region of the TVF parental magmas. Contamination by crustal limestone is the first-order control on variations in He-CO2 systematics of volatiles released by the EMW-derived melts. Depleted mantle and recycled crustal materials from subducted Indian continental lithosphere contribute about 45-85% of the total carbon inventory, while the rest carbon (about 15-55%) is accounted by limestones in continental crust. As indicated by origin and evolution of the TVF

  6. Flux and genesis of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the India-Asia continent subduction zone

    Science.gov (United States)

    Zhang, Lihong; Guo, Zhengfu; Sano, Yuji; Zhang, Maoliang; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank

    2017-11-01

    Gulu-Yadong rift (GYR) is the longest extensional, NE-SW-trending rift in the Himalayas and Lhasa terrane of South Tibet. Many volcanic-geothermal fields (VGFs), which comprise intense hot springs, steaming fissures, geysers and soil micro-seepage, are distributed in the GYR, making it ideal area for studying deep carbon emissions in the India-Asia continent subduction zone. As for the northern segment of GYR in the Lhasa terrane, its total flux and genesis of CO2 emissions are poorly understood. Following accumulation chamber method, soil CO2 flux survey has been carried out in VGFs (i.e., Jidaguo, Ningzhong, Sanglai, Tuoma and Yuzhai from south to north) of the northern segment of GYR. Total soil CO2 output of the northern GYR is about 1.50 × 107 t a-1, which is attributed to biogenic and volcanic-geothermal source. Geochemical characteristics of the volcanic-geothermal gases (including CO2 and He) of the northern GYR indicate their significant mantle-derived affinities. Combined with previous petrogeochemical and geophysical data, our He-C isotope modeling calculation results show that (1) excess mantle-derived 3He reflects degassing of volatiles related with partial melts from enriched mantle wedge induced by northward subduction of the Indian lithosphere, and (2) the crust-mantle interaction can provide continuous heat and materials for the overlying volcanic-geothermal system, in which magma-derived volatiles are inferred to experience significant crustal contamination during their migration to the surface.

  7. The Volcanism Ontology (VO): a model of the volcanic system

    Science.gov (United States)

    Myer, J.; Babaie, H. A.

    2017-12-01

    We have modeled a part of the complex material and process entities and properties of the volcanic system in the Volcanism Ontology (VO) applying several top-level ontologies such as Basic Formal Ontology (BFO), SWEET, and Ontology of Physics for Biology (OPB) within a single framework. The continuant concepts in BFO describe features with instances that persist as wholes through time and have qualities (attributes) that may change (e.g., state, composition, and location). In VO, the continuants include lava, volcanic rock, and volcano. The occurrent concepts in BFO include processes, their temporal boundaries, and the spatio-temporal regions within which they occur. In VO, these include eruption (process), the onset of pyroclastic flow (temporal boundary), and the space and time span of the crystallization of lava in a lava tube (spatio-temporal region). These processes can be of physical (e.g., debris flow, crystallization, injection), atmospheric (e.g., vapor emission, ash particles blocking solar radiation), hydrological (e.g., diffusion of water vapor, hot spring), thermal (e.g., cooling of lava) and other types. The properties (predicates) relate continuants to other continuants, occurrents to continuants, and occurrents to occurrents. The ontology also models other concepts such as laboratory and field procedures by volcanologists, sampling by sensors, and the type of instruments applied in monitoring volcanic activity. When deployed on the web, VO will be used to explicitly and formally annotate data and information collected by volcanologists based on domain knowledge. This will enable the integration of global volcanic data and improve the interoperability of software that deal with such data.

  8. Volcanic hazards in Central America

    Science.gov (United States)

    Rose, William I.; Bluth, Gregg J.S.; Carr, Michael J.; Ewert, John W.; Patino, Lina C.; Vallance, James W.

    2006-01-01

    This volume is a sampling of current scientific work about volcanoes in Central America with specific application to hazards. The papers reflect a variety of international and interdisciplinary collaborations and employ new methods. The book will be of interest to a broad cross section of scientists, especially volcanologists. The volume also will interest students who aspire to work in the field of volcano hazards mitigation or who may want to work in one of Earth’s most volcanically active areas.

  9. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  10. The Park Volcanics Group : field relations of an igneous suite emplaced in the Triassic-Jurassic Murihiku Terrane, South Island, New Zealand

    International Nuclear Information System (INIS)

    Coombs, D.S.; Cook, N.D.J.; Campbell, J.D.

    1992-01-01

    Park Volcanics Group is proposed for igneous rocks, either shallow intrusive or extrusive, emplaced in the Murihiku Terrane during Triassic-Jurassic times. The term replaces Park Intrusives of Mutch, some members of which are shown to be extrusive rather than intrusive. Formation status within the group is given to Gowan Andesite and Pinney Volcanics (new names) in western Southland, Glenham Porphyry in eastern Southland, and Barnicoat Andesite (new) in the Richmond area, Nelson. Gowan Andesite is a porphyritic feldspar two-pyroxene andesite with a glassy or microcrystalline groundmass. A suite of low-grade metavolcanic rocks which forms the main mass of Malakoff Hill and which has formerly been included in the 'Park Intrusives' is here excluded and ascribed to the Takitimu Group; representative chemical data are given. Glenham Porphyry is typically a porphyritic feldspar two-pyroxene andesite texturally similar to the Gowan Andesite but with significant geochemical differences. Two volumetrically minor members are recognised, Habukinini Trachydacite and Kenilworth Rhyolite. In the north of its outcrop area, Glenham Porphyry is emplaced on or into Late Triassic terrestrial beds; in the middle it overlies Kaihikuan (Middle Triassic) and is overlain by Otapirian (latest Triassic) marine beds; and in the southeast it is directly overlain by Ururoan (late Early to early Middle Jurassic) conglomerates and marine sandstones. Pinney Volcanics are restricted to a very few, probably one, massive conglomeratic horizon in the Oretian Stage. The commonest rock type is a two-pyroxene trachydacite, modified by very-low-grade burial metamorphism. Auto-brecciation is characteristic and rock types change over short distances. Hornblende-rich variants occur as well as more felsic varieties including rhyolite ignimbrite. These may have been erupted onto a bouldery floodplain or shallow-marine surface, but alternatively may have been mass-emplaced by debris avalanche resulting from

  11. Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy)

    OpenAIRE

    Angelo Algieri

    2018-01-01

    This work aims to investigate the energy performances of small-scale Organic Rankine Cycles (ORCs) for the exploitation of high temperature geothermal sources in volcanic areas. For this purpose, a thermodynamic model has been developed, and a parametric analysis has been performed that considers subcritical and transcritical configurations, and different organic fluids (isobutane, isopentane, and R245ca). The investigation illustrates the significant effect of the temperature at the entrance...

  12. An ignimbrite caldera from the bottom up: Exhumed floor and fill of the resurgent Bonanza caldera, Southern Rocky Mountain volcanic field, Colorado

    Science.gov (United States)

    Lipman, Peter W.; Zimmerer, Matthew J.; McIntosh, William C.

    2015-01-01

    Among large ignimbrites, the Bonanza Tuff and its source caldera in the Southern Rocky Mountain volcanic field display diverse depositional and structural features that provide special insights concerning eruptive processes and caldera development. In contrast to the nested loci for successive ignimbrite eruptions at many large multicyclic calderas elsewhere, Bonanza caldera is an areally isolated structure that formed in response to a single ignimbrite eruption. The adjacent Marshall caldera, the nonresurgent lava-filled source for the 33.9-Ma Thorn Ranch Tuff, is the immediate precursor for Bonanza, but projected structural boundaries of two calderas are largely or entirely separate even though the western topographic rim of Bonanza impinges on the older caldera. Bonanza, source of a compositionally complex regional ignimbrite sheet erupted at 33.12 ± 0.03 Ma, is a much larger caldera system than previously recognized. It is a subequant structure ∼20 km in diameter that subsided at least 3.5 km during explosive eruption of ∼1000 km3 of magma, then resurgently domed its floor a similar distance vertically. Among its features: (1) varied exposure levels of an intact caldera due to rugged present-day topography—from Paleozoic and Precambrian basement rocks that are intruded by resurgent plutons, upward through precaldera volcanic floor, to a single thickly ponded intracaldera ignimbrite (Bonanza Tuff), interleaved landslide breccia, and overlying postcollapse lavas; (2) large compositional gradients in the Bonanza ignimbrite (silicic andesite to rhyolite ignimbrite; 60%–76% SiO2); (3) multiple alternations of mafic and silicic zones within a single ignimbrite, rather than simple upward gradation to more mafic compositions; (4) compositional contrasts between outflow sectors of the ignimbrite (mainly crystal-poor rhyolite to east, crystal-rich dacite to west); (5) similarly large compositional diversity among postcollapse caldera-fill lavas and resurgent

  13. Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho

    Science.gov (United States)

    Drew, Dana L.; Bindeman, Ilya N.; Watts, Kathryn E.; Schmitt, Axel K.; Fu, Bin; McCurry, Michael

    2013-01-01

    Rhyolites of the Picabo volcanic field (10.4–6.6 Ma) in eastern Idaho are preserved as thick ignimbrites and lavas along the margins of the Snake River Plain (SRP), and within a deep (>3 km) borehole near the central axis of the Yellowstone hotspot track. In this study we present new O and Hf isotope data and U–Pb geochronology for individual zircons, O isotope data for major phenocrysts (quartz, plagioclase, and pyroxene), whole rock Sr and Nd isotope ratios, and whole rock geochemistry for a suite of Picabo rhyolites. We synthesize our new datasets with published Ar–Ar geochronology to establish the eruptive framework of the Picabo volcanic field, and interpret its petrogenetic history in the context of other well-studied caldera complexes in the SRP. Caldera complex evolution at Picabo began with eruption of the 10.44±0.27 Ma (U–Pb) Tuff of Arbon Valley (TAV), a chemically zoned and normal-δ18O (δ18O magma=7.9‰) unit with high, zoned 87Sr/86Sri (0.71488–0.72520), and low-εNd(0) (−18) and εHf(0) (−28). The TAV and an associated post caldera lava flow possess the lowest εNd(0) (−23), indicating ∼40–60% derivation from the Archean upper crust. Normal-δ18O rhyolites were followed by a series of lower-δ18O eruptions with more typical (lower crustal) Sr–Nd–Hf isotope ratios and whole rock chemistry. The voluminous 8.25±0.26 Ma West Pocatello rhyolite has the lowest δ18O value (δ18Omelt=3.3‰), and we correlate it to a 1,000 m thick intracaldera tuff present in the INEL-1 borehole (with published zircon ages 8.04–8.35 Ma, and similarly low-δ18O zircon values). The significant (4–5‰) decrease in magmatic-δ18O values in Picabo rhyolites is accompanied by an increase in zircon δ18O heterogeneity from ∼1‰ variation in the TAV to >5‰ variation in the late-stage low-δ18O rhyolites, a trend similar to what is characteristic of Heise and Yellowstone, and which indicates remelting of variably hydrothermally altered tuffs

  14. Paleointensities of the Auckland Excursion from Volcanic Rocks in New Zealand

    Science.gov (United States)

    Mochizuki, N.; Tsunakawa, H.; Shibuya, H.; Cassidy, J.; Smith, I. E.

    2001-12-01

    Shibuya et al. (1992) reported the Auckland excursion from several basaltic lava flows of monogenetic volcanic centers (Auckland Volcanic Field, New Zealand. The Auckland excursion was recorded in five centers in three intermediate direction groups of north-down, west and south. We carried out paleointensity and rock-magnetic studies in order to obtain the absolute paleointensities associated with three intermediate geomagnetic fields. Thermomagnetic analyses indicated typical Curie temperatures of 150-200, 450-500 and/or 550-580 oC. The Day plot (Day et al., 1977) showed a linear trend in the pseudo-single-domain range of magnetic carriers. Those results, combined with the reflection microscope observations, identified the magnetic carriers as titanomagnetites with wide variation in titanium content and grain size. First, the Coe's version of the Thellier method (Coe, 1967) was applied to the samples. Several samples seemed to give paleointensities ranging from 3.2 to 6.4 μ T (Shibuya and Cassidy, 1995 AGU fall meeting), but they were often affected by thermal alteration in the furnace even from fairly low temperature steps like 200oC. We were forced to introduce correction for thermal alterations in laboratory heating, using low temperature part of the Arai plot. We, therefore, applied the double heating technique (DHT) of Shaw method (Tsunakawa and Shaw, 1994), which was capable of detecting inappropriate results by the ARM correction, to the samples. The low temperature demagnetization (LTD) was combined with DHT (Yamamoto et al., submitted) before AF demagnetization and samples were heated in a vacuum of 10-100 Pa. Sixty-one samples from the five lava flows were subjected to the LTD-DHT Shaw method. Twenty-three of these samples yielded successful results passing the selection criteria. Five out of six paleointensities from the Crater Hill lava were consistent with each other. A mean paleointensity was given to be 10.9+/- 1.9 μ T (N=5) for the Crater Hill

  15. Volcanism on Io

    Science.gov (United States)

    Davies, Ashley Gerard

    2014-03-01

    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-95; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  16. Volcanic crisis in

    Directory of Open Access Journals (Sweden)

    Mgs. Víctor Manuel Pérez Martínez

    2007-01-01

    Full Text Available The article is the result of an investigation which is focussed on some deontological aspects of the scientificjournalism. In the first place it gives a theoretical vision about science, journalism, internet and including some reflectionsabout the deontological principles in handling the information about science and technology. This focus is useful as it formsthe base of an investigation where we deal with the information about a possible ”volcanic crisis” in El Teide during the years2004-2005 done by the digital newspaper” El Dïa” a canarian newspaper from Tenerife. The work required the revision of theinformation which was published and a followed analysis of its context. It was used the digital version with the purpose ofvisualizing the news which was published. It was also compared with a printed version, with local cover but divulged theinformation to the public who was most affected by this particular news. The results give rise to some questions regardinghow the information is given to a topic which is of local interest as well as national and international interest due to therepercussions in the social, economical and tourist field (the tourist field is the main industrial sector in Tenerife by receivingthis type of news.

  17. Field-trip guide to Mount Hood, Oregon, highlighting eruptive history and hazards

    Science.gov (United States)

    Scott, William E.; Gardner, Cynthia A.

    2017-06-22

    This guidebook describes stops of interest for a geological field trip around Mount Hood volcano. It was developed for the 2017 International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Portland, Oregon. The intent of this guidebook and accompanying contributions is to provide an overview of Mount Hood, including its chief geologic processes, magmatic system, eruptive history, local tectonics, and hazards, by visiting a variety of readily accessible localities. We also describe coeval, largely monogenetic, volcanoes in the region. Accompanying the field-trip guidebook are separately authored contributions that discuss in detail the Mount Hood magmatic system and its products and behavior (Kent and Koleszar, this volume); Mount Hood earthquakes and their relation to regional tectonics and the volcanic system (Thelen and Moran, this volume); and young surface faults cutting the broader Mount Hood area whose extent has come to light after acquisition of regional light detection and ranging coverage (Madin and others, this volume).The trip makes an approximately 175-mile (280-kilometer) clockwise loop around Mount Hood, starting and ending in Portland. The route heads east on Interstate 84 through the Columbia River Gorge National Scenic Area. The guidebook points out only a few conspicuous features of note in the gorge, but many other guides to the gorge are available. The route continues south on the Mount Hood National Scenic Byway on Oregon Route 35 following Hood River, and returns to Portland on U.S. Highway 26 following Sandy River. The route traverses rocks as old as the early Miocene Eagle Creek Formation and overlying Columbia River Basalt Group of middle Miocene age, but chiefly lava flows and clastic products of arc volcanism of late Miocene to Holocene age.

  18. Petrography and geochemistry of achnelithic tephra from Las Herrerías Volcano (Calatrava volcanic field, Spain): Formation of nephelinitic achneliths and post-depositional glass alteration

    Science.gov (United States)

    Carracedo-Sánchez, M.; Sarrionandia, F.; Arostegui, J.; Errandonea-Martin, J.; Gil-Ibarguchi, J. I.

    2016-11-01

    We present the results of a petrographic and geochemical study carried out on a layer of achnelithic tephra outcropping at the base of the volcanic cone of Las Herrerías (Miocene-Quaternary volcanic region of Campo de Calatrava, Spain). The tephra, with a composition of nephelinite and ash (Pele's tears), achnelith fragments and rare welded achneliths. The achneliths at Las Herrerías were generated in a gas-rich fire fountain that fragmented the magma into micro- to nanometre particles. The low viscosity of the nephelinitic blebs (< 1235 Pa.s) inside the hottest (ca. 900 °C), inner zone of the fountain allowed the development of the characteristic fluidal shapes of these pyroclasts and their welding above the glass transition temperature (533-669 °C). The sideromelane glass of the achneliths, also nephelinitic in composition, is variably altered to palagonite. The palagonitization was isovolumetric and took place in a near closed system at the achnelith scale. Palagonitization involved depletion in the concentration (g/cm3) of all major elements and notable increase in H2O content. The elements liberated by this process formed smectite with an average structural formula comprised between those of beidellite and nontronite end terms: (Na0.01K0.03Ca0.18) (Mg0.22Fe0.16)2 + (Fe0.48Al1.02)3 + (Ti0.18)4 + (Si3.58Al0.42) O10(OH)2. The degree of palagonitization in each achnelith was likely related to the amount of water incorporated by individual clasts at the moment of their deposition in a volcanic maar lake. Afterwards, there was no more water circulation through the achnelithic tephra, which was sealed from water by overlying hydrovolcanic tuff deposits. It was this isolation that made possible the preservation of glass to the present day.

  19. A Study of the Dětaň Locality (Oligocene, Doupovské hory Mts. Volcanic Complex, Czech Republic): Collection of Field Data and Starting Points for Interpretation

    Czech Academy of Sciences Publication Activity Database

    Mikuláš, Radek; Fejfar, O.; Ulrych, Jaromír; Žigová, Anna; Kadlecová, Eva; Cajz, Vladimír

    2003-01-01

    Roč. 15, - (2003), s. 91-97 ISSN 1210-9606. [Hibsch 2002 Symposium. Teplá near Třebenice, Ústí nad Labem, Mariánské Lázně, 03.06.2002-08.06.2002] R&D Projects: GA ČR GA205/00/1000 Institutional research plan: CEZ:AV0Z3013912 Keywords : volcanic lastic rocks * Oligocene * Doupovské hory Mts. Subject RIV: DB - Geology ; Mineralogy http://geolines.gli.cas.cz/fileadmin/volumes/volume15/G15-091.pdf

  20. Monitoring diffuse degassing in monogentic volcanic field during a quiescent period: the case of Cumbre Vieja (La Palma,Canary Islands, Spain)

    Science.gov (United States)

    Burns, F.; Cole, M.; Vaccaro, W.; Alonso Cótchico, M.; Melián, G.; Asensio-Ramos, M.; Padron, E.; Hernandez Perez, P. A.; Perez, N. M.

    2017-12-01

    Volcanic activity at La Palma (Canary Islands) in the last 123 ka has taken place exclusively at the southern part of the island, where Cumbre Vieja volcano, which is characterized by a main north-south rift zone 20 km long and up to 1950 m in elevation and covering an area of 220 km2 with vents located also at the northwest and northeast. Cumbre Vieja is the most active basaltic volcano in the Canaries with 7 historical eruptions being San Juan (1949) and Teneguía (1971) the most recent ones. Since no visible degassing (fumaroles, etc.) at Cumbre Vieja occurs, our geochemical program for the volcanic surveillance of Cumbre Vieja is mainly focused on diffuse degassing monitoring. Diffuse CO2 emission surveys are yearly performed in summer to minimize the influence of meteorological variations. About 570 sampling sites were selected for each survey to obtain a homogeneous distribution after taking into consideration the local geology, structure, and accessibility. Measurements of soil CO2 efflux were performed in situ by means of a portable non-dispersive infrared sensor following the accumulation chamber method. The soil CO2 efflux values of the 2017 survey ranged from non-detectable to 47.7 g m-2 d-1. Statistical-graphical analysis of the data show two different geocheleemical populations; background (B) and peak (P) represented by 98.2% and 1.8% of the total data, respectively. The geometric means of the B and P populations are 2.9 and 36.5 g m-2 d-1, respectively. Most of the area showed B values while the P values were mainly observed both flanks of the main N-S volcanic rift. To estimate the diffuse CO2 emission in metric tons per day released from Cumbre Vieja (220 km2) for the 2017 survey, we ran about 100 sGs simulations. The estimated 2017 diffuse CO2 output released to atmosphere by Cumbre Vieja was at 801 ± 27 t d-1, value relatively higher than the background average of CO2 emission estimated on 374 t d-1 and within the background range of 132 t d-1

  1. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  2. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    International Nuclear Information System (INIS)

    Jackson, M.R. Jr.

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system

  3. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Jr., Mac Roy [Univ. of Nevada, Reno, NV (United States)

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  4. Spatial and temporal variations of diffuse CO_{2} degassing at the N-S volcanic rift-zone of Tenerife (Canary Islands, Spain) during 2002-2015 period

    Science.gov (United States)

    Alonso, Mar; Ingman, Dylan; Alexander, Scott; Barrancos, José; Rodríguez, Fátima; Melián, Gladys; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria Island, is the only one with a central volcanic complex that started to grow at about 3.5 Ma. Nowadays the central complex is formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and was partially filled by post-caldera volcanic products. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 Ma (Dóniz et al., 2008). Most of the monogenetic cones are aligned following a triple junction-shaped rift system, as result of inflation produced by the concentration of emission vents and dykes in bands at 120o to one another as a result of minimum stress fracturing of the crust by a mantle upwelling. The main structural characteristic of the southern volcanic rift (N-S) of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Four main volcanic successions in the southern volcanic rift zone of Tenerife, temporally separated by longer periods (˜70 - 250 ka) without volcanic activity, have been identified (Kröchert and Buchner, 2008). Since there are currently no visible gas emissions at the N-S rift, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. We report here the last results of diffuse CO2 efflux survey at the N-S rift of Tenerife, performed using the accumulation chamber method in the summer period of 2015. The objectives of the surveys were: (i) to constrain the total CO2 output from the studied area and (ii) to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for the N-S rift of Tenerife. Soil CO2 efflux values ranged from non-detectable up to 31.7 g m-2 d-1. A spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, did not show an

  5. Local and remote infrasound from explosive volcanism

    Science.gov (United States)

    Matoza, R. S.; Fee, D.; LE Pichon, A.

    2014-12-01

    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  6. Volcanic Rocks and Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  7. Martian volcanism: A review

    International Nuclear Information System (INIS)

    Carr, M.H.

    1987-01-01

    Martian volcanism is reviewed. It is emphasized that lava plains constitute the major type of effusive flow, and can be differentiated by morphologic characteristics. Shield volcanoes, domes, and patera constitute the major constructional landforms, and recent work has suggested that explosive activity and resulting pyroclastic deposits may have been involved with formation of some of the small shields. Analysis of morphology, presumed composition, and spectroscopic data all indicate that Martian volcanism was dominantly basaltic in composition

  8. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    International Nuclear Information System (INIS)

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 x 10 -5 per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 x 10 -5 per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis

  9. Basaltic volcanic episodes of the Yucca Mountain region

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1990-01-01

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs

  10. Experience of more than 100 preimplantation genetic diagnosis cycles for monogenetic diseases using whole genome amplification and linkage analysis in a single centre.

    Science.gov (United States)

    Chow, Judy F C; Yeung, William S B; Lee, Vivian C Y; Lau, Estella Y L; Ho, P C; Ng, Ernest H Y

    2015-08-01

    To report the outcomes of more than 100 cycles of preimplantation genetic diagnosis for monogenetic diseases. Case series. Tertiary assisted reproductive centre in Hong Kong, where patients needed to pay for the cost of preimplantation genetic diagnosis on top of standard in-vitro fertilisation charges. Patients undergoing preimplantation genetic diagnosis for monogenetic diseases at the Centre of Assisted Reproduction and Embryology, Queen Mary Hospital-The University of Hong Kong between 1 August 2007 and 30 April 2014 were included. In-vitro fertilisation, intracytoplasmic sperm injection, embryo biopsy, and preimplantation genetic diagnosis. Ongoing pregnancy rate and implantation rate. Overall, 124 cycles of preimplantation genetic diagnosis were initiated in 76 patients, 101 cycles proceeded to preimplantation genetic diagnosis, and 92 cycles had embryo transfer. The ongoing pregnancy rate was 28.2% per initiated cycle and 38.0% per embryo transfer, giving an implantation rate of 35.2%. There were 16 frozen-thawed embryo transfer cycles in which, following preimplantation genetic diagnosis, cryopreserved embryos were replaced resulting in an ongoing pregnancy rate of 37.5% and implantation rate of 30.0%. The cumulative ongoing pregnancy rate was 33.1%. The most frequent indication for preimplantation genetic diagnosis was thalassaemia, followed by neurodegenerative disorder and cancer predisposition. There was no misdiagnosis. Preimplantation genetic diagnosis is a reliable method to prevent couples conceiving fetuses severely affected by known genetic disorders, with ongoing pregnancy and implantation rates similar to those for in-vitro fertilisation for routine infertility treatment.

  11. Svrchněkenozoický severomoravský vulkanismus: rekonstrukce činnosti, paleomagnetismus, geofyzikální obraz, návrh litostratigrafie

    Czech Academy of Sciences Publication Activity Database

    Cajz, Vladimír; Skácelová, Z.; Schnabl, Petr; Radoň, M.

    2013-01-01

    Roč. 2012, Prosinec (2013), s. 20-25 ISSN 0514-8057 R&D Projects: GA AV ČR IAA300130612 Institutional support: RVO:67985831 Keywords : Cenozoic basaltic volcanism * Northern Moravia * Bruntál Volcanic Field * monogenetic volcanism * lithostratigraphy * paleomagnetism Subject RIV: DB - Geology ; Mineralogy http://www.geology.cz/zpravy/obsah/2012/Zpravy_2012-3.pdf

  12. Historical volcanic eruptions in the Canary Islands, tephra composition, and insights into the crystal cargo of basaltic magmas

    Science.gov (United States)

    Longpre, M. A.; Muller, J.; Beaudry, P.; Andronikides, A.; Felpeto, A.

    2017-12-01

    Since the 16th century, at least 13 volcanic eruptions have occurred in the Canary Islands that formed monogenetic cinder cones and lava flow fields: 2 on Lanzarote, 4 on Tenerife, 6 on La Palma, and 1 on the submarine flank of El Hierro. Here we present a comprehensive new dataset of tephra composition for all 13 eruptions, comprising major and trace element data for bulk rocks and matrix glasses, as well as vesicularity and crystallinity measurements. In addition, we compile available volcanological and petrological information for specific eruptions, including estimates of lava flow area and volume. All lapilli samples show a vesicularity of 40-50 vol% and a vesicle-free crystallinity (crystals ≥ 250 µm) of 5-15 vol%. Modal mineralogy varies significantly between samples, typically consisting of olivine ± clinopyroxene ± Fe-Ti oxide ± plagioclase ± amphibole in different proportions. All but 2 tephras have basanite-tephrite bulk rock compositions. Lapilli from vents of the AD 1730-1736 Timanfaya eruption, Lanzarote, largely are basaltic, whereas the AD 1798 Chahorra eruption, Tenerife, produced phonotephrite tephra. These results are in agreement with published bulk lava flow data. Unsurprisingly, glass compositions are more evolved than bulk rocks and MgOglass is weakly positively correlated to MgObulk (MgOglass = 0.30*MgObulk + 2.11, R2 = 0.54). Both bulk rocks and glasses show strikingly similar multi-element diagram patterns, with strong enrichment relative to the bulk-silicate Earth and marked positive Nb and Ta and negative Pb anomalies — typical for ocean island basalts. Glass/bulk rock elemental ratios reveal systematic differences between samples that relate to their mineralogy; for example, Lanzarote tephras that lack significant clinopyroxene and Fe-Ti oxide crystals have higher Scglass/Scbulk and Vglass/Vbulk than Tenerife, La Palma and El Hierro samples that typically contain these minerals. Among all elements, K and P display the greatest

  13. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  14. The Use of Handheld X-Ray Fluorescence (XRF) Technology in Unraveling the Eruptive History of the San Francisco Volcanic Field, Arizona

    Science.gov (United States)

    Young, Kelsey E.; Evans, C. A.; Hodges, K. V.

    2012-01-01

    While traditional geologic mapping includes the examination of structural relationships between rock units in the field, more advanced technology now enables us to simultaneously collect and combine analytical datasets with field observations. Information about tectonomagmatic processes can be gleaned from these combined data products. Historically, construction of multi-layered field maps that include sample data has been accomplished serially (first map and collect samples, analyze samples, combine data, and finally, readjust maps and conclusions about geologic history based on combined data sets). New instruments that can be used in the field, such as a handheld xray fluorescence (XRF) unit, are now available. Targeted use of such instruments enables geologists to collect preliminary geochemical data while in the field so that they can optimize scientific data return from each field traverse. Our study tests the application of this technology and projects the benefits gained by real-time geochemical data in the field. The integrated data set produces a richer geologic map and facilitates a stronger contextual picture for field geologists when collecting field observations and samples for future laboratory work. Real-time geochemical data on samples also provide valuable insight regarding sampling decisions by the field geologist

  15. Origin and evolution of geothermal fluids from Las Tres Vírgenes and Cerro Prieto fields, Mexico – Co-genetic volcanic activity and paleoclimatic constraints

    International Nuclear Information System (INIS)

    Birkle, Peter; Marín, Enrique Portugal; Pinti, Daniele L.; Castro, M. Clara

    2016-01-01

    Major and trace elements, noble gases, and stable (δD, δ 18 O) and cosmogenic ( 3 H, 14 C) isotopes were measured from geothermal fluids in two adjacent geothermal areas in NW-Mexico, Las Tres Vírgenes (LTV) and Cerro Prieto (CP). The goal is to trace the origin of reservoir fluids and to place paleoclimate and structural-volcanic constraints in the region. Measured 3 He/ 4 He (R) ratios normalized to the atmospheric value (R a  = 1.386 × 10 −6 ) vary between 2.73 and 4.77 and are compatible with mixing between a mantle component varying between 42 and 77% of mantle helium and a crustal, radiogenic He component with contributions varying between 23% and 58%. Apparent U–Th/ 4 He ages for CP fluids (0.7–7 Ma) suggest the presence of a sustained 4 He flux from a granitic basement or from mixing with connate brines, deposited during the Colorado River delta formation (1.5–3 Ma). Radiogenic in situ 4 He production age modeling at LTV, combined with the presence of radiogenic carbon (1.89 ± 0.11 pmC – 35.61 ± 0.28 pmC) and the absence of tritium strongly suggest the Quaternary infiltration of meteoric water into the LTV geothermal reservoir, ranging between 4 and 31 ka BP. The present geochemical heterogeneity of LTV fluids can be reconstructed by mixing Late Pleistocene – Early Holocene meteoric water (58–75%) with a fossil seawater component (25–42%), as evidenced by Br/Cl and stable isotope trends. CP geothermal water is composed of infiltrated Colorado River water with a minor impact by halite dissolution, whereas a vapor-dominated sample is composed of Colorado River water and vapor from deeper levels. δD values for the LTV meteoric end-member, which are 20‰–44‰ depleted with respect to present-day precipitation, as well as calculated annual paleotemperatures 6.9–13.6 °C lower than present average temperatures in Baja California point to the presence of humid and cooler climatic conditions in the Baja California peninsula

  16. Thermal vesiculation during volcanic eruptions.

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo

    2015-12-24

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  17. Modeling volcanic ash dispersal

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  18. Explosive volcanism, shock metamorphism and the K-T boundary

    International Nuclear Information System (INIS)

    Desilva, S.L.; Sharpton, V.L.

    1988-01-01

    The issue of whether shocked quartz can be produced by explosive volcanic events is important in understanding the origin of the K-T boundary constituents. Proponents of a volcanic origin for the shocked quartz at the K-T boundary cite the suggestion of Rice, that peak overpressures of 1000 kbars can be generated during explosive volcanic eruptions, and may have occurred during the May, 1980 eruption of Mt. St. Helens. Attention was previously drawn to the fact that peak overpressures during explosive eruptions are limited by the strength of the rock confining the magma chamber to less than 8 kbars even under ideal conditions. The proposed volcanic mechanisms for generating pressures sufficient to shock quartz are further examined. Theoretical arguments, field evidence and petrographic data are presented showing that explosive volcanic eruptions cannot generate shock metamorphic features of the kind seen in minerals at the K-T boundary

  19. Large-scale volcanism associated with coronae on Venus

    Science.gov (United States)

    Roberts, K. Magee; Head, James W.

    1993-01-01

    The formation and evolution of coronae on Venus are thought to be the result of mantle upwellings against the crust and lithosphere and subsequent gravitational relaxation. A variety of other features on Venus have been linked to processes associated with mantle upwelling, including shield volcanoes on large regional rises such as Beta, Atla and Western Eistla Regiones and extensive flow fields such as Mylitta and Kaiwan Fluctus near the Lada Terra/Lavinia Planitia boundary. Of these features, coronae appear to possess the smallest amounts of associated volcanism, although volcanism associated with coronae has only been qualitatively examined. An initial survey of coronae based on recent Magellan data indicated that only 9 percent of all coronae are associated with substantial amounts of volcanism, including interior calderas or edifices greater than 50 km in diameter and extensive, exterior radial flow fields. Sixty-eight percent of all coronae were found to have lesser amounts of volcanism, including interior flooding and associated volcanic domes and small shields; the remaining coronae were considered deficient in associated volcanism. It is possible that coronae are related to mantle plumes or diapirs that are lower in volume or in partial melt than those associated with the large shields or flow fields. Regional tectonics or variations in local crustal and thermal structure may also be significant in determining the amount of volcanism produced from an upwelling. It is also possible that flow fields associated with some coronae are sheet-like in nature and may not be readily identified. If coronae are associated with volcanic flow fields, then they may be a significant contributor to plains formation on Venus, as they number over 300 and are widely distributed across the planet. As a continuation of our analysis of large-scale volcanism on Venus, we have reexamined the known population of coronae and assessed quantitatively the scale of volcanism associated

  20. Volcanic ash in ancient Maya ceramics of the limestone lowlands: implications for prehistoric volcanic activity in the Guatemala highlands

    Science.gov (United States)

    Ford, Anabel; Rose, William I.

    1995-07-01

    In the spirit of collaborative research, Glicken and Ford embarked on the problem of identifying the source of volcanic ash used as temper in prehistoric Maya ceramics. Verification of the presence of glass shards and associated volcanic mineralogy in thin sections of Maya ceramics was straightforward and pointed to the Guatemala Highland volcanic chain. Considering seasonal wind rose patterns, target volcanoes include those from the area west of and including Guatemala City. Joint field research conducted in 1983 by Glicken and Ford in the limestone lowlands of Belize and neighboring Guatemala, 300 km north of the volcanic zone and 150 km from the nearest identified ash deposits, was unsuccessful in discovering local volcanic ash deposits. The abundance of the ash in common Maya ceramic vessels coupled with the difficulties of long-distance procurement without draft animals lead Glicken to suggest that ashfall into the lowlands would most parsimoniously explain prehistoric procurement; it literally dropped into their hands. A major archaeological problem with this explanation is that the use of volcanic ash occurring over several centuries of the Late Classic Period (ca. 600-900 AD). To accept the ashfall hypothesis for ancient Maya volcanic ash procurement, one would have to demonstrate a long span of consistent volcanic activity in the Guatemala Highlands for the last half of the first millennium AD. Should this be documented through careful petrographic, microprobe and tephrachronological studies, a number of related archaeological phenomena would be explained. In addition, the proposed model of volcanic activity has implications for understanding volcanism and potential volcanic hazards in Central America over a significantly longer time span than the historic period. These avenues are explored and a call for further collaborative research of this interdisciplinary problem is extended in this paper.

  1. Backprojection of volcanic tremor

    Science.gov (United States)

    Haney, Matthew M.

    2014-01-01

    Backprojection has become a powerful tool for imaging the rupture process of global earthquakes. We demonstrate the ability of backprojection to illuminate and track volcanic sources as well. We apply the method to the seismic network from Okmok Volcano, Alaska, at the time of an escalation in tremor during the 2008 eruption. Although we are able to focus the wavefield close to the location of the active cone, the network array response lacks sufficient resolution to reveal kilometer-scale changes in tremor location. By deconvolving the response in successive backprojection images, we enhance resolution and find that the tremor source moved toward an intracaldera lake prior to its escalation. The increased tremor therefore resulted from magma-water interaction, in agreement with the overall phreatomagmatic character of the eruption. Imaging of eruption tremor shows that time reversal methods, such as backprojection, can provide new insights into the temporal evolution of volcanic sources.

  2. Volcanic eruptions on Io

    Science.gov (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Hansen, C.; Cook, A. F.

    1981-01-01

    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  3. What, When, Where, and Why of Secondary Hawaiian Hotspot Volcanism

    Science.gov (United States)

    Garcia, M. O.; Ito, G.; Applegate, B.; Weis, D.; Swinnard, L.; Flinders, A.; Hanano, D.; Nobre-Silva, I.; Bianco, T.; Naumann, T.; Geist, D.; Blay, C.; Sciaroni, L.; Maerschalk, C.; Harpp, K.; Christensen, B.

    2007-12-01

    Secondary hotspot volcanism occurs on most oceanic island groups (Hawaii, Canary, Society) but its origins remain enigmatic. A 28-day marine expedition used multibeam bathymetry and acoustic imagery to map the extent of submarine volcanic fields around the northern Hawaiian Islands (Kauai, Niihau and Kaula), and the JASON2 ROV to sample many volcanoes to characterize the petrology, geochemistry (major and trace elements, and isotopes) and ages of the lavas from these volcanoes. Our integrated geological, geochemical and geophysical study attempts to examine the what (compositions and source), where (distribution and volumes), when (ages), and why (mechanisms) of secondary volcanism on and around the northern Hawaiian Islands. A first-order objective was to establish how the submarine volcanism relates in space, time, volume, and composition to the nearby shield volcanoes and their associated onshore secondary volcanism. Our surveying and sampling revealed major fields of submarine volcanoes extending from the shallow slopes of these islands to more than 100 km offshore. These discoveries dramatically expand the volumetric importance, distribution and geodynamic framework for Hawaiian secondary volcanism. New maps and rock petrology on the samples collected will be used to evaluate currently proposed mechanisms for secondary volcanism and to consider new models such as small-scale mantle convection driven by thermal and melt-induced buoyancy to produce the huge volume of newly discovered lava. Our results seem to indicate substantial revisions are needed to our current perceptions of hotspot dynamics for Hawaii and possibly elsewhere.

  4. Conceptual model of volcanism and volcanic hazards of the region of Ararat valley, Armenia

    Science.gov (United States)

    Meliksetian, Khachatur; Connor, Charles; Savov, Ivan; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Ghukasyan, Yura; Gevorgyan, Hripsime

    2015-04-01

    Armenia and the adjacent volcanically active regions in Iran, Turkey and Georgia are located in the collision zone between the Arabian and Eurasian lithospheric plates. The majority of studies of regional collision related volcanism use the model proposed by Keskin, (2003) where volcanism is driven by Neo-Tethyan slab break-off. In Armenia, >500 Quaternary-Holocene volcanoes from the Gegham, Vardenis and Syunik volcanic fields are hosted within pull-apart structures formed by active faults and their segments (Karakhanyan et al., 2002), while tectonic position of the large in volume basalt-dacite Aragats volcano and periphery volcanic plateaus is different and its position away from major fault lines necessitates more complex volcano-tectonic setup. Our detailed volcanological, petrological and geochemical studies provide insight into the nature of such volcanic activity in the region of Ararat Valley. Most magmas, such as those erupted in Armenia are volatile-poor and erupt fairly hot. Here we report newly discovered tephra sequences in Ararat valley, that were erupted from historically active Ararat stratovolcano and provide evidence for explosive eruption of young, mid K2O calc-alkaline and volatile-rich (>4.6 wt% H2O; amph-bearing) magmas. Such young eruptions, in addition to the ignimbrite and lava flow hazards from Gegham and Aragats, present a threat to the >1.4 million people (~ ½ of the population of Armenia). We will report numerical simulations of potential volcanic hazards for the region of Ararat valley near Yerevan that will include including tephra fallout, lava flows and opening of new vents. Connor et al. (2012) J. Applied Volcanology 1:3, 1-19; Karakhanian et al. (2002), JVGR, 113, 319-344; Keskin, M. (2003) Geophys. Res. Lett. 30, 24, 8046.

  5. The use of Remote Sensing for the Study of the Relationships Between Tectonics and Volcanism

    Science.gov (United States)

    Chorowicz, J.; Dhont, D.; Yanev, Y.; Bardintzeff, J.

    2004-12-01

    Observations of geometric relationships between tectonics and volcanism is a fruitful approach in geology. On the one hand analysis of the distribution and types of volcanic vents provides information on the geodynamics. On the other hand tectonic analysis explains the location of volcanics vents. Volcanic edifices often result from regional scale deformation, forming open structures constituting preferred pathways for the rise of magmas. Analysis of the shape and the distribution of vents can consequently provide data on the regional deformation. Remote sensing imagery gives synoptic views of the earth surface allowing the analysis of landforms of still active tectonic and volcanic features. Shape and distribution of volcanic vents, together with recent tectonic patterns are best observed by satellite data and Digital Elevation Models than in the field. The use of radar scenes for the study of the structural relationships between tectonic and volcanic features is particularly efficient because these data express sensitive changes in the morphology. In various selected areas, we show that volcanic edifices are located on tension fractures responsible for fissure eruptions, volcanic linear clusters and elongate volcanoes. Different types of volcanic emplacements can be also distinguished such as tail-crack or horse-tail features, and releasing bend basins along strike-slip faults. Caldera complexes seem to be associated to horse-tail type fault terminations. At a regional scale, the distribution of volcanic vents and their relationships with the faults is able to explain the occurrence of volcanism in collisional areas.

  6. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  7. DECOVALEX-THMC Task D: Long-Term Permeability/Porosity Changes in the EDZ and Near Field due to THM and THC Processes in Volcanic and Crystalline-Bentonite Systems, Status Report October 2005

    International Nuclear Information System (INIS)

    Birkholzer, J.; Rutqvist, J.; Sonnenthal, E.; Barr, D.

    2005-01-01

    The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The name DECOVALEX stands for DEvelopment of COupled models and their VALidation against Experiments. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. Three multi-year project stages of DECOVALEX have been completed in the past decade, mainly focusing on coupled thermal-hydrological-mechanical processes. Currently, a fourth three-year project stage of DECOVALEX is under way, referred to as DECOVALEX-THMC. THMC stands for Thermal, Hydrological, Mechanical, and Chemical processes. The new project stage aims at expanding the traditional geomechanical scope of the previous DECOVALEX project stages by incorporating geochemical processes important for repository performance. The U.S. Department of Energy (DOE) leads Task D of the new DECOVALEX phase, entitled ''Long-term Permeability/Porosity Changes in the EDZ and Near Field due to THC and THM Processes for Volcanic and Crystalline-Bentonite Systems''. In its leadership role for Task D, DOE coordinates and sets the direction for the cooperative research activities of the international research teams engaged in Task D

  8. Application of ASAR-ENVISAT Data for Monitoring Andean Volcanic Activity : Results From Lastarria-Azufre Volcanic Complex (Chile-Argentina)

    Science.gov (United States)

    Froger, J.; Remy, D.; Bonvalot, S.; Franco Guerra, M.

    2005-12-01

    Since the pioneer study on Mount Etna by Massonnet et al., in 1995, several works have illustrated the promising potentiality of Synthetic Aperture Radar Interferometry (INSAR) for the monitoring of volcanoes. In the case of wide, remote or hazardous volcanic areas, in particular, INSAR represents a safer and more economic way to acquire measurements than from ground based geodetic networks. Here we present the preliminary results of an interferometric survey made with ASAR-ENVISAT data on a selection of South American volcanoes where deformation signals had been previously evidenced or are expected. An interesting result is the detection of a present-day active ground deformation on the Azufre-Lastarria area (Chile-Argentina) indicating that process, identified during 1998-2000 by Pritchard and Simmons (2004) from ERS data, is still active. The phase signal visible on ASAR interferograms (03/2003-06/2005) is roughly elliptical with a 45 km NNE-SSW major axis. Its amplitude increases as a function of time and is compatible with ground uplift in the line of sight of the satellite. The ASAR time series (up to 840 days, 7 ASAR images) indicates variable deformation rate that might confirm the hypothesis of a non uniform deformation process. We investigated the origin and the significance of the deformation using various source modelling strategies (analytical and numerical). The observed deformation can be explained by the infilling of an elliptical magmatic reservoir lying between 7 and 10 km depth. The deformation could represent the first stage of a new caldera forming as it is correlated with a large, although subtle, topographic depression surrounded by a crown of monogenetic centers. A short wavelength inflation has also been detected on Lastaria volcano. It could result from the on-going infilling of a small subsurface magmatic reservoir, eventually supplied by the deeper one. All these observations point out the need of a closer monitoring of this area in

  9. Large Volcanic Rises on Venus

    Science.gov (United States)

    Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.

    1997-01-01

    Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of

  10. Aspects of the distribution and movement of aluminium in the surface of the Te Kopia geothermal field, Taupo Volcanic Zone, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.; Rodgers, K.A. [University of Auckland (New Zealand). Dept. of Geology; Browne, P.R.L. [University of Auckland (New Zealand). Dept. of Geology; University of Auckland (New Zealand). Geothermal Institute

    2000-09-01

    The principal Al-bearing components of two surface quadrats in the central Te Kopia geothermal field are the atmosphere, substrate ({approx} 10 wt% AI in ignimbrite, clay and protosoils, 0.3-0.6 AI wt% in sinter), vegetation (4-5 g AI/m{sup 2}) and waters (1-4 {mu}g/g AI in semi-permanent acid surface waters, 6-9 {mu}g/g in acid pools, 10-14 {mu}g/g in post-rain, ephemeral streams and pools). About 0.7 g/ha/a of AI is received from the atmosphere. Water transports AI in and out of each quadrat and distributes it between the different components. During initial alteration of the parent ignimbrite by alkali chloride water in the deep reservoir, AI either remained within the quadrat boundaries or transfers out were balanced by contemporaneous gains. Subsequently, alteration by acid sulfate fluids redistributes elements into new mineral assemblages but again with no net movement of AI in or out of either quadrat. The latest, surface alteration event involves interaction of all the previously and variously altered rocks by steam, gases and steam condensate. A primary product of this process is transient, hydrated, AI-rich, water-soluble sulfate efflorescences whose persistence indicates a steady flux of AI at the surface. The magnitude of this flux depends on available moisture and the activities of H{sup +}, SiO{sub 4}{sup 4-}, SO{sub 4}{sup 2} and K{sup +} such that variations in the rate of discharge of AI alone may be used to detect changes in surface conditions as may result from exploitation of a geothermal field. (author)

  11. Project Title: Geothermal Play Fairway Analysis of Potential Geothermal Resources in NE California, NW Nevada, and Southern Oregon: A Transition between Extension$-$Hosted and Volcanically$-$Hosted Geothermal Fields

    Energy Technology Data Exchange (ETDEWEB)

    McClain, James S. [Univ. of California, Davis, CA (United States). Dept. of; Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Glassley, William [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Schiffman, Peter [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zierenberg, Robert [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zhang, Yingqi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siler, Drew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gasperikova, Erika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spycher, Nicolas F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-30

    Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.

  12. Geochemical Relationships between Volcanic and Plutonic Upper to Mid Crustal Exposures of the Rosario Segment, Alisitos Arc (Baja California, Mexico): An Outstanding Field Analog to the Izu-Bonin-Mariana Arc

    Science.gov (United States)

    Morris, R.; DeBari, S. M.; Busby, C. J.; Medynski, S.

    2015-12-01

    Exposed paleo-arcs, such as the Rosario segment of the Cretaceous Alisitos Arc in Baja California, Mexico, provide an opportunity to explore the evolution of arc crust through time. Remarkable 3-D exposures of the Rosario segment record crustal generation processes in the volcanic rocks and underlying plutonic rocks. In this study, we explore the physical and geochemical connection between the plutonic and volcanic sections of the extensional Alisitos Arc, and elucidate differentiation processes responsible for generating them. These results provide an outstanding analog for extensional active arc systems, such as the Izu-Bonin-Mariana (IBM) Arc. Upper crustal volcanic rocks have a coherent stratigraphy that is 3-5 km thick and ranges in composition from basalt to dacite. The most felsic compositions (70.9% SiO2) are from a welded ignimbrite unit. The most mafic compositions (51.5% SiO2, 3.2% MgO) are found in basaltic sill-like units. Phenocrysts in the volcanic units include plagioclase +/- amphibole and clinopyroxene. The transition to deeper plutonic rocks is clearly an intrusive boundary, where plutonic units intrude the volcanic units. Plutonic rocks are dominantly a quartz diorite main phase with a more mafic, gabbroic margin. A transitional zone is observed along the contact between the plutonic and volcanic rocks, where volcanics have coarsely recrystallized textures. Mineral assemblages in the plutonic units include plagioclase +/- quartz, biotite, amphibole, clinopyroxene and orthopyroxene. Most, but not all, samples are low K. REE patterns are relatively flat with limited enrichment. Normalization diagrams show LILE enrichment and HFSE depletion, where trends are similar to average IBM values. We interpret plutonic and volcanic units to have similar geochemical relationships, where liquid lines of descent show the evolution of least to most evolved magma types. We provide a model for the formation and magmatic evolution of the Alisitos Arc.

  13. The nature and significance of sulphate-rich, aluminous efflorescences from the Te Kopia geothermal field, Taupo Volcanic Zone, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.; Rodgers, K.A. [University of Auckland (New Zealand). Dept. of Geology; Browne, P.R.L. [University of Auckland (New Zealand). Dept. of Geology; University of Auckland (New Zealand). Geothermal Institute

    1999-06-01

    Alunogen and meta-alunogen are the dominant phases present in transient sulphate efflorescences that are the latest products of the alteration of ignimbrite country rocks in the long-lived Te Kopia geothermal field. Meta-alunogen pseudomorphs alunogen and both species occur as white, fibrous. tangled masses, as prismatic, parallel growths, and as thin. platy, crystals, 8-15 ({mu}m across, that coalesce in an open cellular network. Small (<2 mm diam.) spherical aggregates of radiating, acicular halotriechite (Fe{sub 0.51}Mg{sub 0.49}Al{sub 2}(SO{sub 4}){sub 4.22}H{sub 2}O), potash alum, mirabilite, melanterite and tschermigite are present locally. The cations needed to form these minerals derive from the host rocks with the exception of sulphur and ammonia that come from H{sub 2}S and NH{sub 3} gases ascending with steam. The particular efflorescence assemblage reflects the prevailing conditions and ionic activities of a local micro-environment. Kaolinite formed by acid sulphate alteration is now being altered by steam to yield alunogen. In turn, alunogen can react with silica, or co-dissociate with silicic acid, to form kaolinite The alternating dissolution and reprecipitation of kaolinite and alunogen moves aluminium in and through the surficial environment at Te Kopia.

  14. Oxygen Isotopes in Intra-Back Arc Basalts from the Andean Southern Volcanic Zone

    Science.gov (United States)

    Parks, B. H.; Wang, Z.; Saal, A. E.; Frey, F. A.; Blusztajn, J.

    2013-12-01

    The chemical compositions of volcanic rocks from the Andean Southern Volcanic Zone (SVZ) reflect complex and dynamic interactions among the subducting oceanic lithosphere, the mantle wedge, and the overlying continental crust. Oxygen isotope ratios of olivine phenocrysts can be a useful means to identifying their relative contributions to the arc magmatism. In this study, we report high-precision oxygen-isotope ratios of olivine phenocrysts in a set of intra-back arc basalts from the SVZ. The samples were collected from monogenetic cinder cones east of the volcanic front (35-39 degrees S), and have been geochemically well-characterized with major and trace element contents, and Sr-Nd-Pb isotope compositions. Compared to lavas from the volcanic front, these intra-back arc lavas have similar radiogenic isotope, and a more alkalic and primitive (higher MgO content) chemical composition. We determined the oxygen-isotope ratios using the CO2-laser-fluorination method set up at the Department of Geology and Geophysics, Yale University following the techniques reported in Wang et al (2011). The samples were analyzed with standards of Gore Mountain Garnet (5.77×0.12‰ 1σ; Valley et al., 1995) and Kilbourne Hole Olivine (5.23×0.07‰ 1σ; Sharp, 1990) in order to account for minor changes in the vacuum line during analyses. The obtained δ18OSMOW values of olivine phenocrysts from the intra-back arc basalts vary from 4.98×0.01 to 5.34×0.01‰. This range, surprisingly, is similar to the δ18O values of olivines from mantle peridotites (5.2×0.2‰). Preliminary results indicate significant correlations of 87Sr/86Sr, 143Nd/144Nd and trace element ratios of the basaltic matrix with the δ18O values of olivine phenocrysts, indicating at least three components involved in the formation of the arc volcanism. By comparing the δ18O with the variations of major and trace element contents (e.g., MgO, TiO2 and Ni), and trace element ratios (e.g. Ba/Nb), we evaluate the effects

  15. Surface Textures and Features Indicative of Endogenous Growth at the McCartys Flow Field, NM, as an Analog to Martian Volcanic Plains

    Science.gov (United States)

    Bleacher, Jacob E.; Crumpler, L. S.; Garry, W. B.; Zimbelman, J. R.; Self, S.; Aubele, J. C.

    2012-01-01

    Basaltic lavas typically form channels or tubes, which are recognized on the Earth and Mars. Although largely unrecognized in the planetary community, terrestrial inflated sheet flows also display morphologies that share many commonalities with lava plains on Mars. The McCartys lava flow field is among the youngest (approx.3000 yrs) basaltic flows in the continental United States. The southwest sections of the flow displays smooth, flat-topped plateaus with irregularly shaped pits and hummocky inter-plateau units that form a polygonal surface. Plateaus are typically elongate in map view, up to 20 m high and display lineations within the glassy crust. Lineated surfaces occasionally display small < 1m diameter lava coils. Lineations are generally straight and parallel each other, sometimes for over 100 meters. The boundaries between plateaus and depressions are also lineated and tilted to angles sometimes approaching vertical. Plateau-parallel cracks, sometimes containing squeeze-ups, mark the boundary between tilted crust and plateau. Some plateau depressions display level floors with hummocky surfaces, while some are bowl shaped with floors covered in broken lava slabs. The lower walls of pits sometimes display lateral, sagged lava wedges. Infrequently, pit floors display the upper portion of a tumulus from an older flow. In some places the surface crust has been disrupted forming a slabby texture. Slabs are typically on the scale of a meter or less across and no less than 7-10 cm thick. The slabs preserve the lineated textures of the undisturbed plateau crust. It appears that this style of terrain represents the emplacement of an extensive sheet that experiences inflation episodes within preferred regions where lateral spreading of the sheet is inhibited, thereby forming plateaus. Rough surfaces represent inflation-related disruption of pahoehoe lava and not a a lava. Depressions are often the result of non-inflation and can be clearly identified by lateral

  16. Volcanic risk; Risque volcanique

    Energy Technology Data Exchange (ETDEWEB)

    Rancon, J.P.; Baubron, J.C.

    1995-12-31

    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles` volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO{sub 2}, H{sub 2}O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs.

  17. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  18. Sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone terrane, western Dharwar Craton: Implications on pyroclastic volcanism and sedimentation in an active continental margin

    Science.gov (United States)

    Manikyamba, C.; Saha, Abhishek; Ganguly, Sohini; Santosh, M.; Lingadevaru, M.; Rajanikanta Singh, M.; Subba Rao, D. V.

    2014-12-01

    We report sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone belt of western Dharwar Craton which is associated with rhyolites, chlorite schists and pyroclastic rocks. The pyroclastic rocks of Yalavadahalli area of Shimoga greenstone belt host volcanogenic Pb-Cu-Zn mineralization. The sediment-infill volcanic breccia is clast-supported and comprises angular to sub-angular felsic volcanic clasts embedded in a dolomitic matrix that infilled the spaces in between the framework of volcanic clasts. The volcanic clasts are essentially composed of alkali feldspar and quartz with accessory biotite and opaques. These clasts have geochemical characteristics consistent with that of the associated potassic rhyolites from Daginkatte Formation. The rare earth elements (REE) and high field strength element (HFSE) compositions of the sediment-infill volcanic breccia and associated mafic and felsic volcanic rocks suggest an active continental margin setting for their generation. Origin, transport and deposition of these rhyolitic clasts and their aggregation with infiltrated carbonate sediments may be attributed to pyroclastic volcanism, short distance transportation of felsic volcanic clasts and their deposition in a shallow marine shelf in an active continental margin tectonic setting where the rhyolitic clasts were cemented by carbonate material. This unique rock type, marked by close association of pyroclastic volcanic rocks and shallow marine shelf sediments, suggest shorter distance between the ridge and shelf in the Neoarchean plate tectonic scenario.

  19. Lidar detection of carbon dioxide in volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  20. Petrogeochemistry of Mesozoic basaltic volcanics in Daqingshan area

    International Nuclear Information System (INIS)

    Li Xiaoguang; Li Ziying; Wei Sanyuan; Qi Da'neng

    2009-01-01

    Through the discussion on petrogeochemistry of Later Mesozoic basaltic volcanics in Daqingshan Basin in Manzhouli area, combined with field observation and the predecessors' study, its magma evolution,genesis and diagenetic structural environment are discussed, and some suggestion are provided for the further work. Basaltic magma in this area is believed to be derived from mantle with incompatible elements which were later participated by some crustal materials. It is a partially melting product of mantle by early metasomatized fluid under lithosphere extension. Through petrogeochemical analysis of the volcanics and the contrast to the adjacent uranium-producing volcanics, it is concluded that this region has structural environment to form magma evolution series which are more favorable for volcanic hydrothermal-type uranium and polymetallic mineralization. (authors)

  1. Topographic stress and catastrophic collapse of volcanic islands

    Science.gov (United States)

    Moon, S.; Perron, J. T.; Martel, S. J.

    2017-12-01

    Flank collapse of volcanic islands can devastate coastal environments and potentially induce tsunamis. Previous studies have suggested that factors such as volcanic eruption events, gravitational spreading, the reduction of material strength due to hydrothermal alteration, steep coastal cliffs, or sea level change may contribute to slope instability and induce catastrophic collapse of volcanic flanks. In this study, we examine the potential influence of three-dimensional topographic stress perturbations on flank collapses of volcanic islands. Using a three-dimensional boundary element model, we calculate subsurface stress fields for the Canary and Hawaiian islands to compare the effects of stratovolcano and shield volcano shapes on topographic stresses. Our model accounts for gravitational stresses from the actual shapes of volcanic islands, ambient stress in the underlying plate, and the influence of pore water pressure. We quantify the potential for slope failure of volcanic flanks using a combined model of three-dimensional topographic stress and slope stability. The results of our analysis show that subsurface stress fields vary substantially depending on the shapes of volcanoes, and can influence the size and spatial distribution of flank failures.

  2. Why does the Size of the Laacher See Magma Chamber and its Caldera Size not go together? - New Findings with regard to Active Tectonics in the East Eifel Volcanic Field

    Science.gov (United States)

    Schreiber, Ulrich; Berberich, Gabriele

    2013-04-01

    . 2002). Our research findings suggest that due to the slow movement rates of active tectonic faults, an estimated 18 km³ magma chamber within the brittle fracture section of the earth's crust beneath the Laacher See (v. d. Bogaard & Schmincke 1984) cannot be confirmed yet. Another discrepancy is given by a comparison of modeling of caldera evolution (Acocella 2007) with the Laacher See Caldera formation. The Laacher See caldera has a volume of 0.5 km³ with regard to the pre-eruptive surface (Viereck & v.d. Bogaard 1986). According to v. d. Bogaard & Schmincke (1984) a volume of 6.3 km³ dry rock equivalent of lava and basic rock was erupted. This magnitude is contradictory to the calculated 0.5 km³ volume of the Laacher See caldera. A volume compensation of approx. 6 km³ which could have prevented a further subsidence of the magma chamber cannot be a scientific possible explanation. This hypothesis is strengthened by performed sonar recordings of the post-eruptive Laacher See sediment layers which do not show any displacements that might indicate a doming caused by magma. Estimations of the erupted tephra volume provided the basis for the calculation of the size of the Laacher See magma chamber (v.d. Bogaard 1983), but there is no statistical significant data set with regard to spatial distribution of the erupted tephra amount. Our findings show an overestimation of the tephra thickness in published isopach maps of the Westerwald. Therefore, an order of magnitude smaller magma chamber stretched over a longer vertical crustal section can help to better match the given tectonic movement rates and the size of the caldera. To estimate the future development of the East Eifel volcanic field, a good knowledge of the active tectonics is an absolute prerequisite. Along the "Laacher See Strike-slip Fault", an area of intensive micro-seismicity and a new seismically active zone with local magnitudes up to 4 has developed over the last 40 years (Hinzen 2003). In the last

  3. Geothermal and volcanism in west Java

    Science.gov (United States)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  4. Geochemical evidence for waning magmatism and polycyclic volcanism at Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Perry, F.V.; Crowe, B.M.

    1992-01-01

    This paper reports that petrologic and geochemical studies of basaltic rocks in the Yucca Mountain region are currently focused on understanding the evolution of volcanism in the Crater Flat volcanic field and the mechanisms of polycyclic volcanic field and the mechanisms of polycyclic volcanism at the Lathrop Wells volcanic center, the youngest center in the Crater Flat volcanic field. Geochemical and petrologic data indicate that the magma chambers which supplied the volcanic centers at Crater Flat became situated at greater crustal depths as the field evolved. Deep magma chambers may be related to a waning magma flux that was unable to sustain upper crustal magma conduits and chambers. Geochemical data from the Lathrop Wells volcanic center indicate that eruptive units identified from field and geomorphic relationships are geochemically distinct. The geochemical variations cannot be explained by fractional crystallization of a single magma batch, indicating that several magma batches were involved in the formation of the Lathrop Wells center. Considering the low magma flux in the Yucca Mountain region in the Quaternary, the probability of several magma batches erupting essentially simultaneously at Lathrop Wells is considered remote

  5. Eruptive dynamics and hazards associated with obsidian bearing ignimbrites of the Geghama Volcanic Highland, Central Armenia: a textural insight

    Science.gov (United States)

    Matthews, Zoe; Manning, Christina J.

    2017-04-01

    The Geghama Volcanic highland in central Armenia is an ideal setting to study the young ( 750-25 ka [1]) volcanism that characterises the Lesser Caucasus region. The volcanism in the area is bimodal in composition: the eastern highlands are dominated by numerous monogenetic scoria cones, whilst the west shows more evolved volcanism centered on two obsidian bearing, polygenetic domes (Hatis and Gutanasar) [2]. Activity at Hatis and Gutanasar is thought to have spanned 550ka-200ka [3] and produced a range of products including obsidian flows, ignimbrites and basaltic scoria cones, consistent with long lived and complex magma storage systems. During a similar time period there is evidence for the presence of hominin groups in the surrounding region [3] and it is likely that at least some of the volcanic activity at Hatis and Gutanasar impacted on their distribution [4]. A better understanding of the eruptive behaviour of these volcanoes during this period could therefore shed light on the effect of volcanic activity on the dispersal of man through this period. Whilst large regional studies have striven to better understand the timing and source of volcanism in Armenia, there have been few detailed studies on single volcanoes. Obsidian is ubiquitous within the volcanic material of both Gutanasar and Hatis as lava flows, dome deposits and within ignimbrites. This study aims to better understand the eruptive history of Gutanasar, with specific focus upon the determination of the petrogenetic history of obsidian lenses observed within the ignimbrite deposits. Identification of these obsidians as the result of welding or in-situ melting will help constrain eruptive volumes and flow thickness, important for the reconstruction of palaeo-volcanic hazards. In order to interpret how this obsidian was deposited, macro textural analysis is combined with micro textural measurements of microlite crystals. Quantitative measurements of microlites in obsidian can provide significant

  6. Volcanology: Volcanic bipolar disorder explained

    Science.gov (United States)

    Jellinek, Mark

    2014-02-01

    Eruptions come in a range of magnitudes. Numerical simulations and laboratory experiments show that rare, giant super-eruptions and smaller, more frequent events reflect a transition in the essential driving forces for volcanism.

  7. Lidar sounding of volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  8. Volcanic eruption plumes on Io

    International Nuclear Information System (INIS)

    Strom, R.G.; Terrile, R.J.; Masursky, H.; Hansen, C.

    1979-01-01

    The detection of an umbrella-shaped plume extending about 280 km above the bright limb of Io was one of the most important discoveries made during the Voyager 1 encounter with the jovian system. This discovery proves that Io is volcanically active at present, and the number and magnitude of these eruptions indicate that Io is the most volcanically active body so far discovered in the Solar System. Preliminary analyses of these eruptive plumes are presented. (U.K.)

  9. Volcanic hazards and aviation safety

    Science.gov (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  10. Modelling ground deformation patterns associated with volcanic processes at the Okataina Volcanic Centre

    Science.gov (United States)

    Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.

    2017-09-01

    The Okataina Volcanic Centre (OVC) is one of two large active rhyolite centres in the modern Taupo Volcanic Zone (TVZ) in the North Island of New Zealand. It is located in a complex section of the Taupo rift, a tectonically active section of the TVZ. The most recent volcanic unrest at the OVC includes the 1315 CE Kaharoa and 1886 Tarawera eruptions. Current monitoring activity at the OVC includes the use of continuous GPS receivers (cGPS), lake levelling and seismographs. The ground deformation patterns preceding volcanic activity the OVC are poorly constrained and restricted to predictions from basic modelling and comparison to other volcanoes worldwide. A better understanding of the deformation patterns preceding renewed volcanic activity is essential to determine if observed deformation is related to volcanic, tectonic or hydrothermal processes. Such an understanding also means that the ability of the present day cGPS network to detect these deformation patterns can also be assessed. The research presented here uses the finite element (FE) modelling technique to investigate ground deformation patterns associated with magma accumulation and diking processes at the OVC in greater detail. A number of FE models are produced and tested using Pylith software and incorporate characteristics of the 1315 CE Kaharoa and 1886 Tarawera eruptions, summarised from the existing body of research literature. The influence of a simple ring fault structure at the OVC on the modelled deformation is evaluated. The ability of the present-day continuous GPS (cGPS) GeoNet monitoring network to detect or observe the modelled deformation is also considered. The results show the modelled horizontal and vertical displacement fields have a number of key features, which include prominent lobe based regions extending northwest and southeast of the OVC. The results also show that the ring fault structure increases the magnitude of the displacements inside the caldera, in particular in the

  11. DECOVALEX-THMC Project. Task D. Long-Term Permeability/Porosity Changes in the EDZ and Near Field due to THM and THC Processes in Volcanic and Crystalline-Bentonite Systems. Phase 1 Report

    International Nuclear Information System (INIS)

    Birkholzer, J.; Rutqvist, J.; Sonnenthal, E.; Barr, D.

    2007-02-01

    The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. Three multi-year project stages of DECOVALEX have been completed in the past decade, mainly focusing on coupled thermal-hydrological-mechanical processes. Currently, a fourth three-year project stage of DECOVALEX is under way, referred to as DECOVALEX-THMC. THMC stands for Thermal, Hydrological, Mechanical, and Chemical processes. The new project stage aims at expanding the traditional geomechanical scope of the previous DECOVALEX project stages by incorporating geochemical processes important for repository performance. The U.S. Department of Energy (DOE) leads Task D of the new DECOVALEX phase, entitled 'Long-term Permeability/Porosity Changes in the EDZ and Near Field due to THC and THM Processes for Volcanic and Crystalline-Bentonite Systems.' In its leadership role for Task D, DOE coordinates and sets the direction for the cooperative research activities of the international research teams engaged in Task D. The research program developed for Task D of DECOVALEX-THMC involves geomechanical and geochemical research areas. THM and THC processes may lead to changes in hydrological properties that are important for performance because the flow processes in the vicinity of emplacement tunnels will be altered from their initial state. Some of these changes can be permanent (irreversible), in which case they persist after the thermal conditions have returned to ambient; i.e., they will affect the entire regulatory compliance period. Geochemical processes also affect the water and gas chemistry close to the waste packages, which are relevant for waste package corrosion, buffer stability, and radionuclide transport. Research teams participating in Task D evaluate long-term THM and THC processes in two generic geologic

  12. DECOVALEX-THMC Project. Task D. Long-Term Permeability/Porosity Changes in the EDZ and Near Field due to THM and THC Processes in Volcanic and Crystalline-Bentonite Systems. Phase 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.; Rutqvist, J.; Sonnenthal, E. [Lawrence Berkeley National Laboratory, CA (United States); Barr, D. [Office of Repository Development, DOE (United States)

    2007-02-15

    The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. Three multi-year project stages of DECOVALEX have been completed in the past decade, mainly focusing on coupled thermal-hydrological-mechanical processes. Currently, a fourth three-year project stage of DECOVALEX is under way, referred to as DECOVALEX-THMC. THMC stands for Thermal, Hydrological, Mechanical, and Chemical processes. The new project stage aims at expanding the traditional geomechanical scope of the previous DECOVALEX project stages by incorporating geochemical processes important for repository performance. The U.S. Department of Energy (DOE) leads Task D of the new DECOVALEX phase, entitled 'Long-term Permeability/Porosity Changes in the EDZ and Near Field due to THC and THM Processes for Volcanic and Crystalline-Bentonite Systems.' In its leadership role for Task D, DOE coordinates and sets the direction for the cooperative research activities of the international research teams engaged in Task D. The research program developed for Task D of DECOVALEX-THMC involves geomechanical and geochemical research areas. THM and THC processes may lead to changes in hydrological properties that are important for performance because the flow processes in the vicinity of emplacement tunnels will be altered from their initial state. Some of these changes can be permanent (irreversible), in which case they persist after the thermal conditions have returned to ambient; i.e., they will affect the entire regulatory compliance period. Geochemical processes also affect the water and gas chemistry close to the waste packages, which are relevant for waste package corrosion, buffer stability, and radionuclide transport. Research teams participating in Task D evaluate long-term THM and THC processes in two generic geologic

  13. Magnetic properties of frictional volcanic materials

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan; Biggin, Andrew; Ferk, Annika; Leonhardt, Roman

    2015-04-01

    magnetisation (ARM), as expected for a thermal origin, the remanence of volcanic pseudotachylyte has been found to be comparable to an isothermal remanent magnetisation (IRM). Thus, the pseudotachylyte has experienced a strong magnetic field that overwrote the previous thermoremanent magnetisation of the magma, such as the strong local electric current that occurs in faults (e.g. Ferré et al., 2005). Additionally, the pseudotachylyte seems more often to comprise of uniaxial non-interacting single-domain particles compared to pseudo-single in the host, and to have a single Curie temperature whereas the host more commonly exhibits multiple phases. Differences in rock-magnetic parameters between the pseudotachylyte and host are significant, but not as high as those observed in granites by Nakamura et al. (2002) or Ferré et al. (2005), probably because granitic host rocks do not already carry a strong and stable remanence as do these extrusive volcanic rocks. The application of rock-magnetic tests in volcanology will undoubtedly continue to be a "go-to" tool for identification of pseudotachylytes, which are increasingly being recognised to play an important role in dome-building eruptions. Refs: Ferré, E.C., Zechmeister, M.S., Geissman, J.W., MathanaSekaran, N. and Kocak, K., 2005. The origin of high magnetic remanence in fault pseudotachylites: Theoretical considerations and implication for coseismic electrical currents. Tectonophysics, 402(1-4): 125-139. Nakamura, N., Hirose, T. and Borradaile, G.J., 2002. Laboratory verification of submicron magnetite production in pseudotachylytes: relevance for paleointensity studies. . Earth and Planetary Science Letters, 201(1): 13-18.

  14. Volcanic systems of Iceland and their magma source

    Science.gov (United States)

    Sigmarsson, Olgeir

    2017-04-01

    Several active hot-spot volcanoes produce magma from mantle sources which composition varies on decadal time scale. This is probably best demonstrated by the recent work of Pietruszka and collaborators on Kilauea, Hawaii. In marked contrast, basalt lavas from volcanic system in Iceland located above the presumed centre of the Iceland mantle plume have uniform isotope composition over the last 10 thousand years. Volcanic systems are composed of a central volcano and a fissure swarm, or a combination of both and they represent a fundamental component of the neovolcanic zones in Iceland. Four such systems, those of Askja, Bárðarbunga, Kverkfjöll and Grímsvötn in central Iceland were chosen for investigation. The last three have central volcanoes covered by the Vatnajökull ice-sheet whereas part of their fissure swarms is ice-free. Tephra produced during subglacial eruptions together with lavas from the fissure swarms of Holocene age have been collected and analysed for Sr, Nd and Th isotope ratios. Those volcanic formations that can be univocally correlated to a given volcanic system display uniform isotope ratio but different from one volcanic system to another. An exception to this regularity is that Askja products have isotope ratios indistinguishable from those of Gímsvötn, but since these volcanic systems lies far apart their lava fields do not overlap. A practical aspect of these findings was demonstrated during the rifting event of Bárðarbunga and fissure eruption forming the Holuhraun lava field. Relatively low, O isotope ratios in these basalts and heterogeneous macrocrystal composition have been ascribed to important metabasaltic crustal contamination with or without crystal mush recycling. In that case a surprisingly efficient magma mixing and melt homogenization must have occurred in the past beneath the volcanic systems. One possibility is that during the rapid deglaciation much mantle melting occurred and melts accumulated at the mantle

  15. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  16. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A.; Wells, S.; Bowker, L.; Finnegan, K.; Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report

  17. The volcanic and geochemical development of São Nicolau, Cape Verde Islands

    DEFF Research Database (Denmark)

    Duprat, Helene Inga; Holm, Paul Martin; Sherson, Jacob Friis

    2007-01-01

    We present 34 new age results from 40 Ar/39 Ar incremental heating analyses of groundmass separates from volcanic rocks from São Nicolau, Cape Verde. Combining the age results with field observations, we show that the volcanic activity that formed the island occurred in four separate stages: 1: >6...

  18. 129I in volcanic fluids: Testing for the presence of marine sediments in the Central American volcanic arc

    International Nuclear Information System (INIS)

    Snyder, Glen; Fehn, Udo

    2000-01-01

    The long half-life and the geochemical behavior of the 129 I system suggest that this cosmogenic radioisotope can contribute significantly to the understanding of processes associated with subduction zones and volcanic arc systems. Because iodine is not incorporated into igneous rocks, the age-signal associated with 129 I permits the determination of the origin of volatiles within arc volcanic systems. We report here results of a study to test the application of 129 I in fluids collected from hotsprings, crater lakes, fumaroles and geothermal wells from the Central American volcanic arc. Both the Momotombo geothermal field in Nicaragua and the Miravalles geothermal field in Costa Rica show 129 I/I ratios consistent with magmatic contributions from subducted marine pelagic sediments (minimum iodine ages of 25-30 Ma). In addition, several wells provide iodine isotopic ratios indicative of an older end-member, presumably located in the shallow crust (minimum iodine age = 65 Ma)

  19. Condiciones de cristalización y diferenciación de las lavas del volcán El Metate (Campo Volcánico de Michoacán-Guanajuato, México)

    OpenAIRE

    Losantos, Emma; Cebriá Gómez, J. M.; Morán-Zenteno, D. J.; Martiny, B. M.; López Ruiz, J.

    2014-01-01

    El Metate is a shield volcano located in the southern sector of the Michoacan-Guanajuato Volcanic Field, one of two largest monogenetic volcanic fields of the Transmexican Volcanic Belt. It was active c. 4.700 ± 200 years B.P and emitted about fifteen calcalkaline lava flows showing variable differentiation degrees. Temperatures calculated from mineral-liquid geothermobarometers for olivine, plagioclase and pyroxene, suggest that olivine was the earliest fractionating phase (1232–1198 °C)...

  20. Holocene volcanism of the upper McKenzie River catchment, central Oregon Cascades, USA

    Science.gov (United States)

    Deligne, Natalia I.; Conrey, Richard M.; Cashman, Katharine V.; Champion, Duane E.; Amidon, William H.

    2016-01-01

    To assess the complexity of eruptive activity within mafic volcanic fields, we present a detailed geologic investigation of Holocene volcanism in the upper McKenzie River catchment in the central Oregon Cascades, United States. We focus on the Sand Mountain volcanic field, which covers 76 km2 and consists of 23 vents, associated tephra deposits, and lava fields. We find that the Sand Mountain volcanic field was active for a few decades around 3 ka and involved at least 13 eruptive units. Despite the small total volume erupted (∼1 km3 dense rock equivalent [DRE]), Sand Mountain volcanic field lava geochemistry indicates that erupted magmas were derived from at least two, and likely three, different magma sources. Single units erupted from one or more vents, and field data provide evidence of both vent migration and reoccupation. Overall, our study shows that mafic volcanism was clustered in space and time, involved both explosive and effusive behavior, and tapped several magma sources. These observations provide important insights on possible future hazards from mafic volcanism in the central Oregon Cascades.

  1. VOLCANIC RISK ASSESSMENT - PROBABILITY AND CONSEQUENCES

    International Nuclear Information System (INIS)

    G.A. Valentine; F.V. Perry; S. Dartevelle

    2005-01-01

    Risk is the product of the probability and consequences of an event. Both of these must be based upon sound science that integrates field data, experiments, and modeling, but must also be useful to decision makers who likely do not understand all aspects of the underlying science. We review a decision framework used in many fields such as performance assessment for hazardous and/or radioactive waste disposal sites that can serve to guide the volcanological community towards integrated risk assessment. In this framework the underlying scientific understanding of processes that affect probability and consequences drive the decision-level results, but in turn these results can drive focused research in areas that cause the greatest level of uncertainty at the decision level. We review two examples of the determination of volcanic event probability: (1) probability of a new volcano forming at the proposed Yucca Mountain radioactive waste repository, and (2) probability that a subsurface repository in Japan would be affected by the nearby formation of a new stratovolcano. We also provide examples of work on consequences of explosive eruptions, within the framework mentioned above. These include field-based studies aimed at providing data for ''closure'' of wall rock erosion terms in a conduit flow model, predictions of dynamic pressure and other variables related to damage by pyroclastic flow into underground structures, and vulnerability criteria for structures subjected to conditions of explosive eruption. Process models (e.g., multiphase flow) are important for testing the validity or relative importance of possible scenarios in a volcanic risk assessment. We show how time-dependent multiphase modeling of explosive ''eruption'' of basaltic magma into an open tunnel (drift) at the Yucca Mountain repository provides insight into proposed scenarios that include the development of secondary pathways to the Earth's surface. Addressing volcanic risk within a decision

  2. Climatic impact of volcanic eruptions

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  3. Rate of volcanism on Venus

    International Nuclear Information System (INIS)

    Fegley, B. Jr.; Prinn, R.G.

    1988-07-01

    The maintenance of the global H 2 SO 4 clouds on Venus requires volcanism to replenish the atmospheric SO 2 which is continually being removed from the atmosphere by reaction with calcium minerals on the surface of Venus. The first laboratory measurements of the rate of one such reaction, between SO 2 and calcite (CaCO 3 ) to form anhydrite (CaSO 4 ), are reported. If the rate of this reaction is representative of the SO 2 reaction rate at the Venus surface, then we estimate that all SO 2 in the Venus atmosphere (and thus the H 2 SO 4 clouds) will be removed in 1.9 million years unless the lost SO 2 is replenished by volcanism. The required rate of volcanism ranges from about 0.4 to about 11 cu km of magma erupted per year, depending on the assumed sulfur content of the erupted material. If this material has the same composition as the Venus surface at the Venera 13, 14 and Vega 2 landing sites, then the required rate of volcanism is about 1 cu km per year. This independent geochemically estimated rate can be used to determine if either (or neither) of the two discordant (2 cu km/year vs. 200 to 300 cu km/year) geophysically estimated rates is correct. The geochemically estimated rate also suggests that Venus is less volcanically active than the Earth

  4. Assessment and Evaluation of Volcanic Rocks Used as Construction ...

    African Journals Online (AJOL)

    Assessment and Evaluation of Volcanic Rocks Used as Construction Materials in the City of Addis Ababa. ... So, field observation and sample collection for laboratory investigations were conducted on six selected target areas of the city periphery. In doing so, the compressive strength, open porosity, water absorption and ...

  5. Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada

    Science.gov (United States)

    du Bray, Edward A.; John, David A.; Box, Stephen E.; Vikre, Peter G.; Fleck, Robert J.; Cousens, Brian L.

    2013-04-23

    Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada // // This report presents petrographic and geochemical data for samples collected during investigations of Tertiary volcanism in the Bodie Hills of California and Nevada. Igneous rocks in the area are principally 15–6 Ma subduction-related volcanic rocks of the Bodie Hills volcanic field but also include 3.9–0.1 Ma rocks of the bimodal, post-subduction Aurora volcanic field. Limited petrographic results for local basement rocks, including Mesozoic granitoid rocks and their metamorphic host rocks, are also included in the compilation. The petrographic data include visual estimates of phenocryst abundances as well as other diagnostic petrographic criteria. The geochemical data include whole-rock major oxide and trace element data, as well as limited whole-rock isotopic data.

  6. Volcanic Eruptions in Kamchatka

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Sheveluch Stratovolcano Click on the image for full resolution TIFF Klyuchevskoy Stratovolcano Click on the image for full resolution TIFF One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. On April 26, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radioneter (ASTER) on NASA's Terra spacecraft captured these images of the Klyuchevskoy and Sheveluch stratovolcanoes, erupting simultaneously, and 80 kilometers (50 miles) apart. Over Klyuchevskoy, the thermal infrared data (overlaid in red) indicates that two open-channel lava flows are descending the northwest flank of the volcano. Also visible is an ash-and-water plume extending to the east. Sheveluch volcano is partially cloud-covered. The hot flows highlighted in red come from a lava dome at the summit. They are avalanches of material from the dome, and pyroclastic flows. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and

  7. Revised paleomagnetic pole for the Sonoma Volcanics, California

    Science.gov (United States)

    Mankinen, E.A.

    1989-01-01

    Paleomagnetic sampling of the Miocene and Pliocene Sonoma Volcanics, northern California, was undertaken to supplement an earlier collection. Data from 25 cooling units yield positive fold and reversal tests, and a paleomagnetic pole located at 80.2??N., 069.2??E., with ??95 = 6.8??. This paleopole is significantly displaced (9.6?? ?? 5.3?? of latitude) to the farside of the geographic pole. A highly elliptical distribution of the data in both direction and VGP space indicates that incomplete averaging of geomagnetic secular variation is a more likely explanation for this anomaly than is northward translation of the volcanic field. -Author

  8. Volcanic eruptions and solar activity

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  9. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II

    International Nuclear Information System (INIS)

    Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.; Gladney, E.; Bower, N.

    1986-01-01

    Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns of basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs

  10. Recurrence models of volcanic events: Applications to volcanic risk assessment

    International Nuclear Information System (INIS)

    Crowe, B.M.; Picard, R.; Valentine, G.; Perry, F.V.

    1992-01-01

    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km 2 area of Yucca Mountain by ascending basalt magma was bounded by the range of 10 -8 to 10 -10 yr -1 2 . The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site

  11. Ilchulbong tuff cone, Jeju Island, Korea, revisited: A compound monogenetic volcano involving multiple magma batches, shifting vents, and discrete eruptive phases

    Science.gov (United States)

    Sohn, Y.; Brenna, M.; Smith, I. E.; Nemeth, K.; White, J. D.; Murtagh, R.; Jeon, Y.; Kwon, C.; Cronin, S. J.

    2010-12-01

    detecting potential shifts in eruption chemistry and vent location. It appears that if eruption breaks are short, successive magma batches follow the same path, whereas if pauses are greater than a critical period, conduit solidification will force vent migration for subsequent magma batches. This has important implications for examining the controls of vent migration at other monogenetic volcanoes and for emergency management planning during future similar types of eruptions.

  12. Candidate constructional volcanic edifices on Mercury

    OpenAIRE

    Wright, J.; Rothery, D. A.; Balme, M. R.; Conway, S. J.

    2018-01-01

    [Introduction] Studies using MESSENGER data suggest that Mercury’s crust is predominantly a product of effusive volcanism that occurred in the first billion years following the planet’s formation. Despite this planet-wide effusive volcanism, no constructional volcanic edifices, characterized by a topographic rise, have hitherto been robustly identified on Mercury, whereas constructional volcanoes are common on other planetary bodies in the solar system with volcanic histories. Here, we descri...

  13. Geologic field-trip guide to Mount Shasta Volcano, northern California

    Science.gov (United States)

    Christiansen, Robert L.; Calvert, Andrew T.; Grove, Timothy L.

    2017-08-18

    The southern part of the Cascades Arc formed in two distinct, extended periods of activity: “High Cascades” volcanoes erupted during about the past 6 million years and were built on a wider platform of Tertiary volcanoes and shallow plutons as old as about 30 Ma, generally called the “Western Cascades.” For the most part, the Shasta segment (for example, Hildreth, 2007; segment 4 of Guffanti and Weaver, 1988) of the arc forms a distinct, fairly narrow axis of short-lived small- to moderate-sized High Cascades volcanoes that erupted lavas, mainly of basaltic-andesite or low-silica-andesite compositions. Western Cascades rocks crop out only sparsely in the Shasta segment; almost all of the following descriptions are of High Cascades features except for a few unusual localities where older, Western Cascades rocks are exposed to view along the route of the field trip.The High Cascades arc axis in this segment of the arc is mainly a relatively narrow band of either monogenetic or short-lived shield volcanoes. The belt generally averages about 15 km wide and traverses the length of the Shasta segment, roughly 100 km between about the Klamath River drainage on the north, near the Oregon-California border, and the McCloud River drainage on the south (fig. 1). Superposed across this axis are two major long-lived stratovolcanoes and the large rear-arc Medicine Lake volcano. One of the stratovolcanoes, the Rainbow Mountain volcano of about 1.5–0.8 Ma, straddles the arc near the midpoint of the Shasta segment. The other, Mount Shasta itself, which ranges from about 700 ka to 0 ka, lies distinctly west of the High Cascades axis. It is notable that Mount Shasta and Medicine Lake volcanoes, although volcanologically and petrologically quite different, span about the same range of ages and bracket the High Cascades axis on the west and east, respectively.The field trip begins near the southern end of the Shasta segment, where the Lassen Volcanic Center field trip leaves

  14. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1979-01-01

    Three basic topics are addressed for the disruptive event analysis: first, the range of disruptive consequences of a radioactive waste repository by volcanic activity; second, the possible reduction of the risk of disruption by volcanic activity through selective siting of a repository; and third, the quantification of the probability of repository disruption by volcanic activity

  15. Hubble Captures Volcanic Eruption Plume From Io

    Science.gov (United States)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through the plume and is

  16. A Volcanic Hydrogen Habitable Zone

    International Nuclear Information System (INIS)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-01-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N_2–CO_2–H_2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO_2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H_2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N_2–CO_2–H_2O–H_2) can be sustained as long as volcanic H_2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H_2 warming is reduced in dense H_2O atmospheres. The atmospheric scale heights of such volcanic H_2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  17. A Volcanic Hydrogen Habitable Zone

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ramses M.; Kaltenegger, Lisa, E-mail: rmr277@cornell.edu [Carl Sagan Institute, Cornell University, Ithaca, NY (United States)

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N{sub 2}–CO{sub 2}–H{sub 2}O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO{sub 2} outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H{sub 2} can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N{sub 2}–CO{sub 2}–H{sub 2}O–H{sub 2}) can be sustained as long as volcanic H{sub 2} output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H{sub 2} warming is reduced in dense H{sub 2}O atmospheres. The atmospheric scale heights of such volcanic H{sub 2} atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  18. Supercomputer modeling of volcanic eruption dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, S.W. [Arizona State Univ., Tempe, AZ (United States); Valentine, G.A. [Los Alamos National Lab., NM (United States); Woo, Mahn-Ling [Arizona State Univ., Tempe, AZ (United States)

    1995-06-01

    Our specific goals are to: (1) provide a set of models based on well-defined assumptions about initial and boundary conditions to constrain interpretations of observations of active volcanic eruptions--including movies of flow front velocities, satellite observations of temperature in plumes vs. time, and still photographs of the dimensions of erupting plumes and flows on Earth and other planets; (2) to examine the influence of subsurface conditions on exit plane conditions and plume characteristics, and to compare the models of subsurface fluid flow with seismic constraints where possible; (3) to relate equations-of-state for magma-gas mixtures to flow dynamics; (4) to examine, in some detail, the interaction of the flowing fluid with the conduit walls and ground topography through boundary layer theory so that field observations of erosion and deposition can be related to fluid processes; and (5) to test the applicability of existing two-phase flow codes for problems related to the generation of volcanic long-period seismic signals; (6) to extend our understanding and simulation capability to problems associated with emplacement of fragmental ejecta from large meteorite impacts.

  19. Robust satellite techniques for monitoring volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Pergola, N.; Pietrapertosa, C. [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate, Tito Scalo, PZ (Italy); Lacava, T.; Tramutoli, V. [Potenza Universita' della Basilicata, Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente

    2001-04-01

    Through this paper the robust approach to monitoring volcanic aerosols by satellite is applied to an extended set of events affecting Stromboli and Etna volcanoes to assess its performance in automated detection of eruptive clouds and in monitoring pre-eruptive emission activities. Using only NOAA/AVHRR data at hand (without any specific atmospheric model or ancillary ground-based measurements) the proposed method automatically discriminates meteorological from eruptive volcanic clouds and, in several cases, identified pre-eruptive anomalies in the emission rates not identified by traditional methods. The main merit of this approach is its effectiveness in recognising field anomalies also in the presence of a highly variable surface background as well as its intrinsic exportability not only on different geographic areas but also on different satellite instrumental packages. In particular, the possibility to extend the proposed method to the incoming new MSG/SEVIRI satellite package (which is going to fly next year) with its improved spectral (specific bands for SO{sub 2}) and temporal (up to 15 min) resolutions has been evaluated representing the natural continuation of this work.

  20. The scientific management of volcanic crises

    Science.gov (United States)

    Marzocchi, Warner; Newhall, Christopher; Woo, Gordon

    2012-12-01

    Sound scientific management of volcanic crises is the primary tool to reduce significantly volcanic risk in the short-term. At present, a wide variety of qualitative or semi-quantitative strategies is adopted, and there is not yet a commonly accepted quantitative and general strategy. Pre-eruptive processes are extremely complicated, with many degrees of freedom nonlinearly coupled, and poorly known, so scientists must quantify eruption forecasts through the use of probabilities. On the other hand, this also forces decision-makers to make decisions under uncertainty. We review the present state of the art in this field in order to identify the main gaps of the existing procedures. Then, we put forward a general quantitative procedure that may overcome the present barriers, providing guidelines on how probabilities may be used to take rational mitigation actions. These procedures constitute a crucial link between science and society; they can be used to establish objective and transparent decision-making protocols and also clarify the role and responsibility of each partner involved in managing a crisis.

  1. Interaction between climate, volcanism, and isostatic rebound in Southeast Alaska during the last deglaciation

    Science.gov (United States)

    Praetorius, Summer; Mix, Alan; Jensen, Britta; Froese, Duane; Milne, Glenn A.; Wolhowe, Matthew; Addison, Jason A.; Prahl, Fred

    2016-01-01

    Observations of enhanced volcanic frequency during the last deglaciation have led to the hypothesis that ice unloading in glaciated volcanic terrains can promote volcanism through decompression melting in the shallow mantle or a reduction in crustal magma storage time. However, a direct link between regional climate change, isostatic adjustment, and the initiation of volcanism remains to be demonstrated due to the difficulty of obtaining high-resolution well-dated records that capture short-term climate and volcanic variability traced to a particular source region. Here we present an exceptionally resolved record of 19 tephra layers paired with foraminiferal oxygen isotopes and alkenone paleotemperatures from marine sediment cores along the Southeast Alaska margin spanning the last deglacial transition. Major element compositions of the tephras indicate a predominant source from the nearby Mt. Edgecumbe Volcanic Field (MEVF). We constrain the timing of this regional eruptive sequence to 14.6–13.1 ka. The sudden increase in volcanic activity from the MEVF coincides with the onset of Bølling–Allerød interstadial warmth, the disappearance of ice-rafted detritus, and rapid vertical land motion associated with modeled regional isostatic rebound in response to glacier retreat. These data support the hypothesis that regional deglaciation can rapidly trigger volcanic activity. Rapid sea surface temperature fluctuations and an increase in local salinity (i.e., δ18Osw) variability are associated with the interval of intense volcanic activity, consistent with a two-way interaction between climate and volcanism in which rapid volcanic response to ice unloading may in turn enhance short-term melting of the glaciers, plausibly via albedo effects on glacier ablation zones.

  2. Calderas and mineralization: volcanic geology and mineralization in the Chianti caldera complex, Trans-Pecos Texas

    Energy Technology Data Exchange (ETDEWEB)

    Duex, T.W.; Henry, C.D.

    1981-01-01

    This report describes preliminary results of an ongoing study of the volcanic stratigraphy, caldera activity, and known and potential mineralization of the Chinati Mountains area of Trans-Pecos Texas. Many ore deposits are spatially associated with calderas and other volcanic centers. A genetic relationship between calderas and base and precious metal mineralization has been proposed by some and denied by others. Steven and others have demonstrated that calderas provide an important setting for mineralization in the San Juan volcanic field of Colorado. Mineralization is not found in all calderas but is apparently restricted to calderas that had complex, postsubsidence igneous activity. A comparison of volcanic setting, volcanic history, caldera evolution, and evidence of mineralization in Trans-Pecos to those of the San Juan volcanic field, a major mineral producer, indicates that Trans-Pecos Texas also could be an important mineralized region. The Chianti caldera complex in Trans-Pecos Texas contains at least two calderas that have had considerable postsubsidence activity and that display large areas of hydrothermal alteration and mineralization. Abundant prospects in Trans-Pecos and numerous producing mines immediately south of the Trans-Pecos volcanic field in Mexico are additional evidence that ore-grade deposits could occur in Texas.

  3. Integrating geological and geophysical data to improve probabilistic hazard forecasting of Arabian Shield volcanism

    Science.gov (United States)

    Runge, Melody G.; Bebbington, Mark S.; Cronin, Shane J.; Lindsay, Jan M.; Moufti, Mohammed R.

    2016-02-01

    During probabilistic volcanic hazard analysis of volcanic fields, a greater variety of spatial data on crustal features should help improve forecasts of future vent locations. Without further examination, however, geophysical estimations of crustal or other features may be non-informative. Here, we present a new, robust, non-parametric method to quantitatively determine the existence of any relationship between natural phenomena (e.g., volcanic eruptions) and a variety of geophysical data. This provides a new validation tool for incorporating a range of potentially hazard-diagnostic observable data into recurrence rate estimates and hazard analyses. Through this study it is shown that the location of Cenozoic volcanic fields across the Arabian Shield appear to be related to locations of major and minor faults, at higher elevations, and regions where gravity anomaly values were between - 125 mGal and 0 mGal. These findings support earlier hypotheses that the western shield uplift was related to Cenozoic volcanism. At the harrat (volcanic field)-scale, higher vent density regions are related to both elevation and gravity anomaly values. A by-product of this work is the collection of existing data on the volcanism across Saudi Arabia, with all vent locations provided herein, as well as updated maps for Harrats Kura, Khaybar, Ithnayn, Kishb, and Rahat. This work also highlights the potential dangers of assuming relationships between observed data and the occurrence of a natural phenomenon without quantitative assessment or proper consideration of the effects of data resolution.

  4. Unzen volcanic rocks as heat source of geothermal activity

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masao; Sugiyama, Hiromi

    1987-03-25

    Only a few radiometric ages have been reported so far for the Unzen volcanic rocks. In this connection, in order to clarify the relation between volcanism and geothermal activity, fission track ages of zircon seperated from the Unzen volcanic rocks in western Kyushu have been dated. Since all the rocks are thought to be young, the external surface re-etch method was adopted. The results are that the age and standard error of the basal volcaniclastic rocks of the Tatsuishi formation are 0.28 +- 0.05 Ma and 0.25 +- 0.05 Ma. The next oldest Takadake lavas range from 0.26 to 0.20 Ma. The Kusenbudake lavas fall in a narrow range from 0.19 to 0.17 Ma. The latest Fugendake lavas are younger than 0.07 Ma.In conclusion, the most promising site for geothermal power generation is the Unzen hot spring field because of its very high temperature. After that, comes the Obama hot spring field because of the considerable high temperature chemically estimated. In addition, the northwestern area of the Unzen volcanic region will be promising for electric power generation in spite of no geothermal manifestations, since its volcanos are younger than 0.2 Ma. (14 figs, 14 tabs, 22 refs)

  5. The Massive Compound Cofre de Perote Shield Volcano: a Volcanological Oddity in the Eastern Mexican Volcanic Belt

    Science.gov (United States)

    Siebert, L.; Carrasco-Nunez, G.; Diaz-Castellon, R.; Rodriguez, J. L.

    2007-12-01

    Cofre de Perote volcano anchors the northern end of the easternmost of several volcanic chains orthogonal to the E-W trend of the Mexican Volcanic Belt (MVB). Its structure, geochemistry, and volcanic history diverge significantly from that of the large dominantly andesitic stratovolcanoes that have been the major focus of research efforts in the MVB. Andesitic-trachyandesitic to dacitic-trachydacitic effusive activity has predominated at Cofre de Perote, forming a massive low-angle compound shield volcano that dwarfs the more typical smaller shield volcanoes of the central and western MVB. The 4282-m-high volcano overlooking Xalapa, the capital city of the State of Veracruz, has a diameter of about 30 km and rises more than 3000 m above the coastal plain to the east. Repeated edifice collapse has left massive horseshoe-shaped scarps that truncate the eastern side of the edifice. Five major evolutionary stages characterize the growth of this compound volcano: 1) emplacement of a multiple-vent dome complex forming the basal structure of Cofre de Perote around 1.9-1.3 Ma; 2) construction of the basal part of the compound shield volcano from at least two main upper-edifice vents at about 400 ka; 3) effusion of the summit dome-like lavas through multiple vents at ca. 240 ka; 4) eruption of a large number of geochemically diverse, alkaline and calc-alkaline Pleistocene-to-Holocene monogenetic cones (likely related to regional volcanism) through the flanks of the Cofre de Perote edifice; 5) late-stage, large-volume edifice collapse on at least two occasions (ca. 40 ka and ca. 10 ka), producing long-runout debris avalanches that traveled to the east. An undated tephra layer from Cofre de Perote overlies deposits likely of the youngest collapse. Cofre de Perote is one of several volcanoes in the roughly N-S-trending chain that has undergone major edifice collapse. As with Citlaltepetl (Pico de Orizaba) and Las Cumbres volcanoes, Cofre de Perote was constructed at the

  6. Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji

    International Nuclear Information System (INIS)

    Cronin, S.J.; Neall, V.E.

    2001-01-01

    The Holocene volcanic geology of Taveuni has been mapped in order to produce a volcanic hazard and risk assessment for the island. Taveuni is the third-largest island of the Fiji group and home to 14,500 people. At least cubic km 2.7 of olivine-alkali-basalt magma was erupted from over 100 events throughout the Holocene. Vents are concentrated along a northeast-striking rift zone that is parallel to other regional structural trends. There is an overall trend of younging southward along the rift. Holocene lavas and tephras are grouped within six newly defined eruptive periods, established on a basis of radiocarbon dating. Within these periods, 14 tephra layers, useful as local marker horizons, are recognised. At least 58% of Holocene eruptions produced lava flows, while almost all produced some tephra. Individual eruption event volumes ranged between 0.001 and cubic km 0.20 (dense rock equivalent). Many eruptions involved at least some phases of phreatic and/or phreato-magmatic activity, although dominant hydrovolcanic activity was limited to only a few events. A volcanic hazard map is presented, based on the Holocene geology map and statistical analyses of eruption recurrence. The highest levels of ground-based and near-vent hazards are concentrated along the southern portion of the island's rift axis, with the paths of initial lava flows predicted from present topography. Tephra fall hazards are based on eruption parameters interpreted from mapped Holocene tephra layers. Hawaiian explosive-style eruptions appear to be a dominant eruptive process, with prevailing low-level (<3 km) southeasterly winds dispersing most tephra to the northwestern quadrant. Vulnerable elements (population centres, infrastructure, and economy) on Taveuni have been considered in deriving a volcanic risk assessment for the island. A number of infrastructural and subdivision developments are either under way or planned for the island, driven by its highly fertile soils and availability of

  7. Can rain cause volcanic eruptions?

    Science.gov (United States)

    Mastin, Larry G.

    1993-01-01

    Volcanic eruptions are renowned for their violence and destructive power. This power comes ultimately from the heat and pressure of molten rock and its contained gases. Therefore we rarely consider the possibility that meteoric phenomena, like rainfall, could promote or inhibit their occurrence. Yet from time to time observers have suggested that weather may affect volcanic activity. In the late 1800's, for example, one of the first geologists to visit the island of Hawaii, J.D. Dana, speculated that rainfall influenced the occurrence of eruptions there. In the early 1900's, volcanologists suggested that some eruptions from Mount Lassen, Calif., were caused by the infiltration of snowmelt into the volcano's hot summit. Most such associations have not been provable because of lack of information; others have been dismissed after careful evaluation of the evidence.

  8. Source mechanisms of volcanic tsunamis.

    Science.gov (United States)

    Paris, Raphaël

    2015-10-28

    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  9. Volcanic deformation in the Andes

    Science.gov (United States)

    Riddick, S.; Fournier, T.; Pritchard, M.

    2009-05-01

    We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.

  10. Volcanic mercury in Pinus canariensis

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  11. Source mechanism of volcanic tremor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrick, M.G.; Qamar, A.; St. Lawrence, W.F.

    1982-10-10

    Low-frequency (<10 Hz) volcanic earthquakes originate at a wide range of depths and occur before, during, and after magmatic eruptions. The characteristics of these earthquakes suggest that they are not typical tectonic events. Physically analogous processes occur in hydraulic fracturing of rock formations, low-frequency icequakes in temperate glaciers, and autoresonance in hydroelectric power stations. We propose that unsteady fluid flow in volcanic conduits is the common source mechanism of low-frequency volcanic earthquakes (tremor). The fluid dynamic source mechanism explains low-frequency earthquakes of arbitrary duration, magnitude, and depth of origin, as unsteady flow is independent of physical properties of the fluid and conduit. Fluid transients occur in both low-viscosity gases and high-viscosity liquids. A fluid transient analysis can be formulated as generally as is warranted by knowledge of the composition and physical properties of the fluid, material properties, geometry and roughness of the conduit, and boundary conditions. To demonstrate the analytical potential of the fluid dynamic theory, we consider a single-phase fluid, a melt of Mount Hood andesite at 1250/sup 0/C, in which significant pressure and velocity variations occur only in the longitudinal direction. Further simplification of the conservation of mass and momentum equations presents an eigenvalue problem that is solved to determine the natural frequencies and associated damping of flow and pressure oscillations.

  12. Volcanic mercury in Pinus canariensis.

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg(-1)) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg(-1)). Thus, mercury emissions originating from the eruption remained only as a mark-in pyroclastic wounds-and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg(-1)) and bark (6.0 μg kg(-1)) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  13. Water and gas geochemistry of the Calatrava Volcanic Province (CVP) hydrothermal system (Ciudad Real, central Spain)

    Science.gov (United States)

    Vaselli, Orlando; Nisi, Barbara; Tassi, Franco; Giannini, Luciano; Grandia, Fidel; Darrah, Tom; Capecchiacci, Francesco; del Villar, Pèrez

    2013-04-01

    An extensive geochemical and isotopic investigation was carried out in the water and gas discharges of the Late Miocene-Quaternary Calatrava Volcanic Province (CVP) (Ciudad Real, Spain) with the aim reconstruct the fluid circulation in the area. CVP consists of a series of scattered (monogenetic) vents from where alkaline lava flows and pyroclastic deposits formed in two different periods. The first stage (8.7-6.4 Ma) mainly included ultra-potassic mafic extrusives, whilst the second stage (4.7-1.75 Ma) prevalently originated alkaline and ultra-alkaline volcanics. Both stages were followed by a volcanic activity that extended up to 1.3 and 0.7 Ma, respectively. This area can likely be regarded as one of the most important emitting zones of CO2 in the whole Peninsular Spain along with that of Selva-Emporda in northeastern Spain (Cataluña) and it can be assumed as one of the best examples of natural analogues of CO2 leakages in Spain. This latter aspect is further evidenced by the relatively common water-gas blast events that characterize the CCVF. In the last few years the presence of a CO2-pressurized reservoir at a relatively shallow level as indeed caused several small-sized explosion particularly during the drilling of domestic wells. The fluid discharging sites are apparently aligned along well-defined directions: NW-SE and NNW-SSE and subordinately, ENE-WSW, indicating a clear relationship between the thermal discharges and the volcanic centers that also distribute along these lineaments. The CVP waters are mostly hypothermal (up to 33 °C) and are generally Mg(Ca)-HCO3 in composition and occasionally show relatively high concentrations of Fe and Mn, with pH and electrical conductivity down to 5.5 and up to 6.5 mS/cm, respectively. The oxygen and hydrogen isotopes suggest a meteoric origin for these waters. The mantle source of these volcanic products is apparently preserved in the many CO2-rich (up to 990,000 mmol/mol) gas discharges that characterize CVP

  14. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity

  15. The volcanism of the western part of the Los Frailes Meseta (Bolivia): a representative example of the Andean volcanism since the Upper Oligocene

    International Nuclear Information System (INIS)

    Leroy, L.; Jimenez, N.

    1996-01-01

    The Los Frailes Meseta (Bolivia) is one of the large tertiary ignimbritic fields of the inner volcanic arc from Central Andes (Central Volcanic Zone. CVZ), in contact zone between the Altiplano to the west and the Eastern Cordillera to the east. Field observations and mineralogical and geochemical studies (major and trace elements) lead to distinguish two types of volcanism in the western border to the Meseta. During the Middle Miocene and Pliocene, the volcanic activity can be subdivided into three pyroclastic emission cycles, the Larco, Coroma and Pliocene ignimbrites, the first two being separated by the Quechua 2 orogeny. All these ignimbrites are very similar and correspond to peraluminous rhyolites to rhyodacites. In the studies area, the Coroma cycle is the only one where an ignimbrite-less evolved resurgent dome association can be observed. Beside these ignimbrites, isolated small lava flows and domes overlay and/or intrude all the other formations. They are meta-aluminous lavas with a shoshonitic affinity. A quaternary age can be attributed to his second volcanism. These two volcanic types are well-known in the CVZ and are related to the different deformation stages, either compressional or extensional, which occur alternately in the Cordillera since 26 Ma. (authors). 61 refs., 12 figs., 3 tabs

  16. Recent advances in ground-based ultraviolet remote sensing of volcanic SO2 fluxes

    Directory of Open Access Journals (Sweden)

    Euripides P. Kantzas

    2011-06-01

    Full Text Available Measurements of volcanic SO2 emission rates have been the mainstay of remote-sensing volcanic gas geochemistry for almost four decades, and they have contributed significantly to our understanding of volcanic systems and their impact upon the atmosphere. The last ten years have brought step-change improvements in the instrumentation applied to these observations, which began with the application of miniature ultraviolet spectrometers that were deployed in scanning and traverse configurations, with differential optical absorption spectroscopy evaluation routines. This study catalogs the more recent empirical developments, including: ultraviolet cameras; wide-angle field-of-view differential optical absorption spectroscopy systems; advances in scanning operations, including tomography; and improved understanding of errors, in particular concerning radiative transfer. Furthermore, the outcomes of field deployments of sensors during the last decade are documented, with respect to improving our understanding of volcanic dynamics and degassing into the atmosphere.

  17. Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.; Flexser, S.

    1984-12-01

    Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

  18. Volcanism in the Sumisu Rift. Pt. 2

    International Nuclear Information System (INIS)

    Hochstaedter, A.G.; Gill, J.B.; Morris, J.D.

    1990-01-01

    A bimodal suite of volcanic rocks collected from the Sumisu Rift by ALVIN provide present day example of the first magmatic products of arc rifting during the initiation of back-arc spreading. The trace element and isotopic composition of these rocks, which are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, differ from those of arc rocks and N-MORB in their relative incorporation of both subduction-related and non-subduction-related components. Subduction-related components, i.e., those that distinguish volcanic arc basalts from N-MORB, are less pronounced in rift lavas than in arc lavas. Alkali and alkaline earth to high field strength element and REE ratios as well as 87 Sr/ 86 Sr are intermediate between those of N-MORB and Izu arc lavas and indicate that Sumisu Rift basalts are similar to BABB erupted in other, more mature back-arc basins. These results show that back-arc basins may begin their magmatic evolution with BABB rather than more arc-like lavas. Evidence of non-subduction related components remains after the effects of subduction related components are removed or accounted for. Compared to the arc, higher HFSE and REE concentrations, contrasting REE patterns, and ≤ε Nd in the rift reflect derivation of rift lavas from more enriched components. Although SR basalt resembles E-MORB in many trace element ratios, it is referred to as BABB because low concentrations of Nb are similar to those in volcanic arcs and H 2 O/REE and H 2 O/K 2 O exceed those of E-MORB. Differences in HREE pattern and ε Nd require that the E-MORB characteristics result from source heterogeneities and not lower degrees of melting. Enriched mantle beneath the rift may reflect enriched blobs entrained in a more depleted matrix, or injection of new, more enriched mantle. High 208 Pb/ 204 Pb and moderate 207 Pb/ 204 Pb ratios with respect to Pacific MORB also reflect ancient mantle enrichment. (orig.)

  19. Volcanic hazards and public response

    Science.gov (United States)

    Peterson, Donald W.

    1988-05-01

    Although scientific understanding of volcanoes is advancing, eruptions continue to take a substantial toll of life and property. Some of these losses could be reduced by better advance preparation, more effective flow of information between scientists and public officials, and better understanding of volcanic behavior by all segments of the public. The greatest losses generally occur at volcanoes that erupt infrequently where people are not accustomed to dealing with them. Scientists sometimes tend to feel that the blame for poor decisions in emergency management lies chiefly with officials or journalists because of their failure to understand the threat. However, the underlying problem embraces a set of more complex issues comprising three pervasive factors. The first factor is the volcano: signals given by restless volcanoes are often ambiguous and difficult to interpret, especially at long-quiescent volcanoes. The second factor is people: people confront hazardous volcanoes in widely divergent ways, and many have difficulty in dealing with the uncertainties inherent in volcanic unrest. The third factor is the scientists: volcanologists correctly place their highest priority on monitoring and hazard assessment, but they sometimes fail to explain clearly their conclusions to responsible officials and the public, which may lead to inadequate public response. Of all groups in society, volcanologists have the clearest understanding of the hazards and vagaries of volcanic activity; they thereby assume an ethical obligation to convey effectively their knowledge to benefit all of society. If society resists, their obligation nevertheless remains. They must use the same ingenuity and creativity in dealing with information for the public that they use in solving scientific problems. When this falls short, even excellent scientific results may be nullified.

  20. Detecting Volcanic Ash Plumes with GNSS Signals

    Science.gov (United States)

    Rainville, N.; Larson, K. M.; Palo, S. E.; Mattia, M.; Rossi, M.; Coltelli, M.; Roesler, C.; Fee, D.

    2016-12-01

    Global Navigation Satellite Systems (GNSS) receivers are commonly placed near volcanic sites to measure ground deformation. In addition to the carrier phase data used to measure ground position, these receivers also record Signal to Noise ratio (SNR) data. Larson (2013) showed that attenuations in SNR data strongly correlate with ash emissions at a series of eruptions of Redoubt Volcano. This finding has been confirmed at eruptions for Tongariro, Mt Etna, Mt Shindake, and Sakurajima. In each of these detections, very expensive geodetic quality GNSS receivers were used. If low-cost GNSS instruments could be used instead, a networked array could be deployed and optimized for plume detection and tomography. The outputs of this sensor array could then be used by both local volcanic observatories and Volcano Ash Advisory Centers. Here we will describe progress in developing such an array. The sensors we are working with are intended for navigation use, and thus lack the supporting power and communications equipment necessary for a networked system. Reliably providing those features is major challenge for the overall sensor design. We have built prototypes of our Volcano Ash Plume Receiver (VAPR), with solar panels, lithium-ion batteries and onboard data storage for preliminary testing. We will present results of our field tests of both receivers and antennas. A second critical need for our array is a reliable detection algorithm. We have tested our algorithm on data from recent eruptions and have incorporated the noise characteristics of the low-cost GNSS receiver. We have also developed a simulation capability so that the receivers can be deployed to optimize vent crossing GNSS signals.

  1. Rapid response of a hydrologic system to volcanic activity: Masaya volcano, Nicaragua

    Science.gov (United States)

    Pearson, S.C.P.; Connor, C.B.; Sanford, W.E.

    2008-01-01

    Hydrologic systems change in response to volcanic activity, and in turn may be sensitive indicators of volcanic activity. Here we investigate the coupled nature of magmatic and hydrologic systems using continuous multichannel time series of soil temperature collected on the flanks of Masaya volcano, Nicaragua, one of the most active volcanoes in Central America. The soil temperatures were measured in a low-temperature fumarole field located 3.5 km down the flanks of the volcano. Analysis of these time series reveals that they respond extremely rapidly, on a time scale of minutes, to changes in volcanic activity also manifested at the summit vent. These rapid temperature changes are caused by increased flow of water vapor through flank fumaroles during volcanism. The soil temperature response, ~5 °C, is repetitive and complex, with as many as 13 pulses during a single volcanic episode. Analysis of the frequency spectrum of these temperature time series shows that these anomalies are characterized by broad frequency content during volcanic activity. They are thus easily distinguished from seasonal trends, diurnal variations, or individual rainfall events, which triggered rapid transient increases in temperature during 5% of events. We suggest that the mechanism responsible for the distinctive temperature signals is rapid change in pore pressure in response to magmatism, a response that can be enhanced by meteoric water infiltration. Monitoring of distal fumaroles can therefore provide insight into coupled volcanic-hydrologic-meteorologic systems, and has potential as an inexpensive monitoring tool.

  2. Volcanism in slab tear faults is larger than in island-arcs and back-arcs.

    Science.gov (United States)

    Cocchi, Luca; Passaro, Salvatore; Tontini, Fabio Caratori; Ventura, Guido

    2017-11-13

    Subduction-transform edge propagators are lithospheric tears bounding slabs and back-arc basins. The volcanism at these edges is enigmatic because it is lacking comprehensive geological and geophysical data. Here we present bathymetric, potential-field data, and direct observations of the seafloor on the 90 km long Palinuro volcanic chain overlapping the E-W striking tear of the roll-backing Ionian slab in Southern Tyrrhenian Sea. The volcanic chain includes arc-type central volcanoes and fissural, spreading-type centers emplaced along second-order shears. The volume of the volcanic chain is larger than that of the neighbor island-arc edifices and back-arc spreading center. Such large volume of magma is associated to an upwelling of the isotherms due to mantle melts upraising from the rear of the slab along the tear fault. The subduction-transform edge volcanism focuses localized spreading processes and its magnitude is underestimated. This volcanism characterizes the subduction settings associated to volcanic arcs and back-arc spreading centers.

  3. Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards

    Science.gov (United States)

    Ham, H. J.; Lee, S.; Choi, S. H.; Yun, W. S.

    2015-12-01

    Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards Hee Jung Ham1, Seung-Hun Choi1, Woo-Seok Yun1, Sungsu Lee2 1Department of Architectural Engineering, Kangwon National University, Korea 2Division of Civil Engineering, Chungbuk National University, Korea ABSTRACT In this study, fragility functions are developed to estimate expected volcanic ash damages of the agricultural sector in Korea. The fragility functions are derived from two approaches: 1) empirical approach based on field observations of impacts to agriculture from the 2006 eruption of Merapi volcano in Indonesia and 2) the FOSM (first-order second-moment) analytical approach based on distribution and thickness of volcanic ash observed from the 1980 eruption of Mt. Saint Helens and agricultural facility specifications in Korea. Fragility function to each agricultural commodity class is presented by a cumulative distribution function of the generalized extreme value distribution. Different functions are developed to estimate production losses from outdoor and greenhouse farming. Seasonal climate influences vulnerability of each agricultural crop and is found to be a crucial component in determining fragility of agricultural commodities to an ash fall. In the study, the seasonality coefficient is established as a multiplier of fragility function to consider the seasonal vulnerability. Yields of the different agricultural commodities are obtained from Korean Statistical Information Service to create a baseline for future agricultural volcanic loss estimation. Numerically simulated examples of scenario ash fall events at Mt. Baekdu volcano are utilized to illustrate the application of the developed fragility functions. Acknowledgements This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of

  4. Volcanism and associated hazards: the Andean perspective

    Science.gov (United States)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant

  5. fields

    Directory of Open Access Journals (Sweden)

    Brad J. Arnold

    2014-07-01

    Full Text Available Surface irrigation, such as flood or furrow, is the predominant form of irrigation in California for agronomic crops. Compared to other irrigation methods, however, it is inefficient in terms of water use; large quantities of water, instead of being used for crop production, are lost to excess deep percolation and tail runoff. In surface-irrigated fields, irrigators commonly cut off the inflow of water when the water advance reaches a familiar or convenient location downfield, but this experience-based strategy has not been very successful in reducing the tail runoff water. Our study compared conventional cutoff practices to a retroactively applied model-based cutoff method in four commercially producing alfalfa fields in Northern California, and evaluated the model using a simple sensor system for practical application in typical alfalfa fields. These field tests illustrated that the model can be used to reduce tail runoff in typical surface-irrigated fields, and using it with a wireless sensor system saves time and labor as well as water.

  6. Electrostatic phenomena in volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S J; James, M R; Gilbert, J S, E-mail: s.lane@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2011-06-23

    Electrostatic phenomena have long been associated with the explosive eruption of volcanoes. Lightning generated in volcanic plumes is a spectacular atmospheric electrical event that requires development of large potential gradients over distances of up to kilometres. This process begins as hydrated liquid rock (magma) ascends towards Earth's surface. Pressure reduction causes water supersaturation in the magma and the development of bubbles of supercritical water, where deeper than c. 1000 m, and water vapour at shallower depths that drives flow expansion. The generation of high strain rates in the expanding bubbly magma can cause it to fracture in a brittle manner, as deformation relaxation timescales are exceeded. The brittle fracture provides the initial charge separation mechanism, known as fractoemission. The resulting mixture of charged silicate particles and ions evolves over time, generating macro-scale potential gradients in the atmosphere and driving processes such as particle aggregation. For the silicate particles, aggregation driven by electrostatic effects is most significant for particles smaller than c. 100 {mu}m. Aggregation acts to change the effective aerodynamic behaviour of silicate particles, thus altering the sedimentation rates of particles from volcanic plumes from the atmosphere. The presence of liquid phases also promotes aggregation processes and lightning.

  7. First volcanic CO2 budget estimate for three actively degassing volcanoes in the Central American Volcanic Arc

    Science.gov (United States)

    Robidoux, Philippe; Aiuppa, Alessandro; Conde, Vladimir; Galle, Bo; Giudice, Gaetano; Avard, Geoffroy; Muñoz, Angélica

    2014-05-01

    CO2 is a key chemical tracer for exploring volcanic degassing mechanisms of basaltic magmatic systems (1). The rate of CO2 release from sub-aerial volcanism is monitored via studies on volcanic plumes and fumaroles, but information is still sparse and incomplete for many regions of the globe, including the majority of the volcanoes in the Central American Volcanic Arc (2). Here, we use a combination of remote sensing techniques and in-situ measurements of volcanic gas plumes to provide a first estimate of the CO2 output from three degassing volcanoes in Central America: Turrialba, in Costa Rica, and Telica and San Cristobal, in Nicaragua. During a field campaign in March-April 2013, we obtained (for the three volcanoes) a simultaneous record of SO2 fluxes (from the NOVAC network (3)) and CO2 vs. SO2 concentrations in the near-vent plumes (obtained via a temporary installed fully-automated Multi-GAS instrument (4)). The Multi-GAS time-series allowed to calculate the plume CO2/SO2 ratios for different intervals of time, showing relatively stable gas compositions. Distinct CO2 - SO2 - H2O proportions were observed at the three volcanoes, but still within the range of volcanic arc gas (5). The CO2/SO2 ratios were then multiplied by the SO2 flux in order to derive the CO2 output. At Turrialba, CO2/SO2 ratios fluctuated, between March 12 and 19, between 1.1 and 5.7, and the CO2flux was evaluated at ~1000-1350 t/d (6). At Telica, between March 23 and April 8, a somewhat higher CO2/SO2 ratio was observed (3.3 ± 1.0), although the CO2 flux was evaluated at only ~100-500 t/d (6). At San Cristobal, where observations were taken between April 11 and 15, the CO2/SO2 ratio ranged between 1.8 and 7.4, with a mean CO2 flux of 753 t/d. These measurements contribute refining the current estimates of the total CO2 output from the Central American Volcanic Arc (7). Symonds, R.B. et al., (2001). J. Volcanol. Geotherm. Res., 108, 303-341 Burton, M. R. et al. (2013). Reviews in

  8. Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina

    Science.gov (United States)

    Ibáñez, J. M.; Del Pezzo, E.; Bengoa, C.; Caselli, A.; Badi, G.; Almendros, J.

    2008-07-01

    In the present paper we describe the results of a seismic field survey carried out at Copahue Volcano, Southern Andes, Argentina, using a small-aperture, dense seismic antenna. Copahue Volcano is an active volcano that exhibited a few phreatic eruptions in the last 20 years. The aim of this experiment was to record and classify the background seismic activity of this volcanic area, and locate the sources of local earthquakes and volcanic tremor. Data consist of several volcano-tectonic (VT) earthquakes, and many samples of back-ground seismic noise. We use both ordinary spectral, and multi-spectral techniques to measure the spectral content, and an array technique [Zero Lag Cross Correlation technique] to measure the back-azimuth and apparent slowness of the signals propagating across the array. We locate VT earthquakes using a procedure based on the estimate of slowness vector components and S-P time. VT events are located mainly along the border of the Caviahue caldera lake, positioned at the South-East of Copahue volcano, in a depth interval of 1-3 km below the surface. The background noise shows the presence of many transients with high correlation among the array stations in the frequency band centered at 2.5 Hz. These transients are superimposed to an uncorrelated background seismic signal. Array solutions for these transients show a predominant slowness vector pointing to the exploited geothermal field of "Las Maquinitas" and "Copahue Village", located about 6 km north of the array site. We interpret this coherent signal as a tremor generated by the activity of the geothermal field.

  9. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... are isotopically similar to the Andean Southern Volcanic Zone arc rocks and their mantle source possibly resembled the source of South Atlantic N-MORB prior to addition of fluids and melts from the subduction channel. However, it must have been more enriched than the estimates of depleted upper mantle from...... the lithosphere is thinnest and possibly in areas of elevated mantle temperatures. The pyroxenite melts formed at deeper levels react with the surrounding peridotite and thereby changes composition leading to eruption of melts which experienced variable degrees of melt-peridotite interaction. This can presumably...

  10. Quantitative volcanic susceptibility analysis of Lanzarote and Chinijo Islands based on kernel density estimation via a linear diffusion process

    Science.gov (United States)

    Galindo, I.; Romero, M. C.; Sánchez, N.; Morales, J. M.

    2016-06-01

    Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures.

  11. Volcanic eruption crisis and the challenges of geoscience education in Indonesia

    Science.gov (United States)

    Hariyono, E.; Liliasari, Tjasyono, B.; Madlazim

    2016-02-01

    The study aims was to describe of the profile of geoscience education conducted at the institution of teacher education for answer challenges of volcanic eruption crisis in Indonesia. The method used is descriptive analysis based on result of test and interview to 31 students of physics pre-service teachers about volcanoes through field study. The results showed that the students have a low understanding of volcanic material and there are several problems associated with the volcanoes concept. Other facts are geoscience learning does not support to the formation of geoscience knowledge and skills, dominated by theoretical studies and less focused on effort to preparing students towards disasters particularly to the volcanic eruption. As a recommendation, this require to restructuring geoscience education so as relevant with the social needs. Through courses accordingly, we can greatly help student's physics prospective teacher to improve their participations to solve problems of volcanic eruption crisis in the society.

  12. Development of mobile sensor for volcanic observation "HOMURA": Test campaigns for a long-term operation

    Science.gov (United States)

    Kaneko, K.; Iwahori, K.; Ito, K.; Sagi, H.

    2016-12-01

    Unmanned robots are useful to observe volcanic phenomena near active volcanic vents, to learn symptoms and transitions of eruptions, and to mitigate volcanic disasters. We have been trying to develop a practical UGV robot for flexible observation of active volcanic vents. We named this system "Homura". In this presentation, we report results of test campaigns of Homura for observation in a volcanic field. We have developed a prototype of Homura, which is a small robot vehicle with six wheels (75 x 43 x 31 cm and a weight of about 12 kg). It is remotely controlled with mobile phone radio waves; it can move in volcanic fields and send real time data of sensors (camera and gas sensors) equipped in the vehicle to the base station. Homura has a small solar panel (4 W). Power consumption of Homura is about 4 W in operation of sensors and less than 0.1 W in idle state, so that Homura can work outdoors for a long time by intermittent operation.We carried out two test campaigns of Homura at Iwo-yama to examine if Homura can work for a few month in natural volcanic fields (however, it had no solar panel in these campaigns). Iwo-yama is one of craters in the Kirishima volcanic field, SW Japan; the area within 1 km from the crater was an off-limit area from Oct., 2014 to May, 2015 and from Feb. to Mar., 2016 because of strong volcanic seismicity. On Feb. 19th, 2015 and Mar. 7th, 2016, we carried and put Homura at the rim of the crater. Unfortunately, mobile phone connectivity was not entirely stable around Iwo-yama. Then, we did not move Homura and only obtain real time data of the sensors. In the two campaigns, we operated Homura at our office for a few hours every day for 49 and 37 days, respectively. Although the weather was often bad (rain, fog, or cold temperature) during the campaigns, Homura perfectly worked. The results of these campaigns indicate that Homura is useful as s simple monitoring station in volcanic fields where mobile phone connection is available.

  13. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa

    2013-07-01

    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  14. Reservoir characteristics and control factors of Carboniferous volcanic gas reservoirs in the Dixi area of Junggar Basin, China

    Directory of Open Access Journals (Sweden)

    Ji'an Shi

    2017-02-01

    Full Text Available Field outcrop observation, drilling core description, thin-section analysis, SEM analysis, and geochemistry, indicate that Dixi area of Carboniferous volcanic rock gas reservoir belongs to the volcanic rock oil reservoir of the authigenic gas reservoir. The source rocks make contact with volcanic rock reservoir directly or by fault, and having the characteristics of near source accumulation. The volcanic rock reservoir rocks mainly consist of acidic rhyolite and dacite, intermediate andesite, basic basalt and volcanic breccia: (1 Acidic rhyolite and dacite reservoirs are developed in the middle-lower part of the structure, have suffered strong denudation effect, and the secondary pores have formed in the weathering and tectonic burial stages, but primary pores are not developed within the early diagenesis stage. Average porosity is only at 8%, and the maximum porosity is at 13.5%, with oil and gas accumulation showing poor performance. (2 Intermediate andesite and basic basalt reservoirs are mainly distributed near the crater, which resembles the size of and suggests a volcanic eruption. Primary pores are formed in the early diagenetic stage, secondary pores developed in weathering and erosion transformation stage, and secondary fractures formed in the tectonic burial stage. The average porosity is at 9.2%, and the maximum porosity is at 21.9%: it is of the high-quality reservoir types in Dixi area. (3 The volcanic breccia reservoir has the same diagenetic features with sedimentary rocks, but also has the same mineral composition with volcanic rock; rigid components can keep the primary porosity without being affected by compaction during the burial process. At the same time, the brittleness of volcanic breccia reservoir makes it easily fracture under the stress; internal fracture was developmental. Volcanic breccia developed in the structural high part and suffered a long-term leaching effect. The original pore-fracture combination also made

  15. Dinasour extinction and volcanic activity

    Science.gov (United States)

    Gledhill, J. A.

    There is at present some controversy about the reason for the mass extinction of dinosaurs and other forms of life at the end of the Cretaceous. A suggestion by Alvarez et al. [1980] that this was due to the collision of the earth with a meteorite 10 km or so in diameter has excited considerable interest [Silver and Schultz, 1982] and also some criticism [Stanley, 1984]. A recent publication [Wood, 1984] describing the catastrophic effects of a relatively minor lava flow in Iceland suggests that intense volcanic activity could have played a large part in the extinctions. In this letter it is pointed out that the Deccan lava flows in India took place in the appropriate time and may well have been of sufficient magnitude to be a major factor in the Cretaceous-Tertiary (C-T) boundary catastrophe.

  16. Volcanic unrest and hazard communication in Long Valley Volcanic Region, California

    Science.gov (United States)

    Hill, David P.; Mangan, Margaret T.; McNutt, Stephen R.

    2017-01-01

    emissions. Initial response plans developed by county and state agencies in response to the volcanic unrest began with “The Mono County Volcano Contingency Plan” and “Plan Caldera” by the California Office of Emergency Services in 1982–84. They subsequently became integrated in the regularly updated County Emergency Operation Plan. The alert level system employed by the USGS also evolved from the three-level “Notice-Watch-Warning” system of the early 1980s through a five level color-code to the current “Normal-Advisory-Watch-Warning” ground-based system in conjunction with the international 4-level aviation color-code for volcanic ash hazards. Field trips led by the scientists proved to be a particularly effective means of acquainting local residents and officials with the geologically active environment in which they reside. Relative caldera quiescence from 2000 through 2011 required continued efforts to remind an evolving population that the hazards posed by the 1980–2000 unrest persisted. Renewed uplift of the resurgent dome from 2011 to 2014 was accompanied by an increase in low-level earthquake activity in the caldera and beneath Mammoth Mountain and continues through May 2016. As unrest levels continue to wax and wane, so will the communication challenges.

  17. Active Volcanism on Io as Seen by Galileo SSI

    Science.gov (United States)

    McEwen, A.S.; Keszthelyi, L.; Geissler, P.; Simonelli, D.P.; Carr, M.H.; Johnson, T.V.; Klaasen, K.P.; Breneman, H.H.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Senske, D.A.; Belton, M.J.S.; Schubert, G.

    1998-01-01

    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  18. Volcanic Plume Measurements with UAV (Invited)

    Science.gov (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  19. Fluid and rock interaction in permeable volcanic rock

    International Nuclear Information System (INIS)

    Lindley, J.I.

    1985-01-01

    Four types of interrelated changes -geochemical, mineralogic, isotopic, and physical - occur in Oligocene volcanic units of the Mogollon-Datil volcanic field, New Mexico. These changes resulted from the operation of a geothermal system that, through fluid-rock interaction, affected 5 rhyolite ash-flow tuffs and an intercalated basaltic andesite lava flow causing a potassium metasomatism type of alteration. (1) Previous studies have shown enrichment of rocks in K 2 O as much as 130% of their original values at the expense of Na 2 O and CaO with an accompanying increase in Rb and decreases in MgO and Sr. (2) X-ray diffraction results of this study show that phenocrystic plagioclase and groundmass feldspar have been replaced with pure potassium feldspar and quartz in altered rock. Phenocrystic potassium feldspar, biotite, and quartz are unaffected. Pyroxene in basaltic andesite is replaced by iron oxide. (3) delta 18 O increases for rhyolitic units from values of 8-10 permil, typical of unaltered rock, to 13-15 permil, typical of altered rock. Basaltic andesite, however, shows opposite behavior with a delta 18 of 9 permil in unaltered rock and 6 permit in altered. (4) Alteration results in a density decrease. SEM revealed that replacement of plagioclase by fine-grained quartz and potassium feldspar is not a volume for volume replacement. Secondary porosity is created in the volcanics by the chaotic arrangement of secondary crystals

  20. Using Volcanic Ash to Remove Dissolved Uranium and Lead

    Science.gov (United States)

    McKay, David S.; Cuero, Raul G.

    2009-01-01

    Experiments have shown that significant fractions of uranium, lead, and possibly other toxic and/or radioactive substances can be removed from an aqueous solution by simply exposing the solution, at ambient temperature, to a treatment medium that includes weathered volcanic ash from Pu'u Nene, which is a cinder cone on the Island of Hawaii. Heretofore, this specific volcanic ash has been used for an entirely different purpose: simulating the spectral properties of Martian soil. The treatment medium can consist of the volcanic ash alone or in combination with chitosan, which is a natural polymer that can be produced from seafood waste or easily extracted from fungi, some bacteria, and some algae. The medium is harmless to plants and animals and, because of the abundance and natural origin of its ingredient( s), is inexpensive. The medium can be used in a variety of ways and settings: it can be incorporated into water-filtration systems; placed in contact or mixed with water-containing solids (e.g., soils and sludges); immersed in bodies of water (e.g., reservoirs, lakes, rivers, or wells); or placed in and around nuclear power plants, mines, and farm fields.

  1. The HISTMAG database: combining historical, archaeomagnetic and volcanic data

    Science.gov (United States)

    Arneitz, Patrick; Leonhardt, Roman; Schnepp, Elisabeth; Heilig, Balázs; Mayrhofer, Franziska; Kovacs, Peter; Hejda, Pavel; Valach, Fridrich; Vadasz, Gergely; Hammerl, Christa; Egli, Ramon; Fabian, Karl; Kompein, Niko

    2017-09-01

    Records of the past geomagnetic field can be divided into two main categories. These are instrumental historical observations on the one hand, and field estimates based on the magnetization acquired by rocks, sediments and archaeological artefacts on the other hand. In this paper, a new database combining historical, archaeomagnetic and volcanic records is presented. HISTMAG is a relational database, implemented in MySQL, and can be accessed via a web-based interface (http://www.conrad-observatory.at/zamg/index.php/data-en/histmag-database). It combines available global historical data compilations covering the last ∼500 yr as well as archaeomagnetic and volcanic data collections from the last 50 000 yr. Furthermore, new historical and archaeomagnetic records, mainly from central Europe, have been acquired. In total, 190 427 records are currently available in the HISTMAG database, whereby the majority is related to historical declination measurements (155 525). The original database structure was complemented by new fields, which allow for a detailed description of the different data types. A user-comment function provides the possibility for a scientific discussion about individual records. Therefore, HISTMAG database supports thorough reliability and uncertainty assessments of the widely different data sets, which are an essential basis for geomagnetic field reconstructions. A database analysis revealed systematic offset for declination records derived from compass roses on historical geographical maps through comparison with other historical records, while maps created for mining activities represent a reliable source.

  2. Nd and Sr isotopes and K-Ar ages of the Ulreungdo alkali volcanic rocks in the East Sea, South Korea

    International Nuclear Information System (INIS)

    Kim Kyuhan; Jang Sunkyung; Tanaka, Tsuyoshi; Nagao, Keisuke

    1999-01-01

    Temporal geochemical and isotopical variations in the Ulreundgo alkali volcanic rocks provide important constraints on the origin and evolution of the volcanic rocks in relation to backarc basin tectonism. We determined the K-Ar ages, major and trace element contents, and Nd and Sr isotopic rations of the alkali volcanic rocks. The activities of Ulreungdo volcanoes can be divided, on the basis of radiometric ages and field occurrences, into five stages, though their activities range from 1.4 Ma to 0.01 Ma with short volcanic hiatus (ca. 0.05-0.3 Ma). The Nd-Sr isotopic data for Ulreungdo volcanic rocks enable us to conclude that: (1) the source materials of Ulreungdo volcanics are isotopically heterogeneous in composition, which is explained by the mixing of mantle derived magma and continental crustal source rocks. There is no systematic isotopic variations with eruption stages. Particularly, some volcanic rocks of stage 2 and 3 have extremely wide initial 87 Sr/ 86 Sr isotopic variations ranging from 0.7038 to 0.7092, which are influenced by seawater alterations; (2) the Ulreungdo volcanic rocks show EMI characteristic, while volcanic rocks from the Jejudo, Yeong-il and Jeon-gok areas have slightly depleted mantle source characteristics; (3) the trachyandesite of the latest eruption stage was originated from the mantle source materials which differ from other stages. A schematic isotopic evolution model for alkali basaltic magma is presented in the Ulreungdo volcanic island of the backarc basin of Japanese island arc system. (author)

  3. Volcanic Ash Advisory Database, 1983-2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  4. Volcanic eruptions are cooling the earth

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2005-01-01

    The article discusses how volcanic eruptions may influence the climate. The environmental impacts both on the earth surface and the atmosphere are surveyed. Some major eruptions in modern times are mentioned

  5. Stochastic Modeling of Past Volcanic Crises

    Science.gov (United States)

    Woo, Gordon

    2018-01-01

    The statistical foundation of disaster risk analysis is past experience. From a scientific perspective, history is just one realization of what might have happened, given the randomness and chaotic dynamics of Nature. Stochastic analysis of the past is an exploratory exercise in counterfactual history, considering alternative possible scenarios. In particular, the dynamic perturbations that might have transitioned a volcano from an unrest to an eruptive state need to be considered. The stochastic modeling of past volcanic crises leads to estimates of eruption probability that can illuminate historical volcanic crisis decisions. It can also inform future economic risk management decisions in regions where there has been some volcanic unrest, but no actual eruption for at least hundreds of years. Furthermore, the availability of a library of past eruption probabilities would provide benchmark support for estimates of eruption probability in future volcanic crises.

  6. Paleoproterozoic andesitic volcanism in the southern Amazonian craton (northern Brazil); lithofacies analysis and geodynamic setting

    Science.gov (United States)

    Roverato, Matteo; Juliani, Caetano; Capra, Lucia; Dias Fernandes, Carlos Marcelo

    2016-04-01

    Precambrian volcanism played an important role in geological evolution and formation of new crust. Most of the literature on Precambrian volcanic rocks describes settings belonging to subaqueous volcanic systems. This is likely because subaerial volcanic rocks in Proterozoic and Archean volcano-sedimentary succession are poorly preserved due to erosive/weathering processes. The late Paleoproterozoic Sobreiro Formation (SF) here described, seems to be one of the rare exceptions to the rule and deserves particular attention. SF represents the subaerial expression of an andesitic magmatism that, linked with the upper felsic Santa Rosa F., composes the Uatumã Group. Uatumã Group is an extensive magmatic event located in the Xingú region, southwestern of Pará state, Amazonian Craton (northern Brazil). The Sobreiro volcanism is thought to be related to an ocean-continent convergent margin. It is characterized by ~1880 Ma well-preserved calc-alkaline basaltic/andesitic to andesitic lava flows, pyroclastic rocks and associated reworked successions. The superb preservation of its rock-textures allowed us to describe in detail a large variety of volcaniclastic deposits. We divided them into primary and secondary, depending if they result from a direct volcanic activity (pyroclastic) or reworked processes. Our study reinforces the importance of ancient volcanic arcs and rocks contribution to the terrestrial volcaniclastic sedimentation and evolution of plate tectonics. The volcanic activity that produced pyroclastic rocks influenced the amount of detritus shed into sedimentary basins and played a major role in the control of sedimentary dispersal patterns. This study aims to provide, for the first time, an analysis of the physical volcanic processes for the subaerial SF, based in field observation, lithofacies analysis, thin section petrography and less geochemical data. The modern volcanological approach here used can serve as a model about the evolution of Precambrian

  7. Imaging volcanic CO2 and SO2

    Science.gov (United States)

    Gabrieli, A.; Wright, R.; Lucey, P. G.; Porter, J. N.

    2017-12-01

    Detecting and quantifying volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions is of relevance to volcanologists. Changes in the amount and composition of gases that volcanoes emit are related to subsurface magma movements and the probability of eruptions. Volcanic gases and related acidic aerosols are also an important atmospheric pollution source that create environmental health hazards for people, animals, plants, and infrastructures. For these reasons, it is important to measure emissions from volcanic plumes during both day and night. We present image measurements of the volcanic plume at Kīlauea volcano, HI, and flux derivation, using a newly developed 8-14 um hyperspectral imaging spectrometer, the Thermal Hyperspectral Imager (THI). THI is capable of acquiring images of the scene it views from which spectra can be derived from each pixel. Each spectrum contains 50 wavelength samples between 8 and 14 um where CO2 and SO2 volcanic gases have diagnostic absorption/emission features respectively at 8.6 and 14 um. Plume radiance measurements were carried out both during the day and the night by using both the lava lake in the Halema'uma'u crater as a hot source and the sky as a cold background to detect respectively the spectral signatures of volcanic CO2 and SO2 gases. CO2 and SO2 path-concentrations were then obtained from the spectral radiance measurements using a new Partial Least Squares Regression (PLSR)-based inversion algorithm, which was developed as part of this project. Volcanic emission fluxes were determined by combining the path measurements with wind observations, derived directly from the images. Several hours long time-series of volcanic emission fluxes will be presented and the SO2 conversion rates into aerosols will be discussed. The new imaging and inversion technique, discussed here, are novel allowing for continuous CO2 and SO2 plume mapping during both day and night.

  8. 40Ar/39Ar ages of the post-collision volcanic rocks and their geological significance in Yangyingxiang area, south Tibet

    International Nuclear Information System (INIS)

    Zhou Su; Mo Xuanxue; Zhao Zhidan; Zhang Shuangquan; Guo Tieying; Qiu Ruizhao

    2003-01-01

    Ten new 40 Ar/ 39 Ar age determination of mineral separates have been carried out to date volcanic rocks of Yangyingxiang in the eastern part of the Gangdese, Tibet. The age range of Sanidine and biotite in the five volcanic rock samples from the Yangyingxiang is 10.68 ± 0.05 - 11.42 ± 0.09 Ma. These results, combining with the previously published data, confirmed that Neogene post-collision volcanic rocks in the Gangdese widely occurred and their ages were getting younger eastwards. These volcanic rocks are different from those in Pana Formation of Linzizhong group (52.9 ± 2 Ma) outside Yangyingxiang geothermal field. (authors)

  9. Submarine earthquake rupture, active faulting and volcanism along the major Liquiñe-Ofqui Fault Zone and implications for seismic hazard assessment in the Patagonian Andes Ruptura sísmica submarina, tectónica y volcanismo activo a lo largo de la Falla Liquiñe-Ofqui e implicancias para el peligro sísmico en los Andes patagónicos

    Directory of Open Access Journals (Sweden)

    Gabriel Vargas

    2013-01-01

    Full Text Available The Liquiñe-Ofqui fault zone (LOFZ in the Patagonian Andes is an active major transpressional intra-arc fault system along which Quaternary faulting and volcanism develop. Subaerial and submarine geomorphologic and structural characterization of latest Pleistocene-Holocene faults and monogenetic volcanoes allows us to assess geological cartography of active faults and the kinematic model for recent tectonics during postglacial times, since 12,000 cal. years BP. This allows increasing the basic geological knowledge necessary for determining the seismic hazard associated with cortical structures in the Aysén region in southern Chile. Fault cartography and field observations suggest dominant dextral-reverse strike slip along north-south and locally NNW-striking faults, dextral-normal strike slip along NE to NNE- striking faults, and sinistral strike slip along east-west faults. This kinematics is consistent with regional SW-NE shortening in the context of a major transpressional fault zone. Holocene and even historic monogenetic and sub-aquatic volcanism occurred in this tectonic setting in a close spatial relationship and probably favored by the activity and local architecture of faults. Submarine fault scarps and deformed sediments observed at the bottom of the Aysén Fjord were associated with the destructive April 2007 Mw6.2 earthquake located along the LOFZ. Our observations show that this earthquake occurred along dextral 15-20 km long N-S structure named Punta Cola Fault (PCF. This fault system is located some kilometres to the east of the main N-S Río Cuervo Fault (RCF. Most of the epicentres of the seismic swarm during 2007 were located along or in between both structures. The study area is a transference zone between N-S regional branches of the LOFZ. The cartography of fault segments proposed here together with geophysical and geologic data suggest that large earthquakes Mw6.2-6.5 can be typically expected along most of the active

  10. Global scale concentrations of volcanic activity on Venus: A summary of three 23rd Lunar and Planetary Science Conference abstracts. 1: Venus volcanism: Global distribution and classification from Magellan data. 2: A major global-scale concentration of volcanic activity in the Beta-Atla-Themis region of Venus. 3: Two global concentrations of volcanism on Venus: Geologic associations and implications for global pattern of upwelling and downwelling

    Science.gov (United States)

    Crumpler, L. S.; Aubele, Jayne C.; Head, James W.; Guest, J.; Saunders, R. S.

    1992-01-01

    As part of the analysis of data from the Magellan Mission, we have compiled a global survey of the location, dimensions, and subsidiary notes of all identified volcanic features on Venus. More than 90 percent of the surface area was examined and the final catalog comprehensively identifies 1548 individual volcanic features larger than approximately 20 km in diameter. Volcanic features included are large volcanoes, intermediate volcanoes, fields of small shield volcanoes, calderas, large lava channels, and lava floods as well as unusual features first noted on Venus such as coronae, arachnoids, and novae.

  11. The Origin of Widespread Long-lived Volcanism Across the Galapagos Volcanic Province

    Science.gov (United States)

    O'Connor, J. M.; Stoffers, P.; Wijbrans, J. R.; Worthington, T. J.

    2005-12-01

    40Ar/39Ar ages for rocks dredged (SO144 PAGANINI expedition) and drilled (DSDP) from the Galapagos Volcanic Province (Cocos, Carnegie, Coiba and Malpelo aseismic ridges and associated seamounts) show evidence of 1) increasing age with distance from the Galapagos Archipelago, 2) long-lived episodic volcanism at many locations, and 3) broad overlapping regions of coeval volcanism. The widespread nature of synchronous volcanism across the Galapagos Volcanic Province (GVP) suggests a correspondingly large Galapagos hotspot melting anomaly (O'Connor et al., 2004). Development of the GVP via Cocos and Nazca plate migration and divergence over this broad melting anomaly would explain continued multiple phases of volcanism over millions of years following the initial onset of hotspot volcanism. The question arising from these observations is whether long-lived GVP episodic volcanism is equivalent to `rejuvenescent' or a `post-erosional' phase of volcanism that occurs hundreds of thousands or million years after the main shield-building phase documented on many mid-plate seamount chains, most notably along the Hawaiian-Emperor Seamount Chain? Thus, investigating the process responsible for long-lived episodic GVP volcanism provides the opportunity to evaluate this little understood process of rejuvenation in a physical setting very different to the Hawaiian-Emperor Chain (i.e. on/near spreading axis versus mid-plate). We consider here timing and geochemical information to test the various geodynamic models proposed to explain the origin of GVP hotspot volcanism, especially the possibility of rejuvenated phases that erupt long after initial shield-building.

  12. Recurrence Rate and Magma Effusion Rate for the Latest Volcanism on Arsia Mons, Mars

    Science.gov (United States)

    Richardson, Jacob A.; Wilson, James A.; Connor, Charles B.; Bleacher, Jacob E.; Kiyosugi, Koji

    2016-01-01

    Magmatism and volcanism have evolved the Martian lithosphere, surface, and climate throughout the history of Mars. Constraining the rates of magma generation and timing of volcanism on the surface clarifies the ways in which magma and volcanic activity have shaped these Martian systems. The ages of lava flows on other planets are often estimated using impact crater counts, assuming that the number and size-distribution of impact craters per unit area reflect the time the lava flow has been on the surface and exposed to potential impacts. Here we show that impact crater age model uncertainty is reduced by adding stratigraphic information observed at locations where neighboring lavas abut each other, and demonstrate the significance of this reduction in age uncertainty for understanding the history of a volcanic field comprising 29 vents in the 110-kilometer-diameter caldera of Arsia Mons, Mars. Each vent within this caldera produced lava flows several to tens of kilometers in length; these vents are likely among the youngest on Mars, since no impact craters in their lava flows are larger than 1 kilometer in diameter. First, we modeled the age of each vent with impact crater counts performed on their corresponding lava flows and found very large age uncertainties for the ages of individual vents, often spanning the estimated age for the entire volcanic field. The age model derived from impact crater counts alone is broad and unimodal, with estimated peak activity in the field around 130Ma (megaannum, 1 million years). Next we applied our volcano event age model (VEAM), which uses a directed graph of stratigraphic relationships and random sampling of the impact crater age determinations to create alternative age models. Monte Carlo simulation was used to create 10,000 possible vent age sets. The recurrence rate of volcanism is calculated for each possible age set, and these rates are combined to calculate the median recurrence rate of all simulations. Applying this

  13. Volcanism on differentiated asteroids (Invited)

    Science.gov (United States)

    Wilson, L.

    2013-12-01

    after passing through optically dense fire fountains. At low eruption rates and high volatile contents many clasts cooled to form spatter or cinder deposits, but at high eruption rates and low volatile contents most clasts landed hot and coalesced into lava ponds to feed lava flows. Lava flow thickness varies with surface slope, acceleration due to gravity, and lava yield strength induced by cooling. Low gravity on asteroids caused flows to be relatively thick which reduced the effects of cooling, and many flows probably attained lengths of tens of km and stopped as a result of cessation of magma supply from the reservoir rather than cooling. On most asteroids larger than 100 km radius experiencing more than ~30% mantle melting, the erupted volcanic deposits will have buried the original chondritic surface layers of the asteroid to such great depths that they were melted, or at least heavily thermally metamorphosed, leaving no present-day meteoritical evidence of their prior existence. Tidal stresses from close encounters between asteroids and proto-planets may have very briefly increased melting and melt migration speeds in asteroid interiors but only gross structural disruption would have greatly have changed volcanic histories.

  14. Volcanic Supersites as cross-disciplinary laboratories

    Science.gov (United States)

    Provenzale, Antonello; Beierkuhnlein, Carl; Giamberini, Mariasilvia; Pennisi, Maddalena; Puglisi, Giuseppe

    2017-04-01

    Volcanic Supersites, defined in the frame of the GEO-GSNL Initiative, are usually considered mainly for their geohazard and geological characteristics. However, volcanoes are extremely challenging areas from many other points of view, including environmental and climatic properties, ecosystems, hydrology, soil properties and biogeochemical cycling. Possibly, volcanoes are closer to early Earth conditions than most other types of environment. During FP7, EC effectively fostered the implementation of the European volcano Supersites (Mt. Etna, Campi Flegrei/Vesuvius and Iceland) through the MED-SUV and FUTUREVOLC projects. Currently, the large H2020 project ECOPOTENTIAL (2015-2019, 47 partners, http://www.ecopotential-project.eu/) contributes to GEO/GEOSS and to the GEO ECO Initiative, and it is devoted to making best use of remote sensing and in situ data to improve future ecosystem benefits, focusing on a network of Protected Areas of international relevance. In ECOPOTENTIAL, remote sensing and in situ data are collected, processed and used for a better understanding of the ecosystem dynamics, analysing and modelling the effects of global changes on ecosystem functions and services, over an array of different ecosystem types, including mountain, marine, coastal, arid and semi-arid ecosystems, and also areas of volcanic origin such as the Canary and La Reunion Islands. Here, we propose to extend the network of the ECOPOTENTIAL project to include active Volcanic Supersites, such as Mount Etna and other volcanic Protected Areas, and we discuss how they can be included in the framework of the ECOPOTENTIAL workflow. A coordinated and cross-disciplinary set of studies at these sites should include geological, biological, ecological, biogeochemical, climatic and biogeographical aspects, as well as their relationship with the antropogenic impact on the environment, and aim at the global analysis of the volcanic Earth Critical Zone - namely, the upper layer of the Earth

  15. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  16. Volcanic Eruption: Students Develop a Contingency Plan

    Science.gov (United States)

    Meisinger, Philipp; Wittlich, Christian

    2013-04-01

    Dangerous, loud, sensational, exciting - natural hazards have what it takes to get students attention around the globe. Arising interest is the first step to develop an intrinsic motivation to learn about the matter and endure the hardships that students might discover along the way of the unit. Natural hazards thereby establish a close-knit connection between physical and anthropological geography through analyzing the hazardous event and its consequences for the people living in the affected area. Following a general principle of didactics we start searching right on our doorsteps to offer students the possibility to gain knowledge on the familiar and later transfer it to the unknown example. Even in Southwest Germany - a region that is rather known for its wine than its volcanic activity - we can find a potentially hazardous region. The "Laacher See" volcano (a caldera lake) in northern Rhineland-Palatinate is according to Prof. H.U. Schminke a "potentially active volcano" . Its activity can be proven by seismic activities, or experienced when visiting the lake's southeastern shore, where carbondioxid and sulphur gases from the underlying magma chamber still bubble up. The Laacher See is part of a range of volcanoes (classified from 'potentially active' to 'no longer active') of the East Eifel Volcanic Field. Precariously the Laacher See is located closely to the densely populated agglomerations of Cologne (NE, distance: 45 km) and the former capital Bonn (NE: 35km), as well as Koblenz (E: 24km) and the Rhine river. Apart from that, the towns of Andernach (E: 8km ± 30 000 inhabitants) and Mayen (SW: 11km ±20 000 inhabitants) and many smaller towns and villages are nearby due to economic reasons. The number of people affected by a possible eruption easily exceeds two million people considering the range as prime measurement. The underlying danger, as projected in a simulation presented by Prof. Schminke, is a lava stream running down the Brohltal valley

  17. Indirect Climatic Effects of Major Volcanic Eruptions

    Science.gov (United States)

    Hofmann, D. J.

    2007-05-01

    The direct effects on climate, related to atmospheric emissions to the atmosphere following major volcanic eruptions, are well-known although the sparseness of such eruptions make detailed study on the range of such variations difficult. In general terms, infrared absorption by volcanic emissions to the stratosphere result in local heating early in the event when gaseous sulfur compounds exist. This early period is followed by gas to particle conversion, on a time scale of 1-2 months, promoting the formation of sulfuric acid-water droplets. Coagulation and droplet growth result in the "volcanic stratospheric aerosol layer" which is related to the predominant direct climatic effect of large eruptions, the cooling of the troposphere by backscattering of solar visible radiation to space with a recovery time scale of 1-2 years. In this paper we will discuss some of the less-known "indirect" effects of the volcanic stratospheric aerosol on climate. We label them indirect as they act on climate through intermediary atmospheric constituents. The intermediaries in the volcanic indirect climatic effect are generally atmospheric greenhouse gases or other atmospheric gases and conditions which affect greenhouse gases. For example, cooling of the troposphere following major eruptions reduces the growth rate of atmospheric carbon dioxide related to respiration by the terrestrial biosphere. In addition, redirection of part of the direct solar beam into diffuse radiation by the volcanic stratospheric aerosol stimulates plant photosynthesis, further reducing the carbon dioxide growth rate. The growth rate of the second-most important atmospheric greenhouse gas, methane, is also affected by volcanic emissions. Volcanic stratospheric aerosol particles provide surface area which catalyzes heterogeneous chemical reactions thus stimulating removal of stratospheric ozone, also a greenhouse gas. Although major droughts usually related to ENSO events have opposite effects on carbon

  18. A Conceptual Model of Future Volcanism at Medicine Lake Volcano, California - With an Emphasis on Understanding Local Volcanic Hazards

    Science.gov (United States)

    Molisee, D. D.; Germa, A.; Charbonnier, S. J.; Connor, C.

    2017-12-01

    Medicine Lake Volcano (MLV) is most voluminous of all the Cascade Volcanoes ( 600 km3), and has the highest eruption frequency after Mount St. Helens. Detailed mapping by USGS colleagues has shown that during the last 500,000 years MLV erupted >200 lava flows ranging from basalt to rhyolite, produced at least one ash-flow tuff, one caldera forming event, and at least 17 scoria cones. Underlying these units are 23 additional volcanic units that are considered to be pre-MLV in age. Despite the very high likelihood of future eruptions, fewer than 60 of 250 mapped volcanic units (MLV and pre-MLV) have been dated reliably. A robust set of eruptive ages is key to understanding the history of the MLV system and to forecasting the future behavior of the volcano. The goals of this study are to 1) obtain additional radiometric ages from stratigraphically strategic units; 2) recalculate recurrence rate of eruptions based on an augmented set of radiometric dates; and 3) use lava flow, PDC, ash fall-out, and lahar computational simulation models to assess the potential effects of discrete volcanic hazards locally and regionally. We identify undated target units (units in key stratigraphic positions to provide maximum chronological insight) and obtain field samples for radiometric dating (40Ar/39Ar and K/Ar) and petrology. Stratigraphic and radiometric data are then used together in the Volcano Event Age Model (VEAM) to identify changes in the rate and type of volcanic eruptions through time, with statistical uncertainty. These newly obtained datasets will be added to published data to build a conceptual model of volcanic hazards at MLV. Alternative conceptual models, for example, may be that the rate of MLV lava flow eruptions are nonstationary in time and/or space and/or volume. We explore the consequences of these alternative models on forecasting future eruptions. As different styles of activity have different impacts, we estimate these potential effects using simulation

  19. DSCOVR/EPIC observations of SO2 reveal dynamics of young volcanic eruption clouds

    Science.gov (United States)

    Carn, S. A.; Krotkov, N. A.; Taylor, S.; Fisher, B. L.; Li, C.; Bhartia, P. K.; Prata, F. J.

    2017-12-01

    Volcanic emissions of sulfur dioxide (SO2) and ash have been measured by ultraviolet (UV) and infrared (IR) sensors on US and European polar-orbiting satellites since the late 1970s. Although successful, the main limitation of these observations from low Earth orbit (LEO) is poor temporal resolution (once per day at low latitudes). Furthermore, most currently operational geostationary satellites cannot detect SO2, a key tracer of volcanic plumes, limiting our ability to elucidate processes in fresh, rapidly evolving volcanic eruption clouds. In 2015, the launch of the Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) provided the first opportunity to observe volcanic clouds from the L1 Lagrange point. EPIC is a 10-band spectroradiometer spanning UV to near-IR wavelengths with two UV channels sensitive to SO2, and a ground resolution of 25 km. The unique L1 vantage point provides continuous observations of the sunlit Earth disk, from sunrise to sunset, offering multiple daily observations of volcanic SO2 and ash clouds in the EPIC field of view. When coupled with complementary retrievals from polar-orbiting UV and IR sensors such as the Ozone Monitoring Instrument (OMI), the Ozone Mapping and Profiler Suite (OMPS), and the Atmospheric Infrared Sounder (AIRS), we demonstrate how the increased observation frequency afforded by DSCOVR/EPIC permits more timely volcanic eruption detection and novel analyses of the temporal evolution of volcanic clouds. Although EPIC has detected several mid- to high-latitude volcanic eruptions since launch, we focus on recent eruptions of Bogoslof volcano (Aleutian Islands, AK, USA). A series of EPIC exposures from May 28-29, 2017, uniquely captures the evolution of SO2 mass in a young Bogoslof eruption cloud, showing separation of SO2- and ice-rich regions of the cloud. We show how analyses of these sequences of EPIC SO2 data can elucidate poorly understood processes in transient eruption

  20. Ages of plains volcanism on Mars

    Science.gov (United States)

    Hauber, Ernst; Jagert, Felix; Broz, Petr

    2010-05-01

    Plain-style volcanism [1] is widespread in the Tharsis and Elysium volcanic provinces on Mars, [2,3]. Detailed images and topographic data reveal the morphology and topography of clusters of low shields and associated lava flows. The landforms of plains volcanism on Mars have all well-known terrestrial analogues in basaltic volcanic regions, such as Hawaii, Iceland, and in particular the Snake River Plains [4]. The very gentle flank slopes (J. (1981) Icarus, 45, 586-601. [3] Hodges C.A. and Moore H.J. (1994) Atlas of volcanic features on Mars: USGS Prof. Paper 1534, 194 p. [4] Hauber E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 69-95. [5] Wilson L. et al. (2009) J. Volcanol. Geotherm. Res. 185, 28-46. [6] Vaucher, J. et al. (2009) Icarus 204, 418-442. [7] Baratoux D. et al. (2009) J. Volcanol. Geotherm. Res. 185, 47-68. [8] Bleacher J.E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 96-102. [9] Ivanov B.A. (2001) Space Sci. Rev. 96, 87-104. [10] Hartmann W.H. and Neukum G. (2001) Space Sci. Rev. 96, 165-194 [11] Kneissl T. et al. (2010) LPS XVI, submitted. [12] Michael, G.G. and Neukum G. (2010) Earth Planet. Sci. Lett., in press. . [13] Malin M.C. et al. (2007) JGR 112, E05S04, doi: 10.1029/2006JE002808.

  1. Vulcamera: a program for measuring volcanic SO2 using UV cameras

    Directory of Open Access Journals (Sweden)

    Alessandro Aiuppa

    2011-06-01

    Full Text Available We report here on Vulcamera, a stand-alone program for the determination of volcanic SO2  fluxes using ultraviolet cameras. The code enables field image acquisition and all the required post-processing operations.

  2. Late Pleistocene and Holocene activity of the Atacazo-Ninahuilca Volcanic Complex (Ecuador)

    NARCIS (Netherlands)

    Hidalgo, Silvana; Monzier, Michel; Almeida, Eduardo; Chazot, Gilles; Eissen, Jean-Philippe; van der Plicht, Johannes; Hall, Minard L.

    2008-01-01

    The Atacazo-Ninahuilca Volcanic Complex (ANVC) is located in the Western Cordillera of Ecuador, 10 km southwest of Quito. At least six periods of Pleistocene to Holocene activity (N1 to N6) have been preserved in the geologic record as tephra fallouts and pyroclastic flow deposits. New field data,

  3. Active Volcanic Eruptions on Io

    Science.gov (United States)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can

  4. Estimating Losses from Volcanic Ash in case of a Mt. Baekdu Eruption

    Science.gov (United States)

    Yu, Soonyoung; Yoon, Seong-Min; Kim, Sung-Wook; Choi, Eun-Kyeong

    2014-05-01

    We will present the preliminary result of economic losses in South Korea in case of a Mt. Baedu eruption. The Korean peninsula has Mt. Baekdu in North Korea, which will soon enter an active phase, according to volcanologists. The anticipated eruption will be explosive given the viscous and grassy silica-rich magma, and is expected to be one of the largest in recent millennia. We aim to assess the impacts of this eruption to South Korea and help government prepare for the volcanic disasters. In particular, the economic impact from volcanic ash is estimated given the distance from Mt. Baedu to South Korea. In order to scientifically estimate losses from volcanic ash, we need volcanic ash thickness, inventory database, and damage functions between ash thickness and damage ratios for each inventory item. We use the volcanic ash thickness calculated by other research groups in Korea, and they estimated the ash thickness for each eruption scenario using average wind fields. Damage functions are built using the historical damage data in the world, and inventory database is obtained from available digital maps in Korea. According to the preliminary results, the economic impact from volcanic ash is not significant because the ash is rarely deposited in South Korea under general weather conditions. However, the ash can impact human health and environment. Also worst case scenarios can have the significant economic impacts in Korea, and may result in global issues. Acknowledgement: This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-3] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea.

  5. Monitoring Persistent Volcanic Emissions from Sulphur Springs, Saint Lucia: A Community Approach to Disaster Risk Reduction

    Science.gov (United States)

    Joseph, E. P.; Beckles, D. M.; Cox, L.; Jackson, V. B.; Alexander, D.

    2014-12-01

    Volcanic and geothermal emissions are known natural sources of volatiles to the atmosphere. Volcanogenic air pollutants known to cause the most serious impact are carbon dioxide (CO2), sulphur dioxide (SO2), hydrogen chloride (HCl) and hydrogen fluoride (HF). Some studies into the potential for volcanic emissions to produce chronic diseases in humans indicate that areas of major concern include respiratory problems, particularly silicosis (Allen et al. 2000; Baxter et al. 1999; Buist et al. 1986), psychological stress (Shore et al. 1986), and chemical impacts of gas or ash (Giammanco et al. 1998). Sulphur Springs Park in Saint Lucia has a very high recreational value with >200,000 visitors annually, while the nearby town of Soufrière has >8,400 residents. Residents and visitors have raised concerns about the volcanic emissions and its health effects. As part of the volcanic surveillance programme undertaken by the UWI, Seismic Research Centre (SRC) in Saint Lucia, a new monitoring network has been established for quantifying the ambient SO2 in air, to which staff and visitors at the volcanic park are exposed to. The implementation and continued operation of this network has involved the training of local personnel in the active field sampling and analytical techniques required for the assessment of ambient SO2 concentrations, using a low cost monitor as well as commercial passive samplers. This approach recognizes that environmental hazards are a usual part of life and productive livelihoods, and to minimize post-disaster response and recovery it is beneficial to promote preparedness and mitigation, which is best achieved at the local level with community involvement. It is also intended that the volcanic emissions monitoring network could be used as a method to establish and maintain community-based initiatives that would also be helpful when volcanic threat manifests.

  6. Volcanic spreading forcing and feedback in geothermal reservoir development, Amiata Volcano, Italia

    Science.gov (United States)

    Borgia, Andrea; Mazzoldi, Alberto; Brunori, Carlo Alberto; Allocca, Carmine; Delcroix, Carlo; Micheli, Luigi; Vercellino, Alberto; Grieco, Giovanni

    2014-09-01

    We made a stratigraphic, structural and morphologic study of the Amiata Volcano in Italy. We find that the edifice is dissected by intersecting grabens that accommodate the collapse of the higher sectors of the volcano. In turn, a number of compressive structures and diapirs exist around the margin of the volcano. These structures create an angular drainage pattern, with stream damming and captures, and a set of lakes within and around the volcano. We interpret these structures as the result of volcanic spreading of Amiata on its weak substratum, formed by the late Triassic evaporites (Burano Anhydrites) and the Middle-Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Regional doming created a slope in the basement facilitating the outward flow and spreading of the ductile layers forced by the volcanic load. We model the dynamics of spreading with a scaled lubrication approximation of the Navier Stokes equations, and numerically study a set of solutions. In the model we include simple functions for volcanic deposition and surface erosion that change the topography over time. Scaling indicates that spreading at Amiata could still be active. The numerical solution shows that, as the central part of the edifice sinks into the weak basement, diapiric structures of the underlying formations form around the base of the volcano. Deposition of volcanic rocks within the volcano and surface erosion away from it both enhance spreading. In addition, a sloping basement may constitute a trigger for spreading and formation of trains of adjacent diapirs. As a feedback, the hot hydrothermal fluids decrease the shear strength of the anhydrites facilitating the spreading process. Finally, we observe that volcanic spreading has created ideal heat traps that constitute todays' exploited geothermal fields at Amiata. Normal faults generated by volcanic spreading, volcanic conduits, and direct contact between volcanic rocks (which host an extensive fresh

  7. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R.; Smith, R.P.

    1992-09-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  8. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R.; Smith, R.P.

    1992-01-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  9. Soil radon pulses related to the initial phase of volcanic eruptions

    International Nuclear Information System (INIS)

    Segovia, N.; Mena, M.

    1999-01-01

    Soil radon behaviour related to the initial phase of volcanic eruptions is analysed from reported values related to the explosivity of four American stratovolcaneos: El Chicon (1982) and Popocatepetl (1994) in Mexico, Poas (1987-1990) in Costa Rica and Cerro Negro (1982) in Nicaragua. The measurements in the field were performed with solid-state nuclear track detectors and electrets. The ratio between the magnitudes of the radon in soil peaks generated when the eruptive period started and the average radon values corresponding to quiescence periods indicate a dependence on the volcanic eruptive index for each one of the eruptive periods

  10. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  11. Venus - Volcanic features in Atla Region

    Science.gov (United States)

    1991-01-01

    This Magellan image from the Atla region of Venus shows several types of volcanic features and superimposed surface fractures. The area in the image is approximately 350 kilometers (217 miles) across, centered at 9 degrees south latitude, 199 degrees east longitude. Lava flows emanating from circular pits or linear fissures form flower-shaped patterns in several areas. A collapse depression approximately 20 kilometers by 10 kilometers (12 by 6 miles) near the center of the image is drained by a lava channel approximately 40 kilometers (25 miles) long. Numerous surface fractures and graben (linear valleys) criss-cross the volcanic deposits in north to northeast trends. The fractures are not buried by the lavas, indicating that the tectonic activity post-dates most of the volcanic activity.

  12. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  13. Geochemistry of volcanic series of Aragats province

    International Nuclear Information System (INIS)

    Meliksetyan, Kh.B.

    2012-01-01

    In this contribution we discuss geochemical and isotope characteristics of volcanism of the Aragats volcanic province and possible petrogenetical models of magma generation in collision zone of Armenian highland. We talk about combination of some specific features of collision related volcanism such as dry and high temperature conditions of magma generation, that demonstrate some similarities to intraplate-like petrogenesis and presence of mantle source enriched by earlier subductions, indicative to island-arc type magma generation models. Based on comprehensive analysis of isotope and geochemical data and some published models of magma generation beneath Aragats we lead to a petrogenetic model of origin of Aragats system to be a result of magma mixture between mantle originated mafic magma with felsic, adakite-type magmas

  14. Observations of volcanic earthquakes and tremor at Deception Island - Antarctica

    Directory of Open Access Journals (Sweden)

    J. Morales

    1999-06-01

    Full Text Available Deception Island - South Shetlands, Antarctica is site of active volcanism. Since 1988 field surveys have been carried out with the aim of seismic monitoring, and in 1994 a seismic array was set up near the site of the Spanish summer base in order to better constrain the source location and spectral properties of the seismic events related to the volcanic activity. The array was maintained during the Antarctic summer of 1995 and the last field survey was carried out in 1996. Data show the existence of three different groups (or families of seismic events: 1 long period events, with a quasi-monochromatic spectral content (1-3 Hz peak frequency and a duration of more than 50 s, often occurring in small swarms lasting from several minutes to some day; 2 volcanic tremor, with a spectral shape similar to the long period events but with a duration of several minutes (2-10; 3 hybrid events, with a waveform characterised by the presence of a high frequency initial phase, followed by a low frequency phase with characteristics similar to those of the long period events. The high frequency phase of the hybrid events was analysed using polarisation techniques, showing the presence of P waves. This phase is presumably located at short epicentral distances and shallow source depth. All the analysed seismic events show back-azimuths between 120 and 330 degrees from north (corresponding to zones of volcanic activity showing no seismic activity in the middle of the caldera. Particle motion, Fourier spectral and spectrogram analysis show that the low frequency part of the three groups of the seismic signals have similar patterns. Moreover careful observations show that the high frequency phase which characterises the hybrid events is present in the long period and in the tremor events, even with lower signal to noise ratios. This evidence suggests that long period events are events in which the high frequency part is simply difficult to observe, due to a very

  15. A multidisciplinary system for monitoring and forecasting Etna volcanic plumes

    Science.gov (United States)

    Coltelli, Mauro; Prestifilippo, Michele; Spata, Gaetano; Scollo, Simona; Andronico, Daniele

    2010-05-01

    One of the most active volcanoes in the world is Mt. Etna, in Italy, characterized by frequent explosive activity from the central craters and from fractures opened along the volcano flanks which, during the last years, caused several damages to aviation and forced the closure of the Catania International Airport. To give precise warning to the aviation authorities and air traffic controller and to assist the work of VAACs, a novel system for monitoring and forecasting Etna volcanic plumes, was developed at the Istituto Nazionale di Geofisica e Vulcanologia, sezione di Catania, the managing institution for the surveillance of Etna volcano. Monitoring is carried out using multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation geosynchronous satellite able to track the volcanic plume with a high time resolution, visual and thermal cameras used to monitor the explosive activity, three continuous wave X-band disdrometers which detect ash dispersal and fallout, sounding balloons used to evaluate the atmospheric fields, and finally field data collected after the end of the eruptive event needed to extrapolate important features of explosive activity. Forecasting is carried out daily using automatic procedures which download weather forecast data obtained by meteorological mesoscale models from the Italian Air Force national Meteorological Office and from the hydrometeorological service of ARPA-SIM; run four different tephra dispersal models using input parameters obtained by the analysis of the deposits collected after few hours since the eruptive event similar to 22 July 1998, 21-24 July 2001 and 2002-03 Etna eruptions; plot hazard maps on ground and in air and finally publish them on a web-site dedicated to the Italian Civil Protection. The system has been already tested successfully during several explosive events occurring at Etna in 2006, 2007 and 2008. These events produced eruption

  16. Tropical Volcanic Soils From Flores Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Hikmatullah

    2010-01-01

    Full Text Available Soils that are developed intropical region with volcanic parent materials have many unique properties, and high potential for agricultural use.The purpose of this study is to characterize the soils developed on volcanic materials from Flores Island, Indonesia,and to examine if the soils meet the requirements for andic soil properties. Selected five soils profiles developed fromandesitic volcanic materials from Flores Island were studied to determine their properties. They were compared intheir physical, chemical and mineralogical characteristics according to their parent material, and climatic characteristicdifferent. The soils were developed under humid tropical climate with ustic to udic soil moisture regimes withdifferent annual rainfall. The soils developed from volcanic ash parent materials in Flores Island showed differentproperties compared to the soils derived from volcanic tuff, even though they were developed from the sameintermediary volcanic materials. The silica contents, clay mineralogy and sand fractions, were shown as the differences.The different in climatic conditions developed similar properties such as deep solum, dark color, medium texture, andvery friable soil consistency. The soils have high organic materials, slightly acid to acid, low to medium cationexchange capacity (CEC. The soils in western region have higher clay content and showing more developed than ofthe eastern region. All the profiles meet the requirements for andic soil properties, and classified as Andisols order.The composition of sand mineral was dominated by hornblende, augite, and hypersthenes with high weatherablemineral reserves, while the clay fraction was dominated by disordered kaolinite, and hydrated halloysite. The soilswere classified into subgroup as Thaptic Hapludands, Typic Hapludands, and Dystric Haplustands

  17. Tellurium in active volcanic environments: Preliminary results

    Science.gov (United States)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  18. Volcanic air pollution hazards in Hawaii

    Science.gov (United States)

    Elias, Tamar; Sutton, A. Jeff

    2017-04-20

    Noxious sulfur dioxide gas and other air pollutants emitted from Kīlauea Volcano on the Island of Hawai‘i react with oxygen, atmospheric moisture, and sunlight to produce volcanic smog (vog) and acid rain. Vog can negatively affect human health and agriculture, and acid rain can contaminate household water supplies by leaching metals from building and plumbing materials in rooftop rainwater-catchment systems. U.S. Geological Survey scientists, along with health professionals and local government officials are working together to better understand volcanic air pollution and to enhance public awareness of this hazard.

  19. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  20. Winter warming from large volcanic eruptions

    Science.gov (United States)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  1. QVAST: a new Quantum GIS plugin for estimating volcanic susceptibility

    Science.gov (United States)

    Bartolini, S.; Cappello, A.; Martí, J.; Del Negro, C.

    2013-11-01

    One of the most important tasks of modern volcanology is the construction of hazard maps simulating different eruptive scenarios that can be used in risk-based decision making in land-use planning and emergency management. The first step in the quantitative assessment of volcanic hazards is the development of susceptibility maps (i.e., the spatial probability of a future vent opening given the past eruptive activity of a volcano). This challenging issue is generally tackled using probabilistic methods that use the calculation of a kernel function at each data location to estimate probability density functions (PDFs). The smoothness and the modeling ability of the kernel function are controlled by the smoothing parameter, also known as the bandwidth. Here we present a new tool, QVAST, part of the open-source geographic information system Quantum GIS, which is designed to create user-friendly quantitative assessments of volcanic susceptibility. QVAST allows the selection of an appropriate method for evaluating the bandwidth for the kernel function on the basis of the input parameters and the shapefile geometry, and can also evaluate the PDF with the Gaussian kernel. When different input data sets are available for the area, the total susceptibility map is obtained by assigning different weights to each of the PDFs, which are then combined via a weighted summation and modeled in a non-homogeneous Poisson process. The potential of QVAST, developed in a free and user-friendly environment, is here shown through its application in the volcanic fields of Lanzarote (Canary Islands) and La Garrotxa (NE Spain).

  2. Evidences for a volcanic province in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Sudhakar, M.

    Based on various lines of evidence such as the widespread occurrence of basalts, pumice, volcanic glass shards and their transformational products (zeolites, palagonites, and smectite-rich sediments), we suggest the presence of a volcanic province...

  3. Burfellshraun - a terrestrial analogue to recent volcanism on mars

    DEFF Research Database (Denmark)

    Haack, Henning; Dall, Jørgen; Rossi, Matti

    2004-01-01

    The up to 2000 km long and very young lava flows from Elysium Planitia to Amazonis Planitia on Mars often include km-sized rafting plates. We have studied the unique Burfellshraun lava field east of lake Myvatn in Iceland that, although on a much smaller scale, share many characteristics of the M...... of the formation of Burfellshraun provides new constraints and insight into the extensive recent volcanic activity on Mars....... of the Martian flows. Up to km-sized plates have flowed several km downsteam from the vent area. Our remote sensing studies and field work suggest that the type of eruption seen in Burfellshraun can be found nowhere else on Earth. The only similar lava flows that we have found are those on Mars. Our study...

  4. Characteristics of volcanic gas correlated to the eruption activity; Case study in the Merapi Volcano, periods of 1990-1994

    Directory of Open Access Journals (Sweden)

    Priatna Priatna

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol2no4.20074Volcanic gases, collected from Gendol and Woro solfatara fields, the summit of Merapi Volcano during 1990-1994, show an increase in chemical composition of H , CO, CO , SO , and HCl prior to the volcanic events, on the contrary to the drastic decreasing water vapour. The carbon/sulfur ratio of the volcanic gases lies between 1.5 and 5.7 which means that they were derived from the fresh magma. The Apparent Equilibrium Temperature (AET which is calculated from chemical compositions of volcanic gases using reaction of SO +3H = H S+2H O showed an increasing value prior to the volcanic events. The Merapi activities lasted during August 1990 to November 1994 showed a significant increase in ratio SO /H S prior to the November 1994 pyroclastic flow. The isotopic composition of volcanic gas condensates indicates that water vapour in Gendol is directly derived from the fresh magma. On the other hand, the contamination and cooling by the subsurface water occurred around the Woro field at a shallow part. 

  5. Geochemistry of the volcanic dome in the Municipality of Iza, Boyaca Department, geodynamic interpretation and comparison with Neogene volcanism of the Eastern Cordillera

    International Nuclear Information System (INIS)

    Vesga, Ana Maria; Jaramillo, Jose

    2009-01-01

    This work has as purpose to offer new analytic data, supplemented the available ones until the present regarding the volcanic rocks of the region of Iza, (Boyaca); in the same way, the development of a new approach, as for determining if exists a direct connection with other volcanic deposits geographically near to the study area, using descriptive statistical methods. It was realized a characterization geochemistry for 12 samples gathered in the area, where were analyzed big elements, smaller and traces and using diagrams of characterization for effusive rocks, it is corroborated that these possess an alkaline likeness of riolitic composition. Besides the use of normalized diagrams whose abundances of elements of strong electrostatic field (HFSE) as the Nb and Zr, and elements of big ionic radio (LILE) in this case the Rb, they allowed to this rocks characteristic of ambient coalitional. On the other hand, with the obtained results of the statistical analyses, the existent relationship settled down between two geographically places near, as are it volcanic bodies of Los Naranjos and those of Paipa. As for of Iza, it was found that relationship doesn't exist some with another volcanic body among the studied sectors, probably due the alteration hydrothermal that presents the dome of Iza.

  6. Improving volcanic ash forecasts with ensemble-based data assimilation

    NARCIS (Netherlands)

    Fu, Guangliang

    2017-01-01

    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash forecasting in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs to be

  7. Volcanic Characteristics of Kueishantao in Northeast Taiwan and Their Implications

    Directory of Open Access Journals (Sweden)

    Ching-Lung Chiu

    2010-01-01

    Full Text Available Kueishantao (KST is a small offshore volcanic island located at the southernmost part of the Okinawa Trough. In this study, we conducted a detailed mapping incorporating the new high resolution LiDAR DTM laser scanning device to accurately construct a volcanic sequence. A new 1/5000 geological map was established. One primary volcanic cone, composed of layers of both lava flows and pyroclastic rocks constituted the major edifice of KST. The other minor volcanic cone, which consists of volcanic lapillis and blocks, is seated to the east of the main cone. The escarped and nearly straight coast in the southern part of the KST indicates that the volcano suffered a large post-volcanic edifice collapse erasing nearly one half of the volume of both volcanic cones. The increase in the abundance of the xenoliths of sedimentary rocks from the lower to the upper part of the volcanic sequence indicates that the formation of volcanic rocks of the KST involved an intensification of crustal contamination. The possibility of volcanic eruption can not be excluded in the future based on the present thermolu¬minescene age data of 7 ka. The associated eruptive ash fall and tsunami induced by the further collapse of the KST volcanic edifice might have great influence to the adjacent inland. Thus, long-term monitoring of volcanic activities around KST should be required for future hazard assessments.

  8. Apollo 15 mare volcanism: constraints and problems

    International Nuclear Information System (INIS)

    Delano, J.W.

    1985-01-01

    The Apollo 15 landing site contains more volcanics in the form of crystalline basalts and pristine glasses, which form the framework for all models dealing with the mantle beneath that site. Major issues on the petrology of the mare source regions beneath that portion of Mare Imbrium are summarized

  9. Payenia volcanic province, southern Mendoza, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Llambias, Eduardo Jorge

    2013-01-01

    The Pleistocene to Holocene Payenia volcanic province is a backarc region of 60,000 km2 in Mendoza, Argentina, which is dominated by transitional to alkaline basalts and trachybasalts. We present major and trace element compositions of 139 rocks from this area of which the majority are basaltic...

  10. X-ray microanalysis of volcanic ash

    International Nuclear Information System (INIS)

    Kearns, S L; Buse, B

    2012-01-01

    The 2010 eruption of Eyjafjallajökull volcano in Iceland demonstrated the disruptive nature of high-level volcanic ash emissions to the world's air traffic. The chemistry of volcanic material is complex and varied. Different eruptions yield both compositional and morphological variation. Equally a single eruption, such as that in Iceland will evolve over time and may potentially produce a range of volcanic products of varying composition and morphology. This variability offers the petrologist the opportunity to derive a tracer to the origins both spatially and temporally of a single particle by means of electron microbeam analysis. EPMA of volcanic ash is now an established technique for this type of analysis as used in tephrachronology. However, airborne paniculate material may, as in the case of Eyjafjallajökull, result in a particle size that is too small and too dispersed for preparation of standard EPMA mounts. Consequently SEM-EDS techniques are preferred for this type of quantitative analysis . Results of quantitative SEM-EDS analysis yield data with a larger precision error than EPMA yet sufficient to source the original eruption. Uncoated samples analyzed using variable pressure SEM yield slightly poorer results at modest pressures.

  11. Amazonian volcanism inside Valles Marineris on Mars

    Czech Academy of Sciences Publication Activity Database

    Brož, Petr; Hauber, E.; Wray, J. J.; Michael, G.

    2017-01-01

    Roč. 473, September (2017), s. 122-130 ISSN 0012-821X Institutional support: RVO:67985530 Keywords : Mars * Valles Marineris * volcanism * scoria cone * hydrothermal activity Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 4.409, year: 2016

  12. The Elusive Evidence of Volcanic Lightning.

    Science.gov (United States)

    Genareau, K; Gharghabi, P; Gafford, J; Mazzola, M

    2017-11-14

    Lightning strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic lightning discharge, when airborne volcanic ash is transformed into lightning-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of lightning-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory high-current impulse experiments, this research shows that within the lightning discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of lightning during explosive eruptions.

  13. A Study by Remote Sensing Methods of Volcanism at Craters of the Moon National Park, Idaho

    Science.gov (United States)

    Haberle, C. W.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Lim, D. S. S.; Garry, B.; Sears, D. W. G.; Downs, M.; Busto, J.; Skok, J. R.; Elphic, R. C.; Kobayashi, L.; Heldmann, J. L.; Christensen, P. R.

    2014-12-01

    Craters of the Moon (COTM) National Park, on the eastern Snake River Plain, and its associated lava fields are currently a focus of the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team. COTM was selected for study owing to similarities with volcanic features observed on the Moon, Mars and Vesta. The COTM basaltic lava fields emanate from an 80 km long rift zone where at least eight eruptive episodes, occurring 15,000 to 2,000 BP, have created an expansive volcanic field covering an area of approximately 1,650 km2. This polygenetic volcanic field hosts a diverse collection of basaltic volcanic edifices such as phreatic explosion craters, eruptive fissures, cinder cones, spatter cones, shield volcanoes and expansive lava flows. Engineering challenges and high cost limit the number of robotic and human field investigations of planetary bodies and, due to these constraints, exhaustive remote sensing investigations of planetary surface properties are undertaken prior to field deployment. This creates an unavoidable dependence upon remote sensing, a critical difference between field investigations of planetary bodies and most terrestrial field investigations. Studies of this nature have utility in terrestrial investigations as they can help link spatially encompassing datasets and conserve field resources. We present preliminary results utilizing Earth orbital datasets to determine the efficacy of products derived from remotely sensed data when compared to geologic field observations. Multispectral imaging data (ASTER, AVIRIS, TIMS) collected at a range of spatial and spectral resolutions are paired with high resolution imagery from both orbit and unmanned aircraft systems. This enables the creation of derived products detailing morphology, compositional variation, mineralogy, relative age and vegetation. The surface morphology of flows within COTM differs from flow to flow and observations of these properties can aid in

  14. Microphysical Properties of Alaskan Volcanic Ash

    Science.gov (United States)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved

  15. Fluids in volcanic and geothermal systems

    Science.gov (United States)

    Sigvaldason, Gudmundur E.

    Mineral buffers control the composition of most volatile components of magmas and dissolved species in geothermal fluids. The only element which occurs in significant quantities in volcanic and geothermal fluids and is not controlled by mineral buffers is chlorine. It is argued that in absence of marine influence, geothermal fluids reflect the chlorine content of associated magmatic fluids. The chlorine content of oceanic volcanic rocks has a positive correlation with elements, which are believed to indicate a heterogenous source region. Since the source is generally believed to be the Earth's mantle, the implication is that the mantle is heterogenous with regard to chlorine and other volatiles. Such heterogeneities would have important consequences for genesis and distribution of ore. All major magma types of the oceanic environment occur in Iceland. Their spatial distribution is closely related to a volcanotectonic pattern, suggesting crustal control. A geophysical model of crustal accretion in a rift zone is used in conjunction with classical petrology to predict geochemical processes in a rift zone crust. The model has two kinematic parameters-drift rate and subsidence rate-which combined describe trajectories of mass particles deposited on the surface. When considering in conjunction with thermal gradients of the rift zone a series of metamorphic reactions and chemical fractionation processes are bound to occur, eventually resulting in a layering of the oceanic crust. The physical parameters result in a derived variable, rift zone residence time, which depends on the width of a rift zone. Long residence times in a wide rift zone lead to multistage recycling of material. Other properties of the model, based on geometric arrangement of productive fissure swarms within a rift zone, explain off-rift volcanism as directly related to rift zone processes, either as plate trapped magmatic domains or a transgressive thermal anomaly into an older crust. Off

  16. Resident perception of volcanic hazards and evacuation procedures

    Directory of Open Access Journals (Sweden)

    D. K. Bird

    2009-02-01

    Full Text Available Katla volcano, located beneath the Mýrdalsjökull ice cap in southern Iceland, is capable of producing catastrophic jökulhlaup. The Icelandic Civil Protection (ICP, in conjunction with scientists, local police and emergency managers, developed mitigation strategies for possible jökulhlaup produced during future Katla eruptions. These strategies were tested during a full-scale evacuation exercise in March 2006. A positive public response during a volcanic crisis not only depends upon the public's knowledge of the evacuation plan but also their knowledge and perception of the possible hazards. To improve the effectiveness of residents' compliance with warning and evacuation messages it is important that emergency management officials understand how the public interpret their situation in relation to volcanic hazards and their potential response during a crisis and apply this information to the ongoing development of risk mitigation strategies. We adopted a mixed methods approach in order to gain a broad understanding of residents' knowledge and perception of the Katla volcano in general, jökulhlaup hazards specifically and the regional emergency evacuation plan. This entailed field observations during the major evacuation exercise, interviews with key emergency management officials and questionnaire survey interviews with local residents. Our survey shows that despite living within the hazard zone, many residents do not perceive that their homes could be affected by a jökulhlaup, and many participants who perceive that their homes are safe, stated that they would not evacuate if an evacuation warning was issued. Alarmingly, most participants did not receive an evacuation message during the exercise. However, the majority of participants who took part in the exercise were positive about its implementation. This assessment of resident knowledge and perception of volcanic hazards and the evacuation plan is the first of its kind in

  17. Pacific seamount volcanism in space and time

    Science.gov (United States)

    Hillier, J. K.

    2007-02-01

    Seamounts constitute some of the most direct evidence about intraplate volcanism. As such, when seamounts formed and into which tectonic setting they erupted (i.e. on-ridge or off-ridge) are a useful reflection of how the properties of the lithosphere interact with magma generation in the fluid mantle beneath. Proportionately few seamounts are radiometrically dated however, and these tend to be recently active. In order to more representatively sample and better understand Pacific seamount volcanism this paper estimates the eruption ages (tvolc) of 2706 volcanoes via automated estimates of lithospheric strength. Lithospheric strength (GTRrel) is deduced from the ratio of gravity to topography above the summits of volcanoes, and is shown to correlate with seafloor age at the time of volcanic loading (Δt) at 61 sites where radiometric constraints upon Δt exist. A trend of fits data for these 61, and with seafloor age (tsf) known, can date the 2706 volcanoes; tvolc = tsf - Δt. Widespread recurrences of volcanism proximal to older features (e.g. the Cook-Austral alignment in French Polynesia) suggest that the lithosphere exerts a significant element of control upon the location of volcanism, and that magmatic throughput leaves the lithosphere more susceptible to the passage of future melts. Observations also prompt speculation that: the Tavara seamounts share morphological characteristics and isostatic compensation state with the Musicians, and probably formed similarly; the Easter Island chain may be a modern analogy to the Cross-Lines; a Musicians - South Hawaiian seamounts alignment may be deflecting the Hawaiian hotspot trace.

  18. Cooling Rates of Lunar Volcanic Glass Beads

    Science.gov (United States)

    Hui, Hejiu; Hess, Kai-Uwe; Zhang, Youxue; Peslier, Anne; Lange, Rebecca; Dingwell, Donald; Neal, Clive

    2016-01-01

    It is widely accepted that the Apollo 15 green and Apollo 17 orange glass beads are of volcanic origin. The diffusion profiles of volatiles in these glass beads are believed to be due to degassing during eruption (Saal et al., 2008). The degree of degassing depends on the initial temperature and cooling rate. Therefore, the estimations of volatiles in parental magmas of lunar pyroclastic deposits depend on melt cooling rates. Furthermore, lunar glass beads may have cooled in volcanic environments on the moon. Therefore, the cooling rates may be used to assess the atmospheric condition in an early moon, when volcanic activities were common. The cooling rates of glasses can be inferred from direct heat capacity measurements on the glasses themselves (Wilding et al., 1995, 1996a,b). This method does not require knowledge of glass cooling environments and has been applied to calculate the cooling rates of natural silicate glasses formed in different terrestrial environments. We have carried out heat capacity measurements on hand-picked lunar glass beads using a Netzsch DSC 404C Pegasus differential scanning calorimeter at University of Munich. Our preliminary results suggest that the cooling rate of Apollo 17 orange glass beads may be 12 K/min, based on the correlation between temperature of the heat capacity curve peak in the glass transition range and glass cooling rate. The results imply that the parental magmas of lunar pyroclastic deposits may have contained more water initially than the early estimations (Saal et al., 2008), which used higher cooling rates, 60-180 K/min in the modeling. Furthermore, lunar volcanic glass beads could have been cooled in a hot gaseous medium released from volcanic eruptions, not during free flight. Therefore, our results may shed light on atmospheric condition in an early moon.

  19. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust

    Science.gov (United States)

    Guffanti, M.; Clynne, M.A.; Muffler, L.J.P.

    1996-01-01

    We have analyzed the heat and mass demands of a petrologic model of basaltdriven magmatic evolution in which variously fractionated mafic magmas mix with silicic partial melts of the lower crust. We have formulated steady state heat budgets for two volcanically distinct areas in the Lassen region: the large, late Quaternary, intermediate to silicic Lassen volcanic center and the nearby, coeval, less evolved Caribou volcanic field. At Caribou volcanic field, heat provided by cooling and fractional crystallization of 52 km3 of basalt is more than sufficient to produce 10 km3 of rhyolitic melt by partial melting of lower crust. Net heat added by basalt intrusion at Caribou volcanic field is equivalent to an increase in lower crustal heat flow of ???7 mW m-2, indicating that the field is not a major crustal thermal anomaly. Addition of cumulates from fractionation is offset by removal of erupted partial melts. A minimum basalt influx of 0.3 km3 (km2 Ma)-1 is needed to supply Caribou volcanic field. Our methodology does not fully account for an influx of basalt that remains in the crust as derivative intrusives. On the basis of comparison to deep heat flow, the input of basalt could be ???3 to 7 times the amount we calculate. At Lassen volcanic center, at least 203 km3 of mantle-derived basalt is needed to produce 141 km3 of partial melt and drive the volcanic system. Partial melting mobilizes lower crustal material, augmenting the magmatic volume available for eruption at Lassen volcanic center; thus the erupted volume of 215 km3 exceeds the calculated basalt input of 203 km3. The minimum basalt input of 1.6 km3 (km2 Ma)-1 is >5 times the minimum influx to the Caribou volcanic field. Basalt influx high enough to sustain considerable partial melting, coupled with locally high extension rate, is a crucial factor in development of Lassen volcanic center; in contrast. Caribou volcanic field has failed to develop into a large silicic center primarily because basalt supply

  20. Mitigation of Volcanic Risk: The COSMO-SkyMed Contribution

    Science.gov (United States)

    Sacco, Patrizia; Daraio, Maria Girolamo; Battagliere, Maria Libera; Coletta, Alessandro

    2015-05-01

    The Italian Space Agency (ASI) promotes Earth Observation (EO) applications related to themes such as the prediction, monitoring, management and mitigation of natural and anthropogenic hazards. The approach generally followed is the development and demonstration of prototype services, using currently available data from space missions, in particular the COSMO-SkyMed (Constellation of Small Satellites for Mediterranean basin observation) mission, which represents the largest Italian investment in Space System for EO and thanks to which Italy plays a key role worldwide. Projects funded by ASI provide the convergence of various national industry expertise, research and institutional reference users. In this context a significant example is represented by the ASI Pilot Projects, recently concluded, dealing with various thematic, such as volcanoes. In this paper a special focus will be addressed to the volcanic risk management and the contribution provided in this field by COSMO-SkyMed satellite constellation during the last years. A comprehensive overview of the various national and international projects using COSMO-SkyMed data for the volcanic risk mitigation will be given, highlighting the Italian contribution provided worldwide in this operational framework.

  1. Investigating the Deep Seismic Structure of Volcan de Colima, Mexico

    Science.gov (United States)

    Gardine, M. D.; Reyes, T. D.; West, M. E.

    2006-12-01

    We present early-stage results from a novel seismic investigation at Volcan de Colima. The project is a collaboration between the Observatorio Vulcanologico de la Universidad de Colima and the University of Alaska Fairbanks. In January 2006, twenty broadband seismometers were deployed in a wide-aperture array around the volcano as part of the IRIS/PASSCAL-supported Colima Volcano Deep Seismic Experiment (CODEX). They are scheduled to be in the field for eighteen months. Data from the first several months of the deployment have been used to characterize both the regional seismicity and the seismicity of the volcano, as recorded by the temporary array. Colima volcano has an unusually well-distributed suite of earthquakes on the local, regional and teleseismic scale. Data recorded close to the edifice provide an opportunity to explore the daily explosive activity exhibited by the volcano. The diversity of regional and teleseismic earthquake source regions make Colima an ideal place to probe the deep magmatic structure of a prodigous volcanic center. Results will be interpreted in the context of pre-existing petrologic models to address the relative role of crust and mantle in governing the evolution of an andesitic arc volcano.

  2. Volcanic gas impacts on vegetation at Turrialba Volcano, Costa Rica

    Science.gov (United States)

    Teasdale, R.; Jenkins, M.; Pushnik, J.; Houpis, J. L.; Brown, D. L.

    2010-12-01

    Turrialba volcano is an active composite stratovolcano that is located approximately 40 km east of San Jose, Costa Rica. Seismic activity and degassing have increased since 2005, and gas compositions reflect further increased activity since 2007 peaking in January 2010 with a phreatic eruption. Gas fumes dispersed by trade winds toward the west, northwest, and southwest flanks of Turrialba volcano have caused significant vegetation kill zones, in areas important to local agriculture, including dairy pastures and potato fields, wildlife and human populations. In addition to extensive vegetative degradation is the potential for soil and water contamination and soil erosion. Summit fumarole temperatures have been measured over 200 degrees C and gas emissions are dominated by SO2; gas and vapor plumes reach up to 2 km (fumaroles and gases are measured regularly by OVSICORI-UNA). A recent network of passive air sampling, monitoring of water temperatures of hydrothermal systems, and soil pH measurements coupled with measurement of the physiological status of surrounding plants using gas exchange and fluorescence measurements to: (1) identify physiological correlations between leaf-level gas exchange and chlorophyll fluorescence measurements of plants under long term stress induced by the volcanic gas emissions, and (2) use measurements in tandem with remotely sensed reflectance-derived fluorescence ratio indices to track natural photo inhibition caused by volcanic gas emissions, for use in monitoring plant stress and photosynthetic function. Results may prove helpful in developing potential land management strategies to maintain the biological health of the area.

  3. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism

    Science.gov (United States)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.

    2001-12-01

    The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at

  4. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    Science.gov (United States)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  5. Local stresses, dyke arrest and surface deformation in volcanic edificesand rift zones

    Directory of Open Access Journals (Sweden)

    L. S. Brenner

    2004-06-01

    Full Text Available Field studies indicate that nearly all eruptions in volcanic edifices and rift zones are supplied with magma through fractures (dykes that are opened by magmatic overpressure. While (inferred dyke injections are frequent during unrest periods, volcanic eruptions are, in comparison, infrequent, suggesting that most dykes become arrested at certain depths in the crust, in agreement with field studies. The frequency of dyke arrest can be partly explained by the numerical models presented here which indicate that volcanic edifices and rift zones consisting of rocks of contrasting mechanical properties, such as soft pyroclastic layers and stiff lava flows, commonly develop local stress fields that encourage dyke arrest. During unrest, surface deformation studies are routinely used to infer the geometries of arrested dykes, and some models (using homogeneous, isotropic half-spaces infer large grabens to be induced by such dykes. Our results, however, show that the dyke-tip tensile stresses are normally much greater than the induced surface stresses, making it difficult to explain how a dyke can induce surface stresses in excess of the tensile (or shear strength while the same strength is not exceeded at the (arrested dyke tip. Also, arrested dyke tips in eroded or active rift zones are normally not associated with dyke-induced grabens or normal faults, and some dykes arrested within a few metres of the surface do not generate faults or grabens. The numerical models show that abrupt changes in Young's moduli(stiffnesses, layers with relatively high dyke-normal compressive stresses (stress barriers, and weak horizontal contacts may make the dyke-induced surface tensile stresses too small for significant fault or graben formation to occur in rift zones or volcanic edifices. Also, these small surface stresses may have no simple relation to the dyke geometry or the depth to its tip. Thus, for a layered crust with weak contacts, straightforward

  6. The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism.

    Science.gov (United States)

    Mollel, Godwin F; Swisher, Carl C

    2012-08-01

    The Ngorongoro Volcanic Highland (NVH), situated adjacent and to the east of Olduvai Gorge in northern Tanzania, is the source of the immense quantities of lava, ignimbrite, air fall ash, and volcaniclastic debris that occur interbedded in the Plio-Pleistocene sedimentary deposits in the Laetoli and Olduvai areas. These volcanics have proven crucial to unraveling stratigraphic correlations, the age of these successions, the archaeological and paleontological remains, as well as the source materials from which the bulk of the stone tools were manufactured. The NVH towers some 2,000 m above the Olduvai and Laetoli landscapes, affecting local climate, run-off, and providing varying elevation - climate controlled ecosystem, habitats, and riparian corridors extending into the Olduvai and Laetoli lowlands. The NVH also plays a crucial role in addressing the genesis and history of East African Rift (EAR) magmatism in northern Tanzania. In this contribution, we provide age and petrochemical compositions of the major NVH centers: Lemagurut, basalt to benmorite, 2.4-2.2 Ma; Satiman, tephrite to phonolite, 4.6-3.5 Ma; Oldeani, basalt to trachyandesite, 1.6-1.5 Ma; Ngorongoro, basalt to rhyolite, 2.3-2.0 Ma; Olmoti, basalt to trachyte, 2.0-1.8 Ma; Embagai, nephelinite to phonolite, 1.2-0.6 Ma; and Engelosin, phonolite, 3-2.7 Ma. We then discuss how these correlate in time and composition with volcanics preserved at Olduvai Gorge. Finally, we place this into context with our current understanding as to the eruptive history of the NVH and relationship to East African Rift volcanism. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Volcanic Gases and Hot Spring Water to Evaluate the Volcanic Activity of the Mt. Baekdusan

    Science.gov (United States)

    Yun, S. H.; Lee, S.; Chang, C.

    2017-12-01

    This study performed the analysis on the volcanic gases and hot spring waters from the Julong hot spring at Mt. Baekdu, also known as Changbaishan on the North Korea(DPRK)-China border, during the period from July 2015 to August 2016. Also, we confirmed the errors that HCO3- concentrations of hot spring waters in the previous study (Lee et al. 2014) and tried to improve the problem. Dissolved CO2 in hot spring waters was analyzed using gas chromatograph in Lee et al.(2014). Improving this, from 2015, we used TOC-IC to analysis dissolved CO2. Also, we analyzed the Na2CO3 standard solutions of different concentrations using GC, and confirmed the correlation between the analytical concentrations and the real concentrations. However, because the analytical results of the Julong hot spring water were in discord with the estimated values based on this correlation, we can't estimate the HCO3-concentrations of 2014 samples. During the period of study, CO2/CH4 ratios in volcanic gases are gradually decreased, and this can be interpreted in two different ways. The first interpretation is that the conditions inside the volcanic edifice are changing into more reduction condition, and carbon in volcanic gases become more favorable to distribute into CH4 or CO than CO2. The second interpretation is that the interaction between volcanic gases and water becomes greater than past, and the concentrations of CO2which have much higher solubility in water decreased, relatively. In general, the effect of scrubbing of volcanic gas is strengthened during the quiet periods of volcanic activity rather than active periods. Meanwhile, the analysis of hot spring waters was done on the anion of acidic gases species, the major cations, and some trace elements (As, Cd, Re).This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-3060.

  8. [Effects of volcanic eruptions on human health in Iceland. Review].

    Science.gov (United States)

    Gudmundsson, Gunnar; Larsen, Guðrun

    2016-01-01

    Volcanic eruptions are common in Iceland and have caused health problems ever since the settlement of Iceland. Here we describe volcanic activity and the effects of volcanic gases and ash on human health in Iceland. Volcanic gases expelled during eruptions can be highly toxic for humans if their concentrations are high, irritating the mucus membranes of the eyes and upper respiratory tract at lower concentrations. They can also be very irritating to the skin. Volcanic ash is also irritating for the mucus membranes of the eyes and upper respiratory tract. The smalles particles of volcanic ash can reach the alveoli of the lungs. Described are four examples of volcanic eruptions that have affected the health of Icelanders. The eruption of Laki volcanic fissure in 1783-1784 is the volcanic eruption that has caused the highest mortality and had the greatest effects on the well-being of Icelanders. Despite multiple volcanic eruptions during the last decades in Iceland mortality has been low and effects on human health have been limited, although studies on longterm effects are lacking. Studies on the effects of the Eyjafjallajökul eruption in 2010 on human health showed increased physical and mental symptoms, especially in those having respiratory disorders. The Directorate of Health in Iceland and other services have responded promptly to recurrent volcanic eruptions over the last few years and given detailed instructions on how to minimize the effects on the public health. Key words: volcanic eruptions, Iceland, volcanic ash, volcanic gases, health effects, mortality. Correspondence: Gunnar Guðmundsson, ggudmund@landspitali.is.

  9. Obsidian hydration dating of volcanic events

    Science.gov (United States)

    Friedman, I.; Obradovich, J.

    1981-01-01

    Obsidian hydration dating of volcanic events had been compared with ages of the same events determined by the 14C and KAr methods at several localities. The localities, ranging in age from 1200 to over 1 million yr, include Newberry Craters, Oregon; Coso Hot Springs, California; Salton Sea, California; Yellowstone National Park, Wyoming; and Mineral Range, Utah. In most cases the agreement is quite good. A number of factors including volcanic glass composition and exposuretemperature history must be known in order to relate hydration thickness to age. The effect of composition can be determined from chemical analysis or the refractive index of the glass. Exposure-temperature history requires a number of considerations enumerated in this paper. ?? 1981.

  10. Volcanic Origin of Alkali Halides on Io

    Science.gov (United States)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  11. Volcanic ash impacts on critical infrastructure

    Science.gov (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  12. The scaling of experiments on volcanic systems

    Directory of Open Access Journals (Sweden)

    Olivier eMERLE

    2015-06-01

    Full Text Available In this article, the basic principles of the scaling procedure are first reviewed by a presentation of scale factors. Then, taking an idealized example of a brittle volcanic cone intruded by a viscous magma, the way to choose appropriate analogue materials for both the brittle and ductile parts of the cone is explained by the use of model ratios. Lines of similarity are described to show that an experiment simulates a range of physical processes instead of a unique natural case. The pi theorem is presented as an alternative scaling procedure and discussed through the same idealized example to make the comparison with the model ratio procedure. The appropriateness of the use of gelatin as analogue material for simulating dyke formation is investigated. Finally, the scaling of some particular experiments such as pyroclastic flows or volcanic explosions is briefly presented to show the diversity of scaling procedures in volcanology.

  13. Volcanic emission of radionuclides and magma dynamics

    International Nuclear Information System (INIS)

    Lambert, G.; Le Cloarec, M.F.; Ardouin, B.; Le Roulley, J.C.

    1985-01-01

    210 Pb, 210 Bi and 210 Po, the last decay products of the 238 U series, are highly enriched in volcanic plumes, relative to the magma composition. Moreover this enrichment varies over time and from volcano to volcano. A model is proposed to describe 8 years of measurements of Mt. Etna gaseous emissions. The lead and bismuth coefficients of partition between gaseous and condensated phases in the magma are determined by comparing their concentrations in lava flows and condensated volatiles. In the case of volatile radionuclides, an escaping time is calculated which appears to be related to the volcanic activity. Finally, it is shown that that magma which is degassing can already be partly degassed; it should be considered as a mixture of a few to 50% of deep non-degassed magma with a well degassed superficial magma cell. (orig.)

  14. Seasonal variations of volcanic eruption frequencies

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    Do volcanic eruptions have a tendency to occur more frequently in the months of May and June? Some past evidence suggests that they do. The present study, based on the new eruption catalog of Simkin et al.(1981), investigates the monthly statistics of the largest eruptions, grouped according to explosive magnitude, geographical latitude, and year. At the 2-delta level, no month-to-month variations in eruption frequency are found to be statistically significant. Examination of previously published month-to-month variations suggests that they, too, are not statistically significant. It is concluded that volcanism, at least averaged over large portions of the globe, is probably not periodic on a seasonal or annual time scale.

  15. Quantification of the CO2 emitted from volcanic lakes in Pico Island (Azores)

    Science.gov (United States)

    Andrade, César; Cruz, José; Viveiros, Fátima; Branco, Rafael

    2017-04-01

    This study shows the results of the diffuse CO2 degassing surveys performed in lakes from Pico volcanic Island (Azores archipelago, Portugal). Detailed flux measurements using the accumulation chamber method were made at six lakes (Capitão, Caiado, Paul, Rosada, Peixinho and Negra) during two field campaigns, respectively, in winter (February 2016) and late summer (September 2016). Pico is the second largest island of the Azores archipelago with an area of 444.8 km2; the oldest volcanic unit is dated from about 300,000 years ago. The edification of Pico was mainly due to Hawaiian and Strombolian type volcanic activity, resulting in pahoehoe and aa lava flows of basaltic nature, as well as scoria and spatter cones. Three main volcanic complexes are identified in the island, namely (1) the so-called Montanha Volcanic Complex, corresponding to a central volcano located in the western side of the island that reaches a maximum altitude of 2351 m, (2) the São Roque-Piedade Volcanic Complex, and (3) the Topo-Lajes Volcanic Complex, this last one corresponding to the remnants of a shield volcano located in the south coast. The studied lakes are spread along the São Roque-Piedade Volcanic Complex at altitudes between 785 m and 898 m. Three are associated with depressions of undifferentiated origin (Caiado, Peixinho, Negra), two with depressions of tectonic origin (Capitão, Paul), while Rosada lake is located inside a scoria cone crater. The lakes surface areas vary between 1.25x10-2 and 5.38x10-2 km2, and the water column maximum depth is 7.9 m (3.5-7.9 m). The water storage ranges between 3.6x104 to 9.1x104 m3, and the estimated residence time does not exceed 1.8x10-1 years. A total of 1579 CO2 flux measurements were made during both surveys (868 in summer and 711 in the winter campaign), namely 518 in Caiado lake (293; 225), 358 in Paul (195; 163), 279 in Capitão (150, 129), 200 in Rosada (106, 94), 171 in Peixinho (71, 100) and 53 measurements in Negra lake. Negra

  16. Preliminary geologic map of the Lathrop Wells volcanic center

    International Nuclear Information System (INIS)

    Crowe, B.; Harrington, C.; McFadden, L.; Perry, F.; Wells, S.; Turrin, B.; Champion, D.

    1988-12-01

    A preliminary geologic map has been compiled for the bedrock geology of the Lathrop Wells volcanic center. The map was completed through use of a combination of stereo photographic interpretation and field mapping on color aerial photographs. These photographs (scale 1:4000) were obtained from American Aerial Surveys, Inc. They were flown on August 18, 1987, at the request of the Yucca Mountain Project (then Nevada Nuclear Waste Storage Investigations). The photographs are the Lathrop Wells VC-Area 25 series, numbers 1--32. The original negatives for these photographs are on file with American Aerial Surveys, Inc. Copies of the negatives have been archived at the Los Alamos National Laboratory, Group N-5. The preliminary geologic map is a bedrock geologic map. It does not show alluvial deposits, eolian sands, or scoria fall deposits from the youngest eruptive events. The units will be compiled on separate maps when the geomorphic and soils studies are more advanced

  17. Coping with volcanic hazards; a global perspective

    Science.gov (United States)

    Tilling, R.I.

    1990-01-01

    Compared to some other natural hazards-such as floods, storms, earthquakes, landslides- volcanic hazards strike infrequently. However, in populated areas , even very small eruptions can wreak havoc and cause widespread devastation. For example, the 13 November 1985 eruption of Nevado del Ruiz in Colombia ejected only about 3 percent of the volume of ash produced during the 18 May 1980 eruption of Mount St. Helens. Yet, the mudflows triggered by this tiny eruption killed more than 25,000 people.

  18. Feasibility study on volcanic power generation system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-01

    Investigations were carried out to determine the feasibility of volcanic power generation on Satsuma Io Island. Earthquakes were studied, as were the eruptions of subaerial and submarine hot springs. Hydrothermal rock alteration was studied and electrical surveys were made. General geophysical surveying was performed with thermocameras and radiation monitoring equipment. In particular, the Toyoba mine was studied, both with respect to its hot spring and its subsurface temperatures.

  19. Paleoproterozoic volcanism in the southern Amazon Craton (Brazil): insight into its origin and deposit textures

    Science.gov (United States)

    Roverato, Matteo; Juliani, Caetano

    2014-05-01

    The Brazilian Amazon craton hosts a primitive volcanic activity that took place in a region completely stable since 1.87 Ga. The current geotectonic context is very different from what caused the huge volcanism that we are presenting in this work. Volcanic rocks in several portions of the Amazon craton were grouped in the proterozoic Uatumã supergroup, a well-preserved magmatic region that covers an area with more than 1,200,000 km2. In this work one specific region is considered, the southwestern Tapajos Gold province (TGP) that is part of the Tapajós-Parina tectonic province (Tassinari and Macambri, 1999). TGP consists of metamorphic, igneous and sedimentary sequences resulted from a ca. 2.10-1.87 Ga ocean-continent orogeny. High-K andesites to felsic volcanic sequences and plutonic bodies, andesitic/rhyolitic epiclastic volcanic rocks and A-type granitic intrusions form part of this volcanism/plutonism. In this work we focus particularly our attention on welded, reomorphic and lava-like rhyolitic ignimbrites and co-ignimbrite brecchas. Fiamme texture of different welding intensity, stretched obsidian fragments, "glassy folds", relict pumices, lithics, rotated crystals of feldspars, bipiramidal quarz, and devetrification spherulites are the common features represented by our samples. Microscopical images are provided to characterize the deposits analyzed during this preliminary research. The lack of continuum outcrops in the field made more difficult the stratigraphic reconstruction, but the superb preservation of the deposits, apparently without any metamorphic evidences (not even low-grade), permits a clearly description of the textures and a differentiation between deposits. A detailed exploration of this ancient andesitic and rhyolitic volcanic activity could contribute greatly to the knowledge of the Amazon territory and in particular for the recognition of the various units that form the supergroup Uatumã, especially in relation to different eruptive

  20. Volcanic alert system (VAS) developed during the 2011-2014 El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    García, Alicia; Berrocoso, Manuel; Marrero, José M.; Fernández-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramón

    2014-06-01

    The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.

  1. 40Ar/39Ar laster fusion and K-Ar ages from Lathrop Wells, Nevada, and Cima, California: The age of the latest volcanic activity in the Yucca Mountain area

    International Nuclear Information System (INIS)

    Turrin, B.D.; Champion, D.E.

    1991-01-01

    K-Ar and 40 Ar/ 39 Ar ages from the Lathrop Wells volcanic center, Nevada, and from the Cima volcanic field, California, indicate that the recently reported 20-ka age estimate for the Lathrop Wells volcanic center is incorrect. Instead, an age of 119 ± 11 to 141 ± 10 ka is indicated for the Lathrop Wells volcanic center. This age corrected is concordant with the ages determined by two independent isotopic geochronometric techniques and with the stratigraphy of surficial deposits in the Yucca Mountain region. In addition, paleomagnetic data and radiometric age data indicate only two volcanic events at the Lathrop Wells volcanic center that are probably closely linked in time, not as many as five as recently reported. 32 refs., 2 figs., 2 tabs

  2. The Indian Ocean nodule field: Geology and resource potential

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Ghosh, A; Iyer, S.D.

    This book briefly accounts for the physiography, geology, biology, physics and chemistry of the nodule field, and discusses in detail the aspects of structure, tectonic and volcanism in the field. The role of the ocean floor sediment that hosts...

  3. Magma Diversity in the Trans-Mexican Volcanic Belt: the role of Mantle Heterogeneities, Slab-derived Fluxes and Crustal Contamination.

    Science.gov (United States)

    Schaaf, P.; Valdez, G.; Siebe, C.; Carrasco, G.

    2005-12-01

    The Plio-Quaternary Trans-Mexican Volcanic Belt (TMVB) is related to subduction of the Cocos and Rivera plates underneath the North American plate. Non-parallelism of the magmatic arc with respect to the trench can be explained by oblique subduction and changes of dip angle. In this contribution we compare geochemical and Sr-Nd-Pb isotope data of five TMVB stratovolcanoes (from east to west: Colima Volcano, Nevado de Toluca, Popocatepetl, La Malinche, and Pico de Orizaba) and associated cinder cones. Volcanic products range in stratovolcanoes from andesites (e.g. Colima, Popocatepetl) to rhyolites (e.g. Pico de Orizaba), and from basalts to andesites in the monogenetic cones. Concentrations of incompatible elements correlate positively with Sr-Nd-Pb isotope ratios from east to west along the arc. 87Sr/86Sr, eNd, and 206Pb/204Pb range from 0.7034-0.7050, +6.9 to minus 1.8, and 18.57-18.78, respectively, displaying considerable differences. In the central TMVB, REE patterns of closely spaced high-Mg basaltic andesites differ substantially. This cannot be explained by fractional crystallization processes or differential partial melting of a homogeneous mantle source. Instead, it points towards small-scale mantle heterogeneities. LILE (e.g. Cs, Rb, Ba, Pb) and HFSE (e.g. Ta, Nb, Zr) display variations of orders in magnitude at different segments along the arc. These variations might correlate with amounts of slab-derived aqueous fluids and intensity of metasomatic reactions between the subducting lithosphere and the overlying mantle wedge. Isotopic ratios of mid-lower crustal xenoliths found in nearly all stratovolcano products reflect the nature of the underlying crust beneath the TMVB. Tertiary-Cretaceous plagiogranites (Colima), Cretaceous limestones (Popocatepetl), and Grenvillian quartzites (Pico de Orizaba)and their increasing radiogenic isotope ratios match well with the observed isotopic signatures of the stratovolcanoes. Moreover, elevated CO2 amounts in

  4. Widespread Neogene and Quaternary Volcanism on Central Kerguelen Plateau, Southern Indian Ocean

    Science.gov (United States)

    Duncan, R. A.; Falloon, T.; Quilty, P. G.; Coffin, M. F.

    2016-12-01

    We report new age determinations and compositions for rocks from 18 dredge hauls collected from eight submarine areas across Central Kerguelen Plateau (CKP). Sea knolls and volcanic fields with multiple small cones were targeted over a 125,000 km2 region that includes Heard and McDonald islands. Large early Miocene (16-22 Ma) sea knolls rise from the western margin of the CKP and are part of a NNW-SSE line of volcanic centers that lie between Îles Kerguelen and Heard and McDonald islands. A second group of large sea knolls is aligned E-W across the center of this region. We see evidence of much younger activity (5 Ma to present) in volcanic fields to the north of, and up to 300 km NE of Heard Island. Compositions include basanite, basalt, and trachybasalt, that are broadly similar to plateau lava flows from nearby Ocean Drilling Program (ODP) Site 1138, lower Miocene lavas at Îles Kerguelen, dredged rocks from the early Miocene sea knolls, and Big Ben lavas from Heard Island. Geochemical data indicate decreasing fractions of mantle source melting with time. The western line of sea knolls has been related to hotspot activity now underlying the Heard Island area. In view of the now recognized much larger area of young volcanic activity, we propose that a broad region of CKP became volcanically active in Neogene time due to incubation of plume material at the base of the relatively stationary overlying plateau. The presence of pre-existing crustal faults promotes access for melts from the Heard mantle plume to rise to the surface.

  5. Drilling into Rhyolitic Magma at Shallow depth at Krafla Volcanic Complex, NE-Iceland

    Science.gov (United States)

    Mortensen, A. K.; Markússon, S. H.; Gudmundsson, Á.; Pálsson, B.

    2017-12-01

    Krafla volcanic complex in NE-Iceland is an active volcano but the latest eruption was the Krafla Fires in 1975-1984. Though recent volcanic activity has consisted of basaltic fissure eruptions, then it is rhyolitic magma that has been intercepted on at least two occasions while drilling geothermal production wells in the geothermal field suggesting a layered magma plumbing system beneath the Krafla volcanic complex. In 2008 quenched rhyolitic glass was retrieved from the bottom of well KJ-39, which is 2865 m deep ( 2571 m true vertical depth). In 2009 magma was again encountered at an even shallower depth and in more than 2,5 km distance from the bottom of well KJ-39, but in 2009 well IDDP-1 was drilled into magma three times just below 2100 m depth. Only on the last occasion was quenched glass retrieved to confirm that magma had been encountered. In well KJ-39 the quenched glass was rhyolitic in composition. The glass contained resorbed minerals of plagioclase, clinopyroxene and titanomagnetite, but the composition of the glass resembles magma that has formed by partial melting of hydrated basalt. The melt was encountered among cuttings from impermeable, coarse basaltic intrusives at a depth, where the well was anticipated to penetrate the Hólseldar volcanic fissure. In IDDP-1 the quenched glass was also rhyolitic in composition. The glass contained less than 5% of phenocrysts, but the phenocryst assemblage included andesine plagioclase, augite, pigeonite, and titanomagnetite. At IDDP-1 the melt was encountered below a permeable zone composed of fine to coarse grained felsite and granophyre. The disclosure of magma in two wells at Krafla volcanic complex verify that rhyolitic magma can be encountered at shallow depth across a larger area within the caldera. The encounter of magma at shallow depth conforms with that superheated conditions have been found at >2000 m depth in large parts of Krafla geothermal field.

  6. Global volcanic emissions: budgets, plume chemistry and impacts

    Science.gov (United States)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  7. Neogene volcanism in Gutai Mts. (Eastern Carpathains: a review

    Directory of Open Access Journals (Sweden)

    Marinel Kovacs

    2003-04-01

    Full Text Available Two types of volcanism developed in Gutâi Mts. (inner volcanic chain of Eastern Carpathians: a felsic, extensional/“back-arc” type and an intermediate, arc type. The felsic volcanism of explosive origin, consisting of caldera-related rhyolitic ignimbrites and resedimented volcaniclastics, had taken place during Early-Middle Badenian and Early Sarmatian. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The geochemical study on the volcanic rocks shows the calc-alkaline character of both felsic and intermediate volcanism and typical subduction zones geochemical signatures for the intermediate one. The felsic volcanism shows affinities with subduction-related rocks as well. The main petrogenetic process in Gutâi Mts. was crustal assimilation, strongly constrained by trace element and isotope geochemistry.