WorldWideScience

Sample records for monogalactosyl octasaccharides xxlg

  1. Xyloglucan galactosyl- and fucosyltransferase activity from pea epicotyl microsomes

    International Nuclear Information System (INIS)

    Faik, A.; Chileshe, C.; Sterling, J.; Maclachlan, G.

    1997-01-01

    Microsomal membranes from growing tissue of pea (Pisum sativum L.) epicotyls were incubated with the substrate UDP-[14C]galactose (Gal) with or without tamarind seed xyloglucan (XG) as a potential galactosyl acceptor. Added tamarind seed XG enhanced incorporation of [14C]Gal into high-molecular-weight products (eluted from columns of Sepharose CL-6B in the void volume) that were trichloroacetic acid-soluble but insoluble in 67% ethanol. These products were hydrolyzed by cellulase to fragments comparable in size to XG subunit oligosaccharides. XG-dependent galactosyltransferase activity could be solubilized, along with XG fucosyltransferase, by the detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1 propanesulfonate. When this enzyme was incubated with tamarind (Tamarindus indica L.) seed XG or nasturtium (Tropaeolum majus L.) seed XG that had been partially degalactosylated with an XG-specific beta-galactosidase, the rates of Gal transfer increased and fucose transfer decreased compared with controls with native XG. The reaction products were hydrolyzed by cellulase to 14C fragments that were analyzed by gel-filtration and high-performance liquid chromatography fractionation with pulsed amperometric detection. The major components were XG subunits, namely one of the two possible monogalactosyl octasaccharides (-XXLG-) and digalactosyl nonasaccharide (-XLLG-), whether the predominant octasaccharide in the acceptor was XXLG (as in tamarind seed XG) or XLXG (as in nasturtium seed XG). It is concluded that the first xylosylglucose from the reducing end of the subunits was the Gal acceptor locus preferred by the solubilized pea transferase. These observations are incorporated into a model for the biosynthesis of cell wall XGs

  2. Octasaccharide is the minimal length unit required for efficient binding of cyclophilin B to heparin and cell surface heparan sulphate.

    Science.gov (United States)

    Vanpouille, Christophe; Denys, Agnès; Carpentier, Mathieu; Pakula, Rachel; Mazurier, Joël; Allain, Fabrice

    2004-09-01

    Cyclophilin B (CyPB) is a heparin-binding protein first identified as a receptor for cyclosporin A. In previous studies, we reported that CyPB triggers chemotaxis and integrin-mediated adhesion of T-lymphocytes by way of interaction with two types of binding sites. The first site corresponds to a signalling receptor; the second site has been identified as heparan sulphate (HS) and appears crucial to induce cell adhesion. Characterization of the HS-binding unit is critical to understand the requirement of HS in pro-adhesive activity of CyPB. By using a strategy based on gel mobility shift assays with fluorophore-labelled oligosaccharides, we demonstrated that the minimal heparin unit required for efficient binding of CyPB is an octasaccharide. The mutants CyPB(KKK-) [where KKK- refers to the substitutions K3A(Lys3-->Ala)/K4A/K5A] and CyPB(DeltaYFD) (where Tyr14-Phe-Asp16 has been deleted) failed to interact with octasaccharides, confirming that the Y14FD16 and K3KK5 clusters are required for CyPB binding. Molecular modelling revealed that both clusters are spatially arranged so that they may act synergistically to form a binding site for the octasaccharide. We then demonstrated that heparin-derived octasaccharides and higher degree of polymerization oligosaccharides inhibited the interaction between CyPB and fluorophore-labelled HS chains purified from T-lymphocytes, and strongly reduced the HS-dependent pro-adhesive activity of CyPB. However, oligosaccharides or heparin were unable to restore adhesion of heparinase-treated T-lymphocytes, indicating that HS has to be present on the cell membrane to support the pro-adhesive activity of CyPB. Altogether, these results demonstrate that the octasaccharide is likely to be the minimal length unit required for efficient binding of CyPB to cell surface HS and consequent HS-dependent cell responses.

  3. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses

    Science.gov (United States)

    Hendricks, Gabriel L.; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C.; Viswanathan, Karthik; Albers, Leila; Comolli, James C.; Shriver, Zachary; Knipe, David M.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Trevejo, Jose M.

    2016-01-01

    Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as ‘molecular sinks’ and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. PMID:25637710

  4. Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host-cell interaction

    Science.gov (United States)

    Hu, Yu-Peng; Lin, Shu-Yi; Huang, Cheng-Yen; Zulueta, Medel Manuel L.; Liu, Jing-Yuan; Chang, Wen; Hung, Shang-Cheng

    2011-07-01

    Cell surface carbohydrates play significant roles in a number of biologically important processes. Heparan sulfate, for instance, is a ubiquitously distributed polysulfated polysaccharide that is involved, among other things, in the initial step of herpes simplex virus type 1 (HSV-1) infection. The virus interacts with cell-surface heparan sulfate to facilitate host-cell attachment and entry. 3-O-Sulfonated heparan sulfate has been found to function as an HSV-1 entry receptor. Achieving a complete understanding of these interactions requires the chemical synthesis of such oligosaccharides, but this remains challenging. Here, we present a convenient approach for the synthesis of two irregular 3-O-sulfonated heparan sulfate octasaccharides, making use of a key disaccharide intermediate to acquire different building blocks for the oligosaccharide chain assembly. Despite substantial structural differences, the prepared 3-O-sulfonated sugars blocked viral infection in a dosage-dependent manner with remarkable similarity to one another.

  5. Enzymatic degradation of hybrid iota-/nu-carrageenan by Alteromonas fortis iota-carrageenase.

    Science.gov (United States)

    Jouanneau, Diane; Boulenguer, Patrick; Mazoyer, Jacques; Helbert, William

    2010-05-07

    Hybrid iota-/nu-carrageenan was water-extracted from Eucheuma denticulatum and incubated with Alteromonas fortis iota-carrageenase. The degradation products were then separated by anion-exchange chromatography. The three most abundant fractions of hybrid iota-/nu-carrageenan oligosaccharides were purified and their structures were analyzed by NMR. The smallest hybrid was an octasaccharide with a iota-iota-nu-iota structure. The second fraction was composed of two decasaccharides with iota-iota-iota-nu-iota and iota-[iota/nu]-iota-iota structures. The third fraction was a mixture of dodecasaccharides which contained at least a iota-iota-iota-iota-nu-iota oligosaccharide. The carbon and proton NMR spectra of the octasaccharides were completely assigned, thereby completely attributing the nu-carrabiose moiety for the first time.

  6. Haemolytic glycoglycerolipids from Gymnodinium species.

    Science.gov (United States)

    Parrish, C C; Bodennec, G; Gentien, P

    1998-03-01

    Glycoglycerolipids derived from microalgae can be a source of biologically active substances including toxins. Such glycolipids were analysed in two isolates of toxic marine dinoflagellates from European waters. The lipids of Gymnodinium mikimotoi contained 17% of monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), while in Gymnodinium sp. the proportion was 35%. MGDG and DGDG from both species were haemolytic. The major unsaturated fatty acid in both algal glycolipids was 18:5 omega 3.

  7. Fluorine-18 labelling using [18F]FPyME of a small-glyco drug for potential applications in oncology

    International Nuclear Information System (INIS)

    Kuhnast, B.; Boisgard, R.; Hinnen, F.; Tavitian, B.; Dolle, F.; El Hadri, A.; Richard, S.; Caravano, A.; Petitou, M.

    2011-01-01

    Complete text of publication follows: Objectives: Proteoglycans, among which heparan sulfates (HS), are involved in many of the physiopathological steps of tumour development. Through their interaction with target proteins which regulate cell proliferation, migration, adhesion and invasion, HS play a crucial role in tumour angiogenesis and metastasis. Fully synthetic HS-mimetic oligosaccharides, also called small-glyco drugs, can be prepared and their affinity and inhibition profiles can be finely tuned according to the chemical substitutions. Access to these small-glyco drugs labeled with a positron emitter would be highly valuable in PET imaging not only for their pharmacological evaluation in vivo but also for a better understanding of tumour development. Prosthetic labeling is an efficient and reliable methodology that gives access to radiolabeled biological macromolecules. It consists in the preparation of a low molecular weight reagent bearing the radioactive isotope followed by its conjugation with the desired macromolecule. This strategy is particularly convenient when fluorine-18 is considered. Numerous prosthetic reagents have been designed among which [ 18 F]FPyME (a fluoro-pyridine-based maleimide reagent) for a selective conjugation with sulfhydryl functions borne by the macromolecules. In the present contribution, fluorine-18 labeling of the small-glyco drug EP80043 (c-2) via prosthetic labeling with [ 18 F]FPyME of the corresponding sulphated octa-saccharide, functionalized with a sulfhydryl function (2), is reported. Methods: [ 18 F]FPyME was prepared using a three-step radiochemical pathway, HPLC-purified and freed from HPLC solvents as already reported. The target octa-saccharide 2 was first synthesized as its acetylated derivative 1 to avoid intermolecular disulfide bridge formation. Prior to conjugation with [ 18 F]FPyME, 1 mg of 1 dissolved in PBS (0.1 M, pH 7.5, 100 μL) was treated with a 50 mM solution of hydroxylamine in PBS (100 μL) for

  8. [Biological activity of metabolites of the herb Kalanchoe diagremontania (Hamet de la Bbathie) Jacobs et Perr].

    Science.gov (United States)

    Anisimov, M M; Gerasimenko, N I; Chaĭkina, E L; Serebriakov, Iu M

    2009-01-01

    In this study we investigated the hemolytic, antimicrobial, and phytoregulatory activity of various classes of lipids (triacylglycerols, free fatty acids (FFA), the glyceroglycolipids monogalactosyl diacylglycerol (MGDG), sulfoquinovosyl diacylglycerol (SQDG)), sterols, all of them were obtained from the medical herb Kalanchoe diagremontiana, and also pigments, phenolic compounds (FC), polysaccharides, and ethanol extract (EE) of the herbal. It was established that EE, FC, FFA, and sterols display pH-dependent membranothropic activity. FFA showed antimicrobial activity and stimulated growth of buckwheat stalk sprouts. K. diagremontiana glyceroglycolopids did not display expressed biological activity. Caroteniods displayed pH-independent membranothopic action and antibacterial activity. Chlorophylls displayed antimicrobial action, but did not influence erythrocytes and buckwheat sprouts. Polysaccharides acted against the microorganisms Safale S-04, Candida albicans, Fusarium oxysperum and buckwheat sprouts.

  9. Biosynthesis of digalactosyl diglyceride in Vicia faba leaves.

    Science.gov (United States)

    Williams, J P; Khan, M; Leung, S

    1975-01-01

    Developing and mature leaf tissue from Vicia faba plants were pulse-fed 14-CO2. The lipids were extracted at intervals after exposure to light, and the galactolipids monogalactosyl diglyceride (MGDG) and digalactosyl diglyceride (DGDG) were separated. After methylation and methanolysis, gas-liquid chromatography was used to separate the two galactose units of DGDG and the galactose of MGDG. The specific activities of the galactoses and the changes over the time period of the experiment were determined. The results support the view that DGDG is formed by galactosylation of MGDG. This does not take place by a rapid two-enzyme system reaction but more slowly in two phases: galactosylation of a pool of newly formed MGDG and a more random galactosylation of MGDG. There is no evidence of a high turnover of galactose in these lipids.

  10. Inhibitory effect of chondroitin sulfate oligosaccharides on bovine testicular hyaluronidase.

    Science.gov (United States)

    Kakizaki, Ikuko; Koizumi, Hideyo; Chen, Fengchao; Endo, Masahiko

    2015-05-05

    Hyaluronan and chondroitin sulfates are prominent components of the extracellular matrices of animal tissues; however, their functions in relation to their oligosaccharide structures have not yet been fully elucidated. The oligosaccharides of hyaluronan and chondroitin sulfate were prepared and used to investigate their effects on the hydrolysis and transglycosylation reactions of bovine testicular hyaluronidase when hyaluronan was used as a substrate. Hydrolysis and transglycosylation activities were assessed in independent reaction systems by analyzing the products by HPLC. The hydrolysis and transglycosylation reactions of bovine testicular hyaluronidase were dose-dependently inhibited by chondroitin sulfate oligosaccharides, but not by hyaluronan or chondroitin oligosaccharides. A kinetic analysis of the hydrolysis reaction using hyaluronan octasaccharide revealed that the inhibition mode by chondroitin sulfate oligosaccharides was competitive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus

    Science.gov (United States)

    Choi, K. J.; Nakhost, Z.; Barzana, E.; Karel, M.

    1987-01-01

    The lipids of alga Scenedesmus obliquus grown under controlled conditions were separated and fractionated by column and thin-layer chromatography, and fatty acid composition of each lipid component was studied by gas-liquid chromatography (GLC). Total lipids were 11.17%, and neutral lipid, glycolipid and phospholipid fractions were 7.24%, 2.45% and 1.48% on a dry weight basis, respectively. The major neutral lipids were diglycerides, triglycerides, free sterols, hydrocarbons and sterol esters. The glycolipids were: monogalactosyl diglyceride, digalactosyl diglyceride, esterified sterol glycoside, and sterol glycoside. The phospholipids included: phosphatidyl choline, phosphatidyl glycerol and phosphatidyl ethanolamine. Fourteen fatty acids were identified in the four lipid fractions by GLC. The main fatty acids were C18:2, C16:0, C18:3(alpha), C18:1, C16:3, C16:1, and C16:4. Total unsaturated fatty acid and essential fatty acid compositions of the total algal lipids were 80% and 38%, respectively.

  12. Structural and functional peculiarities of the lipopolysaccharide of Azospirillum brasilense SR55, isolated from the roots of Triticum durum.

    Science.gov (United States)

    Boyko, Alevtina S; Konnova, Svetlana A; Fedonenko, Yulia P; Zdorovenko, Evelina L; Smol'kina, Olga N; Kachala, Vadim V; Ignatov, Vladimir V

    2011-10-20

    Azospirillum brasilense SR55, isolated from the rhizosphere of Triticum durum, was classified as serogroup II on the basis of serological tests. Such serogroup affiliation is uncharacteristic of wheat-associated Azospirillum species. The lipid A of A. brasilense SR55 lipopolysaccharide contained 3-hydroxytetradecanoic, 3-hydroxyhexadecanoic, hexadecanoic and octadecenoic fatty acids. The structure of the lipopolysaccharide's O polysaccharide was established, with the branched octasaccharide repeating unit being represented by l-rhamnose, l-3-O-Me-rhamnose, d-galactose and d-glucuronic acid. The SR55 lipopolysaccharide induced deformations of wheat root hairs. The lipopolysaccharide was not involved in bacterial cell aggregation, but its use to pretreat wheat roots was conducive to cell adsorption. This study shows that Azospirillum bacteria can utilise their own lipopolysaccharide as a carbon source, which may give them an advantage in competitive natural environments. Copyright © 2011 Elsevier GmbH. All rights reserved.

  13. Conformational studies on five octasaccharides isolated from chondroitin sulfate using NMR spectroscopy and molecular modeling

    NARCIS (Netherlands)

    Blanchard, V.; Chevalier, F.; Imberty, A.; Leeflang, B.R.; Sugahara, K.; Kamerling, J.P.

    2007-01-01

    Chondroitin sulfate proteoglycans (CS-PG) are involved in the regulation of the central nervous system in vertebrates due to their presence on cell surfaces and in the extracellular matrix of tissues. The CS moieties are built up from repeating -4)GlcA(β 1-3)GalNAc(β 1- disaccharide units, partly

  14. Single-molecule interrogation of a bacterial sugar transporter allows the discovery of an extracellular inhibitor

    Science.gov (United States)

    Kong, Lingbing; Harrington, Leon; Li, Qiuhong; Cheley, Stephen; Davis, Benjamin G.; Bayley, Hagan

    2013-08-01

    Capsular polysaccharides form the outermost protective layer around many Gram-negative bacteria. Antibiotics aimed directly at weakening this layer are not yet available. In pathogenic Escherichia coli E69, a protein, Wza, forms a pore in the outer membrane that transports K30 capsular polysaccharide from its site of synthesis to the outside of the cell. This therefore represents a prospective antibiotic target. Here we test a variety of grommet-like mimics of K30 capsular polysaccharide on wild-type Wza and on mutant open forms of the pore by electrical recording in planar lipid bilayers. The most effective glycomimetic was the unnatural cyclic octasaccharide octakis(6-deoxy-6-amino)cyclomaltooctaose (am8γCD), which blocks the α-helix barrel of Wza, a site that is directly accessible from the external medium. This glycomimetic inhibited K30 polysaccharide transport in live E. coli E69. With the protective outer membrane disrupted, the bacteria can be recognized and killed by the human immune system.

  15. A Cultivated Form of a Red Seaweed (Chondrus crispus, Suppresses β-Amyloid-Induced Paralysis in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Jatinder Singh Sangha

    2015-10-01

    Full Text Available We report here the protective effects of a methanol extract from a cultivated strain of the red seaweed, Chondrus crispus, against β-amyloid-induced toxicity, in a transgenic Caenorhabditis elegans, expressing human Aβ1-42 gene. The methanol extract of C. crispus (CCE, delayed β-amyloid-induced paralysis, whereas the water extract (CCW was not effective. The CCE treatment did not affect the transcript abundance of amy1; however, Western blot analysis revealed a significant decrease of Aβ species, as compared to untreated worms. The transcript abundance of stress response genes; sod3, hsp16.2 and skn1 increased in CCE-treated worms. Bioassay guided fractionation of the CCE yielded a fraction enriched in monogalactosyl diacylglycerols (MGDG that significantly delayed the onset of β-amyloid-induced paralysis. Taken together, these results suggested that the cultivated strain of C. crispus, whilst providing dietary nutritional value, may also have significant protective effects against β-amyloid-induced toxicity in C. elegans, partly through reduced β-amyloid species, up-regulation of stress induced genes and reduced accumulation of reactive oxygen species (ROS.

  16. Trienoic fatty acids and plant tolerance of temperature

    Directory of Open Access Journals (Sweden)

    Routaboul Jean-Marc

    2002-01-01

    Full Text Available The biophysical reactions of light harvesting and electron transport during photosynthesis take place in a uniquely constructed bilayer, the thylakoid. In all photosynthetic eukaryotes, the complement of atypical glycerolipid molecules that form the foundation of this membrane are characterised by sugar head-groups and a very high level of unsaturation in the fatty acids that occupy the central portion of the thylakoid bilayer. alpha-linolenic (18:3 or a combination of 18:3 and hexadecatrienoic (16:3 acids typically account for approximately two-thirds of all thylakoid membrane fatty acids and over 90% of the fatty acids of monogalactosyl diacylglycerol, the major thylakoid lipid [1, 2]. The occurrence of trienoic fatty acids as a major component of the thylakoid membrane is especially remarkable since these fatty acids form highly reactive targets for active oxygen species and free radicals, which are often the by-products of oxygenic photosynthesis. Photosynthesis is one of the most temperature-sensitive functions of plant [3, 4]. There remains a widespread belief that these trienoic fatty acids might have some crucial role in plants to be of such universal occurrence, especially in photosynthesis tolerance of temperature [5].

  17. Galactosemia, a single gene disorder with epigenetic consequences.

    LENUS (Irish Health Repository)

    Coman, David J

    2010-03-01

    Long-term outcomes of classic galactosemia (GAL) remain disappointing. It is unclear if the complications result mainly from prenatal-neonatal toxicity or persistent glycoprotein and glycolipid synthesis abnormalities. We performed gene expression profiling (T transcriptome) to characterize key-altered genes and gene clusters of four patients with GAL with variable outcomes maintained on a galactose-restricted diet, compared with controls. Significant perturbations of multiple cell signaling pathways were observed including mitogen-activated protein kinase (MAPK) signaling, regulation of the actin cytoskeleton, focal adhesion, and ubiquitin mediated proteolysis. A number of genes significantly altered were further investigated in the GAL cohort including SPARC (osteonectin) and S100A8 (S100 calcium-binding protein). The whole serum N-glycan profile and IgG glycosylation status of 10 treated patients with GAL were compared with healthy control serum and IgG using a quantitative high-throughput analytical HPLC platform. Increased levels of agalactosylated and monogalactosylated structures and decreases in certain digalactosylated structures were identified in the patients. The persistent abnormal glycosylation of serum glycoproteins seen with the microarray data indicates persisting metabolic dyshomeostasis and gene dysregulation in "treated" GAL. Strict restriction of dietary galactose is clearly life saving in the neonatal period; long-term severe galactose restriction may contribute to ongoing systemic abnormalities.

  18. Glycoconjugate Oxime Formation Catalyzed at Neutral pH: Mechanistic Insights and Applications of 1,4-Diaminobenzene as a Superior Catalyst for Complex Carbohydrates.

    Science.gov (United States)

    Østergaard, Mads; Christensen, Niels Johan; Hjuler, Christian T; Jensen, Knud J; Thygesen, Mikkel B

    2018-04-18

    The reaction of unprotected carbohydrates with aminooxy reagents to provide oximes is a key method for the construction of glycoconjugates. Aniline and derivatives serve as organocatalysts for the formation of oximes from simple aldehydes, and we have previously reported that aniline also catalyzes the formation of oximes from the more complex aldehydes, carbohydrates. Here, we present a comprehensive study of the effect of aniline analogues on the formation of carbohydrate oximes and related glycoconjugates depending on organocatalyst structure, pH, nucleophile, and carbohydrate, covering more than 150 different reaction conditions. The observed superiority of the 1,4-diaminobenzene (PDA) catalyst at neutral pH is rationalized by NMR analyses and DFT studies of reaction intermediates. Carbohydrate oxime formation at pH 7 is demonstrated by the formation of a bioactive glycoconjugate from a labile, decorated octasaccharide originating from exopolysaccharides of the soil bacterium Mesorhizobium loti. This study of glycoconjugate formation includes the first direct comparison of aniline-catalyzed reaction rates and equilibrium constants for different classes of nucleophiles, including primary oxyamines, secondary N-alkyl oxyamines, as well as aryl and arylsulfonyl hydrazides. We identified 1,4-diaminobenzene as a superior catalyst for the construction of oxime-linked glycoconjugates under mild conditions.

  19. Modular Synthesis of Heparin-Related Tetra-, Hexa- and Octasaccharides with Differential O-6 Protections: Programming for Regiodefined 6-O-Modifications

    Directory of Open Access Journals (Sweden)

    Marek Baráth

    2015-04-01

    Full Text Available Heparin and heparan sulphate (H/HS are important members of the glycosaminoglycan family of sugars that regulate a substantial number of biological processes. Such biological promiscuity is underpinned by hetereogeneity in their molecular structure. The degree of O-sulfation, particularly at the 6-position of constituent D-GlcN units, is believed to play a role in modulating the effects of such sequences. Synthetic chemistry is essential to be able to extend the diversity of HS-like fragments with defined molecular structure, and particularly to deconvolute the biological significance of modifications at O6. Here we report a synthetic approach to a small matrix of protected heparin-type oligosaccharides, containing orthogonal D-GlcN O-6 protecting groups at programmed positions along the chain, facilitating access towards programmed modifications at specific sites, relevant to sulfation or future mimetics.

  20. Tumor cell proliferation and cyclooxygenase inhibitory constituents in horseradish (Armoracia rusticana) and Wasabi (Wasabia japonica).

    Science.gov (United States)

    Weil, Marvin J; Zhang, Yanjun; Nair, Muraleedharan G

    2005-03-09

    Cyclooxygenase and human tumor cell growth inhibitory extracts of horseradish (Armoracia rusticana) and wasabi (Wasabia japonica) rhizomes upon purification yielded active compounds 1-3 from horseradish and 4 and 5 from wasabi rhizomes. Spectroscopic analyses confirmed the identities of these active compounds as plastoquinone-9 (1), 6-O-acyl-beta-d-glucosyl-beta-sitosterol (2), 1,2-dilinolenoyl-3-galactosylglycerol (3), linolenoyloleoyl-3-beta-galactosylglycerol (4), and 1,2-dipalmitoyl-3-beta-galactosylglycerol (5). 3-Acyl-sitosterols, sinigrin, gluconasturtiin, and phosphatidylcholines isolated from horseradish and alpha-tocopherol and ubiquinone-10 from wasabi rhizomes isolated were inactive in our assays. At a concentration of 60 microg/mL, compounds 1 and 2 selectively inhibited COX-1 enzyme by 28 and 32%, respectively. Compounds 3, 4, and 5 gave 75, 42, and 47% inhibition of COX-1 enzyme, respectively, at a concentration of 250 microg/mL. In a dose response study, compound 3 inhibited the proliferation of colon cancer cells (HCT-116) by 21.9, 42.9, 51.2, and 68.4% and lung cancer cells (NCI-H460) by 30, 39, 44, and 71% at concentrations of 7.5, 15, 30, and 60 microg/mL, respectively. At a concentration of 60 microg/mL, compound 4 inhibited the growth of colon, lung, and stomach cancer cells by 28, 17, and 44%, respectively. This is the first report of the COX-1 enzyme and cancer cell growth inhibitory monogalactosyl diacylglycerides from wasabi and horseradish rhizomes.

  1. Valorization of Lipids from Gracilaria sp. through Lipidomics and Decoding of Antiproliferative and Anti-Inflammatory Activity

    Directory of Open Access Journals (Sweden)

    Elisabete da Costa

    2017-03-01

    Full Text Available The lipidome of the red seaweed Gracilaria sp., cultivated on land-based integrated multitrophic aquaculture (IMTA system, was assessed for the first time using hydrophilic interaction liquid chromatography-mass spectrometry and tandem mass spectrometry (HILIC–MS and MS/MS. One hundred and forty-seven molecular species were identified in the lipidome of the Gracilaria genus and distributed between the glycolipids classes monogalactosyl diacylglyceride (MGDG, digalactosyl diacylglyceride (DGDG, sulfoquinovosyl monoacylglyceride (SQMG, sulfoquinovosyl diacylglyceride (SQDG, the phospholipids phosphatidylcholine (PC, lyso-PC, phosphatidylglycerol (PG, lyso-PG, phosphatidylinositol (PI, phosphatidylethanolamine (PE, phosphatic acid (PA, inositolphosphoceramide (IPC, and betaine lipids monoacylglyceryl- and diacylglyceryl-N,N,N-trimethyl homoserine (MGTS and DGTS. Antiproliferative and anti-inflammatory effects promoted by lipid extract of Gracilaria sp. were evaluated by monitoring cell viability in human cancer lines and by using murine macrophages, respectively. The lipid extract decreased cell viability of human T-47D breast cancer cells and of 5637 human bladder cancer cells (estimated half-maximal inhibitory concentration (IC50 of 12.2 μg/mL and 12.9 μg/mL, respectively and inhibited the production of nitric oxide (NO evoked by the Toll-like receptor 4 agonist lipopolysaccharide (LPS on the macrophage cell line RAW 264.7 (35% inhibition at a concentration of 100 μg/mL. These findings contribute to increase the ranking in the value-chain of Gracilaria sp. biomass cultivated under controlled conditions on IMTA systems.

  2. Heparin sodium compliance to USP monograph: structural elucidation of an atypical 2.18 ppm NMR signal.

    Science.gov (United States)

    Mourier, Pierre A J; Guichard, Olivier Y; Herman, Fréderic; Viskov, Christian

    2012-01-01

    The ¹H nuclear magnetic resonance (NMR) acceptance criteria in the new heparin US Pharmacopeia (USP) monograph do not take into account potential structural modifications responsible for any extra signals observed in ¹H NMR spectra, some purified heparins may be non-compliant under the proposed new USP guidelines and incorrectly classified as unsuitable for pharmaceutical use. Heparins from the "ES" source, containing an extra signal at 2.18 ppm, were depolymerized under controlled conditions using heparinases I, II, and III. The oligosaccharides responsible for the 2.18 ppm signal were enriched using orthogonal chromatographic techniques. After multiple purification steps, we obtained an oligosaccharide mixture containing a highly enriched octasaccharide bearing the structural modification responsible for the extra signal. Following heparinase I depolymerization, a pure tetrasaccharide containing the fingerprint structural modification was isolated for full structural determination. Using 1D and 2D ¹H NMR spectroscopy, the structural moiety responsible for the extra signal at 2.18 ppm was identified as an acetyl group on the heparin backbone, most likely resulting from a very minor manufacturing process side reaction that esterifies the uronic acid at position 3. Such analytical peculiarity has always been present in this heparin source and it was used safety over the years. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Isolation of Highly Purified Fractions of Plasma Membrane and Tonoplast from the Same Homogenate of Soybean Hypocotyls by Free-Flow Electrophoresis 1

    Science.gov (United States)

    Sandelius, Anna Stina; Penel, Claude; Auderset, Guy; Brightman, Andrew; Millard, Merle; Morré, D. James

    1986-01-01

    A procedure is described whereby highly purified fractions of plasma membrane and tonoplast were isolated from hypocotyls of dark-grown soybean (Glycine max L. var Wayne) by the technique of preparative free-flow electrophoresis. Fractions migrating the slowest toward the anode were enriched in thick (10 nanometers) membranes identified as plasma membranes based on ability to bind N-1-naphthylphthalamic acid (NPA), glucan synthetase-II, and K+-stimulated, vanadate-inhibited Mg2+ ATPase, reaction with phosphotungstic acid at low pH on electron microscope sections, and morphological evaluations. Fractions migrating farthest toward the anode (farthest from the point of sample injection) were enriched in membrane vesicles with thick (7-9 nanometers) membranes that did not stain with phosphotungstic acid at low pH, contained a nitrate-inhibited, Cl-stimulated ATPase and had the in situ morphological characteristics of tonoplast including the presence of flocculent contents. These vesicles neither bound NPA nor contained levels of glucan synthetase II above background. Other membranous cell components such as dictyosomes (fucosyltransferase, latent nucleosidediphosphate phosphatase), endoplasmic reticulum vesicles (NADH- and NADPH- cytochrome c reductase), mitochondria (succinate-2(p-indophenyl)-3-p-nitrophenyl)-5-phenyl tetrazolium-reductase and cytochrome oxidase) and plastids (carotenoids and monogalactosyl diglyceride synthetase) were identified on the basis of appropriate marker constituents and, except for plastid thylakoids, had thin (marker activities. From electron microscope morphometry (using both membrane measurements and staining with phosphotungstic acid at low pH) and analysis of marker enzymes, both plasma membrane and tonoplast fractions were estimated to be about 90% pure. Neither fraction appeared to be contaminated by the other by more than 3%. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 9 PMID:16664771

  4. Glycerolipid Profiling of Yellow Sarson Seeds Using Ultra High Performance Liquid Chromatography Coupled to Triple Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Shuning ZHENG

    2017-07-01

    Full Text Available Yellow sarson (Brassica rapa ssp. trillocularis is an important rapeseed-mustard species of Brassica rapa due to its high seed oil content. Glycerolipids and fatty acid composition affect seed germination and determine the quality of seed oil. To date, no information is available on the composition of individual glycerolipids in this species. Therefore, in this study the glycerolipid profiling of yellow sarson seeds was performed using ultra high performance liquid chromatography coupled to triple time-of-flight mass spectrometry (UPLC-Triple-TOF-MS. A fast and efficient chromatographic separation of glycerolipids was accomplished based on an UPLCTM BEH C8 column within 22 min. In ESI positive ion mode, TOF-MS scan-information dependent acquisition-product ion scan was carried out to acquire both high resolution MS and MS/MS information from one injection. According to MS/MS spectra, predominant fragmentation patterns of glycerolipids were elucidated in detail. Based on retention time, accurate mass, isotopic distribution, and fragmentation patterns, the composition of 144 glycerolipids and fatty acids were finally identified in yellow sarson seeds, including 77 triacylglycerols, 32 diacylglycerols, 18 sulfoquinovosyl-diacylglycerols, 5 monogalactosyl-diaclyglycerols, and 12 digalactosyl-diacylglycerols. Of them, the most abundant glycerolipids in yellow sarson seeds were triacylglycerols, the major storage form of seed oil in plants. In addition, diacylglycerols were found as a minor component of glycerolipids. The lowest amounts of glycerolipids detected in seeds were glycosyl-acylglycerols. The results revealed the composition and relative content of glycerolipids in yellow sarson seeds, which will provide a more comprehensive assessment of the quality of seed oil and also help to select functional cultivars with higher beneficial glycerolipids. This profiling method has the advantages of high throughput, high sensitivity and good accuracy

  5. Identification of multiple isomeric core chitobiose-modified high-mannose and paucimannose N-glycans in the planarian Schmidtea mediterranea.

    Science.gov (United States)

    Subramanian, Sabarinath Peruvemba; Babu, Ponnusamy; Palakodeti, Dasaradhi; Subramanian, Ramaswamy

    2018-05-04

    Cell surface-associated glycans mediate many cellular processes, including adhesion, migration, signaling, and extracellular matrix organization. The galactosylation of core fucose (GalFuc epitope) in paucimannose and complex-type N -glycans is characteristic of protostome organisms, including flatworms (planarians). Although uninvestigated, the structures of these glycans may play a role in planarian regeneration. Whole-organism MALDI-MS analysis of N -linked oligosaccharides from the planarian Schmidtea mediterranea revealed the presence of multiple isomeric high-mannose and paucimannose structures with unusual mono-, di-, and polygalactosylated ( n = 3-5) core fucose structures; the latter structures have not been reported in other systems. Di- and trigalactosylated core fucoses were the most dominant glycomers. N -Glycans showed extensive, yet selective, methylation patterns, ranging from non-methylated to polymethylated glycoforms. Although the majority of glycoforms were polymethylated, a small fraction also consisted of non-methylated glycans. Remarkably, monogalactosylated core fucose remained unmethylated, whereas its polygalactosylated forms were methylated, indicating structurally selective methylation. Using database searches, we identified two potential homologs of the Galβ1-4Fuc-synthesizing enzyme from nematodes (GALT-1) that were expressed in the prepharyngeal, pharyngeal, and mesenchymal regions in S. mediterranea. The presence of two GALT-1 homologs suggests different requirements for mono- and polygalactosylation of core fucose for the formation of multiple isomers. Furthermore, we observed variations in core fucose glycosylation patterns in different planarian strains, suggesting evolutionary adaptation in fucose glycosylation. The various core chitobiose modifications and methylations create >60 different glycoforms in S. mediterranea. These results contribute greatly to our understanding of N -glycan biosynthesis and suggest the presence of a

  6. Sequencing of chondroitin sulfate oligosaccharides using a novel exolyase from a marine bacterium that degrades hyaluronan and chondroitin sulfate/dermatan sulfate.

    Science.gov (United States)

    Wang, Wenshuang; Cai, Xiaojuan; Han, Naihan; Han, Wenjun; Sugahara, Kazuyuki; Li, Fuchuan

    2017-11-09

    Glycosaminoglycans (GAGs) are a family of chemically heterogeneous polysaccharides that play important roles in physiological and pathological processes. Owing to the structural complexity of GAGs, their sophisticated chemical structures and biological functions have not been extensively studied. Lyases that cleave GAGs are important tools for structural analysis. Although various GAG lyases have been identified, exolytic lyases with unique enzymatic property are urgently needed for GAG sequencing. In the present study, a putative exolytic GAG lyase from a marine bacterium was recombinantly expressed and characterized in detail. Since it showed exolytic lyase activity toward hyaluronan (HA), chondroitin sulfate (CS), and dermatan sulfate (DS), it was designated as HCDLase. This novel exolyase exhibited the highest activity in Tris-HCl buffer (pH 7.0) at 30°C. Especially, it showed a specific activity that released 2-aminobenzamide (2-AB)-labeled disaccharides from the reducing end of 2-AB-labeled CS oligosaccharides, which suggest that HCDLase is not only a novel exolytic lyase that can split disaccharide residues from the reducing termini of sugar chains but also a useful tool for the sequencing of CS chains. Notably, HCDLase could not digest 2-AB-labeled oligosaccharides from HA, DS, or unsulfated chondroitin, which indicated that sulfates and bond types affect the catalytic activity of HCDLase. Finally, this enzyme combined with CSase ABC was successfully applied for the sequencing of several CS hexa- and octasaccharides with complex structures. The identification of HCDLase provides a useful tool for CS-related research and applications. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.